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A B S T R A C T

Problem: Educational disparities in Mathematics performance are a persistent challenge. This study aims to
unravel the complex factors contributing to these disparities among students internationally, with a focus on
the interpretability of the contributing factors.
Methodology: Utilizing data from the Programme for International Student Assessment (PISA), we conducted
rigorous preprocessing and variable selection to prepare for applying binary classification interpretability
models. These models were trained using the Stratified K-Fold technique to ensure balanced representation
and assessed using six key metrics.
Solution: By applying interpretability models such as Shapley Additive Explanations (SHAP) analysis, we
identified critical factors impacting student performance, including reading accessibility, critical thinking skills,
gender, and geographical location.
Results: Our findings reveal significant disparities linked to resource availability, with students from lower
socioeconomic backgrounds possessing fewer books and demonstrating lower performance in Mathematics.
The geographical analysis highlighted regional educational disparities, with certain areas consistently under-
performing in PISA assessments. Gender also emerged as a determinant, with females contributing differently
to performance levels across the spectrum.
Conclusion: The study provides insights into the multifaceted determinants of student Mathematics perfor-
mance and suggests potential avenues for future research to explore global interpretability models and further
investigate the socioeconomic, cultural, and educational factors at play.
1. Introduction

One of the most critical studies of adolescent students worldwide is
the Programme for International Student Assessment (PISA). This study
is an international educational assessment conducted every three years
on 15-year-old students, and it evaluates the degree to which they have
acquired essential knowledge and skills for successful participation
in society (Pisa, 2019, 2018). The 2018 PISA assessment focuses on
areas of reading, Mathematics, and Science, as well as an innovative
domain and the well-being of students (Schleicher, 2019). These results
are used to evaluate student performance worldwide and compare
the effectiveness of education systems in participating countries. In
particular, the PISA study with the Mathematics and Science results are
of great importance, as these subjects are fundamental in the technolog-
ical development of a country (Shin and Shim, 2021; Kandeel, 2021).
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Within the PISA framework, Mathematics occupies a paramount posi-
tion. It is a crucial indicator of students’ problem-solving capabilities,
logical reasoning, and quantitative aptitude.

In the current research landscape, a palpable need exists for com-
prehensive exploration and analysis. Numerous studies have indeed
dissected specific facets using PISA metrics, and an emerging cohort is
tapping into the vast potential of Machine Learning (ML). Nevertheless,
despite these advancements, there remains a glaring void. The scientific
community needs a nonlinear, intuitive method that can sift through
the vast array of data and discern essential variables from a broader
vantage point. This method should provide deeper insights and be ac-
cessible and comprehensible for various stakeholders, from researchers
to educators. As we stand on the cusp of a data-driven era, proposing
and adopting such a methodology becomes not only beneficial but
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imperative for the progression of educational research (Podda et al.,
2018; Lezhnina and Kismihók, 2022; Xiaomin and Auld, 2020).

Given the significance of the PISA study, our primary goal was to
identify and address educational global disparities in mathematical per-
formance among Spanish adolescent students. We used interpretability
models within the Spanish educational landscape to achieve this aim.
These models help us discern the impacts of key factors such as reading
accessibility, critical thinking skills, and geographical contexts. Ad-
ditionally, we preprocessed the PISA data for Spain strategically to
focus on mathematical outcomes and to segment student performance
into three distinct categories: low, medium, and high. We also eval-
uated various binary classification models to determine the optimal
model that delineates and deciphers those interpretable variables in
the study. Lastly, we investigated the factors influencing mathemat-
ical performance using advanced analytical tools, such as Shapley
Additive exPlanations (SHAP) model analysis. This Interpretable ML
(IML) model shows us an understanding of the relationships between
these factors and students’ different levels of Mathematics. Through
applying interpretability models, the research sheds light on the myriad
multivariate factors influencing students’ Mathematics performance.
Key determinants explored include access to reading materials, critical
thinking skills, gender disparities, and geographic location.

In this paper, we preprocess the PISA data in Spain to understand
and cover three profiles of students (low, medium, and high) based
on the original levels of the official reports presented in PISA (Hu
et al., 2023; Frade-Martínez et al., 2021). At the low proficiency
level, students demonstrate a fundamental grasp of essential math-
ematical concepts and possess basic arithmetic skills. The medium
proficiency level encompasses a more comprehensive comprehension
of mathematical principles, enabling students to apply mathematical
reasoning to practical situations. The high proficiency level represents
the apex of mathematical prowess, reflecting an ability to engage
in complex mathematical reasoning, abstract thinking, and applying
advanced mathematical concepts.

The paper is organized as follows. Section 2 provides an overview
of the related background, including the relationship between teach-
ing quality and student achievement in Mathematics and Science,
the influence of the gender gap on Mathematics achievement, and
the moderating effect of parental involvement. Section 3 details the
research methodology, outlining how predictive models of student
achievement levels are developed, validated, and interpreted. This
process encompasses four phases: data preprocessing, construction of
the binary classification model, validation, and interpretation using
SHAP analysis. Section 4 then presents the complete results of the
experiments conducted. It shows the performance and validation results
of the ML models, clarifies the classification of significant features,
and highlights the directional impact of these features on the final
performance prediction. In Section 5, the focus is on the discussion
of the results obtained, where we elaborate on the implications of
the results for students at low and high-performance levels. Section 6
is the final chapter of this research. It synthesizes the study con-
tributions, highlighting its role in advancing the understanding of
educational disparities in Mathematics achievement. In addition, this
section acknowledges the study limitations and offers recommendations
for future research, pointing toward avenues that could broaden and
enrich the scope of this investigation.

2. Background

This section serves as a foundation for understanding the multi-
faceted influences on academic achievement. Firstly, we delve into how
the quality of teaching directly correlates with student performance
in Mathematics and Science. Subsequently, the spotlight shifts to the
gender gap and its unique impact on Mathematics achievement, shed-
2

ding light on existing disparities. Lastly, we discuss the pivotal role
of parental involvement, underscoring its potential to either bolster or
hinder a student’s academic trajectory.

Teaching Quality Affects Mathematics/Science Achievement.
One of the studies investigated the socioeconomic status and the re-
lationship of growth mindset to Mathematics and Science learning
filtered in the country of the Philippines. The results of this study
show that a growth mindset is positively related to scores in these
two technical subjects. On the other hand, the student’s socioeconomic
background moderated this relationship, concluding that the influences
of a growth mindset on Mathematics and Science learning are stronger
in students with unfavorable family economic status (Bernardo, 2021).
This same study also found that students from economically disadvan-
taged backgrounds have lower levels of growth mindset compared to
students from more advantaged backgrounds. It concluded that this
result may be due to varying educational opportunities and resources
depending on the student’s economic status.

The results of some other studies indicated that there is a com-
plex relationship between the use of Information and Communication
Technologies (ICT) and performance in Mathematics and Science. Some
studies suggest that strategic use of ICT can have a positive impact
on learning and performance, as these tools can provide opportunities
for practice, exploration, and access to online educational resources.
However, evidence was also found that excessive or inappropriate use
of ICT could be associated with poor academic performance (Odell
et al., 2020).

Gender Gap Impacts Mathematics Achievement. One of the con-
sistent findings across PISA assessments has been the gender gap in
Mathematics. Traditionally, males have outperformed females in Math-
ematics in many participating countries. However, the magnitude of
this gap varies widely among countries. In their PISA data analy-
sis, (Else-Quest et al., 2010) examined the math scores of 15-year-old
students from 40 countries. While they found that males outperformed
females in most countries, they also identified several countries with
no significant gender differences, even some of them where females
outperformed males.

Other studies regarding Mathematics results with the 2018 PISA
data have investigated whether there is a gender gap in the perfor-
mance of Mathematics results globally, where they showed that the
results are similar between males and females (Lu et al., 2023). Specif-
ically, this study found that females outperformed in Mathematics
in 11 of the 40 countries in the study. However, there is some gap
in the choice of more technical careers, and they are less confident
in the Science and Mathematics fields, which are known as Science,
Technology, Engineering, and Mathematics (STEM) careers.

Parental Involvement Moderates Academic Achievement.
Parental involvement in a child’s education has long been identified as
a crucial factor influencing academic outcomes. While students possess
innate abilities and schools offer resources and instruction, the role
of parents cannot be understated. A study conducted by Hill et al.
(2004) delved into the nuances of how parental involvement impacts
academic achievement. Using a diverse dataset, the researchers found
that when parents are actively involved in their child’s education, either
by aiding with homework, attending school meetings, or engaging in
educational activities at home, there was a noticeable positive impact
on the student’s academic performance. Another of the studies related
to the PISA data is based on the moderated effect of parental and
student involvement on their academic performance (Ma et al., 2022).
The authors analyze data to determine whether students with positive
teacher–student relationships tend to perform better academically and
whether parental involvement influences this relationship strength.

3. Methods

In this section, we delineate the systematic approach undertaken
in this study. Our journey begins with data preprocessing, where the

PISA dataset undergoes rigorous refinement to ensure its suitability
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Fig. 1. Distribution of rows by number of missing columns. The histogram presents the frequency of rows relative to the count of missing data points across all student records
in the PISA dataset. A significant concentration of rows exhibits over 400 missing columns, which underscores the rationale for data pruning to enhance the dataset robustness
for subsequent analysis.
for modeling. Following this, we transition into binary classification
models, setting the stage for understanding the predictive mechanisms.
The training of these models is addressed with a focus on the Stratified
K-Fold technique, ensuring a balanced representation of our dataset
categories. The choice of the Stratified K-Fold technique in our model
training process is pivotal to ensuring an equitable representation of
each category within the dataset. This method is especially beneficial in
handling imbalanced datasets, as it maintains the original proportion of
each category across all folds, thereby facilitating a more balanced and
unbiased model training and validation process. For model assessment,
we employ six key metrics. The section culminates with exploring the
nuances of IML, utilizing the SHAP model to demystify the relationships
and impacts of individual features.

3.1. Data preprocessing

The dataset leveraged in this study is drawn from the most recent
PISA assessment, focusing on student performance in Spain. The origi-
nal dataset, sourced from the Organisation for Economic Co-operation
and Development (OECD), encompasses results from 35,943 students.
However, a critical step in our data preparation involved the exclusion
of rows with missing values. Consequently, the analysis was conducted
on a refined sample of 26,657 Spanish students, reducing the initial
dataset by 9286 entries. This elimination of incomplete records is
substantiated by the distribution of the data, as depicted in Fig. 1. The
histogram reveals a significant prevalence of rows with a high count of
missing columns; notably, most of the omitted entries contained more
than 400 missing values out of 1118 total columns. Such a substantial
portion of missing data could potentially skew the analysis, thereby
justifying their removal to ensure the integrity and validity of the
subsequent analysis. The key variables retained for examination are
detailed in Table 1, where the emphasis is placed on ensuring a robust
dataset conducive to a reliable investigation.

In the case of the score variables, preprocessing has been done to
transform them into three recognized labels that define three categories
(high, medium, and low scores). For this, the first step is to obtain
3

the mean of the scores of the ten plausible values of the scores of
all students. The cut-off criterion for the different levels is the one
established by the OECD reports to homogenize the levels with the rest
of the countries and to be able to make an equitable comparison (OECD,
2019). The levels with each cut-off mentioned in the OECD reports
are shown in Table 2, which also shows the category considerations
of student score levels with labels of low, medium, and high values.
This categorization criterion to evaluate each score by reducing it to
three categories allows the different types of students, according to
the Mathematics results, to discern those of high/low performance and
those in the average (medium). As an additional preprocessing tool, a
control variable has been included to evaluate the SHAP interpretabil-
ity analysis subsequently. In this case, a Gaussian noise variable has
been generated pseudo-randomly. The Gaussian distribution criterion
follows a mean of zero and a standard deviation of one.

In further elaboration of our methodological approach, it is perti-
nent to discuss the strategic rationale behind adopting a three-category
classification system, despite initially categorizing the samples into
seven levels. This decision was primarily driven by the need to enhance
interpretability and streamline the analysis process in dealing with
complex educational data sets. Reducing the number of categories for
evaluative purposes aligns with a widely accepted practice in edu-
cational research, as exemplified by the works of Hu et al. (2023)
and by Gorostiaga and Rojo-Álvarez (2016). These studies illustrate
how simplification aids in isolating key findings and trends without
compromising the depth of analysis and demonstrate the effectiveness
of categorizing complex data into fewer, more manageable groups. By
focusing on broader categories, our study aimed to distill the most
relevant insights, ensuring that our findings are not only robust but also
directly applicable and easily comprehensible in the broader context of
educational research. This strategic simplification facilitates a clearer
understanding of the underlying patterns and drivers in educational
performance and outcomes.

In the preprocessing of our dataset, categorical variables of a binary
nature were transformed using the one-hot encoding method. This
approach allows us to convert categorical data into a numerical format



Engineering Applications of Artificial Intelligence 133 (2024) 108109I. Gómez-Talal et al.
Table 1
PISA Mathematics survey variables: descriptions and data types. This table catalogs the variables collected in the PISA, targeting the home environments and
digital literacy of mathematics students. Variables range from the number of certain household items to students’ responses to digital communication scenarios,
each described with its respective data type. The variables include both normalized scalar values for quantifiable items and binary values for yes/no responses.
Variable Description Data types

ST012 How many of the following items exist in your home?
ST012Q01TA Number of televisions Normalized scalar
ST012Q02TA Number of cars Normalized scalar
ST012Q03TA Number of rooms with bathroom Normalized scalar
ST012Q05TA Number of smartphones Normalized scalar
ST012Q06TA Number of computers Normalized scalar
ST012Q07TA Number of tablets Normalized scalar
ST012Q08TA Number of e-books Normalized scalar
ST012Q09TA Number of musical instruments Normalized scalar

ST013 How many books are in your house? Answer with 0–10, 11–25, 26–100, 101–200,
201–500, and more than 500 books

Normalized scalar

ST166 If you receive an email from a phone company claiming you have won
ST166Q01HA Respond to the email and ask for more information about the smartphone Normalized scalar
ST166Q02HA Verify the email address of the email Normalized scalar
ST166Q03HA Click on the form link as quickly as possible Normalized scalar
ST166Q04HA Delete the email message without clicking on the form link Normalized scalar
ST166Q05HA Check the mobile operator’s website to see if it is true Normalized scalar

STRATUM Columns representing the autonomous communities of each student Binary value

ST004D01T Sex of student, answer with male and female Binary value

ST019AQ01T In which country was the student born? Binary value

ST019BQ01T In which country was the student’s mother born? Binary value

ST019CQ01T In which country was the student’s father born? Binary value

ST011 Do any of the following items exist in your house? Answer yes or no
ST011Q01TA A desk for studying Binary value
ST011Q02TA A room of your own Binary value
ST011Q03TA A quiet place to study Binary value
ST011Q04TA If you have a computer for studying Binary value
ST011Q05TA educational software Binary value
ST011Q06TA If you have internet Binary value
ST011Q07TA Classic literature at home Binary value
ST011Q08TA Poetry books Binary value
ST011Q09TA Art paintings Binary value
ST011Q10TA Books that can help you with your homework Binary value
ST011Q11TA Technical books Binary value
ST011Q12TA A dictionary Binary value
ST011Q16TA Books on art, music or design Binary value
ST011Q17TA A video camera Binary value
ST011Q18TA A tablet Binary value
ST011Q19TA Pay television Binary value

ST158 Have you been taught the following tools at school? Answer yes or no
ST158Q01HA Have you been taught keywords to be able to use search engines? Binary value
ST158Q02HA How to know if the information on the internet is reliable? Binary value
ST158Q03HA How to cross-check sources for task verification? Binary value
ST158Q04HA Do you grasp the risks of posting on socials? Binary value
ST158Q05HA How to use the brief description that appears in the search engine results? Binary value
ST158Q06HA Do you know how to detect if information is subjective or reliable? Binary value
ST158Q07HA Do you know how to detect phishing messages or spam messages? Binary value

Mathematics scores Mathematics score prediction label with 3 categories (low, medium, and high) Categorical
by creating binary columns for each category, which can be processed
by ML algorithms effectively. One-hot encoding eliminates the imposi-
tion of a potentially misleading ordinal relationship among categories,
thereby providing a more nuanced and accurate representation of our
dataset. It is important to note that while one-hot encoding was applied
to most categorical variables within our dataset, the labels presented
in Table 1 were exempted from this process. The decision to retain the
original categorical format for the labels was made to facilitate a clearer
interpretation of the outcomes of our analysis. As our labels represent
discrete, non-ordinal entities, one-hot encoding for these particular
variables was deemed unnecessary and potentially obfuscating, given
the context of our research goals.

3.2. Binary classification models

We tested eight binary classification models across various combina-
tions of three distinct math score levels: low, medium, and high. Each
4

Table 2
Detailed distribution of Mathematical skill levels: This table presents the distribution
of mathematical skill levels among the sample population. It includes the score ranges,
corresponding skill levels, the number of samples in each category, and a qualitative
categorization of skill levels. This breakdown provides insights into the proficiency
distribution and the prevalence of various skill levels within the dataset.

Score ranges Levels Number of samples Categories

score ≤ 358 Below Level 1 967 Low
358 < score ≤ 420 Level 1 3080 Low
420 < score ≤ 482 Level 2 6196 Low
482 < score ≤ 545 Level 3 8341 Medium
545 < score ≤ 607 Level 4 6143 Medium
607 < score ≤ 669 Level 5 1795 High
score > 669 Level 6 135 High

model was trained using the Stratified K-fold method, ensuring data
balance within each fold through the application of an undersampling
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technique. For optimization, every model employed differing hyperpa-
rameters, followed by the introduction of a grid search to pinpoint the
model that delivered the highest performance. The evaluated models
were the following ones.

Logistic Regression (LR). This is a linear model utilized for bi-
nary classification. The tested hyperparameters included regularization
(penalty) with ‘‘L1’’ (LASSO) and ‘‘L2’’ (Ridge) options and the regular-
ization values ‘‘C’’ with selections of 0.1, 1, and 10 (Pedregosa et al.,
2011).

Decision Trees. This is a nonlinear classification model that segre-
gates the feature space into regions by employing a set of decision
rules. The assessed hyperparameters included the splitting criterion
with ‘‘gini’’ and ‘‘entropy’’ options, along with the maximum tree depth,
which had options of None, 5, and 10. The ‘‘gini’’ index and the
hyperparameter entropy are measures of impurity that are used to
evaluate how mixed the samples of different classes are in a node. The
main difference lies in the equation where for the ‘‘gini’’ index it is
calculated as 𝐺𝑖𝑛𝑖 = 1 − 𝛴

(

𝑝𝑖
)2 while for the entropy equation, it is

alculated as 𝐸𝑛𝑡𝑟𝑜𝑝𝑦 = −𝛴
(

𝑝𝑖 ∗ log2
(

𝑝𝑖
))

, where 𝑝𝑖 is the probability
hat a sample belongs to class 𝑖 (Pedregosa et al., 2011; Yerpude, 2020).
Random Forest. This is an ensemble model that relies on a combi-

ation of multiple decision trees. The evaluated hyperparameters were
he number of estimators named in the code as (‘‘n_estimators’’), with
hoices of 50, 100, and 200, along with the maximum depth of the
rees, which included options of None, 5, and 10 (Pedregosa et al.,
011).
Gradient Boosting (GB). This ensemble technique amalgamates mul-

iple weak models to create a more robust model. The hyperparameters
valuated included the number of estimators (‘‘n_estimators’’) with op-
ions of 50, 100, and 200, alongside the learning rate (‘‘learning_rate’’)
ith alternatives of 0.1, 0.01, and 0.001 (Pedregosa et al., 2011).
Support Vector Machine (SVM). This is a linear classification model

esigned to identify the optimal hyperplane that separates samples
f different classes. The hyperparameters evaluated were the kernel,
ith options of ‘‘linear’’ and ‘‘RBF’’, and the regularization parameter

‘C’’, which included alternatives of 0.1, 1, and 10. The linear kernel
‘‘linear’’) is employed when the data can be separated linearly, while
he Radial Basis Function (RBF) kernel is used in SVM for problems
nvolving non-linearly separable classification (Pedregosa et al., 2011;
uitinck et al., 2013).
XGBoost. This model employs a BG technique, with decision trees

serving as the base models. The evaluated hyperparameters included
the number of estimators (‘‘n_estimators’’) with options of 50, 100, and
200, and the learning rate (learning_rate) with alternatives of 0.1, 0.01,
and 0.001 (Chen and Guestrin, 2016).

LightGBM. This model represents another GB technique, utilizing
decision trees as base models. The hyperparameters assessed included
the number of estimators (‘‘n_estimators’’) with choices of 50, 100, and
200, along with the learning rate (learning_rate) with alternatives of
0.1, 0.01, and 0.001 (Ke et al., 2017).

Multilayer Perceptron (MLP). This is a feedforward neural network
comprising multiple hidden layers. The evaluated hyperparameters
included the size of the hidden layers, with options of (100,), (50, 50),
and (100, 50, 25), and the activation function, with choices of ‘‘relu’’,
‘‘tanh’’, and ‘‘logistic’’ (Pedregosa et al., 2011).

3.3. Training binary models via stratified K-fold

The Stratified K-Fold cross-validation technique is a pivotal method-
ology, particularly useful when dealing with imbalanced datasets. This
method ensures a homogeneous class distribution across each fold,
providing an equitable and consistent evaluation of a model perfor-
mance (Prusty et al., 2022; Wong and Yang, 2017).

Initially, the training data (which constitute 80% of the whole set)
are sorted according to the target class and divided into five different
5

stratified folds (since, in this problem, we have defined a k = 5). Each
fold contains the same proportion of target classes as the original set.
At each iteration, one fold is assigned as the validation set, while the
remaining folds serve as the training set. The model is then fitted to
the training set and evaluated concerning the validation set (Zeng and
Martinez, 2000).

This process is repeated five times, treating each fold as a validation
set once. It is crucial to note that the models are fitted from scratch
at each iteration to avoid any influence from previously fitted models.
Finally, the performance measures for each fold are averaged to obtain
a robust and accurate assessment of model effectiveness (Purushotham
and Tripathy, 2011).

3.4. Evaluation models

The metrics used in this study in each of the models are the
six fundamental metrics: accuracy (ACC), recall (RC), F1 score (F1S),
Precision (PR), Specificity (SP), and area under the curve (AUC) (Bishop
and Nasrabadi, 2006). In the case of the first metric, it provides an
overall measure of model performance by indicating the proportion of
correct predictions concerning the total number of predictions made.
The ACC is calculated as

𝐴𝐶𝐶 = 𝑇𝑃 + 𝑇𝑁
𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁

, (1)

where the TP value represents the true positive rate, the TN value
represents the true negative rate, the FP value represents the false
positive rate and the FN value represents the false negative rate.

The RC value represents the model ability to correctly identify all
positive cases, being especially useful in situations where FN are more
problematic than FP. Its equation

𝑅𝐶 = 𝑇𝑃
𝑇𝑃 + 𝐹𝑁

. (2)

The PR measures the proportion of correctly classified positive sam-
ples (true positives) among all samples classified as positive (𝑇𝑃 +𝐹𝑃 ),
defined as

𝑃𝑅 = 𝑇𝑃
𝑇𝑃 + 𝐹𝑃

. (3)

The F1-Score metric corresponds as a balanced measure between
ACC and completeness and is calculated as follows,

𝐹1 =
2 × (𝑃𝑅 × 𝑅𝐶)

𝑃𝑅 + 𝑅𝐶
. (4)

On the other hand, SP measures the proportion of correctly classi-
fied negative samples (true negatives) among all samples classified as
negative (true negatives + false positives) as defined by the following
equation

𝑆𝑃 = 𝑇𝑁
𝑇𝑁 + 𝐹𝑃

. (5)

Finally, the AUC, which represents the area under the receiver
operating characteristic (ROC) curve, is used to evaluate the totality
of two parameters: the true positive rate and the false positive rate.
Where the equation is defined as the integral that calculates the area
as follows

𝐴𝑈𝐶 = ∫

1

0
ROC(t)dt, (6)

where an AUC of 1 denotes a perfect classification model, while a
value of 0.5 suggests a performance no better than random classifica-
tion (Powers, 2020; Fawcett, 2006).

3.5. Interpretability in machine learning

Shapley values have their origin in game theory and measure the
average marginal contribution of a player in a cooperative game (Roth,
1988). In the context of ML, this player is interpreted as a characteristic
or an attribute, and the cooperative game becomes the prediction task

performed by the model. Shapley values, therefore, can explain the
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contribution of an attribute to the prediction of an ML mode (Merrick
and Taly, 2020). The Shapley value of a feature for a particular query
point, therefore, explains the contribution of that feature to the model
prediction (the response for regression or the score of each class for
classification) at the specified query point. The Shapley value corre-
sponds to the deviation of the prediction for the query point from the
average prediction due to the feature. For each query point, the sum of
the Shapley values for all features corresponds to the total deviation of
the prediction from the average. Mathematically, the Shapley value of
the 𝑖th feature for query point 𝑥 is defined by the value function 𝑣𝑥 as

𝑖
(

𝑣𝑥
)

= 1
𝑀

∑

𝑆⊆𝑀𝑠{𝑖}

𝑣𝑥(𝑆 ∪ {𝑖}) − 𝑣𝑥(𝑆)
(𝑀 − 1)!

, (7)

where 𝑀 is the total number of features, 𝑀𝑠 is the set of all features,
|𝑆| is the cardinality of the set 𝑆, i.e., the number of elements in the
set 𝑆 and 𝑣𝑥(𝑆) is the value function of the features in a set 𝑆 for query
oint 𝑥 (indicates the expected contribution of the features in 𝑆 to the
rediction for query point 𝑥).

Several algorithms are provided to compute these values within the
HAP package in Python. These algorithms, often called interventional
algorithms, include variants such as Kernel SHAP, Linear SHAP, and
Tree SHAP.

SHAP Intervention Algorithms. Intervention Algorithms define
the value function for a set of attributes at a query point as the
expected prediction for the intervention distribution, which is the joint
distribution of the attributes in the complement of the set

𝑣𝑥(𝑆) = 𝐸𝐷[𝑓 (𝑥𝑆 , 𝑋𝑆𝑐 )], (8)

where 𝑥𝑆 is the query point value for the features in 𝑆, and 𝑋𝑆𝑐 are the
features in 𝑆𝑐 . The intervention algorithm evaluates the value function
𝑣𝑥(𝑆) at query point 𝑥, under the assumption that the features are not
highly correlated, using the values in the data 𝑋 as samples from the
intervention distribution 𝐷 for the features in 𝑆𝑐

𝑣𝑥(𝑆) = 𝐸𝐷
[

𝑓
(

𝑥𝑆 , 𝑋𝑆𝑐
)]

≈ 1
𝑁

𝑁
∑

𝑗=1
𝑓
(

𝑥𝑆 ,
(

𝑋𝑆𝑐
)

𝑗
)

, (9)

where 𝑁 is the number of observations, and
(

𝑋𝑆𝑐
)

𝑗 contains the values
of the features in 𝑆𝑐 for the 𝑗th observation.

The main advantage of interventional algorithms is that they are
computationally less expensive, although, in contrast, they require
the assumption of feature independence and use samples outside the
distribution, which may result in unrealistic observations (Kumar et al.,
2020). The main SHAP intervention algorithms include the following
ones.

Kernel SHAP is a version of the Shapley algorithm that uses a
kernel approximation to estimate the Shapley values. This method is
particularly useful when faced with a high-dimensional feature space
but can be computationally intensive (Lundberg and Lee, 2017).

Linear SHAP is used when we have a linear model, and it calculates
the Shapley values analytically rather than approximately. This makes
Linear SHAP computationally more efficient than Kernel SHAP (Lund-
berg and Lee, 2017).

Tree SHAP is a variant of the Shapley algorithm designed specifi-
cally for tree-based models, such as decision trees, random forests, and
GB algorithms. Tree SHAP is particularly computationally efficient and
can handle feature interactions explicitly (Lundberg et al., 2020).

3.6. Research workflow

The comprehensive analysis of the PISA dataset, as illustrated in
ig. 2, commences with a meticulous preprocessing phase. This initial
tage is instrumental in ensuring data quality by applying various
leaning procedures, addressing missing values, and conducting feature
ngineering to enhance the forthcoming modeling steps. Following
reprocessing, the dataset is systematically divided into a training set
6

and a testing set. The training set is crucial for the development and
calibration of the predictive models, while the testing set is reserved
for an unbiased assessment of the models’ predictive prowess. This
bifurcation is indispensable to ascertain the generalizability of the
models beyond the observed data.

To address potential class imbalance inherent in the PISA dataset,
the study incorporates stratified 5-fold cross-validation in conjunction
with random undersampling techniques during model training. This
stratification ensures that each cross-validation fold retains a propor-
tionate representation of the class distributions, thereby promoting
equity in model training and preventing the overrepresentation of
majority classes from skewing the results. In the quest for the optimal
predictive model, a suite of advanced ML algorithms is employed.
These include but are not limited to, GB machines like LightGBM,
MLP, logistic regression, decision trees, random forests, GB, SVM,
and XGBoost. A meticulous grid search is undertaken to fine-tune the
hyperparameters, thereby facilitating the selection of a binary model
that excels in classification ACC. The rigor of the modeling process
culminates in a thorough evaluation using a diverse set of metrics: ACC,
RC, PR, SP, F1S, and AUC of the ROC curve are computed to provide
a holistic view of model performance. These metrics collectively offer
a nuanced understanding of the model abilities to predict accurately
while balancing the trade-offs between various types of prediction
errors. Enhancing the robustness of the analysis, SHAP interpretability
is harnessed to demystify the model decision-making process. This in-
terpretability framework elucidates the contribution of each feature to
the predictive outcomes, fostering a deeper understanding and ensuring
that the model decisions are transparent and justifiable.

4. Experiments and results

In this section, we present three experiments based on binary com-
parisons of the different levels of Mathematics scores: (1) the compari-
son of the low level concerning the medium level, (2) the study of the
high level and the medium level, and (3) the comparison of the low
level and the high level. In this section, we compare the eight models
to obtain the best model in each study and then gut the knowledge of
the best model in each case to learn which variables contribute most
to the prediction using the SHAP model.

4.1. Comparing models across different levels

This Subsection compares the metrics of the eight models used in
this study that have been trained using the Stratified 5-Fold method.
The trained data corresponds to 80% of the student data set of the pairs
of levels (Low–Medium, High–Medium, and Low–High). The rest of the
data (20%) corresponds to the test data balanced by the undersampling
method to obtain the metrics of the eight models, compare them
homogeneously, and ensure no class imbalance.

Low and Medium Level Study. In this experiment, filtering the
data with the students who have obtained a grade in Mathematics with
a low and medium level have been introduced in the training of the
Stratified 5-Fold model (with 80% of the data set), and the metrics
have been obtained with 20% of test data and that the model has not
employed in the training. The compilation of the metrics is shown in
the Table 7.

The Table 8 meticulously delineates the optimal hyperparameters
for various ML models across. This framework is instrumental in guid-
ing the selection of the most effective model and hyperparameter
combinations for each specific scenario. In the current context, focused
on the low–medium performance, a comprehensive analysis of the
model performance is conducted using a range of metrics, including
ACC, RC, PR, SP, F1S, and AUC. Each model efficacy is evaluated
to ascertain which configurations yield the highest performance in
classifying student achievement levels.
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Fig. 2. Comprehensive Research Workflow utilizing the PISA dataset. Starting with (1) preprocessing, (2) data splitting into training and test sets, (3) addressing class imbalance
with stratified 5-fold cross-validation and undersampling, (4) training various models with grid search optimization, (5) evaluating with metrics including ACC and AUC, and (6)
applying SHAP for interpretability.
Table 3
Model hyperparameters and optimal values for different experiments. This table displays the best-performing hyperparameters for all models
across three experimental scenarios: Low–Medium, High–Medium, and Low–High. Each model key hyperparameters are listed with their optimal
values, offering a quick reference for model tuning in diverse comparative studies.

Model Hyperparameter Low–Medium High–Medium Low–High

Logistic Regression Penalty: L1, L2 L1 L1 L1
C: 0.1, 1, 10 10 10 10

Decision Tree Criterion: gini, entropy gini entropy entropy
Max Depth: None, 5, 10 5 5 5

Random Forest N. Estimators: 50, 100, 200 200 200 100
Max Depth: None, 5, 10 10 10 None

Gradient Boosting N. Estimators: 50, 100, 200 200 50 200
Learning Rate: 0.1, 0.01, 0.001 0.1 0.01 0.1

SVM Kernel: linear, RBF RBF RBF RBF
C: 0.1, 1, 10 1 10 10

XGBoost N. Estimators: 50, 100, 200 50 50 200
Learning Rate: 0.1, 0.01, 0.001 0.1 0.1 0.1

MLP Hidden Layer Sizes: (100), (50, 50), (100, 50, 25) (100) (100) (100)
Activation: relu, tanh, logistic tanh tanh tanh

LightGBM N. Estimators: 50, 100, 200 50 200 50
Learning Rate: 0.1, 0.01, 0.001 0.1 0.01 0.1
Particularly noteworthy in this evaluation is the SVM model. In the
ow–Medium comparison, the SVM, especially with the RBF kernel
nd a regularization parameter (C) set to 1, emerges as the leading
odel (which you can see in Table 3). It distinguishes itself not only

y tying in the number of top metrics but also by achieving the highest
UC score, a crucial indicator of the model ability to balance true
ositive rate and false positive rate effectively. This superior AUC
core underscores the SVM robustness in accurately predicting student
erformance levels, making it an optimal choice for this specific study
ase. In addition to SVM, Table 4 also highlights the strengths of other
odels like GB, which excels in different scenarios with its top-tier
erformance across various metrics. For instance, in the High–Medium
nd Low–High scenarios, GB demonstrates its prowess by leading in
ultiple metrics, offering a comprehensive view of its effectiveness in
ifferentiating student performance levels.

High and Medium Level Study. In this experiment, the data used
n the training and test are the sets of students at medium and high
evels in Mathematics. The Table 8 serves as a crucial reference in this
nalysis, presenting a detailed overview of performance metrics across
ifferent models. Among these, the GB model (referenced in Table 4)
7

stands out for its superior performance in the High–Medium case. This
model, particularly with 50 estimators and a learning rate 0.01, excels
in three key metrics: ACC, PR, and SP. These findings suggest that GB
is adept at distinguishing between higher and medium levels of student
achievement.

Low- and High-Level Study. In this third experiment, the col-
lection of model metrics is performed, but in this case, trained data
covering students with a low and high level in Mathematics. Table 9
compiles the metrics where it is highlighted that all the methods
present outstanding performances to be able to classify both classes,
which will allow us to understand (through the interpretability of the
model) the differentiation and the keys of the students with a high and
low level in Mathematics. As delineated in Table 9, an array of perfor-
mance metrics is employed to thoroughly assess each model capability.
The GB model, specifically with 200 estimators and a learning rate of
0.1, emerges as the standout performer in this scenario (referenced
in Table 4). This configuration excels across four metrics (ACC, PR,
SP, and F1S), indicating its superior ability to effectively differentiate
between low and high student performance levels.
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Table 4
Consolidated performance metrics of various ML models across three study cases: Low–Medium, High–Medium, and Low–High. The metrics provide insight into the models’ abilities
to classify between different levels of student performance.

Model Low–Medium (I) High–Medium (II) Low–High (III)

ACC RC PR SP F1S AUC ACC RC PR SP F1S AUC ACC RC PR SP F1S AUC

LR .7211 .7238 .7836 .7174 .7525 .7940 .6874 .6632 .2222 .6907 .3329 .7340 .8546 .8756 .6563 .5248 .8507 .9335
Dec. Tree .6767 .6123 .7884 .7676 .6893 .7576 .6746 .6243 .2070 .6813 .3109 .6868 .8464 .7979 .6222 .5099 .8555 .8824
Rand. Forest .7126 .7169 .7755 .7066 .7451 .7886 .6783 .6761 .2189 .6786 .3307 .7267 .8604 .8653 .6627 .5370 .8594 .9264
GB (II, III)b .7274 .7248 .7921 .7310 .7570 .8023 .7069 .6010 .2230 .7210 .3253 .7112 .8645 .8627 .6687 .5459 .8648 .9340
SVM (I)a .7282 .7259 .7926 .7315 .7578 .7998 .6859 .6528 .2193 .6903 .3283 .7286 .8628 .8705 .6680 .5419 .8614 .9371
XGBoost .7234 .7252 .7860 .7208 .7543 .7961 .6853 .6528 .2189 .6896 .3279 .7230 .8542 .8601 .6516 .5245 .8531 .9287
MLP .7234 .7528 .7698 .6817 .7612 .7920 .6554 .7227 .2141 .6465 .3303 .7368 .8567 .8834 .6615 .5287 .8516 .9371
LightGBM .7209 .7152 .7887 .7291 .7501 .7965 .6819 .6528 .2168 .6858 .3255 .7213 .8517 .8472 .6443 .5199 .8526 .9299

a Note: SVM is particularly effective in the Low–Medium comparison of student performance, being tied in the number of top metrics but leading with a superior AUC score.
b Note: GB excels in the High–Medium case with leading performance in three metrics (ACC, PR and SP) and outperforms in the Low–High scenario across all four metrics (ACC,
RC, PR and SP).
Table 5
Set of tables compiling the SHAP values of the three experiments (experiment with low-middle levels on the left, high-middle in
the middle, and Low–High on the right) ordered from highest to lowest, along with the student’s index.

Index SHAP

3629 3.1651
3114 3.0867
4004 3.0430
⋮ ⋮
⋮ ⋮
⋮ ⋮
359 −3.6936
1012 −3.9345
2537 −3.9892

Index SHAP

626 2.6225
714 2.3465
1335 2.3282
⋮ ⋮
⋮ ⋮
⋮ ⋮
1224 −1.6110
3033 −1.6765
656 −1.8490

Index SHAP

1382 6.5067
1669 5.8863
479 5.7600
⋮ ⋮
⋮ ⋮
⋮ ⋮
2354 −7.1437
2378 −7.1736
885 −7.2152
This comprehensive evaluation process, as presented in the Low–
igh study case, is instrumental in guiding educators and data an-
lysts toward the most appropriate models and hyperparameters. By
everaging these insights, educational institutions can adopt a more nu-
nced and effective approach to student performance analysis, thereby
nhancing the overall quality of educational assessment strategies.

.2. Research on model interpretability

In this subsection, we go deeper into the interpretability of the best-
erforming models (depending on the case study of students’ levels)
o understand the variables that most affect or contribute more sig-
ificantly to predicting the different levels in Mathematics. As in the
revious subsection, this subsection is divided into three studies (Low–
edium, High–Medium, and Low–High), selecting the best model in

ach case and exposing the best model in each case.
The SHAP values allow us to obtain which variables provide the

ighest to the lowest contribution in the predictions of 20% of the test
ata. However, these test values do not detail which variables affect
ach level. Therefore, in this study, we propose to be able to select
tudents at the extremes of each of the levels and analyze locally and
ndividually how the variables that affect these extreme predictions
ffect them. Table 5 shows the compilation of the indices together
ith the sum of the SHAP contributions of each variable ordered from
ighest to lowest SHAP value together with the student’s index to locate
he student in the data matrix and to be able to select him/her in the
HAP interpretability study.

SHAP Study of Low–Medium Level Students. In this experiment,
we analyze the extreme students corresponding to the first experiment
(choosing a student with a low and a medium level). In Table 5 (left),
we have a student with the lowest SHAP contribution, corresponding
to student 2537, and student 3629 with the highest SHAP contribution
(corresponding to a medium level).

When selecting student 3629 with the medium level, it is observed
that the mean values of the SHAP contributions of the variables of this
student provide that the most determinant variables are: (1) ST013,
(2) ST166Q03HA, and (3) ST166Q04HA. Fig. 3(a) shows the contri-
8

bution of the variables mentioned in a histogram summarizing the
mean absolute values. However, this figure does not concisely show
which specific variables or values of these variables affect middle-level
students. Therefore, Fig. 3(b) shows in a decision plot that the variables:
(1) variable ST013 has a value of 5 (where the student has 201–500
books at home), (2) variable ST166Q03HA is active (the response being
that it is not appropriate to respond to a phishing attack), and (3)
variable ST166Q04HA with a value of 6 (where it is considered very
appropriate to delete the email message without clicking on the form
link in a phishing attack).

In the opposite case, when selecting student 2537 (low level),
Fig. 3(c) shows that the variables that most affect the prediction of
this student are: (1) the variable ST013, (2) the variable ST012Q05TA,
(3) the variable ST166Q02HA and (4) the variable ST166005HA. The
values of these variables that affect the mentioned variables are shown
in Fig. 3(d) where it is observed that the variables: (1) the variable
ST013 (indicates that the student has between 0–10 books at home),
(2) the variable ST012Q05TA with a response of 1 (indicates that the
student has 0 smartphones at home) (3) ST166002HA with a response
of 1 out of 6 where verifying the email of the phishing attack is not
entirely appropriate and (4) the variable ST166005HA with a response
of 2/6 where it is considered inappropriate to verify if the operator is
doing any campaign in the alleged phishing attack.

SHAP Study of High–Medium Level Students. In this second
experiment, the model used corresponds to a GB. As a result of this
and using SHAP, we obtain the contribution values of the SHAP values
to be able to discern between the most extreme students. The values of
the SHAP contributions of this second experiment are shown in Table 5
(center). The lowest contribution corresponds to student 656 (with a
highly medium level close to the low level) and another student 626,
with the highest SHAP contribution (with a high level).

In the case of the student high (corresponding to index 626),
Fig. 4(a) shows that through this GB model for this student, the most
influential variables are: (1) the variable sex Female, (2) the variable
ST013, and (3) the variable ST166Q03HA. To understand the options
and to deepen the interpretability of these variables, Fig. 4(b) shows the
values obtained in the previous variables where the following stand out:
(1) the variable of the student’s sex Female is essential at this high level,
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Fig. 3. SHAP analysis comparing students with low and medium levels in Mathematics. The mean absolute SHAP value of student 3629 (medium level) is represented as summary
plot (a) and decision plot (b) compared with student 2537 (low level), showing summary plot (c) and decision plot (d).
(2) the variable ST013 with a value of 5 (indicating that the student
has 201–500 books at home), and (3) the variable ST166003HA with a
value of 1 (where it is considered that it is not appropriate to respond
to a phishing attack).

In the case of student 656, the highest contribution corresponds
to a student with an average level (but close to the low-level zone).
Fig. 4(c) shows that the essential variables in the prediction are: (1) the
variable ST013, (2) the variable ST166Q03HA, and (3) the variable of
sex Female. To be able to go deeper into the interpretability in Fig. 4(d)
of the values of these variables, the following stand out: (1) the variable
ST013 with a value of 1 (which indicates that the student has between
0–10 books at home), (2) the sex variable is not female, and (3) click
on the form link (phishing attack) as quickly as possible.

SHAP Study of Low–High Level Students. In the third experiment,
we selected two students from the most extreme levels, where using
the SHAP contribution values, we selected student 885 with a lower
contribution (corresponding to the low level) and on the other hand,
student 1382 with a higher SHAP contribution (corresponding to a
student of a high level in Mathematics). The values of the SHAP
contributions of this third experiment are shown in Table 5 (right).
9

Starting with student 885 with a low level, the variables that
contribute most to the prediction are (1) the ST013 variable, (2) the
ST166Q03HA variable, and (3) the variable if the student studies in
the Canary Islands. The contribution values of the SHAP values of
the above variables are displayed in Fig. 5(a). Going deeper into the
interpretability of the values selected by this low-level student in Math-
ematics, Fig. 5(b) shows the values of each of these variables where
the following stand out: (1) the variable ST013 indicates selection ‘‘01’’
(indicating that the student owns between 0–10 books at home), and
(3) the Canary Islands is active.

In the second case, corresponding to student 1382 (with a high
level) in the SHAP model after training the GB model, Fig. 5(c) shows
that the variables that most influence prediction are: (1) the ST013
variable, (2) the ST166003HA variable, and (3) the autonomous com-
munity of Navarra variable. Fig. 5(d) shows the values of each of these
variables, where the following stand out: (1) in the variable ST013
(which indicates that the student has more 500 books at home), (2)
in the variable ST166003HA, the value of ‘‘01’’ (which means that
the student considers it inappropriate to click as quickly as possible
in a possible phishing attack), and (3) the variable of the autonomous
community of Navarra is active.
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Fig. 4. SHAP analysis comparing students with high and medium levels in Mathematics. The mean absolute SHAP value of student 626 (high level) is represented as summary
plot (a) and decision plot (b) compared with student 656 (medium level), showing summary plot (c) and decision plot (d).
Table 6
Compilation of the metrics of the
best models in the binary classifi-
cation problem with student scores
at the low and high level.

Level Students

High 626, 1382
Medium–High 3629
Medium–Low 656
Low 2537, 885

5. Discussion

The presented results reflect an in-depth discussion regarding the
different student profiles obtained through Mathematics scores. The
SHAP analysis defines the variables from highest to lowest contribu-
tion to the predictions obtained. According to these variables and the
profiles obtained, we can classify the selected students into the levels
shown in Table 6. The discussions in this section are defined by the
profiles obtained for students with low and high Mathematics scores
and the common variables that determine students with a medium level
on the borderline between the low and high levels.

Discussion on Students with Low Test Level. In this area of our
discussion, the most contributing variables to the different models ob-
tained from students 656, 2537, and 885 are compiled, with particular
attention to student 885, since the SHAP values obtained from this
10
student belong to a model with better performance than the previous
ones. Therefore, the following ones stand out when discussing the most
influential variables from the most to the least important.

Variable ST013. This variable corresponds to the question asked
to students regarding the number of books they own at home. This
variable appears with greater importance in the results obtained, with
particular attention to students with a low level where the answers
appear with a value of ‘‘01’’ (they own between 0–10 books) and ‘‘02’’
(they own between 11–25 books). This response indicates that students
with low levels in Mathematics do not possess or cannot access reading
at home.

Variable ST166. This variable is surprising since the purpose of
this questionnaire is to evaluate the student’s sensitivity to a possible
phishing attack, where a scenario is proposed to the student where
he/she has supposedly won a cell phone and different strategies and
a range of values where these actions are appropriate are proposed.
Among the different strategies, the different responses among students
with a low level stand out:

1. ST166Q05HA. The proposed strategy is to check the cell phone
operator’s website (where they supposedly regulate cell phones).
This strategy, in principle, in the face of a possible phishing
attack, could be considered entirely appropriate. However, what
is surprising is that among students with a low level in Mathe-
matics, the answers correspond to the fact that this type of action
is not at all or not very appropriate (with answers of ‘‘01’’ and
‘‘02’’).
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Fig. 5. SHAP analysis comparing students with low and high levels in Mathematics. The mean absolute SHAP value of student 885 (low level) is represented as summary plot (a)
and decision plot (b) compared with student 1382 (high level), showing summary plot (c) and decision plot (d).
2. ST166Q02HA. On this occasion, the proposed action is to verify
the email address of the email where we have supposedly won
a cell phone. As in the previous strategy, in this case, it is
proposed to the student whether this action is appropriate in
the face of a possible phishing attack (where at first, we could
consider that it is entirely appropriate). The answers with a low
level in Mathematics emphasize that this action could be more
appropriate (with answers of ‘‘01’’ and ‘‘02’’).

Student’s Gender. In all cases, the gender of the student is not
female since the binary variable is deactivated (with a value of 0). This
is a determinant for the higher levels in Mathematics, which we will
go into more detail later.

Student’s Autonomous Community. In this case, the autonomous
city of Ceuta and students from the Canary Islands stand out, respec-
tively, from most to least important. This information is supported by
the PISA report 2018, where the percentages of exceeding levels by
autonomous communities are indicated. The autonomous communities
of Castilla 𝑦 León, Navarra, Basque Country, Galicia, Cantabria, Aragón,
and La Rioja have between 58% and 61% of students achieving at least
Level 3 in Mathematics. On the opposite end, the Canary Islands (40%),
Andalucía (44%), and Extremadura (45%) have the lowest proportions
of students reaching at least Level 3. The autonomous cities of Ceuta
(20%) and Melilla (29%) have concerning proportions of students
achieving at least Level 3 in mathematical competency (where we have
our cut-off from the low to the medium level in our work) (Cebrián
et al., 2019).
11
Discussion on Students with High Test Level. In the case of high-
level students, the variables obtained from student 1382 stand out the
most, followed by students 626 and 3629. The variables that most
influence the prediction of the models are the following ones.

Variable ST166Q03HA. In this case, within the problem of the
phishing attack scenario, the proposed action is to click as fast as
possible on the ad where we have supposedly won a cell phone. The
response of students with a high level in Mathematics is that this action
is inappropriate (with a response of ‘‘01’’). These types of students are
a priori less sensitive to phishing attacks.

ST013. Students with high levels answered this questionnaire with
values between ‘‘04’’ and ‘‘06’’, which indicates that they have at
least 100 books at home, something relatively significant compared to
students with a low level, where they stand out with the ability to have
less than 25 books at home.

Student’s Gender. The sex of students with a high level in Mathe-
matics generally has a more significant contribution to predicting these
levels when they are females. This does not indicate that the highest
gender significance is in females. Instead, the prediction model infers
this gender distinction in students with a high level. The 2018 PISA
reports define this gender distinction at high mathematics levels, while
the percentages are similar at low levels. In Spain, 8% of males reach
the highest levels (5 and 6) on the mathematics scale, compared to
only 5.5% of females, a trend that is repeated in the average of OECD
countries, but with higher figures: 12.2% of males compared to 9.5%
of females. However, at the lowest levels (below Level 2), the figures
are very similar in Spain (24.8% of females and 24.6% of males). In the
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average of OECD countries (24% of males and 23.9% of females), these
percentages indicate that approximately 25% of males and females in
Spain do not reach Level 2 in mathematics, which stands at 24% on
average in OECD countries (Cebrián et al., 2019).

Student’s Autonomous Community. In the case of students with
high test level, the autonomous community of Navarra stands out

bove all, although the local analysis of this student is always carried
ut. This is in line with the PISA reports in Spain. In the case of La
ioja (9.0%), Navarra (9.3%) and Castilla 𝑦 León (9.5%) show the

highest percentages of students who are at Level 5 of performance in
Mathematics, and with respect to Level 6 in Mathematics, La Rioja
(2.4%) and Navarra (2.1%) stand out again (Cebrián et al., 2019).

Variable ST166Q05HA. In this case, the action performed con-
cerning the questionnaire ST166 corresponds to consult the mobile
operator’s website, and most of the answers of the students with a
high level in Mathematics is ‘‘06’’ which they consider this action to
be very appropriate. Therefore, apparently, students at these levels are
less sensitive to phishing attacks.

Variable ST166Q02HA. Similarly, this action where the verifica-
tion of the sender’s email of the possible phishing attack is considered
an appropriate strategy for the possibility of this scenario (answered
with a value of ‘‘06’’).

In our discussion, we synthesize our findings with the related
work, drawing upon several studies highlighting the multifactorial
nature of academic achievement. Our analysis dovetails with the work
of Bernardo (2021), which emphasizes the critical interplay between
socioeconomic status and growth mindset within the Philippines’ edu-
cational context. This intersection aligns with our observations on how
economic factors shape student outcomes.

Moreover, our investigation into the gender gap in Mathematics
achievement finds resonance with the cross-national study by Else-
Quest et al. (2010) and the global assessment by Lu et al. (2023). These
studies bring to light the variable degrees of gender disparities across
different regions, reinforcing our conclusions regarding the impact
of gender on academic choices and performance, with a particular
emphasis on STEM fields. Our findings contribute to this nuanced
discourse, suggesting that while strides have been made, gender-based
educational differences persist and continue to shape the academic
landscape.

Taken together, our study weaves these strands (socioeconomic
factors, gender dynamics, and familial engagement) into a cohesive
narrative, shedding light on the complex tapestry of influences that
underpin academic success in Mathematics. This comprehensive ap-
proach not only provides a deeper understanding of the determinants
of educational outcomes but also underscores the contributions of our
research to ongoing scholarly conversations.

6. Conclusion and future works

This study, through models generated from representative students,
has examined the multivariate factors contributing to students’ mathe-
matical performance, from those with low to the highest levels.

In low-performing students, the limited amount of books at home
suggests a correlation between lack of access to reading and low
Mathematics performance. In addition, their response to a possible
phishing attack scenario indicates a lower level of logical and analytical
thinking. At the geographic level, the concentration of low-performing
students in the autonomous city of Ceuta and the Canary Islands is
consistent with the 2018 PISA reports, underscoring the persistence of
regional disparities in education.

In contrast, high-achieving students in Mathematics possess sig-
nificantly more books at home, indicating greater access to reading
materials. These students also demonstrate superior critical thinking
skills in the phishing scenario, reflecting their competence to manage
and evaluate information effectively. The role of gender in Mathematics
performance is also evident in this group, with females contributing
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significantly to the prediction of these levels. Regarding regionality, the
autonomous community of La Rioja and Navarra stands out in having
a higher percentage of students with a high Mathematics level.

Therefore, this study provides valuable information on how vari-
ables, such as access to reading, critical thinking skills, gender, and
geographic region, may influence students’ Mathematics achievement.
However, the limitation of the SHAP model in the local analysis of stu-
dents may affect the need for more information on other variables at the
global level. Therefore, as future research, it is interesting to evaluate
this issue using global interpretability models. In the future, it would
be beneficial to explore further the association between these variables
and their potential impact on other aspects of students’ academic
performance.

As future research avenues, exploring global interpretability models
to overcome limitations observed in the SHAP model during local stu-
dent analyses appears compelling. Scholars might consider extending
the current study findings by employing these global interpretabil-
ity models to comprehend better the multifaceted variables affecting
student performance on a broader scale.

Additionally, while this investigation has highlighted the impor-
tance of reading accessibility, logical reasoning, gender, and regional
influences on Mathematics achievements, there is potential to delve
deeper. For instance, it might be intriguing to analyze how the interplay
between these factors could influence student performances in other
academic subjects, thus providing a more comprehensive educational
landscape.

Furthermore, given the sharp regional disparities highlighted, such
as the prominence of high-performing students in Navarra and the
concentration of low-performing ones in places like Ceuta and the
Canary Islands, there is an avenue for researchers to examine the
socioeconomic and infrastructural reasons behind such disparities. This
could pave the way for targeted educational interventions tailored to
specific regions.

Moreover, the significant gender-based insights derived from this
study invite further exploration. Could there be underlying sociocul-
tural reasons behind these observations? Such questions are ripe for
future research endeavors.

By understanding and addressing these educational disparities, es-
pecially in Mathematics performance, we have the potential to craft
more effective and personalized educational policies and interventions.
This study has laid the groundwork, but the horizon ahead offers
numerous opportunities for deeper dives and wider explorations. We
anticipate that this investigation serves as a launchpad, inspiring future
endeavors in this crucial academic domain.
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Appendix A

A.1. Low and medium level study

In the context of predicting student performance, Table 7 presents
an exhaustive analysis of eight ML models, each evaluated under a
range of hyperparameters. This evaluation focuses on distinguishing
between low and medium performance levels among students.

Logistic Regression demonstrates notable performance in terms of
ACC and F1S, especially with ‘‘Penalty: L1, C: 10’’, achieving an ACC
of 0.7211 and an F1S of 0.7525. This indicates considerable efficacy in
binary classification, possibly due to the L1 regularization, which favors
the selection of relevant features for the model.

Decision Tree, particularly with ‘‘Criterion: gini, Max Depth: 10’’,
show a balance in PR and SP, but moderate ACC, which could sug-
gest overfitting. Limited depth might be crucial in avoiding this phe-
nomenon.

Random Forest. By increasing the number of estimators, as in
‘‘n_estimators: 200, Max Depth: None’’, the Random Forest model sig-
nificantly improves, reflecting an ACC of 0.7139 and an AUC of 0.7872.
This demonstrates the ensemble’s effectiveness in generalization, reduc-
ing the overfitting common in individual trees.

Gradient Boosting, with ‘‘n_estimators: 200, learning_rate: 0.1’’,
stands out for its high ACC (0.7274) and F1S (0.7570), indicating its
efficacy in sequential model corrections and in handling various data
distributions.

SVM with ‘‘Kernel: RBF, C: 1’’ exhibits high PR (0.7926) and F1S
(0.7578), highlighting its capability to create complex boundaries be-
tween classes.

XGBoost and LightGBM Both models, with their respective optimal
yperparameters, demonstrate high levels of Accuracy and AUC, indi-
ating their suitability for large datasets due to their scalability and
peed.

MLP, especially with ‘‘HLS: (100,), Activation: tanh’’, achieves high
C and F1S, indicating its effectiveness in capturing non-linear rela-

ionships in the data.

.2. High and medium level study

Table 8 presents an in-depth analysis of eight ML models, each
ssessed across a range of hyperparameters. The objective is to differ-
ntiate between high and medium performance levels among students,
crucial task in educational data analysis.

Logistic Regression. This model, particularly with ‘‘Penalty: L1,
: 10’’, achieves an impressive ACC (0.6874) and the highest PR
0.2222) among its configurations. The results suggest that while LR
s reasonably effective in classifying high and medium performers, the
hallenge of distinguishing these two groups is more complex, reflected
n the relatively lower performance metrics compared to lower-level
ifferentiation.

Decision Tree, especially with ‘‘Criterion: entropy, Max Depth: 5’’,
hows an improved balance between PR (0.2070) and SP (0.6813). This
onfiguration indicates a modest capability to differentiate between
igh and medium performers, likely due to the decision tree simplicity
nd interpretability.

Random Forest. In the ensemble category, this model with
’n_estimators: 100, Max Depth: None’’ registers the highest ACC
0.6947) and PR (0.2200), suggesting its effectiveness in handling
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ore nuanced distinctions in student performance levels, likely due to l
its robustness against overfitting and its ability to aggregate multiple
decision trees.

Gradient Boosting. Demonstrating strong performance, this model
with ‘‘n_estimators: 50, learning_rate: 0.01’’ achieves high ACC
(0.7069). This model success can be attributed to its sequential ap-
proach to correcting errors from previous trees, making it particularly
effective for complex classification tasks like distinguishing high and
medium performers.

SVM with a radial basis function kernel (‘‘Kernel: RBF, C: 10’’)
shows substantial PR (0.2193), indicating its strength in classifying
high-performance students accurately, albeit with a trade-off in RC.

XGBoost, particularly with ‘‘n_estimators: 50, learning_rate: 0.1’’,
tands out with its balanced ACC (0.6853) and F1S (0.3279). This
ighlights XGBoost capability to handle sophisticated patterns within
he data, which is beneficial for differentiating nuanced performance
evels.

MLP, especially with ‘‘HLS: (100,), Activation: tanh’’, achieves a
ignificant RC (0.7227) and F1S (0.3303). This indicates its strength
n identifying high performers but also suggests the potential for false
ositives, a common issue in neural network-based models.

LightGBM with ‘‘n_estimators: 200, learning_rate: 0.01’’, this model
chieves a notable balance with high PR (0.2168) and F1S (0.3255),
eflecting its efficiency and effectiveness in handling large datasets and
omplex classification tasks.

.3. Low- and high-level study

In Table 9, we delve into the evaluation of eight ML models,
ach assessed across diverse hyperparameters. The goal is to discern
etween low and high-performance levels among students, a significant
hallenge in educational data analysis.

Logistic Regression. Exhibiting notable efficacy, especially with
‘Penalty: L1, C: 10’’, achieves the highest ACC (0.8546) and F1S
0.8507). This model strength lies in its ability to balance RC and PR
ssential for distinguishing between extreme performance levels.

Decision Tree, particularly with ‘‘Criterion: entropy, Max Depth:
’’, shows considerable effectiveness, indicated by a high F1S (0.8555)
nd SP (0.5099). This suggests its capability to differentiate perfor-
ance levels, though its simpler structure may lead to challenges in
ore nuanced cases.

Random Forest. Standing out in the ensemble category, this model
ith ‘‘n_estimators: 100, Max Depth: None’’ records the highest ACC

0.8604) and F1S (0.8594). This underscores the model robustness and
ts ability to handle complex classification tasks, such as distinguishing
aried performance levels in educational data.

Gradient Boosting with ‘‘n_estimators: 200, learning_rate: 0.1’’, this
odel achieves excellent results, including the highest AUC (0.9354).

ts sequential approach to model building allows it to effectively ad-
ress the classification challenges inherent in distinguishing between
ow and high student performance levels.

SVM with a radial basis function kernel (‘‘Kernel: RBF, C: 10’’)
emonstrates strong PR (0.6680) and F1S (0.8614), indicative of its
trength in accurately classifying high-performing students while main-
aining a balance with RC.

XGBoost, particularly with ‘‘n_estimators: 200, learning_rate: 0.1’’,
hows a balanced performance with high ACC (0.8542) and F1S
0.8531). Its capability to manage complex patterns within the data
akes it a suitable choice for this challenging classification task.

MLP, especially with ‘‘HLS: (100,), Activation: tanh’’, achieves a
ignificant RC (0.8834) and F1S (0.8516), reflecting its effectiveness
n identifying high performers, although it may require careful tuning
o prevent overfitting.

LightGBM, especially with n_estimators: 50, learning_rate: 0.1, ex-
els in ACC (0.8517) and PR (0.6443), illustrating its efficiency in
andling large datasets and complex tasks like distinguishing between

ow and high student performance levels.
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Table 7
This table presents a comprehensive overview of eight ML models evaluated across a range of hyperparameters to distinguish between low and
medium performance levels among students.

Model Hyperparameters ACC RC PR SP F1S AUC

Logistic Regression

Penalty: L1, C: 0.1 0.7189 0.7169 0.7846 0.7218 0.7492 0.7929
Penalty: L1, C: 1 0.7201 0.7228 0.7828 0.7164 0.7516 0.7938
Penalty: L1, C: 10 0.7211 0.7238 0.7836 0.7174 0.7525 0.7940
Penalty: L2, C: 0.1 0.7187 0.7210 0.7818 0.7154 0.7502 0.7935
Penalty: L2, C: 1 0.7207 0.7238 0.7830 0.7164 0.7522 0.7940
Penalty: L2, C: 10 0.7209 0.7238 0.7833 0.7169 0.7524 0.7940

Decision Tree

Criterion: gini, Max Depth: None 0.6148 0.6130 0.6937 0.6173 0.6509 0.6152
Criterion: gini, Max Depth: 5 0.6767 0.6123 0.7884 0.7676 0.6893 0.7576
Criterion: gini, Max Depth: 10 0.6785 0.6983 0.7385 0.6505 0.7178 0.7226
Criterion: entropy, Max Depth: None 0.6231 0.6220 0.7008 0.6246 0.6591 0.6233
Criterion: entropy, Max Depth: 5 0.6767 0.6123 0.7884 0.7676 0.6893 0.7576
Criterion: entropy, Max Depth: 10 0.6837 0.6924 0.7487 0.6715 0.7195 0.7278

Random Forest

n_estimators: 50, Max Depth: None 0.7076 0.6934 0.7826 0.7276 0.7353 0.7813
n_estimators: 50, Max Depth: 5 0.7064 0.7162 0.7670 0.6925 0.7408 0.7773
n_estimators: 50, Max Depth: 10 0.7131 0.7166 0.7763 0.7081 0.7452 0.7862
n_estimators: 100, Max Depth: None 0.6997 0.6889 0.7736 0.7149 0.7288 0.7798
n_estimators: 100, Max Depth: 5 0.7060 0.7190 0.7649 0.6876 0.7412 0.7777
n_estimators: 100, Max Depth: 10 0.7086 0.7145 0.7712 0.7003 0.7418 0.7881
n_estimators: 200, Max Depth: None 0.7139 0.7100 0.7815 0.7193 0.7440 0.7872
n_estimators: 200, Max Depth: 5 0.7064 0.7210 0.7643 0.6856 0.7420 0.7754
n_estimators: 200, Max Depth: 10 0.7126 0.7169 0.7755 0.7066 0.7451 0.7886

Gradient Boosting

n_estimators: 50, learning_rate: 0.1 0.7191 0.7079 0.7906 0.7349 0.7470 0.7940
n_estimators: 50, learning_rate: 0.01 0.6674 0.6831 0.7313 0.6451 0.7064 0.7524
n_estimators: 50, learning_rate: 0.001 0.6637 0.6910 0.7227 0.6251 0.7065 0.7262
n_estimators: 100, learning_rate: 0.1 0.7266 0.7190 0.7947 0.7374 0.7549 0.8000
n_estimators: 100, learning_rate: 0.01 0.6829 0.6741 0.7578 0.6954 0.7135 0.7627
n_estimators: 100, learning_rate: 0.001 0.6637 0.6910 0.7227 0.6251 0.7065 0.7292
n_estimators: 200, learning_rate: 0.1 0.7274 0.7248 0.7921 0.7310 0.7570 0.8023
n_estimators: 200, learning_rate: 0.01 0.7080 0.6924 0.7839 0.7301 0.7353 0.7790
n_estimators: 200, learning_rate: 0.001 0.6637 0.6910 0.7227 0.6251 0.7065 0.7319

SVM

Kernel: linear, C: 0.1 0.7187 0.7121 0.7874 0.7281 0.7478 0.7933
Kernel: linear, C: 1 0.7185 0.7124 0.7868 0.7271 0.7478 0.7935
Kernel: linear, C: 10 0.7189 0.7124 0.7874 0.7281 0.7480 0.7935
Kernel: RBF, C: 0.1 0.7207 0.7124 0.7901 0.7325 0.7493 0.7941
Kernel: RBF, C: 1 0.7282 0.7259 0.7926 0.7315 0.7578 0.7998
Kernel: RBF, C: 10 0.7266 0.7348 0.7847 0.7149 0.7590 0.7961

XGBoost

n_estimators: 50, learning_rate: 0.1 0.7234 0.7252 0.7860 0.7208 0.7543 0.7961
n_estimators: 50, learning_rate: 0.01 0.7013 0.6979 0.7705 0.7061 0.7324 0.7708
n_estimators: 50, learning_rate: 0.001 0.6965 0.7003 0.7622 0.6910 0.7299 0.7610
n_estimators: 100, learning_rate: 0.1 0.7185 0.7217 0.7810 0.7140 0.7502 0.7958
n_estimators: 100, learning_rate: 0.01 0.7035 0.6955 0.7752 0.7149 0.7332 0.7779
n_estimators: 100, learning_rate: 0.001 0.6979 0.7041 0.7620 0.6891 0.7319 0.7628
n_estimators: 200, learning_rate: 0.1 0.7179 0.7231 0.7793 0.7105 0.7502 0.7902
n_estimators: 200, learning_rate: 0.01 0.7159 0.7141 0.7819 0.7183 0.7465 0.7877
n_estimators: 200, learning_rate: 0.001 0.6997 0.7176 0.7571 0.6744 0.7368 0.7648

MLP

HLS: (100,), Activation: relu 0.6876 0.6848 0.7584 0.6915 0.7197 0.7475
HLS: (100,), Activation: logistic 0.6928 0.7324 0.7404 0.6368 0.7364 0.7487
HLS: (100,), Activation: tanh 0.7234 0.7528 0.7698 0.6817 0.7612 0.7920
HLS: (50, 50), Activation: relu 0.6793 0.7145 0.7317 0.6295 0.7230 0.7364
HLS: (50, 50), Activation: logistic 0.6688 0.6824 0.7335 0.6495 0.7070 0.7291
HLS: (50, 50), Activation: tanh 0.7135 0.7176 0.7763 0.7076 0.7458 0.7873
HLS: (100, 50, 25), Activation: relu 0.6391 0.6154 0.7265 0.6725 0.6664 0.6934
HLS: (100, 50, 25), Activation: logistic 0.6415 0.6475 0.7138 0.6329 0.6790 0.6962
HLS: (100, 50, 25), Activation: tanh 0.6989 0.7079 0.7613 0.6861 0.7336 0.7698

LightGBM

n_estimators: 50, learning_rate: 0.1 0.7209 0.7152 0.7887 0.7291 0.7501 0.7965
n_estimators: 50, learning_rate: 0.01 0.6967 0.6637 0.7852 0.7432 0.7194 0.7694
n_estimators: 50, learning_rate: 0.001 0.6924 0.6665 0.7767 0.7291 0.7174 0.7615
n_estimators: 100, learning_rate: 0.1 0.7187 0.7179 0.7837 0.7198 0.7494 0.7955
n_estimators: 100, learning_rate: 0.01 0.7033 0.6820 0.7835 0.7335 0.7292 0.7767
n_estimators: 100, learning_rate: 0.001 0.6906 0.6575 0.7797 0.7374 0.7134 0.7611
n_estimators: 200, learning_rate: 0.1 0.7175 0.7162 0.7830 0.7193 0.7481 0.7926
n_estimators: 200, learning_rate: 0.01 0.7100 0.6955 0.7849 0.7306 0.7375 0.7873
n_estimators: 200, learning_rate: 0.001 0.6902 0.6568 0.7795 0.7374 0.7130 0.7624
A.4. Confusion matrices

In a comparative analysis of ML algorithms for binary classification
tasks, various models were assessed based on their confusion matrices
at distinct classification thresholds. As depicted in Table 7, LR ex-
hibited a relatively balanced performance across all thresholds, with
14
a slight inclination towards higher false positives in the Low–High
threshold scenario. Decision Trees, while demonstrating robustness in
the Low–Medium and High–Medium thresholds, showed a propensity
for increased false negatives in the Low–High.

Random Forest and GB methods showed similar patterns, with the
latter having a marginally higher count of true positives in most cases.
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Table 8
This table presents a comprehensive overview of eight ML models evaluated across a range of hyperparameters to distinguish between high
and medium performance levels among students.

Model Hyperparameters ACC RC PR SP F1S AUC

Logistic Regression

Penalty: L1, C: 0.1 0.6670 0.6658 0.2104 0.6672 0.3198 0.7229
Penalty: L1, C: 1 0.6826 0.6632 0.2191 0.6851 0.3294 0.7328
Penalty: L1, C: 10 0.6874 0.6632 0.2222 0.6907 0.3329 0.7340
Penalty: L2, C: 0.1 0.6756 0.6683 0.2159 0.6765 0.3263 0.7289
Penalty: L2, C: 1 0.6838 0.6683 0.2208 0.6858 0.3320 0.7327
Penalty: L2, C: 10 0.6865 0.6580 0.2206 0.6903 0.3305 0.7339

Decision Tree

Criterion: gini, Max Depth: None 0.5769 0.5440 0.1475 0.5812 0.2321 0.5626
Criterion: gini, Max Depth: 5 0.6643 0.6269 0.2016 0.6693 0.3051 0.6828
Criterion: gini, Max Depth: 10 0.5799 0.6424 0.1665 0.5716 0.2645 0.5902
Criterion: entropy, Max Depth: None 0.5945 0.5621 0.1573 0.5988 0.2458 0.5805
Criterion: entropy, Max Depth: 5 0.6746 0.6243 0.2070 0.6813 0.3109 0.6868
Criterion: entropy, Max Depth: 10 0.6192 0.6217 0.1785 0.6189 0.2774 0.6266

Random Forest

n_estimators: 50, Max Depth: None 0.6899 0.6243 0.2163 0.6986 0.3213 0.7187
n_estimators: 50, Max Depth: 5 0.6762 0.6373 0.2104 0.6813 0.3163 0.7140
n_estimators: 50, Max Depth: 10 0.6698 0.6580 0.2106 0.6713 0.3190 0.7162
n_estimators: 100, Max Depth: None 0.6947 0.6269 0.2200 0.7038 0.3257 0.7223
n_estimators: 100, Max Depth: 5 0.6819 0.6632 0.2188 0.6845 0.3290 0.7192
n_estimators: 100, Max Depth: 10 0.6756 0.6735 0.2168 0.6758 0.3280 0.7217
n_estimators: 200, Max Depth: None 0.6862 0.6373 0.2165 0.6927 0.3232 0.7208
n_estimators: 200, Max Depth: 5 0.6643 0.6735 0.2103 0.6630 0.3205 0.7143
n_estimators: 200, Max Depth: 10 0.6783 0.6761 0.2189 0.6786 0.3307 0.7267

Gradient Boosting

n_estimators: 50, learning_rate: 0.1 0.6890 0.6373 0.2182 0.6958 0.3251 0.7285
n_estimators: 50, learning_rate: 0.01 0.7069 0.6010 0.2230 0.7210 0.3253 0.7112
n_estimators: 50, learning_rate: 0.001 0.6405 0.6632 0.1960 0.6375 0.3026 0.6973
n_estimators: 100, learning_rate: 0.1 0.6883 0.6424 0.2188 0.6945 0.3265 0.7273
n_estimators: 100, learning_rate: 0.01 0.6676 0.6476 0.2074 0.6703 0.3142 0.7155
n_estimators: 100, learning_rate: 0.001 0.6661 0.6580 0.2085 0.6672 0.3167 0.7006
n_estimators: 200, learning_rate: 0.1 0.6850 0.6424 0.2167 0.6907 0.3241 0.7242
n_estimators: 200, learning_rate: 0.01 0.6816 0.6450 0.2152 0.6865 0.3227 0.7249
n_estimators: 200, learning_rate: 0.001 0.6661 0.6580 0.2085 0.6672 0.3167 0.7050

SVM

Kernel: linear, C: 0.1 0.6789 0.6683 0.2179 0.6803 0.3286 0.7337
Kernel: linear, C: 1 0.6777 0.6735 0.2181 0.6782 0.3295 0.7337
Kernel: linear, C: 10 0.6783 0.6709 0.2180 0.6793 0.3290 0.7341
Kernel: RBF, C: 0.1 0.6414 0.6943 0.2019 0.6344 0.3129 0.7153
Kernel: RBF, C: 1 0.6695 0.6658 0.2118 0.6700 0.3214 0.7325
Kernel: RBF, C: 10 0.6859 0.6528 0.2193 0.6903 0.3283 0.7286

XGBoost

n_estimators: 50, learning_rate: 0.1 0.6853 0.6528 0.2189 0.6896 0.3279 0.7230
n_estimators: 50, learning_rate: 0.01 0.6692 0.6269 0.2043 0.6748 0.3082 0.7091
n_estimators: 50, learning_rate: 0.001 0.6408 0.6036 0.1850 0.6458 0.2832 0.6663
n_estimators: 100, learning_rate: 0.1 0.6847 0.6347 0.2151 0.6914 0.3213 0.7150
n_estimators: 100, learning_rate: 0.01 0.6704 0.6217 0.2040 0.6769 0.3072 0.7130
n_estimators: 100, learning_rate: 0.001 0.6527 0.6010 0.1904 0.6596 0.2892 0.6832
n_estimators: 200, learning_rate: 0.1 0.6731 0.6269 0.2066 0.6793 0.3108 0.7055
n_estimators: 200, learning_rate: 0.01 0.6707 0.6398 0.2077 0.6748 0.3136 0.7203
n_estimators: 200, learning_rate: 0.001 0.6625 0.6243 0.2001 0.6675 0.3031 0.6975

MLP

HLS: (100,), Activation: relu 0.5881 0.6632 0.1732 0.5781 0.2746 0.6714
HLS: (100,), Activation: logistic 0.6954 0.5803 0.2109 0.7107 0.3093 0.6877
HLS: (100,), Activation: tanh 0.6554 0.7227 0.2141 0.6465 0.3303 0.7368
HLS: (50, 50), Activation: relu 0.5851 0.6010 0.1611 0.5830 0.2541 0.6327
HLS: (50, 50), Activation: logistic 0.6347 0.5699 0.1755 0.6434 0.2684 0.6489
HLS: (50, 50), Activation: tanh 0.6890 0.6502 0.2207 0.6941 0.3296 0.7327
HLS: (100, 50, 25), Activation: relu 0.6296 0.5673 0.1727 0.6379 0.2648 0.6374
HLS: (100, 50, 25), Activation: logistic 0.6305 0.5647 0.1726 0.6392 0.2644 0.6331
HLS: (100, 50, 25), Activation: tanh 0.6073 0.7616 0.1971 0.5868 0.3132 0.7290

LightGBM

n_estimators: 50, learning_rate: 0.1 0.6804 0.6424 0.2139 0.6855 0.3210 0.7158
n_estimators: 50, learning_rate: 0.01 0.6865 0.6139 0.2121 0.6962 0.3153 0.7139
n_estimators: 50, learning_rate: 0.001 0.6716 0.5829 0.1970 0.6834 0.2945 0.6852
n_estimators: 100, learning_rate: 0.1 0.6807 0.6269 0.2111 0.6879 0.3159 0.7121
n_estimators: 100, learning_rate: 0.01 0.6850 0.6398 0.2162 0.6910 0.3232 0.7188
n_estimators: 100, learning_rate: 0.001 0.6783 0.5958 0.2035 0.6893 0.3034 0.6934
n_estimators: 200, learning_rate: 0.1 0.6743 0.6450 0.2108 0.6782 0.3178 0.7052
n_estimators: 200, learning_rate: 0.01 0.6819 0.6528 0.2168 0.6858 0.3255 0.7213
n_estimators: 200, learning_rate: 0.001 0.7014 0.5673 0.2122 0.7193 0.3088 0.7004
SVM and XGBoost both presented competitive true positive rates, but
SVM displayed a slightly elevated rate of false negatives. The MLP
model, a type of neural network, demonstrated high true positive rates
but was also accompanied by a notable number of false negatives,
particularly in the Low–High threshold.
15
Finally, LightGBM showed a balanced distribution of predictive
outcomes, with a moderate increase in false negatives in the Low–High
threshold. This table allows for a detailed comparison of model perfor-
mance, highlighting the trade-offs between detecting true positives and
avoiding false positives across different models and threshold settings.
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Table 9
This table presents a comprehensive overview of eight ML models evaluated across a range of hyperparameters to distinguish between low and
high performance levels among students.

Model Hyperparameters ACC RC PR SP F1S AUC

Logistic Regression

Penalty: L1, C: 0.1 0.8427 0.8601 0.6342 0.5023 0.8394 0.9295
Penalty: L1, C: 1 0.8526 0.8731 0.6525 0.5209 0.8487 0.9336
Penalty: L1, C: 10 0.8546 0.8756 0.6563 0.5248 0.8507 0.9335
Penalty: L2, C: 0.1 0.8435 0.8653 0.6368 0.5038 0.8394 0.9306
Penalty: L2, C: 1 0.8505 0.8653 0.6473 0.5170 0.8477 0.9336
Penalty: L2, C: 10 0.8538 0.8756 0.6550 0.5232 0.8497 0.9337

Decision Tree

Criterion: gini, Max Depth: None 0.7581 0.7798 0.5055 0.3739 0.7540 0.7669
Criterion: gini, Max Depth: 5 0.8263 0.8264 0.6013 0.4726 0.8263 0.8785
Criterion: gini, Max Depth: 10 0.7848 0.8031 0.5419 0.4090 0.7814 0.7869
Criterion: entropy, Max Depth: None 0.7700 0.7850 0.5197 0.3885 0.7672 0.7761
Criterion: entropy, Max Depth: 5 0.8464 0.7979 0.6222 0.5099 0.8555 0.8824
Criterion: entropy, Max Depth: 10 0.7893 0.8005 0.5464 0.4148 0.7872 0.8192

Random Forest

n_estimators: 50, Max Depth: None 0.8522 0.8394 0.6429 0.5209 0.8546 0.9222
n_estimators: 50, Max Depth: 5 0.8119 0.8472 0.5881 0.4504 0.8053 0.9112
n_estimators: 50, Max Depth: 10 0.8497 0.8627 0.6453 0.5155 0.8472 0.9237
n_estimators: 100, Max Depth: None 0.8604 0.8653 0.6627 0.5370 0.8594 0.9264
n_estimators: 100, Max Depth: 5 0.8378 0.8523 0.6249 0.4933 0.8350 0.9150
n_estimators: 100, Max Depth: 10 0.8435 0.8549 0.6340 0.5038 0.8414 0.9267
n_estimators: 200, Max Depth: None 0.8591 0.8575 0.6587 0.5347 0.8594 0.9272
n_estimators: 200, Max Depth: 5 0.8361 0.8420 0.6196 0.4902 0.8350 0.9177
n_estimators: 200, Max Depth: 10 0.8530 0.8575 0.6490 0.5221 0.8521 0.9268

Gradient Boosting

n_estimators: 50, learning_rate: 0.1 0.8546 0.8497 0.6495 0.5256 0.8555 0.9295
n_estimators: 50, learning_rate: 0.01 0.8078 0.8290 0.5776 0.4432 0.8038 0.8889
n_estimators: 50, learning_rate: 0.001 0.7322 0.8731 0.5083 0.3585 0.7057 0.8663
n_estimators: 100, learning_rate: 0.1 0.8600 0.8731 0.6640 0.5358 0.8575 0.9354
n_estimators: 100, learning_rate: 0.01 0.8287 0.8264 0.6047 0.4768 0.8292 0.8963
n_estimators: 100, learning_rate: 0.001 0.7322 0.8731 0.5083 0.3585 0.7057 0.8663
n_estimators: 200, learning_rate: 0.1 0.8645 0.8627 0.6687 0.5459 0.8648 0.9340
n_estimators: 200, learning_rate: 0.01 0.8398 0.8290 0.6214 0.4969 0.8419 0.9106
n_estimators: 200, learning_rate: 0.001 0.7561 0.8679 0.5301 0.3815 0.7350 0.8800

SVM

Kernel: linear, C: 0.1 0.8575 0.8679 0.6588 0.5309 0.8555 0.9329
Kernel: linear, C: 1 0.8542 0.8731 0.6550 0.5241 0.8507 0.9331
Kernel: linear, C: 10 0.8530 0.8756 0.6538 0.5216 0.8487 0.9333
Kernel: RBF, C: 0.1 0.8394 0.8549 0.6280 0.4962 0.8365 0.9223
Kernel: RBF, C: 1 0.8563 0.8679 0.6569 0.5284 0.8541 0.9356
Kernel: RBF, C: 10 0.8628 0.8705 0.6680 0.5419 0.8614 0.9371

XGBoost

n_estimators: 50, learning_rate: 0.1 0.8497 0.8575 0.6440 0.5156 0.8482 0.9281
n_estimators: 50, learning_rate: 0.01 0.8234 0.8394 0.6011 0.4682 0.8204 0.8987
n_estimators: 50, learning_rate: 0.001 0.7975 0.8290 0.5649 0.4284 0.7916 0.8829
n_estimators: 100, learning_rate: 0.1 0.8530 0.8601 0.6497 0.5220 0.8516 0.9301
n_estimators: 100, learning_rate: 0.01 0.8308 0.8368 0.6106 0.4807 0.8297 0.9054
n_estimators: 100, learning_rate: 0.001 0.7992 0.8472 0.5722 0.4320 0.7901 0.8876
n_estimators: 200, learning_rate: 0.1 0.8542 0.8601 0.6516 0.5245 0.8531 0.9287
n_estimators: 200, learning_rate: 0.01 0.8402 0.8420 0.6256 0.4977 0.8399 0.9150
n_estimators: 200, learning_rate: 0.001 0.8037 0.8497 0.5785 0.4385 0.7950 0.8934

MLP

HLS: (100,), Activation: relu 0.8181 0.8601 0.5998 0.4605 0.8102 0.9215
HLS: (100,), Activation: logistic 0.8464 0.8601 0.6397 0.5092 0.8438 0.9303
HLS: (100,), Activation: tanh 0.8567 0.8834 0.6615 0.5287 0.8516 0.9371
HLS: (50, 50), Activation: relu 0.8099 0.8497 0.5862 0.4475 0.8023 0.9015
HLS: (50, 50), Activation: logistic 0.8353 0.8420 0.6185 0.4887 0.8341 0.9104
HLS: (50, 50), Activation: tanh 0.8591 0.8679 0.6614 0.5343 0.8575 0.9348
HLS: (100, 50, 25), Activation: relu 0.8160 0.8446 0.5927 0.4566 0.8106 0.9019
HLS: (100, 50, 25), Activation: logistic 0.8172 0.8368 0.5921 0.4582 0.8136 0.9062
HLS: (100, 50, 25), Activation: tanh 0.8616 0.8472 0.6599 0.5405 0.8643 0.9322

LightGBM

n_estimators: 50, learning_rate: 0.1 0.8517 0.8472 0.6443 0.5199 0.8526 0.9299
n_estimators: 50, learning_rate: 0.01 0.8292 0.8394 0.6090 0.4779 0.8272 0.8993
n_estimators: 50, learning_rate: 0.001 0.8230 0.8083 0.5915 0.4664 0.8258 0.8856
n_estimators: 100, learning_rate: 0.1 0.8493 0.8472 0.6405 0.5150 0.8497 0.9318
n_estimators: 100, learning_rate: 0.01 0.8349 0.8420 0.6179 0.4880 0.8336 0.9045
n_estimators: 100, learning_rate: 0.001 0.8193 0.8420 0.5963 0.4616 0.8150 0.8879
n_estimators: 200, learning_rate: 0.1 0.8476 0.8497 0.6388 0.5117 0.8472 0.9305
n_estimators: 200, learning_rate: 0.01 0.8439 0.8342 0.6289 0.5047 0.8458 0.9151
n_estimators: 200, learning_rate: 0.001 0.8172 0.8420 0.5936 0.4584 0.8126 0.8931
Upon closer examination of the confusion matrices presented in
able 10, it is pertinent to acknowledge the potential impact of data

mbalance on the classification outcomes. The skewness in the distribu-
ion of test data classes may contribute to the observed discrepancy in
alse negatives and false positives across the models. This phenomenon
16
underscores the importance of considering the underlying data distri-
bution when training and evaluating ML models. The prevalence of one
class over another can lead to a model overfitting to the majority class,
thereby diminishing its predictive performance on the minority class, as
evidenced by the disproportionate false negative rates (see Table 10).
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Table 10
Comparative analysis of ML models using confusion matrices across three performance scenarios: Low–Medium, High–Medium,
and Low–High student achievement levels.

Model Low–Medium High–Medium Low–High

Logistic Regression

Decision Tree

Random Forest

Gradient Boosting

SVM

XGBoost

MLP

LightGBM
References

Bernardo, A.B., 2021. Socioeconomic status moderates the relationship between growth
mindset and learning in mathematics and science: Evidence from PISA 2018
Philippine data. Int. J. School Educ. Psychol. 9 (2), 208–222.

Bishop, C.M., Nasrabadi, N.M., 2006. Pattern Recognition and Machine Learning, vol.
4, Springer.

Buitinck, L., Louppe, G., Blondel, M., Pedregosa, F., Mueller, A., Grisel, O., Niculae, V.,
Prettenhofer, P., Gramfort, A., Grobler, J., et al., 2013. API design for machine
learning software: experiences from the scikit-learn project. arXiv preprint arXiv:
1309.0238.

Cebrián, A., Trillo, A., González, A., 2019. PISA 2018. Programa Para la EvaluaciÓN
Internacional de Los Estudiantes. Informe EspaÑOl. Ministerio de Educación y
Formación Profesional.

Chen, T., Guestrin, C., 2016. Xgboost: A scalable tree boosting system. In: Proceedings
of the 22nd Acm Sigkdd International Conference on Knowledge Discovery and
Data Mining. pp. 785–794.

Else-Quest, N.M., Hyde, J.S., Linn, M.C., 2010. Cross-national patterns of gender
differences in mathematics: a meta-analysis.. Psychol. bull. 136 (1), 103.

Fawcett, T., 2006. An introduction to ROC analysis. Pattern Recognit. Lett. 27 (8),
861–874.
17
Frade-Martínez, C., Olmos-Migueláñez, S., Gamazo, A., 2021. Factors associated with
the school performance of spanish students: A study based on PISA 2018 data.
In: Ninth International Conference on Technological Ecosystems for Enhancing
Multiculturality. TEEM’21, pp. 732–736.

Gorostiaga, A., Rojo-Álvarez, J.L., 2016. On the use of conventional and statistical-
learning techniques for the analysis of PISA results in Spain. Neurocomputing 171,
625–637.

Hill, N.E., Castellino, D.R., Lansford, J.E., Nowlin, P., Dodge, K.A., Bates, J.E.,
Pettit, G.S., 2004. Parent academic involvement as related to school behavior,
achievement, and aspirations: Demographic variations across adolescence. Child
Dev. 75 (5), 1491–1509.

Hu, J., Peng, Y., Chen, X., 2023. Decoding contextual factors differentiating adolescents’
high, average and low digital reading performance through machine learning
methods. IEEE Trans. Learn. Technol..

Kandeel, R.A.A., 2021. Learners’ mathematics proficiency levels on PISA 2018: A
comparative study.. Int. J. Instr. 14 (3), 393–416.

Ke, G., Meng, Q., Finley, T., Wang, T., Chen, W., Ma, W., Ye, Q., Liu, T.-Y., 2017.
Lightgbm: A highly efficient gradient boosting decision tree. Adv. Neural Inf.
Process. Syst. 30.

http://refhub.elsevier.com/S0952-1976(24)00267-7/sb1
http://refhub.elsevier.com/S0952-1976(24)00267-7/sb1
http://refhub.elsevier.com/S0952-1976(24)00267-7/sb1
http://refhub.elsevier.com/S0952-1976(24)00267-7/sb1
http://refhub.elsevier.com/S0952-1976(24)00267-7/sb1
http://refhub.elsevier.com/S0952-1976(24)00267-7/sb2
http://refhub.elsevier.com/S0952-1976(24)00267-7/sb2
http://refhub.elsevier.com/S0952-1976(24)00267-7/sb2
http://arxiv.org/abs/1309.0238
http://arxiv.org/abs/1309.0238
http://arxiv.org/abs/1309.0238
http://refhub.elsevier.com/S0952-1976(24)00267-7/sb4
http://refhub.elsevier.com/S0952-1976(24)00267-7/sb4
http://refhub.elsevier.com/S0952-1976(24)00267-7/sb4
http://refhub.elsevier.com/S0952-1976(24)00267-7/sb4
http://refhub.elsevier.com/S0952-1976(24)00267-7/sb4
http://refhub.elsevier.com/S0952-1976(24)00267-7/sb5
http://refhub.elsevier.com/S0952-1976(24)00267-7/sb5
http://refhub.elsevier.com/S0952-1976(24)00267-7/sb5
http://refhub.elsevier.com/S0952-1976(24)00267-7/sb5
http://refhub.elsevier.com/S0952-1976(24)00267-7/sb5
http://refhub.elsevier.com/S0952-1976(24)00267-7/sb6
http://refhub.elsevier.com/S0952-1976(24)00267-7/sb6
http://refhub.elsevier.com/S0952-1976(24)00267-7/sb6
http://refhub.elsevier.com/S0952-1976(24)00267-7/sb7
http://refhub.elsevier.com/S0952-1976(24)00267-7/sb7
http://refhub.elsevier.com/S0952-1976(24)00267-7/sb7
http://refhub.elsevier.com/S0952-1976(24)00267-7/sb8
http://refhub.elsevier.com/S0952-1976(24)00267-7/sb8
http://refhub.elsevier.com/S0952-1976(24)00267-7/sb8
http://refhub.elsevier.com/S0952-1976(24)00267-7/sb8
http://refhub.elsevier.com/S0952-1976(24)00267-7/sb8
http://refhub.elsevier.com/S0952-1976(24)00267-7/sb8
http://refhub.elsevier.com/S0952-1976(24)00267-7/sb8
http://refhub.elsevier.com/S0952-1976(24)00267-7/sb9
http://refhub.elsevier.com/S0952-1976(24)00267-7/sb9
http://refhub.elsevier.com/S0952-1976(24)00267-7/sb9
http://refhub.elsevier.com/S0952-1976(24)00267-7/sb9
http://refhub.elsevier.com/S0952-1976(24)00267-7/sb9
http://refhub.elsevier.com/S0952-1976(24)00267-7/sb10
http://refhub.elsevier.com/S0952-1976(24)00267-7/sb10
http://refhub.elsevier.com/S0952-1976(24)00267-7/sb10
http://refhub.elsevier.com/S0952-1976(24)00267-7/sb10
http://refhub.elsevier.com/S0952-1976(24)00267-7/sb10
http://refhub.elsevier.com/S0952-1976(24)00267-7/sb10
http://refhub.elsevier.com/S0952-1976(24)00267-7/sb10
http://refhub.elsevier.com/S0952-1976(24)00267-7/sb11
http://refhub.elsevier.com/S0952-1976(24)00267-7/sb11
http://refhub.elsevier.com/S0952-1976(24)00267-7/sb11
http://refhub.elsevier.com/S0952-1976(24)00267-7/sb11
http://refhub.elsevier.com/S0952-1976(24)00267-7/sb11
http://refhub.elsevier.com/S0952-1976(24)00267-7/sb12
http://refhub.elsevier.com/S0952-1976(24)00267-7/sb12
http://refhub.elsevier.com/S0952-1976(24)00267-7/sb12
http://refhub.elsevier.com/S0952-1976(24)00267-7/sb13
http://refhub.elsevier.com/S0952-1976(24)00267-7/sb13
http://refhub.elsevier.com/S0952-1976(24)00267-7/sb13
http://refhub.elsevier.com/S0952-1976(24)00267-7/sb13
http://refhub.elsevier.com/S0952-1976(24)00267-7/sb13


Engineering Applications of Artificial Intelligence 133 (2024) 108109I. Gómez-Talal et al.
Kumar, I.E., Venkatasubramanian, S., Scheidegger, C., Friedler, S., 2020. Problems with
Shapley-value-based explanations as feature importance measures. In: International
Conference on Machine Learning. PMLR, pp. 5491–5500.

Lezhnina, O., Kismihók, G., 2022. Combining statistical and machine learning methods
to explore German students’ attitudes towards ICT in PISA. Int. J. Res. Method
Edu. 45 (2), 180–199.

Lu, Y., Zhang, X., Zhou, X., 2023. Assessing gender difference in mathematics
achievement. School Psycholo. Int. 01430343221149689.

Lundberg, S.M., Erion, G., Chen, H., DeGrave, A., Prutkin, J.M., Nair, B., Katz, R.,
Himmelfarb, J., Bansal, N., Lee, S.-I., 2020. From local explanations to global
understanding with explainable AI for trees. Nat. Mach. Intell. 2 (1), 56–67.

Lundberg, S.M., Lee, S.-I., 2017. A unified approach to interpreting model predictions.
Adv. Neural Inf. Process. Syst. 30.

Ma, L., Liu, J., Li, B., 2022. The association between teacher-student relationship and
academic achievement: The moderating effect of parental involvement. Psychol.
Schools 59 (2), 281–296.

Merrick, L., Taly, A., 2020. The explanation game: Explaining machine learning models
using shapley values. In: Machine Learning and Knowledge Extraction: 4th IFIP
TC 5, TC 12, WG 8.4, WG 8.9, WG 12.9 International Cross-Domain Conference,
CD-MAKE 2020, Dublin, Ireland, August 25–28, 2020, Proceedings 4. Springer, pp.
17–38.

Odell, B., Cutumisu, M., Gierl, M., 2020. A scoping review of the relationship between
students’ ICT and performance in mathematics and science in the PISA data. Soc.
Psychol. Edu. 23 (6), 1449–1481.

Organisation for Economic Co-operation and Development (OECD), 2019. PISA 2018
Results Combined Executive Summaries Volume I, II & III. OECD.

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blon-
del, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al., 2011. Scikit-learn: Machine
learning in python. J. Mach. Learn. Res. 12, 2825–2830.
18
Pisa, O., 2018. Results (Volume II): Where all students can succeed. 2019. View Article.
Pisa, O., 2019. Results (Volume I): What students know and can do. Organization for

Economic Cooperation and Development (OECD), Paris, France.
Podda, M., Bacciu, D., Micheli, A., Bellù, R., Placidi, G., Gagliardi, L., 2018. A machine

learning approach to estimating preterm infants survival: development of the
preterm infants survival assessment (PISA) predictor. Sci. Rep. 8 (1), 13743.

Powers, D.M., 2020. Evaluation: from precision, recall and F-measure to ROC,
informedness, markedness and correlation. arXiv preprint arXiv:2010.16061.

Prusty, S., Patnaik, S., Dash, S.K., 2022. SKCV: Stratified K-fold cross-validation on ML
classifiers for predicting cervical cancer. Front. Nanotechnol. 4, 972421.

Purushotham, S., Tripathy, B., 2011. Evaluation of classifier models using stratified
tenfold cross validation techniques. In: Int. Conf. Comput. Commun. Syst.. Springer,
pp. 680–690.

Roth, A.E., 1988. The Shapley Value: Essays in Honor of Lloyd S. Shapley. Cambridge
University Press.

Schleicher, A., 2019. PISA 2018: Insights and Interpretations. OECD Publishing.
Shin, D., Shim, J., 2021. A systematic review on data mining for mathematics and

science education. Int. J. Sci. Math. Edu. 19, 639–659.
Wong, T.-T., Yang, N.-Y., 2017. Dependency analysis of accuracy estimates in k-fold

cross validation. IEEE Trans. Knowl. Data Eng. 29 (11), 2417–2427.
Xiaomin, L., Auld, E., 2020. A historical perspective on the OECD’s ‘humanitarian turn’:

PISA for development and the learning framework 2030. Compar. Edu. 56 (4),
503–521.

Yerpude, P., 2020. Predictive modelling of crime data set using data mining. Int. J.
Data Min. Knowl. Manag. Process. (IJDKP) 7.

Zeng, X., Martinez, T.R., 2000. Distribution-balanced stratified cross-validation for
accuracy estimation. J. Exper. Theor. Artif. Intell. 12 (1), 1–12.

http://refhub.elsevier.com/S0952-1976(24)00267-7/sb14
http://refhub.elsevier.com/S0952-1976(24)00267-7/sb14
http://refhub.elsevier.com/S0952-1976(24)00267-7/sb14
http://refhub.elsevier.com/S0952-1976(24)00267-7/sb14
http://refhub.elsevier.com/S0952-1976(24)00267-7/sb14
http://refhub.elsevier.com/S0952-1976(24)00267-7/sb15
http://refhub.elsevier.com/S0952-1976(24)00267-7/sb15
http://refhub.elsevier.com/S0952-1976(24)00267-7/sb15
http://refhub.elsevier.com/S0952-1976(24)00267-7/sb15
http://refhub.elsevier.com/S0952-1976(24)00267-7/sb15
http://refhub.elsevier.com/S0952-1976(24)00267-7/sb16
http://refhub.elsevier.com/S0952-1976(24)00267-7/sb16
http://refhub.elsevier.com/S0952-1976(24)00267-7/sb16
http://refhub.elsevier.com/S0952-1976(24)00267-7/sb17
http://refhub.elsevier.com/S0952-1976(24)00267-7/sb17
http://refhub.elsevier.com/S0952-1976(24)00267-7/sb17
http://refhub.elsevier.com/S0952-1976(24)00267-7/sb17
http://refhub.elsevier.com/S0952-1976(24)00267-7/sb17
http://refhub.elsevier.com/S0952-1976(24)00267-7/sb18
http://refhub.elsevier.com/S0952-1976(24)00267-7/sb18
http://refhub.elsevier.com/S0952-1976(24)00267-7/sb18
http://refhub.elsevier.com/S0952-1976(24)00267-7/sb19
http://refhub.elsevier.com/S0952-1976(24)00267-7/sb19
http://refhub.elsevier.com/S0952-1976(24)00267-7/sb19
http://refhub.elsevier.com/S0952-1976(24)00267-7/sb19
http://refhub.elsevier.com/S0952-1976(24)00267-7/sb19
http://refhub.elsevier.com/S0952-1976(24)00267-7/sb20
http://refhub.elsevier.com/S0952-1976(24)00267-7/sb20
http://refhub.elsevier.com/S0952-1976(24)00267-7/sb20
http://refhub.elsevier.com/S0952-1976(24)00267-7/sb20
http://refhub.elsevier.com/S0952-1976(24)00267-7/sb20
http://refhub.elsevier.com/S0952-1976(24)00267-7/sb20
http://refhub.elsevier.com/S0952-1976(24)00267-7/sb20
http://refhub.elsevier.com/S0952-1976(24)00267-7/sb20
http://refhub.elsevier.com/S0952-1976(24)00267-7/sb20
http://refhub.elsevier.com/S0952-1976(24)00267-7/sb21
http://refhub.elsevier.com/S0952-1976(24)00267-7/sb21
http://refhub.elsevier.com/S0952-1976(24)00267-7/sb21
http://refhub.elsevier.com/S0952-1976(24)00267-7/sb21
http://refhub.elsevier.com/S0952-1976(24)00267-7/sb21
http://refhub.elsevier.com/S0952-1976(24)00267-7/sb22
http://refhub.elsevier.com/S0952-1976(24)00267-7/sb22
http://refhub.elsevier.com/S0952-1976(24)00267-7/sb22
http://refhub.elsevier.com/S0952-1976(24)00267-7/sb23
http://refhub.elsevier.com/S0952-1976(24)00267-7/sb23
http://refhub.elsevier.com/S0952-1976(24)00267-7/sb23
http://refhub.elsevier.com/S0952-1976(24)00267-7/sb23
http://refhub.elsevier.com/S0952-1976(24)00267-7/sb23
http://refhub.elsevier.com/S0952-1976(24)00267-7/sb24
http://refhub.elsevier.com/S0952-1976(24)00267-7/sb25
http://refhub.elsevier.com/S0952-1976(24)00267-7/sb25
http://refhub.elsevier.com/S0952-1976(24)00267-7/sb25
http://refhub.elsevier.com/S0952-1976(24)00267-7/sb26
http://refhub.elsevier.com/S0952-1976(24)00267-7/sb26
http://refhub.elsevier.com/S0952-1976(24)00267-7/sb26
http://refhub.elsevier.com/S0952-1976(24)00267-7/sb26
http://refhub.elsevier.com/S0952-1976(24)00267-7/sb26
http://arxiv.org/abs/2010.16061
http://refhub.elsevier.com/S0952-1976(24)00267-7/sb28
http://refhub.elsevier.com/S0952-1976(24)00267-7/sb28
http://refhub.elsevier.com/S0952-1976(24)00267-7/sb28
http://refhub.elsevier.com/S0952-1976(24)00267-7/sb29
http://refhub.elsevier.com/S0952-1976(24)00267-7/sb29
http://refhub.elsevier.com/S0952-1976(24)00267-7/sb29
http://refhub.elsevier.com/S0952-1976(24)00267-7/sb29
http://refhub.elsevier.com/S0952-1976(24)00267-7/sb29
http://refhub.elsevier.com/S0952-1976(24)00267-7/sb30
http://refhub.elsevier.com/S0952-1976(24)00267-7/sb30
http://refhub.elsevier.com/S0952-1976(24)00267-7/sb30
http://refhub.elsevier.com/S0952-1976(24)00267-7/sb31
http://refhub.elsevier.com/S0952-1976(24)00267-7/sb32
http://refhub.elsevier.com/S0952-1976(24)00267-7/sb32
http://refhub.elsevier.com/S0952-1976(24)00267-7/sb32
http://refhub.elsevier.com/S0952-1976(24)00267-7/sb33
http://refhub.elsevier.com/S0952-1976(24)00267-7/sb33
http://refhub.elsevier.com/S0952-1976(24)00267-7/sb33
http://refhub.elsevier.com/S0952-1976(24)00267-7/sb34
http://refhub.elsevier.com/S0952-1976(24)00267-7/sb34
http://refhub.elsevier.com/S0952-1976(24)00267-7/sb34
http://refhub.elsevier.com/S0952-1976(24)00267-7/sb34
http://refhub.elsevier.com/S0952-1976(24)00267-7/sb34
http://refhub.elsevier.com/S0952-1976(24)00267-7/sb35
http://refhub.elsevier.com/S0952-1976(24)00267-7/sb35
http://refhub.elsevier.com/S0952-1976(24)00267-7/sb35
http://refhub.elsevier.com/S0952-1976(24)00267-7/sb36
http://refhub.elsevier.com/S0952-1976(24)00267-7/sb36
http://refhub.elsevier.com/S0952-1976(24)00267-7/sb36

	Understanding the disparities in Mathematics performance: An interpretability-based examination
	Introduction
	Background
	Methods
	Data Preprocessing
	Binary Classification Models
	Training Binary Models via Stratified K-Fold
	Evaluation Models
	Interpretability in Machine Learning
	Research Workflow

	Experiments and Results
	Comparing Models Across Different Levels
	Research on Model Interpretability

	Discussion
	Conclusion and Future Works
	CRediT authorship contribution statement
	Declaration of competing interest
	Data availability
	Acknowledgments
	Appendix A
	Low and Medium Level Study
	High and Medium Level Study
	Low- and High-Level Study
	Confusion Matrices

	References


