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A B S T R A C T

The development and validation of autonomous driving solutions require testing broadly in simulation.
Addressing this requirement, we present Behavior Metrics (BM) for the quantitative and qualitative assessment
and comparison of solutions for the main autonomous driving tasks. This software provides two evaluation
pipelines, one with a graphical user interface used for qualitative assessment and the other headless for
massive and unattended tests and benchmarks. It generates a series of quantitative metrics complementary
to the simulator’s, including fine-grained metrics for each particular driving task (lane following, driving in
traffic, route navigation, etc.). It provides a deeper and broader understanding of the solutions’ performance
and allows their comparison and improvement. It uses and supports state-of-the-art open software such as the
reference CARLA simulator, the ROS robotics middleware, PyTorch, and TensorFlow deep learning frameworks.
BehaviorMetrics is available open-source for the community.
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. Motivation and significance

Autonomous driving (AD) has gained popularity incrementally in
ecent years. The adoption of this robotics and AI technology will signif-
cantly impact the future [1], emphasizing the critical need for reliable
nd secure solutions. This popularity has its origins partly in the recent
evelopments in deep learning (DL), helped by the introduction of easy
ccess to high-quality supervised datasets and powerful GPUs.

SAE International’s J3016 standard [2] categorizes the vehicle au-
onomy into six levels ranging from no automation (level 0) to full
utomation (level 5) where all the driving tasks are performed by
he AD system, without any intervention of a driver. Although there
re already some examples of level 4 technology, there are still many
esearch advances to be accomplished in this field.
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Technically, an AD system can be divided into distinct functions like
perception, control, or planning. These functions can be solved indi-
vidually and then combined into a modular system [3,4] with internal
communication for driving autonomously or they can be addressed as
an end-to-end problem [5–7], generating directly control commands
from the raw input sensory data.

In robotics research and development, it is common to use sim-
ulators for validating solutions instead of developing them directly
on real robots or vehicles. The simulators allow easier and cheaper
iterative development and testing, validating models of solutions in a
large number of simulated scenarios before selecting a good one and
implementing it in a real scenario (Sim2Real). Final validation there
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can be done much faster and for a largely reduced number of scenarios.
The simulated scenarios can be predefined in a digital environment
model or they can be imported from real driving tests (Real2Sim).

Various open-source simulators are available, playing a pivotal role
in AD research [8,9]. SUMO [10] is specialized in traffic and pursues
simulating efficiency and management strategies. TORCS [11] special-
izes in racing. Gazebo [12] is a general-purpose robotics simulator
that has also been employed for AD research [13]. CARLA [14] offers
realistic urban driving simulation and is widely used and customizable,
offering a wide range of common day-to-day vehicles, sensors, and
maps for validating AD solutions. DeepDrive [15], Baidu Apollo [16],
Autoware [17], or Udacity’s Self-Driving Car Simulator [18] are other
possible options, with their strengths and limitations. Gazebo and
CARLA are compatible with ROS [19,20], the open-source global stan-
dard for robotics middleware. ROS streamlines application develop-
ment and facilitates seamless transition from simulation to real-world
robots.

Besides simulators, publicly available datasets significantly con-
tribute to the advancement of autonomous driving systems by support-
ing deep learning training for various tasks. For visual perception, we
have nuScenes [21], BDD100K [22] or Cityscapes [23], for planning
nuPlan [24] or for lane following (lane keeping) commaAI [25].

Considering the wide range of traffic scenarios and driving tasks in
AD and the security standards needed [26], robust evaluation metrics
are compulsory. While common deep learning (DL) metrics like mean
squared error (MSE) or accuracy suffice for static supervised data, they
may prove inadequate for fully assessing AD systems. These offline
metrics may not capture the dynamic performance across various driv-
ing tasks over time intervals (e.g., lane following, obstacle avoidance,
intersection navigation, auto parking), necessitating a supplementary
evaluation framework. For example, a failure in a single control iter-
ation of an autonomous vehicle could lead to a collision later, despite
only occurring in one frame.

This question has already been addressed in the literature and a vast
range of metrics and evaluation strategies can be found for different
parts of the autonomous driving systems and different situations [27–
30].

CARLA simulator already generates metrics that can be used for
validating solutions. CARLA Autonomous Driving Leaderboard1 is an
assessment framework and challenge built atop the simulator for eval-
uating and ranking solutions for AD in urban scenarios and routes.
This framework is designed for broadly testing and validating fully AD
solutions in a variety of traffic scenarios simultaneously. But it can
be overly challenging or even unsuitable when considering developing
solutions for specific driving tasks or researchers starting in AD as it
lacks fine grain detailed or specific metrics.

In this paper, we introduce Behavior Metrics (BM), a multi-platform
open-source software for the assessment of AD solutions in simulation
for different driving tasks (currently lane following, driving in traffic,
and navigation between points). It assists both everyday users and
researchers in developing and validating AD solutions by augmenting
simulator-generated metrics with enhanced evaluation metrics.

It supports both CARLA and Gazebo simulators using ROS as com-
munication middleware. It can be used with different sensory inputs
for the vehicle like a camera, LIDAR, or any other type of sensory data
input supported by the simulators, like the bird-eye-view. They all are
managed and added to the simulation using the configuration file. The
tool conducts comprehensive online evaluation across driving tasks,
yielding objective, fine-grained metrics superior to those provided by
simulators. It offers both GUI-based interaction and headless batch
processing for large-scale testing.

Designed for the research and advancement of autonomous driving
(AD), it establishes a unified framework for evaluation and facilitates

1 https://leaderboard.carla.org/

the creation and automated execution of extensive benchmarks across
various vehicle types, dynamics, lighting conditions, and scenarios. This
enables fair comparison among different approaches, including deep
learning (DL), reinforcement learning (RL), or explicit programming,
providing valuable insights for enhancing each method.

2. Software description

Behavior Metrics’ software architecture (Fig. 1) is based on a Model-
View-Controller (MVC) design pattern implemented in Python. The
evaluation configuration is described in a dynamic YAML configuration
file, including the scenario, vehicle, driving task, sensors, and vehicle
robot controller. Using this configuration, BM conducts the experimen-
tal evaluation, initiating the simulator with the ego vehicle, utilizing
the vehicle’s robot controller for driving, and ultimately generating
comprehensive evaluation metrics for performance insights. The user
may change or include any part of the experimental setup like scenario,
vehicle (e.g. model), sensor... modifying the configuration file.

The tool supports evaluation in two simulators, CARLA and Gazebo,
through integration with ROS 1 Noetic. ROS manages communication
between the application and the simulators, allowing for reusable code
between the simulators’ handlers.

BM communicates with the simulators using the publish/subscribe
design pattern of ROS (details in Fig. 2). For example, the application
subscribes to the sensor nodes of the ego vehicle to extract the raw
data that are then processed by the robot controller and it publishes
messages to control the vehicle that are translated to the actual move-
ment of the vehicle in the simulation. BM enables actions like playing or
pausing the simulation and controlling simulator processing steps (sim-
ulation speed). The raw sensory and simulator data undergo processing
to generate evaluation metrics for assessment.

The vehicle controller (Fig. 3) is responsible for the ego vehicle
motion. It reads the sensory input provided by the sensors attached
to the vehicle, like the camera, bird-eye-view images, ground-truth
segmentation camera, or odometry, and processes them. Based on the
knowledge extracted from the input, it iteratively generates the control
outputs that are commanded to the actuators. Control commands may
be generated using a DL model, an RL policy, or even an explicitly
programmed algorithm. This abstraction layer facilitates the use of
different types of vehicles without any code modification. BM supports
the most common DL frameworks (TensorFlow and PyTorch).

It provides control over the simulation time speed, allowing for the
selection of either asynchronous or synchronous time modes, and even
managing the simulation iteration time-step. By default, the simulator
operates asynchronously, making simulator time independent of Behav-
ior Metrics and its vehicle robot controllers. Simulated time becomes
crucial for low-resource systems requiring more time for controller
iterations. Spending excessive time in this process could result in vehi-
cle control malfunctions, even with correct decisions. Considering the
vehicle speed and safety standards needed for AD, the time spent per
iteration is crucial. This flexibility enables researchers to test solutions
in a broader range of conditions, including simulating systems with
limited resources.

BM is compatible with all CARLA towns and allows the management
of traffic conditions (traffic lights, traffic signs), simulation start and
end points, and weather conditions. With this approach, Behavior
Metrics can be used for a full AD agent evaluation or an evaluation
of a specific driving task like lane following or driving in traffic. This
precise level of control is particularly valuable for researchers focusing
on specific driving tasks, where detailed control is essential.

The software is designed to be highly versatile and cross-platform.
It achieves this using Docker [31], which facilitates effortless sharing
across various operating systems. It is encapsulated within a Docker
image, enabling deployment on the most prevalent operating systems.
Moreover, the software’s core functionality is native to Linux, enabling
direct usage on Linux computers without relying on the Docker image.
2

This approach enhances user experience and flexibility.

https://leaderboard.carla.org/


SoftwareX 26 (2024) 101702Sergio Paniego et al.
Fig. 1. Behavior Metrics tool architecture. The configuration file describes the setup of the evaluated experiment.

Fig. 2. Some of the connections between BM and CARLA.
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Fig. 3. Details of the robot controller, three types are supported.

2.1. Supported driving tasks

BM supports three distinct driving tasks with varying difficulty
levels, contributing to research advancements across different aspects
of an AD application: lane following, driving in traffic, and route
navigation. The first involves accurately staying within the lane without
encroaching on adjacent lanes. The second consists of an ego vehicle
and a series of vehicles dispersed along the route, requiring the vehicle
to correctly follow the lane while maintaining a safe distance from
potential front vehicles. The third combines the previous ones adding
a starting and ending point to the experiment setup. The vehicle will
drive between goal points while following the lane and maintaining a
safe distance from front vehicles. This task also considers traffic lights,
traffic signs, and intersections. Other driving tasks can be easily defined
along with their metrics since the software tool is provided open-source
and its design is modular.

2.2. GUI and headless evaluation modes

The application provides two evaluation modes, the graphical user
interface (GUI) mode and the scripted mode (headless). The GUI mode
generates a user interface, implemented using the PyQt5 framework,
based on a configuration file describing the simulation environment
(scenario, ego vehicle, traffic, . . . ). Using this mode, users can seam-
lessly execute experiments while visually monitoring the ongoing eval-
uation process (Fig. 4). Alongside the classic simulator view, this inter-
face displays sensor information and provides convenient buttons for
starting, stopping, or restarting the evaluation. This mode is typically

employed for qualitative AD solution evaluation. After completing the
experiment, quantitative evaluation results are graphically displayed in
a separate window and saved in files for future analysis.

In headless mode (Fig. 5) the user defines a configuration file with
the evaluated task, all the scenarios, robot controllers, and models to
be evaluated, as well as the number of experiment repetitions. Behavior
Metrics conducts the experiments as a batch, without user intervention.
No graphical part is displayed during the evaluation, and the results
are directly saved to files for subsequent analysis. In addition to results
from each of the experiments, this mode generates combined results for
all the run experiments together, making it easier for the researcher
to compare directly how a specific controller behaves. Setting up
configuration files in this manner enables BM to support the creation
of extensive benchmarks that can be automatically executed.

2.3. Autonomous driving evaluation metrics

BM generates a set of quantitative evaluation metrics that comple-
ment those directly provided by the simulator and other evaluation
frameworks like the CARLA Leaderboard, offering a more informative
and complementary perspective on the behavior of a specific controller.
The supplied metrics have been selected as they have been required
in several research works. Adding more metrics, such as the CARLA
Driving Score, is pretty straightforward as long as the raw data are
generated by the simulator.

• Mean position deviation per km (MPD): average deviation, in
meters, of the ego vehicle from the center of the lane that it
4
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Fig. 4. Behavior Metrics GUI architecture using CARLA simulator. It displays two separate windows: the application GUI and the simulator.

Fig. 5. Behavior Metrics headless evaluation mode.
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is traversing. Calculated using the mean of all the points ob-
tained using the minimum Euclidean distance (MinED) of each
traversed position (EgoVehiclePosition) to the center of the lane
(centerOfLane).

MPD = 1
𝑁

∑

𝑖
MinED(EgoVehiclePosition𝑖, centerOfLane) (1)

• Effectively completed distance: distance completed during the
experiment in meters that passes through checkpoints that bind
its starting and end points. These checkpoints are centered on the
lane followed during the experiment, so it is an indicator of how
consistently the vehicle drives on the lane.

• Vehicle longitudinal jerk per km (VJ): metric that defines if
the vehicle drives smoothly or makes jerks in velocity during the
experiment. It indicates whether the conduction is aggressive or
smooth. Approximated by calculating the mean of the differences
between the current and previous speeds(VehicleSpeed).

VJ = 1
𝑁

∑

𝑖
(VehicleSpeed𝑖 − VehicleSpeed𝑖−1) (2)

• Robot controller iteration frequency.
• GPU inference frequency: number of GPU iterations per second

when the robot controller has a DL model that uses the GPU as
the core computational element.

• Collisions per km: number of collisions of the ego vehicle during
the experiment per kilometer.

• Lane invasions per km: number of lane invasions infractions
committed by the ego vehicle per kilometer.

• Distance to the front vehicle: this metric indicates how close the
ego vehicle circulates to other front vehicles and gives insight into
whether it follows safety standards or not. The distance is divided
into four categories: great distance (20–50 m), medium distance
(15–20 m), short distance (6–15 m), and dangerous distance (0-6
m), and it is provided as the percentage of experiment time that
the ego vehicle spends on each category.

• Route completion percentage: for route navigation task, per-
centage of route completed for each of the conducted experi-
ments.

• Average speed: achieved by the ego vehicle during the experi-
ment.

• Successful experiments: this metric is tuned depending on the
task. In general, an experiment is considered successful when the
safety drive conditions are met but for each specific task, this
metric is slightly tuned. For a lane following, for example, BM
considers that the vehicle drives at a constant speed and that it
does not deviate above a threshold from the middle of the lane.
For driving in traffic, BM also considers that the car distance to
the front vehicle is not dangerous. For route navigation, BM mea-
sures whether the vehicle has reached the goal position following
the user’s directions.

3. Illustrative examples

The project repository contains example files for each component
required for running example evaluations, including the configuration
files, robot controllers, and imitation learning-based DL models for
supported driving tasks in different simulators. It includes examples for
TensorFlow and PyTorch frameworks.

3.1. GUI application example

Using the configuration file edited by the researcher, BM gener-
ates the experiment visual setup, including the BM and the simulator
windows [32] (Fig. 4). The configuration file is editable to customize
the scenario, vehicle, task, included sensors, or vehicle controller.

watching the sensor state, and the simulated ego vehicle performance.
Researchers can then commence the simulation and experiment record-
ing. Upon completion, researchers stop the recording and the simulator,
and Behavior Metrics visually presents the results and saves them in log
files for subsequent detailed analysis.

3.2. Headless application example

In this case, the configuration file comprises a list of vehicle con-
trollers, scenarios, and experiment repetitions to evaluate. BM eval-
uates each of the combinations in an unattended manner, without
graphical information while evaluating [33] (Fig. 5). Once the exper-
iments conclude, Behavior Metrics furnishes results for each case and
the aggregated outcomes for all combinations.

4. Impact

Our contribution impacts the field of AD, which is a relevant re-
search topic as proved by the cited papers and the CARLA Leaderboard
challenge. It provides a common framework for testing AD solutions
(DL models, RL algorithms, etc.), and supports different driving tasks.

The two evaluation modes, GUI and headless, streamline the process
of evaluating and rapidly testing ideas, as well as supporting iterative
development of AD solutions. Furthermore, it facilitates a comprehen-
sive evaluation for comparison of different solutions and models. It
leverages CARLA, a highly regarded AD simulator, thereby amplifying
its impact.

Behavior Metrics has been effectively employed to evaluate end-to-
end solutions exploring various concepts. These include assessing the
significance of utilizing vehicle controllers with memory and kinematic
input, studying the impact of model optimization on controller iteration
speed, and analyzing the resulting behavior of the vehicle (published
in [34]). It has proved its capabilities in the evaluation of solutions
for the driving in traffic task [35], with specific metrics, such as
distance to the front vehicle (in peer-review process). And has served
as an assessment tool for Google Summer of Code open-source AD
projects [36] on route navigation capabilities through metrics like route
completion.

5. Conclusions

This paper introduces Behavior Metrics, an open-source evalua-
tion software designed for assessing autonomous driving solutions. We
highlight the software’s potential utility for researchers in assessing
AD solutions across various driving tasks. The included metrics, com-
plementing simulator-provided metrics and unique to our solution,
provide a more comprehensive understanding of vehicle performance,
contributing to the development of improved solutions for diverse
driving scenarios.

Our software offers two distinct pipelines, setting it apart from other
solutions: GUI mode and headless mode (benchmarks). They empower
researchers to qualitatively and quantitatively test their solutions, fa-
cilitating comparisons with alternative approaches. Additionally, our
software supports state-of-the-art simulators and DL frameworks broad-
ening its accessibility within the research community.

In future work, we intend to support a wider range of autonomous
driving tasks, each one with its corresponding evaluation metrics, such
as auto-parking, lane-changing, overtaking, or crossing negotiation.
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