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A B S T R A C T

We design an experimental implementation of a simplicial complex, a complex network structure with higher-
order interactions between nodes. Using a set of three Rössler-like (analog) electronic circuits under a chaotic
dynamical regime, we demonstrate how the synchronization basin is enhanced by introducing higher-order
interactions between the triplet of nodes, as suggested in recent theoretical works. The experiments prove
that, when the coupling is introduced through the adequate variable, the synchronization area is increased. The
combination of pairwise (i.e., node-to-node) with high-order (i.e., triplet) coupling is analyzed by modifying
the corresponding coupling strengths, 𝜎1 and 𝜎2. Importantly, we detail the procedure for reproducing the
experimental setup and provide all datasets generated in the laboratory, in order to allow other researchers
to further investigate the properties of complex networks with higher-order interactions.
1. Introduction

A large number of physical, chemical, biological systems can be
modeled using networks of units that interact with each other. These
units can be described as dynamical systems, where their evolution
over time is influenced by the states of other units that are connected
through the links of the network. Understanding how this interaction
constrains the dynamics of the individual systems and, at the same
time, the collective behavior of the network is a problem of great
interest between different disciplines [1,2].

To understand these phenomena, network science is used, where the
study focuses not on the element in a particular way but to the response
in conjunction of all those elements that make up the network [2].
Brain networks [3,4], the interaction between proteins [5], semantic
networks [6] or academic collaborations [7] are some practical situa-
tions where the analysis of the interactions is crucial to understand the
functioning of the whole system.

In the realm of network science, the exploration of simplicial com-
plexes has marked a significant departure from traditional network
analysis, offering a richer and more comprehensive view of complex
systems [8,9]. Simplicial complexes are mathematical structures that
capture higher-order relationships among nodes, edges, triangles, and
beyond that, they have opened new frontiers for understanding the
intricate web of connections within a wide range of systems [10].

∗ Corresponding author.
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Traditional network models, such as graphs, focus on pairwise in-
teractions between nodes. However, simplicial complexes go beyond
this by considering higher-order interactions involving more than two
nodes [11]. This higher-order perspective is crucial for capturing the
complexity and richness of real-world networks [12–14]. One appli-
cation of simplicial complexes is in modeling of social contagion. In
this way, Iacopini et al. (2019) introduced a higher-order model of
social contagion using simplicial complexes, where interactions can
occur within groups of different sizes [15]. This approach provided
a more realistic representation of how contagion spreads in social
systems. Furthermore, simplicial complexes have been used to study
the spectrum of complex networks. Reitz & Bianconi (2020) presented a
renormalization group approach to analyze the higher-order spectrum
of simplicial complexes [16], allowing for a deeper understanding of
the collective behavior and dynamics of complex systems. The con-
figuration model and the canonical ensemble of simplicial complexes
have also been proposed in [17]. These generalized network structures
provide a framework for studying a wide range of complex inter-
acting systems, including brain networks and collaboration networks.
Weighted growing simplicial complexes have also been investigated by
Courtney & Bianconi [18]. This research explored network structures
where interactions can involve more than two nodes. Such weighted
simplicial complexes have been found to accurately describe collab-
oration networks, protein interaction networks, and brain networks.
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Fig. 1. Different type of simplex structures according to the dimension 𝐷, to the generation of simplicial complex: 0-simplex (point or node), 1-simplex (line or link), 2-simplex
(triangle or triplet), 3-simplex (tetrahedra).
In addition to their structural properties, simplicial complexes have
also been studied in the context of network geometry. Bianconi &
Rahmede (2017) investigated the emergent hyperbolic network geome-
try of simplicial complexes [11]. This research revealed the underlying
geometric properties of complex networks and their relationship to
simplicial complexes. Finally, the higher-order spectral dimension and
dynamics of simplicial complexes have been explored by (Torres &
Bianconi, 2020) [19], highlighting the importance of considering the
dimensionality of simplicial complexes in understanding the behavior
and evolution of complex systems.

More recently, Gambuzza et al. presented a general framework for
analyzing the stability of the complete synchronization state in simpli-
cial complexes with multiple interaction layers [20]. They highlighted
the importance of topology and geometry in determining the dynamical
properties of simplicial complexes [21]. The paper contributed to the
understanding of synchronization in complex networks and provided
insights into the stability of synchronization in simplicial complexes by
extending the formulation of a Master Stability Function (MSF) to net-
works with higher-order interactions. The MSF formulation allows to
assess the linear stability of the (complete) synchronization manifold of
a set of coupled identical dynamical systems, just by taking into account
the equations of the dynamical system and the kind of coupling [22].

Departing from the theoretical results of Gambuzza et al. [20], in
this paper we provide the first experimental implementation of a net-
work of dynamical simplicial complexes. This endeavor brings together
theoretical insights, computational techniques, and practical experi-
mentation to bridge the gap between mathematical constructs and
tangible, real-world networks. Specifically, we depart from 3 electronic
Rössler systems evolving with a chaotic dynamics. Next, we couple
them through (i) pairwise and (ii) high-order (2-simplex) coupling and
investigate how the coupling strength constrains the synchronization
manifold of the three dynamical systems. Our analysis include coupling
through different variables of the Rössler systems and show how the
combination of the two kind of couplings allows different ways of
achieving the synchronization manifold. Importantly, together with the
results we provide the detailed schematic designs of the electronic
circuits and a database containing the dynamics of the oscillators under
all possible coupling scenarios.

2. Theoretical framework

A simplicial complex is formed by a collection of simplices, which
are geometric objects of different dimensions. In the context of network
science, these simplices represent interactions or connections between
nodes. Under this framework, a node of the network is a 0-dimensional
simplex and a link is a 1-dimensional simplex connecting two nodes
and representing a pairwise interaction or relationship. We can go
to higher order interactions and define a triangle as a 2-dimensional
simplex formed by connecting three nodes and a tetrahedron as a 3-
dimensional simplex formed by connecting four nodes. Applying the
2

same reasoning, higher-dimensional simplices represent interactions
involving more nodes (see Fig. 1 for details). The collection of all these
simplices, along with their shared faces, forms the simplicial complex.
Importantly, if 𝑘 at R𝑛 is a collection of simplices at R𝑛, then the
intersection of every two simplices of 𝑘 is one face of each of them.
Note that, in the case of dimension 𝐷 ≤ 1, the simplicial complex
coincides with the standard case of a complex network of 𝑁 units
coupled through pairwise interactions (i.e., links connect two, and only
two, nodes).

In the same spirit as [20], let us consider a dynamical system to be
placed at each of the 𝑁 nodes of a simplicial complex of dimension 𝐷,
the equations that describe its evolution are:

�̇�𝑖 = 𝐟 (𝐱𝐢) + 𝜎1
𝑁
∑

𝑗1=1
𝑎(1)𝑖,𝑗1

𝐠(1)(𝐱𝑖, 𝐱𝑗1 )

+ 𝜎2
𝑁
∑

𝑗1=1

𝑁
∑

𝑗2=1
𝑎(2)𝑖,𝑗1 ,𝑗2

𝐠(2)(𝐱𝑖, 𝐱𝑗1 , 𝐱𝑗2 ) +⋯ (1)

+ 𝜎𝐷
𝑁
∑

𝑗1=1
⋯

𝑁
∑

𝑗𝐷=1
𝑎(𝐷)
𝑖,𝑗1 ,…,𝑗𝐷

𝐠(𝐷)(𝐱𝑖, 𝐱𝑗1 ,… , 𝐱𝑗𝐷 ),

where 𝐱𝑖(𝑡) is a 𝑚-dimensional vector describing the dynamics of node
𝑖 and 𝜎1, … , 𝜎𝐷 are the coupling strengths of each 𝐷-dimensional sim-
plex. The function 𝐟 ∶ R𝑚 → R𝑚 describes the local dynamics, which is
assumed identical to all units, while 𝐠𝑑 ∶ R(𝑑+1)×𝑚 → R𝑚 (𝑑 = 1, … , 𝐷)
(i.e. 𝑔𝑑 (𝐱, 𝐱,… , 𝐱) ≡ 0 ∀𝑑) are synchronization functions describing
the kind of interaction at different orders. In addition 𝑎(𝑑)𝑖,𝑗1 ,…,𝑗𝑑

are the
entries of adjacency tensors 𝐴𝑑 , using 𝑑 = 1,… , 𝐷. These tensors, which
generalize the notion of adjacency matrix of a graph, describe the
architecture of the interactions of any order that can take place in the
simplicial complexes. Note the generality of the equation, since there
are no additional specific restrictions both in the adjacency tensors of
the simplicial complex and the functions 𝐟 and 𝐠(𝐷).

3. Constructing electronic simplicial complexes

The main objective of this paper is to construct a simplicial complex
composed of nonlinear electronic circuits, with the aim of exploring its
synchronization abilities. The construction of the experimental setup
consists of two stages: (i) the implementation of a set of nonlinear
electronic oscillators and (ii) the construction of the simplicial com-
plex. Regarding the first stage, each node consisted of an electronic
Rössler oscillator [23–25], which was constructed using analog devices
(operational amplifiers), passive elements (resistors, variable resistors,
capacitors), and some specific purpose integrated circuits (multipliers).
We used the operational amplifier LM324N to construct the equations
and the integrators, which is a low-power integrated circuit. This
integrated circuit includes four amplifiers to implement all the con-
ventional operational amplifiers configurations and gain blocks. Fig. 2
shows the schematics of the electronic Rössler.
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Fig. 2. Experimental design of an electronic Rössler oscillator. The oscillator is constructed using operational amplifiers (LM324N), passive elements (R: resistors, C: capacitors),
and diodes (D).
The equations describing the dynamics of the electronic Rössler
oscillator depicted in Fig. 2 are:

̇ = − 1
𝑅1𝐶1

(

𝑥 +
𝑅1
𝑅2

𝑦 +
𝑅1
𝑅4

𝑧
)

(2)

�̇� = − 1
𝑅6𝐶2

(

−
𝑅6𝑅8
𝑅9𝑅7

𝑥 +
[

1 −
𝑅6𝑅8
𝑅𝐶𝑅7

]

𝑦
)

(3)

�̇� = − 1
𝑅10𝐶3

(

−
𝑅10
𝑅11

𝐺𝑥 + 𝑧
)

, (4)

where 𝑥, 𝑦 and 𝑧 are the voltages at the output of the three operational
amplifiers IC1 A, IC1C and IC2 A (see Fig. 2 for details) and 𝐺𝑥 is a
nonlinear gain function given by:

𝐺𝑥 =

⎧

⎪

⎨

⎪

⎩

0 𝑥 ≤ 𝑉𝑑 + 𝑉𝑑
𝑅14
𝑅13

+ 𝑉𝑒𝑒
𝑅14
𝑅13

𝑅12
𝑅14

𝑥 − 𝑉𝑒𝑒
𝑅12
𝑅13

− 𝑉𝑑
(

𝑅12
𝑅14

+ 𝑅12
𝑅13

)

𝑥 > 𝑉𝑑 + 𝑉𝑑
𝑅14
𝑅13

+ 𝑉𝑒𝑒
𝑅14
𝑅13

.
(5)

To ensure that the oscillators are as identical as possible, we used
1% precision resistors and adjusted the variable resistors to guarantee
the oscillators display the same dynamics, which was verified by means
of the frequency spectrum. We set all oscillators to have chaotic dy-
namics by adjusting the electronic components to the values shown in
Table 1.

Next, we constructed a simplicial complex with dimension 𝐷 = 2
using 𝑁 = 3 electronic Rösslers, which corresponds to the smallest
simplicial complex of this dimension. Taking the equations of Rössler
oscillator, we considered two different coupling scenarios, the first one
using 𝑥 as the coupling variable of an oscillator 𝑖 (with 𝑖 = 1, 2, 3)
3

𝑖

Table 1
Values of the electronic components of Fig. 2. Under these conditions, the electronic
Rössler oscillators have chaotic dynamics.
𝐶1−3 = 1 nF 𝑉𝑑 = 0.7 𝑉𝑒𝑒 = 9 𝑅𝐶 = 𝑅3 + 𝑅5

𝑅1 = 2 MΩ 𝑅2 = 200 kΩ 𝑅3 = 10 kΩ 𝑅4 = 100 kΩ
𝑅5 = 48 kΩ 𝑅6 = 5 MΩ 𝑅7 = 100 kΩ 𝑅8 = 10 kΩ
𝑅9 = 10 kΩ 𝑅10 = 100 kΩ 𝑅11 = 100 kΩ 𝑅12 = 150 kΩ
𝑅13 = 68 kΩ 𝑅14 = 10 kΩ 𝑅15 = 300 kΩ 𝑅16 = 33.2 kΩ
𝑅17 = 10 kΩ 𝑅18 = 51 kΩ 𝜎1 = [0 − 2]𝑉 𝑐𝑐 𝜎2 = [0 − 0.02]𝑉 𝑐𝑐

and the second one, using the 𝑦𝑖 variable. Specifically, the coupling
functions for the 𝑥𝑖 variable were 𝑔(1)(𝐱𝑖, 𝐱𝑗 ) = [𝑥𝑗 − 𝑥𝑖, 0, 0]𝑇 and
𝑔(2)(𝐱𝑖, 𝐱𝑗 , 𝐱𝑘) = [𝑥2𝑗𝑥𝑘 − 𝑥3𝑖 , 0, 0]

𝑇 . Similarly, for the 𝑦𝑖 variable, the
coupling functions were 𝑔(1)(𝐲𝑖, 𝐲𝑗 ) = [𝑦𝑗 − 𝑦𝑖, 0, 0]𝑇 and 𝑔(2)(𝐲𝑖, 𝐲𝑗 , 𝐲𝑘) =
[𝑦2𝑗𝑦𝑘 − 𝑦3𝑖 , 0, 0]

𝑇 . Both 𝑔(1) and 𝑔(2) represent generalized diffusion
functions. In the case of 𝑔(1), it is the simplest diffusive function which
relates the state of node 𝑖 with the node 𝑗. For the case of 𝑔(2), it
was built considering the smallest power function that involves the
three nodes without redundancies. In other words, 𝑔(2) is the difference
between two monomials with the same degree, in this case, third de-
gree. Note that, to achieve identical synchronization, the two coupling
functions 𝑔(1) and 𝑔(2) must be constructed in a way that when 𝐱𝑖 =
𝐱𝑗 = 𝐱𝑘, the coupling terms go to zero. It is important to mention two
fundamental aspects, the first one is the fact that we are using the same
coupling functions proposed by Gambuzza et al. in [20]; and the second
one is that we are not using the 𝑧 variable for coupling, this obeys
𝑖
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𝑥

Fig. 3. Schematic representation of the experimental setup. (A) Labview code controlling the coupling strengths 𝜎1 and 𝜎2 and storing the outputs of the simplicial complex. (B)
Two-channel programmable power supply. (C) Analog module CompaqRIO reading the state variables and introducing the coupling functions. (D) Labview code calculating the
coupling functions. (E) Analog simplicial complex composed of 3 Rössler oscillators. (F) Data acquisition card capturing the outputs of the simplicial complex.
to the knowledge that Rössler system does not synchronize when it is
coupled through the 𝑧 variable because the Master Stability Function
corresponds to the Class I according with the classification presented
in [26]. Introducing the aforementioned coupling terms in Eqs. (2)–(4),
we obtain the equations of the simplicial complex:

̇ 𝑖 = − 1
𝑅1𝐶1

(

𝑥𝑖 +
𝑅1
𝑅2

𝑦𝑖 +
𝑅1
𝑅4

𝑧𝑖 − 𝜎1
𝑅1
𝑅15

𝑁
∑

𝑗=1
𝑔(1)𝑖𝑗 (𝑥𝑗 − 𝑥𝑖)

)

− 1
𝑅1𝐶1

(

−𝜎2
𝑅1
𝑅16

𝑁
∑

𝑗=1

𝑁
∑

𝑘=1
𝑔(2)𝑖𝑗𝑘(𝑥

2
𝑗𝑥𝑘 − 𝑥3𝑖 )

)

(6)

�̇�𝑖 = − 1
𝑅6𝐶2

(

−
𝑅6𝑅8
𝑅9𝑅7

𝑥𝑖 +
[

1 −
𝑅6𝑅8
𝑅𝐶𝑅7

]

𝑦𝑖 − 𝜎1
𝑅6𝑅8
𝑅17𝑅7

𝑁
∑

𝑗=1
𝑔(1)𝑖𝑗 (𝑦𝑗 − 𝑦𝑖)

)

− 1
𝑅6𝐶2

(

−𝜎2
𝑅6𝑅8
𝑅18𝑅7

𝑁
∑

𝑗=1

𝑁
∑

𝑘=1
𝑔(2)𝑖𝑗𝑘(𝑦

2
𝑗𝑦𝑘 − 𝑦3𝑖 )

)

(7)

�̇�𝑖 = − 1
𝑅10𝐶3

(

−
𝑅10
𝑅11

𝐺𝑥𝑖 + 𝑧𝑖

)

. (8)

4. Coupling control and recording

Fig. 3 shows a qualitative representation of the complete experi-
mental setup. The fact that we wanted to combine and control, at the
same time, the coupling of dimensions 1 and 2, required to consider
two varying coupling strengths 𝜎1 and 𝜎2, the former for the 1-simplex
(i.e., single links) and the latter for the 2-simplex (i.e., triplets). With
this aim, we used a two-channel programmable power supply model
GW Instek GPD 2003S (B), whose two output voltages directly con-
trolled the values of 𝜎1 and 𝜎2. Next, with the aim of plotting the
synchronization error map, each coupling strength was modified 100
times through a Labview code (A) that controls a programmable power
supply (B), in such a way that when the complete experiment was
finished, we obtained 100 × 100 time series for each of the three
nodes of the simplicial complex. The values of 𝜎1, 𝜎2, and two state
variables of the three nodes (𝑥𝑖 and 𝑦𝑖) were recorded simultaneously
by an analog inputs module NI 9201 of CompaqRIO embedded system
(C). In real-time, these input signals are processed by another Labview
program (D) that calculates the coupling functions 𝑔(1) and 𝑔(2). After
the terms of the linear diffusive coupling function 𝑔(1) and the high-
order coupling function 𝑔(2) have been calculated, they were fed back
to the electronic oscillators (E) through the analog outputs module
NI 9264 of the CompaqRIO (C). Finally, a data acquisition card (F)
captured the temporal series of the Rösslers and sends them to a
Labview program (A) that stores them in the hard disk to be processed
later using Matlab.
4

The data acquisition card we used is the USB-6363 of National
Instruments, whose Analog-to-Digital Converter and Digital-to-Analog
converter works at 16-bit. This implies that if we are using analog
signals from the range of −9 V to 9 V, the voltage for each possible code
of 16-bit is around 274.6 μV. On the other hand, this device collects
data on all channel in sequential order using a multiplexer. The settling
time to achieve this task is 1 to 2 μs. This delay time is much less than
the oscillation frequency of Rössler system, which is around 1.5 kHz.
The sequential order to collect data from the analog inputs in our setup
is 3-4-2-5-1-0, remembering that analog inputs are labeled from 0 to 7
in the data acquisition card. The delay to acquire these six signals is
around 10 μs. The model of CompaqRIO embedded system we used is
9074, which has a sample rate of 10 kS/s when is working in FPGA
mode. The existing delay between the measurement and the application
of a perturbation is approximately 5 μs.

An important point to note is the hybrid character of our experimen-
tal platform, since we used analog and digital devices jointly. Analog
devices were present in the Rössler oscillators, whereas the digital
devices carried out the calculation of the coupling functions 𝑔(1) and 𝑔(2)

using the real-time processor and the FPGA modules of the CompaqRIO.
If the complete experiment had been implemented using only analog
devices, the cost and complexity of the circuit had increased. Just to
cite an example, if the full experiment were implemented using only
analog electronic devices, for each high-order coupling function 𝑔(2),
a total of 18 multipliers would be necessary. Note that these devices
are the most expensive components for constructing the experiment,
in such a way that we estimate the cost would increase 15 times with
respect to our hybrid experimental platform.

5. Results

We carried out four experiments to consider all the possible com-
binations of the coupling functions 𝑔(1) and 𝑔(2) through the state
variables 𝑥𝑖 and 𝑦𝑖: (i) 𝑔(1) → 𝑥𝑖 and 𝑔(2) → 𝑥𝑖, (ii) 𝑔(1) → 𝑥𝑖 and 𝑔(2) → 𝑦𝑖,
(iii) 𝑔(1) → 𝑦𝑖 and 𝑔(2) → 𝑥𝑖 and (iv) 𝑔(1) → 𝑦𝑖 and 𝑔(2) → 𝑦𝑖. Variable 𝑧𝑖 is
not included here since we observed that the synchronization manifold
is never reached when oscillators are coupled through this variable. For
each experiment, we calculate the synchronization error of the recorded
variables as:

𝐸 =

⟨(

1
𝑁(𝑁 − 1)

𝑁
∑

𝑖,𝑗=1
‖𝐱𝑗 − 𝐱𝑖‖2

)

1
2
⟩

(9)

where ‖ ⋅ ‖ is the absolute value and ⟨⋅⟩ is the average over time.
Figs. 4–7 contain maps of the synchronization error for each exper-
iment. In these maps, the color bar indicates how synchronized the
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Fig. 4. Synchronization error map for 𝑔(1)(𝐱𝑖 , 𝐱𝑗 ) = [𝑥𝑗 − 𝑥𝑖 , 0, 0]𝑇 and 𝑔(2)(𝐱𝑖 , 𝐱𝑗 , 𝐱𝑘) = [𝑥2𝑗𝑥𝑘 − 𝑥3𝑖 , 0, 0]
𝑇 as a function of the coupling strengths 𝜎1 and 𝜎2. (A) Full range experiment.

(B) Zoom of plot A for low coupling strengths. This plot corresponds to the experiment (i) referred in the main text. (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article.)
network is. The scale goes from the blue tones to the red tones,
which correspond to the synchronized state and non-synchronized
state, respectively. With the aim of better elucidating each of the
aforementioned scenarios, we also have included maps of the syn-
chronization error calculated by numerical simulations (Supplementary
Material Section). Fig. 4 shows the synchronization error maps of exper-
iment (i), where we introduced the couplings through the 𝑥𝑖 variable as
𝑔(1)(𝐱𝑖, 𝐱𝑗 ) = [𝑥𝑗 − 𝑥𝑖, 0, 0]𝑇 and 𝑔(2)(𝐱𝑖, 𝐱𝑗 , 𝐱𝑘) = [𝑥2𝑗𝑥𝑘 − 𝑥3𝑖 , 0, 0]

𝑇 . Panel
B shows a zoom of panel A for low values of coupling. We can observe
how, for values of 𝜎1 close to zero, there is no synchronized state
(see panel B), but when 𝜎1 is slightly increased, the system reaches
the synchronization manifold. However, the network loses again the
synchronized state as 𝜎1 is increased beyond 𝜎1 = 1.80. The same
qualitative behavior can be seen for 𝜎2 when 𝜎1 is set to zero. It is
worth noting how the combination of both coupling strengths leads to
a region where the synchronization manifold is lost before the case of
coupling the oscillators with only a coupling of a given order (either
𝑔(1) or 𝑔(2)). In other words, coupling through the two variables at the
same times does not promote synchronization, on the contrary, makes
the system to leave the synchronization region more easily. This is
the classical behavior of the class III systems defined by the Master
Stability Function (MSF) in the context of complex networks with (only)
pairwise interactions [26].

The second experiment corresponds to 𝑔(1) = (𝐱𝑖, 𝐱𝑗 ) = [𝑥𝑗 −𝑥𝑖, 0, 0]𝑇

and 𝑔(2) = (𝐱𝑖, 𝐱𝑗 , 𝐱𝑘) = [0, 𝑦2𝑗𝑦𝑘 − 𝑦3𝑖 , 0]
𝑇 , whose synchronization error

map is sketched in Fig. 5. In this case, introduced the high-order
interaction through the 𝑦𝑖 variable, combining the use of two variables
at the same time. We can observe how, when both 𝜎1 and 𝜎2 = 0,
the simplicial complex displays asynchronous dynamics. This is an ex-
pected behavior because there is not coupling between them. However,
as soon as 𝜎1 starts to increase, the ensemble fully synchronizes. The
asynchronous behavior appears again in the network when 𝜎1 is, again,
higher than 1.80 when 𝜎2 is set to zero. If we keep 𝜎1 = 0 and analyze
the effects of increasing 𝜎2, we can see that the behavior is qualitatively
similar. However, 𝜎2 requires to reach a higher value to enter the
synchronization region than in the case of experiment (i), where the
coupling 𝑔(2) was introduced through the 𝑥𝑖 variable. Also note that,
now synchronization is maintained even for high values of both 𝜎1 and
𝜎2. This is a behavior that is similar to class II systems, as defined by
the Master Stability Function [26].

In experiment (iii) coupling functions are 𝑔(1) = (𝐱𝑖, 𝐱𝑗 ) = [0, 𝑦𝑗 −
𝑦𝑖, 0]𝑇 and 𝑔(2) = (𝐱𝑖, 𝐱𝑗 , 𝐱𝑘) = [𝑥2𝑗𝑥𝑘−𝑥

3
𝑖 , 0, 0]

𝑇 . Here, we have exchanged
the coupling variables as compared to experiment (ii), maintaining a
multivariable coupling. We can observe in Fig. 6 how the asynchronous
5

behavior appears when both 𝜎1 and 𝜎2 are small, but as we increment
Fig. 5. Synchronization error map for 𝑔(1) = (𝐱𝑖 , 𝐱𝑗 ) = [𝑥𝑗 − 𝑥𝑖 , 0, 0]𝑇 and 𝑔(2) =
(𝐱𝑖 , 𝐱𝑗 , 𝐱𝑘) = [0, 𝑦2𝑗 𝑦𝑘 − 𝑦3𝑖 , 0]

𝑇 as a function of the coupling strengths 𝜎1 and 𝜎2. This
plot corresponds to the experiment (ii) referred in the main text. (For interpretation
of the references to color in this figure legend, the reader is referred to the web version
of this article.)

𝜎2, the network reaches the synchronization manifold. Nevertheless, if
we continue increasing 𝜎2 and we let 𝜎1 small, then the network loses
again the synchronized behavior.

Finally, in experiment (iv), the coupling is fully introduced through
the 𝑦𝑖 variable in such a way that i.e., 𝑔(1) = (𝐱𝑖, 𝐱𝑗 ) = [0, 𝑦𝑗 − 𝑦𝑖, 0]𝑇

and 𝑔(2) = (𝐱𝑖, 𝐱𝑗 , 𝐱𝑘) = [0, 𝑦2𝑗𝑦𝑘 − 𝑦3𝑖 , 0]
𝑇 . Fig. 7 shows how, in this

configuration, the asynchronous behavior of the simplicial complex
only exists for small values of 𝜎1 and 𝜎2. When a certain threshold value
is crossed for 𝜎1 and 𝜎2, the synchronization region is always reached
even for high values of both couplings.

6. Conclusions

In this paper we presented the first experimental results of a sim-
plicial complex composed of nonlinear electronic oscillators. Our main
aim was to design an experimental setup able to analyze all possible
scenarios to reach the synchronized state of a simplicial complex by
modifying its coupling strengths. Our setup consisted on a hybrid
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Fig. 6. Synchronization error map for 𝑔(1) = (𝐱𝑖 , 𝐱𝑗 ) = [0, 𝑦𝑗 − 𝑦𝑖 , 0]𝑇 and 𝑔(2) =
(𝐱𝑖 , 𝐱𝑗 , 𝐱𝑘) = [𝑥2𝑗𝑥𝑘 − 𝑥3𝑖 , 0, 0]

𝑇 as a function of the coupling strengths 𝜎1 and 𝜎2. This
plot corresponds to the experiment (iii) referred in the main text. (For interpretation
of the references to color in this figure legend, the reader is referred to the web version
of this article.)

Fig. 7. Synchronization error map for 𝑔(1) = (𝐱𝑖 , 𝐱𝑗 ) = [0, 𝑦𝑗 − 𝑦𝑖 , 0]𝑇 and 𝑔(2) =
(𝐱𝑖 , 𝐱𝑗 , 𝐱𝑘) = [0, 𝑦2𝑗 𝑦𝑘 − 𝑦3𝑖 , 0]

𝑇 as a function of the coupling strengths 𝜎1 and 𝜎2. This
plot corresponds to the experiment (iv) referred in the main text. (For interpretation
of the references to color in this figure legend, the reader is referred to the web version
of this article.)

digital–analog electronic system composed of three Rössler oscillators
whose coupling functions where adjusted in real time. With this ex-
perimental setup, we aimed to explore the higher-order relationships
embedded within a simplicial complex of dimension 𝐷 = 2. Our
results show the complex behavior displayed by the whole system when
multivariable and high-order coupling is introduced. We have seen that
depending on the coupling configuration the synchronization region
could be entered or reached, no matter if the coupling strengths are
low or high. This kind of phenomena has been previously reported
in (classical) complex networks with pairwise coupling, which allows
to introduce a classification based on the way a network enters and
reaches the synchronization manifold. Therefore it is possible to find
analogies between the behavior of a complex networks with high order
6

interactions (a simplicial complex in our case) and the behavior of
class I (never reaching synchronization), II (synchronizing among a
certain coupling strength) and III (synchronizing only at intermediate
coupling strengths) systems as defined by the Master Stability Function.
We believe that our results could be a starting point to further studies
about dynamical simplicial complexes and, more generally, networks
with nonlinear oscillators with higher-order interactions.
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Appendix. Supplementary material

For the numerical simulations of the simplicial complexes, a Runge–
Kutta fourth-order method was employed with an integration step-size
ℎ = 10−5 and 216 steps. Figures Figs. 8–11 contain the synchronization
errors of the numerical simulations for the different coupling scenarios.

The experimental time series recorded to calculate the synchro-
nization error maps of Figs. 4–7 are available to download in [27–
30].

The virtual instruments for each experiment are also available to
download in [31]. In the RAR file, there are 2 main folders: Control-
Acquisition and Coupling. Control-Acquisition folder contains the file
named ControlGPD-2303S.vi necessary to control the programmable
power supply (GW Instek GPD-2303S) via USB port; also, this file
allows to acquire the time series using the data acquisition card (NI
6363). By the other hand, Coupling folder contains five files. The file
SimplicialComplexes.lvproj corresponds to the complete project to con-
figure and control the CompaqRIO (NI 9074). The four remaining files
corresponds to the virtual instruments allow to calculate the possible
scenarios of coupling functions 𝑔(1) and 𝑔(2) that we have mentioned in
the main text. Namely, SimplextresnodosXX.vi, SimplextresnodosXY.vi,
SimplextresnodosYX.vi, and SimplextresnodosYY.vi correspond to ex-
periments (i), (ii), (iii), and (iv), respectively. Two important points
must be considered: (a) these uploaded files work jointly, i.e., all files
are necessary to reproduce the experiment; and (b) the same aforemen-
tioned hardware is necessary in order to reproduce the experiment.
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Fig. 8. Synchronization error map obtained by numerical simulations for 𝑔(1)(𝐱𝑖 , 𝐱𝑗 ) =
[𝑥𝑗 −𝑥𝑖 , 0, 0]𝑇 and 𝑔(2)(𝐱𝑖 , 𝐱𝑗 , 𝐱𝑘) = [𝑥2𝑗𝑥𝑘−𝑥3𝑖 , 0, 0]

𝑇 as a function of the coupling strengths
𝜎1 and 𝜎2. This plot corresponds to the experiment (i) referred in the main text.

Fig. 9. Synchronization error map obtained by numerical simulations for 𝑔(1) = (𝐱𝑖 , 𝐱𝑗 ) =
[𝑥𝑗 − 𝑥𝑖 , 0, 0]𝑇 and 𝑔(2) = (𝐱𝑖 , 𝐱𝑗 , 𝐱𝑘) = [0, 𝑦2𝑗 𝑦𝑘 − 𝑦3𝑖 , 0]

𝑇 as a function of the coupling
strengths 𝜎1 and 𝜎2. This plot corresponds to the experiment (ii) referred in the main
text.

Fig. 10. Synchronization error map obtained by numerical simulations for 𝑔(1) =
(𝐱𝑖 , 𝐱𝑗 ) = [0, 𝑦𝑗 − 𝑦𝑖 , 0]𝑇 and 𝑔(2) = (𝐱𝑖 , 𝐱𝑗 , 𝐱𝑘) = [𝑥2𝑗𝑥𝑘 − 𝑥3𝑖 , 0, 0]

𝑇 as a function of the
coupling strengths 𝜎1 and 𝜎2. This plot corresponds to the experiment (iii) referred in
the main text.
7

Fig. 11. Synchronization error map obtained by numerical simulations for 𝑔(1) =
(𝐱𝑖 , 𝐱𝑗 ) = [0, 𝑦𝑗 − 𝑦𝑖 , 0]𝑇 and 𝑔(2) = (𝐱𝑖 , 𝐱𝑗 , 𝐱𝑘) = [0, 𝑦2𝑗 𝑦𝑘 − 𝑦3𝑖 , 0]

𝑇 as a function of the
coupling strengths 𝜎1 and 𝜎2. This plot corresponds to the experiment (iv) referred in
the main text.
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