
Engineering Applications of Artificial Intelligence 133 (2024) 108593

A
0

Contents lists available at ScienceDirect

Engineering Applications of Artificial Intelligence

journal homepage: www.elsevier.com/locate/engappai

Research paper

Multi-objective general variable neighborhood search for software
maintainability optimization
Javier Yuste a, Eduardo G. Pardo a,∗, Abraham Duarte a, Jin-Kao Hao b

a Universidad Rey Juan Carlos, C/Tulipán s/n, Móstoles, 28933, Madrid, Spain
b LERIA, Université d’Angers, 2 Boulevard Lavoisier, Angers, 49045, France

A R T I C L E I N F O

Keywords:
Software maintainability
Search-based software engineering
Software module clustering
Heuristics
Multi-objective optimization

A B S T R A C T

The quality of software projects is measured by different attributes such as efficiency, security, robustness,
or understandability, among others. In this paper, we focus on maintainability by studying the optimization
of software modularity, which is one of the most important aspects in this regard. Specifically, we study
two well-known and closely related multi-objective optimization problems: the Equal-size Cluster Approach
Problem (ECA) and the Maximizing Cluster Approach Problem (MCA). Each of these two problems looks
for the optimization of several conflicting and desirable objectives in terms of modularity. To this end, we
propose a method based on the Multi-Objective Variable Neighborhood Search (MO-VNS) methodology in
combination with a constructive procedure based on Path-Relinking. As far as we know, this is the first time
that a method based on MO-VNS is proposed for the MCA and ECA problems. To enhance the performance
of the proposed algorithm, we present three advanced strategies: an incremental evaluation of the objective
functions, an efficient exploration of promising areas in the search space, and an analysis of the objectives that
better serve as guiding functions during the search phase. Our proposal has been validated by experimentally
comparing the performance of our algorithm with the best previous state-of-the-art method for the problem
and three reference methods for multi-objective optimization. The experiments have been performed on a set
of 124 real software instances previously reported in the literature.
1. Introduction

The life cycle of a software project is initiated with a user need and
concluded by the discontinued use of a product (International Organi-
zation for Standardization, 2017). To cover all the stages within it, the
development of software projects is structured in a Software Develop-
ment Life Cycle (SDLC). An SDLC involves the definition, ordering, and
transition criteria of several phases, such as requirements definition,
analysis, design, implementation, validation, and maintenance, among
others. The main purpose of using an SDLC is to enhance the quality of
the resulting software product. In this regard, the quality of a software
project might be measured in terms of efficiency, security, understand-
ability, robustness, cost, usability, or maintainability, among others.
Maintainability and understandability are important aspects for the
long-term success of software projects since they affect how easily a
software system can be modified, corrected, improved, or adapted.

As software projects grow over time, their architecture often tends
to deteriorate, creating technical debt (Li et al., 2015). Then, in the
maintenance phase, several activities are required to provide support

∗ Corresponding author.
E-mail addresses: javier.yuste@urjc.es (J. Yuste), eduardo.pardo@urjc.es (E.G. Pardo), abraham.duarte@urjc.es (A. Duarte), jin-kao.hao@univ-angers.fr

(J.-K. Hao).

to the system by correcting bugs, improving its performance, adapting
the product, etc. (Bakota et al., 2012). The maintenance phase itself
is often responsible for up to more than 80% of the total costs (Chen
et al., 2017). Interestingly, most work in this phase is dedicated to com-
prehend the existing software (Molnar and Motogna, 2021). A lack of
comprehensive understanding of the code base makes its maintenance
and correction costly and prone to errors. Therefore, facilitating the
comprehension of a software project is highly beneficial in reducing its
associated costs and improving its code quality. In addition, given the
long-term benefits of having maintainable software, addressing these
issues as soon as possible within the SDLC is highly recommended.

To simplify the comprehension of software projects, the source code
is generally split in multiple parts so that each part or component
can be understood separately. In addition, these components are tra-
ditionally organized into modules which ideally group closely related
components. A good organization of these components follows the
modularity principle and makes it easier to understand each component
individually.
vailable online 16 May 2024
952-1976/© 2024 The Author(s). Published by Elsevier Ltd. This is an open access a

https://doi.org/10.1016/j.engappai.2024.108593
Received 10 October 2023; Received in revised form 22 March 2024; Accepted 6 M
rticle under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

ay 2024

https://www.elsevier.com/locate/engappai
https://www.elsevier.com/locate/engappai
mailto:javier.yuste@urjc.es
mailto:eduardo.pardo@urjc.es
mailto:abraham.duarte@urjc.es
mailto:jin-kao.hao@univ-angers.fr
https://doi.org/10.1016/j.engappai.2024.108593
https://doi.org/10.1016/j.engappai.2024.108593
http://crossmark.crossref.org/dialog/?doi=10.1016/j.engappai.2024.108593&domain=pdf
http://creativecommons.org/licenses/by/4.0/

Engineering Applications of Artificial Intelligence 133 (2024) 108593J. Yuste et al.

t
t
a
i
s
i
c
e
c

w
B
e
e
M
a
i
o
r
t
t
t
t
o

t
a
c
T
h
e
n
2

m
e
t
p
c
s
a
H
s
m
p
r
r
d
c
o
i
s
i
m
m
t
r
e
o
t
t
t
C

r
c
n
2
n
o
o

b
l
a
e
a
a
t
r
p
a
p
t
J
(
g
r
i
a

p
E
S
t
e
F

2

m
p
e
t
v
q
o
c
e
(
f
c
t
I
c
i
i
s
m
e
o
m
b
F
t
o

As defined by the International Organization for Standardization
(2017), modularity refers to the ‘‘software attributes that provide a struc-
ure of highly independent components’’. In a desirable modular struc-
ure, components within the same module should be closely connected
mong them (high cohesion) and weakly connected to the components
n other modules (low coupling). There are different notions of what a
oftware component is, such as a file, a class, a package, etc. Although
n some contexts the words ‘‘module’’ and ‘‘component’’ are used inter-
hangeably, here we will utilize the word ‘‘component’’ for individual
lements (files and classes) and the word ‘‘module’’ for collections of
omponents (packages or folders).

To optimize the quality of software projects, several tasks of soft-
are engineering are addressed as optimization problems in the Search-
ased Software Engineering (SBSE) research area (Chaves-González
t al., 2015; Moosavi and Bardsiri, 2017; Colanzi et al., 2020; Ramirez
t al., 2019). Among the variety of issues within SBSE, the Software
odule Clustering Problem (SMCP) is an optimization problem whose

im is to reduce the development costs of software projects by max-
mizing their modularity (Yuste et al., 2022c). To tackle this as an
ptimization problem, two main features are needed: a standardized
epresentation of the possible solutions to the problem; and a method
o compare these solutions and determine which one is better. Then, op-
imization, ‘‘the search process that seeks for the best possible solution
o an optimization problem’’ (Duarte et al., 2007), can be performed. In
he case of the SMCP, then, the objective is to reorganize the structure
f software projects to increase their modularity.

For the majority of optimization problems of practical interest,
here exist such a vast number of feasible solutions that exploring
ll of them is not affordable in reasonable computing times. In these
ases, a procedure is needed to find good solutions in a limited time.
hese procedures, known as heuristics or metaheuristics (higher-level
euristics), often implement some sort of stochastic optimization and
xplore a subset of all possible solutions in a smart way. The SMCP is
ot an exception in this sense, as it is -complete (Brandes et al.,
007).

The primary goal of SMCP problems, to maximize cohesion and
inimize coupling, does not appear to be successful in practice (Barros

t al., 2015). The best structure of any software project if our objec-
ive were to minimize coupling and maximize cohesion would be to
ut all components into a single module. In such a trivial solution,
ohesion would be maximum (all dependencies would occur inside the
ame module) and coupling would be minimum (there would not be
ny dependency between components belonging to different modules).
owever, that trivial solution is not useful for maintainability purposes,

ince it would be as useful as not grouping the components into
odules at all. In practice, a larger number of modules is usually
referred. Nevertheless, maximizing the number of modules would not
educe the effort required to understand the system. Instead, it would
esult in another trivial solution, where every component is located in a
ifferent module. Therefore, a balance must be found when considering
oupling, cohesion, and the number of modules. Moreover, there exist
ther objectives that should also be considered in this context. For
nstance, it is generally undesirable to have isolated modules with one
ingle component. Instead, a homogeneous distribution of components
n modules is preferred, where the number of components in each
odule is roughly equal. Due to these reasons, it appears that a
ulti-objective strategy is more suitable for the SMCP, because (i)

he consideration of different conflicting objectives is a more accurate
eflection of the modularity of the system than the consideration of
ach objective in isolation; and (ii) providing a collection of modular
rganizations to a decision maker (e.g., a software developer) allows
he stakeholders to prioritize some objectives over others depending on
he context. Following these ideas, Praditwong et al. (2011) introduced
wo different multi-objective formulations for the SMCP: the Equal-size
2

luster Approach (ECA) and the Maximizing Cluster Approach (MCA). i
In recent years, there have been significant improvements in the
esults obtained on single-objective SMCP problems achieved by traje-
tory-based metaheuristics, mainly based on a deep exploration of
eighborhoods (Pinto et al., 2014; Monçores et al., 2018; Yuste et al.,
022a, 2024). Despite the success of these methodologies, they have
ot been tested for multi-objective SMCP problems. Therefore, traject-
ry-based methods, such as MO-VNS, seem promising for multi-objective
ptimization SMCP problems, as it is the case of MCA and ECA.

In this work, we present a Multi-Objective General Variable Neigh-
orhood Search (MO-GVNS) method for both the MCA and ECA prob-
ems. To enhance the performance of the method, we present three
dvanced strategies: an efficient evaluation of the solutions, an efficient
xploration of promising areas in the neighborhoods proposed, and an
nalysis of the importance of the objectives contained in each problem
s guiding functions during the search process. Moreover, a construc-
ive procedure based on Path-Relinking is presented, and several crite-
ia for the shake component of the method are proposed. Finally, we
erform a comparison of the proposed method with several state-of-the-
rt approaches: a Two-Archive Artificial Bee Colony (TA-ABC) recently
roposed to tackle both MCA and ECA (Amarjeet and Chhabra, 2018);
he Non-dominated Sorting Genetic Algorithm III (NSGA-III) (Deb and
ain, 2013); the Modified Pareto Envelop-Based Selection Algorithm
PESA2) (Corne et al., 2001); and the Multi-Objective Evolutionary Al-
orithm based on Decomposition (MOEA/D) (Zhang and Li, 2007). The
esults show that the presented MO-GVNS method obtains better results
n all the quality aspects evaluated: convergence, spread, uniformity,
nd cardinality.

The rest of this article is organized as follows. In Section 2, we
resent a literature review. In Section 3, we define the MCA and
CA problems. In Section 4, we describe the algorithm proposed. In
ection 5, we propose several advanced strategies designed to enhance
he efficiency of the method. In Section 6, we perform some preliminary
xperiments and evaluate the performance of the proposed algorithm.
inally, we draw some conclusions and future work in Section 7.

. Literature review

Software engineers have traditionally organized software projects in
odules based on their own experience in a subjective way. Thus, this
rocess ends up being not necessarily systematic and repeatable (Barros
t al., 2015). Alternatively, many researchers have suggested to tackle
his task as an optimization problem, known as SMCP. Indeed, many
ariants of the same problem can be tracked due to the wide variety of
uality measures (objective functions) used to evaluate the modularity
f a software project. In Table 1, we present a chronologically sorted
ompilation of the main works addressing a variant of the SMCP. For
ach work, we report if a single-objective (S.O.) or multi-objective
M.O.) approach was used, the objective function or set of objective
unctions studied (O.F.), and the algorithm proposed (Algorithm). As
an be observed in Table 1, Modularization Quality (MQ) is one of
he first and most studied objective functions (Mancoridis et al., 1998).
n MQ, the quality of a solution is computed as a trade-off between
ohesion and coupling. This metric was later extended to TurboMQ,
n order to accelerate its computation (Mitchell, 2002). Although MQ
s one of the most widely used objective functions for the SMCP,
ome concerns have been highlighted in the literature about these
etrics and the prevalence of the coupling-cohesion paradigm (Barros

t al., 2015; Izadkhah and Tajgardan, 2019). As a response, alternative
bjective functions were proposed, such as: Modularization Quality
easure based on similarity (MS) (Huang and Liu, 2016), Entropy-

ased Objective Function (EOF) (Izadkhah and Tajgardan, 2019), or
unction of Complexity Balance (FCB) (Mu et al., 2020). Specifically,
he latter tries to decrease over-cohesiveness and decrease the number
f modules with only one isolated vertex (Mu et al., 2020).

Apart from the various individual modularity metrics that exist

n the literature, a natural alternative to using only one of them is

Engineering Applications of Artificial Intelligence 133 (2024) 108593J. Yuste et al.
Table 1
Chronological summary of previous proposals for the SMCP.

Reference Type O.F. Algorithm

Mancoridis et al. (1998) SO MQ HC+GA
Mitchell and Mancoridis (2002) SO MQ HC+SA
Mahdavi (2005) SO MQ HCGA
Mitchell and Mancoridis (2006) SO MQ HCGA, HCSA
Mitchell and Mancoridis (2008) SO MQ NAHC, SAHC
Mamaghani and Meybodi (2009) SO MQ HGA
Abdeen et al. (2009) SO DQCQ SA
Praditwong (2011) SO MQ GA
Praditwong et al. (2011) MO MCA, ECA GA
Mamaghani and Hajizadeh (2014) SO MQ FA
Pinto et al. (2014) SO MQ ILS
Mkaouer et al. (2015) MO SSH NSGA-III
Izadkhah et al. (2016) SO MQ E-CDGM
Jeet and Dhir (2016) SO MQ ICA-GA
Tajgardan et al. (2016) SO MQ EDA
Kumari and Srinivas (2016) MO MCA, ECA MHypEA
Huang and Liu (2016) SO MS HC, GA, MAEA
Huang et al. (2017) SO MQ MAEA
Kargar et al. (2017) SO MQ HCS
Amarjeet and Chhabra (2017) SO CCCS HS
Hwa et al. (2017) MO MFMC HC
Monçores et al. (2018) SO MQ LNS
Prajapati and Chhabra (2018) SO MNCC PSO
Ramirez et al. (2018) MO IFF IEA
Amarjeet and Chhabra (2018) MO MCA, ECA TA-ABC
Jalali et al. (2019) MO MOF EoD
Izadkhah and Tajgardan (2019) SO EOF GA
Chhabra (2018b) MO E-MCA, E-ECA MaABC
Mu et al. (2020) SO FCB HGA
Pourasghar et al. (2021) SO LCC GMA
Yuste et al. (2022a) SO MQ GRASP-VND
Arasteh et al. (2022) MO MCA, ECA PESA
Prajapati (2022) MO E-MCA, E-ECA GLMPSO
Yuste et al. (2022c) SO FCB VND
Arasteh (2023) SO MQ Chaos-based
Arasteh et al. (2023) SO MQ Olympiad
Yuste et al. (2024) SO FCB GVNS

Type: MO: Multi-Objective; SO: Single-Objective. Objective Function (O.F.): CCCS:
Cohesion, Coupling, package Count index, and package Size index; DQCQ: Dependency
Quality and Connection Quality; E-ECA: Extended Equal-size Cluster Approach; E-
MCA: Extended Maximizing Cluster Approach; ECA: Equal-size Cluster Approach;
EOF: Entropy-based Objective Function; FCB: Functions of Complexity Balance; IFF:
Interactive Fitness Function; LCC: Linear Compound Criteria; MCA: Maximizing Clus-
ter Approach; MFMC: Multi-Factor Module Clustering; MNCC: MQ, Non-extreme
distribution, Coupling, and Cohesion; MOF: Multi-Objective Fitness function; MQ:
Modularization Quality; MS: Similarity-based Modularity Quality; SSH: Structure of
packages, Semantics coherence, and History of changes. Algorithm: E-CDGM: Evolu-
tionary Call-Dependency Graph Modularization; EDA: Estimation of Distribution based
Approach; EoD: Estimation of Distribution; FA: Firefly Algorithm; GA: Genetic Algo-
rithm; GLMPSO: Grid-based Large-scale Many-objective Particle Swarm Optimization;
GMA: Graph-based Modularization Algorithm; GRASP: Greedy Randomized Adaptive
Search Procedure; GVNS: General Variable Neighborhood Search; HC: Hill Climbing;
HCS: Hill Climbing based on Semantic dependency graph; HGA: Hybrid Genetic
Algorithm; HS: Harmony Search; ICA: Imperialist Competitive Algorithm; IEA: Inter-
active Evolutionary Approach; ILS: Iterated Local Search; LNS: Large Neighborhood
Search; MaABC: Many-objective Artificial Bee Colony; MAEA: Multi-Agent Evolutionary
Algorithm; MHypEA: Multi-objective Hyper-heuristic Evolutionary Algorithm; NSGA-III:
Non-dominated Sorting Genetic Algorithm III; PESA: Pareto Envelop-based Selection
Algorithm; PSO: Particle Swarm Optimization; TA-ABC: Two-Archive Artificial Bee
Colony; SA: Simulated Annealing; VND: Variable Neighborhood Descent.

to use multiple objectives in conflict in a multi-objective approach,
representing the modularity of the system in a diverse way. Some
works in the literature have highlighted the need for formulations
that do not oversimplify the SMCP problems into a single metric
that encapsulates different measures of coupling, cohesion, number of
modules, etc., which often lead to class-to-package distributions having
a very large number of packages and fewer classes per package (Barros
et al., 2015; Mu et al., 2020). Furthermore, providing a collection
of different solutions that conform a Pareto front (i.e., a set of non-
dominated solutions with respect to different metrics) instead of just
one, allows a decision maker to determine the most suitable solution
3

for a particular context. In this sense, a software developer might
be interested in solutions that are very good with respect to a given
objective or in solutions that present a good balance between different
desirable properties, introducing their preferences in the process. Due
to these reasons, research in the SMCP has shifted towards multi-
objective optimization problems, and different proposals can be found
in the literature. To our knowledge, Abdeen et al. (2009) were the first
to introduce a multi-objective optimization variant for the SMCP, where
several metrics are used to measure the modularization quality of the
entire architecture and each individual package within the organization
of software projects. Later, Praditwong et al. (2011) proposed two
of the most studied multi-objective problems in the area: the Equal-
size Cluster Approach (ECA) and the Maximizing Cluster Approach
(MCA). A total of six different objective functions were proposed, and
each formulation uses five of them. Similarly, Mkaouer et al. (2015)
and Hwa et al. (2017) proposed distinct multi-objective formulations,
where an effort was made to simultaneously include metrics consid-
ering: the structure of the code, its semantics, as well as the history
of changes of the software. Then, Ramirez et al. (2018) proposed
an interactive multi-objective approach, where the preference of the
software developer is incorporated into the search process. Among
the different multi-objective proposals compiled in Table 1, MCA and
ECA can be identified as the most studied multi-objective optimization
problems in the SMCP literature. Moreover, they have recently been
extended by Chhabra (2018b), which included two additional metrics.
The resulting approaches were named Extended Maximizing Cluster
Approach and Extended Equal-size Cluster Approach. Given the interest
received by the scientific community (Praditwong et al., 2011; Kumari
and Srinivas, 2016; Amarjeet and Chhabra, 2018; Arasteh et al., 2022)
it is worth exploring the design of new search-based optimization
algorithms for the MCA and ECA problems.

Regardless of the variant studied, in Table 1 we also summarize the
algorithmic approach used to tackle each variant of the SMCP. Because
the SMCP is known to be -complete (Brandes et al., 2007), approx-
imate search-based methods are better suited than exact methods to
solve it (Harman et al., 2012; Ramirez et al., 2019). The objective of
approximate search-based methods is to provide high-quality solutions
(not necessarily optimal) in short computing times by introducing
some intelligence into the search process. Among them, evolutionary
approaches became prominent in the literature (Kumari and Srinivas,
2016; Huang and Liu, 2016; Huang et al., 2017; Prajapati and Chhabra,
2018; Arasteh et al., 2022; Prajapati, 2022; Arasteh et al., 2023;
Arasteh, 2023). However, it is also possible to find trajectory-based
approaches. From a historical perspective, the use of Hill Climbing
(HC), often combined with Genetic Algorithms (GA) or Simulated
Annealing (SA), was popular in the early years. However, a slow shift
towards the use of GA and SA approaches without the HC component
can be observed later in the literature (Abdeen et al., 2009; Praditwong,
2011; Praditwong et al., 2011). Recently, the use of trajectory-based
metaheuristics for the SMCP has emerged as an effective alternative
to the classic proposals (Pinto et al., 2014; Monçores et al., 2018;
Yuste et al., 2022a, 2024, 2022b). Due to the recent improvements
achieved by metaheuristics based on the exploration of neighborhood
structures, the adoption of a method based on the Variable Neighbor-
hood Search (VNS) (Mladenović and Hansen, 1997) methodology for
the multi-objective problems MCA and ECA seems promising.

3. Problem definition

In order to address the SMCP, software projects need to be modeled
into a graph structure, called the Module Dependency Graph (MDG). In
this structure, vertices represent components, and edges represent de-
pendencies between components. In addition, edges might be weighted
depending on the strength of the dependency between components.
Formally, an MDG is represented as an undirected graph with weighted

Engineering Applications of Artificial Intelligence 133 (2024) 108593J. Yuste et al.

f
T
v
(
i
T
p

q
(
d
d
1
t
n
d
a
o
a
c

a
m
i

𝐼

b

𝜇

C

p
w
d
e

𝐼

C

n
(
m

𝐶

w
𝜀
t
m

𝜀

edges 𝐺 = (𝑉 ,𝐸,𝑊), composed of a set of vertices (𝑉), a set of edges
(𝐸), and a set of weights (𝑊).

Given the previous representation of software projects, a solution
or the SMCP is represented by a clustering of the vertices of the graph.
herefore, a solution is a set 𝑀 = {𝑚1, 𝑚2,… , 𝑚𝑛} of disjoint subsets of
ertices in 𝑉 , where 𝑛 (1 ≤ 𝑛 ≤ |𝑉 |) represents the number of modules
or clusters, groups). Following previous works (Sarhan et al., 2020),
n this context a component of a software system is a class or a file.
herefore, a solution represents a grouping of classes/files into different
ackages.

We study two multi-objective optimization problems to evaluate the
uality of the solutions to the SMCP, the Equal-size Cluster Approach
ECA) and the Maximizing Cluster Approach (MCA), proposed in Pra-
itwong et al. (2011). These problems are based on the optimization of
ifferent conflicting objectives: cohesion, to be maximized (objective
); coupling, to be minimized (objective 2); the number of modules,
o be maximized (objective 3); MQ, to be maximized (objective 4); the
umber of isolated modules, to be minimized (objective 5); and the
ifference between the maximum and minimum number of vertices in
module, to be minimized (objective 6). In particular, MCA considers

bjectives 1, 2, 3, 4, and 5, while ECA considers objectives 1, 2, 3, 4,
nd 6. As can be noted, both problems share four of the five objectives
onsidered. Therefore, they are usually studied together.

The first objective (cohesion) is computed as the sum of weights
ssociated with the edges that link vertices that belong to the same
odule. The set of edges connecting vertices within the same module

s also known as the set of intracluster edges, formally defined as:

𝑛𝑡𝑟𝑎(𝑚𝑖) = {{𝑢, 𝑣} ∈ 𝐸 ∶ 𝑢, 𝑣 ∈ 𝑚𝑖}. (1)

Then, the sum of the weights of the edges that connect vertices that
elong to the same module 𝑚𝑖 is formally defined as:

𝑖 =
∑

(𝑢,𝑣)∈𝐼𝑛𝑡𝑟𝑎(𝑚𝑖)
𝑤(𝑢, 𝑣). (2)

Finally, the cohesion value of a solution is formally defined as:

ohesion =
𝑛
∑

𝑖=1
𝜇𝑖. (3)

In contrast to cohesion, the second objective of the MCA and ECA
roblems, coupling, is computed as the sum of weights associated
ith the intercluster edges, i.e., edges that link vertices that belong to
ifferent modules. Given two modules 𝑚𝑖 and 𝑚𝑗 , the set of intercluster
dges between them is formally defined as:

𝑛𝑡𝑒𝑟(𝑚𝑖, 𝑚𝑗)

= {(𝑢, 𝑣) ∈ 𝐸 ∶ 𝑢 ∈ 𝑚𝑖 ∧ 𝑣 ∈ 𝑚𝑗
⋃

(𝑢, 𝑣) ∈ 𝐸 ∶ 𝑢 ∈ 𝑚𝑗 ∧ 𝑣 ∈ 𝑚𝑖}. (4)

Then, the coupling value of a solution is formally defined as:

oupling =
𝑛−1
∑

𝑖=1

𝑛
∑

𝑗=𝑖+1

∑

(𝑢,𝑣)
∈𝐼𝑛𝑡𝑒𝑟(𝑚𝑖,𝑚𝑗)

𝑤(𝑢, 𝑣). (5)

Trivially, the third objective (number of modules) is equal to the
umber of subsets of vertices (𝑛). To evaluate the fourth objective
MQ), it is necessary to firstly calculate the Cluster Factor (𝐶𝐹 𝑖) of each
odule 𝑚𝑖 as follows:

𝐹𝑖 =

{

0, if 𝜇𝑖 = 0,
2𝜇𝑖

2𝜇𝑖+𝜀𝑖
, otherwise

(6)

here 𝜇𝑖 is the cohesion of module 𝑚𝑖, as described in Eq. (2), and
𝑖 is the coupling of module 𝑚𝑖 (the sum of the weights of the edges
hat connect vertices belonging to 𝑚𝑖 with vertices belonging to other
odules), formally defined as:

𝑖 =
∑

𝑚𝑗

∑

(𝑢,𝑣)
𝑤(𝑢, 𝑣). (7)
4

∈𝑀⧵𝑚𝑖 ∈𝐼𝑛𝑡𝑒𝑟(𝑚𝑖,𝑚𝑗)
Then, given a solution 𝑥, the 𝑀𝑄 value is equal to the sum of the
values of 𝐶𝐹 for every module:

𝑀𝑄(𝑥) =
𝑛
∑

𝑖=1
𝐶𝐹𝑖. (8)

The objective function presented in Eq. (8) is known as TurboMQ
(Mitchell and Mancoridis, 2002), an extension of the original MQ
function presented by Mancoridis et al. (1998). Finally, the size of a
module is equal to the number of vertices contained in it. Thus, an
isolated module is a module composed of one vertex (objective 5), and
the size difference between two modules 𝑚𝑖 and 𝑚𝑗 is calculated as the
absolute value of the number of vertices in 𝑚𝑖 minus the number of
vertices in 𝑚𝑗 (objective 6).

In Fig. 1, we illustrate an example of a solution 𝑥 for a software
including 8 components. We also compile the values obtained after
the evaluation of the aforementioned objectives within the ECA/MCA
problems. As can be seen, the number of modules of the solution is
equal to 4 (𝑚1, 𝑚2, 𝑚3, and 𝑚4). The solution has a cohesion value
of 4, since there are four edges (1–2, 1–3, 4–5, and 7–8) connecting
vertices within the same module. Accordingly, coupling is equal to 5,
since there are five edges (2–4, 3–6, 4–6, 5–8, and 6–7) connecting
vertices belonging to different modules. The evaluation of MQ requires
the evaluation of CF for each module first. The CF value for 𝑚1 is
calculated as 𝐶𝐹1 = 2⋅2

2⋅2+2 = 0.67, since there are 2 internal edges
(𝜇𝑖 = 2) and 2 external edges (𝜀𝑖 = 2). Similarly, the CF values for the
rest of the modules are calculated as: 𝐶𝐹2 = 2⋅1

2⋅1+3 = 0.4, 𝐶𝐹3 = 0.00,
and 𝐶𝐹4 = 2⋅1

2⋅1+2 = 0.5. Therefore, the MQ value is obtained as 𝑀𝑄 =
𝐶𝐹1+𝐶𝐹2+𝐶𝐹3+𝐶𝐹4 = 1.57. Finally, there is 1 isolated module in the
solution (𝑚3) and the size difference between the largest module (𝑚1)
and the smallest module (𝑚3) is equal to 2.

4. Algorithmic proposal

In this work, we propose an algorithm based on the well-
known Variable Neighborhood Search (VNS) framework (Mladenović
and Hansen, 1997) which has been used in a wide variety of
applications (Perez-Pelo et al., 2021; Cavero et al., 2022; Lai and
Hao, 2016; Shi et al., 2023). Furthermore, given the improvements
achieved in recent years for SMCP problems by algorithms based on
the exploration of neighborhood structures, a VNS-based method for
MCA and ECA problems is suitable. One of the main reasons behind
this assumption is the different nature of the objectives studied within
MCA/ECA. Thus, it is of interest to use a methodology able to success-
fully combine the exploration of different neighborhood structures.
Therefore, we propose an algorithm based on the Multi-Objective
Variable Neighborhood Search (MO-VNS) methodology (Duarte et al.,
2015), which extends VNS to handle multi-objective optimization
problems. As far as we know, this is the first time that a MO-VNS
method is proposed for a problem in the SMCP literature.

The main idea of the VNS methodology is to perform a systematic
change of the neighborhood structure to explore during the search pro-
cess. The benefits of exploring different neighborhood structures in VNS
instead of a single one are based on three facts: (i) ‘‘a local minimum
within one neighborhood structure is not necessarily so for another ’’; (ii) ‘‘a
global minimum is a local minimum within all possible neighborhood struc-
tures’’; and (iii) ‘‘for many problems, local minima within one or several
neighborhoods are relatively close to each other ’’ (Hansen et al., 2017). In
Fig. 2, we illustrate some of the main ideas behind the VNS framework.
In particular, we illustrate some iterations of a VNS search process with
two neighborhood structures. In Figs. 2(a), 2(b), 2(c), and 2(d), we
depict the set of possible solutions for a given optimization problem in a
plane: the x-axis represents the search space, while the 𝑦-axis represents
the objective function value of each possible solution. In each figure,
we show two neighborhood structures, 𝑁𝑎 and 𝑁𝑏, illustrated with
rectangles. In Fig. 2(a), we represent an initial solution 𝑥 with a solid
red circle. Two rectangles represent the areas of the search space

Engineering Applications of Artificial Intelligence 133 (2024) 108593J. Yuste et al.
Fig. 1. Example of a solution 𝑥 and evaluation of six objectives.
included in the neighborhood structures 𝑁𝑎 (depicted in green) and
𝑁𝑏 (depicted in gray) of the initial solution 𝑥. In this first step, 𝑁𝑎(𝑥) is
explored, resulting in the application of a move operator to 𝑥 in order
to obtain solution 𝑥′, the best solution in the neighborhood, which is
represented by a red circle with a diagonal pattern. Next, in Fig. 2(b),
as a second step, we represent the exploration of 𝑁𝑎(𝑥′), where 𝑥′ is
the solution obtained in the previous figure. As it can be observed,
there is no neighbor solution that is better than 𝑥′ in 𝑁𝑎(𝑥). That is,
𝑥′ is a local optimum in 𝑁𝑎(𝑥′). Then, an alternative neighborhood
structure, 𝑁𝑏, is explored in the third step, depicted in Fig. 2(c). In this
figure, 𝑁𝑎 is represented in gray, since it is not explored, while 𝑁𝑏 is
depicted in yellow. Although 𝑥′ was a local optimum in 𝑁𝑎(𝑥′), it is not
a local optimum in the neighborhood structure 𝑁𝑏(𝑥′). As a result, 𝑥′′ is
obtained. Finally, in Fig. 2(d), 𝑁𝑎 is explored again. After the previous
move operation, the current solution 𝑥′′ is no longer a local optimum
in 𝑁𝑎, and 𝑥′′′ is obtained. Finally, 𝑁𝑎(𝑥′′′) and 𝑁𝑏(𝑥′′′) are explored.
However, as it can be observed, this solution is a global optimum in the
search space represented in Fig. 2(d) and, therefore, a local optimum
within all possible neighborhood structures. Thus, there are not better
solutions in neighborhoods 𝑁𝑎(𝑥′′′) and 𝑁𝑏(𝑥′′′) than 𝑥′′′.

Among the existing implementations proposed in Duarte et al.
(2015), we use the Multi-Objective General Variable Neighborhood
Search (MO-GVNS) schema. In Algorithm 1, we provide the pseudocode
of MO-GVNS. The procedure expects five input parameters: a solution
(𝑆𝐸), the maximum size of the perturbation to be made by the shake
method (𝑘𝑚𝑎𝑥), the number of distinct neighborhoods to explore (𝑘′𝑚𝑎𝑥),
the number of objective functions (𝑟), and a time limit (𝑡𝑚𝑎𝑥). It is
worth mentioning that in this schema, a solution 𝑆𝐸 is defined as
the set of efficient points in the Pareto front. Furthermore, as it is
customary in the VNS methodology, the MO-GVNS schema does not
establish any specific procedure to construct the initial solution, which
should instead be defined depending on the particular tackled problem.
Specifically, in Section 4.1 we describe the procedure proposed to
construct the initial solution for the SMCP. The method presented in
Algorithm 1 starts by setting the size of the perturbation to be made
by the shake procedure to 1 (step 3). Then, while the stopping criteria
is not met (step 4), the method performs three steps. First, it perturbs
the solution by applying a shake procedure to each efficient point in
𝑆𝐸 (step 5). This step is performed in the MO-Shake procedure that
is further described in Section 4.2. Second, it improves the solution
by using a Multi-Objective Variable Neighborhood Descent (MO-VND)
procedure (step 6). This procedure improves all efficient points in the
solution according to each objective studied and it is further described
in Section 4.3. Third, the procedure MO-NeighborhoodChange studies if
the solution has been improved in this iteration and determines the
size of the perturbation to be performed by the shake procedure in the
next iteration (step 7). Specifically, in this context, an improvement
5

consists of including at least a new efficient point (i.e., a non-dominated
point) in the current solution. Therefore, in case of improvement, the
new solution 𝑆𝐸′′ becomes the current best solution 𝑆𝐸, and the value
of 𝑘 is reset to 1. Otherwise, 𝑆𝐸 is not updated and the value of 𝑘
is incremented in one unit. Once an iteration is finished, the method
verifies if the maximum time has been reached or the value of the
variable 𝑘 is greater or equal to the search parameter 𝑘𝑚𝑎𝑥. In that case,
the algorithm returns the best solution found (step 10). Otherwise, the
method performs a new iteration.

Algorithm 1 MO-GVNS method
1: procedure MO-GVNS(𝑆𝐸,𝑘𝑚𝑎𝑥,𝑟,𝑘′𝑚𝑎𝑥,𝑡𝑚𝑎𝑥)
2: 𝑡 ← CPUTime()
3: 𝑘 ← 1
4: while 𝑡 ≤ 𝑡𝑚𝑎𝑥 ∧ 𝑘 ≤ 𝑘𝑚𝑎𝑥 do
5: 𝑆𝐸′ ← MO-Shake(𝑆𝐸,𝑘)
6: 𝑆𝐸′′ ← MO-VND(𝑆𝐸′,𝑘′𝑚𝑎𝑥,𝑟)
7: 𝑆𝐸 ← MO-NeighborhoodChange(𝑆𝐸,𝑆𝐸′′,𝑘)
8: 𝑡 ← CPUTime()
9: end while

10: return 𝑆𝐸
11: end procedure

4.1. Constructive procedure

We propose an agglomerate constructive procedure to generate the
initial solution for the MO-GVNS algorithm. The procedure starts by
generating two trivial efficient points as follows:

1. The first efficient point is constructed by placing each vertex
in a different module. This trivial structure has the maximum
number of modules that any solution can have. However, it also
has maximum coupling and minimum cohesion.

2. The second efficient point is constructed by placing all vertices of
the input graph in the same module. This trivial organization has
minimum coupling and maximum cohesion, which are desirable
properties. However, it only has one module.

These two points are then used to generate additional non-dominated
points by constructing a path between these two initial points. This idea
is inspired by the Path Relinking methodology introduced by Glover
(1997). In Fig. 3, we present an example of this procedure for a software
with five components. As it can be seen, the method starts from the first
trivial point 𝑥𝑠 (Iteration 1) which has five modules. Then, in Iteration
2, it merges any two possible modules from the previous iteration and
evaluates all obtained points with a particular function. Next, a point 𝑥′
is selected based on a greedy criterion and will be used as the incoming

Engineering Applications of Artificial Intelligence 133 (2024) 108593J. Yuste et al.
Fig. 2. Illustration of two neighborhood structures, 𝑁𝑎 and 𝑁𝑏, for different solutions in the search space.
point for the next iteration. The procedure is iteratively repeated until
the second trivial point 𝑥𝑡 is reached (Iteration 5).

As it can be noticed, the proposed constructive procedure traverses
a path from a starting point to the target one, selecting only one point at
each iteration. In this sense, only the points obtained from the selected
point are evaluated, avoiding the exploration of the whole search space,
which would be impractical given the combinatorial nature of the
problem.

The choice of the modules to merge at each iteration is based on a
greedy criterion. In this case, the constructive procedure illustrated in
Fig. 3 evaluates the possible points at each iteration using the MQ func-
tion and greedily selects at each iteration the point with the largest MQ
value. However, any other suitable function might be used. Moreover,
the selection criterion does not need to be completely greedy.

4.2. Multi-objective shake procedure

In the VNS methodology, a shake procedure is used to randomly
perturb an efficient point in order to escape from local optima (Mlade-
nović and Hansen, 1997). A search parameter, denoted as 𝑘, indicates
the number of perturbations to perform at each iteration. In the multi-
objective adaptation of VNS (Duarte et al., 2015), the MO-Shakemethod
extends the previous idea by applying the shake procedure to all
efficient points in the solution.

Our shake procedures are based on the swap operator, which selects
two vertices 𝑣1 and 𝑣2 belonging to two different modules 𝑚1 and 𝑚2,
respectively, and interchanges them. That is, it removes 𝑣1 from 𝑚1
and inserts it into 𝑚2. Accordingly, 𝑣2 is removed from 𝑚2 and then
inserted into 𝑚1. Based on this idea, we propose four different variants
of the shake procedure, which use different criteria to select the vertices
involved in the swap. Particularly, in Table 2 we summarize the type
of criteria (greedy or random) used for the selection of the vertices for
6

Table 2
Selection criteria for the vertices involved in the swap operator for each of the proposed
shake procedures.

Selection criterion

First vertex Second vertex

Shake 1 Random Random
Shake 2 Greedy Greedy
Shake 3 Random Greedy
Shake 4 Greedy Random

each shake variant. Next, we describe each proposal in a more detailed
way:

• Shake 1. Both vertices are selected at random from any of the
modules in the solution.

• Shake 2. To select the first vertex, we greedily choose the module
that has the worst 𝐶𝐹 value (see Eq. (6)). Then, a vertex is ran-
domly selected from that module. The second vertex is selected
as the one that has the strongest connection to the module which
contains the first selected vertex. This strength is measured as
the sum of the weights of the edges which connect the evaluated
vertex to the aforementioned module.

• Shake 3. The first vertex is randomly chosen from any of the
modules in the efficient point. The second vertex is selected as
the one that has the strongest connection with the module of the
first selected vertex.

• Shake 4. To select the first vertex, we greedily choose the module
that has the worst 𝐶𝐹 value (see Eq. (6)). Then a vertex is
randomly selected from that module. The second vertex is chosen
at random from any of the modules in the efficient point.

Engineering Applications of Artificial Intelligence 133 (2024) 108593J. Yuste et al.
Fig. 3. Example of the agglomerate constructive procedure for a software project with five components, using MQ as the evaluation function.
The proposed variants of the shake procedure are empirically eval-
uated in Section 6.2, in order to select the most suitable one for the
final configuration of the MO-GVNS algorithm.

4.3. Multi-objective variable neighborhood descent

In the VNS methodology, a VND procedure is used to improve an
efficient point by exploring several neighborhoods in a systematic way.
Once the search reaches a local optimum within all defined neighbor-
hoods, the VND procedure ends. The MO-VND procedure also explores
the set of predefined neighborhoods in a systematic way. However, this
exploration must be performed for every efficient point in the solution
and considering separately each of the objectives studied. Therefore,
7

for each objective function 𝑖 ∈ 𝑟, a VND-𝑖 procedure is defined, which
explores all the neighborhoods proposed for all efficient points in the
solution.

In Algorithm 2, we illustrate the MO-VND procedure, which receives
three parameters: a number of neighborhoods (𝑘′𝑚𝑎𝑥), a solution (𝑆𝐸),
and a number of objectives (𝑟). First, the variable 𝑖, which represents
the objective being considered in each iteration, is set to 1 (step 2).
Then, several sets of visited points, one for each of the objectives
considered, are initialized (step 3). The procedure then improves the
efficient points in solution 𝑆𝐸 according to objective 𝑖 (steps 4–16). In
each iteration, a VND-𝑖 method improves a non-exploited efficient point
𝑥 ∈ 𝑆𝐸 ⧵ 𝑆𝑖 (steps 5–9). Specifically, an efficient point 𝑥 is selected at
random among the non-visited efficient points in 𝑆𝐸 with respect to

Engineering Applications of Artificial Intelligence 133 (2024) 108593J. Yuste et al.

a
e
i
M
t
(
i
𝑆
(

5

t
w
s

5

c
n
e
o
i
c
d
f
f
i
t

o
p
T
o
t
c
m
v
a
s
i
a
a
o
a
e

5

m
p
m
F
a
b
p
d

n
e
g
d
b
i
n
i
i
a
c

the objective 𝑖 (step 6). Then, this point is improved by the VND−𝑖
nd the set of efficient points 𝑆𝐸𝑖 is obtained (step 7). Note that, at
ach iteration, the efficient points visited within the VND-𝑖 method are
ncluded in 𝑆𝑖 to avoid exploring them twice (step 8). In step 10, the
O-Improvement checks if a new efficient point from 𝑆𝑖 can be added

o 𝑆𝐸 (i.e., an improvement has been made). If so, 𝑖 is reset to 1
step 12) and the solution 𝑆𝐸 is updated (step 11). Else, variable 𝑖 is
ncreased (step 14). Lastly, after exploring every efficient point within
𝐸 with respect to every objective, the method returns the solution 𝑆𝐸

step 17).

Algorithm 2 MO-VND method
1: procedure MO-VND(𝑘′𝑚𝑎𝑥,𝑆𝐸,𝑟)
2: 𝑖 ← 1
3: 𝑆1 ← ∅, 𝑆2 ← ∅, . . . , 𝑆𝑟 ← ∅
4: while 𝑖 ≤ 𝑟 do
5: while |𝑆𝐸 ⧵ 𝑆𝑖| ≥ 1 do
6: 𝑥 ← Pick(𝑆𝐸 ⧵ 𝑆𝑖)
7: 𝑆𝐸𝑖 ← VND-i(𝑥, 𝑘′𝑚𝑎𝑥)
8: 𝑆𝑖 ← 𝑆𝑖 ∪ 𝑆𝐸𝑖 ∪ 𝑥
9: end while

10: if MO-Improvement(𝑆𝐸,𝑆𝑖) then
11: 𝑆𝐸 ← Update(𝑆𝐸,𝑆𝑖)
12: 𝑖 ← 1
13: else
14: 𝑖 ← 𝑖+1
15: end if
16: end while
17: return 𝑆𝐸
18: end procedure

For the search (step 7), four different neighborhoods are proposed:

• The first neighborhood (𝑁1) is defined by a swap operator, a clas-
sic move in trajectory-based heuristics (Croes, 1958; Gil-Borrás
et al., 2021; Pardo et al., 2020; Yuste et al., 2022a). This operator
selects two vertices and changes their respective modules. There-
fore, the number of modules is not modified in this neighborhood.
The size of this neighborhood is |𝑉 |⋅(|𝑉 |−1)

2 . In practice, it is usually
smaller because vertices belonging to the same module are not
exchanged. The complexity of exploring this neighborhood is
(|𝑉 |

2).
• The second neighborhood (𝑁2) is defined by an insertion op-

erator. This is also a classic move in trajectory-based heuris-
tics (Cavero et al., 2022; Gendreau et al., 1992; Pantrigo et al.,
2012; Yuste et al., 2022a). This operator relocates a vertex from
its current module into another one. Therefore, this neighborhood
does not alter the number of modules. The size of this neighbor-
hood is |𝑉 | ⋅ (|𝑀| − 1). Thus, the complexity of exploring this
neighborhood is (|𝑉 | ⋅ |𝑀|).

• The third neighborhood (𝑁3) is defined by a destruct operator,
as described in Yuste et al. (2022a). This operator selects one
module and removes it from the solution. The vertices that be-
longed to that module are then relocated into other modules.
As a result, the solution contains one module less after applying
a destruct operator. Therefore, this neighborhood is intended to
reduce the number of modules. The size of this neighborhood is
|𝑀| ⋅ (|𝑀|−1)𝑑 , where 𝑑 is the average number of vertices within
each module, as detailed in Yuste et al. (2022a). The complexity
of exploring this neighborhood is (|𝑀| ⋅ |𝑀|

𝑑).
• Finally, the fourth neighborhood (𝑁4) is defined by an extract

operator, as described in Yuste et al. (2022a). This operator
selects two or three vertices and inserts them into a new empty
module. Therefore, this neighborhood is intended to increase the
number of modules. The size of this neighborhood is |𝑉 | ⋅ (|𝑉 | −
1) + |𝑉 | ⋅ (|𝑉 | − 1) ⋅ (|𝑉 | − 2), as detailed in Yuste et al. (2022a).
Thus, the complexity of exploring this neighborhood is (|𝑉 |

3).
8

w

. Advanced strategies

First, in Section 5.1, we present a procedure to efficiently evaluate
he quality of the efficient points in the solution. Next, in Section 5.2,
e propose several strategies to explore only promising regions in the

earch space.

.1. Efficient evaluation of the quality of an efficient point

Evaluating an objective function is frequently one of the most time-
onsuming tasks in optimization, since search algorithms explore a vast
umber of efficient points and each of them has to be evaluated. How-
ver, in trajectory-based search algorithms, an efficient point is usually
btained as a modification of a previous efficient point. Therefore, it
s possible to evaluate a new efficient point by only determining the
hanges performed to the previous one, instead of recalculating the
esired objective function from scratch. Next, we describe the strategy
ollowed to efficiently evaluate an efficient point for the objective
unctions considered in this paper. This strategy is an extension of the
deas proposed in Yuste et al. (2022a) for the objectives presented in
he MCA and ECA problems.

The MQ function is measured as the sum of the Cluster Factor (𝐶𝐹)
f every module in the efficient point. Consequently, when a move is
erformed, only the 𝐶𝐹 of the affected modules has to be updated.
hus, after the first evaluation of an efficient point, we store the value
f the 𝐶𝐹 of each module separately and we only update the value of
he 𝐶𝐹 of a module when it is affected by a move. Similarly to MQ, the
oupling and cohesion of each module change only when the module is
odified. Therefore, we can store separately the coupling and cohesion

alues of each module and update them only when the module is
ffected after a move. In the case of the size difference between the
mallest and the largest modules, the efficient evaluation of this metric
s based again on the storage of the values which determine the largest
nd smallest modules. When a move is performed, it is checked if the
ffected modules have changed their size and, if so, it updates the value
f the largest and smallest modules. Finally, the number of modules
nd the number of isolated modules are trivially calculated, so their
valuations are not enhanced.

.2. Reduction of the size of the neighborhoods

When exploring a neighborhood, it is common that many of the
oves performed result in a null improvement. Avoiding the ex-
loration of unpromising areas (i.e., those containing non-improving
oves) results in a more efficient exploration of the search space.

urthermore, when considering different objectives at the same time,
s it is the case of multi-objective optimization problems, not all neigh-
orhoods might be interesting for every objective. In this section we
ropose a reduction of both, the size and the number of neighborhoods,
epending on the objective addressed.

When considering objectives 1, 2, and 3, the exploration of the
eighborhoods might benefit from the theorem introduced in Köhler
t al. (2013). In that theorem, the authors stated that: given an MDG
raph 𝐺(𝑉 ,𝐸), a vertex 𝑣 ∈ 𝑉 , and the set of adjacent vertices of 𝑣,
enoted as 𝛾(𝑣), then, in the optimal solution for the SMCP, 𝑣 will
e located in one of the modules where at least one vertex 𝑢 ∈ 𝛾(𝑣)
s contained. Following this theorem, we can decrease the size of the
eighborhoods when exploring objectives 1, 2, and 3, as reported
n Yuste et al. (2022a). Specifically, we only consider moves that result
n solutions where any moved vertex belongs to a module that contains
t least one connected vertex. This filter reduces the computational
omplexity of exploring the neighborhoods proposed in the following
ays:

Engineering Applications of Artificial Intelligence 133 (2024) 108593J. Yuste et al.

d
e
u

• For 𝑁1, the complexity is reduced from (|𝑉 |

2) to (|𝑉 | ⋅ 𝑎 ⋅ 𝑑),
where 𝑎 is the average number of adjacent modules (those which
contain an adjacent vertex) for each vertex and 𝑑 is the average
number of vertices in each module. Since the number of adjacent
modules to any vertex is less or equal (at most) than the number
of modules (𝑎 ≤ |𝑀|) and |𝑉 | = |𝑀| ⋅𝑑, it is clear that 𝑎 ⋅𝑑 ≤ |𝑉 |.
In practice, for the SMCP, it is rarely the case where 𝑎 ⋅ 𝑑 = |𝑉 |,
since the graph would need to be fully connected.

• For 𝑁2, given the above definition, since a vertex is only inserted
in adjacent modules, the complexity is reduced from (|𝑉 | ⋅ |𝑀|)
to (|𝑉 | ⋅ 𝑎).

• For 𝑁3, since a vertex is only inserted in adjacent modules, the
complexity is reduced from (|𝑀| ⋅ |𝑀|

𝑑) to (|𝑀| ⋅ 𝑎𝑑).
• For 𝑁4, since a vertex will only be placed in a new empty module

together with adjacent vertices, the complexity is reduced from
(|𝑉 |

3) to (|𝑉 | ⋅ 𝑞2), where 𝑞 is the average number of adjacent
vertices for each vertex. As it can be noticed, 𝑞 ≤ |𝑉 |. Again, for
the SMCP, it is rarely the case where 𝑞 = |𝑉 |.

As it can be observed, the sparser the MDG, the greater the reduc-
tion in size of the neighborhoods achieved with this strategy. In the case
of real software projects, this strategy is particularly useful, since the
graphs of dependencies are frequently sparse, with densities that vary
between 1.77% and 21.52% (Mitchell and Mancoridis, 2008). In the
dataset used in this work (described in Section 6), the average number
of vertices is 156.37, while the average number of adjacent vertices per
vertex is 10.22. Therefore, at least for this dataset, 𝑞 ≪ |𝑉 | and 𝑎 ≪ |𝑉 |.

When considering objectives 4, 5, and 6, the previous reduction
is not suitable. Instead, for objective number 4, we introduce a new
strategy, where we avoid exploring any neighborhood which does not
increase the number of modules. Particularly, we can avoid exploring
𝑁1, 𝑁2, and 𝑁3, since they are designed to not increment the number
of modules.

Similarly, for objective number 5, we introduce a new strategy
where only moves that relocate vertices contained in isolated modules
are considered. Therefore, we avoid exploring neighborhoods 𝑁1, 𝑁3,
and 𝑁4. Moreover, in 𝑁2, we are only interested in the moves that
insert vertices contained in isolated modules into other modules. There-
fore, the complexity of 𝑁2 is reduced from (|𝑉 | ⋅ |𝑀|) to (|𝑉 | ⋅ |𝐼|),
where 𝐼 represents the set of isolated modules and |𝐼| ≤ |𝑀|.

Finally, for objective number 6, we introduce a new strategy where
the exploration of 𝑁1 is not performed, since it does not modify the size
of the modules involved in the moves within 𝑁1. Furthermore, among
the rest of the neighborhoods (𝑁2, 𝑁3, and 𝑁4) we only consider moves
that involve modules with the largest or smallest size.

6. Experiments

In this section, we perform some preliminary experiments devoted
to either configure the parameters of the method proposed, or to study
the impact of some of the advanced strategies previously introduced.
Then, we perform a comparison of our method with the best previous
state-of-the-art algorithms.

To test our algorithms, we have used a dataset of 124 instances
previously introduced by Monçores et al. (2018). The dataset contains
instances obtained from real software projects, written in C/C++ or
Java, which have been already tested in related literature (Pinto et al.,
2014; Monçores et al., 2018; Barros, 2012; Mitchell, 2002). The MDGs
provided in the dataset that represent the software systems studied
have considered files as components in the case of C/C++ and classes
as components in the case of Java. The instances of the dataset are
of varying sizes, including small and large projects with up to 1161
components and 11,722 dependencies. In particular, the average num-
ber of components is 156.37, with a standard deviation of 215.85. The
average number of dependencies is 948.79, with a standard deviation
of 1744.78. The average density of the resulting MDGs of the instances
9

n

Table 3
QIs and various quality aspects. A ‘‘+’’ means that the quality aspect is fully covered
by a QI. A ‘‘−’’ means that the quality aspect is partially covered by a QI.
Source: Table adapted from Ali et al. (2020).

Quality aspect HV IGD PFS GS C

Convergence + + −
Spread + + −
Uniformity + − +
Cardinality − − +

is 8.83%, with a standard deviation of 11.60%. To perform some
preliminary experiments, ten instances have been randomly chosen
from the aforementioned dataset: bison, bunch2, cia, crond, dot, forms,
jscatterplot, mailx, micq, and netkit-ftp. The rest of the instances are
used in the comparison to the state-of-the-art algorithms reported in
Section 6.7.

6.1. Quality indicators

To assess the quality of the solutions in multi-objective optimization
problems, different authors in the literature recommend comparing
the results of different algorithms using appropriate Quality Indicators
(QIs) instead of comparing individual objectives in isolation, since it
might lead to inaccurate results (Li and Yao, 2019; Li et al., 2020; Ali
et al., 2020). However, selecting the appropriate QIs is not a trivial
task, and there is no agreement in the SBSE area on which QIs are the
most suitable for the problems at hand (Ali et al., 2020).

As reported in Ali et al. (2020) and Li and Yao (2019), QIs can eval-
uate four different quality aspects of solutions: convergence, spread,
uniformity, and cardinality. In Table 3, we report the quality aspects
that are covered by different QIs, as reported in the related liter-
ature (Ali et al., 2020). In particular, we report the following QIs:
Hypervolume (HV), Inverted Generational Distance (IGD), Coverage
(C), Generalized Spread (GS), and Pareto Front Size (PFS). As it can
be observed, there is not a single QI that completely covers all quality
aspects. To select the most suitable QIs for the studied problems, we
follow the suggestions of Wang et al. (2016), Ali et al. (2020), and Li
et al. (2020), who offer practical guidelines for selecting representative
QIs for SBSE problems. In particular, Wang et al. (2016) suggests using
one of the following two indicators: HV and IGD. Ali et al. (2020)
suggests using multiple QIs to cover all quality aspects, including C,
GS, and PFS. Finally, for problems where the preferences of decision
makers are not clear, Li et al. (2020) suggest either using multiple
QIs that cover all quality aspects or using a comprehensive QI, such
as HV or IGD. This is the case in SMCP problems, where software
developers introduce their subjective experience in the process, which
makes it neither systematic nor repeatable (Barros et al., 2015). For
these reasons, we decide to include in the evaluation of the results
both comprehensive QIs (i.e., HV and IGD) and complementary QIs
(i.e., C, GS, and PFS). Moreover, since other authors have highlighted
deficiencies in IGD for real-world problems, we replace it with IGD+,
as suggested in Ishibuchi et al. (2015). Therefore, for the evaluation of
solutions, we report five QIs, as suggested in the related literature for
SBSE problems: HV, IGD+, C, GS, and PFS.

The HV indicator evaluates the convergence, spread, and uniformity
of solutions. It is one of the most popular quality indicators in multi-
objective optimization. The higher its value, the better the front. C
measures the percentage of efficient points in a solution 𝑆𝐸 that are
ominated by a reference set 𝑅. IGD+ measures the proximity of the
fficient points in a 𝑆𝐸 to the efficient points in 𝑅. GS measures the
niformity and spread of the efficient points contained in a 𝑆𝐸. For

coverage, IGD+, and spread, the lesser their value, the better the quality
of the front. Finally, PFS measures the number of efficient points in a
𝑆𝐸. The higher its value, the better the quality of the front.

Notice that, for most QIs described above, a reference set 𝑅 is

eeded to evaluate a given solution. Ideally, the reference set would

Engineering Applications of Artificial Intelligence 133 (2024) 108593J. Yuste et al.

c
c
e
V
a
w
t
t

f

Table 4
Comparison of different shake procedures for the MCA problem.

Shake CPUt (s) PFS HV C IGD+ GS

Shake 1 21428.59 748.10 0.2903 0.1475 0.0024 0.5665
Shake 2 266.16 373.00 0.2687 0.6389 0.0202 0.5428
Shake 3 8722.78 671.00 0.2868 0.3585 0.0053 0.5755
Shake 4 15307.98 688.30 0.2888 0.2589 0.0034 0.5578

Table 5
Comparison of different shake procedures for the ECA problem.

Shake CPUt (s) PFS HV C IGD+ GS

Shake 1 131874.37 1801.60 0.2667 0.1821 0.0024 0.5626
Shake 2 3626.04 989.30 0.2449 0.5905 0.0148 0.5313
Shake 3 39516.04 1587.90 0.2633 0.3293 0.0043 0.5583
Shake 4 101012.11 1758.50 0.2665 0.2181 0.0025 0.5546

be the optimal Pareto front, but it is frequently unknown. Here, we
use an approximate reference front, obtained by combining the Pareto
fronts generated by all the methods being compared, as it is common
in the literature (Ali et al., 2020).

6.2. Comparison of shake procedures

In this paper we introduced four different shake procedures (see
Section 4.2) for the proposed MO-GVNS. Here, we compare the per-
formance of the four shake methods for both MCA and ECA.

The configuration of the algorithm to compare the different shake
procedures includes the exploration of the neighborhoods within the
MO-VND, in the following order: 𝑁1, 𝑁3, 𝑁2, and 𝑁4. For the stopping
criteria, we set 𝑘𝑚𝑎𝑥 = 5. In order to compare the convergence of
the proposed method over time with the different shake procedures,
we do not set a time limit in this experiment. Finally, the objectives
are tackled in the following order: MQ, Cohesion, Coupling, Number
of modules, and Number of isolated modules (in the case of MCA) /
Difference between the maximum and minimum size of modules (in
the case of ECA).

In Tables 4 and 5, we present the results obtained for the MCA
and ECA problems, respectively. In particular, we report the indicators
previously described, highlighting the best result in bold font. As it can
be observed, the first shake procedure achieves the best result in three
out of four quality indicators for both problems. Although it consumes
more time than the other approaches, this is due to the fact that the
algorithm is able to explore a wider area of the search space before
reaching the stopping criterion. Therefore, we select the Shake 1 to be
part of the final configuration of the MO-GVNS.

6.3. Comparison of different values for 𝑘𝑚𝑎𝑥

In this experiment, we compare the performance of the MO-GVNS
with different values of 𝑘𝑚𝑎𝑥. This parameter specifies the maximum
value that the variable 𝑘 can take in the algorithm. Therefore, this
parameter is used to control the magnitude of the perturbation to be
made within the shake procedure (i.e., the largest neighborhood that
will be stochastically explored). Here, we analyze the impact of the
use of different values of 𝑘𝑚𝑎𝑥 (1, 2, 3, 4, and 5) using the same
onfiguration of the MO-GVNS previously reported in Section 6.2, but
onsidering the Shake 1, which was selected in the previous preliminary
xperiment. Additionally, we also introduce in the comparison the MO-
ND method used within the MO-GVNS to test the contribution of using
MO-GVNS schema instead of just a MO-VND one. In this experiment,
e let the algorithms run as far as they produce an improvement in

he solution and we reported the computational time consumed and
he best solution obtained.

In Tables 6 and 7 we present, respectively, the results achieved
or both MCA and ECA. Firstly, we observe that the combination
10
of deterministic and stochastic exploration performed by any of the
MO-GVNS configurations tried improves the results obtained by the
MO-VND, which only performs a deterministic exploration. Among the
different MO-GVNS configurations, the results obtained are similar. For
both problems, the configuration with 𝑘𝑚𝑎𝑥 = 5 achieved the best results
in terms of Hypervolume, Coverage, and IGD+. However, the increase
in the performance with respect to 𝑘𝑚𝑎𝑥 = 4 is the smallest in the
comparison, so we did not try larger values of 𝑘𝑚𝑎𝑥. It is worth noting
that using a higher value for the parameter 𝑘𝑚𝑎𝑥 leads to a further
exploration of the search space and, therefore, larger computing time.
Generally speaking, a larger exploration usually achieves better results,
but it is necessary to find a trade off between the quality of the solutions
and the time consumed.

In this sense, we selected 𝑘𝑚𝑎𝑥 = 5 for the following experiments,
since it obtained the best results, but in order to bound the running
time of the algorithm, a combined stopping criteria based on the size
of the instance, should be considered.

6.4. Influence of the incremental evaluation

Here, we study the impact of the strategy presented in Section 5.1.
In particular, in this experiment, we executed the MO-GVNS algorithm
twice using the same configuration but with one difference: one of them
implements the incremental evaluation (Incremental) while the other
one does not (Complete).

The results obtained for both MCA and ECA are reported in Table 8
and Table 9, respectively. As it can be seen, the obtained results are
identical in terms of quality. However, when using the incremental
evaluation, the computational time consumed by the algorithm was
reduced by 73.37% in the case of MCA and by 67.23% in the case of
ECA. The incremental evaluation is therefore included to evaluate the
efficient points in the proposed MO-GVNS algorithm.

6.5. Influence of the reduction of the size of the neighborhoods

In Section 5.2, we presented a strategy to reduce the size of the
neighborhoods, exploring only promising areas within the search space.
Here, we study the impact of this strategy on the performance of the
algorithm. In particular, we execute the MO-GVNS algorithm twice
using the same configuration, but one of them exploring only the
reduced neighborhoods as explained above.

We present the results obtained for both MCA and ECA in Table 10
and Table 11, respectively. As it can be observed, there are slight
differences between the solutions obtained in terms of quality, but
a very large reduction of the computing time. Particularly, 68.11%
and 45.13% of the time consumed for MCA and ECA, respectively.
Therefore, the reduction of the size of the neighborhoods is included
in the proposed MO-GVNS algorithm to avoid exploring unpromising
areas in the search space.

6.6. Contribution of the objectives

Yuan et al. (2017) proposed a methodology to reduce the number
of objectives in multi-objective optimization problems. Among other
benefits, removing redundant objectives reduces the computational
cost of the optimization process. In this case, given the nature of the
proposed algorithm (a MO-GVNS method) the number of objectives
directly impacts the computational cost of the algorithm, since a new
VND is created for each of the objectives of the problem. Therefore, it
is interesting to analyze the objectives considered in both the MCA and
ECA problems, in order to identify redundant objectives. Notice that in
this case, we are not interested in reducing the number of objectives of
the problem, but the number of objectives considered during the search.

Yuan et al. (2017) proposed three different methods to reduce the
number of objectives. Given a Pareto front, obtained by considering a
set of objectives, these methods calculate an error rate by considering

Engineering Applications of Artificial Intelligence 133 (2024) 108593J. Yuste et al.

c
o
a
i
o
a
c
a
b
c
t
i

𝜂

p
s
a
m
a
t
s
r
B

Table 6
Comparison of different values of 𝑘𝑚𝑎𝑥 for the MCA problem.

Method 𝑘𝑚𝑎𝑥 CPUt (s) PFS HV C IGD+ GS

MO-VND NA 10.94 291.09 0.2586 0.4092 0.0217 0.4835
MO-GVNS 1 5072.68 624.70 0.2853 0.2925 0.0034 0.5589
MO-GVNS 2 7919.36 664.30 0.2873 0.2049 0.0017 0.5605
MO-GVNS 3 12790.68 705.60 0.2888 0.1163 0.0006 0.5650
MO-GVNS 4 19008.96 737.80 0.2898 0.0336 0.0001 0.5657
MO-GVNS 5 21428.59 748.10 0.2903 0.0004 <0.0000 0.5665
Table 7
Comparison of different values of 𝑘𝑚𝑎𝑥 for the ECA problem.

Method 𝑘𝑚𝑎𝑥 CPUt (s) PFS HV C IGD+ GS

MO-VND NA 26.42 435.90 0.2293 0.7394 0.0328 0.4566
MO-GVNS 1 22887.41 1528.40 0.2629 0.2682 0.0026 0.5534
MO-GVNS 2 42556.78 1641.70 0.2644 0.1675 0.0012 0.5590
MO-GVNS 3 69516.32 1702.60 0.2653 0.1040 0.0006 0.5584
MO-GVNS 4 111005.34 1773.80 0.2663 0.0316 0.0001 0.5597
MO-GVNS 5 131874.37 1801.60 0.2667 0.0025 <0.0000 0.5626
o
o
M
t
F
a
T
o
s
s
b
r
e
o
c

t
M
r
w
o
c
e
o
t
q
s
r
p

s
r
s
c
r
c
o
q
n
a
r
i

c
n
s

Table 8
Comparison of the results obtained with (Incremental) and without (Complete)
including the incremental evaluation for the MCA problem.

Evaluation CPUt (s) PFS HV C IGD+ GS

Complete 80457.50 748.10 0.2903 0.0000 0.0000 0.5665
Incremental 21428.59 748.10 0.2903 0.0000 0.0000 0.5665

Table 9
Comparison of the results obtained with (Incremental) and without (Complete)
including the incremental evaluation for the ECA problem.

Evaluation CPUt (s) PFS HV C IGD+ GS

Complete 402415.48 1801.60 0.2667 0.0000 0.0000 0.5626
Incremental 131874.37 1801.60 0.2667 0.0000 0.0000 0.5626

only a subset of the objectives to evaluate the Pareto front. If the
objectives are in conflict, the fewer the objectives considered, the lesser
the number of non-dominated efficient points (and the higher the
error rate). The objective is to find a trade-off between the error rate
and the number of objectives considered (both to be minimized). To
calculate the error rate, the authors proposed three different measures,
𝛿, 𝜂, and 𝛾, based on the dominance structure of the front and the
orrelation between the objectives. In particular, 𝛿 and 𝜂 are based
n the dominance structure. The 𝛿 criterion, proposed in Brockhoff
nd Zitzler (2009), measures the degree of dominance structure change
n a Pareto front 𝑁 between a set of objectives 𝐹0 and a subset of
bjectives 𝐹 ⊆ 𝐹0. The 𝜂 criterion is proposed in Yuan et al. (2017)
s an alternative to some deficiencies identified in the 𝛿 criterion. To
alculate the error rate 𝜂, the set 𝑁 is divided into two subsets: 𝑁𝐷𝑆
nd 𝑁𝑁𝑆 . 𝑁𝐷𝑆 contains the efficient points in 𝑁 that are dominated
y other efficient points when the subset of objectives 𝐹 ⊆ 𝐹0 is
onsidered instead of the original set 𝐹0. On the contrary, 𝑁𝑁𝑆 contains
he efficient points that are not dominated (𝑁𝑁𝑆 = 𝑁 ⧵𝑁𝐷𝑆). Then, 𝜂
s formally defined as:

= |𝑁𝐷𝑆 |∕|𝑁|. (9)

Finally, the error rate 𝛾 is based on the correlation between each
air of objectives. It is proposed in Yuan et al. (2017) as an off-the-
helf criterion that evaluates any given subset of objectives based on
correlation analysis. As described by the authors, it can be seen as a
easurement of the degree of correlation structure change between 𝐹

nd 𝐹0. The more in conflict an objective is with the rest of objectives,
he worse the error rate 𝛾 when that objective is not considered in the
ubset 𝐹 . For a detailed description of the calculation of each error
ate, we refer interested readers to relevant sources (Yuan et al., 2017;
rockhoff and Zitzler, 2009).
11

o

Here, we analyze the error rates of all the possible subsets of
bjectives for both the MCA and ECA problems. For the calculation
f the error rates, we use the Pareto fronts obtained by the proposed
O-GVNS for the preliminary dataset. In Tables 12 and 13, we present

he results obtained for both the MCA and ECA problems, respectively.
or each subset of objectives, we report the mean error rate, averaged
mong the set of instances and the three error measures 𝛿, 𝜂, and 𝛾.
he different combinations of objectives studied are sorted in ascending
rder depending on the average error rate obtained. Moreover, for the
ake of brevity, we have cropped the table, showing only the 10 best
ubsets of objectives (i.e., those with the smallest error rates). As it can
e observed in Tables 12 and 13, removing either coupling or cohesion
esults in an error rate close to 0% for both problems. This can be
xplained due to the fact that coupling and cohesion are antagonist
bjectives (coupling can be calculated as the number of edges minus
ohesion). Therefore, they seem not to be in conflict.

As it was aforementioned, the interest of this analysis resides in
he possibility of reducing the number of VND components in the
O-GVNS method. Therefore, considering only a subset of objectives

educes the number of VND components used in the exploration. Here,
e analyze the results obtained by considering only a subset of the
bjectives for the VND components. To avoid comparing all the possible
ombinations of objectives, we consider only the subsets with the low-
st error rates as reported in Tables 12 and 13. Notice that, regardless
f the subset of objectives considered for the VND components, all
he objectives are reported when evaluating a solution in order to be
ualified for entering in the Pareto front. That is, we are reducing the
earch space explored within the MO-GVNS method, but we are not
educing the number of objectives considered in the MCA and ECA
roblems.

The results obtained are shown in Tables 14 and 15. As it can be ob-
erved, considering only a subset of objectives for the VND components
esults in worse solutions in terms of quality. However, the difference is
ometimes in the third decimal. For instance, not considering coupling,
ohesion, and/or the number of isolated modules for the MCA problem
esults in an almost identical value for the hypervolume indicator. In
ontrast, the consumed time is reduced in up to 21.83%. In the case
f MQ, not exploring this objective results in a greater reduction of the
uality of the solutions. In the case of ECA, the results are similar. When
ot considering coupling nor the size difference between the smallest
nd largest modules for the VND components, the method achieves a
eduction of 48.13% in the consumed time with just a small detriment
n the quality of the solutions.

To find a trade-off between quality and computational cost, we
onfigure our algorithm so that it does not consider coupling and the
umber of isolated modules (in the case of MCA), and coupling and the
ize difference between the smallest and largest modules (in the case

f ECA), during the search process.

Engineering Applications of Artificial Intelligence 133 (2024) 108593J. Yuste et al.

𝑘
f
t
l
F
p
o
w

a
t
t
J
(
A
I
p
f
A
l

Table 10
Comparison of the results obtained with (Reduced) and without (Complete) the strategy presented in Section 5.2 for the MCA
problem.

Size of neighborhoods CPUt (s) PFS HV C IGD+ GS

Complete 67193.25 1216.20 0.3025 0.0869 0.0014 0.5551
Reduced 21428.59 748.10 0.2903 0.2885 0.0111 0.5665
Table 11
Comparison of the results obtained with (Reduced) and without (Complete) the strategy presented in Section 5.2 for the ECA
problem.

Size of neighborhoods CPUt (s) PFS HV C IGD+ GS

Complete 240329.02 2288.50 0.2737 0.1161 0.0017 0.5504
Reduced 131874.37 1801.60 0.2667 0.2951 0.0078 0.5626
f
P
r
t
l
2
n
i
A
h
p

c
S
i
(
a
t
p
t
c
a
f

o
q
t
i
i
t
n
m

6
o

p
p
d
l
v
a
p
o
v
b
t

Table 12
Comparison of the average error rates obtained by removing some of the considered
objectives in the MCA problem for the evaluation of the solutions.

Considered objectives Number of objectives Avg. error rate

1,2,3,4,5 5 <0.00%
1,3,4,5 4 <0.00%
2,3,4,5 4 <0.00%
1,2,3,4 4 21.97%
1,3,4 3 21.97%
2,3,4 3 21.97%
1,2,4,5 4 47.02%
1,4,5 3 47.02%
2,4,5 3 47.02%

Table 13
Comparison of the average error rates obtained by removing some of the considered
objectives in the ECA problem for the evaluation of the solutions.

Considered objectives Number of objectives Avg. error rate

1,2,3,4,6 5 0.00%
1,3,4,6 4 0.00%
2,3,4,6 4 0.00%
1,2,4,6 4 56.47%
1,4,6 3 56.47%
2,4,6 3 56.47%
1,2,3,4 4 62.89%
1,3,4 3 62.89%
2,3,4 3 62.89%

6.7. Comparison with the state of the art

In this section, we compare the performance of the best config-
uration of the MO-GVNS algorithm to the state-of-the-art methods
available for the SMCP. The MO-GVNS method is configured as follows:
Shake 1 is used as the shake procedure; the maximum value of 𝑘 is set to
𝑚𝑎𝑥 = 5; the incremental evaluation of objective functions and the ef-
icient exploration of the search space are implemented; and coupling,
he number of isolated modules, and the difference in size between the
argest and smallest modules are not considered as guiding functions.
or the comparison, we use a dataset comprised of 124 instances
reviously introduced by Monçores et al. (2018). These instances were
btained from different real-life software projects, including projects
ith up to 1161 components and 11,722 dependencies.

We compare the proposed method with four different algorithms:
Two-Archive Artificial Bee Colony (TA-ABC) recently proposed to

ackle the MCA and ECA problems (Amarjeet and Chhabra, 2018);
he Non-dominated Sorting Genetic Algorithm III (NSGA-III) (Deb and
ain, 2013); the Modified Pareto Envelop-Based Selection Algorithm
PESA2) (Corne et al., 2001); and the Multi-Objective Evolutionary
lgorithm based on Decomposition (MOEA/D) (Zhang and Li, 2007).

t is worth mentioning that the TA-ABC method included in the com-
arison can be considered as the current state-of-the-art algorithm
or the MCA/ECA problems. This procedure extends the ideas of the
BC framework, and it was particularly designed for these prob-

ems. Additionally, we have included three general-purpose algorithms
12

b

or multi- and many-objective optimization: NSGA-III, MOEA/D and
ESA2. These algorithms have been widely used as reference algo-
ithms for multi- and many-objective optimization problems. Moreover,
hey have also been used in the literature for different SMCP prob-
ems (Mkaouer et al., 2015; Chhabra, 2018b,a; Prajapati and Chhabra,
020; Arasteh et al., 2022). Since different authors in the literature do
ot recommend comparing individual objectives in isolation, because
t might lead to inaccurate results (Li and Yao, 2019; Li et al., 2020;
li et al., 2020), we do not use other methods in the literature that
ave individually studied some of the metrics included in the MCA/ECA
roblems following a mono-objective approach.

The experiments were conducted on an Intel Xeon Processor with 64
ores and 124 GB of RAM, running Ubuntu 22.04 LTS as the Operating
ystem. Our proposal and the TA-ABC algorithm were implemented
n Java 17.0.5 and using the Metaheuristic Optimization framewoRK
MORK) v0.12 (Martín-Santamaría et al., 2022). For NSGA-III, PESA2,
nd MOEA/D, we used the implementations that are accessible in
he jMetal framework v5.11 (Durillo and Nebro, 2011). Finally, to
erform a fair comparison, we set a time limit for the execution of
he proposed MO-GVNS. In particular, we propose a hybrid stopping
riteria, the 𝑘𝑚𝑎𝑥 parameter with a maximum CPU time in seconds,
s specified in Algorithm 1. On one hand, the method stops when no
urther improvements are found and the maximum 𝑘𝑚𝑎𝑥 is reached. On

the other hand, the method stops if the time of four times the number
of vertices (𝑡𝑚𝑎𝑥 = 4 ⋅ |𝑉 |) is reached.

The results obtained are shown in Tables 16 and 17. As can be
bserved, the MO-GVNS method is able to obtain solutions with better
uality for all the analyzed indicators, considering both convergence to
he reference set and distribution along the objective space. The margin
s wide for all indicators, and the difference is an order of magnitude
n some cases, such as hypervolume, coverage, and IGD+. In addition,
he showcased results are obtained consuming less CPU time than the
ext fastest method, and the returned Pareto front contains an order of
agnitude more efficient points.

.8. Analysis of Pareto fronts generated by the compared methods for pairs
f objectives

In this section, we analyze the Pareto fronts for several interesting
airs of objectives studied, generated by the methods compared in this
aper. In particular, we have randomly selected two instances with a
iverse number of vertices, i.e., a medium size instance, and a very
arge instance, from the data set: gae_plugin_core, which contains 139
ertices and 375 edges; and apache_ant, which contains 1085 vertices
nd 5329 edges. To ease readability, we represent only those efficient
oints from the solution that are not dominated with respect to the two
bjectives depicted in each figure. In addition, to ease readability, the
alues of the objectives that should be minimized have been multiplied
y -1. Therefore, in every figure, the greater the value of each objective,
he better the efficient point.

In Fig. 4, we represent the non-dominated efficient points obtained

y each method for the ECA problem considering cohesion and the

Engineering Applications of Artificial Intelligence 133 (2024) 108593J. Yuste et al.
Table 14
Comparison of the results obtained by considering different sets of objectives as guiding functions for the MCA problem.

Guiding functions CPUt (s) PFS HV C IGD+ GS

All 21428.59 748.10 0.2903 0.2066 0.0029 0.5665
All ⧵ {Coupling} 17268.77 720.80 0.2893 0.2272 0.0028 0.5658
All ⧵ {Cohesion} 17243.87 720.80 0.2893 0.2272 0.0028 0.5658
All ⧵ {Isolated} 17210.76 705.50 0.2867 0.2748 0.0044 0.5706
All ⧵ {Coupling, Isolated} 16750.98 703.70 0.2866 0.2673 0.0041 0.5777
All ⧵ {Cohesion, Isolated} 16937.45 703.70 0.2866 0.2673 0.0041 0.5777
All ⧵ {MQ} 6428.05 325.10 0.2644 0.4510 0.0288 0.5220
All ⧵ {Coupling, MQ} 3131.02 287.60 0.2595 0.4859 0.0339 0.5005
All ⧵ {Cohesion, MQ} 3085.88 287.60 0.2595 0.4859 0.0339 0.5005
Table 15
Comparison of the results obtained by considering different sets of objectives as guiding functions for the ECA problem.

Guiding functions CPUt (s) PFS HV C IGD+ GS

All 131874.37 1801.60 0.2667 0.2035 0.0027 0.5626
All ⧵ {Coupling} 99374.69 1779.70 0.2666 0.2340 0.0021 0.5608
All ⧵ {Cohesion} 98563.21 1779.70 0.2666 0.2340 0.0021 0.5608
All ⧵ {Diff} 89541.81 1506.10 0.2533 0.2897 0.0097 0.5520
All ⧵ {Coupling, Diff} 68402.46 1489.90 0.2531 0.3140 0.0089 0.5551
All ⧵ {Cohesion, Diff} 64126.70 1489.90 0.2531 0.3140 0.0089 0.5551
All ⧵ {MQ} 24589.92 531.80 0.2377 0.4281 0.0471 0.5599
All ⧵ {Coupling, MQ} 18796.65 486.10 0.2347 0.4153 0.0486 0.5423
All ⧵ {Cohesion, MQ} 19078.99 486.10 0.2347 0.4153 0.0486 0.5423
Table 16
Comparison of the proposed MO-GVNS to several state-of-the-art methods for the MCA problem.

Method CPUt (s) PFS HV C IGD+ GS

MO-GVNS 311.18 507.60 0.2213 0.0264 0.0443 0.5175
MOEA/D (Zhang and Li, 2007) 336.43 300.00 0.0982 0.5254 0.2184 0.6844
NSGA-III (Deb and Jain, 2013) 596.41 479.56 0.0937 0.2719 0.2587 0.5891
PESA2 (Corne et al., 2001) 643.16 99.63 0.0604 0.7335 0.3209 0.6994
TA-ABC (Amarjeet and Chhabra, 2018) 1037.31 97.70 0.0277 0.2145 0.3991 0.8026
Table 17
Comparison of the proposed MO-GVNS to several state-of-the-art methods for the ECA problem.

Method CPUt (s) PFS HV C IGD+ GS

MO-GVNS 311.16 520.64 0.1939 0.0122 0.0180 0.5614
MOEA/D (Zhang and Li, 2007) 345.06 300.00 0.0724 0.8010 0.3312 0.6032
NSGA-III (Deb and Jain, 2013) 745.81 209.56 0.0889 0.5918 0.3690 0.6777
PESA2 (Corne et al., 2001) 408.69 89.59 0.0443 0.7386 0.4777 0.7599
TA-ABC (Amarjeet and Chhabra, 2018) 914.74 30.66 0.0284 0.3051 0.5132 0.8932
Fig. 4. Non-dominated fronts considering only cohesion and the number of modules, obtained for instances gae_plugin_core and apache_ant in the ECA problem.
number of modules. As it can be observed, the MO-GVNS method is able
to generate Pareto fronts that are better distributed along the objective
space than previous methods. However, there exist some solutions
generated by MOEA/D that are not dominated by the solutions obtained
with the MO-GVNS method.

In Fig. 5, we represent the non-dominated efficient points obtained
by each method for the ECA problem considering the MQ metric and
13
the number of modules. As it can be seen, the solutions generated
by the MO-GVNS completely dominate the Pareto front generated by
MOEA/D for both instances. This suggests that, although having less
total cohesion in some cases, the components of the systems are better
distributed among modules in the solution. That is, the relation of
classes to packages is more homogeneous. This fact is further supported
by Fig. 6, where we represent the non-dominated solutions obtained

Engineering Applications of Artificial Intelligence 133 (2024) 108593J. Yuste et al.
Fig. 5. Non-dominated fronts considering only MQ and the number of modules, obtained for instances gae_plugin_core and apache_ant in the ECA problem.
Fig. 6. Non-dominated fronts considering only MQ and the difference in size between the largest and smallest modules, obtained for instances gae_plugin_core and apache_ant in
the ECA problem.
by each method for the ECA problem considering the difference in size
between the largest and smallest modules and the MQ metric.

In Fig. 7, we represent the non-dominated efficient points obtained
by each method for the ECA problem considering the MQ metric and
cohesion. As it can be observed, although MOEA/D obtained some
efficient points that were not dominated when considering cohesion
and the number of modules, the Pareto front generated by the MO-
GVNS method completely dominated the rest of the solutions when
considering both MQ and cohesion.

In Fig. 8, we represent the non-dominated efficient points obtained
by each method for the MCA problem considering the number of
isolated modules and MQ. As it can be observed, the MO-GVNS method
is able to obtain efficient points with few or non-isolated modules and
an MQ value much higher than the efficient points found by the other
approaches.

In Fig. 9, we represent the non-dominated efficient points obtained
by each method for the MCA problem considering the number of
modules and the number of isolated modules. As it can be observed,
as happened in the previous examples, the MO-GVNS method is able
to better populate the front along the objective space. Moreover, it
finds good efficient points, with very few isolated modules (up to
zero), even when the number of modules is high (more than 40 in the
case of gae_plugin_core and more than 400 in the case of apache_ant).
However, other methods are able to obtain better efficient points in the
‘‘center’’ of the objective space, with a good compromise between the
number of modules and the number of isolated modules.

The visualization of the Pareto fronts generated by the different
methods indicates that the MO-GVNS method obtains solutions that are
better distributed along the objective space. This fact can be explained
14
by the design of the algorithm. First, the constructive procedure pro-
posed in Section 4.1 generates efficient points along the entire objective
space considering MQ and the number of modules. Then, the MO-GVNS
component of the algorithm explores the search space by improving
each objective in isolation, successfully ‘‘pushing’’ each efficient point
in different directions along the objective space. However, the isolated
focus on different objectives during the search process may have some
drawbacks. In Figs. 4, 5, 6, and 7, as it can be observed, there exist
some gaps along the front generated by the MO-GVNS method. That
is, there exist some drastic changes in the value of an objective with
a small change in the value of the other objective. For example, see
the change in cohesion for instance apache_ant when the number of
modules increases to 200. The same drastic change does not occur
in the Pareto front generated by MOEA/D, which is able to obtain
better efficient points, in terms of MQ, when the number of modules
is between 200 and 400. Moreover, in Fig. 9, the MO-GVNS method,
although finding good efficient points with a high number of modules
and few isolated modules, seems to have difficulties filling the center
area of the figure for the pair of objectives studied. In future work,
it would be interesting to analyze whether combining the isolated
improvement of different objectives proposed by the MO-GVNS method
with other approaches would improve its performance.

6.9. Discussion about the key strategies proposed

After improving previous state of the art procedures for the MCA/
ECA, according to convergence, spread, uniformity, and cardinality, we
can identify several key aspects of our research that might be useful for
other researchers and that we review next.

Engineering Applications of Artificial Intelligence 133 (2024) 108593J. Yuste et al.
Fig. 7. Non-dominated fronts considering only MQ and cohesion, obtained for instances gae_plugin_core and apache_ant in the ECA problem.
Fig. 8. Non-dominated fronts considering only the number of isolated modules and MQ, obtained for instances gae_plugin_core and apache_ant in the MCA problem.
Fig. 9. Non-dominated fronts considering only the number of modules and the number of isolated modules, obtained for instances gae_plugin_core and apache_ant in the MCA
problem.
From an algorithmic point of view, the proposed constructive ap-
proach, based on the ideas of Path-Relinking, generates a set of initial
solutions that are well distributed along the objective space. This
presents a good starting point for methods based on local search. Then,
exploring each objective function in isolation (i.e., using a specific
local search procedure guided by each objective) results in a very
effective strategy. However, since this might be very time-consuming,
the exploration performed by the method might need to be truncated.

Additionally, when studying multiple objectives simultaneously, we
might need to use different neighborhoods with a diverse nature. In this
sense, the exploration of the search space has to be performed very
carefully, since exploring a particular neighborhood might be useless
15
for some objectives. In this sense, several neighborhoods should be
tested and then classified into categories, which could lead to the design
of a more effective method, avoiding the exploration of very similar
neighborhoods and selecting neighborhoods which complement each
other.

Further than the quality of the results we must pay attention to the
efficiency of the methods proposed. A more efficient method usually
leads to a better exploration and, therefore, to better quality results.
The better performance of our proposal with respect others, in terms of
computing time, is mainly due to the advanced strategies implemented
to improve the efficiency of the method: an efficient evaluation of
the objective functions, a reduction of the size of the neighborhoods

Engineering Applications of Artificial Intelligence 133 (2024) 108593J. Yuste et al.

H
e

D

c
i

D

A

e
1
1
E
S
F
l
U
D
E
h

A

u
i
i
b
v
s
p
c
2
1
v
d
i
T
e
t

depending on the objective function, and an analysis of the objective
functions used to guide the search.

7. Conclusions and future work

In this work, we have studied two well-known optimization prob-
lems in the context of software quality optimization: the Equal-Size
Cluster Approach (ECA) and the Maximizing Cluster Approach (MCA).
The problems studied have a practical interest for software developers,
who might be keen on reducing the complexity of software projects
to improve their understandability. However, addressing optimization
tasks in the context of software quality is not straightforward, since soft-
ware developers often introduce their personal preferences, resulting in
a task that is not systematic. Thus, we believe that a multi-objective
approach is much better for this task than a single-objective one, since
it allows a stakeholder to introduce their subjective experience to select
one solution from a set of previously filtered efficient solutions.

The contribution of this work can be divided into three different
aspects. First, we have evaluated the performance of a trajectory-
based method, based on MO-GVNS, for two multi-objective optimiza-
tion SMCP problems: MCA and ECA. This is a novel approach for
the problems tackled since, as it can be observed in the literature
review, the procedures previously proposed for multi-objective SMCP
problems are population-based evolutionary algorithms. Specifically,
we focused on a methodology which is based on a deep exploration
of neighborhood structures, since it has been shown successful for
single-objective SMCP problems.

Secondly, we have introduced several strategies in combination
with the proposed MO-GVNS algorithm to improve its efficiency, in-
cluding: a constructive procedure that resembles the ideas of the Path-
Relinking methodology to generate the initial set of efficient points;
four different shake procedures, which combine random and greedy
strategies; a compilation and classification of useful neighborhoods for
the MCA and ECA problems; an efficient evaluation of the objectives
considered in MCA and ECA; a reduction of the size of the explored
neighborhoods for each of the objectives considered; and an analysis of
the objectives that better serve as guiding functions during the search
phase.

Finally, we favorably compared the performance of the proposed
method with the best state-of-the-art algorithms for the MCA and ECA
problems. The results showed that the solutions obtained by the MO-
GVNS method are better in terms of HV, C, IGD+, PFS and GS. The
results obtained indicate that the MO-GVNS method obtains better
solutions than those of the state of the art with respect to the quality
aspects of convergence, spread, uniformity, and cardinality.

Interestingly, when analyzing the relevance of the objective func-
tions when used to guide the search within the MO-GVNS for the MCA
and ECA problems, we found that not considering some of the objec-
tives within the VND components results in a saving of time, at a small
quality cost. In particular, we found that not considering coupling, the
number of isolated modules, and the difference in size between the
largest and the smallest modules to guide VND components resulted in
solutions of similar quality than considering all the objectives during
the search, while reducing up to 48.13% the computing time of the
algorithm.

In multi-objective optimization, the use of evolutionary algorithms
is largely extended due to their inherent nature to work with sets of
efficient points and they have been proved to be very efficient in this
context. On the other hand, trajectory-based search algorithms have
not been as popular as population-based methods. However, they could
be advantageously combined with evolutionary algorithms to obtain
more powerful methods. In this sense, trajectory-based algorithms like
MO-GVNS can be used to ensure the intensification role, additionally
involving some domain knowledge in the design. Furthermore, due
to the general nature of the strategies proposed in this paper, we
16

believe that they can be adapted to improve the results for other
multi-objective optimization problems, especially those related to the
SMCP.

The study of the software quality optimization through a multi-
objective optimization approach allows the stakeholders to introduce
their subjective experience in the process. Particularly, developers can
select an organization among a set of high-quality solutions. However,
we believe that there is still work to be done in the search for the
optimal set of objectives that reflect the needs of software developers.
Specifically, important aspects such as semantic similarity and history
of previous changes should be taken into account. This might be
beneficial for the integration of software quality optimization in the
Software Development Life Cycle. In future work, we plan to explore
the optimization of these objectives in a multi-objective approach.

CRediT authorship contribution statement

Javier Yuste: Conceptualization, Data curation, Investigation, Soft-
ware, Visualization, Writing – original draft, Writing – review & editing.
Eduardo G. Pardo: Formal analysis, Funding acquisition, Investigation,
Methodology, Project administration, Supervision, Validation, Writing
– original draft, Writing – review & editing. Abraham Duarte: Funding
acquisition, Investigation, Project administration, Supervision. Jin-Kao
ao: Investigation, Methodology, Supervision, Writing – review &
diting.

eclaration of competing interest

The authors declare that they have no known competing finan-
ial interests or personal relationships that could have appeared to
nfluence the work reported in this paper.

ata availability

Data will be made available on request.

cknowledgments

We thank the anonymous reviewers for their valuable comm-
nts. This research has been partially supported by: grants PID2021-
25709OA-C22, PID2021-126605NB-I00, funded by MCIN/AEI/
0.13039/501100011033, Spain and by ‘‘ERDF A way of making
urope’’; grant P2018/TCS-4566, funded by the Comunidad de Madrid,
pain and cofinanced by the European Structural Funds ESF and
EDER, Spain; grant CIAICO/2021/224 funded by Generalitat Va-
enciana, Spain; grant M2988 funded by ‘‘Proyectos Impulso de la
niversidad Rey Juan Carlos 2022, Spain’’; ‘‘Cátedra de Innovación y
igitalización Empresarial entre Universidad Rey Juan Carlos y Second
pisode, Spain’’ (Ref. ID MCA06); and ‘‘Red Española de optimización
eurística 4.0 digitalización, Spain’’ (Ref. RED2022-134480-T).

ppendix. Dataset

In this section, we detail the instances contained in the dataset
sed in the experiments. The dataset is made up of 124 real software
nstances proposed in previous works (Monçores et al., 2018). These
nstances are of varying sizes, having between 2 and 1161 vertices and
etween 2 and 11,722 edges. On average, these instances have 156.37
ertices (with a standard deviation of 216.72) and 948.79 edges (with a
tandard deviation of 1751.86). In the work where this dataset was pro-
osed for the first time, the instances were divided into four different
ategories according to their size: 64 small instances (up to 68 vertices),
9 medium instances (from 74 to 182 vertices), 18 large instances (from
90 to 377 vertices), and 13 very large instances (from 413 to 1161
ertices). Following this classification, we present the instances in four
ifferent tables: small instances are presented in Table A.18, medium
nstances are presented in Table A.19, large instances are presented in
able A.20, and very large instances are presented in Table A.21. In
ach table, we report the number of vertices, the number of edges, and
he density of all instances.

Engineering Applications of Artificial Intelligence 133 (2024) 108593J. Yuste et al.
Table A.18
Small instances contained in the dataset. These instances have a number
of vertices between 2 and 68.

Instance |𝑉 | |𝐸|

squid 2 2
small 6 5
compiler 13 32
random 13 30
regexp 14 20
jstl 15 20
lab4 15 18
netkit-ping 15 15
nss_ldap 15 16
nos 16 52
lslayout 17 43
boxer 18 29
netkit-tftpd 18 23
sharutils 19 36
mtunis 20 57
spdb 21 17
xtell 22 57
bunch 23 62
ispell 24 103
netkit-inetd 24 25
nanoxml 25 64
ciald 26 64
jodamoney 26 102
Modulizer 26 66
bootp 27 75
jxlsreader 27 73
sysklogd-1 28 74
telnetd 28 81
crond 29 112
netkit-ftp 29 95
rcs 29 163
seemp 30 61
dhcpd-2 31 122
cyrus-sasl 32 100
tcsh 32 105
micq 33 156
apache_zip 36 86
star 36 89
bison 37 179
cia 38 185
stunnel 38 97
minicom 40 257
mailx 41 331
dot 42 255
screen 42 292
slang 45 242
slrn 45 323
net-tools 48 183
graph10up49 49 1650
wu-ftpd-1 50 230
joe 51 540
hw 53 51
imapd-1 53 298
wu-ftpd-3 54 278
udt-java 56 227
javaocr 58 155
dhcpd-1 59 571
icecast 60 650
pfcda_base 60 197
servletapi 61 131
php 62 191
bunch2 65 151
forms 68 270
17
Table A.19
Medium instances contained in the dataset. These instances have a
number of vertices between 74 and 182.

Instance |𝑉 | |𝐸|

jscatterplot 74 232
jxlscore 79 330
elm-2 81 683
jfluid 81 315
grappa 86 295
elm-1 88 941
gnupg 88 601
inn 90 624
bash 92 901
jpassword 96 361
bitchx 97 1653
junit 99 276
xntp 111 729
acqCIGNA 114 179
bunch_2 116 364
exim 118 1255
xmldom 118 209
cia++ 124 369
tinytim 129 564
mod_ssl 135 1095
jkaryoscope 136 460
ncurses 138 682
gae_plugin_core 139 375
lynx 148 1745
javacc 153 722
lucent 153 103
JavaGeom 171 1445
incl 174 360
jdendogram 177 583
xmlapi 182 413

Table A.20
Large instances contained in the dataset. These instances have a number
of vertices between 190 and 377.

Instance |𝑉 | |𝐸|

jmetal 190 1137
graph10up193 193 9190
dom4j 195 930
nmh 198 3262
pdf_renderer 199 629
Jung_graph_model 207 603
jung_visualization 208 919
jconsole 220 859
pfcda_swing 248 885
jml-1.0b4 267 1745
jpassword2 269 1348
notelab-full 293 1349
Poormans_CMS 301 1118
log4j 305 1078
jtreeview 320 1057
bunchall 324 1339
JACE 338 1524
javaws 377 1403

Table A.21
Very large instances contained in the dataset. These instances have a
number of vertices between 413 and 1161.

Instance |𝑉 | |𝐸|

swing 413 1513
lwjgl-2.8.4 453 1976
res_cobol 470 7163
ping_libc 481 2854
y_base 556 2510
krb5 558 3793
apache_ant_taskdef 626 2421

(continued on next page)

Engineering Applications of Artificial Intelligence 133 (2024) 108593J. Yuste et al.
Table A.21 (continued).
Instance |𝑉 | |𝐸|

itextpdf 650 3898
apache_lucene_core 738 3726
eclipse_jgit 909 5452
linux 916 11722
apache_ant 1085 5329
ylayout 1161 5770

References

Abdeen, H., Ducasse, S., Sahraoui, H., Alloui, I., 2009. Automatic package coupling and
cycle minimization. In: 2009 16th Working Conference on Reverse Engineering.
IEEE, pp. 103–112.

Ali, S., Arcaini, P., Pradhan, D., Safdar, S.A., Yue, T., 2020. Quality indicators in
search-based software engineering: An empirical evaluation. ACM Trans. Softw.
Eng. Methodol. (TOSEM) 29 (2), 1–29.

Amarjeet, Chhabra, J.K., 2017. Harmony search based remodularization for
object-oriented software systems. Comput. Lang. Syst. Struct. 47, 153–169.

Amarjeet, Chhabra, J.K., 2018. TA-ABC: two-archive artificial bee colony for
multi-objective software module clustering problem. J. Intell. Syst. 27 (4), 619–641.

Arasteh, B., 2023. Clustered design-model generation from a program source code using
chaos-based metaheuristic algorithms. Neural Comput. Appl. 35 (4), 3283–3305.

Arasteh, B., Fatolahzadeh, A., Kiani, F., 2022. Savalan: Multi objective and homo-
geneous method for software modules clustering. J. Softw. Evol. Process 34 (1),
e2408.

Arasteh, B., Sadegi, R., Arasteh, K., Gunes, P., Kiani, F., Torkamanian-Afshar, M., 2023.
A bioinspired discrete heuristic algorithm to generate the effective structural model
of a program source code. J. King Saud Univ. Comput. Inf. Sci. 35 (8), 101655.

Bakota, T., Hegedus, P., Ladanyi, G., Kortvelyesi, P., Ferenc, R., Gyimothy, T., 2012.
A cost model based on software maintainability. In: IEEE International Conference
on Software Maintenance. ICSM, pp. 316–325.

Barros, M.d.O., 2012. An analysis of the effects of composite objectives in multiobjective
software module clustering. In: Proceedings of the 14th Annual Conference on
Genetic and Evolutionary Computation. pp. 1205–1212.

Barros, M.d., Farzat, F.d., Travassos, G.H., 2015. Learning from optimization: A case
study with Apache Ant. Inf. Softw. Technol. 57, 684–704.

Brandes, U., Delling, D., Gaertler, M., Gorke, R., Hoefer, M., Nikoloski, Z., Wagner, D.,
2007. On modularity clustering. IEEE Trans. Knowl. Data Eng. 20 (2), 172–188.

Brockhoff, D., Zitzler, E., 2009. Objective reduction in evolutionary multiobjective
optimization: Theory and applications. Evol. Comput. 17 (2), 135–166.

Cavero, S., Pardo, E.G., Duarte, A., 2022. A general variable neighborhood search for
the cyclic antibandwidth problem. Comput. Optim. Appl. 1–31.

Chaves-González, J.M., Pérez-Toledano, M.A., Navasa, A., 2015. Teaching learn-
ing based optimization with Pareto tournament for the multiobjective software
requirements selection. Eng. Appl. Artif. Intell. 43, 89–101.

Chen, C., Alfayez, R., Srisopha, K., Boehm, B., Shi, L., 2017. Why is it important to
measure maintainability and what are the best ways to do it? In: 2017 IEEE/ACM
39th International Conference on Software Engineering Companion. ICSE-C, IEEE,
pp. 377–378.

Chhabra, J.K., 2018a. FP-ABC: Fuzzy-Pareto dominance driven artificial bee colony
algorithm for many-objective software module clustering. Comput. Lang. Syst.
Struct. 51, 1–21.

Chhabra, J.K., 2018b. Many-objective artificial bee colony algorithm for large-scale
software module clustering problem. Soft Comput. 22 (19), 6341–6361.

Colanzi, T.E., Assunção, W.K., Vergilio, S.R., Farah, P.R., Guizzo, G., 2020. The
symposium on search-based software eengineering: Past, present and future. Inf.
Softw. Technol. 127, 106372.

Corne, D.W., Jerram, N.R., Knowles, J.D., Oates, M.J., 2001. PESA-II: Region-based
selection in evolutionary multiobjective optimization. In: Proceedings of the Genetic
and Evolutionary Computation Conference. GECCO 2001, pp. 283–290.

Croes, G.A., 1958. A method for solving traveling-salesman problems. Oper. Res. 6 (6),
791–812.

Deb, K., Jain, H., 2013. An evolutionary many-objective optimization algorithm using
reference-point-based nondominated sorting approach, part I: solving problems with
box constraints. IEEE Trans. Evol. Comput. 18 (4), 577–601.

Duarte, A., Pantrigo, J.J., Gallego, M., 2007. Metaheurísticas. Madrid: Dykinson.
Duarte, A., Pantrigo, J.J., Pardo, E.G., Mladenovic, N., 2015. Multi-objective variable

neighborhood search: an application to combinatorial optimization problems. J.
Global Optim. 63 (3), 515–536.

Durillo, J.J., Nebro, A.J., 2011. jMetal: A Java framework for multi-objective
optimization. Adv. Eng. Softw. 42 (10), 760–771.

Gendreau, M., Hertz, A., Laporte, G., 1992. New insertion and postoptimization
procedures for the traveling salesman problem. Oper. Res. 40 (6), 1086–1094.

Gil-Borrás, S., Pardo, E.G., Alonso-Ayuso, A., Duarte, A., 2021. A heuristic approach for
the online order batching problem with multiple pickers. Comput. Ind. Eng. 160,
107517.
18
Glover, F., 1997. Tabu search and adaptive memory programming—advances, applica-
tions and challenges. In: Interfaces in Computer Science and Operations Research:
Advances in Metaheuristics, Optimization, and Stochastic Modeling Technologies.
Springer, pp. 1–75.

Hansen, P., Mladenović, N., Todosijević, R., Hanafi, S., 2017. Variable neighborhood
search: basics and variants. EURO J. Comput. Optim. 5 (3), 423–454.

Harman, M., Mansouri, S.A., Zhang, Y., 2012. Search-based software engineering:
Trends, techniques and applications. ACM Comput. Surv. 45 (1), 1–61.

Huang, J., Liu, J., 2016. A similarity-based modularization quality measure for software
module clustering problems. Inform. Sci. 342, 96–110.

Huang, J., Liu, J., Yao, X., 2017. A multi-agent evolutionary algorithm for software
module clustering problems. Soft Comput. 21 (12), 3415–3428.

Hwa, J., Yoo, S., Seo, Y.-S., Bae, D.-H., 2017. Search-based approaches for software
module clustering based on multiple relationship factors. Int. J. Softw. Eng. Knowl.
Eng. 27 (07), 1033–1062.

International Organization for Standardization, 2017. ISO/IEC/IEEE 24765:2017
Systems and software engineering — Vocabulary.

Ishibuchi, H., Masuda, H., Nojima, Y., 2015. A study on performance evaluation ability
of a modified inverted generational distance indicator. In: Proceedings of the 2015
Annual Conference on Genetic and Evolutionary Computation. pp. 695–702.

Izadkhah, H., Elgedawy, I., Isazadeh, A., 2016. E-CDGM: an evolutionary call-
dependency graph modularization approach for software systems. Cybern. Inf.
Technol. 16 (3).

Izadkhah, H., Tajgardan, M., 2019. Information Theoretic Objective Function for
Genetic Software Clustering. In: Multidisciplinary Digital Publishing Institute
Proceedings, Vol. 46. p. 18.

Jalali, N.S., Izadkhah, H., Lotfi, S., 2019. Multi-objective search-based software
modularization: structural and non-structural features. Soft Comput. 23 (21),
11141–11165.

Jeet, K., Dhir, R., 2016. Software module clustering using hybrid socio-evolutionary
algorithms. Int. J. Inf. Eng. Electron. Bus. 8 (4), 43.

Kargar, M., Isazadeh, A., Izadkhah, H., 2017. Semantic-based software clustering using
hill climbing. In: 2017 International Symposium on Computer Science and Software
Engineering Conference. CSSE, IEEE, pp. 55–60.

Köhler, V., Fampa, M., Araújo, O., 2013. Mixed-integer linear programming for-
mulations for the software clustering problem. Comput. Optim. Appl. 55 (1),
113–135.

Kumari, A.C., Srinivas, K., 2016. Hyper-heuristic approach for multi-objective software
module clustering. J. Syst. Softw. 117, 384–401.

Lai, X., Hao, J.-K., 2016. Iterated variable neighborhood search for the capacitated
clustering problem. Eng. Appl. Artif. Intell. 56, 102–120.

Li, Z., Avgeriou, P., Liang, P., 2015. A systematic mapping study on technical debt and
its management. J. Syst. Softw. 101, 193–220.

Li, M., Chen, T., Yao, X., 2020. How to evaluate solutions in Pareto-based search-based
software engineering: A critical review and methodological guidance. IEEE Trans.
Softw. Eng. 48 (5), 1771–1799.

Li, M., Yao, X., 2019. Quality evaluation of solution sets in multiobjective optimisation:
A survey. ACM Comput. Surv. 52 (2), 1–38.

Mahdavi, K., 2005. A Clustering Genetic Algorithm for Software Modularisation with
a Multiple Hill Climbing Approach (Ph.D. thesis). Brunel University, UK.

Mamaghani, A.S., Hajizadeh, M., 2014. Software modularization using the modified
firefly algorithm. In: 2014 8th. Malaysian Software Engineering Conference. MySEC,
IEEE, pp. 321–324.

Mamaghani, A.S., Meybodi, M.R., 2009. Clustering of software systems using new
hybrid algorithms. In: 2009 Ninth IEEE International Conference on Computer and
Information Technology, vol. 1, IEEE, pp. 20–25.

Mancoridis, S., Mitchell, B.S., Rorres, C., Chen, Y.-F., Gansner, E.R., 1998. Using
automatic clustering to produce high-level system organizations of source code.
In: 6th International Workshop on Program Comprehension. IWPC’98, IEEE, pp.
45–52.

Martín-Santamaría, R., Cavero, S., Herrán, A., Duarte, A., Colmenar, J.M., 2022. A
practical methodology for reproducible experimentation: an application to the
Double-row Facility Layout Problem. Evol. Comput. 1–35.

Mitchell, B.S., 2002. A Heuristic Search Approach to Solving the Software Clustering
Problem (Ph.D. thesis). Drexel University, USA, AAI3039424.

Mitchell, B.S., Mancoridis, S., 2002. Using heuristic search techniques to extract design
abstractions from source code. In: Proceedings of the 4th Annual Conference on
Genetic and Evolutionary Computation. pp. 1375–1382.

Mitchell, B.S., Mancoridis, S., 2006. On the automatic modularization of software
systems using the bunch tool. IEEE Trans. Softw. Eng. 32 (3), 193–208.

Mitchell, B.S., Mancoridis, S., 2008. On the evaluation of the Bunch search-based
software modularization algorithm. Soft Comput. 12 (1), 77–93.

Mkaouer, W., Kessentini, M., Shaout, A., Koligheu, P., Bechikh, S., Deb, K., Ouni, A.,
2015. Many-objective software remodularization using NSGA-III. ACM Trans. Softw.
Eng. Methodol. (TOSEM) 24 (3), 1–45.

Mladenović, N., Hansen, P., 1997. Variable neighborhood search. Comput. Oper. Res.
24 (11), 1097–1100.

Molnar, A.-J., Motogna, S., 2021. A study of maintainability in evolving open-source
software. In: Evaluation of Novel Approaches To Software Engineering: 15th
International Conference, ENASE 2020, Prague, Czech Republic, May 5–6, 2020,
Revised Selected Papers 15. Springer, pp. 261–282.

http://refhub.elsevier.com/S0952-1976(24)00751-6/sb1
http://refhub.elsevier.com/S0952-1976(24)00751-6/sb1
http://refhub.elsevier.com/S0952-1976(24)00751-6/sb1
http://refhub.elsevier.com/S0952-1976(24)00751-6/sb1
http://refhub.elsevier.com/S0952-1976(24)00751-6/sb1
http://refhub.elsevier.com/S0952-1976(24)00751-6/sb2
http://refhub.elsevier.com/S0952-1976(24)00751-6/sb2
http://refhub.elsevier.com/S0952-1976(24)00751-6/sb2
http://refhub.elsevier.com/S0952-1976(24)00751-6/sb2
http://refhub.elsevier.com/S0952-1976(24)00751-6/sb2
http://refhub.elsevier.com/S0952-1976(24)00751-6/sb3
http://refhub.elsevier.com/S0952-1976(24)00751-6/sb3
http://refhub.elsevier.com/S0952-1976(24)00751-6/sb3
http://refhub.elsevier.com/S0952-1976(24)00751-6/sb4
http://refhub.elsevier.com/S0952-1976(24)00751-6/sb4
http://refhub.elsevier.com/S0952-1976(24)00751-6/sb4
http://refhub.elsevier.com/S0952-1976(24)00751-6/sb5
http://refhub.elsevier.com/S0952-1976(24)00751-6/sb5
http://refhub.elsevier.com/S0952-1976(24)00751-6/sb5
http://refhub.elsevier.com/S0952-1976(24)00751-6/sb6
http://refhub.elsevier.com/S0952-1976(24)00751-6/sb6
http://refhub.elsevier.com/S0952-1976(24)00751-6/sb6
http://refhub.elsevier.com/S0952-1976(24)00751-6/sb6
http://refhub.elsevier.com/S0952-1976(24)00751-6/sb6
http://refhub.elsevier.com/S0952-1976(24)00751-6/sb7
http://refhub.elsevier.com/S0952-1976(24)00751-6/sb7
http://refhub.elsevier.com/S0952-1976(24)00751-6/sb7
http://refhub.elsevier.com/S0952-1976(24)00751-6/sb7
http://refhub.elsevier.com/S0952-1976(24)00751-6/sb7
http://refhub.elsevier.com/S0952-1976(24)00751-6/sb8
http://refhub.elsevier.com/S0952-1976(24)00751-6/sb8
http://refhub.elsevier.com/S0952-1976(24)00751-6/sb8
http://refhub.elsevier.com/S0952-1976(24)00751-6/sb8
http://refhub.elsevier.com/S0952-1976(24)00751-6/sb8
http://refhub.elsevier.com/S0952-1976(24)00751-6/sb9
http://refhub.elsevier.com/S0952-1976(24)00751-6/sb9
http://refhub.elsevier.com/S0952-1976(24)00751-6/sb9
http://refhub.elsevier.com/S0952-1976(24)00751-6/sb9
http://refhub.elsevier.com/S0952-1976(24)00751-6/sb9
http://refhub.elsevier.com/S0952-1976(24)00751-6/sb10
http://refhub.elsevier.com/S0952-1976(24)00751-6/sb10
http://refhub.elsevier.com/S0952-1976(24)00751-6/sb10
http://refhub.elsevier.com/S0952-1976(24)00751-6/sb11
http://refhub.elsevier.com/S0952-1976(24)00751-6/sb11
http://refhub.elsevier.com/S0952-1976(24)00751-6/sb11
http://refhub.elsevier.com/S0952-1976(24)00751-6/sb12
http://refhub.elsevier.com/S0952-1976(24)00751-6/sb12
http://refhub.elsevier.com/S0952-1976(24)00751-6/sb12
http://refhub.elsevier.com/S0952-1976(24)00751-6/sb13
http://refhub.elsevier.com/S0952-1976(24)00751-6/sb13
http://refhub.elsevier.com/S0952-1976(24)00751-6/sb13
http://refhub.elsevier.com/S0952-1976(24)00751-6/sb14
http://refhub.elsevier.com/S0952-1976(24)00751-6/sb14
http://refhub.elsevier.com/S0952-1976(24)00751-6/sb14
http://refhub.elsevier.com/S0952-1976(24)00751-6/sb14
http://refhub.elsevier.com/S0952-1976(24)00751-6/sb14
http://refhub.elsevier.com/S0952-1976(24)00751-6/sb15
http://refhub.elsevier.com/S0952-1976(24)00751-6/sb15
http://refhub.elsevier.com/S0952-1976(24)00751-6/sb15
http://refhub.elsevier.com/S0952-1976(24)00751-6/sb15
http://refhub.elsevier.com/S0952-1976(24)00751-6/sb15
http://refhub.elsevier.com/S0952-1976(24)00751-6/sb15
http://refhub.elsevier.com/S0952-1976(24)00751-6/sb15
http://refhub.elsevier.com/S0952-1976(24)00751-6/sb16
http://refhub.elsevier.com/S0952-1976(24)00751-6/sb16
http://refhub.elsevier.com/S0952-1976(24)00751-6/sb16
http://refhub.elsevier.com/S0952-1976(24)00751-6/sb16
http://refhub.elsevier.com/S0952-1976(24)00751-6/sb16
http://refhub.elsevier.com/S0952-1976(24)00751-6/sb17
http://refhub.elsevier.com/S0952-1976(24)00751-6/sb17
http://refhub.elsevier.com/S0952-1976(24)00751-6/sb17
http://refhub.elsevier.com/S0952-1976(24)00751-6/sb18
http://refhub.elsevier.com/S0952-1976(24)00751-6/sb18
http://refhub.elsevier.com/S0952-1976(24)00751-6/sb18
http://refhub.elsevier.com/S0952-1976(24)00751-6/sb18
http://refhub.elsevier.com/S0952-1976(24)00751-6/sb18
http://refhub.elsevier.com/S0952-1976(24)00751-6/sb19
http://refhub.elsevier.com/S0952-1976(24)00751-6/sb19
http://refhub.elsevier.com/S0952-1976(24)00751-6/sb19
http://refhub.elsevier.com/S0952-1976(24)00751-6/sb19
http://refhub.elsevier.com/S0952-1976(24)00751-6/sb19
http://refhub.elsevier.com/S0952-1976(24)00751-6/sb20
http://refhub.elsevier.com/S0952-1976(24)00751-6/sb20
http://refhub.elsevier.com/S0952-1976(24)00751-6/sb20
http://refhub.elsevier.com/S0952-1976(24)00751-6/sb21
http://refhub.elsevier.com/S0952-1976(24)00751-6/sb21
http://refhub.elsevier.com/S0952-1976(24)00751-6/sb21
http://refhub.elsevier.com/S0952-1976(24)00751-6/sb21
http://refhub.elsevier.com/S0952-1976(24)00751-6/sb21
http://refhub.elsevier.com/S0952-1976(24)00751-6/sb22
http://refhub.elsevier.com/S0952-1976(24)00751-6/sb23
http://refhub.elsevier.com/S0952-1976(24)00751-6/sb23
http://refhub.elsevier.com/S0952-1976(24)00751-6/sb23
http://refhub.elsevier.com/S0952-1976(24)00751-6/sb23
http://refhub.elsevier.com/S0952-1976(24)00751-6/sb23
http://refhub.elsevier.com/S0952-1976(24)00751-6/sb24
http://refhub.elsevier.com/S0952-1976(24)00751-6/sb24
http://refhub.elsevier.com/S0952-1976(24)00751-6/sb24
http://refhub.elsevier.com/S0952-1976(24)00751-6/sb25
http://refhub.elsevier.com/S0952-1976(24)00751-6/sb25
http://refhub.elsevier.com/S0952-1976(24)00751-6/sb25
http://refhub.elsevier.com/S0952-1976(24)00751-6/sb26
http://refhub.elsevier.com/S0952-1976(24)00751-6/sb26
http://refhub.elsevier.com/S0952-1976(24)00751-6/sb26
http://refhub.elsevier.com/S0952-1976(24)00751-6/sb26
http://refhub.elsevier.com/S0952-1976(24)00751-6/sb26
http://refhub.elsevier.com/S0952-1976(24)00751-6/sb27
http://refhub.elsevier.com/S0952-1976(24)00751-6/sb27
http://refhub.elsevier.com/S0952-1976(24)00751-6/sb27
http://refhub.elsevier.com/S0952-1976(24)00751-6/sb27
http://refhub.elsevier.com/S0952-1976(24)00751-6/sb27
http://refhub.elsevier.com/S0952-1976(24)00751-6/sb27
http://refhub.elsevier.com/S0952-1976(24)00751-6/sb27
http://refhub.elsevier.com/S0952-1976(24)00751-6/sb28
http://refhub.elsevier.com/S0952-1976(24)00751-6/sb28
http://refhub.elsevier.com/S0952-1976(24)00751-6/sb28
http://refhub.elsevier.com/S0952-1976(24)00751-6/sb29
http://refhub.elsevier.com/S0952-1976(24)00751-6/sb29
http://refhub.elsevier.com/S0952-1976(24)00751-6/sb29
http://refhub.elsevier.com/S0952-1976(24)00751-6/sb30
http://refhub.elsevier.com/S0952-1976(24)00751-6/sb30
http://refhub.elsevier.com/S0952-1976(24)00751-6/sb30
http://refhub.elsevier.com/S0952-1976(24)00751-6/sb31
http://refhub.elsevier.com/S0952-1976(24)00751-6/sb31
http://refhub.elsevier.com/S0952-1976(24)00751-6/sb31
http://refhub.elsevier.com/S0952-1976(24)00751-6/sb32
http://refhub.elsevier.com/S0952-1976(24)00751-6/sb32
http://refhub.elsevier.com/S0952-1976(24)00751-6/sb32
http://refhub.elsevier.com/S0952-1976(24)00751-6/sb32
http://refhub.elsevier.com/S0952-1976(24)00751-6/sb32
http://refhub.elsevier.com/S0952-1976(24)00751-6/sb33
http://refhub.elsevier.com/S0952-1976(24)00751-6/sb33
http://refhub.elsevier.com/S0952-1976(24)00751-6/sb33
http://refhub.elsevier.com/S0952-1976(24)00751-6/sb34
http://refhub.elsevier.com/S0952-1976(24)00751-6/sb34
http://refhub.elsevier.com/S0952-1976(24)00751-6/sb34
http://refhub.elsevier.com/S0952-1976(24)00751-6/sb34
http://refhub.elsevier.com/S0952-1976(24)00751-6/sb34
http://refhub.elsevier.com/S0952-1976(24)00751-6/sb35
http://refhub.elsevier.com/S0952-1976(24)00751-6/sb35
http://refhub.elsevier.com/S0952-1976(24)00751-6/sb35
http://refhub.elsevier.com/S0952-1976(24)00751-6/sb35
http://refhub.elsevier.com/S0952-1976(24)00751-6/sb35
http://refhub.elsevier.com/S0952-1976(24)00751-6/sb36
http://refhub.elsevier.com/S0952-1976(24)00751-6/sb36
http://refhub.elsevier.com/S0952-1976(24)00751-6/sb36
http://refhub.elsevier.com/S0952-1976(24)00751-6/sb36
http://refhub.elsevier.com/S0952-1976(24)00751-6/sb36
http://refhub.elsevier.com/S0952-1976(24)00751-6/sb37
http://refhub.elsevier.com/S0952-1976(24)00751-6/sb37
http://refhub.elsevier.com/S0952-1976(24)00751-6/sb37
http://refhub.elsevier.com/S0952-1976(24)00751-6/sb37
http://refhub.elsevier.com/S0952-1976(24)00751-6/sb37
http://refhub.elsevier.com/S0952-1976(24)00751-6/sb38
http://refhub.elsevier.com/S0952-1976(24)00751-6/sb38
http://refhub.elsevier.com/S0952-1976(24)00751-6/sb38
http://refhub.elsevier.com/S0952-1976(24)00751-6/sb39
http://refhub.elsevier.com/S0952-1976(24)00751-6/sb39
http://refhub.elsevier.com/S0952-1976(24)00751-6/sb39
http://refhub.elsevier.com/S0952-1976(24)00751-6/sb39
http://refhub.elsevier.com/S0952-1976(24)00751-6/sb39
http://refhub.elsevier.com/S0952-1976(24)00751-6/sb40
http://refhub.elsevier.com/S0952-1976(24)00751-6/sb40
http://refhub.elsevier.com/S0952-1976(24)00751-6/sb40
http://refhub.elsevier.com/S0952-1976(24)00751-6/sb40
http://refhub.elsevier.com/S0952-1976(24)00751-6/sb40
http://refhub.elsevier.com/S0952-1976(24)00751-6/sb41
http://refhub.elsevier.com/S0952-1976(24)00751-6/sb41
http://refhub.elsevier.com/S0952-1976(24)00751-6/sb41
http://refhub.elsevier.com/S0952-1976(24)00751-6/sb42
http://refhub.elsevier.com/S0952-1976(24)00751-6/sb42
http://refhub.elsevier.com/S0952-1976(24)00751-6/sb42
http://refhub.elsevier.com/S0952-1976(24)00751-6/sb43
http://refhub.elsevier.com/S0952-1976(24)00751-6/sb43
http://refhub.elsevier.com/S0952-1976(24)00751-6/sb43
http://refhub.elsevier.com/S0952-1976(24)00751-6/sb44
http://refhub.elsevier.com/S0952-1976(24)00751-6/sb44
http://refhub.elsevier.com/S0952-1976(24)00751-6/sb44
http://refhub.elsevier.com/S0952-1976(24)00751-6/sb44
http://refhub.elsevier.com/S0952-1976(24)00751-6/sb44
http://refhub.elsevier.com/S0952-1976(24)00751-6/sb45
http://refhub.elsevier.com/S0952-1976(24)00751-6/sb45
http://refhub.elsevier.com/S0952-1976(24)00751-6/sb45
http://refhub.elsevier.com/S0952-1976(24)00751-6/sb46
http://refhub.elsevier.com/S0952-1976(24)00751-6/sb46
http://refhub.elsevier.com/S0952-1976(24)00751-6/sb46
http://refhub.elsevier.com/S0952-1976(24)00751-6/sb47
http://refhub.elsevier.com/S0952-1976(24)00751-6/sb47
http://refhub.elsevier.com/S0952-1976(24)00751-6/sb47
http://refhub.elsevier.com/S0952-1976(24)00751-6/sb47
http://refhub.elsevier.com/S0952-1976(24)00751-6/sb47
http://refhub.elsevier.com/S0952-1976(24)00751-6/sb48
http://refhub.elsevier.com/S0952-1976(24)00751-6/sb48
http://refhub.elsevier.com/S0952-1976(24)00751-6/sb48
http://refhub.elsevier.com/S0952-1976(24)00751-6/sb48
http://refhub.elsevier.com/S0952-1976(24)00751-6/sb48
http://refhub.elsevier.com/S0952-1976(24)00751-6/sb49
http://refhub.elsevier.com/S0952-1976(24)00751-6/sb49
http://refhub.elsevier.com/S0952-1976(24)00751-6/sb49
http://refhub.elsevier.com/S0952-1976(24)00751-6/sb49
http://refhub.elsevier.com/S0952-1976(24)00751-6/sb49
http://refhub.elsevier.com/S0952-1976(24)00751-6/sb49
http://refhub.elsevier.com/S0952-1976(24)00751-6/sb49
http://refhub.elsevier.com/S0952-1976(24)00751-6/sb50
http://refhub.elsevier.com/S0952-1976(24)00751-6/sb50
http://refhub.elsevier.com/S0952-1976(24)00751-6/sb50
http://refhub.elsevier.com/S0952-1976(24)00751-6/sb50
http://refhub.elsevier.com/S0952-1976(24)00751-6/sb50
http://refhub.elsevier.com/S0952-1976(24)00751-6/sb51
http://refhub.elsevier.com/S0952-1976(24)00751-6/sb51
http://refhub.elsevier.com/S0952-1976(24)00751-6/sb51
http://refhub.elsevier.com/S0952-1976(24)00751-6/sb52
http://refhub.elsevier.com/S0952-1976(24)00751-6/sb52
http://refhub.elsevier.com/S0952-1976(24)00751-6/sb52
http://refhub.elsevier.com/S0952-1976(24)00751-6/sb52
http://refhub.elsevier.com/S0952-1976(24)00751-6/sb52
http://refhub.elsevier.com/S0952-1976(24)00751-6/sb53
http://refhub.elsevier.com/S0952-1976(24)00751-6/sb53
http://refhub.elsevier.com/S0952-1976(24)00751-6/sb53
http://refhub.elsevier.com/S0952-1976(24)00751-6/sb54
http://refhub.elsevier.com/S0952-1976(24)00751-6/sb54
http://refhub.elsevier.com/S0952-1976(24)00751-6/sb54
http://refhub.elsevier.com/S0952-1976(24)00751-6/sb55
http://refhub.elsevier.com/S0952-1976(24)00751-6/sb55
http://refhub.elsevier.com/S0952-1976(24)00751-6/sb55
http://refhub.elsevier.com/S0952-1976(24)00751-6/sb55
http://refhub.elsevier.com/S0952-1976(24)00751-6/sb55
http://refhub.elsevier.com/S0952-1976(24)00751-6/sb56
http://refhub.elsevier.com/S0952-1976(24)00751-6/sb56
http://refhub.elsevier.com/S0952-1976(24)00751-6/sb56
http://refhub.elsevier.com/S0952-1976(24)00751-6/sb57
http://refhub.elsevier.com/S0952-1976(24)00751-6/sb57
http://refhub.elsevier.com/S0952-1976(24)00751-6/sb57
http://refhub.elsevier.com/S0952-1976(24)00751-6/sb57
http://refhub.elsevier.com/S0952-1976(24)00751-6/sb57
http://refhub.elsevier.com/S0952-1976(24)00751-6/sb57
http://refhub.elsevier.com/S0952-1976(24)00751-6/sb57

Engineering Applications of Artificial Intelligence 133 (2024) 108593J. Yuste et al.
Monçores, M.C., Alvim, A.C.F., Barros, M.O., 2018. Large neighborhood search applied
to the software module clustering problem. Comput. Oper. Res. 91, 92–111.

Moosavi, S.H.S., Bardsiri, V.K., 2017. Satin bowerbird optimizer: A new optimization
algorithm to optimize ANFIS for software development effort estimation. Eng. Appl.
Artif. Intell. 60, 1–15.

Mu, L., Sugumaran, V., Wang, F., 2020. A hybrid genetic algorithm for software
architecture re-modularization. Inf. Syst. Front. 22 (5), 1133–1161.

Pantrigo, J.J., Martí, R., Duarte, A., Pardo, E.G., 2012. Scatter search for the cutwidth
minimization problem. Ann. Oper. Res. 199, 285–304.

Pardo, E.G., García-Sánchez, A., Sevaux, M., Duarte, A., 2020. Basic variable neigh-
borhood search for the minimum sitting arrangement problem. J. Heuristics 26,
249–268.

Perez-Pelo, S., Sanchez-Oro, J., Gonzalez-Pardo, A., Duarte, A., 2021. A fast variable
neighborhood search approach for multi-objective community detection. Appl. Soft
Comput. 112, 107838.

Pinto, A.F., Alvim, A.C.F., Barros, M.O., 2014. ILS for the Software Module Clustering
Problem. pp. 1972–1983, XLVI Simpósio Brasileiro de Pesquisa Operacional.
Salvador:[sn].

Pourasghar, B., Izadkhah, H., Isazadeh, A., Lotfi, S., 2021. A graph-based clustering
algorithm for software systems modularization. Inf. Softw. Technol. 133, 106469.

Praditwong, K., 2011. Solving software module clustering problem by evolutionary
algorithms. In: 2011 Eighth International Joint Conference on Computer Science
and Software Engineering. JCSSE, IEEE, pp. 154–159.

Praditwong, K., Harman, M., Yao, X., 2011. Software module clustering as a
multi-objective search problem. IEEE Trans. Softw. Eng. 37 (2), 264–282.

Prajapati, A., 2022. Software module clustering using grid-based large-scale
many-objective particle swarm optimization. Soft Comput. 1–22.

Prajapati, A., Chhabra, J.K., 2018. A particle swarm optimization-based heuristic for
software module clustering problem. Arab. J. Sci. Eng. 43 (12), 7083–7094.

Prajapati, A., Chhabra, J.K., 2020. Information-theoretic remodularization of
object-oriented software systems. Inf. Syst. Front. 22, 863–880.
19
Ramirez, A., Romero, J.R., Ventura, S., 2018. Interactive multi-objective evolutionary
optimization of software architectures. Inform. Sci. 463, 92–109.

Ramirez, A., Romero, J.R., Ventura, S., 2019. A survey of many-objective optimisation
in search-based software engineering. J. Syst. Softw. 149, 382–395.

Sarhan, Q.I., Ahmed, B.S., Bures, M., Zamli, K.Z., 2020. Software module clustering:
An in-depth literature analysis. IEEE Trans. Softw. Eng. 48 (6), 1905–1928.

Shi, Y., Liu, W., Zhou, Y., 2023. An adaptive large neighborhood search based approach
for the vehicle routing problem with zone-based pricing. Eng. Appl. Artif. Intell.
124, 106506.

Tajgardan, M., Izadkhah, H., Lotfi, S., 2016. Software systems clustering using
estimation of distribution approach. J. Appl. Comput. Sci. Methods 8, 99–113.

Wang, S., Ali, S., Yue, T., Li, Y., Liaaen, M., 2016. A practical guide to select quality
indicators for assessing pareto-based search algorithms in search-based software
engineering. In: Proceedings of the 38th International Conference on Software
Engineering. pp. 631–642.

Yuan, Y., Ong, Y.-S., Gupta, A., Xu, H., 2017. Objective reduction in many-objective
optimization: evolutionary multiobjective approaches and comprehensive analysis.
IEEE Trans. Evol. Comput. 22 (2), 189–210.

Yuste, J., Duarte, A., Pardo, E.G., 2022a. An efficient heuristic algorithm for software
module clustering optimization. J. Syst. Softw. 190, 111349.

Yuste, J., Pardo, E.G., Duarte, A., 2022b. Multi-objective variable neighborhood
search for improving software modularity. In: International Conference on Variable
Neighborhood Search. Springer, pp. 58–68.

Yuste, J., Pardo, E.G., Duarte, A., 2022c. Variable neighborhood descent for software
quality optimization. In: Metaheuristics International Conference. Springer, pp.
531–536.

Yuste, J., Pardo, E.G., Duarte, A., 2024. General variable neighborhood search for the
optimization of software quality. Comput. Oper. Res. 106584.

Zhang, Q., Li, H., 2007. MOEA/D: A multiobjective evolutionary algorithm based on
decomposition. IEEE Trans. Evol. Comput. 11 (6), 712–731.

http://refhub.elsevier.com/S0952-1976(24)00751-6/sb58
http://refhub.elsevier.com/S0952-1976(24)00751-6/sb58
http://refhub.elsevier.com/S0952-1976(24)00751-6/sb58
http://refhub.elsevier.com/S0952-1976(24)00751-6/sb59
http://refhub.elsevier.com/S0952-1976(24)00751-6/sb59
http://refhub.elsevier.com/S0952-1976(24)00751-6/sb59
http://refhub.elsevier.com/S0952-1976(24)00751-6/sb59
http://refhub.elsevier.com/S0952-1976(24)00751-6/sb59
http://refhub.elsevier.com/S0952-1976(24)00751-6/sb60
http://refhub.elsevier.com/S0952-1976(24)00751-6/sb60
http://refhub.elsevier.com/S0952-1976(24)00751-6/sb60
http://refhub.elsevier.com/S0952-1976(24)00751-6/sb61
http://refhub.elsevier.com/S0952-1976(24)00751-6/sb61
http://refhub.elsevier.com/S0952-1976(24)00751-6/sb61
http://refhub.elsevier.com/S0952-1976(24)00751-6/sb62
http://refhub.elsevier.com/S0952-1976(24)00751-6/sb62
http://refhub.elsevier.com/S0952-1976(24)00751-6/sb62
http://refhub.elsevier.com/S0952-1976(24)00751-6/sb62
http://refhub.elsevier.com/S0952-1976(24)00751-6/sb62
http://refhub.elsevier.com/S0952-1976(24)00751-6/sb63
http://refhub.elsevier.com/S0952-1976(24)00751-6/sb63
http://refhub.elsevier.com/S0952-1976(24)00751-6/sb63
http://refhub.elsevier.com/S0952-1976(24)00751-6/sb63
http://refhub.elsevier.com/S0952-1976(24)00751-6/sb63
http://refhub.elsevier.com/S0952-1976(24)00751-6/sb64
http://refhub.elsevier.com/S0952-1976(24)00751-6/sb64
http://refhub.elsevier.com/S0952-1976(24)00751-6/sb64
http://refhub.elsevier.com/S0952-1976(24)00751-6/sb64
http://refhub.elsevier.com/S0952-1976(24)00751-6/sb64
http://refhub.elsevier.com/S0952-1976(24)00751-6/sb65
http://refhub.elsevier.com/S0952-1976(24)00751-6/sb65
http://refhub.elsevier.com/S0952-1976(24)00751-6/sb65
http://refhub.elsevier.com/S0952-1976(24)00751-6/sb66
http://refhub.elsevier.com/S0952-1976(24)00751-6/sb66
http://refhub.elsevier.com/S0952-1976(24)00751-6/sb66
http://refhub.elsevier.com/S0952-1976(24)00751-6/sb66
http://refhub.elsevier.com/S0952-1976(24)00751-6/sb66
http://refhub.elsevier.com/S0952-1976(24)00751-6/sb67
http://refhub.elsevier.com/S0952-1976(24)00751-6/sb67
http://refhub.elsevier.com/S0952-1976(24)00751-6/sb67
http://refhub.elsevier.com/S0952-1976(24)00751-6/sb68
http://refhub.elsevier.com/S0952-1976(24)00751-6/sb68
http://refhub.elsevier.com/S0952-1976(24)00751-6/sb68
http://refhub.elsevier.com/S0952-1976(24)00751-6/sb69
http://refhub.elsevier.com/S0952-1976(24)00751-6/sb69
http://refhub.elsevier.com/S0952-1976(24)00751-6/sb69
http://refhub.elsevier.com/S0952-1976(24)00751-6/sb70
http://refhub.elsevier.com/S0952-1976(24)00751-6/sb70
http://refhub.elsevier.com/S0952-1976(24)00751-6/sb70
http://refhub.elsevier.com/S0952-1976(24)00751-6/sb71
http://refhub.elsevier.com/S0952-1976(24)00751-6/sb71
http://refhub.elsevier.com/S0952-1976(24)00751-6/sb71
http://refhub.elsevier.com/S0952-1976(24)00751-6/sb72
http://refhub.elsevier.com/S0952-1976(24)00751-6/sb72
http://refhub.elsevier.com/S0952-1976(24)00751-6/sb72
http://refhub.elsevier.com/S0952-1976(24)00751-6/sb73
http://refhub.elsevier.com/S0952-1976(24)00751-6/sb73
http://refhub.elsevier.com/S0952-1976(24)00751-6/sb73
http://refhub.elsevier.com/S0952-1976(24)00751-6/sb74
http://refhub.elsevier.com/S0952-1976(24)00751-6/sb74
http://refhub.elsevier.com/S0952-1976(24)00751-6/sb74
http://refhub.elsevier.com/S0952-1976(24)00751-6/sb74
http://refhub.elsevier.com/S0952-1976(24)00751-6/sb74
http://refhub.elsevier.com/S0952-1976(24)00751-6/sb75
http://refhub.elsevier.com/S0952-1976(24)00751-6/sb75
http://refhub.elsevier.com/S0952-1976(24)00751-6/sb75
http://refhub.elsevier.com/S0952-1976(24)00751-6/sb76
http://refhub.elsevier.com/S0952-1976(24)00751-6/sb76
http://refhub.elsevier.com/S0952-1976(24)00751-6/sb76
http://refhub.elsevier.com/S0952-1976(24)00751-6/sb76
http://refhub.elsevier.com/S0952-1976(24)00751-6/sb76
http://refhub.elsevier.com/S0952-1976(24)00751-6/sb76
http://refhub.elsevier.com/S0952-1976(24)00751-6/sb76
http://refhub.elsevier.com/S0952-1976(24)00751-6/sb77
http://refhub.elsevier.com/S0952-1976(24)00751-6/sb77
http://refhub.elsevier.com/S0952-1976(24)00751-6/sb77
http://refhub.elsevier.com/S0952-1976(24)00751-6/sb77
http://refhub.elsevier.com/S0952-1976(24)00751-6/sb77
http://refhub.elsevier.com/S0952-1976(24)00751-6/sb78
http://refhub.elsevier.com/S0952-1976(24)00751-6/sb78
http://refhub.elsevier.com/S0952-1976(24)00751-6/sb78
http://refhub.elsevier.com/S0952-1976(24)00751-6/sb79
http://refhub.elsevier.com/S0952-1976(24)00751-6/sb79
http://refhub.elsevier.com/S0952-1976(24)00751-6/sb79
http://refhub.elsevier.com/S0952-1976(24)00751-6/sb79
http://refhub.elsevier.com/S0952-1976(24)00751-6/sb79
http://refhub.elsevier.com/S0952-1976(24)00751-6/sb80
http://refhub.elsevier.com/S0952-1976(24)00751-6/sb80
http://refhub.elsevier.com/S0952-1976(24)00751-6/sb80
http://refhub.elsevier.com/S0952-1976(24)00751-6/sb80
http://refhub.elsevier.com/S0952-1976(24)00751-6/sb80
http://refhub.elsevier.com/S0952-1976(24)00751-6/sb81
http://refhub.elsevier.com/S0952-1976(24)00751-6/sb81
http://refhub.elsevier.com/S0952-1976(24)00751-6/sb81
http://refhub.elsevier.com/S0952-1976(24)00751-6/sb82
http://refhub.elsevier.com/S0952-1976(24)00751-6/sb82
http://refhub.elsevier.com/S0952-1976(24)00751-6/sb82

	Multi-objective general variable neighborhood search for software maintainability optimization
	Introduction
	Literature review
	Problem definition
	Algorithmic proposal
	Constructive procedure
	Multi-Objective Shake procedure
	Multi-Objective Variable Neighborhood Descent

	Advanced strategies
	Efficient evaluation of the quality of an efficient point
	Reduction of the size of the neighborhoods

	Experiments
	Quality indicators
	Comparison of shake procedures
	Comparison of different values for kmax
	Influence of the incremental evaluation
	Influence of the reduction of the size of the neighborhoods
	Contribution of the objectives
	Comparison with the state of the art
	Analysis of Pareto fronts generated by the compared methods for pairs of objectives
	Discussion about the key strategies proposed

	Conclusions and future work
	CRediT authorship contribution statement
	Declaration of competing interest
	Data availability
	Acknowledgments
	Appendix. Dataset
	References

