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Abstract

The Bi-Objective Multiple Row Equal Facility Layout Problem considers
both quantitative and qualitative objectives that are very useful in many
scenarios like the factory design. In this work, a new multi-objective GRASP
approach is proposed which applies an ensemble of four different construc-
tive methods followed by the combination of two local search procedures,
improving the results from the state of the art. Due to the superiority of this
proposal, a new dataset of larger problem instances is generated, providing
detailed metrics of the obtained solutions.

Keywords: Metaheuristics, GRASP, Facility location, Row layout,
Bi-objective optimization

1. Introduction

Facility Layout Problems (FLPs) are a well-known family of problems
in the operational research area. The main objective of FLP is to find the
optimal placement of different facilities in a given layout trying to minimize
a particular objective function [1]. This family of problems has a number5

of applications in very different domains, such as manufacturing systems
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of[2], delivery service [3], layout of logistics facilities [4], or urban and office

planning [5].
The very first work addressing FLP was proposed in 1969 by [6], which

studied the Single Row Facility Layout Problem (SRFLP). The main char-10

acteristic of this problem is that the layout where the facilities have to be
placed is just a single row. However, there exist several variants of this prob-
lem when considering row layouts, depending on different features such as
the number of rows, the area of the facilities, or the possibility of allowing
spaces between facilities.15

The majority of the works found in the literature consider a single objec-
tive function corresponding to or related to material handling cost between
facilities [7, 8, 9, 10]. However, this quantitative metric is not the only one
that could be taken into account. Some other qualitative metrics could be
considered, like the closeness rating or the hazardous movement of material20

[11, 12]. In a realistic scenario of designing a factory, a decision maker could
receive this way different alternative solutions with different values for the
objective functions taken into account.

In this paper, we address a multi-objective problem from the FLP family,
the Bi-Objective Multi-Row Equal Facility Layout Problem (BO-MREFLP).25

This problem considers two objective functions: the material handling cost
and the closeness rating. The BO-MREFLP is a variant of the Multi-Row
Equal Facility Layout Problem (MREFLP), where facilities have the same
area and more than two rows are considered in the layout [9]. As it will be
later detailed, the number of rows and the number of facilities that must be30

located in each row are also constraints of the BO-MREFLP.
We can find in the literature two different approaches for the BO-MREFLP.

On the one hand, the optimization of a combined objective function using
heuristics is applied in many works [13, 14, 15, 16, 17, 18, 19, 11]. On the
other hand, a multi-objective optimization approach is only proposed in [11],35

which returns a number of non-dominated solutions as a result for each in-
stance. This problem was firstly addressed in [13]. The author implemented
a heuristic method that combines both approaches: the heuristic uses a set
of non-dominated solutions, with the weights of each objective fixed. As a
result, efficient layouts are given but the times are not reported for the unique40

instance studied, with six facilities. In [14], another heuristic based on the
exchange move is proposed. This work studies two different instances, with
six and eight facilities. Once again, efficient layouts are given, but execution
times are not reported. A heuristic approach based on pairwise exchange
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ofis implemented in [15]. Three different instances with sizes six, eight and45

twelve facilities are studied, comparing their results with the previous pa-
pers, obtaining similar results, but in a single iteration of the algorithm. In
[16], a heuristic with a construction phase and an improvement method is
proposed. Four instances are studied with six, eight, twelve and thirty six
facilities, improving the results of the previous papers. In addition, the exe-50

cution time for the largest instance is reported. In [17], a heuristic approach
is implemented, based on the proposals of [14] and [15]. Four instances with
eight, twelve, fifteen, and twenty instances are studied. The authors detail
each combination of weights they have used, the percentage improvement
ratio, and execution times. Since this is the most detailed paper in terms of55

description of instances, we have taken it as a baseline in order to generate
the new instances. In [19], a three-stage heuristic is proposed. The first stage
consists of matrix normalization. The second stage consists of discovering
the weights of the objectives. For this purpose, the Mean Weight Method
(MWM), the Geometric Mean Weight Method (GMWM), the Standard De-60

viation Weight Method (SDWM), and the Critical Importance Through Inter
Criteria Correlation Method (CRITICM) are implemented. The third stage
is the resolution through their proposed methods. They have reported the
results for each method but the time for the four studied instances with
six, eight, twelve, and fifteen facilities. In [18], a metaheuristic approach is65

proposed. Specifically, a Simulated Annealing is implemented, which is run
on four instances with six, eight, twelve, and fifteen facilities. The authors
report efficient solutions and execution times, as well as a comparison with
previous works. In [11], the authors have applied a weight-based approach
through a Biogeography-Based Optimization (BBO) algorithm, using the70

weights proposed in the literature. Also, they have applied a multi-objective
optimization approach through a NSBBO and a NSGA-II algorithms, where
NSBBO stands for Non-dominated Sorting BBO. Efficient solutions are given
for instances with six, eight, twelve, and fifteen facilities, but the execution
times are not reported. Up to our knowledge, this is the only study where75

a set of non-dominated solutions is produced considering the material han-
dling cost and the closeness rating as objectives. In this work, we use this
last multi-objective approach to tackle the BO-MREFLP problem.

In this paper, we have designed a Greedy Randomized Adaptive Search
Procedure (GRASP) that follows a multi-objective approach. The contribu-80

tions of this proposal are both theoretical and practical. Firstly, we propose
the combination of four different constructive methods to produce an initial
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ofset of diverse non-dominated solutions. The balance between the different

methods is determined by input parameters whose value can be adapted. We
have designed a new local search method that combines both a dominance-85

based approach and an alternation of objectives in the context of the tackled
bi-objective problem. Again, this method allows different configurations,
guided by parameters. In this way, it is possible to determine the width and
depth of the search process. Finally, from the practical point of view, after
tuning the parameters of our proposed method, we have improved the results90

from the state of the art. Hence, we provide a new set of larger instances, as
well as the detailed results obtained with our proposal, and two evolutionary
methods.

The structure of the paper is the following: Section 2 formally describes
the target problem; Section 3 details the algorithmic approach we have used95

in this work; Section 4 shows the comparison between our results and the
state of the art, proposing new instances and results for future comparisons;
Section 5 analyzes the managerial implications and; finally, Section 6 draws
the conclusions and future work.

2. Problem description100

Most of the works in the literature dealing with facility layout problems
only consider one quantitative objective involving the material handling cost
or work flow between facilities. However, in a real-world scenario, there exist
also other qualitative objectives, such as closeness rating, hazardous move-
ment, or safety between facilities, which may affect the optimal layout. Then,105

the Bi-Objective Multi-Row Equal Facility Layout Problem (BO-MREFLP)
takes into account both qualitative and quantitative objectives. Specifically,
BO-MREFLP is a NP-hard optimization problem that consists in finding
an optimal arrangement of rectangular facilities in several rows considering
both objectives, material handling cost (MHC ) and closeness rating (CR),110

simultaneously [11].
Following the definitions of the previous works, CR represents different

levels of proximity between facilities, which are desirable for an optimal lay-
out. These levels are developed according to different criteria, such as facili-
ties/departments using the same equipment/personnel, sequence of workflow,115

ease of communication, unsafe or unpleasant conditions, etc. Typically, five
different levels of proximity between facilities can be used, indicating whether
it is especially important (E), important (I), ordinary (O), unimportant (U)
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ofor undesirable (X) for departments/facilities to be close together [17]. In

[15], the authors also consider another level of proximity, absolutely neces-120

sary (A). Then, the closeness rating is also computed as the total weighted
sum of the center-to-center distances between each pair of facilities, being
the corresponding weight between facilities a numerical score assigned to
each level of proximity: A=5, E=4, I=3, O=2, U=1 and X=-1. However,
we focus or work on the five levels of proximity (E=4, I=3, O=2, U=1 and125

X=-1), as proposed in [17], since this approach is followed by the current
state of the art of the studied problem [11].

Futhermore, an instance of the BO-MREFLP consists of a set F of n facil-
ities, the number of available rows, m, and two squared matrices WMHC and
WCR (|F |× |F |) of pairwise weights, wuv, representing the material handling130

cost and the closeness rating between two facilities u, v ∈ F , respectively.
Therefore, an instance I is defined by a 4-tuple I = (F,m, WMHC, WCR).

In the BO-MREFLP all the facilities have the same length L and height
H, which, for the sake of simplicity, can be considered equal to 1. Hence,
given a set of n facilities to be allocated in m rows, the number of facilities135

per row is fixed, and determined by c = n/m.
Let Π = {(i, j) : 1 ≤ i ≤ m, 1 ≤ j ≤ c} be the set of all the available

positions of the grid (m×c) to allocate one solution (see Figure 1). A solution
of this optimization problem can be described as a mapping φ : F → Π that
assigns the set of facilities F to the corresponding layout with m rows and140

c columns. Specifically, for a facility u ∈ F , φ(u) = (i, j) indicates that u is
allocated in row i (with 1 ≤ i ≤ m) and column j (with 1 ≤ j ≤ c).

H (1,1) (1,c)(1,2)

(2,1) (2,2)

(m,c)

(2,c)

(m,1)

(i , j)

L

Figure 1: Grid with m rows and c columns to allocate n facilities of size L×H.

Then, given a solution φ, both MHC and CR objectives are computed
taking into account the pairwise weights and Manhattan distances between

5
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ofeach pair of facilities u and v, located in positions (i, j) and (k, l) respectively,145

as it is shown in equations (1) and (2).

F(φ,W ) =
∑

u,v∈F
u<v

wuv · duv(φ)
(1)

duv(φ) = L · |l − j|+H · |k − i| (2)

The BO-MREFLP consists in minimizing both objectives, F1(φ) = F(φ,
WMHC) and F2(φ) = F(φ, WCR) at the same time. Hence, it can be math-
ematically formulated as shown in Equation (3), where Φ is the set of all
feasible facility layouts.150

φ⋆ ← argmin
φ∈Φ

[F1(φ) , F2(φ) ] (3)

3. Greedy Randomized Adaptive Search Procedure

The Greedy Randomized Adaptive Search Procedure (GRASP) method-
ology [20] consists of two main steps: a first phase, where a feasible solution
is constructed by iteratively adding new elements to an initial empty solu-
tion; and a second phase, which tries to improve the incumbent solution by155

some local search procedure. This methodology has been thoroughly used
for bi-objective problems. Pareto dominance in GRASP has been considered
in many different problems like scheduling [21, 22] and facility layout [23].
In this latter case, studying a very different scenario than the current prob-
lem, since it deals with continuous clearances between facilities . However,160

the majority of the GRASP proposals combine the objectives of the problem
into one function to optimize in both phases, as in the recent [24]. Other
approaches try to take advantage of the exploration of each one of the ob-
jectives separately in the improvement phase, joining the obtained solutions
with a different method like Path Relinking [25, 26].165

In this work, we adapt the GRASPmethodology to solve the BO-MREFLP
by considering the two objectives at the same time by means of the domi-
nance in both phases of the methodology. Therefore, instead of having one
solution, a set of non-dominated solutions will be considered.

6
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In order to explain the selected encoding for the solutions of the problem,
we use an example instance with 15 facilities and 3 rows. We illustrate in
Figure 2 the solution encoded in the form of a matrix, which is the one we
selected for this work. As seen, the first row (row1) is accentuated in red,
the second row (row2) in green, and the third row (row3) is delineated in175

blue. Within this matrix representation, the initial facility, numbered 15,
is positioned in row1 and the first column. Conversely, facility 6 is located
in row3 and occupies the fifth column. Notice that the rows are naturally
differentiated in the matrix, as in the case of Figure 1.

15 11 4 14 5
3 13 8 12 10
1 7 9 2 6

row1
row2
row3

Figure 2: Matrix representing a solution with 15 facilities and 3 rows.

Similarly, a linear representation of the matrix will be equivalent, since180

the number of rows and the number of facilities per row is a data fixed by
the instance. In fact, we use a linear representation for the chromosomes in
the evolutionary methods that are described in Section 4.4.

3.2. Bi-objective GRASP

In a single-objective optimization problem, two solutions φa and φb can185

be directly compared attending to their objective function value. Specifically,
in a minimization problem, φa is better than φb if F(φa) < F(φb). However,
in multi-objective problems this comparison is not as straightforward since
it is necessary to check all the objective functions. Again, assuming that we
minimize all the k objectives, a solution φa dominates another solution φb190

(denoted as φa ≺ φb) if the following conditions are satisfied:

∀i ∈ {1..k} : Fi(φa) ≤ Fi(φb)

∧ ∃i ∈ {1..k} : Fi(φa) < Fi(φb)
(4)

If there is no solution φ ∈ Φ which dominates φ′ ∈ Φ it is said that φ′

is a non-dominated or efficient solution. The Pareto Optimal Set (or sim-
ply Pareto Front) is the set of all non-dominated solutions φ′ in the entire

7
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lem consists in generating an initial set of non-dominated solutions (ND)
and iteratively improving it until the entire Pareto Front is found or a given
termination condition is met.

Algorithm 1 shows our multi-objective GRASP proposal to tackle this
problem. The algorithm has 5 parameters: α, which controls the random-200

ness/greediness of the constructive procedures; B, a set of percentages βi

which determine the use of each constructive method; nc, the total number
of iterations of the constructive phase; γ, which controls the balance of itera-
tions among the local search methods in the improvement phase; and nls, the
total number of iterations of the improvement phase. The algorithm begins205

in step 1 by populating an initial set of non-dominated solutions ND using all
the available constructive procedures (Section 3.3). Then, steps 2 to 5 try to
approximate ND to the Pareto Front by sequentially applying two different
local search strategies. A first one, DBLS, which stands for Dominance Based
Local Search (Section 3.4.1), executed γ · nls times, and a second one, AOLS,210

which stands for Alternate Objectives Local Search (Section 3.4.2), executed
(1 − γ) · nls times. The final set of non-dominated solutions is returned in
step 6.

Algorithm 1: BO-GRASP(α,B, nc, γ, nls)

1 ND ← Constructive(α,B, nc) ▷ Section 3.3
2 for i = 1 to γ · nls do
3 ND ← DBLS(ND) ▷ Section 3.4.1

4 for i = 1 to (1− γ) · nls do
5 ND ← AOLS(ND) ▷ Section 3.4.2

6 return ND

Under this scheme, we will test in Section 4.2 another variant of this
proposal which modifies the order where DBLS and AOLS local searches are215

executed. For the shake of brevity, we do not include here the pseudo-code,
since it is almost the same as Algorithm 1 but executing steps 4 and 5 before
steps 2 and 3.

Notice that a set of non-dominated solutions ND is returned after the
execution of each method in steps 1, 3 and 5 of Algorithm 1. So, in order220

to maintain ND, every time a new solution φ′ is reached in any of these
methods, a procedure Update is called. If some solution φ ∈ ND dominates

8
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dominate φ′, the Update procedure incorporates φ′ into ND, and checks if
there exist other solutions φ ∈ ND dominated by φ′, removing all dominated225

solutions from ND.

3.3. Constructive methods

In this work, we propose the combination of four different constructive
strategies C1, C2, C3, and C4, based on the constructive procedures described
in [9] for the MREFLP. C1 is a Greedy-Random constructive strategy whose230

aim is to minimize the MHC objective. C2 is similar to C1 but interchanging
the phases from Greedy-Random to Random-Greedy, as proposed in [27].
Similarly to C1 and C2, C3 and C4 minimize the CR objective under the
Greedy-Random and Random-Greedy approaches.

In order to favor the diversification of the search, all C1 to C4 begin ran-235

domly filling the first column of a new solution φp. Then, they iteratively
include new facilities, one at a time, to the first available position (i, j) of
the partial solution with less than n facilities. With the aim of building good
quality solutions, all the methods select the facility u to be included in each
iteration according to the greedy function g shown in Equation (5). Notice240

that this function is similar to the objective function shown in Equation (1)
but only computing the contribution of the new facility u to the partial solu-
tion φp. Following their above definition, C1 and C2 will use g(φp,WMHC , u)
while C3 and C4 will use g(φp,WCR, u).

g(φp,W, u) =
∑
v∈φp

wuv · duv(φp) (5)

As stated before, the proposed constructive method will consider the four245

constructive strategies. It is important to keep in mind that our constructive
methods are based on the GRASP methodology. Methods C1 and C3 use a
Greedy-Random scheme, where the candidate list is made up of candidates
that have exceeded a certain threshold determined by the best and worst
solution and α. In this case, α changes the threshold to select candidates250

in a more greedy or random way. Methods C2 and C4 follow a Random-
Greedy scheme, where the candidate list is generated by elements selected
at random. In this case, the α parameter controls the size of the candidate
list. For both schemes, we need to evaluate the candidate elements using
the greedy function defined in Equation (5). Algorithm 2 shows the pseudo-255

code of the proposed constructive procedure to populate the initial ND set

9
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0)/greediness(α = 1) of the constructive procedures; B, a set of percentages
βi which determine the use of each constructive method; and nc, the total
number of iterations of the constructive phase. The algorithm starts by260

creating in step 1 an empty set of non-dominated solutions ND. Then, it
begins a loop, from step 2 to step 5 where, for each constructive method
Ci, builds nc · βi solutions using the α parameter (steps 3 and 4) to update
the current set of non-dominated solutions in step 5. Finally, the algorithm
returns ND in step 6. The final value for each βi parameter, together with265

the value of α balancing the randomness/greediness of all Ci methods, will
be experimentally selected, as explained in Section 4.2.

Algorithm 2: Constructive(α,B, nc)

1 ND ← ∅
2 for βi ∈ B do
3 repeat nc · βi times
4 φ← Ci(α)
5 ND ← Update(ND , φ)

6 return ND

Figure 3 graphically shows the sets of non-dominated solutions (ND) that
can be obtained by combining the four constructive methods using α = 0 or
α > 0. Right upper corner shows the set ND which is expected to be obtained270

when using all the Ci methods with α = 0. Since α = 0 means a purely
random strategy for generating new solutions, the solutions in this set will
have poor quality in both MHC and CR objectives. However, by increasing
the value of α the solutions generated with C1/C2 or C3/C4 will tend to
improve the solution quality regarding MHC or CR, respectively. Moreover,275

the higher the α value, the more concentrated will be the solutions at the
edges of the ND set, which could mean a loss of diversity on the initial ND
set of solutions. Hence, as we will see in the experimental part, values of
α around 0.5 achieve a good compromise between the desired quality and
diversity on the initial set of ND solutions.280

3.4. Local search

The second stage in a GRASP method consists in improving the solution
generated in the constructive phase by applying a local search procedure,

10
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CR

MHC

Figure 3: Sets of non-dominated solutions produced by the constructive methods Ci with
α = 0 or α > 0.

which systematically explores the neighborhood of the incumbent solution.
To this end, we define the neighborhood based on exchange. Figure 4 shows285

the effect of an exchange move, where two facilities u and v (A and I in
the example) interchange their positions in the layout φ, resulting in a new
neighbor solution φ′. We denote this move as φ′ ← exchange(φ, u, v).

F C

E

H

G I

B

D

G

L J

K

F C

E A

H

G

I

B

D

G

L J

K

A

Figure 4: Effect of an exchange move. Original solution (left) and the resulting layout
after the exchange move (right).

Once a neighborhood is created with the exchange move, there exist two
typical strategies to explore it: best improvement and first improvement. The290

best improvement strategy explores all of the solutions in the neighborhood
by a fully deterministic procedure, and the best move (i.e., the one that leads
to a solution φ′ with minimum associated cost) is applied at each iteration.

11
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complexity of the best improvement strategy by exploring the neighborhood295

and performing the first move that enhances the current best cost. In this
work, we adopt a hybrid strategy, which combines the best and first improve-
ment strategies [9]. Hence, it selects one facility u ∈ F at random, and then
it explores all the possible exchange moves with the rest of facilities v ∈ F ,
v ̸= u. If no improvement is encountered, the method continues exploring all300

the possible exchange moves from a new facility u′ ∈ F , u′ ̸= u. Otherwise,
the move φ′ ← exchange(φ, u, v) is applied and the local search continues
exploring a new neighborhood from φ′.

As shown in Algorithm 1, our GRASP proposal for this bi-objective prob-
lem uses two different approaches in the local search stage, one based on dom-305

inance between solutions (DBLS) and other one based on a mono-objective
local search along each objective (AOLS). Next, we describe both procedures.

3.4.1. Dominance-based local search

The first local search algorithm is based on the concept of dominance since
it only performs moves that lead to solutions not dominated by the current310

one [28]. Algorithm 3 shows the pseudo-code of the DBLS local search. It tries
to improve the incoming non-dominating set of solutions ND by exploring
the neighborhoods generated with exchange moves using the hybrid strategy
explained above.

The algorithm starts by initializing the best non-dominating set of so-315

lutions ND⋆ with ND. Then, it iterates for each solution φ ∈ ND through
steps 2 to 20. Steps 3 and 4 initialize φ∗ and improve. Then, the inner
loop executes while some improvement can be made on ND⋆ (steps 5 to 20).
Before exploring the exchange neighborhood, we do copy ND⋆ into ND ′ in
step 7, and select φ⋆ as the current solution for the exploration, φ′, in step320

8. The GetFacilities method used in step 9 of the algorithm returns all
the facilities of a set (F ), which are stored in Sv. In step 10, the Shuffle

method creates a copy of a list (Sv) and returns it in randomly arranged order
(Su). We employ these lists (Sv and Su) to execute every potential exchange
between the facilities. After a neighbor solution φ′′ is generated in step 13,325

ND ′ is updated with φ′′ in step 14, since there could be other solutions in
ND ′ also dominated by φ′′. Besides, if φ′′ dominates φ∗ (step 15), then φ⋆

is updated with φ′′ (step 16). Notice that this solution will be the starting
solution in the next iteration of the outer loop, generating a new trajectory
for the explored solution. Once all the possible exchange moves from v are330

12
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means that new non-dominated solutions have been added to ND ′ in step 14.
In that case, the incumbent set of non-dominated solutions ND⋆ is updated
in step 19, and the process continues exploring a new neighborhood from
solution φ′ (steps 18 and 20). Finally, the algorithm returns the best set of335

non-dominated solutions ND⋆ in step 21.

Algorithm 3: Dominance Based Local Search DBLS(ND)

1 ND⋆ ← ND
2 for φ ∈ ND do
3 φ∗ ← φ
4 improve← true

5 while improve do
6 improve← false

7 ND ′ ← ND⋆

8 φ′ ← φ⋆

9 Sv ← GetFacilities(F )
10 Su ← Shuffle(Sv)
11 for u ∈ Su do
12 for v ∈ Sv ∧ v ̸= u do
13 φ′′ ← exchange(φ′, u, v)
14 ND ′ ← Update(ND ′, φ′′)
15 if (φ′′ ≺ φ⋆) then
16 φ⋆ ← φ′′

17 if ND ′ ̸= ND⋆ then
18 improve← true

19 ND⋆ ← ND ′

20 break

21 return ND⋆

3.4.2. Alternate objectives local search

The second local search algorithm follows a different approach than DBLS.
Instead of considering both F1 and F2 objectives at the same time to check
if the move is accepted, AOLS executes two independent single-objective local340

searches considering either F1 or F2, following the hybrid approach described
in [9]. In this method, the first improvement and best improvement strategies
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Again, it starts by initializing the best set of non-dominated solutions ND⋆

with ND. Then, it iterates for each solution φ ∈ ND through steps 2 to345

6. In steps 3 and 4 AOLS tries to improve the solution φ with the hybrid
LocalSearch procedure described in [9], attending to either F1 or F2, re-
spectively. Then, steps 5 and 6 update ND⋆ with the obtained solutions.
Finally, the algorithm returns the set of non-dominated solutions in step 7.

Algorithm 4: Alternate Objectives Local Search
AOLS(ND)

1 ND⋆ ← ND
2 for φ ∈ ND do
3 φ1 ← LocalSearch(φ,F1)
4 φ2 ← LocalSearch(φ,F2)
5 ND⋆ ← Update(ND⋆, φ1)
6 ND⋆ ← Update(ND⋆, φ2)

7 return ND⋆

3.4.3. Ensemble of methods350

As shown in Algorithm 1, we propose the combination of the two local
search methods by means of a γ parameter. This idea allows a different
exploration of the search space more adequate to the multi-objective version
of the problem than to the single-objective one.

Figure 5 graphically shows the effect of the combination of DBLS and AOLS355

procedures executed over the same initial set of non-dominated solutions
ND generated using all the constructive procedures with α > 0. Figure
5(a) shows how the initial ND set will evolve when using DBLS. Since this
method is based on dominance, it will tend to improve both objectives at the
same time populating the central part of the ND set. On the other hand,360

Figure 5(b) shows how the AOLS will improve one of the objectives (MHC
or CR) populating the more extreme parts of the ND set. Therefore, the
combination of both DBLS and AOLS procedures should be a good strategy
to get a populated set of quality non-dominated solutions without losing the
solutions located at the edges, as suggested in Figure 5(c).365

14



Journal Pre-proof
Jo
ur

na
l P

re
-p

ro
of

CR

MHC

CR

MHC

CR

MHC

(b)(a)

(c)

Figure 5: Effect of the DBLS (a) and AOLS (b) procedures executed over the same initial
set of non-dominated solutions ND generated using all the constructive procedures with
α > 0; and (c), the expected set ND combining both DBLS and AOLS procedures.
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This section is devoted to show the experimental results of our proposal.
In this regard, since the previous work only studied 4 instances [11], we have
extended the dataset with 56 additional instances, making a total number of
60 studied instances. We consider these instances to be useful to the scientific370

community for future research.
In order to speed up our algorithms, we use the efficient local search

proposed in [8]. This efficient local search has been adapted to both objective
functions, which, combined with the different mechanisms of the new multi-
objective approach, allowed us to save, on average, 60% of computation time375

in the benchmark instances, reaching 80% in the largest instances. We omit
these experiments for the sake of space. Notice that the efficient computation
is not a contribution of this work, but the application of a previous work to
a new problem.

Our algorithms have been implemented in Java 17 and the experiments380

have been executed on a Windows 10 laptop provided with an Intel i7 1065G7
processor running at 1.3GHz with 16GB of RAM. All the code, instances,
and detailed results are available in https://grafo.etsii.urjc.es/en/

BO-MREFLP.

4.1. Generation of new instances385

As stated in Section 1, many single-objective problems from the FLP
family have been studied in the literature. Therefore, in order to enlarge
the dataset for the BO-MREFLP, we have taken a set of instances from the
MREFLP, which already included data for the MHC objective, and we have
incorporated them an additional matrix for the CR.390

More precisely, we expanded 56 instances from [9] with sizes up to 60. To
this aim, we studied the CR matrices of the 4 instances from [11] and found
out that their values were randomly generated using the interval [−1, 4], con-
sidering these values as a penalty to minimize as stated in [17]. A similarly
created matrix can be found in that work, where the previous instance with395

size 8 appears for the very first time. Therefore, we added randomly gener-
ated matrices using integer numbers in [−1, 4] for the CR objective (F2) to
the 56 selected instances.

We represent in Table 1 the features of the whole set of 60 instances.
For each one, the number of rows (m), the number of columns (c), and400

total number of facilities to be located (n) is presented. Instances previous6,
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in [11], while the rest of the instances are the expanded ones. It is worth
noticing that this problem requires c = n/m facilities to be located in each
row.405

4.2. Preliminary experiments

To determine the best configuration and parameter values of our proposal,
we have used an automatic configuration tool on a representative subset of
instances which we call benchmark instances. In this regard, we have selected
9 representative instances (15%) using the method proposed in [29] with a410

90% PCA ratio and the suggested features for both the MHC and the CR
matrices. The selected benchmark instances are highlighted in bold font in
Table 1.

Once the benchmark instances are selected, the values for the parameters
of the proposed algorithm were also automatically obtained. In this way,415

we used irace, a tool based on the iterated F-race method, able to obtain
the best parameter values according to this statistical process [30, 31]. For
each parameter configuration, the quality of the execution will be measured
with the hypervolume which, as we will explain in Section 4.3, is the only
multi-objective metric that does not require an additional reference set of420

solutions.
As we describe in Algorithm 1, our proposal requires parameter values for

nc and nls. These parameters are not fixed by irace but for us because, since
they influence the execution time by incrementing the number of iterations
of the algorithm, irace will always try to make them as high as possible.425

Hence, in order to limit the execution time, we set nc = 100 and nls = n,
where n is the size of the instance.

The parameters configured by irace are shown in Table 2. As seen, the
first column (Parameter) indicates the parameter to configure, the second
column (Type) is the type of parameter, the third column (Range) is the430

range of values of the parameter, and the fourth column (Constraint) in-
dicates if the parameter has any additional constraint. Notice that all our
parameters are real values in [0.00, 1.00] using two decimal symbols but the
LS parameter. We use parameter α to configure how greedy or random we
select candidates in our GRASP. Furthermore, there is a constraint named435

R1 for the parameters β1 to β4. This constraint means that the sum of these
parameters must be equal to 1. The reason behind this constraint is that βi

are the percentage of use of each constructive. As we explained before, we
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Table 1: Instances and their features. Instances included in the training set are depicted
in bold.

Instance m c n Instance m c n

previous6 2 3 6 previous12 3 4 12
previous8 2 4 8 previous15 3 5 15
A-10-10 2 5 10 A-20-30 4 5 20
A-10-20 2 5 10 A-20-40 4 5 20
A-10-30 2 5 10 A-20-50 4 5 20
A-10-40 2 5 10 A-20-60 4 5 20
A-10-50 2 5 10 A-20-70 4 5 20
A-10-60 2 5 10 A-20-80 4 5 20
A-10-70 2 5 10 A-20-90 4 5 20
A-10-80 2 5 10 N-20 4 5 20
A-10-90 2 5 10 O-20 4 5 20
0-10 2 5 10 S-20 4 5 20
Y-10 2 5 10 Y-20 4 5 20
A-12-10 2 6 12 A-25-10 5 5 25
A-12-20 2 6 12 A-25-20 5 5 25
A-12-30 2 6 12 A-25-30 5 5 25
A-12-40 2 6 12 A-25-40 5 5 25
A-12-50 2 6 12 A-25-50 5 5 25
A-12-60 2 6 12 A-25-60 5 5 25
A-12-70 2 6 12 A-25-70 5 5 25
A-12-80 2 6 12 A-25-80 5 5 25
A-12-90 2 6 12 A-25-90 5 5 25
S-12 2 6 12 S-25 5 5 25
Y-12 2 6 12 Y-25 5 5 25
N-15 3 5 15 Y-30 5 6 30
0-15 3 5 15 Y-35 5 7 35
S-15 3 5 15 Y-40 5 8 40
Y-15 3 5 15 Y-45 5 9 45
A-20-10 4 5 20 Y-50 5 10 50
A-20-20 4 5 20 Y-60 6 10 60
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More formally:440

|β|∑

i=1

βi = 1

We also use a parameter denoted as γ, which balances the use of the two
available types of local search methods (see Section 3.2). For parameter LS
we have two possible values: DA or AD. DA stands for dominance-based
local search (DBLS) followed by alternate objectives local search(AOLS). AD
is the other way around. Taking one value or another indicates the order in445

which the local search will be executed (see Section 3).

Table 2: Overview of the parameters obtained with irace

Parameter Type Range Constraint

α real [0.00, 1.00] -
β1 real [0.00, 1.00] R1
β2 real [0.00, 1.00] R1
β3 real [0.00, 1.00] R1
β4 real [0.00, 1.00] R1
γ real [0.00, 1.00] -
LS categorical [DA, AD] -

Table 3 shows the results provided by irace. Notice that each row of the
table corresponds to a configuration of parameter values generated by irace.
These configurations are listed from best to worst according to irace. As
seen in the table, α takes values that are closely related to the values for450

the β parameters. For the two highest values of α, very close, and shown
in configurations #1 and #3, the values of the four different β are also
similar. In the same way, configurations #2 and #4, with smaller values
of α, present a similar distribution of the β values. In all the cases, the
participation of all the constructive methods is necessary, according to the455

obtained β values. It is also observed that γ reaches high values, which means
that the algorithm mostly depends on the intensification performed by the
DBLS search. However, some iterations of AOLS are always needed, since this
method performs a wider exploration in the edges of the front. Finally, in
the last column we can observe that the order AD is preferable to DA, which460
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preferred to the other way around.

Table 3: Overview of the configurations produced from irace

Config. α β1 β2 β3 β4 γ LS

#1 0.43 0.03 0.46 0.32 0.19 0.92 AD
#2 0.14 0.29 0.27 0.13 0.31 0.90 AD
#3 0.44 0.03 0.44 0.33 0.20 0.92 AD
#4 0.19 0.12 0.19 0.12 0.57 0.75 AD

Since the proposed four configurations are different, we will use all of
them for both the comparison with the state of the art, and the solution of
the proposed new instances. From this point on, we denote configuration #i465

in Table 3 as GRASPi.

4.3. Comparison with state of the art

In this section we compare the sets of non-dominated solutions obtained
with the four GRASP configurations of our proposal shown in the previous
section, with the results from [11]. Firstly, we will perform a graphical com-470

parison of the obtained solutions. In this way, the plots will denote the results
from [11] as NSBBO and NSGA-II, since those are the algorithms that the
previous authors proposed. Our solutions will be denoted asGRASPi for each
configuration. The plots will show both objective functions, MHC and CR,
in x-axis and y-axis respectively. It is worth noticing that, in the next four475

instances, our four configurations for the algorithm have several solutions in
common. As result, the plots will show some overlapped solutions.

Figure 6 shows the resulting non-dominated solutions for instance previ-
ous6. In this case, the previous NSBBO and NSGA-II algorithm obtain the
same solutions. For this reason, they are denoted as Previous in the graphic.480

In the same way, our four GRASP configurations reach the same solutions,
but for GRASP3 where solution (96, 76) is not found. As seen in the plot, the
front formed by the GRASP solutions dominates the front from the previous
work.

Figure 7 shows the resulting non-dominated solutions for instance previ-485

ous8. In this case, the previous NSBBO and NSGA-II have different solutions
and are denoted in that way. Just as in the previous instance, our four config-
urations for the GRASP approach share some of the solutions. Let solutions
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Figure 6: Results for instance previous6.

(179, 202), (199, 193), (207, 194), (213, 188) and (217, 178) be denoted as
A, B, C, D and E, respectively. GRASP1 reaches solutions A, D and E;490

GRASP2 reaches solutions A, B, D and E; GRASP3 reaches solutions A and
E; and GRASP4 reaches solutions A, C and E. Due to the overlapping of so-
lutions, we have assigned different symbols to each one of our configurations
for a better understanding. Again, the solutions obtained with the GRASP
methods dominate the solutions from the literature.495

Figure 8 shows the resulting non-dominated solutions for instance previ-
ous12. Here, the previous NSBBO and NSGA-II produced four and three
solutions, respectively. As in the previous instances, our four configurations
for the algorithm have several solutions in common that are overlapped be-
tween them. However, we have separated the fronts since the majority of500

the solutions are not overlapped. Again, the solutions from the literature are
dominated by our results.

Finally, Figure 9 shows the resulting non-dominated solutions for instance
previous15. For this instance, the previous NSBBO and NSGA-II produced
six and nine solutions, respectively. Just as in the previous instances, our505

algorithms outperform the results from the literature.
In the graphic representation it is not possible to determine which one of

our GRASP configurations is the best. However, it is clear that the methods
from the literature, NSBBO and NSGA-II, have difficulties in reaching good
quality solutions, since all of them are dominated by the solutions from our510
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Figure 9: Results for instance previous15.

GRASP configurations. In addition, both NSBBO and NSGA-II algorithms
have reported very few solutions. On average, our set of non-dominated
solutions has similar size of both previous algorithms in instances previous6
and previous8, which are the smallest of the study, and has nearly three times
the size of both previous algorithms in instances previous12 and previous15.515

As seen, the larger the instance, the larger the set of non-dominated solutions
generated by our proposed methods.

The evaluation of these findings is also conducted with traditional multi-
objective metrics [25]. For these metrics, except hypervolume, it is manda-
tory to have a reference set [32, 33]. Since this set is not available for the520

current set of instances, we have created it. Hence, for each instance, we ob-
tain a set of non-dominated solutions per algorithm, denoted as the name of
the algorithm. Then, we obtain the set of non-dominated solutions from the
union of all these sets. Therefore, this Ref set only contains non-dominated
solutions:525

Ref ← Update(GRASP1 ∪ GRASP2 ∪ GRASP3 ∪ GRASP4 ∪ NSBBO ∪ NSGA− II)

Let Ref be a set of reference solutions and S be a set of non-dominated
solutions, |Ref | and |S| correspond to the size of each set, respectively. Then,
we can define the studied metrics as follows.

The coverage metric (C(S1, S2)) measures the proportion of solutions in a
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the definition considering the reference set and a given set S. Notice that
C(Ref, S) = 1 indicates that all the solutions from S are weakly dominated
by solutions from Ref .

C(Ref, S) =
|{s ∈ S | ∃r ∈ Ref : r weakly dominates s}|

|S| (6)

The hypervolume (HV) measures the volume of the objective space that is
dominated by the set of non-dominated solutions and bounded by a reference535

point. The reference point is typically chosen to be a point that is worse
than any feasible solution in all objectives. The larger the hypervolume,
the better the quality of the set, as it indicates that a larger portion of
the objective space is covered. Equation (7) shows the formal definition,
where Volume denotes the volume calculation,

⋃
s∈S is the union of all the540

hypercubes formed by each solution s in the set S and the reference point
r, and Hypercube(s, r) is the hypercube formed by the solution s and the
reference point r.

HV(S) = Volume

(⋃

s∈S
Hypercube(s, r)

)
(7)

The epsilon (ϵ(S1, S2)) calculates the smallest value of ϵ such that each
solution in S2 is weakly dominated by ϵ times some solution in S1. Therefore,545

it measures how much it would take to make a set worse in the objective space
to dominate another set. It provides a quantifiable measure of the degree to
which one set of non-dominated solutions is better or worse than another.
Equation (8) shows the definition considering the reference set and a given
set S, where r ≤ ϵ · s means each objective of solution r is less than or equal550

to ϵ times the corresponding objective of solution s.

ϵ(Ref, S) = inf{ϵ ∈ R : ∀s ∈ S,∃r ∈ Ref such that r ≤ ϵ · s} (8)

The Generational Distance (GD(Ref, S)) measures the distance from a
set of non-dominated solutions S to the reference set. It is a measure of how
close the solutions generated by the algorithm are to the reference solutions.
Equation (9) shows the definition, where dist(s, Ref) is the minimum dis-555

tance from a solution s in set S to the nearest point on the Ref, and p is the
order of the norm used for the distance calculation.
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(
1

|S|
∑

s∈S
dist(s, Ref)

)1/p

(9)

The Inverted Generational Distance (IGD(Ref, S)) measures the distance
from the points on the reference set to a set of non-dominated solutions S.
It can be calculated as an inverse of GD, as shown in Equation (10).560

IGD(Ref, S) = GD(S,Ref) (10)

The Inverted Generational Additive Distance (IGD+) is a variant of IGD.
While IGD focuses on the minimum distance from each point on the reference
set to the nearest solution in the other set, IGD+ considers the sum of all
distances from each point on the reference set to its nearest neighbor in
the other set. This approach makes IGD+ more sensitive to outliers and565

provides a comprehensive measure of the overall distribution of the solutions.
Equation (11) shows the definition, where dist(r, S) is the minimum distance
from a solution r in Ref to the nearest point on the set of non-dominated
solutions S.

IGD+(Ref, S) =
1

|Ref |
∑

r∈Ref

dist(r, S) (11)

The spread (∆(S,Ref)) measures the distribution and range of solutions570

across the set of non-dominated solutions S. Specifically, it is designed to
assess the extent to which the obtained solutions cover the range of the
reference set, and the distribution uniformity of these solutions along the
set. Equation (12) shows the definition, where di is the Euclidean distance
between consecutive solutions in S, d̄ is the average of these distances, and575

df and dl are the distances from the extreme solutions of the obtained set to
the extremes of the Ref .

∆(S,Ref) =

∑|S|−1
i=1 |di − d̄|+ df + dl∑|S|−1

i=1 di + df + dl
(12)

In addition to these typical multi-objective metrics, we have included in
the analysis the number of solutions of each set, denoted as Size, and the
execution time spent in seconds. We have calculated those metrics using580

jMetal [34]. In all the metrics but HV and Size, the lower the value, the
better the results.
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state-of-the-art methods. As seen, all the GRASP configurations obtain bet-
ter results than the previous algorithms in all the metrics. Besides, it can be585

observed that the GRASP4 configuration reaches better values than the other
GRASP configurations for 7 out the 8 metrics. Since these results could be
counterintuitive considering the outcomes of irace it is worth noticing that
irace only considered a representative subset of the instances and used the
hypervolume as the metric to compare (see Section 4.2). Therefore, due to590

the use of this metric and the fact that the final configurations are very sim-
ilar, it is possible that any of them could present better performance when
executed on different instances, as happens in this case.

Table 4: Overview for comparative analysis using metrics against the state-of-the-art.

Algorithm C HV ϵ GD IGD IGD+ ∆ Size

GRASP1 0.24 0.50 0.08 218.50 182.88 795.24 0.96 13.83
GRASP2 0.26 0.49 0.08 221.49 182.88 795.18 0.95 13.63
GRASP3 0.26 0.49 0.08 221.52 182.85 795.29 0.95 13.94
GRASP4 0.21 0.49 0.08 216.87 182.57 793.66 0.95 14.06
NSBBO 1.00 0.14 2.04 405.42 204.07 875.45 0.98 5.00
NSGA-II 0.99 0.13 2.09 420.28 207.20 892.54 0.97 5.00

The detailed results for each instance and algorithm can be found in
Appendix A, where the instances are distributed according to their size.595

In addition, we have included Table A.7, where we detail the results in the
state-of-the-art instances.

4.4. Results for the new instances

As it will be shown in this section, the number of solutions obtained for
the new instances is much higher than in the comparison with the state of600

the art. Besides, our algorithms obtain sets of solutions whose intersection
is not empty. Therefore, a graphical comparison is difficult in this case.
Hence, the analysis of results for the new set of instances will be performed
using the multi-objective metrics described in the previous section: coverage
(C ), hypervolume (HV ), epsilon (ϵ), generational distance (GD), inverse605

generational distance (IGD), additive inverse generational distance (IGD+),
and spread (∆).

Since we have no access to the algorithms from [11], we have included in
this experiment two classical multi-objective evolutionary algorithms: NSGA-
II [35] and SPEA2 [36]. These algorithms were implemented using jMetal in610
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implementations.

Config. Algorithm Cp Mp

#1 NSGA-II 0.51 0.28
#2 NSGA-II 0.73 0.28
#3 NSGA-II 0.50 0.28

#1 SPEA2 0.93 0.12
#2 SPEA2 0.80 0.21
#3 SPEA2 0.90 0.09

Java, the same programming language used to implement the GRASP ap-
proach, adapting the codification and genetic operators to this problem. In
particular, the chromosome stored a linear representation of the facilities,
and the genetic operators included repair methods to conserve the permuta-
tion form. To be fair in the comparison, we run these algorithms in the same615

machine as the GRASP configurations, and we also executed irace to obtain
the best parameter values for these algorithms fixing the population size and
number of generations to 100 and 1000, respectively, to avoid long execution
times. In addition, each algorithm has been executed 30 times. Table 5 shows
the obtained parameter values. These configurations are listed from best to620

worst according to irace. The third and fourth columns denote the crossover
operator probability (Cp), and the mutation operator probability (Mp). For
the experimental comparison, we have chosen the best configuration for each
algorithm.

Table 6 shows the average values of the aforementioned metrics obtained625

with the four GRASP configurations described in Section 4.2 and the two evo-
lutionary methods, highlighting the best results in bold font. As expected, all
the GRASP configurations have similar results. However, GRASP4 obtains
the best values for all metrics. Notice that size values obtained by the evolu-
tionary methods are restricted by the population size, fixed to 100. Overall,630

all configurations of our proposed algorithm obtain competitive results and
there are no big differences between them.

Again, the performance of the GRASP configurations is not aligned with
the results given by irace. However, the reason is the same as explained in
the previous section.635

In summary, the combination of algorithmic elements under the proposed
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Algorithm C HV ϵ GD IGD IGD+ ∆ Size Time(s)

GRASP1 0.55 0.63 0.09 352.77 327.09 3433.20 0.95 62.02 3.93
GRASP2 0.56 0.63 0.09 352.00 327.14 3433.57 0.95 62.23 3.90
GRASP3 0.55 0.63 0.09 351.76 327.07 3432.76 0.95 62.28 3.91
GRASP4 0.50 0.64 0.07 348.36 326.76 3430.27 0.95 63.31 3.40
NSGA-II 0.58 0.62 0.11 491.50 328.29 3445.70 0.96 30.52 9.78
SPEA2 0.72 0.56 0.17 519.23 330.63 3467.50 0.96 26.05 9.78

GRASP method is able to consistently obtain the best results in large in-
stances of this problem. This way, the method is both robust and scales well
with the size of the instances. Again, the detailed results for each instance
and algorithm can be found in Appendix A. The correctness of the obtained640

solutions was verified with the model proposed in [11].

4.5. Statistical analysis

The aim of this section is to conduct a statistical analysis to compare the
four configurations of our GRASP approach and the NSGA-II and SPEA2
implementations. To do so, we have used the previous metrics obtained for645

the instances whose detailed results are shown in Appendix A. For the com-
parative assessment of these algorithms, a multi-algorithm multi-instance
Bayesian analysis, described in [37] and [38], has been employed. This anal-
ysis facilitates the ranking of algorithms based on the quality of the obtained
solutions, providing a ranking of algorithms based on a designated probability650

distribution derived after examining the outcomes. Hence, the probability of
each algorithm’s potential to outperform its counterparts is calculated. This
metric is referred to as the “probability of winning”, which is the percent-
age chance for each algorithm to obtain better results than the others, with
a credible interval between 5% and 95%. For the sake of brevity, we have655

rounded the probability of winning using two decimals.
The results of this analysis are depicted in Figure 10. The absence of

overlapping between the SPEA2 and NSGA-II algorithms in Figure 10 (a)-
(g) is notably evident, which means that NSGA-II will always obtain better
results than SPEA2. Furthermore, it should be highlighted that there is no660

overlapping between the GRASP4 and NSGA-II, and GRASP3 and NSGA-
II. In addition, there are small overlaps between GRASP1 and NSGA-II,
and GRASP2 and NSGA-II in Figure 10 (a), (b) and (g), meaning that the
performance of both algorithms is indistinguishable for certain instances,
which, as seen in the detailed results, is due to the smallest instances. Since665
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the conclusion is that the performance of GRASP4 will be better given a new
instance.

In summary, the GRASP configurations outperform the NSGA-II and
SPEA2 algorithms. Among the different GRASP configurations, the GRASP4670

reached the highest probability since, as shown in the experimental experi-
ence, it obtained the best results.

5. Managerial implications

The design of a facility layout may involve different objectives due to
the nature of the facilities at hand. In this work, we selected the material675

handling cost (MHC) and the closeness rating (CR) as the two objectives to
be considered, since they represent different aspects, many times opposed, of
the design process. On the one hand, MHC represents the flow of material
between different machines. This way, the higher the value, the better to be
close. On the other hand, CR represents the adequacy level of two machines680

to be close. In this regard, two machines that may present a higher MHC
value could also present a high value of CR, meaning that they should be
placed far away due to their heat generation, power consumption, or other
safety measures.

Our proposed algorithm is able to both generate different solutions for685

large instances and to produce a high number of non-dominated solutions.
These features give the decision maker a clear added value, since larger
projects could be studied, and, once the solutions were presented, many dif-
ferent possibilities could be considered. In this way, the decision maker will
be able to select the best solution according to any other additional criteria.690

6. Conclusions and future work

The Bi-Objective Multiple Row Equal Facility Layout Problem (BO-
MREFLP) is an interesting problem from the FLP family which takes into
account both quantitative and qualitative objectives. Therefore, many real-
life applications can be aligned with this problem.695

In this work, we tackle the BO-MREFLP from a multi-objective point of
view, considering both the material handling cost and the closeness rating
objective functions. To this aim, we have designed an ensemble of construc-
tive methods able to produce a diverse set of non-dominated solutions under
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Figure 10: Credible intervals for the probability of reaching the best results.
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cal search method that combines dominance and alternation between both
objectives, under a hybrid best-improvement first-improvement strategy.

Since the previous work in this problem provided a small set of instances,
we have expanded 56 instances taken from the single-objective problem with
matrices for the second objective, generating a new benchmark dataset for705

the research community.
The thorough experimental experience proved that our proposal, after

an automatic tuning of the parameters, is able to produce much better re-
sults than the state of the art in the previous set of instances. Besides,
detailed results are provided for the new set of instances, including some710

of the classical metrics for the multi-objective problems. Our experimental
results, algorithms, and benchmarks could also be incorporated into other
multi-objective problems of the FLP family.

However, the main limitation of our work is the computation time spent
evaluating the dominated solutions that will not be part of the final set of715

dominated solutions. Although we have included an efficient computation of
both objective functions, some heuristics could be developed to reduce the
search space in the improvement phase, therefore, reducing the total com-
putation time. In this regard, the use of the crowding distance or clustering
techniques to select the solutions to be improved could help reducing the720

computational effort.
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Appendix A. Detailed results

Table A.7, Table A.8, Table A.9, Table A.10, Table A.11, Table A.12,
and Table A.13 show the detailed results for the complete set of instances855

using the multi-objective metrics explained in Section 4.4. For the sake of
brevity, two decimal digits are shown in the figures of the tables. In some
of the cases, an instance has the same values for the 4 configurations of our
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highlighted in bold are the best values, but considering more decimals.860

Table A.7: Comparison among the 4 different configurations of our GRASP proposal, an
NSGA-II and a SPEA2 algorithms, for the set of previous instances. Best values for the
metrics are highlighted with bold.

Instance Algorithm C HV ϵ GD IGD IGD+ ∆ Size Time(s)

previous6 GRASP1 0.00 0.35 0.00 55.16 53.63 119.91 0.96 5.00 0.00
GRASP2 0.00 0.35 0.00 55.16 53.63 119.91 0.96 5.00 0.00
GRASP3 0.00 0.35 0.00 55.16 53.63 119.91 0.96 5.00 0.00
GRASP4 0.00 0.35 0.00 55.16 53.63 119.91 0.96 5.00 0.00
NSGA-II 0.00 0.35 0.00 55.16 53.63 119.91 0.96 5.00 1.00
SPEA2 0.00 0.35 0.00 55.16 53.63 119.91 0.96 5.00 1.00

previous8 GRASP1 0.10 0.13 0.22 153.89 120.66 269.81 0.92 3.37 0.00
GRASP2 0.15 0.11 0.23 159.05 120.82 270.17 0.90 3.20 0.00
GRASP3 0.07 0.10 0.24 165.78 120.45 269.32 0.90 2.90 0.00
GRASP4 0.07 0.10 0.25 161.68 120.45 269.32 0.91 3.07 0.00
NSGA-II 0.09 0.18 0.06 126.60 120.34 269.08 0.95 4.90 1.00
SPEA2 0.12 0.19 0.08 129.02 120.45 269.32 0.94 4.70 1.00

previous12 GRASP1 0.39 0.83 0.06 390.04 308.16 1301.18 0.98 12.57 0.02
GRASP2 0.38 0.84 0.06 395.77 307.97 1300.41 0.98 12.20 0.02
GRASP3 0.41 0.84 0.06 393.93 308.09 1300.95 0.98 12.33 0.02
GRASP4 0.33 0.84 0.05 377.91 307.94 1300.31 0.97 13.23 0.02
NSGA-II 0.37 0.83 0.06 396.80 307.93 1300.24 0.97 12.20 1.00
SPEA2 0.44 0.83 0.07 427.41 307.98 1300.46 0.98 10.50 1.00

previous15 GRASP1 0.51 0.67 0.06 274.90 231.93 1490.05 0.96 34.37 0.07
GRASP2 0.56 0.67 0.06 275.98 231.95 1490.22 0.96 34.13 0.07
GRASP3 0.62 0.67 0.07 271.20 232.09 1490.97 0.96 35.53 0.07
GRASP4 0.49 0.68 0.05 272.73 231.16 1485.10 0.96 34.93 0.07
NSGA-II 0.67 0.66 0.09 276.28 233.11 1497.56 0.97 34.20 1.00
SPEA2 0.91 0.62 0.13 328.00 234.30 1505.38 0.97 25.10 1.00
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NSGA-II and a SPEA2 algorithms, for a set of instances with size [6, 10]. Best values for
the metrics are highlighted with bold.

Instance Algorithm C HV ϵ GD IGD IGD+ ∆ Size Time(s)

previous6 GRASP1 0.00 0.35 0.00 55.16 53.63 119.91 0.96 5.00 0.00
GRASP2 0.00 0.35 0.00 55.16 53.63 119.91 0.96 5.00 0.00
GRASP3 0.00 0.35 0.00 55.16 53.63 119.91 0.96 5.00 0.00
GRASP4 0.00 0.35 0.00 55.16 53.63 119.91 0.96 5.00 0.00
NSGA-II 0.00 0.35 0.00 55.16 53.63 119.91 0.96 5.00 1.00
SPEA2 0.00 0.35 0.00 55.16 53.63 119.91 0.96 5.00 1.00

previous8 GRASP1 0.10 0.13 0.22 153.89 120.66 269.81 0.92 3.37 0.00
GRASP2 0.15 0.11 0.23 159.05 120.82 270.17 0.90 3.20 0.00
GRASP3 0.07 0.10 0.24 165.78 120.45 269.32 0.90 2.90 0.00
GRASP4 0.07 0.10 0.25 161.68 120.45 269.32 0.91 3.07 0.00
NSGA-II 0.09 0.18 0.06 126.60 120.34 269.08 0.95 4.90 1.00
SPEA2 0.12 0.19 0.08 129.02 120.45 269.32 0.94 4.70 1.00

A-10-10 GRASP1 0.38 0.31 0.41 47.65 37.66 83.54 0.96 3.57 0.01
GRASP2 0.40 0.34 0.37 44.08 37.46 83.10 0.95 4.20 0.01
GRASP3 0.37 0.33 0.37 43.90 37.29 82.74 0.95 4.13 0.01
GRASP4 0.29 0.38 0.29 41.20 37.07 82.25 0.95 4.57 0.01
NSGA-II 0.24 0.33 0.37 46.17 37.62 83.44 0.96 3.83 1.00
SPEA2 0.22 0.32 0.38 48.40 37.58 83.37 0.96 3.40 1.00

A-10-20 GRASP1 0.16 0.60 0.09 46.61 41.07 116.16 0.96 7.23 0.01
GRASP2 0.11 0.61 0.07 46.03 40.91 115.72 0.97 7.37 0.01
GRASP3 0.20 0.59 0.13 47.28 41.49 117.36 0.97 7.07 0.01
GRASP4 0.13 0.61 0.07 45.94 40.91 115.72 0.97 7.37 0.01
NSGA-II 0.11 0.60 0.12 46.73 41.38 117.04 0.97 7.20 1.00
SPEA2 0.19 0.59 0.15 47.89 41.61 117.69 0.97 6.93 1.00

A-10-30 GRASP1 0.14 0.60 0.06 33.32 25.62 81.03 0.88 9.27 0.01
GRASP2 0.15 0.60 0.07 34.01 25.62 81.03 0.87 8.73 0.01
GRASP3 0.11 0.60 0.06 33.33 25.62 81.03 0.88 9.17 0.01
GRASP4 0.15 0.60 0.06 33.44 25.62 81.03 0.87 9.13 0.01
NSGA-II 0.09 0.61 0.04 32.62 25.62 81.03 0.86 9.57 1.00
SPEA2 0.17 0.60 0.05 33.03 25.68 81.22 0.88 9.43 1.00

A-10-40 GRASP1 0.31 0.64 0.09 22.67 19.17 73.91 0.85 13.17 0.01
GRASP2 0.21 0.64 0.11 23.65 19.16 73.85 0.85 12.30 0.01
GRASP3 0.23 0.64 0.11 23.17 19.21 74.04 0.85 12.63 0.01
GRASP4 0.19 0.65 0.09 22.15 19.21 74.07 0.83 13.60 0.01
NSGA-II 0.08 0.66 0.07 22.00 19.03 73.35 0.84 13.70 1.00
SPEA2 0.16 0.65 0.11 23.06 19.08 73.56 0.85 12.60 1.00

A-10-50 GRASP1 0.34 0.50 0.10 25.38 23.24 82.27 0.89 11.93 0.01
GRASP2 0.36 0.50 0.12 25.69 23.25 82.29 0.89 11.70 0.01
GRASP3 0.31 0.50 0.12 26.27 23.19 82.09 0.89 11.27 0.01
GRASP4 0.31 0.50 0.10 25.76 23.22 82.18 0.89 11.60 0.01
NSGA-II 0.15 0.53 0.08 25.47 23.07 81.67 0.89 11.73 1.00
SPEA2 0.34 0.50 0.13 26.22 23.17 82.01 0.89 11.20 1.00

A-10-60 GRASP1 0.52 0.55 0.15 59.83 54.70 140.52 0.93 6.43 0.01
GRASP2 0.59 0.55 0.14 58.13 54.76 140.69 0.93 6.80 0.01
GRASP3 0.54 0.54 0.15 61.14 54.83 140.85 0.93 6.13 0.01
GRASP4 0.54 0.55 0.14 60.20 54.75 140.67 0.93 6.40 0.01
NSGA-II 0.36 0.57 0.12 60.05 54.77 140.71 0.94 6.23 1.00
SPEA2 0.51 0.56 0.14 59.09 55.02 141.34 0.94 6.57 1.00

A-10-70 GRASP1 0.35 0.63 0.07 39.16 32.38 119.80 0.92 11.27 0.01
GRASP2 0.35 0.63 0.07 38.70 32.41 119.92 0.93 11.50 0.01
GRASP3 0.33 0.63 0.07 39.45 32.44 120.02 0.93 11.07 0.01
GRASP4 0.23 0.64 0.06 38.02 32.32 119.57 0.93 11.80 0.01
NSGA-II 0.13 0.65 0.05 37.03 32.44 120.01 0.94 12.23 1.00
SPEA2 0.20 0.64 0.06 38.69 32.46 120.08 0.93 11.40 1.00

A-10-80 GRASP1 0.42 0.43 0.22 59.80 50.34 123.31 0.98 4.70 0.01
GRASP2 0.48 0.44 0.20 62.18 50.31 123.22 0.98 4.40 0.01
GRASP3 0.45 0.42 0.19 59.43 50.19 122.93 0.98 4.73 0.01
GRASP4 0.33 0.44 0.16 57.67 50.21 122.98 0.96 5.13 0.01
NSGA-II 0.06 0.51 0.06 55.07 50.12 122.76 0.97 5.40 1.00
SPEA2 0.13 0.50 0.12 57.25 50.15 122.85 0.97 5.03 1.00

A-10-90 GRASP1 0.00 0.33 0.00 77.83 76.26 152.52 0.97 4.00 0.01
GRASP2 0.00 0.33 0.00 77.83 76.26 152.52 0.97 4.00 0.01
GRASP3 0.00 0.33 0.00 77.83 76.26 152.52 0.97 4.00 0.01
GRASP4 0.00 0.33 0.00 77.83 76.26 152.52 0.97 4.00 0.00
NSGA-II 0.00 0.33 0.00 77.83 76.26 152.52 0.97 4.00 1.00
SPEA2 0.00 0.33 0.00 77.83 76.26 152.52 0.97 4.00 1.00
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NSGA-II and a SPEA2 algorithms, for a set of instances with size [10, 12]. Best values
for the metrics are highlighted with bold.

Instance Algorithm C HV ϵ GD IGD IGD+ ∆ Size Time(s)

O-10 GRASP1 0.29 0.76 0.05 241.55 213.59 926.79 0.97 17.43 0.01
GRASP2 0.21 0.76 0.04 252.25 213.61 926.87 0.97 15.80 0.01
GRASP3 0.17 0.76 0.04 248.01 213.40 925.96 0.97 16.27 0.01
GRASP4 0.18 0.77 0.03 245.75 213.28 925.43 0.97 16.83 0.01
NSGA-II 0.10 0.77 0.04 253.99 213.82 927.78 0.98 15.47 1.00
SPEA2 0.20 0.76 0.05 257.07 213.97 928.45 0.98 15.03 1.00

Y-10 GRASP1 0.16 0.69 0.07 604.76 554.60 2260.93 0.99 14.77 0.01
GRASP2 0.14 0.69 0.07 601.79 554.60 2260.93 0.99 14.90 0.01
GRASP3 0.17 0.69 0.07 601.85 554.60 2260.93 0.99 14.90 0.01
GRASP4 0.13 0.69 0.06 594.59 554.60 2260.93 0.99 15.27 0.01
NSGA-II 0.11 0.69 0.07 586.60 554.60 2260.93 0.99 15.70 1.00
SPEA2 0.26 0.68 0.08 613.30 555.19 2263.33 0.99 14.47 1.00

A-12-10 GRASP1 0.68 0.35 0.39 71.79 64.53 117.66 0.94 3.30 0.02
GRASP2 0.70 0.32 0.45 71.21 64.61 117.82 0.93 3.43 0.02
GRASP3 0.66 0.36 0.38 64.69 63.97 116.56 0.95 3.87 0.02
GRASP4 0.55 0.46 0.33 72.33 63.99 116.59 0.93 3.20 0.02
NSGA-II 0.53 0.39 0.35 69.71 64.48 117.49 0.95 3.53 1.00
SPEA2 0.52 0.43 0.32 73.69 64.31 117.18 0.94 3.13 1.00

A-12-20 GRASP1 0.69 0.55 0.12 42.95 35.54 121.99 0.95 10.17 0.02
GRASP2 0.67 0.55 0.12 43.32 35.51 121.94 0.94 9.93 0.02
GRASP3 0.67 0.55 0.13 42.61 35.58 122.17 0.95 10.30 0.02
GRASP4 0.65 0.55 0.11 42.35 35.45 121.70 0.93 10.37 0.02
NSGA-II 0.53 0.57 0.10 42.28 35.60 122.25 0.94 10.37 1.00
SPEA2 0.70 0.53 0.16 45.22 36.23 124.43 0.94 9.27 1.00

A-12-30 GRASP1 0.56 0.61 0.12 56.18 44.33 151.06 0.93 9.13 0.02
GRASP2 0.58 0.60 0.13 56.47 44.43 151.42 0.94 9.30 0.02
GRASP3 0.49 0.61 0.13 57.13 44.33 151.12 0.94 8.97 0.02
GRASP4 0.45 0.62 0.11 53.90 44.06 150.14 0.94 10.00 0.02
NSGA-II 0.48 0.61 0.13 56.90 44.44 151.48 0.95 8.93 1.00
SPEA2 0.61 0.61 0.14 58.60 44.41 151.36 0.95 8.30 1.00

A-12-40 GRASP1 0.64 0.67 0.10 44.21 35.58 139.79 0.93 12.90 0.02
GRASP2 0.60 0.67 0.09 43.47 35.51 139.51 0.93 13.50 0.02
GRASP3 0.69 0.67 0.09 42.85 35.52 139.58 0.92 13.80 0.02
GRASP4 0.59 0.68 0.08 42.76 35.17 138.22 0.92 13.87 0.02
NSGA-II 0.48 0.68 0.09 46.09 35.59 139.87 0.93 12.03 1.00
SPEA2 0.73 0.65 0.12 45.95 36.03 141.57 0.94 12.00 1.00

A-12-50 GRASP1 0.51 0.67 0.07 33.70 28.72 126.72 0.89 18.73 0.03
GRASP2 0.59 0.66 0.08 33.14 28.87 127.39 0.89 19.23 0.03
GRASP3 0.58 0.66 0.08 33.21 28.71 126.69 0.89 18.97 0.03
GRASP4 0.49 0.67 0.06 32.66 28.65 126.41 0.89 19.67 0.03
NSGA-II 0.36 0.67 0.08 34.41 28.71 126.67 0.90 17.83 1.00
SPEA2 0.71 0.64 0.10 35.45 29.25 129.07 0.90 16.97 1.00

A-12-60 GRASP1 0.44 0.55 0.12 45.02 37.33 130.24 0.93 9.90 0.02
GRASP2 0.37 0.56 0.13 46.20 37.27 130.04 0.93 9.40 0.02
GRASP3 0.45 0.56 0.13 46.37 37.37 130.37 0.94 9.37 0.02
GRASP4 0.33 0.57 0.11 45.52 37.28 130.06 0.94 9.60 0.02
NSGA-II 0.28 0.57 0.13 49.75 37.32 130.19 0.94 8.43 1.00
SPEA2 0.44 0.55 0.16 50.20 37.36 130.36 0.94 8.10 1.00

A-12-70 GRASP1 0.47 0.27 0.24 53.34 44.75 137.75 0.95 8.27 0.02
GRASP2 0.55 0.26 0.28 53.19 44.89 138.20 0.95 8.17 0.02
GRASP3 0.50 0.27 0.25 52.93 44.82 137.95 0.95 8.33 0.02
GRASP4 0.41 0.28 0.23 54.69 44.53 137.06 0.95 7.83 0.02
NSGA-II 0.40 0.30 0.26 51.97 45.07 138.72 0.95 8.57 1.00
SPEA2 0.62 0.26 0.32 53.05 45.56 140.23 0.95 8.40 1.00

A-12-80 GRASP1 0.61 0.65 0.08 57.80 49.72 192.18 0.92 13.33 0.02
GRASP2 0.58 0.66 0.08 56.07 49.68 191.99 0.93 13.97 0.02
GRASP3 0.55 0.66 0.07 54.62 49.69 192.04 0.92 14.77 0.02
GRASP4 0.55 0.66 0.08 54.55 49.63 191.82 0.93 14.80 0.02
NSGA-II 0.56 0.67 0.07 56.25 49.60 191.67 0.92 13.83 1.00
SPEA2 0.72 0.64 0.10 60.05 49.82 192.54 0.93 12.30 1.00

A-12-90 GRASP1 0.39 0.48 0.17 77.04 69.09 199.99 0.95 7.37 0.02
GRASP2 0.38 0.48 0.14 76.43 68.98 199.67 0.95 7.37 0.02
GRASP3 0.60 0.44 0.20 77.21 69.12 200.08 0.95 7.43 0.02
GRASP4 0.46 0.46 0.16 73.96 68.93 199.52 0.95 7.97 0.02
NSGA-II 0.47 0.48 0.17 78.83 69.20 200.33 0.95 7.10 1.00
SPEA2 0.38 0.49 0.18 81.45 69.18 200.25 0.95 6.70 1.00
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Table A.10: Comparison among the 4 different configurations of our GRASP proposal, an
NSGA-II and a SPEA2 algorithms, for a set of instances with size [12, 15]. Best values
for the metrics are highlighted with bold.

Instance Algorithm C HV ϵ GD IGD IGD+ ∆ Size Time(s)

previous12 GRASP1 0.39 0.83 0.06 390.04 308.16 1301.18 0.98 12.57 0.02
GRASP2 0.38 0.84 0.06 395.77 307.97 1300.41 0.98 12.20 0.02
GRASP3 0.41 0.84 0.06 393.93 308.09 1300.95 0.98 12.33 0.02
GRASP4 0.33 0.84 0.05 377.91 307.94 1300.31 0.97 13.23 0.02
NSGA-II 0.37 0.83 0.06 396.80 307.93 1300.24 0.97 12.20 1.00
SPEA2 0.44 0.83 0.07 427.41 307.98 1300.46 0.98 10.50 1.00

S-12 GRASP1 0.39 0.72 0.10 709.96 598.65 2449.18 0.99 12.83 0.02
GRASP2 0.62 0.71 0.10 681.69 599.00 2450.59 0.99 14.23 0.02
GRASP3 0.41 0.72 0.08 692.36 598.39 2448.15 0.99 13.43 0.02
GRASP4 0.45 0.72 0.08 667.39 598.41 2448.23 0.99 14.57 0.02
NSGA-II 0.40 0.72 0.10 732.27 599.41 2452.29 0.99 12.30 1.00
SPEA2 0.68 0.69 0.13 755.74 599.90 2454.32 0.99 11.63 1.00

Y-12 GRASP1 0.42 0.69 0.08 677.18 569.51 2638.10 0.99 16.13 0.02
GRASP2 0.44 0.69 0.09 681.64 569.73 2639.10 0.99 15.93 0.02
GRASP3 0.43 0.69 0.07 671.47 569.42 2637.68 0.99 16.33 0.02
GRASP4 0.43 0.70 0.07 650.85 568.99 2635.70 0.99 17.33 0.02
NSGA-II 0.35 0.69 0.08 686.07 569.42 2637.74 0.99 15.63 1.00
SPEA2 0.54 0.66 0.13 750.00 570.87 2644.42 0.99 13.53 1.00

N-15 GRASP1 0.65 0.58 0.07 240.76 207.94 1222.36 0.95 31.13 0.07
GRASP2 0.63 0.58 0.08 242.24 208.05 1222.98 0.95 30.97 0.06
GRASP3 0.56 0.59 0.07 240.66 207.62 1220.53 0.96 31.03 0.07
GRASP4 0.48 0.59 0.06 240.84 206.91 1216.31 0.96 30.73 0.06
NSGA-II 0.68 0.57 0.10 253.68 209.55 1231.79 0.96 28.37 1.00
SPEA2 0.85 0.53 0.13 282.59 211.08 1240.98 0.96 23.03 1.00

O-15 GRASP1 0.53 0.71 0.05 513.11 445.07 2672.15 0.98 30.27 0.06
GRASP2 0.57 0.71 0.05 508.32 444.79 2670.36 0.98 30.73 0.07
GRASP3 0.60 0.71 0.05 493.59 444.67 2669.66 0.98 32.77 0.07
GRASP4 0.46 0.72 0.04 489.85 444.17 2666.67 0.98 33.03 0.06
NSGA-II 0.51 0.71 0.05 505.26 444.98 2671.51 0.98 31.20 1.00
SPEA2 0.86 0.65 0.14 601.51 448.61 2693.25 0.98 22.50 1.00

previous15 GRASP1 0.51 0.67 0.06 274.90 231.93 1490.05 0.96 34.37 0.07
GRASP2 0.56 0.67 0.06 275.98 231.95 1490.22 0.96 34.13 0.07
GRASP3 0.62 0.67 0.07 271.20 232.09 1490.97 0.96 35.53 0.07
GRASP4 0.49 0.68 0.05 272.73 231.16 1485.10 0.96 34.93 0.07
NSGA-II 0.67 0.66 0.09 276.28 233.11 1497.56 0.97 34.20 1.00
SPEA2 0.91 0.62 0.13 328.00 234.30 1505.38 0.97 25.10 1.00

S-15 GRASP1 0.31 0.77 0.04 1019.93 900.73 4572.97 0.99 21.20 0.06
GRASP2 0.45 0.75 0.07 977.26 900.93 4574.05 0.99 23.10 0.06
GRASP3 0.26 0.78 0.04 1006.36 900.55 4572.10 0.99 21.73 0.06
GRASP4 0.23 0.78 0.03 995.02 900.32 4570.88 0.99 22.23 0.06
NSGA-II 0.33 0.75 0.06 1039.01 901.48 4576.71 0.99 20.23 1.00
SPEA2 0.85 0.67 0.14 1125.49 904.16 4590.29 0.99 17.93 1.00

Y-15 GRASP1 0.35 0.67 0.05 649.04 603.97 3750.20 0.98 35.03 0.07
GRASP2 0.44 0.67 0.05 631.44 603.93 3749.95 0.98 37.07 0.08
GRASP3 0.39 0.67 0.05 644.27 604.03 3750.56 0.98 35.80 0.07
GRASP4 0.35 0.67 0.04 623.29 603.44 3746.96 0.98 37.97 0.07
NSGA-II 0.41 0.67 0.06 650.19 604.13 3751.27 0.98 35.03 1.00
SPEA2 0.78 0.62 0.12 729.29 606.14 3763.57 0.99 28.37 1.00
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NSGA-II and a SPEA2 algorithms, for a set of instances with size 20. Best values for the
metrics are highlighted with bold.

Instance Algorithm C HV ϵ GD IGD IGD+ ∆ Size Time(s)

A-20-10 GRASP1 0.70 0.69 0.07 125.76 110.98 613.25 0.98 28.40 0.25
GRASP2 0.73 0.68 0.09 129.65 111.30 615.05 0.97 26.90 0.23
GRASP3 0.70 0.68 0.08 129.21 111.31 615.05 0.97 26.97 0.23
GRASP4 0.66 0.69 0.07 126.09 110.77 612.04 0.97 28.20 0.22
NSGA-II 0.79 0.66 0.12 141.41 113.36 626.44 0.97 22.87 1.00
SPEA2 0.97 0.57 0.22 175.22 116.71 644.92 0.98 16.07 1.00

A-20-20 GRASP1 0.74 0.66 0.07 96.07 79.87 479.45 0.93 32.67 0.25
GRASP2 0.74 0.66 0.07 95.70 79.73 478.62 0.94 32.90 0.25
GRASP3 0.73 0.66 0.07 95.34 79.54 477.42 0.93 33.07 0.24
GRASP4 0.70 0.67 0.06 94.78 79.37 476.43 0.93 33.53 0.24
NSGA-II 0.79 0.64 0.11 103.07 81.37 488.36 0.94 28.37 1.00
SPEA2 0.99 0.55 0.20 126.75 84.22 505.61 0.96 19.53 1.00

A-20-30 GRASP1 0.68 0.72 0.06 92.23 79.05 505.87 0.94 38.40 0.27
GRASP2 0.73 0.72 0.06 93.66 79.19 506.78 0.94 37.47 0.26
GRASP3 0.76 0.72 0.06 93.77 79.22 506.91 0.94 37.50 0.26
GRASP4 0.66 0.73 0.05 93.48 79.01 505.55 0.94 37.53 0.25
NSGA-II 0.85 0.69 0.10 102.15 80.36 514.26 0.95 31.60 1.00
SPEA2 0.98 0.58 0.21 127.14 83.59 534.90 0.97 21.13 1.00

A-20-40 GRASP1 0.74 0.66 0.07 82.30 70.18 426.71 0.93 33.93 0.24
GRASP2 0.69 0.67 0.07 81.42 70.41 428.19 0.94 34.03 0.23
GRASP3 0.71 0.66 0.08 83.98 70.29 427.46 0.93 32.40 0.23
GRASP4 0.63 0.68 0.07 81.70 70.16 426.61 0.94 33.83 0.22
NSGA-II 0.82 0.64 0.11 89.48 70.89 431.08 0.94 28.63 1.00
SPEA2 0.99 0.53 0.22 112.54 73.46 446.74 0.95 19.30 1.00

A-20-50 GRASP1 0.72 0.65 0.07 106.23 93.28 553.03 0.93 33.30 0.23
GRASP2 0.66 0.66 0.06 105.53 93.31 553.23 0.93 33.57 0.22
GRASP3 0.70 0.65 0.07 107.37 93.01 551.44 0.93 32.67 0.23
GRASP4 0.73 0.66 0.06 104.21 93.43 553.96 0.93 34.63 0.23
NSGA-II 0.79 0.63 0.13 115.03 93.99 557.23 0.94 28.43 1.00
SPEA2 0.99 0.52 0.23 136.96 96.49 572.05 0.96 20.73 1.00

A-20-60 GRASP1 0.67 0.69 0.06 105.29 94.26 617.86 0.96 38.90 0.26
GRASP2 0.65 0.68 0.07 105.30 94.14 617.06 0.95 39.07 0.26
GRASP3 0.66 0.69 0.06 106.42 94.34 618.40 0.95 38.20 0.25
GRASP4 0.62 0.69 0.06 104.45 94.11 616.89 0.95 39.57 0.25
NSGA-II 0.90 0.65 0.11 112.75 94.93 622.28 0.96 34.10 1.00
SPEA2 0.97 0.57 0.20 144.06 96.41 631.94 0.96 21.50 1.00

A-20-70 GRASP1 0.72 0.60 0.13 168.36 159.41 749.36 0.97 22.37 0.20
GRASP2 0.67 0.61 0.12 169.24 159.03 747.42 0.97 21.90 0.20
GRASP3 0.77 0.59 0.14 170.95 159.66 750.44 0.97 21.63 0.20
GRASP4 0.66 0.62 0.12 166.69 158.84 746.58 0.97 22.77 0.19
NSGA-II 0.82 0.57 0.18 177.83 160.50 754.60 0.97 19.90 1.00
SPEA2 0.99 0.44 0.29 216.91 163.47 768.32 0.98 13.80 1.00

A-20-80 GRASP1 0.82 0.68 0.07 125.02 115.58 655.81 0.96 30.73 0.22
GRASP2 0.70 0.69 0.06 125.54 115.26 654.00 0.96 30.33 0.21
GRASP3 0.66 0.69 0.07 129.32 115.42 654.92 0.96 29.07 0.21
GRASP4 0.67 0.69 0.06 122.36 115.18 653.57 0.96 32.03 0.21
NSGA-II 0.77 0.66 0.11 134.45 115.88 657.53 0.96 26.70 1.00
SPEA2 0.95 0.55 0.21 164.10 118.20 670.62 0.97 18.77 1.00

A-20-90 GRASP1 0.73 0.68 0.06 141.39 133.09 796.53 0.96 34.77 0.24
GRASP2 0.71 0.69 0.06 144.75 133.00 796.02 0.96 33.27 0.23
GRASP3 0.72 0.69 0.06 141.22 132.94 795.62 0.96 34.87 0.25
GRASP4 0.64 0.70 0.05 140.15 132.66 793.91 0.96 35.30 0.24
NSGA-II 0.82 0.67 0.09 151.97 133.80 800.79 0.96 30.60 1.00
SPEA2 0.99 0.58 0.20 187.75 135.80 812.72 0.97 20.67 1.00

N-20 GRASP1 0.63 0.72 0.07 447.10 385.19 2690.63 0.97 42.10 0.27
GRASP2 0.79 0.70 0.08 443.81 386.75 2702.00 0.97 43.03 0.25
GRASP3 0.67 0.71 0.07 447.12 386.73 2701.45 0.97 42.00 0.25
GRASP4 0.67 0.72 0.07 438.88 384.80 2687.85 0.97 43.87 0.23
NSGA-II 0.82 0.67 0.12 491.56 390.14 2725.52 0.97 35.80 1.00
SPEA2 0.99 0.57 0.21 623.48 396.82 2772.27 0.98 22.67 1.00

O-20 GRASP1 0.56 0.71 0.05 742.02 689.52 5734.00 0.98 66.50 0.34
GRASP2 0.54 0.71 0.05 754.72 690.10 5738.77 0.98 64.37 0.32
GRASP3 0.47 0.72 0.05 758.43 690.11 5738.82 0.98 63.60 0.32
GRASP4 0.41 0.72 0.04 760.93 689.13 5730.77 0.98 62.90 0.29
NSGA-II 0.76 0.66 0.12 841.43 694.25 5773.35 0.98 51.63 1.00
SPEA2 1.00 0.57 0.20 1107.13 703.89 5853.46 0.99 31.10 1.00

S-20 GRASP1 0.67 0.75 0.06 1353.56 1283.60 9491.77 0.99 52.13 0.28
GRASP2 0.61 0.75 0.06 1372.09 1283.56 9491.56 0.99 50.27 0.27
GRASP3 0.61 0.75 0.06 1376.71 1283.84 9493.58 0.99 50.27 0.27
GRASP4 0.57 0.76 0.06 1362.70 1283.44 9490.55 0.99 50.90 0.25
NSGA-II 0.77 0.72 0.10 1451.72 1285.81 9508.07 0.99 44.90 1.00
SPEA2 0.98 0.59 0.20 1991.74 1293.47 9564.54 0.99 25.30 1.00

Y-20 GRASP1 0.70 0.71 0.06 762.53 740.87 5414.69 0.98 54.13 0.30
GRASP2 0.71 0.71 0.06 756.83 740.96 5415.54 0.98 55.00 0.30
GRASP3 0.69 0.72 0.06 760.97 740.82 5414.49 0.98 54.43 0.29
GRASP4 0.66 0.72 0.06 763.29 740.57 5412.63 0.98 54.03 0.26
NSGA-II 0.83 0.68 0.11 815.10 743.23 5432.09 0.98 47.43 1.00
SPEA2 1.00 0.57 0.21 1127.08 749.21 5475.95 0.99 25.73 1.00
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NSGA-II and SPEA2 algorithms, for a set of instances with size 25. Best values for the
metrics are highlighted with bold.

Instance Algorithm C HV ϵ GD IGD IGD+ ∆ Size Time(s)

A-25-10 GRASP1 0.70 0.71 0.06 154.77 132.50 953.05 0.96 46.27 0.64
GRASP2 0.73 0.71 0.06 153.36 132.67 954.33 0.96 47.00 0.67
GRASP3 0.73 0.71 0.06 153.72 132.36 952.15 0.96 47.10 0.73
GRASP4 0.66 0.72 0.05 152.99 131.77 947.81 0.96 47.10 0.69
NSGA-II 0.84 0.68 0.12 177.63 135.83 977.03 0.97 35.73 2.00
SPEA2 0.99 0.59 0.22 216.88 139.53 1003.83 0.97 25.10 2.00

A-25-20 GRASP1 0.68 0.72 0.05 140.05 119.58 864.69 0.95 48.87 0.68
GRASP2 0.72 0.71 0.05 141.85 120.03 867.97 0.96 47.50 0.64
GRASP3 0.73 0.71 0.06 141.69 119.97 867.48 0.95 47.77 0.66
GRASP4 0.69 0.72 0.04 140.46 119.32 862.75 0.95 47.93 0.67
NSGA-II 0.87 0.68 0.10 151.31 121.92 881.62 0.96 41.93 2.00
SPEA2 0.99 0.58 0.19 190.72 126.54 914.93 0.97 28.03 2.00

A-25-30 GRASP1 0.72 0.72 0.05 136.69 122.55 1011.62 0.94 65.13 0.82
GRASP2 0.79 0.71 0.05 136.06 122.73 1013.17 0.95 66.07 0.77
GRASP3 0.69 0.72 0.05 135.65 122.39 1010.35 0.95 66.13 0.79
GRASP4 0.70 0.72 0.04 138.09 122.36 1010.11 0.94 63.73 0.76
NSGA-II 0.90 0.67 0.13 157.99 125.03 1032.06 0.95 50.30 2.00
SPEA2 0.99 0.59 0.21 189.70 127.59 1053.33 0.97 35.77 2.00

A-25-40 GRASP1 0.77 0.71 0.05 130.80 115.18 921.01 0.94 61.50 0.78
GRASP2 0.76 0.71 0.05 130.23 115.14 920.60 0.94 61.77 0.78
GRASP3 0.73 0.71 0.05 127.34 115.14 920.64 0.94 64.70 0.80
GRASP4 0.73 0.71 0.04 126.54 114.47 915.32 0.94 64.93 0.74
NSGA-II 0.86 0.67 0.11 145.01 116.74 933.29 0.95 49.73 2.00
SPEA2 0.99 0.58 0.21 182.55 120.16 960.85 0.96 32.50 2.00

A-25-50 GRASP1 0.70 0.74 0.04 144.06 129.97 1107.11 0.95 68.30 0.81
GRASP2 0.70 0.74 0.04 141.26 130.00 1107.38 0.96 70.67 0.80
GRASP3 0.73 0.74 0.05 143.88 130.15 1108.68 0.95 68.23 0.79
GRASP4 0.73 0.74 0.04 142.97 129.88 1106.34 0.95 69.23 0.77
NSGA-II 0.81 0.71 0.10 159.35 131.59 1120.86 0.96 55.60 2.00
SPEA2 1.00 0.62 0.18 202.15 133.95 1140.99 0.97 36.07 2.00

A-25-60 GRASP1 0.72 0.64 0.06 140.69 129.09 1001.48 0.95 57.90 0.76
GRASP2 0.76 0.64 0.06 139.92 129.42 1003.99 0.95 58.50 0.73
GRASP3 0.73 0.64 0.06 138.32 129.40 1003.89 0.95 59.83 0.77
GRASP4 0.70 0.65 0.06 138.03 129.15 1001.94 0.95 60.13 0.70
NSGA-II 0.84 0.60 0.14 156.07 131.49 1020.11 0.96 47.77 2.00
SPEA2 0.99 0.50 0.24 190.88 134.23 1041.42 0.97 33.50 2.00

A-25-70 GRASP1 0.72 0.70 0.05 162.97 152.12 1229.14 0.96 64.33 0.77
GRASP2 0.73 0.70 0.05 163.38 152.19 1229.70 0.96 63.87 0.73
GRASP3 0.78 0.70 0.05 163.91 152.08 1228.78 0.96 63.97 0.75
GRASP4 0.69 0.71 0.04 163.03 151.73 1226.00 0.96 64.30 0.72
NSGA-II 0.80 0.68 0.10 178.69 153.06 1236.82 0.96 53.43 2.00
SPEA2 0.97 0.57 0.20 223.54 156.34 1263.31 0.97 35.90 2.00

A-25-80 GRASP1 0.67 0.65 0.04 161.61 149.04 1101.55 0.94 54.20 0.70
GRASP2 0.63 0.65 0.05 163.45 149.13 1102.21 0.94 53.13 0.69
GRASP3 0.58 0.66 0.04 162.57 149.14 1102.29 0.94 53.63 0.72
GRASP4 0.55 0.66 0.03 162.22 148.88 1100.40 0.94 54.03 0.70
NSGA-II 0.87 0.61 0.12 169.26 150.59 1112.97 0.95 48.93 2.00
SPEA2 1.00 0.52 0.22 203.94 153.36 1133.50 0.97 34.50 2.00

A-25-90 GRASP1 0.72 0.71 0.06 185.30 174.36 1172.89 0.97 43.07 0.66
GRASP2 0.79 0.71 0.07 187.95 174.45 1173.41 0.97 42.07 0.61
GRASP3 0.75 0.71 0.06 188.59 174.22 1171.87 0.96 41.70 0.63
GRASP4 0.67 0.72 0.05 182.52 173.99 1170.31 0.97 44.33 0.63
NSGA-II 0.82 0.67 0.13 219.79 175.77 1182.29 0.97 31.40 2.00
SPEA2 0.98 0.58 0.22 267.68 177.81 1195.97 0.98 21.83 2.00

S-25 GRASP1 0.65 0.73 0.05 1863.24 1761.50 16535.96 0.99 82.07 0.88
GRASP2 0.71 0.73 0.05 1846.18 1761.08 16531.86 0.99 83.37 0.87
GRASP3 0.66 0.73 0.05 1818.57 1761.37 16534.47 0.99 85.77 0.90
GRASP4 0.58 0.74 0.04 1844.97 1760.58 16527.13 0.99 83.30 0.83
NSGA-II 0.88 0.68 0.09 2105.42 1764.65 16565.47 0.99 64.10 2.00
SPEA2 0.99 0.59 0.21 2597.16 1772.78 16642.44 0.99 44.47 2.00

Y-25 GRASP1 0.66 0.70 0.04 742.59 710.95 8044.04 0.98 125.20 1.21
GRASP2 0.64 0.70 0.05 758.68 711.15 8046.28 0.98 120.27 1.11
GRASP3 0.73 0.70 0.05 750.76 711.28 8047.75 0.98 122.53 1.17
GRASP4 0.63 0.70 0.03 739.54 710.73 8041.50 0.98 126.57 1.07
NSGA-II 0.92 0.65 0.14 997.73 715.19 8091.98 0.98 68.80 2.00
SPEA2 0.99 0.57 0.21 1188.99 719.90 8145.13 0.99 51.67 2.00
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Table A.13: Comparison among the 4 different configurations of our GRASP proposal, an
NSGA-II and SPEA2 algoritms, for a set of instances with size [30, 60]. Best values for
the metrics are highlighted with bold.

Instance Algorithm C HV ϵ GD IGD IGD+ ∆ Size Time(s)

Y-30 GRASP1 0.78 0.70 0.05 898.88 867.81 10121.44 0.98 133.97 2.44
GRASP2 0.69 0.71 0.04 909.34 867.75 10120.64 0.98 131.00 2.51
GRASP3 0.70 0.71 0.05 908.59 867.40 10116.37 0.98 131.53 2.49
GRASP4 0.75 0.71 0.04 900.54 867.27 10115.02 0.98 133.73 2.31
NSGA-II 0.93 0.66 0.12 1211.48 870.53 10153.28 0.98 73.23 6.00
SPEA2 1.00 0.57 0.21 1317.43 877.22 10230.61 0.99 63.87 6.00

Y-35 GRASP1 0.74 0.71 0.04 940.69 942.52 13375.02 0.98 212.37 6.50
GRASP2 0.81 0.71 0.04 948.47 942.41 13373.59 0.98 209.20 6.35
GRASP3 0.78 0.71 0.04 932.60 942.23 13370.79 0.98 216.70 6.57
GRASP4 0.71 0.72 0.03 930.01 942.13 13369.32 0.98 217.57 5.68
NSGA-II 0.91 0.67 0.10 1560.43 946.16 13426.59 0.97 77.20 14.00
SPEA2 1.00 0.58 0.21 1398.07 952.80 13520.23 0.99 96.57 14.00

Y-40 GRASP1 0.76 0.73 0.05 1030.63 1015.21 15805.11 0.98 245.97 11.89
GRASP2 0.75 0.73 0.05 1024.53 1015.35 15806.96 0.98 248.60 11.11
GRASP3 0.72 0.74 0.05 1022.23 1015.25 15805.84 0.98 249.67 11.75
GRASP4 0.78 0.74 0.04 1008.37 1014.60 15796.04 0.98 255.60 10.26
NSGA-II 0.92 0.68 0.10 1847.17 1018.27 15852.70 0.98 76.30 30.00
SPEA2 0.99 0.61 0.19 1615.54 1022.17 15913.41 0.99 99.37 30.00

Y-45 GRASP1 0.79 0.75 0.03 1046.40 1022.35 20295.11 0.98 396.43 27.65
GRASP2 0.79 0.75 0.03 1052.36 1021.84 20285.54 0.98 391.07 26.40
GRASP3 0.71 0.75 0.03 1054.00 1021.82 20285.05 0.98 390.63 26.36
GRASP4 0.70 0.75 0.03 1031.65 1021.80 20284.63 0.98 406.80 23.68
NSGA-II 0.96 0.69 0.11 2374.61 1025.56 20359.99 0.97 76.47 60.00
SPEA2 0.97 0.64 0.19 2071.06 1028.97 20427.33 0.98 100.00 60.00

Y-50 GRASP1 0.78 0.73 0.04 1249.93 1230.99 25869.12 0.98 445.40 44.21
GRASP2 0.78 0.73 0.04 1250.06 1231.49 25880.32 0.98 445.37 43.43
GRASP3 0.75 0.73 0.04 1236.48 1230.57 25860.75 0.98 455.43 45.31
GRASP4 0.70 0.74 0.03 1248.77 1229.63 25840.84 0.98 446.87 38.93
NSGA-II 0.93 0.67 0.10 2988.72 1234.06 25934.83 0.98 77.87 112.00
SPEA2 1.00 0.61 0.17 2634.89 1238.40 26026.08 0.98 100.00 112.00

Y-60 GRASP1 0.80 0.73 0.03 1264.65 1236.28 31890.60 0.98 662.90 130.33
GRASP2 0.80 0.73 0.03 1242.15 1236.11 31886.21 0.98 689.57 131.71
GRASP3 0.72 0.73 0.03 1257.66 1235.67 31875.45 0.98 670.80 129.41
GRASP4 0.69 0.74 0.03 1240.99 1235.27 31864.93 0.98 687.97 110.87
NSGA-II 0.96 0.67 0.11 3710.10 1239.74 31980.61 0.97 76.93 300.00
SPEA2 0.99 0.62 0.18 3251.85 1244.69 32107.54 0.97 100.00 300.00
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A GRASP method for the Bi-Objective Multiple Row Equal Facility Layout Problem 
 
 
Highlights 
 

• Ensemble of constructive methods to provide diversity of initial solutions. 

• Combination of local search procedures to improve the non-dominated front.  

• Improvement of the state of the art with all GRASP configurations. 

• Study a of new set of larger instances created from the single-objective problem. 
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