
Nonlinear Dyn (2024) 112:10147–10155
https://doi.org/10.1007/s11071-024-09566-z

RESEARCH

Systematic search for islets of stability in the standard map
for large parameter values

Alexandre R. Nieto · Rubén Capeáns ·
Miguel A. F. Sanjuán

Received: 10 January 2024 / Accepted: 25 March 2024 / Published online: 14 April 2024
© The Author(s) 2024

Abstract In the seminal paper, Chirikov (Phys Rep
52:263–379, 1979) showed that the standard map does
not exhibit a boundary to chaos, but rather that there are
small islands (“islets”) of stability for arbitrarily large
values of the nonlinear perturbation. In this context,
he established that the area of the islets in the phase
space and the range of parameter values where they
exist should decay following power laws with expo-
nents −2 and −1, respectively. In this paper, we carry
out a systematic numerical search for islets of stability
and we show that the power laws predicted by Chirikov
hold. Furthermore, we use high-resolution 3D islets to
reveal that the islets’ volume decays following a similar
power law with exponent −3.
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1 Introduction

The standardmap, also knownasChirikov–Taylor stan-
dard map, is a paradigmatic 2D area-preserving map
given by [1]

θn+1 = θn + pn+1,

pn+1 = pn + K sin θn,
(1)

where pn and θn are taken modulo 2π ; and K > 0
is a constant whose role is to increase the nonlinear
perturbation. The physical meaning of θ and p depends
on the system under consideration.

This is a quite general model which describes the
dynamics of a nonlinear oscillator under periodic per-
turbations, and it has beenbroadly studied in the context
of nonlinear dynamics. Some real-world physical situ-
ations described by the standard map include a kicked
rotor [2] and the motion of a charged particle in a mag-
netic bottle [1].

For small values of K (say K < 4), the phase
space (θ, p) is occupied by a chaotic sea and a main
Kolmogorov-Arnold-Moser (KAM) island that covers
a significant area of the phase space. It is noteworthy
that all the KAM islands in this system surround stable
periodic orbits. The coexistence of stable and chaotic
dynamics is a hallmark of Hamiltonian systems and,
in words of Zaslavsky, “is one of the most striking and
wonderful discoveries ever made” [2]. As K increases,
the area of the KAM island is irregularly reduced until
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being eventually destroyed for K ≈ 7. For higher val-
ues of the parameter K , a fully chaotic regime might
be expected. However, small regions (“islets”) of sta-
bility emerge in an approximate periodic manner, even
for arbitrarily large parameter values [3]. Akin to KAM
islands, islets of stability are regions filled with KAM
tori where orbits are dynamically trapped. However,
islets are not directly related to the main KAM island.
As amatter of fact, they do not emerge in bifurcations of
the main family of periodic orbits. Instead, they appear
in saddle-node bifurcations out in the chaotic sea [4].
Although islets have not received much attention in the
literature, their existence is not a unique feature of the
standard map, but they also appear in general Hamilto-
nian systems and area-preserving maps [5–7].

Chirikov himself suggested that the length of the
parameter interval ΔK where the islets exist and their
area A in the phase space should decay following power
laws like ΔK ∝ Ka1 and A ∝ Ka2 . The predicted
exponents are a1 = −1 and a2 = −2. The latter expo-
nent was numerically investigated by Contopoulos et
al. in 2005 [8]. They classified the islets in two differ-
ent types and obtained a decay exponent (−2.45 and
−2.3) for each type. Although these numbers are rel-
atively close to the theoretical value −2 (relative error
about 15−20%), they do not provide definitive numer-
ical evidence supporting the idea that these laws govern
the decay of magnitudes in the system. To the best of
our knowledge, there have not been more refined esti-
mations of these exponents.

In this paper, we conduct rigorous numerical sim-
ulations to validate the accuracy of Chirikov’s predic-
tions, which we find to be remarkably precise. In par-
ticular, we obtain the predicted decay exponents with
relative errors of less than 0.6%. Moreover, we extend
the previous predictions to the case of the volume in
the (θ, p, K ) space, obtaining an exponent −3.

The manuscript is organized as follows. First, in
Sect. 2,we introduce a systematic approach for comput-
ing islets of stability. In Sect. 3, we explore numerous
islets across a wide range of parameters, demonstrat-
ing that their length, area, and volume strictly follow
power laws. Finally, in Sect. 4, we summarize the key
findings and discuss the potential implications of the
results.

2 Islets of stability

A general overview of the standard map dynamics can
be obtained simply by plotting orbits in the phase space.
However, since we aim to locate islets of stability in
a systematic manner, we need a method to detect the
last KAM curve, i.e., the boundary between a KAM
island and the chaotic sea. In this section, we present
the methods we have implemented to accurately locate
the islets.

Due to the modulo operation, the standard map is
a mapping from the two-dimensional torus to itself.
Therefore, any orbit is confined to the phase space
region [0, 2π ] × [0, 2π ]. Nevertheless, orbits within
the chaotic sea will eventually visit the entire phase
space, except the region bounded by the last KAM
curve. Using this simple fact, and following Sanjuán
et al. [9], we define regions (“leaks”) in the chaotic sea.
If an orbit never falls into them, we classify it as a part
of a KAM island. Naturally, for this method to work
the leaks must be located in an area that is known a
priori to be in the chaotic sea. In particular, we define a
left leak L1 ≡ [0.1π, 0.3π ] × [0, 2π ] and a right leak
L2 ≡ [1.7π, 1.9π ] × [0, 2π ]. This choice introduces
two rectangular leaks of width 0.2π that are symmet-
rical about θ = π . We highlight that this choice is
arbitrary and any region in the chaotic sea can be used
to serve this purpose.

Once the leaks are defined,wedivide the phase space
into a grid of initial conditions and we iterate the sys-
tem for each of them. If after one or more iterations an
orbit falls into one of the leaks, we stop the iteration
process and we classify the corresponding initial con-
dition as a part of the chaotic sea. On the contrary, if
after a fixed maximum number of iterations the orbit
has never fallen into the leaks, we classify the corre-
sponding initial condition as a part of a KAM island.
To visualize the result, we assign blue (red) color to the
initial conditions whose orbits fall into the left (right)
leak. Finally, we assign white color to initial conditions
belonging to a KAM island.

The procedure that we have just introduced is equiv-
alent to the numerical simulation of exit basins in open
Hamiltonian systems [10]. For this reason,wewill refer
to the corresponding data and plots as “exit basin dia-
grams”. Some examples computed for different val-
ues of K are depicted in Fig. 1. For K < 4, the
main KAM island surrounds a periodic orbit located
at (θ, p) = (π, 0) [or, equivalently, (θ, p) = (π, 2π)],
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Fig. 1 Exit basin diagram
in the phase space showing
KAM islands (white color)
for parameter values a
K = 2, b K = 4, c K = 5,
and d K = 6. Blue (red)
color represents chaotic
orbits that fall into the left
(right) leak. The gray
dashed lines correspond to
the symmetry lines p = 2θ
and p = 2θ − 2π . (Colour
figure online)
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Fig. 2 Exit basin diagram showing inwhite color themainKAM
island and some islets in the (θ, K ) plane. Blue (red) color rep-
resents chaotic orbits that fall into the left (right) leak. To obtain
these data, once an initial condition θ is chosen, the remaining
coordinate is given by p = 2θ − 2π if θ > π or by p = 2θ if
θ ≤ π . The islets highlighted with white dashed rectangles are
shown with high resolution in Fig. 3 [panels (a) and (c)]. (Colour
figure online)

as shown in panels (a) and (b). For higher values of K
[see panels (c) and (d)], the periodic orbit moves along
two symmetry lines p = 2θ and p = 2θ − 2π , which
are represented with gray dashed lines in Fig. 1. Some
periodic orbits generating islets of stability also appear
over these symmetry lines.

Since islets appear in a reduced range of parameter
values, it is difficult to identify them by computing exit
basin diagrams in the phase space. Furthermore, as we
shall show later, the intervalΔK where an islet exists is
reduced as K increases. Thus, this task becomes even
more arduous for large parameter values. However, the
fact that the main stable periodic orbits, and hence the
KAM islands, lie on symmetry lines can help us to
narrow our search. In particular, we can preliminar-
ily locate islets by constructing exit basin diagrams in
which we choose initial conditions along a given sym-
metry line for different values of K . As an example, in
Fig. 2 we show the exit basin diagram computed along
the symmetry lines p = 2θ−2π and p = 2θ for param-
eter values in the range K ∈ [0, 20].We emphasize that
other symmetry lines, such as θ = p, could be used to
find different islets. For low values of K , we observe
the main KAM island, which is destroyed for K ≈ 7.
This island possesses a characteristic fractal tree-like
structure that is ubiquitous in area-preservingmaps and
Hamiltonian systems (see, for example, Refs. [6,11]).

After the destruction of the main island, the fully
chaotic regime is reached, but only momentarily. The
first islet of stability appears for K ≈ 9.19, and it is
followed by a second islet appearing for K ≈ 11.85.
As it has been shown by Contopoulos et al. [8], to pre-
cisely study the characteristics of the islets it is neces-
sary to classify them in different types. Each islet type
is characterized by the period of its central periodic
orbit and can be found in a particular symmetry line. In
this work, we focus our attention on islets surrounding
period-4 orbits (type I) and period-2 orbits (type II).
These periodic orbits, which are periodic on the torus
but nonperiodic on the cylinder, have been referred to as
“accelerator modes” in the literature [12], and their dif-
fusion properties have received some attention [13–15].
The first islet of each type, which are also highlighted
with white dashed rectangles in Fig. 2, are shown with
high resolution in panels (a) and (c) of Fig. 3. As can
be noticed by looking at the scale of the figures, type
II islets are rather bigger than type I.

As K is increased, a scaled copy of each type of
islet appears in approximate parameter intervals of 2π .
Their size is reduced as K increases, but their shape
remains unaltered. In other words, exact copies of the
islets appear recurrently, simply changing their size as
the leaves in a fern. This can be intuitively seen inFig. 2,
where it is clear that the second islets of each type are
smaller. To illustrate the astonishing similarity between
islets of the same type, we depict islets of types I and
II for values of K close to 1000 in Fig. 3b and d. We
can see with naked eye that their main features, ignor-
ing their size, correspond to a great extent to the islets
appearing for low values of K (panels (a) and (c) of
Fig. 3).

3 Decay of magnitudes

In this section, we compute the length, area and volume
of the islets, as well as we obtain the exponents govern-
ing the decay of these magnitudes. To accomplish this,
we systematically locate multiple islets following the
procedure described in Sec. II. Afterward, we construct
high-resolution 3D exit basin diagrams in the (θ, p, K )

space. As an illustrative example, Fig. 4 displays the
first islet of each type.

These 3D representations offer a comprehensive
viewof the complex evolution of the islets as the param-
eter K is increased. The rich fractal structures of the
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Fig. 3 Exit basin diagram
in the (θ, K ) plane showing
islets of stability (white
color) of (a, b) type I and (c,
d) type II. It is clear that
islets of the same type are
identical scaled copies. Blue
(red) color represents
chaotic orbits that fall into
the left (right) leak. To
obtain these data, once an
initial condition θ is chosen,
the remaining coordinate is
given by p = 2θ − 2π .
(Colour figure online)

islets can be seen with great detail by zooming in the
figure. From these data, a Poincaré surface of section
for a fixed value of K brings exit basin diagrams equiv-
alent to those showed in Fig. 1. In a similar fashion,
defining the Poincaré section p = 2θ − 2π , the exit
basin diagrams of Fig. 3 are obtained.

The length, area and volume of an islet can be
obtained from a 3D exit basin diagram. Themain ingre-
dients of the procedure we have followed are sketched
in Fig. 5. In this figure, the gray volume corresponds
to the same type II islet plotted in Fig. 4b. On the other
hand,wehighlight specific cross sections for K = const
(indicated by the blue areas within the 3D islet), which
represent islets in the phase space (θ, p). The area A
of an islet in the phase space evolves as K increases,
as shown on the right blue curve. Therefore, to charac-
terize different islets in terms of their area, it is neces-
sary to establish a reference point. In our case, we have
chosen as a reference their maximum area, max(A).
Finally, the length ΔK of an islet is simply the param-
eter range where it exists.

According to Chirikov, the length and maximum
area of the islets should follow power laws of the form

ΔK ∝ Ka1, max(A) ∝ Ka2 , (2)

where a1 = −1 and a2 = −2. From the perspective of
numerical simulations, K is the parameter value where
an islet appears (see Ki in Fig. 5).

As far as we know, no power laws for the volume
have been suggested in the literature. However, given
that the length decays as 1/K and the area as 1/K 2, it
leads us to conjecture that the volume should decay as
1/K 3. Therefore, a similar power law

V ∝ Ka3, (3)

with exponent a3 = −3 is expected.
To show that these decay laws hold, we have studied

all the islets appearing in the range of parameter values
K ∈ [9, 500], where we found a total of 157 islets
(79 of type I and 78 of type II). For each islet, we have
computed a 3Dexit basin diagramwith a 1000×1000×
1000 resolution.

Once the length, maximum area, and volume have
been calculated, we estimate the exponents a1, a2, and
a3 by fitting least squares lines on log− log plots.
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Fig. 4 Islets of stability of (a) type I and (b) type II in the
(θ, p, K ) space. White color represents initial conditions within
an islet, while blue (red) color is used on three of the cube’s faces
to represent chaotic orbits that fall into the left (right) leak. To
properly visualize the islets, the remaining chaotic initial condi-
tions are left transparent. Great detail of the islets arises when
zooming in. (Colour figure online)

Fig. 5 Main ingredients of our method for determining the
length, maximum area, and volume of the islets. The gray vol-
ume corresponds to a 3D islet, while blue areas (cross sections
at constant K ) illustrate the islet’s area for various values of K .
The blue curve on the right displays the evolution of the area in
the phase space (θ, p) as a function of K . Some characteristic
values of the area, including its maximum, are indicated with
arrows. The length of the islet is ΔK = K f − Ki

Table 1 Slope a and linear correlation coefficient r for the
straight lines depicted in Fig. 6. The slope of the lines corre-
sponds to the exponent of the power laws given by Eqs. (2) and
(3). The relative error δ is calculated as |(ā − a)/ā|, being ā the
theoretical value and a our estimation

Fit (islet type) a r δ (%)

ΔK (I) −1.00568 −0.99997 0.57

ΔK (II) −1.00063 −0.9999991 0.063

max(A) (I) −2.00576 −0.999992 0.29

max(A) (II) −2.00123 −0.999996 0.062

V (I) −3.00883 −0.999993 0.29

V (II) −2.99995 −0.99999993 0.0017

These logarithmic plots, along with the correspond-
ing least squares lines, are depicted in Fig. 6. Detailed
results, including the decay exponents a, linear corre-
lation coefficients r , and relative errors δ, are presented
in Table 1.

The experimental values match well with the the-
oretical predictions. Notably, the relative errors range
from 0.0017% to 0.57%. Additionally, the linear cor-
relation coefficients are very close to −1 in all cases,
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Fig. 6 Logarithmic plots
for (a) length, (b) maximum
area, and (c) volume of the
islets. Blue dots represent
type I islet data, while red
dots represent type II islet
data. Following the same
color scheme, each data set
is accompanied by a straight
line obtained using the least
squares method. The slope
of the lines corresponds to
the exponent of the power
laws given by Eqs. (2) and
(3)
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suggesting a robust linear relationship between the vari-
ables.

4 Conclusions and discussion

In summary, in this paper we leverage the symmetries
of the standard map to systematically identify islets
of stability for a wide range of parameter values. We
have accurately determined the exponents governing
the power laws describing the decay of the length, max-
imum area, and volume of the islets. Theoretical val-
ues for the first two exponents were already established
in the literature by Chirikov, but a rigorous numerical
proof had not yet been provided.

In addition to these results, we have carefully
described the numerical schemes used to locate islets
of stability. These methods can serve as useful tools
for future research endeavors aimed at identifying and
studying islets in different systems.

Despite their small size, islets of stability can exert
a significant influence in a system. As a matter of fact,
even small KAM islands can generate anomalous diffu-
sion [16,17] andmodify global properties such as decay
correlations [18]. In certain systems, maintaining sta-
ble motion may be preferable over chaotic behavior. In
this situation, islets constitute a valuable subset even
for large parameter values where the system is mostly
(but not fully) chaotic. As a result, to find islets can be
advantageous for control schemes or to define strategic
parameter values. One particularly interesting potential
application arises in the context of plasma confinement
in tokamaks [19]. As an inkling of such potential appli-
cation, we have conducted preliminary simulations on
the Boozer map [20,21], which is a model for the con-
figuration of the magnetic field lines of a tokamak, and
we have verified that it exhibits islets of stability.
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