
ESCUELA DE INGENIERÍA DE FUENLABRADA
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Supervisor: Rebeca Goya Esteban

Acedemic year 2023/2024





Dedicated to my Uncle Miguel.

I



II



Acknowledgments

This work represents the end of an adventure that began 4 years ago, full of
excitement, and culminated in this way, making me a biomedical engineer. During
these 4 years, there have been many experiences lived and difficulties faced, and in
these lines I want to thank all the people who have made it possible.

Firstly, I want to thank my family, Mom, Dad, and my brother Miguel, who have
been the support I leaned on when things didn’t go well. Thank you for everything
you teach me every day, you are my role models.

Secondly, I want to thank my classmates and especially the ”Cabrix”. You have
been that group of friends to turn to when things are going well, but especially when
situations become difficult. I also want to thank Carla for the love and support that
she has gave me through this last year.

Thirdly, thanks to all the teachers who have accompanied and taught me during
this period.

Fourthly, I want to thank my supervisor, Rebeca, for everything taught and for
making the development of this work something simpler and more enjoyable.

Finally, I want to dedicate this work entirely to my uncle Miguel. I hope you
can see from wherever you are the professional I have become and will become. We
all miss you so much.

III



IV Acknowledgments



Abstract

Sudden Cardiac Death (SCD) is a significant global health issue, accounting
for a substantial proportion of cardiovascular disease-related mortality. SCD often
results from ventricular arrhythmias, which can occur without prior warning, making
early detection crucial. One of the promising indicators for predicting SCD is T-
wave alternans (TWA), which are subtle variations (order of µV ) in the amplitude
or shape of the T-wave in an electrocardiogram (ECG). Detecting TWA is essential
as it can help identify individuals at high risk of SCD, enabling timely interventions.

In this study, the creation of a comprehensive database by collecting and pre-
processing ECG signals was developed. The preprocessing steps included the
addition of alternans, removal of baseline wander, delineation of the ST-T complex,
heartbeat windowing, ST-T alignment, background subtraction, linear filtering, and
building the signals dataframe. These steps ensured the quality and consistency of
the data used for analysis.

Relevant features were extracted from the preprocessed ECG signals, high-
lighting the Kscore, Valt and the noble cumsum-based feature, to improve the de-
tection accuracy of TWA. Various machine learning algorithms were employed,
including Logistic Regression (LR), Decision Tree (DT), Random Forest (RF), and
Support Vector Machine (SVM), to evaluate their performance in detecting TWA.

Furthermore, we implemented advanced deep learning techniques, specif-
ically Long Short-Term Memory (LSTM) networks and a hybrid CNN-LSTM ar-
chitecture. Our results demonstrated that LSTM networks outperformed other
models, achieving an outstanding accuracy of 94.08%, which is the highest per-
formance reported in the literature for TWA detection.

This research highlights the potential of LSTM networks in improving the early
detection of TWA, thereby contributing to the prevention of SCD. The findings
suggest that incorporating deep learning models, particularly LSTM networks, can
significantly enhance the accuracy and reliability of TWA detection, offering a robust
tool for clinicians in the fight against SCD.
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Chapter 1

Introduction

1.1 Motivation

Cardiovascular diseases represent one of the main reasons for morbidity and
mortality throughout the world. In fact, cardiovascular disease remains the most
common cause of death worldwide. In this sense, the 2013 Global Burden of Disease
study estimated that cardiovascular disease is responsible for 17.3 million deaths
globally every year [1].

Between some of the main manifestations of these diseases, sudden cardiac
death (SCD) emerges as a particularly alarming one. SCD is an unexpected
sudden death due to a heart condition. SCD affects heavily on the health care
system, being the leading cause of death in western countries (15-20%) [2], and
responsible for the majority of deaths associated to cardiovascular diseases. Against
this reality, it is crucial to approach this problem with the design and implementation
of algorithms and tools that allow the screening and prevention of this phenomena,
and consequently, its big impact in our health care system.

The development of techniques in the screening of population have been studied
and applied in order to diminish the risk of SCD. Clinical evaluation of the electro-
cardiogram (ECG), cardiac magnetic resonance (CMR) or endomyocardial biopsy
are some of the main mechanisms of screening used nowadays [3].

However, the existing techniques do not allow enough reliable results as SCD is
still a mayor cause of death worldwide. In this sense, T-wave alternats (TWA)
appears as a new promising technique. TWA is a fluctuation of the ST–T complex
of the surface ECG on an every–other–beat basis. This technique has shown to
improve the results regarding specificity and sensitivity in the detection of various
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2 CHAPTER 1. INTRODUCTION

cardiovascular diseases like Ventricular Fibrillation (VF) and especially, SCD [4].

Nevertheless, the work on analyzing them becomes really hard; the imperceptible
shape of the TWA to the human eye due to the small amplitude of the wave, the
noise, and the overlapping with other waves makes the detection of them by physi-
cians almost impossible. A carefully designed framework for the TWA detection is
required.

With this study, it is intended to develop a solid pipeline for the detection of
TWA with the goal of improving the already obtained results and redefine a new
gold-standard in the prevention of SCD.

It is important to remark that this project grows as a continuation of the work
developed in “Machine Learning approach for TWA detection relying on ensemble
data design” by Fernández-Calvillo et al. [4]. With this project it is aimed to use
these basis in the development of new techniques to identify TWA and stratify
cardiac risk.

The entire code developed in this work can be further analysed through
the following link: TFG-CODE-LINK.

1.2 Goals

The main goal of this project is to design a pipeline for the detection of SCD based
on the idea that TWA are a powerful and reliable indicator of this pathology. In order
to develop this idea, there was a clear necessity of stating accurate and pragmatic
sub-goals that would build together a final result. It was defined, therefore, six main
sub-goals in this project.

1. Understanding on the physiological and pathological basis behind
T-wave alternans.

This involves delving into the mechanisms underlying T-wave alternans, which
can be indicative of cardiac arrhythmias or other heart conditions. TWA is
a very special phenomena which need to be explored through the available
bibliography to build the project over a solid clinical mind.

2. Building of an adequate database for TWA detection.

Once the knowledge around the pathopysiological basis surrounding TWA is
consolidated, it is necessary to build and design a machine-learning appropri-
ated database.

https://github.com/alvarososaa/TFG-TWA
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This involves collecting ECG from different patients and from different reliable
databases in order to build a self-created database specialized in alternans
detection.

3. Development of ECG preprocessing techniques.

Once our database is correctly designed and understood and before diving
into the alternans analysis, raw ECG signals need from preprocessing stages
in order to be able to extract the maximum information from it. Techniques
such as baseline wander elimination, windowing or linear filtering will be used
during this stage.

4. Extraction of features on the preprocessed signals.

Once preprocessing is complete, features relevant to TWA regarding on their
shape and behaviour are extracted from the ECG signals. These features
provide the basis for subsequent machine learning analysis.

5. Development of Machine Learning (ML) techniques for the detection
of TWA.

Various ML algorithms, such as support vector machines, random forests,
and logistic regression are trained on the extracted features to classify ECG
segments as either exhibiting TWA or not. Performance metrics are then
compared to identify the most effective approach.

6. Development of Recurrent Neural Networks (RNN) for the detec-
tion of TWA.

RNNs, particularly suited for sequential data like ECG signals, are explored
to assess their effectiveness in detecting TWA. The complete preprocessed
ECG data is fed into the RNN model to capture temporal dependencies and
potentially improve detection accuracy.

1.3 Methodology and memory structure

In order to achieve the previously mentioned goals, the following methodology
was used:

1. Bibliographic review: Before entering on the technical aspects of the project
a deep understanding of the medical context together with a comprehension
of the TWA phenomena was required

2. Creation of a signal database: The lack of properly annotated databases
in the TWA field made necessary the creation of an own database for posterior
analysis.
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3. Preprocessing of the database and creation of a ML/DL-oriented
database: After the creation the signals would precise a specialized pre-
processing to highlight the alternans presence. Then, a data frame for the
experimental part should be constructed.

4. Comparison of the different models: Different ML models and DL archi-
tectures are conducted to get a consistent visualization on the best models for
this particular problem.

5. Conclusion: After analyzing the results obtained with the models, a proper
conclusion should be stated on the best approaches for this problem together
with future work on the field to be done.

The structure of the document is the following:

• Chapter 1: Introduction.

• Chapter 2: Background.

• Chapter 3: Data analysis.

• Chapter 4: Experiments.

• Chapter 5: Results and Discussion.

• Chapter 6: Conclusions, future work and competencies acquired.

• Chapter 7: Appendices.



Chapter 2

Background

2.1 Sudden cardiac death

Sudden cardiac death (SCD) is a pathology characterized by the unexpected
death from a cardiac cause within a short time period, commonly less than 1 hour
from the onset of symptoms when witnessed, or in the case it is not witnessed, an
unexpected death from a cardiovascular cause where the individual was observed to
be alive within the previous 24 hours. In any case, the person was not apparently
suffering from any prior condition [5].

The epidemiology of SCD has been an intense field of study due to its significant
impact in public health and its capability to affect individuals from any age or health
condition. SCD remains as the main cause of death in western countries with
an incidence of between 15-20%. In North America and European populations, the
annual incidence rate of this conditions appears to be around 50-100 per 100.000
inhabitants in studies developed from 2005 to 2015 [6].

The majority of sudden cardiac death cases are due to undetected cardiovascu-
lar diseases, including congenital heart defects in younger individuals and coronary
artery disease in those over 35 years old. Coronary artery disease accounts for
70-80% of SCD cases, with ventricular arrhythmias such as ventricular tachycar-
dia (VT) and ventricular fibrillation (VF) being the primary cause. Additionally,
other types of syndromes and pathologies such as inherited arrhythmias or cardiomy-
opathies can also lead to SCD as it can be seen in figure 2.1 [7].

SCD can be challenging to classify accurately due to factors such as unwitnessed
events, accounting for 40% of cases [8]. The advent of monitoring capabilities, par-
ticularly with implantable cardioverter-defibrillators (ICDs), has shed light on the

5



6 CHAPTER 2. BACKGROUND

Figure 2.1: Main causes of SCD in Western countries and Japan [7].

limitations of classifying sudden deaths based solely on clinical circumstances. Only
an ECG or a ventricular electrogram recorded from an implanted device at the time
of death can definitively reveal information about an arrhythmia. Prodromal symp-
toms, which can be nonspecific, including chest pain suggesting ischemia, palpita-
tions indicating tachyarrhythmia, or dyspnea suggesting congestive heart failure, are
often present but are only suggestive rather than conclusive. For these reasons, total
mortality, rather than classifications of cardiac and arrhythmic mortality, should be
used as primary objectives for many outcome studies [5].

All of this has made SCD a phenomenon of study in the scientific community,
leading to the development of methods for the prevention and screening of it. These
testing techniques can be mainly divided in invasive or non-invasive. Invasive meth-
ods include electrophysiological studies (EPS), while noninvasive methods encom-
pass conventional ECG, medical imaging techniques, long-term ECG monitoring
(Holter), and other tests such as genotype determination or stress tests for specific
cardiopathies.

EPS involves the use of intracardiac catheters to assess internal cardioelectric
activity and induce ventricular arrhythmias. However, its usefulness is limited to
certain conditions like ischemic cardiopathy and Brugada syndrome, with weak vali-
dation in other cardiopathies. Conventional ECG provides graphical representation
of cardiac electrical activity and can aid in diagnosing underlying cardiopathies and
identifying elements suggestive of increased SCD risk, such as QT interval prolon-
gation or bundle-branch blocks. Medical imaging techniques like echocardiography
help estimate left ventricular ejection fraction (LVEF), which is a significant risk
factor for SCD in various cardiopathies. Additionally, cardiac nuclear magnetic
resonance can assess myocardial fibrosis, associated with ventricular arrhythmias.
Long-term ECG monitoring (Holter) detects arrhythmic events like ventricular pre-
mature beats and non-sustained ventricular tachycardia, providing valuable infor-
mation for SCD risk assessment. Other tests, such as ECG signal averaging and
baroreflex sensitivity, offer insights into arrhythmic substrate and autonomic func-
tion regulation, respectively, but their clinical utility for SCD risk prediction is
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limited or under investigation [9].

Moreover, the analysis of various algorithms and computational indexes have
been identified to be useful in the prediction and stratification of SCD. Among
them, we find the HRT indexes, which describe small fluctuations in the ECG,
HRV , which measures temporal variation between sets of consecutive cardiac beats,
reflecting autonomic nervous system control or the TWA [9].

All this techniques have tried to approach a reliable predictor and detector for
SCD prevention. However, the clinical studies have shown a low efficiency in terms
of specificity and positive predictive value of this techniques [10].

The lack of a gold standard for the detection and stratification of cardiac risk
builds up a big necessity in the field. New studies and investigations in the field will
be needed in future years.

2.2 Heart, electrocardiogram and arrhythmia

2.2.1 Heart

The heart functions as a rhythmic electromechanical pump, relying on the gener-
ation and spread of action potentials, followed by relaxation and a refractory period
before the next impulse. Action potentials in the heart reflect the activation and
deactivation of various ion channels carrying inward (Na+ and Ca2+) and outward
(K+) currents. These channels differ in expression across heart regions, resulting
in distinct action potential waveforms, crucial for orderly propagation of activity
and normal cardiac rhythm generation. Changes in channel function, whether in-
herited or acquired, can disrupt action potential repolarization, potentially leading
to life-threatening arrhythmias. Thus, there’s significant interest in comprehending
the mechanisms governing cardiac repolarization and rhythm formation [11].

As it can be overviewed in figure 2.2, cardiac electrical activity begins with pace-
maker cells in the sinoatrial (SA) node and then travels through the atria to the
atrioventricular (AV) node. After a short delay at the AV node, the excitation
spreads through the conducting Purkinje fibers to the apex of the heart and into
the ventricular myocardium. In each specialized region, excitation triggers action
potential generation, which is followed by relaxation and a refractory period before
the next impulse is generated and propagated. Cardiac action potentials are funda-
mental to understanding the generation and propagation of the heart rhythm, and
they are reflected in the ECG.
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Figure 2.2: Schematic of a human heart with illustration of typical action potential
waveforms recorded in different regions [11].

2.2.2 Electrocardiogram

ECG is one of the most common noninvasive diagnostic tools that can provide
useful information regarding a patient’s health status. In figure 2.3,the main parts
of it are represented , which are the result of the cardiac electrical activity.

• P wave: Represents the depolarization of the atria initiated by the firing of
the SA node.

• PR interval: The segment from the beginning of the P wave to the beginning
of the QRS complex. It indicates the time it takes for the electrical impulse
to travel from the sinoatrial node to the atrioventricular node.

• QRS complex: Reflects the depolarization of the ventricles.The Q wave rep-
resents initial septal depolarization, the R wave signifies depolarization of the
main mass of the ventricles, and the S wave represents the completion of ven-
tricular depolarization

• ST segment: The period between the end of the QRS complex and the
beginning of the T wave. It represents the early repolarization phase of the
ventricles.

• T wave: Indicates the repolarization of the ventricles.

• TP segment: The interval between the end of the T wave and the beginning
of the next P wave. It represents the period when the ventricles are in electrical
rest before the next contraction.
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Figure 2.3: Normal sinus rhythm electrocardiogram representation.

It is important to note that changes in action potentials, whether due to ge-
netic or acquired disorders, can alter the normal ECG pattern and predispose to
dangerous cardiac arrhythmias. Therefore, the ECG not only provides a visual rep-
resentation of the heart’s electrical cycle but also serves as a crucial tool for detecting
abnormalities in cardiac electrical activity:

The study of ECG’s has seen significant advancements with the integration of
deep learning and machine learning techniques [12], revolutionizing the way we in-
terpret cardiac data and predict potential cardiac events such as sudden cardiac
death. In this project, the study of T-wave alternats will be extremely correlated
to the understanding and application of DL and ML techniques around the
ST segment.

2.2.3 Cardiac Arrhythmia

Cardiac arrhythmias refer to deviations or irregularities in the typical activation
or beating pattern of the heart’s myocardium. Normally, the sinus node initiates a
depolarization wave that spreads through the atria, then through the atrioventricular
(AV) node, and finally propagates over the His-Purkinje system to depolarize the
ventricles in a coordinated manner. Various types of cardiac arrhythmias can occur,
disrupting this normal rhythm. The standard rhythm of the heart is termed normal
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sinus rhythm (NSR), which can be disrupted by failures in automaticity, such as
in sick sinus syndrome (SSS), or by inappropriate sinus tachycardia. Premature
atrial contractions and premature ventricular contractions can also occur during the
heart’s beating process [13].

The severity of cardiac arrhythmias depends on whether structural heart dis-
ease is present. Conditions such as atrial fibrillation (AF) are considered benign
arrhythmias. However, in patients with coronary heart disease or severe left ven-
tricular dysfunction, arrhythmias can contribute to heart failure or sudden cardiac
death.

Arrhythmias encompass a wide array of irregular heart rhythms, each presenting
unique challenges and implications for cardiac health. While there are numerous
types of arrhythmias, for the purpose of this discussion, we will focus primarily on
ventricular arrhythmias due to their direct association with SCD.

• Ventricular Tachycardia (VT): Ventricular tachycardia is a disorder of
the heart rhythm caused by abnormal electrical signals in the ventricles. A
normal healthy heart typically beats between 60 and 100 times per minute at
rest. When experiencing ventricular tachycardia, the heart beats faster than
normal, usually at a rate of 100 or more beats per minute. In figure 2.4, a
typical representation in an ECG of this pathology is represented.

• Ventricular fibrillation (VF): Ventricular fibrillation is a serious heart con-
dition in which the ventricles of the heart experience rapid and uncoordinated
contractions instead of rhythmic and coordinated contraction. This signif-
icantly interferes with the heart’s ability to pump blood effectively to the
entire body, which can lead to a rapid and potentially fatal decrease in blood
pressure and blood circulation. During ventricular fibrillation, the heart mus-
cle does not contract synchronously, resulting in chaotic electrical activity in
the ventricles instead of a stable heart rhythm. As a result, the heart cannot
pump blood effectively, and the supply of oxygen to vital organs is rapidly
compromised.

Cardiac arrhythmia’s are therefore a key factor in the development of cardiac
diseases and sudden cardiac death. Its detection is vital for a better prognosis.
Several techniques are used nowadays to diagnose them. Deep Learning in the ECG
in Somani et al. [14], smart and wearable devices in Sajeev et al. [15], or even mobile
applications.
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Figure 2.4: Characteristics of different variety of ECG signals (a) NSR episode, (b)
VT episode, and (c) VF episode [16].

2.3 T-wave alternans

2.3.1 Introduction to cardiac alternans

Cardiac alternans refers to a condition characterized by a periodic beat-to-
beat oscillation in electrical activity and the strength of cardiac muscle contraction
at a constant heart rate. The clinical manifestations of alternans occur in many
settings in which arrhythmias are also common; however, its origin can be followed
to the cellular and subcellular level [17].

Cardiac alternans can be broadly classified into two types: electrical and me-
chanical. Electrical alternans occurs due to a fundamental alteration in the electrical
conduction within the heart muscle manifested as a consistent change in the shape
of the ECG waveform occurring every other heartbeat, while mechanical alternans
results from a fluctuation in the mechanical function of the heart.

In 1872, Traube [18] made the initial observation of a fascinating phenomenon:
beat-to-beat oscillations in arterial pressure occurring while the heart rate remained
steady. This phenomenon, initially termed “pulsus alternans”, eventually became
recognized as mechanical alternans. With the advent of the ECG, similar beat-to-
beat alternations in the heart’s electrical activity were documented in laboratory in
animals and humans, known as repolarization or T-wave alternans.
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This TWA were firstly described in 1908 by Hearing [19]. After that, Thomas
Lewis [20] recognized that cardiac alternans could occur in normal hearts as a result
of marked acceleration of heart rate and also in the impaired or intoxicated my-
ocardium. Despite that, Kalter and Schwartz [21] reviewed clinical ECG of around
6000 patients and found five cases of human eye visible TWA, the low incidence and
the difficulty in the analysis left TWA as a forgotten topic for many years.

Over time, it became evident that cardiac alternans, whether mechanical or
electrical, signaled an increased risk of atrial and ventricular arrhythmias and sud-
den cardiac death across various pathophysiological conditions such as diabetes,
ischemia, myocardial infarction, and chronic heart failure [17].

Today, TWA are defined as a beat-to-beat fluctuation in the amplitude, wave-
form, or duration of the ST-segment or T-wave [22]. TWA testing serve as
valuable prognostic tools for assessing arrhythmia and sudden cardiac death risk in
chronic heart failure patients, aiding in the selection of appropriate antiarrhythmic
therapies.

A common picture of this phenomena can be seen in figure 2.5

Figure 2.5: Illustrative example of TWA. (A) ECG signal with periodic pattern
alternation in the repolarization segment with a period of two beats. (B) Visual
interpretation of TWA as the difference between the averaged event beat and the
averaged odd beat [9].

2.3.2 Pathopyhsiology on T-wave alternans

The detection of TWA on the surface ECG may not be easily distinguishable due
to their microvolt nature range. This, underscores the importance of considering the
cellullar-level effects of TWA despite its minimal visual impact on surface recordings.
This can be properly appreciated in figure 2.6.
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Figure 2.6: Cellular basis for T-wave alternans. Upper Panel: The onset of T-wave
alternans on the ECG arises from beat-to-beat alternation of the action potential
at the level of the single cardiac myocyte. Lower Panel: The magnitude of action
potential alternans (millivolt) is several orders of magnitude larger than T-wave
alternans (i.e. microvolt) on the ECG [23].

Several studies have concluded about the need of a controlled increase of the
heart rate (HR) as TWA is a rate-dependent property of the heart. In this sense,
above a specific HR threshold, TWA increases monotonically. Thus, why is TWA
dependent on HR?

Understanding HR dependence of TWA involves delving into the cellular and
molecular mechanisms governing the development of repolarization alternans within
individual cardiac myocytes. Two primary hypotheses have been posited to elucidate
this phenomenon, both of which offer insights into why TWA is influenced by HR.
APD restitution hypothesis and calcium cycling hypothesis [24].

• APD restitution hypothesis: The reduction in action potential duration
(APD) that occurs with increasing HR, known as action potential restitution,
is believed to be a mechanism aimed at preserving diastolic filling time at
faster HRs. This process entails a direct relationship between the APD of
one heartbeat and the diastolic interval (DI) preceding it. Action potential
restitution can elucidate the self-perpetuating nature of APD alternans: a
short DI leads to APD shortening, which then extends the DI preceding the
subsequent beat, resulting in APD lengthening and subsequent DI shortening
in a repetitive cycle [25,26].

Theoretical models propose that repolarization alternans arises when the slope
of the dynamic APD restitution curve (APD vs. DI) exceeds unity as can be
seen in figure 2.7. Simulation studies suggest that the precise HR required
to induce TWA can be directly predicted from the restitution relationship.
While the restitution hypothesis provides a valuable theoretical framework for
understanding TWA dynamics, experimental evidence supporting it remains
somewhat indirect [24].
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Figure 2.7: Relationship between action potential duration and the pacing cycle
length over the range of cycle lengths that produced electrical alternans (400–90
ms;A) and over a wider range of cycle lengths (8,000–90 ms;C). Action potentials
generated at several different pacing cycle lengths are shown in D. The model gen-
erated electrical alternans over a wide range of pacing cycle lengths, in association
with a region of the restitution relation having a slope equal to 1 (B) [27].

• Calcium cycling hypothesis: The calcium cycling hypothesis posits that
alternans occurs when the HR surpasses the myocyte’s ability to cycle cal-
cium effectively on a beat-by-beat basis. Any factor that impedes cellular
calcium cycling can trigger alternans even at lower HRs, making alternans a
rate-dependent process. In normal conditions, calcium is released from the
sarcoplasmic reticulum (SR) through the ryanodine receptor (RyR) complex,
leading to myocardial contraction. Relaxation primarily involves the re-uptake
of calcium into the SR by sarcoplasmic reticulum Ca2+-ATPase (SERCA2a),
with the sodium calcium exchanger (NCX) contributing to diastolic calcium
removal from the cytosol.

According to this hypothesis, during steady-state conditions (e.g., resting HR),
the amount of calcium released from the SR must equal SR re-uptake, primar-
ily mediated by SERCA2a. Under such circumstances, calcium alternans will
not develop as it can be see in Panel A of figure 2.8. However, sustained
disturbances in the myocyte’s ability to load SR calcium (e.g., impaired SR
calcium reuptake) or release SR calcium can lead to the development of cal-
cium alternans as can be seen in Panels B and C in figure 2.8 [23,24].
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Figure 2.8: Calcium cycling hypothesis. Panel A: During steady-state SR Ca2+

cycling at resting heart rates Ca2+ transient alternans will not develop because
SR Ca2+ release equals SR Ca2+ reuptake. Panel B: Impaired SR Ca2+ loading,
leading to beat-to-beat fluctuation in SR Ca2+ content will produce Ca2+ transient
alternans (i.e. large SR Ca2+ release followed by a small SR Ca2+ release). Panel
C: Impaired SR calcium release in the absence of beat-to-beat fluctuation in SR
Ca2+ content can also produce Ca2+ transient alternans [24].

However, it is important to highlight that HR may not be always required for the
development of TWA. According to Schwartz et al. [28], Long QT syndrome TWA
mediated ventricular arrhythmia are associated with slow HRs. Therefore, HR may
not be taken as a unique and only factor that lead to the appearance of TWA.

Apart from this phenomena, there are also other factors that may be related to
the appearance of alternans. In [29], it is mentioned that potassium channels
may have a direct impact in the development of ischemia-induced TWA. The dif-
ferent spatial (epicardial vs. endocardial) sensitivity of K-ATP channel activation
during ischemia may be linked to repolarization alternans at the cellular level during
regional ischemia. In a porcine model, acute ischemia shortened the APD, there-
fore, the effects mentioned above on the APD restitution hypothesis are suitable,
and therefore the TWA appearance. Furthermore, in [30], connexin-related prob-
lems are also seen as factors inducing the TWA creation. Connexins are proteins
found within cell membranes that control the flow of ions between cells, facilitating
cellular communication and conduction. When the body experiences low oxygen
levels (hypoxia) or reduced blood flow (ischemia), cellular communication breaks
down simultaneously with the onset of ischemic contracture, an increase in calcium
levels within the cell [31], rapid depletion of ATP (the cell’s energy source) [32],
and acidification. This suggests that both reduced excitability and disrupted cel-
lular communication are likely to vary within an ischemic area, potentially causing
irregular impulse propagation and leading to alternating areas of excitation.
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2.3.3 Relation with cardiac arrythmia and SCD

Numerous studies have shown TWA to be a marker of risk of SCD. In this
sense, figure 2.9, perfectly explains it. Spatially concordant alternans (which in
essence are repolarization alternans occurring with opposite phase between neigh-
boring cells), was shown to be intrinsically related with the arrytmia generation.
As we can see in figure 2.9, in a first instant, all myocites alternate in the same
phase (this is long (L)-short(S)). This would not appear to be a problem, but it
is a required precondition to develop the discordant alternans(two spatially dis-
crete sites exhibiting APD alternans at opposite phases [33]). The reality is that as
HR surpasses a threshold, as it can be seen in figure 2.10 , a shift in the pattern
of the alternans can occur, thus, passing from concordant alternans to discordant
alternans.

Figure 2.9: Mechanism linking cardiac alternans to arrhythmogenesis [24].

This formation of discordant alternans produces an alteration in the spatial orga-
nization of the ventricles, which finally can lead to a VF and ultimately to SCD [24].

Once the relation between alternans and cardiac diseases is clear, a question
arises. Why is there a transformation from concordant alternans to dis-
cordant alternans? Several mechanisms have been identified to cause this shift:
1) conduction velocity restitution 2) inter-cellular uncoupling and 3) spatial hetero-
geneities of calcium cycling and sarcolemmal repolarization currents [24].

Regarding the conduction velocity restitution mechanism, computer mod-
elling studies [34] propose a mechanism for discordant alternans driven by conduction
velocity restitution. These simulations, conducted on homogeneous tissue, suggest
that conduction velocity restitution alone, or in conjunction with spatial hetero-
geneities of repolarization, may account for discordant alternans. Specifically, these
simulations indicate that while discordant alternans can manifest in the presence
of significant heterogeneities of APD restitution within the myocardium, it can also
occur in the absence of spatial heterogeneity of APD restitution, provided there is
substantial restitution of conduction velocity. In scenarios where conduction ve-
locity restitution is significant, during steady-state pacing, cardiomyocytes distant
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Figure 2.10: Representative experiment demonstrating effect of concordant and dis-
cordant alternans on spatial dispersion of repolarization. Note that discordant al-
ternans, but not concordant alternans, causes marked dispersion of repolarization.
Experiment done on guinnea-pigs [35].

from the pacing site may experience longer diastolic intervals compared to those
in proximity to the pacing site. Consequently, despite shorter coupling inter-
vals, cells distant from the pacing site might paradoxically exhibit longer
action potentials, leading to the emergence of discordant alternans. Ad-
ditionally, conduction velocity restitution may occur due to progressive conduction
slowing as the coupling interval of a premature stimulus is shortened.

In computer simulations, if a tightly coupled premature stimulus induces pro-
nounced conduction slowing, it introduces spatial heterogeneity of diastolic intervals.
This heterogeneity causes each cell to operate on a different point of its APD resti-
tution curve. Consequently, discordant alternans may arise because the premature
stimulus alters the phase of some cells but not others, contingent on the point of
the APD restitution curve at which the premature impulse arrives [36].

Entering now in the hypothesis associated to the spatial heteroginities of
calcium cycling, it is now firmly established that spatial heterogeneities exist in
cellular calcium handling within the ventricle, contributing to variations in suscepti-
bility to action potential alternans across different regions. Just as intrinsic hetero-
geneities in cellular calcium cycling and/or repolarization properties can potentially
account for spatial differences in susceptibility to action potential alternans, these
same heterogeneities could also underlie the development of discordant alternans.

Myocytes that are prone to action potential alternans typically exhibit the slow-
est time constant for diastolic calcium re uptake and the highest propensity for
rate-dependent cytosolic calcium accumulation. This strongly suggests that calcium
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cycling plays a pivotal role in determining susceptibility to action potential alter-
nans. Myocytes prone to alternans express significantly lower levels of SERCA2a
and RyR compared to alternans-resistant myocytes, indicating a molecular basis for
cellular alternans and implicating calcium cycling proteins in this mechanism.

Moreover, it is highly probable that spatial heterogeneities in repolarization and
calcium cycling are interconnected. As calcium alternans serves as the source of
cellular action potential alternans, spatial variations in calcium cycling may not only
explain susceptibility to action potential alternans but also discordant alternans.

This suggests that understanding the intricate interplay between spatial hetero-
geneities in calcium handling, repolarization, and their influence on action potential
dynamics is crucial for elucidating the mechanisms underlying both action potential
and discordant alternans [36].

Finally, also intercellular uncoupling is seen as a possible mechanism associ-
ated. Cardiac myocytes are connected through gap junctions, enabling the exchange
of ionic current between them. Generally, this electrotonic coupling serves to stan-
dardize repolarization across cells. Conversely, when cells are uncoupled, inherent
differences in their electrophysiological properties become more apparent [37]. This
uncoupling can significantly affect the spatial variability of repolarization. Moreover,
any inclination for neighboring myocytes to alternate with opposite phases due to
disparities in calcium cycling properties, APD restitution, etc., is counteracted by
electrotonic coupling between these cells. In a guinea pig model of alternans, the in-
troduction of a structural barrier to uncoupled neighboring cells notably facilitated
the emergence of discordant alternans as we it can be appreciated in figure 2.11. This
suggests that under normal conditions, intercellular coupling electrically diminishes
differences in ionic properties that might lead to spatially discordant alternans [36].

These mechanisms are only some of the factors that can lead to the generation
of alternans and ultimately, arrythmias or SCD. However, it is important to take
into account that these mechanisms are not mutually exclusive and each of them
may contribute in a different way to the generation of this phenomena.

2.3.4 TWA detection methods

TWA nature, of the order of µV , make the manual detection of these waves on the
surface ECG almost impossible. Therefore, more developed techniques are required
to take the challenge of detecting this cardiac phenomena. These techniques include
the use of physiological signal processing.
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Figure 2.11: Cellular uncoupling from a structural barrier promotes discordant al-
ternans. Left : optical action potentials of epicardial cells from the base (site b) and
apex (site a) of a guinea pig heart during two consecutive beats (black and grey)
during concordant action potential alternans are shown. Right : the introduction
of a structural barrier between the base and apex of the heart promotes discordant
alternans, in which action potentials from the base (site b) now alternate out of
phase with the apex [38].

As we have seen in 2.10, the HR is a factor highly correlated with the onset of
alternans. Therefore, the detection must be done under certain circumstances of
HR. In [39], Tanno et al. found that the most suitable HR for alternans detection
was around 110 beats per minute (bmp). The onset HR was found to be around
95 bmp and at rates higher than 120 bpm, the specificity regarding the alternans
detection was so high. Therefore, elevation of the HR around 110 bmp as a first
measure in the alternans detection and, therefore, cardiac risk stratification should
be taken into account.

Thus far, numerous techniques have emerged for automatically tracking TWA.
Nevertheless, the challenge of visually discerning these alternans has hindered the
creation of specialized annotated databases, consequently impeding the establish-
ment of a gold standard for validating the efficacy of proposed methodologies. Con-
sequently, from a clinical perspective, only two approaches have substantiated their
validity by being utilized in multiple clinical investigations [40]. The Spectral
Method (SM) [41] and the Modified Moving Average Method (MMA) [42].
In order to apply this methodologies, a few previous steps should be performed.

When examining TWA in surface ECG’s, it’s essential to focus on the ventricular
repolarization segments of the ECG to identify a periodic pattern occurring every
other beat. This involves encapsulating the set of N samples from the m-th ST-T
complex into an N-dimensional vector:

xm = [xm(0), xm(1), ..., xm(N − 1)]T . (2.1)

These repolarization segments are then organized row-wise into the M × N ma-
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trix:

M = [xT
0 , x

T
1 , ..., x

T
M−1] = [s0, s1, ..., sN−1] (2.2)

where each column represents M consecutive beats for analysis. The M × 1 vector
sn = [sn(0), sn(1), ..., sn(M − 1)]T contains the samples of M consecutive heartbeats
collected simultaneously at the same latency n, forming a beat series. In surface ECG
analysis for TWA, the signal is often obscured by high levels of noise and artifacts
stemming from factors like physical activity or ambulatory recording. To ensure
accurate interpretation, various preprocessing steps are employed, including linear
filtering, baseline wander removal, QRS detection and delineation, beat alignment,
and rejection. All this preprocessing steps will be better explained in deep in chapter
3.2. Matrix M in Equation 2.2 represents the result of several of these preprocessing
stages. The design of these blocks involves considering different perspectives and
employing diverse approaches [9].

Now that this previous steps are properly performed, the application of this
methods can be assessed:

• Spectral Method: SM detects TWA in the frequency domain of the beat
series, also known as the beat-frequency domain. This means that the inherent
periodic pattern of 2, indicative of existing TWA, is observed as a component
at 0.5 cycles/beat (representing repetition every two beats) in each column
of matrix M. The SM calculates the power spectrum density function of each
beat series using the periodogram equation 2.3:

Pn(f) =
1

M

∣∣∣∣∣
M−1∑
m=0

sn(m) · e−j2πfm

∣∣∣∣∣
2

(2.3)

for n = 0, 1, ..., N - 1. These spectra, computed at each point of the repo-
larization segment, are then averaged to consolidate the contribution of the
entire ST-T segment into an aggregate spectrum.

P (f) =
1

N

N−1∑
n=0

Pn(f) (2.4)

The K score, or TWA ratio, quantifies the magnitude of the power spectrum
at the alternans frequency relative to the noise level:

K =
P (0.5)− µnoise

σnoise

(2.5)

Where P(0.5) represents the value of the aggregate spectrum at 0.5 cycles/beat,
and µnoise and σnoise denote the mean and standard deviation of the noise, re-
spectively. The noise is estimated in a nearby reference band close to the
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alternans frequency, typically around 0.4 cycles/beat. This idea can be fully
understand by seeing the spectrum of the signals in figure 2.12 A Kscore is con-
sidered statistically significant when the alternans component surpasses three
times the noise level (i.e., K > 3).

Figure 2.12: Representative example of power spectrum of beat-to-beat fluctuations
in T-wave morphology [33].

The estimation of the alternant wave, Valt, is determined as the square root of
the difference between P(0.5) and µnoise as in equation 2.6.

Valt =
√
P (0.5)− µnoise (2.6)

This signifies the average magnitude of the difference between the amplitude
of even and odd beats compared to the mean beat.

Because the SM relies on spectral analysis, it necessitates quasi-stationary
conditions over prolonged periods. Typically, a sufficient number of heartbeats,
M = 128, is collected to obtain an aggregate spectrum. Simultaneously, during
exercise, the patient is appropriately guided to elevate their heart rate within
the valid range previously mentioned [9, 41].

• Time Method (TM): The TM is going to estimate the TWA amplitude in
a different way. Considering the matrix M already defined in equation 2.2, if
we consider mi

s the ith row of M , considering that we have row-wise it; then
the TM estimates the TWA amplitude as:

Valt =
1

2

(
max

∣∣modd
s −meven

s

∣∣) (2.7)

where modd
s = Eiodd(m

i
s) and meven

s = Eieven(m
i
s) are the TWA templates for

odd and even alternans, respectively, and E is the expected value, estimated
as the sample average [22]. The TM and the SM previously explained have
been used as features for the ML algorithms that will be seen chapter 2.4.

• Modified Moving Average Method: MMA approach presents a distinctive
method that utilizes nonlinear averaging to estimate an alternant wave. Unlike
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the Spectral Method (SM), which operates in the frequency domain, the MMA
functions in the time domain, focusing on determining even and odd ST-T
segment estimates separately as follows:

x̂m = x̂m-2 + hm-2 (2.8)

This is achieved through a recursive formula 2.8 where each estimate x̂m is
computed based on the previous two estimates x̂m-2 and a correcting factor
hm-2 . The correcting factor hm-2 is determined based on the error estimate
em , which represents the difference between the actual sample xm and the
estimated sample x̂m.

em =
xm − x̂m

8
(2.9)

The MMA employs a nonlinear limit function to determine the value of hm,
which helps reduce noise and enhance the accuracy of the estimation process.

hm(n) =



−32, si em(n) ≤ −32

em(n), si − 32 < em(n) ≤ −1

−1, si − 1 < em(n) < 0

0, si em(n) = 0

1, si 0 < em(n) ≤ 1

em(n), si 1 < em(n) ≤ 32

32, si em(n) > 32

(2.10)

With this approach, an alternan wave measure is obtained as the difference
between the estimates of even and odd beats. The TWA detection parameter,
referred to as maximum alternans magnitude Vl, is then computed as the
maximum absolute difference between consecutive estimates.

The MMA method offers advantages such as noise reduction and quicker re-
porting compared to the SM, making it suitable for applications like exercise
testing where real-time monitoring is crucial. It also provides versatility in
reporting TWA levels, allowing for potential use in ambulatory recordings to
assess the risk of SCD. However, methodological studies comparing several
methods have shown that the MMA may report false positive TWA due to
the inherent T–wave variability, the influence of respiration in the ECG, as
well as higher levels of noise and artifact contaminating the ECG, while others
not [4,43,44] .While specific cutoff values for risk stratification have not been
universally defined, certain thresholds such as Vl > 60µV and Vl > 47µV have
been associated with higher SCD risk [9,42,45]. An schematic visualization of
the method can be seen in figure 2.13.

Other methodologies have also been proposed by some authors for the detection
of TWA. Among these ones we find the Correlation Method (CM), Poincaré Map-
ping Method (PM), Karhunwn-Loeve Transform (KLT), Capon Filtering (CF), etc.
Nevertheless, for reasons of simplicity and since they are not used in this framework
they will not be explained in deep.
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Figure 2.13: Flow chart of the major components of the Modified Moving Average
(MMA) method of T-wave alternans (TWA) analysis [45].

2.4 Machine Learning

Machine learning (ML) is a field of artificial intelligence (AI) that focuses on the
development of algorithms and statistical models that enable computers to learn and
improve their performance on a specific task without being explicitly programmed.
In essence, it allows computers to learn from data and make predictions or decisions
based on that learning.

The impact of machine learning extends across a wide range of sectors and appli-
cations. In medicine, for example, it has facilitated significant advances in medical
diagnosis, pattern recognition in medical images, diseases prevention...

This high impact has been translated in a skyrocketing growth of these techniques
in thousand of works and researches throughout the world. Thus, ML algorithms and
models can be considered the state of the art for certain applications and detection
tasks.

ML is mainly composed by four main subgroups: supervised (see section 2.4.1),
unsupervised, semi-supervised, and reinforcement learning.

Unsupervised learning (UL) is a fundamental branch of machine learning
that deals with extracting meaningful insights and patterns from unlabeled data.
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Unlike supervised learning (SL), where the algorithm learns from labeled examples,
UL algorithms are tasked with discovering hidden structures and relationships within
the data without explicit guidance. This approach is particularly useful in scenarios
where labeled data may be scarce or expensive to obtain. UL encompasses various
techniques such as clustering, dimensionality reduction, and density estima-
tion, all aimed at uncovering the underlying structure of the data. By allowing
algorithms to explore and analyze data independently, unsupervised learning plays
a crucial role in tasks ranging from exploratory data analysis to anomaly detection
and recommendation systems.

Semi-supervised Learning (SSL): SSL represents a form of ML that lies
between supervised and unsupervised learning paradigms. In SSL, the dataset com-
prises both labeled and unlabeled data The primary aim of SSL is to address the
limitations associated with both supervised and unsupervised learning approaches.

SL typically necessitates a substantial amount of labeled training data to effec-
tively classify test data. However, this process can be costly and time-consuming.
Conversely, UL operates without the need for labeled data, grouping data based
on similarities through methods like clustering or maximum likelihood approaches.
Nevertheless, a significant drawback of UL is its inability to accurately cluster un-
known data.

To tackle these challenges, SSL has emerged within the research community.
SSL offers the capability to learn from a small set of labeled training data and
subsequently label unknown or test data. By leveraging a limited number of labeled
patterns for training and treating the remaining patterns as test data, SSL constructs
a model capable of effectively handling both labeled and unlabeled data [46].

Reinforcement learning (RL): RL is an interdisciplinary field within machine
learning and optimal control that deals with how an intelligent agent should make
decisions in a dynamic environment to maximize its cumulative reward. Thus, RL
is a set of challenges in which an individual must learn to use feedback to work
in a given context [47]. Unlike supervised learning, RL doesn’t require labeled in-
put/output pairs for training, nor does it need explicit correction for sub-optimal
actions. Instead, RL focuses on striking a balance between exploring new options
and exploiting existing knowledge to maximize long-term rewards, even when feed-
back may be incomplete or delayed.

2.4.1 Supervised Learning

Supervised learning is any ML approach where the model learns from already
labeled data, making predictions or decisions based on input-output pairs provided
during the training. There are four main steps in the development of a supervised
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learning model. 1) Divide our dataset into training and test sets. 2) Use the training
dataset to inform our model about the behaviour of the data. 3) Test our model
using the test set to determine how well our model has learnt to differentiate the
data. 4) Evaluate our model by means of different metrics.

There are two main tasks involving SL, regression, in which the variable to be
predicted us usually numeric, and classification, in which a categorical variable is
intended to be predicted.

In the realm of SL, there exists a multitude of algorithms, each with its unique
strengths, applications, and underlying principles. Given the breadth and depth
of this field, it’s impractical to delve into every algorithm in detail within a single
discussion. Thus, only some algorithms of interest for this work will be overviewed:

• Logisitc regression: Logistic regression is a Machine supervised parametric
learning algorithm used for classification tasks. It is based on the concept of
logistic function 2.11 to model the relation between the predicting variables
and the target variable.

The logistic function is defined as follows:

f(z) =
1

1 + e−z
(2.11)

where z is a linear combination of the predicting variables:

z = β0 + β1x1 + β2x2 + ...+ βnxn (2.12)

where x1...xn are the predicting features and β1...βn are the calculated im-
portance coefficients for each one. f(z) is the estimated probability for each
instance to belong to a certain class.

• Decision Tree (DT): A non-parametric supervised learning method used for
classification and regression. The objective is to create a model that predicts
the value of a target variable by learning simple decision rules inferred from
the data features. A very illustrative example is shown in figure 2.14.

The fundamental idea behind a decision tree is to divide the dataset into
smaller subsets while selecting features that best separate the classes of interest
(nodes). This is done based on certain splitting criteria such as information
gain or Gini impurity. A decision tree consists of nodes and edges. The
root node represents the entire dataset, and from there, the tree branches out
into decision nodes and leaf nodes. Decision nodes represent features of the
dataset and decisions made based on these features, while leaf nodes represent
the classes or output values. Additionally, decision trees can have a maximum
depth, which limits the number of decision nodes and leaf nodes in the tree.
This parameter helps prevent overfitting and controls the complexity of the
tree.
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Figure 2.14: Decision tree example for the question Will I play tennis tomorrow?

• Random Forest (RF): RF is a SL model which belongs to the ensemble
methods. Ensemble methods combine the predictions of several base estima-
tors built with the same training data in order to improve generalizability /
robustness over a single estimator by introducing diversity. In the case of RF,
the combine a group of DT to make their predictions. Each tree of the RF
is trained with a random sample of the same dataset in a process known as
bootstrapping or sampling with replacement.

Figure 2.15: General structure of a random forest model [48].

The final prediction is determined by majority voting in the case of classifi-
cation, or averaging the predictions of all the trees in the case of regression
problems.

• Support vector machine (SVM): SVM is a robust technique utilized for
constructing classifiers. Its primary goal is to establish a decision boundary,
referred to as a hyperplane, between two classes, facilitating the prediction of
labels based on one or more feature vectors. This hyperplane is positioned
to maximize the distance from the closest data points of each class, known
as support vectors. Given a labeled training dataset: (x1, y1), ..., (xn, yn),xiR

d
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and yi(1,+1), where xi represents a feature vector and yi denotes the class
label (negative or positive) of a training instance i. The optimal hyperplane
is formulated as:

wxT + b = 0 (2.13)

where w represents the weight vector, x is the input feature vector, and b
denotes the bias.

The values of w and b must satisfy the following conditions for all elements of
the training set:

wx⊤
i + b ≥ +1 if yi = 1

wx⊤
i + b ≤ −1 if yi = −1

(2.14)

The objective during SVM model training is to determine the values of w and
b such that the hyperplane effectively separates the data while maximizing the
margin, represented as 1

∥w∥2 [49].

A visual intuition of this algorithm can be visualized in figure 2.16:

Figure 2.16: Linear SVM model. Two classes (red versus blue) were classified [49].

A problem that may arises from the SVM is that it was originally proposed for
linear problems. An alternative application of SVM is the kernel method 2.17,
which allows for the modeling of higher-dimensional, nonlinear relationships
[50].

2.5 Deep Learning

Deep Learning (DL) is a branch of ML based on artificial neural networks
(ANN) with multiple intermediate layers (hidden layers), focused on finding pat-
terns in the data. An ANN is a mathematical model inspired by the biological
behavior of neurons and the structure of the brain, used to solve a wide variety of
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Figure 2.17: Kernel function. Data that cannot be separated by linear SVM can be
transformed and separated by a kernel function [49].

problems. Due to its flexibility, a single neural network can perform various tasks.
Just as in the structure of a biological neural system, the essential processing ele-
ments of an artificial neural system are neurons. An artificial neuron is a simple
computational device that produces a single response or output based on a set of
input data.

Neurons are grouped within the network forming layers. Depending on their
position within the network, three types of layers are distinguished:

• Input layer: This layer directly receives information from the outside world
and incorporates it into the network.

• Hidden layers: These are internal layers within the network responsible for
processing the input data. We can have one or multiple hidden layers.

• Output layer: This layer transfers information from the network to the ex-
ternal environment.

The synaptic connections (the arrows entering or leaving a neuron) indicate the
flow of signals through the network and are associated with corresponding synaptic
weights as it can be seen in figure 2.18.

The main items visualized in figure 2.18 that compose a neural network are:

• Set of inputs: x1 . . . xm.

• Synaptic weights: w1 . . . wm.

• Propagation rule s that combines the inputs and synaptic weights. Usually:

s(x1, ..., xm, w1, ..., wm) =
m∑
i=1

wixi (2.15)
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Figure 2.18: Artificial neural network scheme.

• Activation function g, which is a function of s and a constant u (referred to
as threshold or bias), providing the output y of the neuron. Among the main
activation functions we can find the logistic function, the hyperbolic tangent
function, the ReLU activation function or the sigmoid function.

This concepts are key in the building of DL models. DL uses a cascade of
multiple layers of nonlinear processing units (neurons) for feature extraction and
transformation. The lower layers close to the data input learn simple features, while
higher layers learn more complex features derived from lower layer features. The
architecture forms a hierarchical and powerful feature representation. It means that
DL is suited for analyzing and extracting useful knowledge from both large huge
amounts of data and data collected from different sources.

But how do they learn and extract these features? The answer is the backprop-
agation. Backpropagation is a fundamental technique in training neural networks
in the field of DL. This process is essential for adjusting the weights and biases of
the neural network so that it can learn and improve in the specific task for which it
has been designed. Essentially, training a neural network involves feeding input data
through the network and comparing the outputs produced by the network with the
desired outputs. The difference between these outputs is used to calculate the net-
work’s error. Backpropagation is responsible for propagating this error backward
through the network, calculating the contribution of each weight and bias to the
output error. This information is then used to adjust the weights and biases of the
network so that the error is minimized.

The backpropagation process consists of two main stages: forward propaga-
tion and backward propagation. During forward propagation, input data is
fed through the neural network layer by layer, and the outputs of each neuron are
calculated using the current weights and biases. Once the network’s outputs are ob-
tained, the error is calculated by comparing these outputs with the desired outputs
using a loss function [51].
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Then, during backward propagation, the partial derivatives of the error with
respect to each weight and bias in the network are calculated using the chain rule of
calculus. These partial derivatives indicate how to change each weight and bias to
reduce the output error. The weights and biases are updated using an optimization
algorithm, such as gradient descent, which adjusts the values of the weights and
biases in the direction that minimizes the error.

The backpropagation process is iteratively repeated throughout the training of
the neural network, with the aim of gradually reducing the output error and im-
proving the network’s performance in the specific task for which it is designed [52].

There is a big variety of networks in DL; deep neural networks (DNN), deep
belief networks (DBN), Generative Adversarial Networks (GAN), etc. However, in
this project we will focus on Convolutional neural networks and Recurrent
Neural Networks.

2.5.1 Convolutional neural networks

Convolutional neural networks (CNN) have become one of the most rep-
resentative neural networks in the field of DL. CNN is a kind of feedforward neural
network that is able to extract features from data with convolution structures. Dif-
ferent from the traditional feature extraction methods, CNN does not need to extract
features manually [53,54]. Goodfellow et al. [55] highlighted three main advantages

Figure 2.19: 1D-CNN general structure [56].

of Convolutional Neural Networks (CNNs): equivalent representations, sparse
interactions, and parameter sharing. Unlike traditional fully connected net-
works, CNNs utilize shared weights and local connections to effectively process input
data such as signals (1D) or images (2D). This approach significantly reduces the
number of parameters needed, simplifying training and accelerating network perfor-
mance. Analogous to the visual cortex cells, CNNs focus on small regions of input
rather than the entire scene, spatially extracting local correlations similar to local
filters.
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This project, since the work is totally dedicated to signals analysis, will focus
on 1D-CNN; 2D-CNN can be extrapolated from this explanation. A typical 1D
CNN structure with its main components can be visualized in figure 2.19. In these
structure the following layers can be defined:

• Convolutional layer: The key part of the CNN architecture lies in its convo-
lutional layer, comprising filters (kernels) applied to the input sequence to
yield feature maps. These kernels are arrays of numbers representing weights,
initially randomized and then updated during training to capture pertinent
features from the input [54]. During the convolutional process, the kernel
convolves along the input sequence, computing dot products at each position
to produce the output feature map. Padding and stride settings influence
the output size, with padding playing a crucial role in preserving boundary
information. A visual intuition of this process can be seen in figure 2.20.

• Pooling layer: The subsequent pooling layer follows the convolutional op-
erations, downsampling feature maps to create compact representations while
retaining key information. Various pooling techniques, such as max pooling
and average pooling, can be employed.

• Fully connected layer: Typically situated at the conclusion of every 1D
CNN architecture, the fully connected layer embodies a classic approach where
each neuron interfaces with every neuron from the preceding layer. The input
to the FC layer originates from the preceding pooling or convolutional layer.
This input materializes as a vector, formulated from the feature maps subse-
quent to flattening. The output of the FC layer encapsulates the final output
of the CNN.

Activation functions introduce non-linearity to 1D CNNs, enabling them to learn
intricate patterns in sequential data. Common activation functions include sigmoid
(used as final activation function in the final Dense layer in binary classification
tasks), tanh, and ReLU, with ReLU being particularly favored due to its compu-
tational efficiency. However, while ReLU is popular, it can face issues like ”Dying
ReLU”, where some neurons cease to activate, hampering the network’s learning ca-
pacity. To address such shortcomings, alternatives such as Leaky ReLU have been
explored, offering improved resilience against gradient saturation and vanishing gra-
dient problems.

In addition to activation functions, the choice of loss function is crucial in train-
ing 1D CNNs. For binary classification tasks, the binary cross-entropy loss
function is often employed. Binary cross-entropy measures the discrepancy be-
tween predicted probabilities and actual binary labels, guiding the network towards
optimal parameter values during training. By minimizing the binary cross-entropy
loss, the CNN learns to accurately classify sequential data, enhancing its predictive
performance [54].
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Figure 2.20: Padding, kernel and stride visual intuition. Top, a kernel of size 5 is
applied to the input with stride of 3, resulting in two convolution steps but letting
the last element without consideration. Bottom, padding is applied by adding 0’s
at both corners. This allows the filter to be applied in all the signal performing the
convolution in three steps.

2.5.2 Recurrent neural networks

Recurrent neural network (RNN) is a specialized neural network with feed-
back connection for processing sequential data or time-series data in which the
output obtained is fed back into it as input along with the new input at every time
step. The feedback connection allows the neural network to remember the past data
when processing the next output [57].

RNNs have been widely used for many application such as video analysis, image
captioning, natural language processing (NLP), audio analysis or anything that
involves a process over the time. There are a bast amount of networks that use these
ideas for achieving different purposes. For reason of simplicity in this framework we
will focus on the ones necessary for a complete understanding of the experimental
part:

• SimpleRNN (sRNN): sRNN architecture contains a simple neural network
with a feedback connection. It has the capability to process sequential data
of variable length due to the parameter sharing which generalizes the model
to process sequences of variable length. Unlike feedforward neural networks
which have separate weights for each input feature, RNN shares the same
weights across several time steps. In RNN, the output of a present time step
depends on the previous time steps and is obtained by the same update rule
which is used to obtain the previous outputs.

The RNN operates on an input sequence x(t) with a time step index t rang-
ing from 1 to τ , as illustrated in Figure 2.21. The time step index τ may
not necessarily correspond to the passage of real-world time; it can instead
indicate the position in the sequence. The cycles in the computational graph
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depict the influence of past values of a variable on the current time step. The
computational graph exhibits a repetitive structure that unfolds the recursive
computation of the RNN, akin to a chain of events. It demonstrates the flow
of information, both forward in time when computing the outputs and losses,
and backward when computing the gradients [57–59].

Figure 2.21: (Left) Circuit diagram for SimpleRNN with input x being incorporated
into hidden state h with a feedback connection and an output o. (Right) The same
SimpleRNN network shown as an unfolded computational graph with nodes at every
time step [57].

The sRNN model performs adequately when handling short-term dependen-
cies. However, when confronted with long-term dependencies, it struggles
to retain the necessary information over extended sequences. This challenge
arises primarily due to issues with gradient propagation, known as the vanish-
ing gradient or exploding gradient problem [60]. As gradients are backprop-
agated through many layers, they often diminish to nearly zero or occasion-
ally explode to excessively large values. This phenomenon occurs because the
weight updates for long-term interactions are exponentially smaller compared
to those for short-term interactions, making it challenging for the model to
effectively capture and retain long-term dependencies.

• Long short-term memory (LSTM): To address this long-term dependency
problem LSTM were proposed. Thanks to the ability of these networks to
remember long term dependencies LSTM have emerged as promising tools for
time-series analysis applications. LSTM has an inner self loop in addition to
the outer recurrence of the RNN. The gradients in the inner loop can flow for
longer duration and are conditioned on the context rather than being fixed.
In each cell, the input and output is the same as that of ordinary RNN but
has a system of gating units to control the flow of information [60].

In figure 2.22 we can see three gates. The external input gate, the forget
gate, and the output gate. The forget gate at time t and state ht decides
which information should be removed from the cell state. The gate controls
the self loop by setting the weight between 0 and 1 via a sigmoid function θ.
When the value is near to 1, the information of the past is retained, and if
the value is near to 0, the information is discarded. After the forget gate, the
internal state it is updated. Computation for external input gate is similar to
that of forget gate with a sigmoid function to obtain a value between 0 and 1
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Figure 2.22: Long short-term memory with cell state ct, forget state ht, input it,
and output ot [57, 61].

but with its own parameters. The output gate of the LSTM also has a sigmoid
unit which determines whether to output the value or to shut off the value ht

via the output gate.

The main advantage of using LSTM netoworks against the sRNN is the capac-
ity of handling the vanishing gradient problem. The LSTM has the additive
feature that they retain the past information by adding the relevant past in-
formation to the present state. This additive property makes it possible to
remember a specific feature in the input for longer time. In SimpleRNN, the
past information loses its relevance when new input is seen. In LSTM, any
important feature is not overwritten by new information. Instead, it is added
along with the new information.

2.5.3 CNN-LSTM networks

CNN-LSTM networks is an hybrid DL model that combines some of the ben-
eficial characteristics of both the CNNs and the LSTM networks. A model 1D
CNN-LSTM network can be over viewed in figure 2.23. The working procedure un-
der these networks is divided into two main parts. Firstly, the CNN performs a
feature extraction stage from the signals. These features will become the input for
the second stage. This second stage is constituted by an LSTM networks which
can capture the long-term dependencies of the input features sequences. This LSTM
layers help in learning the temporal relationship between the features extracted in
the convolutional stage. In other words, the main significant features of the signal
are obtained in the convolutional stage, these features are supposed to have internal
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Figure 2.23: CNN-LSTM network model architecture [56].

temporal dependencies which are detected in the LSTM stage. After that usually
a Dense layer is defined to interconnect all the results from the LSTM stage. Each
of the stages have the same features previously explained in the above sections. In
these framework a comparison between the performance of LSTM and CNN-LSTM
networks for these concrete type of signals will be addressed.

2.5.4 Evaluation of models

In this section we will focus in the exploration of ways by which ML and DL
models can be evaluated accurately. Evaluating ML and DL models is essential
for ensuring their reliability, accuracy, and fairness. It helps assess performance,
generalization ability, bias, robustness, and resilience. Additionally, it aids in model
selection, comparison, iterative improvement, and promoting trust and transparency
in AI systems.

One of the most common ways to evaluate models is the K-fold cross valida-
tion. In k-fold cross-validation, one divides the data D into k subsets of roughly
equal size. The ML program is trained k times, each time leaving out one of the
subsets from training, and using it for testing [62]. A visual intuition of this idea
can be seen in figure 2.24.

In each iteration the performance on the test set is calculated depending on
the metric of choice (explained later in these section), in order to evaluate the
performance. Once the iterations finish, the metrics are averaged in order to have a
global intuition on the model performance.

Therefore, from the K-fold cross validation two main values are obtained; the
mean of each validation and the the global variance. The variance, in this sense,
give us information regarding the stability and robustness of the model. Ideally, a
perfect model would have low variance and high mean performance.
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Figure 2.24: Performance accuracy estimation using a k-fold cross-validation method

Moroever, K-fold cross validation can be also used in the selection of hyperpa-
rameters. A hyperparameter is a parameter external to the model that has to be
configured prior the training. The adjustment of them is so important as they are
key in the training process. Adequate hyperparameters can lead to big changes in
model performances. In this context, cross validation is useful, because allow us to
select the best hyperparameters based on the performance obtained in the validation
process.

A question that may arise now is how do we know the performance of our mod-
els?. In the ML and DL field there are various tools and metrics to evaluate the
model performances. The adequate tools would depend on the task to be ana-
lyzed. In regression problems some common metrics would be the Mean Square
Error (MSE), or the determination coefficient R2. In clustering, techniques such as
shilloutte analysis can be adequate.

In classification, the most common method is the confusion matrix. This
matrix shows the relation between the models predicted values and the actual values
of the classes as we can see in figure 2.25. It consists of four main regions:

Figure 2.25: Confussion matrix
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• True Positives (TP): These are cases where the model correctly predicted
an instance as belonging to a specific class when it actually does.

• False Positives (FP): These represent cases where the model incorrectly
predicted an instance as belonging to a specific class when it actually doesn’t.
In other words, the model predicted positive when it should have been negative.

• False Negatives (FN): These are cases where the model incorrectly predicted
an instance as not belonging to a specific class when it actually does. In other
words, the model predicted negative when it should have been positive.

• True Negatives (TN): These represent cases where the model correctly
predicted an instance as not belonging to a specific class when it actually
doesn’t.

From these four values, several metrics can be obtained. Some of the most
important ones are:

• Accuracy:

Accuracy =
TP + TN

TP + FP + FN + TN

Accuracy measures the overall correctness of the model’s predictions and is
calculated as the ratio of correctly predicted instances (TP + TN) to the total
number of instances (TP + FP + FN + TN).

• Precision:

Precision =
TP

TP + FP

Precision measures the proportion of true positive predictions out of all pos-
itive predictions made by the model and is calculated as the ratio of true
positives (TP) to the total positive predictions (TP + FP). Also know as
positive predictive value (PPV).

• Recall (Sensitivity):

Recall =
TP

TP + FN

Recall, also known as sensitivity or true positive rate, measures the proportion
of actual positive instances that were correctly predicted by the model and is
calculated as the ratio of true positives (TP) to the total actual positives (TP
+ FN).

• Specificity:

Specificity =
TN

TN + FP

Specificity measures the proportion of actual negative instances that were cor-
rectly predicted by the model and is calculated as the ratio of true negatives
(TN) to the total actual negatives (TN + FP).
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• F1 Score:

F1 = 2× Precision× Recall

Precision + Recall

The F1 score is the harmonic mean of precision and recall and provides a
balanced measure of a model’s performance.

These metrics provide valuable insights into different aspects of a model’s per-
formance, such as its ability to correctly classify instances, its sensitivity to positive
instances, and its ability to avoid false positives. Choosing the most appropriate
metric depends on the specific goals and requirements of the classification task at
hand.

Another common way to evaluate the model performance is the ROC curve.
The ROC curve is a graphical representation that show the relation between the TP
rate (sensitivity) and the FN rate (1- specificity) for different decision thresholds.

A visual intuition of this metric can be seen in 2.26. The diagonal line (D)
represents a random classifier while (A) would be a perfect classifier. The area
under the curve (AUC), is a numeric metric that reviews the ROC, the higher the
AUC the better the model is to discriminate between the classes.

Figure 2.26: Four ROC curves with different values of the area under the ROC
curve [63].

2.6 State of the art

In this section, we delve into the state-of-the-art advancements in TWA detection
and analysis.
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Two main methods have emerged as gold standard for the detection of TWA
[64]. The SM [41] and the MMA method [65]. These methods have been tested in
various clinical scenarios showing acceptable but still improvable results [66]. The
importance of diminishing the SCD prevalence required from the improvement of
the available methodologies [64]. In this scenario, some works appeared with the aim
of combining the methodologies already proposed and tested for the TWA detection
(SM, MMA, TM...) with the emerging ML technologies.

Under this novel framework idea, the work developed in [4] by Fernández-Calvillo
et al. shed light on the TWA detection. This work compared different ML algorithms
performance attending to different metrics using as features for the classifiers the
results from the traditional methodologies. In that framework they decided to use
the K-score from the SM, the V TM

alt value from the TM and the V MMA
alt from the MMA

method. This work demonstrated the powerfullness of combining this attributes with
the capability of finding hidden patterns in data from the ML algorithm.

As a result, an 88% accuracy was reported from the DT algorithm which is a big
improvement compared to the the 79% accuracy of the SM alone which is considered
to be the gold standard.

Other works in conferences were published under the same idea also reporting
good results. In [67] and [68], a F1-score of 89% and 95.9% were obtained respec-
tively.

Under this scenario, there is a crescent need of further research in the combina-
tion of traditional methods with the ML tools. Therefore, the experimental part of
this project will try to evaluate ML algorithms with different features. At the same
time it will try to dive into the application of DL methodologies which have shown
great results in cardiac signals in different works.

With this project, thus, it is intended to improve the already obtained results
giving rise to further advancements in the detection of TWA and as a direct conse-
quence, the stratification of cardiac risk with a predetection of SCD.
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Chapter 3

Data analysis

3.1 Data description

This section delves into the construction of the database and provides a compre-
hensive understanding of the data crucial for the project’s development.

The primary challenge encountered at the outset of this project was the establish-
ment of a suitable database for both ML and DL tasks. The complexity outlined in
the background section, particularly concerning the detection of alternans, rendered
the creation of adequately annotated databases containing real ECG data exhibiting
alternans phenomena nearly impossible. To address this limitation, this endeavor
adopted the approach elucidated by Fernández-Calvillo et al. [4], a methodology
widely embraced across numerous studies [69–71].

Within this framework, a database optimized for ML purposes was constructed.
In order to accomplish a faithful setting able to represent a realistic environment
only real signals taken from ambulatory recordings were used. For this purpose,
Physionet [72] is employed as the main source of ECG signals, since its open source
nature ensures reproducibility.

Three public repositories from Physionet were used as sources of signals. Some
signals were obtained from MIT–BIH Arrhythmia Database (mitdb) [73], oth-
ers from the European ST-T Database (edb) [74] and the rest from the MIT-
BIH Normal Sinus Rhythm Database (nsrdb) [73]. A signal would only be
eligible to be part of this alternans ML-oriented database in the case 99% of its heart-
beats are annotated as “normal”. Moreover, the candidate signals also passed a SM
test to rule out the existence of natural alternans on them. For further information
on the amount of signals utilized from each database see Table 3.1.

41
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For each of the signals the following storing format name is followed in order to
have all the necessary information for posterior steps in the framework.

In other words, the storing format of the files contained:

• Name of the repository: an abbreviation representing the name of the
specific database, providing a quick identifier for where the signal originates;
edb, mitdb and nsrdb.

• Patient id: unique reference point to associate the signal with a particular
individual’s data. In further chapters it will be seen why the id of the patient
is important for the ML algorithms.

• ECG derivation: ECG lead derivation is specified, indicating the specific
lead or channel from which the signal was obtained

• ECG segment: name concludes with a designation of the segment of the
ECG to which the signal corresponds.

An example of this database names would be: edb 106 l1 s1.mat, where edb
corresponds to the European ST-T Database , 106 is the patient id, l1 is the lead
and s1 the first segment of the complete ECG signal. The storing format for each
of the signals is .mat.

The complete set of 31 patients and their corresponding 574 signals is stored and
used for the preprocessing stage that can be seen in the following chapter.

mitdb edb nsrdb
5 patients 14 patients 12 patients
13 signals 81 signals 480 signals

Table 3.1: Distribution of signals through the 3 databases

Each of the signals stored contained the following fields in order to have all the
necessary information to correctly work with them: Fs, ECG signal and QRS
segment onset points.

3.2 Data preprocessing

This section will cover all the necessary steps for the preprocessing of the signals
which compound a crucial step for the analysis of TWA during the experimental
section. The entire procedure was developed in the Python 3 programming language.
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3.2.1 Alternans addition

At this stage it is needed to remember the lack of annotated databases involving
ECG’s with alternans. To solve this issue the alternans are added artificially to the
signals which are free of any pathology. In order to have balanced classes in the
future ML and DL algorithms it was decided to add alternans to half of the signals.

To do so, 12 different alternans waves were used. The difference between
these 12 signals is related to the shape of them. Randomly, these alternans waves
were added to the signals to give more authenticity to the phenomena that appears
in clinical scenarios. Moreover, these signals were resampled to meet the Fs from the
different databases signals. This is; for the mitdb the Fs was established at 360Hz,
for the edb at 250Hz and finally for the nsrdb at 128Hz. These signals waves were
obtained from the work in [75] by J. P. Mart́ınez et al.

The process of addition of alternans was developed in concordance with the work
in [4]. Let’s consider the ECG’s as p

(i)
cont(t), t = 0, . . . , Li − 1, where i denotes the

ith instance of the database and Li its length. To obtain the ECG with alternans
the following operation is performed on the ECG:

p
(i)
alt(t) = p

(i)
cont(t) +

N∑
k=1

gk · ϵ(t− tk − tJ) (3.1)

where ϵ represents the alternan wave and Lϵ their length which corresponds to
the duration of the ST-T complex, much shorter than the whole signal length. In
3.1, N represents the number of heart beats (which in this framework is defined as
N = 32), tk is the starting time of the ST-T complex of the kth beat. In order to
add uncertainty a time delay tJ introduces a Jitter effect which is characterized as
a zero mean Gaussian random variable with a standard deviation of 20 ms. Finally
gk represents the alternan amplitude, which alternates its value between 0 and α to
represent the every–other–beat TWA fluctuation as stated in equation 3.2. In this
framework different experiments will be carried out by varying the α value from 20
to 70 µV .

gk =

{
α, if k is even

0, if k is odd
(3.2)

In figure 3.1, a comparison between a 3 seconds span time between the same signal
with and without alternans can be seen. As expected both signals are overlapping
which shows how impossible is to differentiate a TWA present ECG signal from a
non-TWA present due to the µV nature of the waves. Therefore, further steps in
the preprocessing will be required.
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Figure 3.1: Comparison between TWA-signal with 30µV alternan amplitude(red)
and non-TWA signal(blue).

3.2.2 Baseline wander removal

Baseline wander (BW) refers to the low-frequency oscillations or fluctuations
observed in biological signals. BW in the ECG records produces artifacts data
when measuring ECG parameters. These baseline interferences can be induced by
electrode changes due to perspiration, movement and respiration. The frequency
components of the BW are usually below 0.5 Hz but, in case of stress test, this
limit can be higher. Thus, these components can be in the same range than the
low frequency ECG components like those of ST segment altering the information
contained in them making more difficult its analysis. [76].

In this project the methodology followed in [77], where the cubic splines method
is shown to be the most effective approach for mitigating BW interference. In this
work, fiducial points are used as reference markers for the ECG signals. Fiducial
points are clearly-defined points in a normal ECG (for example the QRS complex
or the T wave). This points are key in this process since they help to estimate
adequately the baseline in order to remove it later. Therefore, once the fiducial
points are defined, cubic splines were used to create a curve to them in order
to estimate the BW. Once the BW is estimated the last step was to subtract the
estimation from the original ECG. The result of this step can be seen in figure 3.2.

3.2.3 ST-T complex delineation

As said, the alternans were added in the ST-T wave of the ECG’s. Thus, for a
proper analysis it is intended to keep only the ST-T complexes from the signals.

The fiducial points (in this case the R wave) were used to determine the ST-T
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Figure 3.2: BW removal example

onset points. To do so, the distance between RR intervals is calculated and by
predefining an standard ST-T interval duration as 300ms, the starting and ending
points of the ST-T complexes were calculated.

Once we have that data the last step is to extract the ST-T complexes from the
whole ECG and to store them in a matrix. Therefore, at this moment the structure
of our data is represented in equation 3.3 where the rows n represent the data
samples and the columns M represent the ST-T complexes to which the samples
belong. The values of M and n depend on the Fs. A view of the result can be
visualized in figure 3.3, where the difference in the amplitude of the ST-T complex
can be appreciated between a signal with and without alterans in the even complex.
The odd complex did not show this high difference in amplitude.

ST − T complex matrix =


ST1,1 ST1,2 · · · ST1,M

ST2,1 ST2,2 · · · ST2,M
...

...
. . .

...
STn,1 STn,2 · · · STn,M

 (3.3)

3.2.4 Heartbeat windowing

In this part of the preprocessing a segmentation of the ST-T complexes is per-
formed in order to have a better tracking of the signals. The process works as
follows: a window of size M = 32 beats and step of m = 8 beats slides over
the ST-T complexes defined in the previous step. Each window will contain a set
of ST-T complexes (exactly 32 ST-T complexes), the next window will contain the
last 24 beats from the last window plus 8 new beats from the window step m.

Three main advantages are obtained from this process. Firstly, as alternans were
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Figure 3.3: Even(Top) and odd (Bottom) ST-T complex of the same signal with
and without TWA.

seen to be a transitory effect, the event can appear or not throughout the signal,
and their effect can be blurred. Therefore, by dividing the long ST-T complexes into
smaller windows makes easier the detection of TWA. Secondly, as we are creating
multiple segments from a single signal we can treat each segment as a new instance,
this is, we can increase the size of our dataset which is something really important
in the development of ML and DL tools with reliability. Lastly, some methods from
the feature extraction stage such as the SM requires from quasi-stationary signal
conditions [4]. By sub-diving the signal into segments the chance of this algorithm
to find alternans increases enormously.

Therefore, from this process the result would be a matrix of dimensions
[M,N, n], where M indicates the window size that in this case is 32 which
internally denotes the number of ST-T complexes contained. N corresponds to
the number of samples that are contained on each ST-T complex, and its
value would depend on the Fs. Finally n denotes the number of segments for
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each signal, which, as said, they will be treated as independent instances in the
experimental section.

3.2.5 ST-T alignment

ST-T alignment is a usual procedure developed to correct the temporal deviation
of ST-T complexes to ensure their correct alignment. The process works as follows:

1. A reference template of the ST-T complexes is calculated as the median of the
ST-T complexes. Following a time window is established as it will determine
the potential temporal variation of each complex from its starting location.
This window is established to be the 3% of the Fs.

2. A portion of the echo signal encompassing the entire ST-T complex is acquired.
Subsequently, these segments are time-stretched to synchronize the complexes
temporally. The cross-correlation between the reference template and each
time-stretched echo signal segment is then computed. This process aids in
pinpointing the location of maximal similarity between the template and every
time-stretched ECG segment.

3. Ultimately, the ST-T complexes are synchronized by determining the peak cor-
relation point and utilizing it as the alignment reference for the corresponding
ST-T complex.

The result of the difference between aligned ST-T complex can be seen in figure
3.4. It is also important to remark that the shape of the signal matrix remains as
described in the previous step.

Figure 3.4: Difference between the 1st ST-T complex aligned and non-aligned(Left)
and between all the complexes aligned and non-aligned of a segment (Right).
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3.2.6 Background subtraction

This step in the preproceessing is the one focused in the isolation of the alterning
component of the ST-T complexes in the case they exists (remember that only half of
the signals contain it). Background subtraction is a method to remove an analogous
underlying patterns that exists between successive ST-T complexes. In other words,
subtract the ST-T complexes of two successive beats.

In this process a first pattern A of the signal is created, which contains the even
beats of the ST-T segments. Then another pattern B is created which represents the
odd beats of the ST-T segments. Finally, to ensure a correct alignment, a displaced
version of A is created using a window (which in this case is 15 complexes).

Finally the A pattern is subtracted with the B pattern, and the displaced A
pattern is subtracted from the B pattern. The result has the same dimensions as
in the previous step. This process is executed all over the segments of the signal.
The results of this process are shown in figure 3.5, as it can be seen the alterning
components can be appreciated now as it has a higher amplitude, in other words,
the subtraction between consecutive beats only got left the alterning component.

Figure 3.5: Comparison of first ST-T complex after background subtraction in the
same signal with and without TWA.

3.2.7 Linear filtering

The final step in the preprocessing is the linear filtering. Linear filtering is a
process by which undesired ranges of frequencies are removed. Since the alternating
content is usually between 3 Hz and 15Hz, a band pass filter is going to be applied
to all the ST-T complexes from all the segments.
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To do this a FIR (finite impulse response) filter was applied with a Kaiser window
using a value of β decided from kaiserord method [78]. To do so, a ripple attenuation
and a stop-band attenuation were defined.

The result of this process together with a visual intuition of the Kaiser window
can be visualized in 3.6.

Figure 3.6: Kaiser window for different α values (Left). Result of applying it to the
first ST-T complex (Right)

3.2.8 Signals dataframe building

The last step in the preprocessing is the construction of a new dataframe (DF).
As said in the previous steps, as a result of the windowing of the signals, several
segments were obtained from each of the signals. From now on, these segments
will be treated as independent signals. This is, in other words, that our dataset
dimensions goes from 574 signals to 136488 segments/signals. This step differs
from the work developed in [4], in that work only 25 segments per patient were used
in order to have the same number of segments for every patient with a purpose of
balancing the data. In this work we have considered more beneficial to work with the
entire set of signals although some bias may be introduced. This process is helpful
specially for increasing the amount of data to train the ML and DL algorithms, which
is a necessary steps in order to increase the reliability and robustness of them.

Apart from the segments, other attributes for each segment are also stored:

• Patient id: The id of the patients constitutes a very important attribute in
this framework. In ML, one crucial consideration is how we split the data
into training and testing sets. Specifically, when dealing with segments of
data corresponding to individual patients, it’s imperative to either include all
segments from the same patient in the training set or the testing set, but
not mix them between the two. The rationale behind this practice is to pre-
vent the algorithm from inadvertently learning patient-specific features rather
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than general patterns within the signals. By segregating the segments of the
same patient into either the training or testing set, we ensure that the model
learns to generalize across various patients rather than memorizing idiosyn-
cratic characteristics of individual subjects. Mixing segments from the same
patient across both training and testing can lead to overfitting on the training
data and poor generalization performance on unseen data.

• Sampling frequency (Fs): The Fs is also an important factor to take into ac-
count. As said in section 3.1, the signals are coming from 3 different databases,
and thus, they have been sampled at different frequencies. For some feature
analysis of the signals, these values of Fs for each specific signal are necessary.

• Label: Finally, since our algorithms will be from the SL part, there is a
necessity to store a value representing if the signal contains or do not contain an
alterning component. In this framework it was decided that ”0” represents
no TWA, and ”1” represents yes TWA.

• Alternan amplitude: The TWA amplitude used in the alternans addition
step for each of the signal was also stored. This values are ranging from 20 to
70 µV randomly.



Chapter 4

Experiments

4.1 Feature extraction and selection

In the ML field, feature extraction constitutes a fundamental process that
looks for the identification of relevant variables related to a certain dataset. This
variables, usually named as features are the elements used by the algorithms to learn
patterns and make accurate predictions [79].

Under this context, this section tries to define features of interest to feed our ML
algorithms.

• Kscore index: As it was seen in chapter 2.3.4, the SM constitutes the gold stan-
dard method in the detection of TWA. In order to use this value as a feature
it was decided to apply the SM to the preprocessed signals (as a remember,
from now on it is consider each segment obtained in the preprocessing stage as
our signals, which is composed of 32 ST-T complexes differences). Originally
the SM predicts that a signal contains TWA if the Kscore > 3; otherwise it
considers that the signal is not containing TWA. In our case, the concrete
value of the Kscore obtained from the SM was used as a feature.

To do so, the power spectral density (PSD) for each signal was calculated.
A very important remark needs to be done here: Let‘s consider the signal
as a big matrix where the rows define the ST-T complex difference and the
columns the samples for each ST-T complex difference. If the PSD in rows
was computed ( by calculating the PSD of the ST-T complexes difference), the
result would not have a repetitive pattern. Therefore, the PSD is calculated
in columns. The reasoning behind this is that by evaluating it in columns the
spectrum of the same electric cardiac moment over a series of beats
is obtained, and there is where a pattern every 2 beats may be found. That
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retake, in fact, the idea of looking at the 0.5 frequency of the spectrum.

Once each PSD was calculated they were averaged to get a common feature
for each signal. Once this was done the Kscore was calculated according to
the formulas seen in previous chapters. A visual intuition of the comparison
between the averaged PSD of a TWA signal and a non-TWA signal can be seen
in figure 4.1 where a clear difference in the P (0.5) can be seen. It is important
to remark that not every signal in the dataset show this clearly differentiated
behaviour.

Figure 4.1: Average PSD calculated for a TWA signal (red) and a non TWA signal
(blue).The Kscore obtained were 4.45 and 0.26 respectively.

• V TM
alt index: The TM was also used to obtain a feature. Following the same

procedure as with the Kscore, the TM was applied to every signal obtaining an
index. This index will be used as a new feature.

These features were used together with the MMA method index in [4]. In this
work, MMA was not used to create new features based on the works developed
in [43] and [44] where it is shown that MMA tends to report false positive TWA.
From now on, the features used are a nobel approach in order to find other variables
that may increase the accuracy from the ML algorithms.

• Cumulative sum detection change (CUSUM): The Cumulative sum test
has been proposed to detect systematic changes over time. It has been shown
to have the ability to detect unusual patterns [80]. It has been successfully used
in fault detection, onset detection in seismic signal processing, and detection
of changes in mechanical systems [81].

In this framework, the CUSUM test was used in order to detect big changes
in the power spectrum value from the PSD (calculated using the hamming
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window) of the signals near 0.5 Hz. As it was seen, the P (0.5) is a represen-
tative feature for TWA detection theoretically. However, in the real signals it
was seen by visual inspection and trials that many non-TWA signals exhibit a
high Kscore value resulted from a very low θnoise. This relationship was stated
in equation 2.5, and it can be seen how as θnoise is in the denominator, small
values of it can increase erroneously the value of the Kscore although they do
not exhibit an alterning component. This behaviour can be seen in figure 4.2.
In other words, these signals were meant to have a high probability of being
detected as TWA-signals because of a generalized low value of θnoise and not for
having a big difference in the frequential component between the frequencies
below 0.5 Hz and 0.5 Hz.

This technique, therefore, tries to differentiate TWA signals and non-TWA
signals based on a big change in the value between the power in 0.5 Hz and
the immediate value before 0.5 Hz. To do so, the following procedure was
followed. Firstly, the average PSD was calculated together with the mean
value of that PSD. Then, the CUSUM value from the signal centered on the
mean value calculated is performed. Secondly, a threshold established at 1.96×
θPSD, where θPSD represents the standard deviation of the average PSD, was
calculated. This threshold is used as the criterion to detect significant changes
in the signal. Finally, those signal points where the cusum value is higher than
the threshold were defined as significant signal changes samples.

In the case a change point was detected in the point corresponding to P (0.5),
the signal were marked as 1, otherwise they were marked as 0. This created a
new feature for each signal, concretely a categorical feature.

Figure 4.2: TWA signal (red) and non-TWA signal (blue). The Kscore in each signal
was 7.35 and 18.79 respectively. We can see that while a small change in the previous
part of the non-TWA signal is seen, in the TWA signal a big change in the previous
signal sample is appreciated. With the CUSUM test each signal would be detected
as 1 and 0 respectively differentiating them appropriately while with the SM both
signals would have been identified as containing alternans.

• Root mean square (RMS) and standard deviation (STD): Also the
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RMS and STD of the signals in the time domain were calculated. To do so,
the STD and RMS for each complex was obtained and then averaged to get
a final value of STD and RMS to be used as features. Higher STD and RMS
values are expected to be in the TWA signals.

• Peak frequency: This feature tries to look for the value of the PSD as the
exact 0.5 frequency component. Ideally, the TWA signals would have higher
values while non-TWA would have lower values.

Once these features were obtained for all the signals, feature selection algo-
rithms and correlation analysis were used to test whether the features have a
significant relationship with the outputs and whether they are helpful to achieve
better results. For further clarification on this part, in section 7.1 from the Annex
there are some interesting figures to consult.

1. Variance thresholding: Variance thresholding is a technique used in data
preprocessing for feature selection. It involves removing features from a dataset
that have variance below a certain threshold. The variance of a feature mea-
sures how much the values in that feature vary from the mean. Features with
low variance indicate that the values within that feature are mostly similar or
constant, which may not provide much useful information for modeling. This
technique was used in order to know which continuous features were useful for
the ML algorithms. The results from this feature selection mechanisms can be
seen in figure 7.1. As it can be observed the variance thresholding stated that
the most useful features were by far the K-score and the Valt.

2. Chi-squared test: The chi-square test measures the independence between
categorical variables and the target variable. It assesses whether there is a
significant association between a categorical feature and the target, based on
the observed and expected frequencies of their joint occurrences. This feature
selection mechanisms was used in order to know if the CUSUM feature (which
is categorical) was giving predictive information. The chi-square test showed
that also the CUSUM was giving important information based on a high chi-
square value obtained together with a almost null p− value showing the high
significance of this result. This results can be seen in figure 7.2

3. Correlational analysis: In order to examine the relations between features
in a dataset, the correlational matrix constitutes a powerful tool. In this
framework, the Pearson correlational matrix was used where -1 and 1 indicates
highly correlated features and 0 no correlated futures. With this analysis it
is intended to keep only the features with no correlation between them in
order to reduce redundancy. In figure 7.3, the relations between features can
be observed. It can be seen a high relation between the RMS and the STD,
together with a high relation of the K-score, Valt and CUSUM with the output.
Finally a high relation between the peak and the Valt is appreciated which may
lead to not considering the peak as an adding information feature.



4.2. MACHINE LEARNING ALGORITHMS 55

Thanks to the application of these feature selection algorithms, it was decided
to use as final dataset for the ML algorithms a data frame composed of the Kscore,
Valt and CUSUM features, together with the respective label. In figure 4.3, the
distribution of the values of these three features for 1000 signals is represented. As
it can be seen, just by visual inspection a ”correct division of the data” is obtained.

Figure 4.3: Input features (Kscore, Valt and CUSUM) 3D plane with the values for
1000 signals for these three features. In blue the non-TWA signals and in red, the
TWA signals (30µV amplitude).

4.2 Machine Learning algorithms

Once the dataset with the features is correctly defined, the next goal is to feed
the ML algorithms with data to make the predictions.

The first step in this procedure is the subdivision of the dataset in two subsets;
the training set and the test set. As it was discussed before, an important aspect
to take into account in this subdivision is to make sure that every segment corre-
sponding to a patient is stored in the training set or in the test set but not mixed.
Following this procedure, a self-created train-test split function was used using a
0.3 splitting ratio. Therefore, the training set would be composed of around 105000
signals while the test set is composed of approximately 35000 signals.
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Figure 4.4: Cross Validation scheme of a model, where PG stands for Patient Group,
kj refers to the hyperparameters tuple of a model, and ϕ stands for the metric utilized
for the optimization problem. Patient group test set (PG6) is fitted with optimum
hyperparameters obtained from CV. Notice that each PG corresponds to a disjoint
group of patients [4].

Once this two sets were created, the scikit learn python library [82] was used
in the creation of the ML algorithms. Four main algorithms were developed in
this project: Logistic regression, decision tree, random forest and support
vector machine.

For each of these algorithms, a Five-fold CV is performed for hyperparameter
tunning. It is important to remark that this subdivision between training and
validation follows the same splitting procedure as the training and test set division.
To do so, hyperparameter search using 5-fold cross-validation, conducted across
patients from groups 1 to 5 (PG1-PG5), with each fold corresponding to a distinct
group of patients. In this cross-validation setup, the model’s performance is assessed
for the j-th hyperparameter tuple kj = {kj1, kj2, . . . , kjl}, resulting in metrics

ϕ
kj
i , i = 1, . . . , 5 obtained from the validation set of each fold, subsequently averaged

across the five folds. A representative scheme of this procedure can be seen in figure
4.4. In this project, as the distribution of classes is balanced (46.91% of training
signals corresponding to no TWA and 53.08% 4.5) it was decided to use accuracy
as metric for the optimization procedure. As a final remark two experiments in each
of the ML algorithms were performed. One experiment will correspond to the entire
signal dataset with a TWA amplitude of 30µV . In the other experiment it was
decided to use as amplitudes for the TWA random values ranging from 20 to
70 µV . This second experiment is performed in order to test the capability of the
models to distinguish alternans at different amplitudes which would mean an added
robustness. In figure 4.6, the distribution of the alternans amplitude by µV intervals
over the training and the test set can be observed, showing a more or less uniform
distribution over the two sets of samples.
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Figure 4.5: Distribution of classes in the training set.

4.3 Deep Learning algorithms

For this section, the entire signals will be used instead of obtaining features from
the signals. Before entering in the DL networks used in this project a couple of
preprocessing stages were necessary as two main problems appeared. Firstly, as
the Fs of the signals were different (128, 250 and 360Hz), the number of samples
on each of the complexes on each segment is also different. Secondly, the previous
structure of the data frame used in the ML section has sinless applied to DL, thus,
a new structure must be created to take the advantage of the characteristics of the
networks.

The first problem is solved by applying a sub-sampling of the signals to
128Hz. Sub-sampling, in the context of signal processing, refers to the process of
reducing the number of samples in a signal by selecting a subset of the original
samples. As seen in table 3.1, the majority of signals corresponds to the nsrdb
group, sampled at 128Hz. As sampling techniques may affect the quality of the
signals it was decided to apply this procedure to the less number of signals possible.
Therefore all the signals belonging to edb and mitdb databases were sub-sampled
to 128Hz.

The second problem is solved taking into account the characteristics of the LSTM
networks that will be used in this experimental section. As LSTM networks are
meant to remember long term dependencies in time-series, the following data struc-
ture was built. Each of signals in the original dataset had the following structure re-
sulting from the pre-processing stage: [M,N, n]. n denoted the number of segments
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Figure 4.6: Distribution of alternans amplitude in µV intervals over the training
(blue) and the test (green) sets.

for each patient, and as said each of the segments will be treated as independent
signals. N denoted the number of samples in each signal complex, which as said
previously, they had been sub-sampled to have the same structure in each segment.
M , denoted the number of complexes contained. With this structure again in mind,
each instance of the data frame will be composed of M = 32 columns, each of them
composed of an array of N = 39 samples each. Therefore, each instance of the data
frame will have all the entire signal recorded and preprocessed as a complete long
signal time-line, which is expected to obtain the best performance based on the
characteristics of the LSTM networks. The dimensions n represents, at the end, the
number of signals from the same patient that are present in the dataframe, being
the only value that varies according to the patient. Finally, the data was subdivided
in three main sets; training, test and validation set, with 91255, 35899 and 9334
signals respectively. The disjoint rules previously mentioned were followed.

Once these two problems were faced and solved, the construction of the LSTM
and CNN-LSTM networks architectures was developed.

A question that may arise now is why are LSTM and CNN-LSTM seen as
a possibility to improve the already obtained performances in previous
works? In this framework, in consonance with other works where ECG signals are
analyzed using LSTM networks and CNN-LSTM networks for different purposes like
AF detection [83], myocardial infarction detection [84] or QRS complex detection in
noisy ECG’s [85], it is expected that the signals, which at the end are a temporal
line of points have some kind of temporal dependency within each others and this
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temporal dependency can be caught by the LSTM layers of these networks. As we
have seen each input of the network is of the shape [32, 39]. This makes probable
that between the 32 signal vectors there are contained dependencies which are not
identified neither by the traditional detection methodologies nor the ML algorithms.
From the other side, trials on the CNN-LSTM will be also performed to test whether
the previous acquisition of features by the CNN layers give more information to the
LSTM layers than just the signals by themselves.

For each of the networks, experimental structures were built with the help of the
keras python library, [86] and the tensorflow python library , [87].

The architecture of the LSTM network has the following parts:

• LSTM layers: The network starts with four LSTM layers, each with a pro-
gressive decrease in the number of units. Each layer had 256, 128, 64 and 32
units respectively, and a Dropout of the 20% in order to reduce overfitting. For
each of the layers a ReLU activation function was used. Finally, the return
sequences option in each of the LSTM layers was activated in order for each
layer to return the complete output sequence for each sequence entry instead
than only the last output. In other words, each LSTM layer would return as
output a tri-dimensional sequence of the shape (batch size, time steps, units)
instead of just a bi-dimensional layer of the form (batch size, units). This
decision is made to capture the complex temporal dependencies that could
exists in the complete signals.

• Flattening and Dense layers: After the LSTM layers, the output sequence
is flattened to transform it in a one dimensional vector which is necessary for
the next Dense layers. The first Dense layer has 128 neurons interconnected,
the second has 64 neurons and the third has 32 neurons. In each Dense layer
a 20% Dropout rate was applied.

• Output layer: The network ends with a Dense layer with just one neuron
and a sigmoid activation function ideal for binary classification as it produces
an output in the range [0,1], which is interpreted as a probability to belong to
the positive layer.

On the other side, the hybrid architecture of the CNN-LSTM model has
the following important elements:

• Convolutional layers: The convolutional part is composed of two Conv1D
blocks. The first block is composed of 256 filters, while the second one has 128
filters. In both cases a kernel size = 3 and a Leaky ReLU activation function
were used. These layers look for the extraction of local features from the input
signal. In both blocks a MaxPooling1D was used with a pooling size = 2. This
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Figure 4.7: LSTM (left) and CNN-LSTM(right) architecture model blocks represen-
tation. The multiple Dense layers where omitted to only one for reasons of simplicity
in the visualization.

helps in reducing the dimensionality of the features extracted, diminishing the
computational complexity and preventing the overfitting. Moreover a Batch-
Normalization and a Dropout layer with 50% rate were used to prevent the
overfitting by turning off random cells.

• LSTM layers: As in the previous LSTM model. The LSTM layers are aimed
to capture the temporal dependencies between the data. In these case, as the
features are obtained from temporal data they are expected to have some kind
of temporal relationship that can help in the proper alternan detection. The
first LSTM layer was composed of 128 units, including the sequences return
to the next LSTM layer and a 20% Dropout. The second layer has the same
characteristics but only including 64 units. The third layer was composed of
32 units. In every case, a ReLU activation function was used.

• Flatten and Dense layers: After these CNN and LSTM layers, the output
is flattened to transform in a one dimensional vector. After that two 64 and
32 Dense layers were used, both with the ReLU activation function.

• Output layer: The final layer was a Dense unit with a sigmoid activation
function.

Related to the training of both networks, the Adam optimizer was used with a
learning rate of 1e-3 to avoid the excessive overfitting. The binary cross-entropy
loss function is used as it is recommended for binary classification tasks.
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The whole training with the LSTM network was elapsed for 50 epochs with a
batch size = 128. On the other side, the CNN-LSTM network was trained for
150 epochs with the same batch size The input data corresponds to the training
set together with the validation set used as control metric of the performance.

The training of both networks was assessed in a virtual environment facilitated
by the public ML platform Kaggle [88]. The use of this platform attends to the
need of a powerful tool to accelerate the process of the network’s training and to
have the possibility to perform trials in the network’s structures with certain speed.
Therefore, the GPU P100 accelerator was used for this entire part.

In order to achieve an increased performance in the results obtained by the net-
works, an optimization of the network hyperparameters was developed. As it is ex-
pected, explore the whole possible hyperparemeter space of a network of these dimen-
sions constitutes an impossible challenge as the combinations increase exponentially
when adding multiple layers. To face this challenge, the tool keras.hyperparameter
was used, especially the RandomSearch tool which allows for an efficient exploration
of the hyperparameter space.

In order to make sure the conservation of the best possible model during the
training, the keras function “ModelCheckpoint” which stores the best model based
on the validation set, monitoring the validation accuracy metric during the training
was employed.
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Chapter 5

Results and Discussion

5.1 Machine Learning results

As explained in the experimental section a Five-fold CV algorithm was used to
define the best possible hyperparameters for each of the different algorithms. The
hyperparameters resulted from this procedure for each of the ML algorithms can be
visualized in table 7.1 for the random TWA amplitude dataset, which at the end are
the same than for the 30 µV dataset. For each of the following algorithms, these
hyperparameters were used to increase the models performances.

Once the hyperparameters were already defined, the models were trained and
tested using the disjoint training and test sets. For each of the models the following
performance metrics have been used in order to check the capabilities of the models
in different aspects: Accuracy, specificity, sensitivity, f1 score, PPV and
AUC. The performance metrics for each of the models and for both experiments
can be visualized in table 5.1. As a matter of congruence for fair comparison between
algorithms the same training and test set were used for every model.

Since in this study, an experiment using alternating signals with amplitudes of
30 µV , as well as randomly selected alternating signals within the range of 30 to
70 µV were conducted, one of the main objective was to assess the model’s ability
to detect low-amplitude alternans (30µV ) as well as alternans amplitude variations
which are more similar to real clinical conditions.

As it can be observed in table 5.1, the results obtained with the 30µV alternation
dataset were less satisfactory, likely due to the low amplitude of the signals. How-
ever, in the experiment with random alternations, we found that errors associated
with low-amplitude alternations were offset by successes in alternations with larger
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amplitudes, leading to overall more promising results.

Based on these findings, we will focus future discussions solely on the results
obtained in the variable amplitude experiment. This is because the results from
the 30µV signal experiment are showing the same shape behaviour but with less
performance in all the related metrics. This analysis has sense as 30µV is a very
low amplitude to be detected so it was expected to obtain these results.

The first algorithm tried is the Logistic Regression. The sklearn function
LogisticRegression was used. The confusion matrix from the test set predictions in
figure 5.1. This algorithm stands out for having the best accuracy, 90.08%, over the
four algorithms tried in this framework, showing a good trade off between specificity
89.07% and sensitivity 91.22%. In this algorithm, the hyperparemter penalty was
analysed using the previously mentioned procedure.

Figure 5.1: Confusion matrix on test set obtained with the Logistic Regression
model. Random TWA amplitude (left) and 30µV TWA amplitude (right).

Following, a Decision Tree algorithm was tried. In these model, the following
hyperparameters were analysed: min samples leaf and criterion. This algorithm
showed the results in figure 5.2. As it can be seen this model shows a great sen-
sitivity metric result, 96.40%. However, this high performance on sensitivity is
compensated with the lowest specificity over the models studied with 78.41%. The
election of this algorithm would depend, therefore, on the goals pursued, as this
model stands out in the detection of TWA containing signals with only 609 cases
considered as non-TWA containing signals from a complete set of 35899 signals.

The next algorithm tested in this work was the so-called Random Forest al-
gorithm. In this case, the min samples leaf and criterion hyperparameters were
analysed. This algorithm did not stand out in any of the related metrics. However,
it can be appreciated that the decision made by a bunch of trees improve the speci-
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Figure 5.2: Confusion matrix on test set obtained with the Decision Tree model.
Random TWA amplitude (left) and 30µV TWA amplitude (right).

ficity than just one single tree offering a more balanced model than the DT in terms
of specificity-sensitivity trade off.

Figure 5.3: Confusion matrix on test set obtained with the Random Forest model.
Random TWA amplitude (left) and 30µV TWA amplitude (right).

Finally, a Support Vector Machine algorithm was analysed. The following
hyperparameters were studied to get the best performance of it: Kernel and gamma.
In figure 5.4, the confusion matrix results can be visualized. The SVM model show a
great general performance with an 87% accuracy. It specially stands out for having a
great sensitivity of 95% (second among ML algorithms), showing a great capacity to
detect TWA signals. However, as with the DT, there is a lack of reliable specificity
with an 83%.
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Figure 5.4: Confusion matrix on test set obtained with the SVM model. Random
TWA amplitude (left) and 30µV TWA amplitude (right).

5.2 Deep Learning results

This section will cover the results obtained thanks to the training of the LSTM
and CNN-LSTM networks seen in figure 4.7. As said, the networks parameters were
finne-tunned thanks to the use of the keras hyperparameter tuner. The parameters
used for the LSTM and the CNN-LSTM networks can be seen in tables 7.2 and 7.3,
respectively. Furthermore, as it was seen in the previous section, the results on the
30µV amplitude experiment and the random amplitude experiment show a similar
behaviour. Thus, for reasons of simplicity and with the goal of being coherent with
clinical cases where the amplitudes of the TWA may be different, the networks where
trained with random amplitude TWA signals.

In the case of the LSTM network the total training time for 50 epochs using a
batch size = 128 and with the use of the GPU P1000 was of 12.5 minutes, which
shows a great capability of this model to quickly train even though the big amount
of data. This great velocity of training derived also in a great predicting speed;
just 8 seconds for the prediction of 35899 signals, which supposes a great
advantage in a real clinical scenario providing versatility to the model.

The model’s loss and model’s accuracy for both the training set and the validation
set can be seen in figure 5.5. These figures show the great capability of the model
to rapidly get enough information to make predictions on the validation test with
almost a 92% accuracy in a very low number of epochs. However, it can be seen that
throughout the training there are some falls in the progress attending to possible
vanishing gradient problems. However, thanks to the use of the LSTM cells there was
a quick recovery after these falls which turn on in a continuous process of learning
throughout the training.
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LR DT RF SVM
Random TWA amplitude experiment
Accuracy 0.908 0.868 0.886 0.886
Sensitivity 0.912 0.964 0.925 0.948
Specificity 0.89 0.784 0.852 0.830

PPV 0.881 0.799 0.848 0.832
f1 score 0.896 0.873 0.825 0.886
AUC 0.97 0.95 0.96 0.96

30 µV experiment
Accuracy 0.875 0.87 0.872 0.868
Sensitivity 0.877 0.924 0.90 0.947
Specificity 0.873 0.822 0.848 0.799

PPV 0.861 0.822 0.84 0.807
f1 score 0.869 0.87 0.869 0.817
AUC 0.95 0.95 0.95 0.95

Table 5.1: Table comparing the performance of Logistic Regression (LR), Decision
Tree (DT), Random Forest (RF) and Support Vector Machine (SVM) for the metrics
of accuracy, sensitivity, specificity, PPV, f1 score and AUC for both experiments.

Once the training was completed, the predictions on the test set resulted in the
confusion matrix of figure 5.6.

To maximize the trade-off between specificity and sensitivity, the Youden in-
dex was used to select the optimal threshold to decide from which probability a
prediction should be classified as positive. The Youden index, J , is defined as:

J = Sensitivity + Specificity− 1 (5.1)

By calculating the Youden index for each possible threshold, we can identify the
threshold that maximizes J , ensuring the best balance between Sensitivity and
Specificity. This optimal threshold was then used to make the classification de-
cision, aiming to improve the overall performance of this diagnostic test.

Continuing with the CNN-LSTM network, the same procedure of training was
developed, however, in this case, since obtaining features diminishes the rate of
learning, a total of 150 epochs were set as training time to guarantee a complete
network training. The whole procedure elapsed for a total time of 17.5 minutes,
which is even a faster than the one in the LSTM network. As expected, this faster
training time was reflected also in the predictions time with just 4 seconds to make
the whole bunch of signals analysis. Again, the models training curves can be seen
in figure 5.7:

In this case, in contrast to the previous network, there are not important falls in
the development of the training since the features selected by the CNN guarantees
that the LSTM networks are always receiving information and dismissing, therefore,



68 CHAPTER 5. RESULTS AND DISCUSSION

Figure 5.5: Model’s loss (left) and Model’s accuracy (right) of the LSTM network
training process for both the training and the validation set.

Figure 5.6: Confusion matrix on the test set predicted by the LSTM network.

the probabilities of a big gradient vanishing. The results obtained in the predictions
are available in the confusion matrix of figure 5.8:

In order to have a good comparison between the models, the table 5.2 of metrics
can be consulted.

Acc Sens Spec f1 PPV AUC
LSTM 0.9408 0.9152 0.9639 0.935 0.957 0.98

CNN-LSTM 0.9257 0.8971 0.9511 0.917 0.941 0.98

Table 5.2: Table of results for the LSTM and CNN-LSTM networks where acc, sens
and spec describes accuracy, sensitivity and specificity respectively.

As it can be seen, the LSTM networks surpasses the CNN-LSTM architecture
in every studied metric with an outstanding 94.08% accuracy. Moreover, in both
cases the specificity has a superior value compared to the sensitivity, in other words,
both DL networks (in contrast with what happened in the ML algorithms), show
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Figure 5.7: Model’s loss (left) and Model’s accuracy (right) of the CNN-LSTM
network training process for both the training and the validation set.

Figure 5.8: Confusion matrix on the test set predicted by the CNN-LSTM network.

a great capacity (96.39% and 95.11%) in identifying the patients that are not
suffering from the alterning phenomena.

5.3 Discussion

The analysis of the different ML algorithms shows significant variations on the
performance metrics, which are essential to determine the applicability of each model
in TWA in ECG signals detection tasks. In this sense, the logistic regression stood
out for having the best balance over the models (91.22% sensibility and 89.07%
specificity), being efficient both in the TP and FN detection. In contrast, the DT
showed the best sensibility (96.40%) over all the models (including DL), which
indicates an amazing capability in the detection of TWA signals. However, its
specificity was the lowest among all the models (78.41%). This model would be
ideal in cases where it is crucial to minimize the FN, although there would be an
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increase in the FP. Finally, RF and the SVM did not stand out in any related metric
compared to the last two models.

Continuing now with the DL models, they have shown an increased performance
compared to the ML algorithms in the TWA detection task. The LSTM networks
obtained an outstanding accuracy of 94.08% and improved the performance
of the CNN-LSTM in every of the studied metrics. This indicates that the LSTM
showed better capability to manage temporal dependencies with the entire signals as
inputs than with the CNN extracted features as input. In both networks, the training
and the prediction times where sufficiently low to allow a good reproducibility of
the experiments.

As a final remark, it is important to compare the work done with previous works
in the field. In section 2.6, it was seen that some works on the area of ML applied
to the TWA signals were done in the past years, reporting an 88% accuracy with
the DT model [4], which surpasses the accuracy of 79% obtained with the SM. With
this work, we have not only surpassed the metrics of the SM but also improved upon
the results obtained in recent literature.

This work goes beyond this by incorporating and summarizing not only ML
technique but also DL methodologies that have shown a superior performance in the
cardiac signal analysis. The results obtained with DL models, especially with the
LSTM network prove a considerable improvement in the TWA detection compared
to previous works which states a new standard in this field of study.



Chapter 6

Conclusions, future work and
competencies acquired

In this work, the use of ML and DL techniques for the automatic detection of
TWA in ECG signals has been explored. The results obtained have shown that
LSTM networks present a significant superior performance compared with the tra-
ditional ML models. Thanks to this study, four main conclusions can be obtained:

1. Model’s efficacy: The LSTM networks reached an accuracy of 94.08%,
surpassing the combined CNN-LSTM networks in all the studied metrics. This
highlighted the capacity of LSTM networks to manage temporal dependencies
in ECG signals, capturing better the TWA than traditional ML algorithms.

2. Comparison with previous works: When comparing this work with pre-
vious studies, an improvement in the TWA detection was observed. While
previous investigations report an accuracy of 88%, this methodology achieves
a new standard in the TWA detection field.

3. Capacity of integrating this model in a real-time clinical scenario:
Thanks to the low predictions times of this LSTM model ( 8 seconds for
the prediction of 35899 signals), the application in clinical settings where the
velocity is crucial to apply correct preventive techniques is possible.

4. SCD prevention: As stated, SCD is highly correlated with the alternans
phenomena. SCD constitutes one the leading cause of mortality worldwide.
Thanks to this study, a new reliable way of preventing this pathology arises.

Despite from the advances developed in the field, there are some areas of improve-
ment and expansion.
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1. Databases increase: During the work, the lack of reliable databases has
been one of the critical points in this study. An increase in these types of
databases with real TWA signals is necessary to increase the generalization
and robustness of these types of models.

2. Model optimization: To explore and to optimize other DL architectures
may lead to improvements in the related metrics. The use of transfer learning
techniques and the increase in computational resources may lead to this task.

3. Other types of alternans analysis: In this work, only sustained alternans
were added to the ECG signals. This, may lead to a lack of generalization of
this work in clinical scenarios.

4. Distinction between discordant and concordant alternans: As said,
the risk of developing SCD, VT or VF increase when there is a transition from
concordant to discordant alternates. Further works on distinguishing between
these two alternans shapes may lead to a more complete understanding of the
phenomena leading to a prevention of these diseases.

These limitations suggest new lines of work that may be investigated in future
studies. By the time, this works has tried to give a new step towards the prevention
of cardiovascular diseases through TWA analysis.

Regarding the competences acquired, thanks to the development of this final de-
gree project, I have been able to apply many of the skills and competencies acquired
during my degree in Biomedical Engineering. Courses such as Physiological Signal
Processing, Linear and Discrete Systems, Biological Systems Analysis, and Medical
Pathology have allowed me to understand and apply concepts related to alternating
waves, ECG analysis, and even the application of complex operations on real time
signals. Furthermore, thanks to a strong background in mathematics, programming,
physics, and optimization, combined with specific skill acquired in courses such as
biomedical equipment, hospital engineering, artificial intelligence, and medical im-
age analysis, I have been able to complement this work and take it to a higher level.
Undoubtedly, this project has been completed thanks to significant effort and good
content planning throughout my four years of studying Biomedical Engineering.
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Chapter 7

Appendices

In the following sections some interesting figures and tables that support the
explanations throughout the work could be seen for further understanding.

7.1 Feature selection

Figure 7.1: Variance thresholding selection method results applied to the continuous
features.
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Figure 7.2: Chi-squared value (left) and p-value (right) for the CUSUM feature.

Figure 7.3: Pearson’s correlation matrix on the dataset features and the label.
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7.2 Machine Learning and Deep Learning results

The tables with the hyperparameters for both sections are available in this sec-
tion.

LR DT RF SVM
Penalty l2 - - -

Min Samples Leaf - 5029 5029 -
Criterion - entropy entropy -
Kernel - - - rbf
Gamma - - - auto

Table 7.1: Table comparing hyperparameters for Logistic Regression (LR), Decision
Tree (DT), Random Forest (RF), and Support Vector Machine (SVM).
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Layer Type Hyperparameters Values
LSTM 1 Units 256

Activation relu
Input Shape (32, 39)

Return Sequences True
Dropout 1 Rate 0.2
LSTM 2 Units 128

Activation relu
Return Sequences True

Dropout 2 Rate 0.2
LSTM 3 Units 64

Activation relu
Return Sequences True

Dropout 3 Rate 0.2
LSTM 4 Units 32

Activation relu
Return Sequences True

Dropout 4 Rate 0.2
Flatten
Dense 1 Units 128
Dense 2 Units 64

Dropout 5 Rate 0.2
Dense 3 Units 32

Dropout 6 Rate 0.2
Dense 7 Units 1

Activation sigmoid
Optimizer Type Adam

Learning Rate 1e-3

Table 7.2: Hyperparameters used in the LSTM network
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Layer Type Hyperparameters Values
Conv1D 1 Filters 256

Kernel Size 3
Activation relu
Input Shape (32, 39)

MaxPooling1D Pool Size 2
BatchNormalization

LeakyReLU Negative Slope 0.01
Dropout 1 Rate 0.5
Conv1D 2 Filters 128

Kernel Size 3
Activation relu

MaxPooling1D Pool Size 2
BatchNormalization

LeakyReLU Negative Slope 0.01
Dropout 2 Rate 0.5
LSTM 1 Units 128

Activation relu
Return Sequences True

Dropout 3 Rate 0.2
LSTM 2 Units 64

Activation relu
Return Sequences True

Dropout 4 Rate 0.2
LSTM 3 Units 32

Activation relu
Return Sequences True

Dropout 5 Rate 0.2
Flatten
Dense 1 Units 64

Activation relu
Dense 2 Units 32

Activation relu
Dense 3 Units 1

Activation sigmoid
Optimizer Type Adam

Learning Rate 1e-3

Table 7.3: Hyperparameters used in the CNN-LSTM network
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