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ABSTRACT Gender classification of human faces is a trending topic and a remarkable biometric task.
This research area has useful applications in several fields, such as automated border control (ABC) and
forensic work. There are many approaches to gender classification in the literature; the classical approaches
usually use real faces. Although good performances have been achieved, data collection remains a problem.
Additionally, the privacy of individuals must be included in many existing works. These drawbacks can be
overcome by using fake faces. Recently, the creation of a robust fake face corpus using machine learning has
become possible. Our main contribution in the present paper is to experimentally investigate the ability of an
artificial deepfake corpus to be a substitute for real corpora in facial gender classification tasks. We propose
a deep learning-based approach using convolutional neural networks trained with fake faces and tested on
real faces. By exploiting artificial faces, data collection obstacles are resolved for the training step, and
privacy is highly preserved. Four classifiers based on popular convolutional neural network architectures
were implemented. In the test phase, we used faces of real identities extracted fromwell-known experimental
databases such as Face Recognition Technology (FERET), Faculdade de Engenharia Industrial (FEI) faces,
Face Recognition and Artificial Vision (FRAV) and Labeled Faces in the Wild (LFW). The results achieved
are very promising. We obtained high accuracy rates and low EER scores. They are similar to those of
research works using real faces. As a result of this work, we propose a gender-labeled deepfake facial dataset
containing more than 200k deepfake corpora that we will make available upon request for research purposes.

INDEX TERMS Adversarial neural networks, convolutional neural networks, deep learning, fake faces,
gender classification.

I. INTRODUCTION
Gender classification (GC) is a biometric task of categoriza-
tion. It is a binary classification problem for a permanent
human attribute. It has been studied with various biometric
modalities, such as fingerprints [1], hand [2], face [3], ears
[4], periocular region [5], full-body [6], and oral regions
[7]. The research community has been focusing on gender
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classification since 1990 [8]. It is one of the most active
research areas in biometrics [9], [10], [11]. It allows us
to exploit vital permanent information on human beings in
various fields, such as trade, robotics, and demographic data
collection [12], [13].

As in any biometric system, some criteria must be
considered during the deployment of a gender classification
approach, in particular [14], [15], [16]: performance endorsed
on confident measures, durability for computed features,
acceptability from the target population, preserving the

120766

 2023 The Authors. This work is licensed under a Creative Commons Attribution 4.0 License.

For more information, see https://creativecommons.org/licenses/by/4.0/ VOLUME 11, 2023

https://orcid.org/0000-0001-5498-3688
https://orcid.org/0000-0003-3548-0297
https://orcid.org/0000-0001-6063-4898
https://orcid.org/0000-0002-2361-8247
https://orcid.org/0000-0001-7084-2439


M. Oulad-Kaddour et al.: Deep Learning-Based Gender Classification by Training

privacy of people’s personal data and universality guarantee-
ing calculability of used features for every subject in the target
population. In practice, facial modality is the most studied
in the literature for gender classification tasks. It meets
many of the cited criteria, especially in terms of universality,
acceptability and performance [13], [14].

Deep learning is becoming the key to the state-of-the-
art for gender classification from human traces captured in
two-dimensional image form, specifically for face modality
[3], [17]. Several approaches concerning various contexts
have been proposed for gender classification. Some use
hybridization with classical approaches such as support vec-
tor machine (SVM) [18] and adaptive boosting (AdaBoost)
[3]. Nevertheless, deep learning-based approaches greatly
outperform existing works in terms of performance [19].
However, deep learning requires, in its training phase, a large
amount of data. In most of the works, a large facial database
is built using internet images without the interested parties’
agreement, thus violating people’s privacy [20].
To overcome this problem, we investigate the use of fake

data in the learning phase of gender classification. In recent
years, learning-based approaches that allow the creation of
fake identities for living beings have emerged [21], [22].
Especially in the case of human identity, there are recent
approaches performing human-face retouch [22], [23], [24]
and fake identity generation [25], [26], [27], [28]. In a brilliant
work, [26] proposed generative adversarial neural networks
(GANs) to generate faces of fake human identities. For
more generated data realism, [27] improved the quality of
created faces. A recent empirical study [29] perceived that
fake faces are indistinguishable from real faces and more
trustworthy. Furthermore, for machines, real versus fake face
separation requires special attention, and the task is attracting
researchers’ interest [30], [31]. The question that arises is
whether fake identities can be an alternative to real identities
in biometric systems.

In light of the fact that the majority of state-of-the-art gen-
der classification approaches exclusively utilize real human
faces, this paper explores gender classification using artificial
faces generated by generative adversarial networks (GANs)
during the training phase. Convolutional neural networks
(CNNs) were trained exclusively with GAN-generated faces
[25], and the testing phase involved real human faces. This
paper makes the following key contributions:

• Introduction of a novel facial gender classifica-
tion approach that incorporates deepfake faces of
non-existent identities as training data, prioritizing
individuals’ privacy. This approach not only addresses
privacy concerns but also opens new possibilities for
data augmentation in machine learning.

• Empirical assessment of the potential of deepfake faces
to substitute real ones through an extensive experimental
comparison of well-known CNN architectures for gen-
der classification, evaluated on four real datasets. Our
findings shed light on the robustness and adaptability of
gender classifiers to diverse facial data sources.

• Performance evaluation of CNN-based gender classi-
fiers trained with various deepfake datasets generated
under controlled and uncontrolled facial variations. This
analysis not only assesses the classifiers’ accuracy
but also provides insights into their generalization
capabilities in real-world scenarios.

• In addition to the above, we have compiled and
meticulously gender-labeled an extensive dataset of
over 200,000 deepfake faces. This dataset is made
available upon request to facilitate further research and
foster advancements in the field of computer vision and
privacy-preserving machine learning.

The present paper is organized as follows. Section II is a
short review of the state-of-the-art on gender classification
and generative adversarial networks. Section III describes the
proposed approach. Section IV presents the experimentation
and results. Conclusions and perspectives are given in
Section V.

II. RELATED WORKS
In this section, we briefly review the state-of-the-art for
gender classification and generative adversarial networks’
artificial faces.

A. GENDER CLASSIFICATION
Human-face gender classification is widely studied, and
the literature is rich in proposed works [12], [13], [25],
[32]. Gender classification is performed in three phases.
First, preprocessing includes principally facial bounding box
computing. Second, feature extraction is performed in a
discriminative vector. Finally, classification is performed for
decision-making [12]. After facial region of interest (ROI)
determination and based on the principle of input prepro-
cessing, gender classification approaches can be qualified as
global, local or hybrid [12]. In global approaches, the whole
face is processed without segmentation. In local approaches,
the information derived from the small face’s regions is
combined, such as the facial subregion and its landmarks.
In hybrid approaches, both global and local methods are
combined with eventual score fusion [12].
In the experimentation phase, gender classification

approaches use databases dedicated to human-face analysis
and recognition. FERET [41], FRAV2D [42] and FEI [43]
are facial databases settled by experts in a controlled
context. They have, in general, acceptable quality. LFW [44],
GROUPS-Faces [45], CelebFaces [20], CASIA-WebFace
[20], andMORPH [46] aremore challenging facial databases.
Those databases were designed to evaluate classification
performances in an uncontrolled context. Occlusion, image
quality and face poses are the most challenging variations in
real-world databases.

In classical approaches, support vector machine (SVM)
[47], local binary pattern (LBP) [48], Gabor filter [49],
artificial neural network (ANN) [50], principal component
analysis (PCA) [49], local directional pattern (LDP) [51]
and AdaBoost [3], [52] are examples of tools that were
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TABLE 1. State-of-the-art analysis.

largely exploited for feature extraction and classification
steps. Detailed surveys and in-depth experimental studies are
available in [12], [13], [32], and [37]. These approaches can
be criticized primarily for their use of very small image sets
in non real-world contexts during the testing phase.

Recent studies are almost all based on machine learning
and, in particular, on convolutional neural networks (CNNs).
They focus mainly on feature extraction or both feature
extraction and classification. Although there are no standard
rules for comparing state-of-the-art methods, Table 1 sum-
marizes analyses of recent works by describing their type,
exploited techniques for feature extraction and classification
steps. Some advantages and critiques are highlighted. All
existing approaches are deployed using one or more real
databases among those described previously, and some of

FIGURE 1. General overview of a generative adversarial network.

them use random image collections drawn from the web.
Referring to Table 1, we note that existing approaches can
be criticized for not respecting privacy where many used
datasets collected from the web or legal processes in the
collection protocol were not detailed, resulting in overlapping
data. There were also some approaches that divided the
dataset between training and testing phases without affirming
non-duplication of identities between them (for a person with
multi-face image acquisition), and the test size for some
approaches that did not clearly declare the size of the used
subset in the test step.

B. GENERATIVE ADVERSARIAL NETWORK
In artificial intelligence, image generation is a task that
aims to synthesize and translate images with the objective
of generating novel realistic images. Generative adversarial
networks or GANs are powerful tools for image generation
[12], [22], [31], [53]. This kind of neural network was
introduced by Goodfellow in 2014 [54].

As shown in Fig. 1, a generative adversarial network is
a deep network structured principally in two subnetworks,
both based on deeper networks: a generator G that gen-
erates synthetic (fake) data x′ from random input data z
(x′

=G(z)) and a discriminator D whose role is to distinguish
(classify) the generated fake x′ from real data x. Called
forger and expert, the generator and discriminator are
competitive networks, respectively. The forger attempts to
mislead the expert by creating realistic images emulating
the nature of the real data. The expert ensures the perfect
separation of fake/real data [48]. Performed simultaneously
for its two subnetworks, the training of a GAN network
is established based on loss backpropagation. For this,
GAN’s setting is optimized through the determination of
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the equilibrium (G*, D*), assuring satisfaction for both the
forger, by decreasing the classifier’s accuracy, and the expert,
by increasing its accuracy. The equilibrium corresponds to the
argument of the following optimization expression [54]:

(G∗,D∗) = MinGMaxD[E(Log(D(x)) + E(Log(1 − D(x ′))]

(1)

where x designates real samples browsing a real dataset and
x′

= G(z) designates the fake-generated image for noise
data z browsing a random dataset. D(.) estimates the expert
behaviour in probability (1 for data predicted as real and 0 for
data predicted as fake).

Since their introduction, faces generated by GANs have
been adopted in various contexts for human-face analysis.
Permanent and temporal human attribute manipulation, entire
face synthetic creating faces of non real person, deepfake
face-swap exchanging the objective face in a video by
another target face and facial expression swapping are the
most common emerging GAN face manipulations. In return,
to limit the misuse of fake data for malicious purposes,
researchers have also studied fake image detection [25].

In [55], an interesting survey of data augmentation for
actual face recognition systems is presented. This shows
that GAN-generated face synthesis increases the size of the
training set and improves recognition performance. For face
analysis with poor-quality images, Li et al. [56] exploited
GAN faces to improve the quality of images for face
recognition in the wild. Concerning security aspects, [21],
[30], [31] proposed an antispoofing approach to discriminate
between real and fake faces that can be exploited for
antispoofing scenarios. For the same purpose, [57] studied
the analysis of GAN-generated fingerprints. Reference [58]
studied the generation of GAN faces by preserving human
gender. Mescheder et al. studied the local convergence
properties of GAN methods [59]. With the goal of mitigating
gender classification bias across race groups and especially
for women and dark-skinned persons, Ramachandran and
Rattani [60] retrained a state-of-the-art GAN network to
realize data augmentation by synthesizing view creation for
existing identities. They reported accuracy enhancement and
bias across gender-racial group reduction via experimental
validation.

However, generating non-existing identity faces is one of
the most salient tasks in face applications. In one of the
greatest iconic GAN architectures [26], Karras proposed a
generative adversarial neural network allowing the creation
of deepfake faces. The proposed approach generates artificial
faces with the improvement of fake semantic quality. The
created faces are for non-existing identities and are extremely
realistic (see Fig. 2) [27], [28].

III. PROPOSED APPROACH
In this section, the proposed method is presented. By present-
ing the overview of our approach, the face detection principle
and the convolutional neural networks.

FIGURE 2. Examples of realistic artificial faces of non-existing fake
identities.

As mentioned above, existing gender classification sys-
tems are usually performed using the real faces of existing
persons for both the training and testing steps. The goal of
our research study is the exploitation of deepfakes to perform
a deep learning-based gender classification system.

The overview of our proposed method is illustrated in
Fig. 3.

• Training: In this step, a fake dataset composed of
artificial faces is exploited. After preprocessing, the
fake images are used to train the convolutional neural
network. We obtain a fake dataset’s trained model.
To tune the CNN’s hyperparameters and avoid overfit-
ting, a small subset is used for the validation of the
trained CNN. The objective of this step is to perform the
full setting of the convolutional neural network by using
exclusively fake data.

• Testing: In this step, faces of real identities are exploited
to assess the performances of the fake dataset’s trained
convolutional neural network. After face bounding
box computing, gender prediction is performed by
using the trained CNN. In our experimentation for
this step, several datasets were used. The details and
characteristics of these datasets are shown in the next
section.

The used deepfake faces were generated by using the
StyleGAN network [26] that was trained using a recent and
high-quality facial dataset independent of those we exploited
in the test. We applied dlib (http://dlib.net) person recognition
tools to check semantic similarity between real and deepfake
faces with the goal of ensuring that there are no real identities
inadvertently incorporated in the deepfake dataset.

Next, we summarize some of the advantages of the
proposed approach:

• The privacy constraint’s problem is limited: Subjects’
identities do not exist, and the training dataset can be
shared or made in public access without a person’s
privacy violation [28].

• Data collection problems resolved for the training step:
Deep learning requests a large quantity of data that is
almost exploited in training. The use of automatic tools
allows the generation of large fake datasets, as needed.

• Overlapping avoidance: By exploiting the face of
artificial identities in the training phase, we avoid the
data overlapping phenomenon. It reassures that there are
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FIGURE 3. Overview of the proposed approach.

FIGURE 4. Examples of detected face bounding box augmentation
(a): Input image (b): Detected face (c): Augmented bounding box.

FIGURE 5. CNNs create implicit features at the pixel level for facial masks.

no duplicated identities between the training and testing
sets.

• According to the variation in the fake dataset, it gives
the opportunity to perform tests on the maximal subset
of the experimental dataset without selective elimination
or distribution of images between the training and testing
subsets.

A. FACE DETECTION
Face detection is an indispensable preprocessing step for
facial image analysis, specifically for images with poor
quality. In our work, we used a well-known and robust face
detection method [61], the Region-CNN (R-CNN) algorithm
[62]. Our preliminary experimentations showed that the
internal face box returned by R-CNN had less discriminative
information.

As shown in Fig. 4, after face detection and to inject
more facial information, the detected face’s bounding box is
augmented with a portion of 0.3 (30%) for the returned size
width.

B. CONVOLUTIONAL NEURAL NETWORKS
Convolutional neuronal networks or CNNs are deep neural
networks. They are generally powerful techniques for image
classification [63], [64]. Taking the case of facial data and
from a naive pixel level, CNNs can learn characteristics
hierarchically, passing through small segments to inter-
pretable regions and face masks [65](see Fig. 5).

Based on the philosophy of connectionism, in general,
a CNN is composed of a set of layers, where each layer takes
as input the output of the direct predecessors (priors). The
principal types of CNN layers are [63], [64]: convolutional,
pooling, rectified linear unit, fully connected, dropout and
output layers. The convolutional layer is a fundamental
layer aiming to learn feature maps so that the presence will
be detectable in future subjects. Mathematics convolution
operators are applied over an input matrix. A convolution
filter is characterized by its kernel sizes. Frequently placed
just after one or successive convolutional layers, with smaller
sizes and with the objective of reducing the resolution of the
feature map, a pooling operator is involved in the calculated
feature maps. Average pooling (AvgPool) and maximum
pooling (MaxPool) corresponding to a grid (submatrix) to
the average and maximum values, respectively, are most
commonly used. The rectified linear unit (ReLU) layer is
a cell of the neural network in which a simple activation
function is applied over an input vector to eliminate some
rejected information. The basic formula used for an input
vector X is:

RelLU(X) = max(0,X).

The fully connected layer, also known as the multilayer
perceptron, connects all neurons of the prior layer to every
neuron of its own layer. It is also called a dense layer when
it implements a linear operation. Fully connected layers are
generally placed at the end of deep networks. Addressing the
overfitting problem and basically used on the fully connected
layer, the key idea of the dropout layer is the random
dropping of CNN neuron units during training. An output
layer of a CNN designed for a k-classification problem is
a vector formed with a list of estimated class probabilities.
For each class, probabilistic information is stocked in the
corresponding case on this vector, and the argument for the
final decision class is related to the higher one. Formally,
it can be defined as follows:

Prediction(X ) = Arg[Max(OutPut(i), 1 ≤ i ≤ k] (2)

where X is an input processed by the CNN and k is the class
number.

For a given architecture, the configuration of the con-
volutional neural network is performed via the training
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FIGURE 6. Overview of adopted VGG16-inspired gender classifier.

step, and its goal is the determination of the large number
of CNN hyperparameters (on average, a few dozen of
millions) produced by convolutional and fully connected
layers. Training a CNN requires specific hardware, such
as GPU machines with very large datasets [63], [64].
In practice, convolutional neuronal network architecture
performance is benchmarked on very large datasets such as
ImageNet [64].
In our work, in transfer learning, we fine-tuned random

data pretrained convolutional neural networks. We adopt
a very deep convolutional neural network (VGG16)
[64] inspired gender classifier. For domain adaptation,
we replaced the last fully connected layers with personalized
layers, namely, the average pooling layer, dropout layer and
ReLU layer. A softmax activation function is used as the
final binary classifier for gender prediction. Fig.6 shows
an overview of the adopted gender classifier architecture.
We also compared the classifier with other well-known
convolutional neural network architecture-based networks,
namely, Inception-V3 (GoogLeNet version-3), ResNet (deep
residual neural network) and MobileNet (efficient convolu-
tional neural networks for mobile vision applications) [64].

IV. EXPERIMENTAL PROTOCOL
In this section, we describe the experimental context of our
approach. Artificial faces, real faces datasets and evaluation
metrics are presented.

FIGURE 7. 100k-generated-images artificial dataset’s variation examples
(a): Young male (b): Black female (c): Asian male (d): Smiled old female
(f): Bearded old male (f): Smiled young female.

A. ARTIFICIAL FACES DATASET
For the training step, we used the 100k-generated-images
dataset. This is a gender unlabeled artificial facial dataset
whose high-quality images were automatically generated by
the StyleGAN model proposed by Karras et al. [25], [26].
The background of the 100k generated images dataset is the
FFHQ (Flickr-Faces-High-Quality) dataset exploited for the
training of the StyleGAN model. FFHQ contains 70k real
facial images of high resolution, collected under permissive
licences from the Flicker platform. FFHQ objective faces
were detected and preprocessed using dlib library tools.

Fig. 7 illustrates some samples of the 100k-generated-
images dataset.

It has multiple variations, principally:

- Ethnic: Black, White, Asiatic, Indian.
- Age: Young age, middle age, old age.
- Facial expressions: Happy, yelling, surprised, laughing,
sad, etc.

- Natural and synthetic accessories: Beard, moustache,
glasses, hats, etc.

- Background: Random background.
- Face pose: Frontal, semi-profile.

In addition, as a facial dataset, the 100k generated images
can be qualified with the following advantageous properties:
traditional deployment for the image acquisition process is
not needed, the collection does not take time, and it is rich in
terms of facial variations.

To perform our experimentation, a gender-balanced subset
composed of 60k artificial images from the 100k-generated
image dataset was exploited (see Table 2). To reduce the
raw artificial face labeling cost, we defined a semiautomatic
process for image gender labeling. First, we manually labeled
a small set of 2000 images that was used to perform a fake
gender classifier. Then, the fake gender classifier was applied
to realize pseudo-labeling of the rest of the whole subset
of 60k. Finally, the pseudo-labeled images were manually
checked to eliminate falsely affected images in each class.
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FIGURE 8. Training deepfake dataset attributes distribution.

TABLE 2. Details of the artificial training set.

Fig. 8 shows the training deepfake dataset distribution in
terms of race, gender and age attributes.

B. REAL DATASETS
For the test task, we used the following experimental real
facial datasets: FERET, FRAV2D, FEI and LFW.

• FERET dataset: FERET is a well-known database
for human-face recognition and analysis. The images
were collected in indoor lab conditions. It is a com-
parably simple dataset. FERET contains 1199 subjects
and 14,126 images produced by random multiple
acquisitions per subject. Faces were captured with
multiple variations in face pose, facial expression and
illumination [41]. In our case, we used the coloured part
of frontal and semi-profile images.

• FRAV2D DATASET: FRAV2D is a colour Spanish
dataset collected in the FRAV laboratory of URJC Uni-
versity. This dataset contains 3488 images of 320*240
resolution and acceptable quality. The acquisition was
fairly performed for the 109 subjects (75 men and
34 women) by capturing 32 facial images per subject.
The principal variations are facial expressions, lighting
conditions, background and face pose (frontal and semi-
profile). The database is delivered for free exclusively
for research purposes [42].

• FEI dataset: Faculdade de Engenharia Industrial or
FEI faces is a Brazilian dataset. This dataset contains
2800 facial images that were fairly captured for 200 sub-
jects. The age range of the subjects 19 to 40. For the
gender classification task, FEI is a balanced dataset. The

TABLE 3. Used real datasets FE: Facial Expression, I: Illumination, P: Face
Pose, BG: Background, Q; Image Quality, W: Face in the Wild, E: Ethnic, O:
Face Occlusion.

TABLE 4. Details of used real subset for the test step.

principal variations are facial expression, face poses,
image quality and background [43].

• LFW dataset: Labeled faces in the wild is a large
challenging dataset collected in the wild. With random
multi-faces per subject, the LFW is an unbalanced
dataset in terms of gender attributes. It contains 13,233
images for 5479 subjects. LFW was originally created
for face identification, but it is also used for face
categorization tasks. The images of this dataset are of
very poor quality and contain many variations, such
as pose, illumination, occlusion, and facial expressions
[44]. In our work, the whole part of the frontal and
semi-profile face is used.

Table 3 summarizes the characteristics of the described
face datasets with their principal variations. According to the
variations of the training artificial dataset, all variations of
the used real datasets were considered at the test step. With
the exception of the face poses presented in the FERET and
LFW datasets, colour images with frontal and semi-profile
face poses were selected. Fig. 9 shows samples from real used
datasets. The details of the sets used for the evaluation of the
trained models are shown in Table 4.

C. EXECUTION CONTEXT AND EVALUATION METRICS
As specified previously, the fine-tuned CNNs were trained
using 50 epochs with artificial faces generated by GAN and
tested with real faces. To accelerate the processing time,
all executions were performed by exploiting a workstation
integrating GPU (graphics processing unit) memory for
parallel computing. The details of the used GPU are
summarized in Table 5. For each experiment, we used model
checkpoints to call back the best performances obtained
in intermediary epochs. The checkpoints were based on
accuracy improvement during the epoch’s execution.

To enrich variations and expand the size of the training
set, we adopted real-time data augmentation by applying
the Keras deep learning framework’s (https://keras.io/api/
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FIGURE 9. Samples of real faces of experimentally used datasets.

TABLE 5. Used GPU memory characteristics.

TABLE 6. Confusion matrix.

preprocessing/image/) tools to generate the training batch
tensor of images. In particular, the following procedures were
performed: width and height shiftingwith a probability of 0.1,
image rotation into 45◦, horizontal flipping with the nearest
fill mode and image thumbnail with a target size of 100*100.

To experimentally evaluate the classification result,
we used the confusion matrix shown in Table 6. The rows
and columns describe, respectively, the predicted and original
class for a given subject. The parameters TP and TN count
the number of subjects that are correctly classified. The
parameters FP and FN count the number of subjects that are
misclassified.

The first metric is accuracy, which computes the percent-
age of the subjects correctly classified in the whole set of
tested instances [66]. The accuracy formula is:

Acc =
TP+ TN

TP+ FP+ TN + FN
(3)

The second metrics are the receiver operating characteristic
(ROC) and the area under the curve (AUC). They are two
equivalentmetrics. The ROC allows a graphical interpretation
of the evolution of the false acceptance rate (FAR) against

the false rejection rate (FRR) for given threshold values.
The AUC quantitatively estimates the surface under the ROC
curve. It was theoretically and empirically proven that ROC
and AUC are more powerful metrics for binary classifier
performance evaluation [66]. The formulas for both FAR and
FRR submetrics are:

FAR =
FP

FP+ TN
; FRR =

FN
TP+ FN

(4)

The last metric is the equal error rate (EER). It is
a biometric system security metric [14]. It is a widely
used metric. EER is used to predetermine the threshold,
minimizing the FAR and FRR. As long as the error is
minimized and close to zero, the system is safe. By obtaining
the optimal values FAR opt and FRR opt to allow the
minimization of the absolute difference between both rates,
the EER is computed as follows [67]:

ERR =
FARopt + FRRopt

2
(5)

It can also be deduced graphically from the point where the
FAR and FRR curves intersect.

V. RESULTS, DISCUSSION AND BASELINE COMPARISON
In this section, the obtained results for the described metrics
with implemented CNNs, VGG16, Inception V3, ResNet50
and MobileNet, are discussed, and a baseline comparison is
performed.

A. RESULTS DISCUSSION
• Accuracy
In the first part of the experimentation, we evaluate the

accuracy values. Table 7 summarizes the obtained accuracy
for gender prediction CNNs trained with fake data and tested
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FIGURE 10. Example of misclassified (mci ) and correctly classified (cci ) subjects from the FERET and LFW datasets (mc1): female images with very poor
quality, (mc2): female face with poor quality and aggressive reaction, (mc2): smiling male faces with poor quality, (mc4) challenging female subject,
(mc5): challenging male faces, (cc1, cc2): correctly classified female, (cc3, cc4): correctly classified male.

on real faces. By analysing the obtained results, we qualified
them as encouraging and promising. Acceptable accuracy
was achieved for gender classification in various contexts.
The best accuracy of 98.2 and 96.87 was obtained with
VGG16 and ResNet tested on 6233 images for 1199 FERET
subjects of various ages, races, illumination, face poses and
facial expressions. In a perfectly gender-balanced context
(100 subjects per gender) of white race with multiple
variations in the face poses and facial expression, the best
accuracies of 97.93 and 97.21were obtainedwithVGG16 and
ResNet, respectively, tested on the FEI dataset. Similarly, in a
context with acceptable image quality containing multiple
variations (occlusion especially), accuracies of 98.05 and
96.16 were obtained with VGG16 and Inception-V3 tested
on 3488 faces of FRAV-database subjects. The result obtained
with the balanced FEI and FRAV2D datasets shows that in an
acceptable quality context, occlusion, illumination changes,
facial expressions and face pose (frontal, semi-profile) do not
affect the gender prediction accuracy performance. Table 7
also shows the accuracies with the challenging real-world
dataset LFW (Face Labeled in the Wild). The best accuracies
of 94.93 and 96.97 were returned for Inception-V3 and
VGG16 tested on 13164 images for more than 5k subjects.
For this last database containing images with poor quality,
the augmentation of the face bounding box returned by
the R-CNN face detector is an indispensable task. The
worst accuracies of 92.55 and 92.90 were returned by
MobileNet tested on occluded faces of the FRAV2D dataset
and real-world faces of the LFW dataset.

In contrast, by looking at the misclassified subjects
in previous datasets, we notice some factors affecting
gender classification performance: quality degradation, facial
expressions and semantically challenging subjects. Indeed,
image quality is the factor that most affects performance.
We justify this by the fact that in images with poor
quality, much discriminative information is lost. The second

TABLE 7. Obtained accuracies (in Perc.) for CNNs trained with fake data
and tested on real data.

remarkable factor is the facial expressions, where it can
be observed that the trained CNNs will be more sensitive
in front of facial expression variation in images of poor
quality. Especially for images with poor quality, experiments
show that smiling faces are reserved for the female gender,
while aggressive faces are more reserved for the male
gender. For the last factor, like any automatic classification
system, naturally, there is an error merge reserved for more
challenging subjects. In the case of gender attributes, there
are semantically challenging human faces for which gender
prediction is not as obvious formachines as for human beings.
Fig. 10 illustrates some examples of correctly classified
and misclassified subjects, such as the discussed scenarios
(contoured faces).

• Receiver operating characteristic and area under the
curve

To affirm the viewed accuracies, and compare the trained
CNNs and more readable detection of the better classifier,
we traced for each dataset the ROC curves of tested CNNs,
and we also computed the AUC scores. Fig. 11 shows the
ROC curves comparing the performance evolution for real-
data-tested CNNs. Table 8 summarizes the corresponding
probabilistic AUC scores for each test.

By analysing the ROC curves, we can observe their
coherence with the viewed accuracy and confirm the obtained
results. In the context without occlusion, as in the FERET and
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FIGURE 11. Comparison between the ROC curves of personalized CNNs (Inception-V3, VGG16, ResNet and MobileNet) trained with fake data and
tested on the four real databases.

TABLE 8. Comparative table between the fake-data-trained CNNs by
computing the AUC (as proba).

FEI databases, all tested CNNs are more or less closers and
converge normally as very good classifiers. The best AUC
score of 0.997 was returned by VGG16 for both the FERET
and FEI datasets, 0.012 higher for the worst AUC score
obtained with MobileNet. For the occluded context presented
in the FRAV dataset, the FRAV2D ROC curves clearly show
that ResNet and MobileNet’s performances decreased while
VGG16 and Inception-V3 remained more stable in front of
occluded faces. For challenging contexts and as shown in
the last LFW ROC curves, VGG16 remains more stable
in front-of-face images with poor quality and uncontrolled
environments in comparison with other classifiers for which
performances were remarkably degraded. The VGG16 allows

an AUC score of 0.982, 0.01, higher than the second-best
score obtained with Inception-V3.

• Equal Error Rate

In this subsection, the gender classification performances
of fake-data-trained CNN classifiers are estimated in terms
of the EER, which is a very interesting error for biometric
system evaluation [67]. It was deduced after the determi-
nation of the FAR and FRR’s optimal values by varying
the threshold in a unit interval. Table 9 summarizes the
obtained EERs for all performed tests. As seen in this last
table, the obtained EERs for various contexts are reasonable.
It allows for affirming the sufficient adjacency between the
real testing data and artificial fake data exploited in training
phases for the human gender prediction task. It also allows
us to validate our proposed approach as a biometric task.
The best EER of 0.021 for the FERET dataset obtained
with VGG16 was 0.08 higher than the second EER returned
with ResNet. For the FEI dataset, the two best closer EERs
of 0.029 and 0.032 were returned by ResNet and VGG16,
respectively. Similarly, for the FRAV2D dataset, the two
best closer EERs of 0.019 and 0.022 were obtained with
Inception-V3 and VGG16, respectively. The ResNet EER
decreased with occluded data. For the uncontrolled context’s
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TABLE 9. Obtained ERRs.

TABLE 10. Obtained GC accuracy (in Perc.) by training with StyleGAN,
OpenForensics and StarGAN-v2 deepfakes datasets.

LFW, the best EER of 0.08 is obtained with VGG16. The
worst error rates were obtained with MobileNet.

Based on the discussed metrics ACC, ROC-AUC and
EER, we notice in terms of classifier quality that globally,
the best metric values in various contexts have been
obtained by VGG16. It is the most adequate and efficient
for accomplishing the gender classification task. Moreover,
it seems to be affirmed that human gender prediction is an
achievable task by exploiting the artificial faces generated
by GAN. Especially for an acceptable quality context, GAN-
generated faces can be exploited as an alternative for real data.

B. STATE-OF-THE-ART AND BASELINE COMPARISON
• Deepfakes dataset comparison
After evaluating gender classification using StyleGAN-

generated artificial faces and with the goal of performing
facial gender classification by exploiting other deepfake
faces, we also performed an experimental assessment of
the VGG16-based classifier by training with other deepfake
datasets. The first dataset was collected by exploiting the
StarGAN-V2 Model [68]. This model allows human-face
manipulation through image-to-image translations on mul-
tiple domains. As proposed by Yunjey et al., StarGAN-V2
was trained using the CelebA dataset. The second dataset
is the OpenForensics deepfake dataset. It was collected by
Le et al. [69] for face forgery detection and segmentation in
the wild. Authors inspired by the StyleGANmodel. Synthetic
faces in the OpenForensics dataset were generated with
uncontrolled real-world and challenging facial conditions,
such as wild face poses, poor image quality, and occlusions.
After we performed gender labeling for both StarGAN-V2
and OpenForensics deepfakes datasets, equitable sets of 60k
images were exploited in the experiments.

Table 10 recapitulates the obtained accuracy as a per-
centage of the four private real datasets by training using
StyleGAN, StartGan-v2 and OpenForensics deepfake. The
achieved classification rates are comparable within the same
order of magnitude. We notice that training with the
StyleGAN artificial faces allows us to obtain results that

TABLE 11. Comparison of obtained results with reference ones of the
state-of-the-art.

exceed the case of using StarGAN-v2 faces. This can be
justified by the fact that the StarGAN collected deepfakes
dataset contains some disfigured synthetic faces. Except
for the StarGAN-v2 dataset, the StyleGAN-generated faces
are almost all realistic. For the OpenForensics dataset,
we observe that its use as training data enhances the
classification rate in an uncontrolled context. This is due to
its richness in terms of real-world variations in comparison
with the StyleGAN and StarGAN datasets, whose images
have been generated with acceptable and high quality under
condoled face poses and limited occlusion.

• Facial gender classification baseline comparison

Table 11 presents a comparison between our proposed
method for gender classification by using fake GAN faces
and some reference works in the literature. The most
commonly used databases in the literature are referenced in
this table, especially the FERET, FEI and LFW databases.
We performed our comparison on the common metric of
accuracy describing the rate of correctly classified subjects
from the test set. For each work, the comparison was
performed by making the best gender prediction percentage
obtained with the maximum test set for each database, the
size of the used test set, the eventual data overlapping and
the nature of exploited data for the training step. In addition,
Fig. 12 illustrates a more readable baseline comparison for
the challenging LFW dataset by grouping both the accuracy
and size of the used test set as percentages.

By analysing the comparative table above and Fig. 12,
it can be noticed that artificial faces generated by GAN
allow obtaining results of the same order as those obtained
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FIGURE 12. Baseline comparison on real-world LFW dataset.

by training with real data with the advantage of allowing
tests on larger subsets. It should be noted that many existing
approaches realize train-test data splitting with eventual
major critical phenomena of data overlapping, as the faces of
certain identities can be watched early by the neural network
during its training. Additionally, there is no clear information
allowing deducting the size of the used set at the test task.

Finally, we note that as a result of our work, a large
facial gender-labeled deepfake dataset was collected. It will
be made available upon request for scientific research uses
concerning deepfake detection, human-face analysis and
categorization.

VI. CONCLUSION
In this paper, we proposed a deep learning-based approach for
human gender classification from face modality. We investi-
gated the use of convolutional neural networks by training
with artificial GAN-generated faces. The trained CNNs were
tested on multiple real datasets frequently used in the liter-
ature. CNN evaluations were performed with various solid
metrics recommended for biometric systems. We obtained
very encouraging and promising results validating our
approach. The best performances were returnedwith the fake-
trained VGG16-based classifiers. As an overall assessment,
we assert that for the human gender classification task, the
GAN-generated faces of artificial identities can be exploited
as an alternative for real identity faces in training or both
testing/training steps. Moreover, it allows more credibility
in terms of people’s privacy, which is indirectly violated in
the state-of-the-art approaches and gives the opportunity to
perform tests on a maximum subset of existing legal datasets.
Finally, our goal for future work will be as follows:

• Feature visualization by exploiting hidden layer
behaviours of fake-data-trained CNNs in front of real
data.

• Fake-data-trained CNNs versus real-data-trained CNNs
performances comparison for gender classification by
realizing test on common context.

• Exploiting fake data to investigate other facial cate-
gorization tasks for more features such as age, race,
facial expression and face accessories (glasses, beard,
moustache, etc.).

• Investigate the human gender classification from
full-body by employing deepfakes.
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