

Enhanced graph-learning schemes driven by similar distributions of motifs

S. Rey*, T. M. Roddenberry[†], S. Segarra[†], A. G. Marques*

*Rey Juan Carlos University - [†]Rice University

Graph Signal Processing Workshop 2024 (GSP 2024) - Delft, The Netherlands - June 24-26, 2024

Introduction

Road network

Home automation network

Introduction

Road network

Social network

Home automation network

Graph learning: estimates the graph topology from nodal observations

 \Rightarrow Properties of the signals depend on the topology

Context and goal

- Graph learning is a well-studied problem with many different approaches
 - \Rightarrow Assuming different relation between the graph and the data
 - \Rightarrow Smoothness, Gaussianity, stationarity [Dong16][Friedman08][Segarra17]

Context and goal

- Graph learning is a well-studied problem with many different approaches
 - \Rightarrow Assuming different relation between the graph and the data
 - \Rightarrow Smoothness, Gaussianity, stationarity [Dong16][Friedman08][Segarra17]
- Limitation: focus placed on the model relating graphs and signals
 Prior graph structural information is rarely considered
- Works starting to pay attention to this problem
 - \Rightarrow Joint network inference [Navarro24]
 - \Rightarrow Spectral Laplacian constraints [Kumar19]
 - \Rightarrow Graphon-based method [Roddenberry21]

Context and goal

- Graph learning is a well-studied problem with many different approaches
 - \Rightarrow Assuming different relation between the graph and the data
 - \Rightarrow Smoothness, Gaussianity, stationarity [Dong16][Friedman08][Segarra17]
- Limitation: focus placed on the model relating graphs and signals
 ⇒ Prior graph structural information is rarely considered
- Works starting to pay attention to this problem
 - \Rightarrow Joint network inference [Navarro24]
 - ⇒ Spectral Laplacian constraints [Kumar19]
 - \Rightarrow Graphon-based method [Roddenberry21]
- **Contribution**: exploit motif density information when learning a graph
 - \Rightarrow Assuming observed signals are Gaussian

Notation and preliminaries

▶ Graph G = (V, E) with N nodes and adjacency A ⇒ A_{ij} = Proximity between i and j

► Define a signal $\mathbf{x} \in \mathbb{R}^N$ on top of the graph $\Rightarrow x_i =$ Signal value at node i

- ► Associated with \mathcal{G} is the graph-shift operator $\mathbf{S} \in \mathbb{R}^{N \times N}$ (e.g. \mathbf{A} , \mathbf{L}) $\Rightarrow S_{ij} \neq 0$ if i = j or $(i, j) \in \mathcal{E}$ (local structure in \mathcal{G})
 - \Rightarrow Diagonalized as $\mathbf{S} = \mathbf{V} \mathsf{diag}(oldsymbol{\lambda}) \mathbf{V}^{-1}$

Notation and preliminaries

▶ Graph G = (V, E) with N nodes and adjacency A ⇒ A_{ij} = Proximity between i and j

► Define a signal $\mathbf{x} \in \mathbb{R}^N$ on top of the graph $\Rightarrow x_i = \text{Signal value at node } i$

- Associated with G is the graph-shift operator S ∈ ℝ^{N×N} (e.g. A, L)
 ⇒ S_{ij}≠0 if i=j or (i, j) ∈ ε (local structure in G)
 ⇒ Diagonalized as S = Vdiag(λ)V⁻¹
- Motifs are subgraphs with a specific pattern (e.g., star graph, triangle)
 ⇒ Density of motifs measures the frequency with which a motif appears

Motif density from a reference graph

- Knowing the true motifs distribution of \mathcal{G} is useful but unrealistic
- Assume access to a reference graph $\tilde{\mathcal{G}}$ with a similar motif distribution
 - \Rightarrow Learn ${\cal G}$ with a similar distribution to that of $\tilde{{\cal G}}$
 - \Rightarrow Similar assumption to joint graph learning methods

Motif density from a reference graph

- Knowing the true motifs distribution of G is useful but unrealistic
- Assume access to a reference graph $\tilde{\mathcal{G}}$ with a similar motif distribution
 - \Rightarrow Learn ${\cal G}$ with a similar distribution to that of $\tilde{{\cal G}}$
 - \Rightarrow Similar assumption to joint graph learning methods

Why density of motifs?

- The density of motifs can be computed locally
 - \Rightarrow Allows comparing graphs of different sizes
 - \Rightarrow It can be approximated from a subgraph of $\tilde{\mathcal{G}}$
- Requiring similar motifs is laxer assumption than similar support

Problem statement

- \blacktriangleright Let ${\bf S}$ be the GSO of the unknown graph ${\cal G}$
- Given M graph signals $\mathbf{X} := [\mathbf{x}^{(1)}, ..., \mathbf{x}^{(M)}] \in \mathbb{R}^{N \times M}$
 - \Rightarrow Sampled from a Gaussian distribution $\mathbf{x}^{(m)} \sim \mathcal{N}(\mathbf{0}, \mathbf{S}^{-1})$
- Given a reference graph $ilde{\mathcal{G}}$ with eigenvalues $ilde{\lambda}$
 - \Rightarrow With a similar density of motifs to that of the sought graph
- **Goal**: find the maximum likelihood estimator $\hat{\mathbf{S}}$

Problem statement

- \blacktriangleright Let ${\bf S}$ be the GSO of the unknown graph ${\cal G}$
- Given M graph signals $\mathbf{X} := [\mathbf{x}^{(1)}, ..., \mathbf{x}^{(M)}] \in \mathbb{R}^{N \times M}$
 - \Rightarrow Sampled from a Gaussian distribution $\mathbf{x}^{(m)} \sim \mathcal{N}(\mathbf{0}, \mathbf{S}^{-1})$
- \blacktriangleright Given a reference graph $ilde{\mathcal{G}}$ with eigenvalues $ilde{m{\lambda}}$
 - \Rightarrow With a similar density of motifs to that of the sought graph
- **Goal**: find the maximum likelihood estimator $\hat{\mathbf{S}}$

Challenges

- How to tractably compare densities of motifs of two graphs?
- How to incorporate motif information into the MLE?
 - \Rightarrow Optimization problem will most likely be non-convex

From motif density to spectral test functions

- Computing the density of motifs of a graph is a combinatorial task
- Consider evaluating a test function $g(\lambda)$ over the spectral distribution

$$c_g(\boldsymbol{\lambda}) = \int g(\boldsymbol{\lambda}) \ d\mu_{\boldsymbol{\lambda}}(\boldsymbol{\lambda}) = \frac{1}{N} \sum_{i=1}^N g(\lambda_i)$$

 \Rightarrow With empirical spectral density function μ_{λ}

From motif density to spectral test functions

- Computing the density of motifs of a graph is a combinatorial task
- Consider evaluating a test function $g(\lambda)$ over the spectral distribution

$$c_g(\boldsymbol{\lambda}) = \int g(\boldsymbol{\lambda}) \ d\mu_{\boldsymbol{\lambda}}(\boldsymbol{\lambda}) = \frac{1}{N} \sum_{i=1}^{N} g(\lambda_i)$$

 \Rightarrow With empirical spectral density function $\mu_{\pmb{\lambda}}$

Theorem

Let $\mathcal G$ and $\mathcal G$ be two graphs such that the distance between their densities of motifs is upper-bounded by ϵ . Then

$$|c_g(\boldsymbol{\lambda}) - c_g(\tilde{\boldsymbol{\lambda}})| \le \delta_\epsilon + \delta_r$$

- Similar densities of motifs render similar values when evaluating $c_g(\lambda)$
 - \Rightarrow Enables easy integration into an optimization problem
 - \Rightarrow Less expressive than motive densities in describing the structure

- ▶ We have a tractable approach to harnessing information about motif density ⇒ Evaluating a test function over the spectrum of S and \tilde{S}
- The constrained maximum likelihood estimator is given by

$$\begin{split} \min_{\mathbf{S},\mathbf{V},\boldsymbol{\lambda}} \, \mathrm{tr}(\hat{\mathbf{C}}\mathbf{S}) - \log \det(\mathrm{diag}(\boldsymbol{\lambda})) + \alpha \|\mathbf{S}\|_1 + \frac{\beta}{2} \|\mathbf{S} - \mathbf{V}\mathrm{diag}(\boldsymbol{\lambda})\mathbf{V}^\top\|_F^2 \\ \mathrm{s.t:} \quad |c_g(\boldsymbol{\lambda}) - c_g(\tilde{\boldsymbol{\lambda}})| \leq \delta, \ \mathbf{S} \in \mathcal{S}, \ \mathbf{V}^\top \mathbf{V} = \mathbf{I}. \end{split}$$

- $\Rightarrow \text{Similarity constraint stems from similar motifs of } \mathcal{G} \text{ and } \tilde{\mathcal{G}}$ $\Rightarrow c_g(\tilde{\lambda}) \text{ is a constant obtained from } \tilde{\mathbf{S}}$
- \Rightarrow Spectrum of ${\bf S}$ is close to the one satisfying similarity constraint

- ▶ We have a tractable approach to harnessing information about motif density ⇒ Evaluating a test function over the spectrum of S and \tilde{S}
- The constrained maximum likelihood estimator is given by

$$\begin{split} \min_{\mathbf{S},\mathbf{V},\boldsymbol{\lambda}} \mbox{tr}(\hat{\mathbf{C}}\mathbf{S}) - \log \det(\mbox{diag}(\boldsymbol{\lambda})) + \alpha \|\mathbf{S}\|_1 + \frac{\beta}{2} \|\mathbf{S} - \mathbf{V}\mbox{diag}(\boldsymbol{\lambda})\mathbf{V}^\top\|_F^2 \\ \mbox{s.t:} \quad |c_g(\boldsymbol{\lambda}) - c_g(\tilde{\boldsymbol{\lambda}})| \leq \delta, \ \mathbf{S} \in \mathcal{S}, \ \mathbf{V}^\top \mathbf{V} = \mathbf{I}. \end{split}$$

- $\Rightarrow \text{Similarity constraint stems from similar motifs of } \mathcal{G} \text{ and } \tilde{\mathcal{G}}$ $\Rightarrow c_g(\tilde{\lambda}) \text{ is a constant obtained from } \tilde{\mathbf{S}}$ $\Rightarrow \text{Spectrum of } \mathbf{S} \text{ is close to the one satisfying similarity constraint}$
- Solving the resulting non-convex optimization problem is non-trivial
 Similarity constraint will be non-convex for most test functions
 - \Rightarrow Orthogonality of ${\bf V}$ and bilinear terms involving ${\bf V}$ and λ and

- Focus on concave test functions g
- Split constraint into concave/convex terms avoiding function composition

$$|c_g(oldsymbol{\lambda}) - c_g(ilde{oldsymbol{\lambda}})| \leq \delta \quad \Longrightarrow \quad c_g(oldsymbol{\lambda}) \leq c_g(ilde{oldsymbol{\lambda}}) + \delta, \quad c_g(oldsymbol{\lambda}) \geq c_g(ilde{oldsymbol{\lambda}}) - \delta$$

- ► Reformulate the optimization problem as $\min_{\mathbf{S}, \mathbf{V}, \boldsymbol{\lambda}} \operatorname{tr}(\hat{\mathbf{C}}\mathbf{S}) - \log \det(\operatorname{diag}(\boldsymbol{\lambda})) + \alpha \|\mathbf{S}\|_{1} + \frac{\beta}{2} \|\mathbf{S} - \mathbf{V}\operatorname{diag}(\boldsymbol{\lambda})\mathbf{V}^{\top}\|_{F}^{2} + \gamma c_{g}(\boldsymbol{\lambda})$ s.t: $c_{g}(\boldsymbol{\lambda}) \geq c_{g}(\tilde{\boldsymbol{\lambda}}) - \delta$, $\mathbf{S} \in S$, $\mathbf{V}^{\top}\mathbf{V} = \mathbf{I}$.
 - \Rightarrow Convex feasible set yet non-convex objective

- Focus on concave test functions g
- Split constraint into concave/convex terms avoiding function composition

$$|c_g(oldsymbol{\lambda}) - c_g(ilde{oldsymbol{\lambda}})| \leq \delta \quad \Longrightarrow \quad c_g(oldsymbol{\lambda}) \leq c_g(ilde{oldsymbol{\lambda}}) + \delta, \quad c_g(oldsymbol{\lambda}) \geq c_g(ilde{oldsymbol{\lambda}}) - \delta$$

- ► Reformulate the optimization problem as $\min_{\mathbf{S}, \mathbf{V}, \boldsymbol{\lambda}} \operatorname{tr}(\hat{\mathbf{C}}\mathbf{S}) - \log \det(\operatorname{diag}(\boldsymbol{\lambda})) + \alpha \|\mathbf{S}\|_{1} + \frac{\beta}{2} \|\mathbf{S} - \mathbf{V}\operatorname{diag}(\boldsymbol{\lambda})\mathbf{V}^{\top}\|_{F}^{2} + \gamma c_{g}(\boldsymbol{\lambda})$ s.t: $c_{g}(\boldsymbol{\lambda}) \geq c_{g}(\tilde{\boldsymbol{\lambda}}) - \delta, \ \mathbf{S} \in \mathcal{S}, \ \mathbf{V}^{\top}\mathbf{V} = \mathbf{I}.$
 - \Rightarrow Convex feasible set yet non-convex objective
- Approximate concave term minimizing an upper bound as in MM

$$u(\boldsymbol{\lambda}, \boldsymbol{\lambda}^{(t-1)}) = \nabla c_g(\boldsymbol{\lambda}^{(t-1)})^{\top} \boldsymbol{\lambda}$$

Universidad Rev Iuan Carlo

- Iterative alternating minimization algorithm to avoid biconvexity
 - \Rightarrow Similar to the approach introduced in [Kumar2019]
 - **Step 1**: Solved approximately in closed-form $\mathbf{S}^{(t+1)} = \operatorname*{argmin}_{\mathbf{S} \in \mathcal{S}} \operatorname{tr}(\hat{\mathbf{C}} \mathbf{S}) + \alpha \|\mathbf{S}\|_1 + \frac{\beta}{2} \|\mathbf{S} - \mathbf{V}^{(t)} \mathbf{\Lambda}^{(t)} \mathbf{V}^{(t)^{\top}}\|_F^2$
 - **Step 2**. Solution given by eigendecomposition of $\mathbf{S}^{(t+1)}$ $\mathbf{V}^{(t+1)} = \underset{\mathbf{V}}{\operatorname{argmin}} \frac{\beta}{2} \| \mathbf{S}^{(t+1)} - \mathbf{V} \mathbf{\Lambda}^{(t)} \mathbf{V}^{\top} \|_{F}^{2} \text{ s.t : } \mathbf{V}^{\top} \mathbf{V} = \mathbf{I}$

Step 3. Solved with over-the-shelf cvx solver

$$\lambda^{(t+1)} = \operatorname{argmin}_{\lambda} - \sum_{j=1}^{N} \log(\lambda_j) + \frac{\beta}{2} \|\lambda - \hat{\lambda}\|_2^2 + \gamma u(\lambda, \boldsymbol{\lambda}^{(t)}) \quad \text{s.t:} \quad c_g(\lambda) \ge c_g(\tilde{\boldsymbol{\lambda}}) - \delta$$

- The algorithm is guaranteed to converge to a stationary point
- Computational complexity of $\mathcal{O}(N^3)$

Numerical evaluation - Synthetic data

• Assess the influence of discrepancies between ${\cal G}$ and $\tilde{{\cal G}}$

- \Rightarrow $\mathcal{G}:$ SBM graph with 100/150 nodes and 5 disconnected communities
- \Rightarrow Setting tailored to GSL method

- MGL robust to discrepancies in the intercluster connectivity
 - \Rightarrow Information in $\tilde{\mathcal{G}}$ beyond conn. comp.
 - Error of MGL improves with N
 - $\Rightarrow N = 150$ outperforms SGL
 - \Rightarrow Similarity constraint more informative for large graphs

Dataset contains votes of the US Senate

- \Rightarrow Political graph is inferred from senators votes
- $\Rightarrow \mathcal{G}$ is the 115th congress and $\tilde{\mathcal{G}}$ is the 114th
- \Rightarrow Labels represent ideological representation (Rep, Dem, Mix)
- ► First we learn the graph topology using 100 observations

Conclusions and future work

Universidad Rey Juan Carlos

- ▶ We proposed a tractable approach to leverage graph structural information
 - \Rightarrow Assume access to a reference graph with a similar motif density
 - \Rightarrow Evaluate a test function over the graph spectrum
 - \Rightarrow Relation motif density/test function applicable to other tasks
- The density of motifs and the similarity constraint can be computed locally
 Allows to compare graphs of different sizes
 - \Rightarrow Is less restrictive than other assumptions
- ► The MLE with the similarity constraint was a non-convex problem
 - \Rightarrow Proposed convex iterative algorithm with guaranteed convergence

Conclusions and future work

We proposed a tractable approach to leverage graph structural information

- \Rightarrow Assume access to a reference graph with a similar motif density
- \Rightarrow Evaluate a test function over the graph spectrum
- \Rightarrow Relation motif density/test function applicable to other tasks

► The density of motifs and the similarity constraint can be computed locally

- \Rightarrow Allows to compare graphs of different sizes
- \Rightarrow Is less restrictive than other assumptions
- ► The MLE with the similarity constraint was a non-convex problem
 - \Rightarrow Proposed convex iterative algorithm with guaranteed convergence

Future research direction

- Exploit information about motifs as prior information in other GSP tasks
 - \Rightarrow Settings with hidden variables or imperfect topology knowledge
- Characterize and design good test functions

Paper [Rey23] available at QR

Questions at: samuel.rey.escudero@urjc.es

Enhanced graph-learning schemes driven by similar distributions of motifs

- Dong16 X. Dong, D. Thanou, P. Frossard, P. Vandergheynst, "Learning Laplacian matrix in smooth graph signal representations", IEEE Trans. Signal Process., 2016.
- Friedman08 J. Friedman, T. Hastie, R. Tibshirani, "Sparse inverse covariance estimation with the graphical lasso", Biostatistics, 2008.
 - Segarra17 S. Segarra, A. G. Marques, G. Mateos, A. Ribeiro. "Network topology inference from spectral templates", IEEE Trans. Signal Inf. Process. Netw., 2017.
 - Navarro24 M. Navarro, S. Rey, A. Buciulea, A. G. Marques, S. Segarra, "Joint Network Topology Inference in the Presence of Hidden Nodes", IEEE Trans. Signal Process., 2024.
 - Kumar19 S. Kumar, J. Ying, J. V. de Miranda Cardoso, D. Palomar, "Structured graph learning via Laplacian spectral constraints", NEURIPS 2019.
- Roddenberry21 T. M. Roddenberry, M. Navarro, S. Segarra, "Network Topology Inference with Graphon Spectral Penalties", ICASSP 2021.
 - Rey23 S. Rey, T. M. Roddenberry, S. Segarra, A. G. Marques, "Enhanced graph-learning schemes driven by similar distributions of motifs", IEEE Trans. Signal Process., 2023.