

Enhanced graph-learning schemes driven by similar distributions of motifs

S. Rey[∗] , T. M. Roddenberry† , S. Segarra† , A. G. Marques[∗]

[∗]Rey Juan Carlos University - †Rice University

Graph Signal Processing Workshop 2024 (GSP 2024) - Delft, The Netherlands - June 24-26, 2024

Introduction

Road network **Social network** Home automation network

Introduction

Road network **Social network** Home automation network

 \triangleright Graph learning: estimates the graph topology from nodal observations

 \Rightarrow Properties of the signals depend on the topology

Context and goal

- ▶ Graph learning is a well-studied problem with many different approaches
	- \Rightarrow Assuming different relation between the graph and the data
	- ⇒ Smoothness, Gaussianity, stationarity [Dong16][Friedman08][Segarra17]

Context and goal

- ▶ Graph learning is a well-studied problem with many different approaches
	- \Rightarrow Assuming different relation between the graph and the data
	- ⇒ Smoothness, Gaussianity, stationarity [Dong16][Friedman08][Segarra17]
- ▶ Limitation: focus placed on the model relating graphs and signals \Rightarrow Prior graph structural information is rarely considered
- Works starting to pay attention to this problem
	- \Rightarrow Joint network inference [Navarro24]
	- ⇒ Spectral Laplacian constraints [Kumar19]
	- \Rightarrow Graphon-based method [Roddenberry21]

- ▶ Graph learning is a well-studied problem with many different approaches
	- \Rightarrow Assuming different relation between the graph and the data
	- ⇒ Smoothness, Gaussianity, stationarity [Dong16][Friedman08][Segarra17]
- ▶ Limitation: focus placed on the model relating graphs and signals \Rightarrow Prior graph structural information is rarely considered
- \triangleright Works starting to pay attention to this problem
	- \Rightarrow Joint network inference [Navarro24]
	- ⇒ Spectral Laplacian constraints [Kumar19]
	- \Rightarrow Graphon-based method [Roddenberry21]
- **Contribution**: exploit motif density information when learning a graph
	- \Rightarrow Assuming observed signals are Gaussian

Notation and preliminaries

▶ Graph $\mathcal{G} = (\mathcal{V}, \mathcal{E})$ with N nodes and adjacency A \Rightarrow A_{ij} = Proximity between *i* and *j*

▶ Define a signal $\mathbf{x} \in \mathbb{R}^N$ on top of the graph $\Rightarrow x_i =$ Signal value at node i

Associated with G is the graph-shift operator $\mathbf{S} \in \mathbb{R}^{N \times N}$ $(e.g. A, L)$ $\Rightarrow S_{ij} \neq 0$ if $i=j$ or $(i, j) \in \mathcal{E}$ (local structure in \mathcal{G}) \Rightarrow Diagonalized as S = Vdiag(λ)V⁻¹

Notation and preliminaries

▶ Graph $\mathcal{G} = (\mathcal{V}, \mathcal{E})$ with N nodes and adjacency A \Rightarrow A_{ij} = Proximity between *i* and *j*

▶ Define a signal $\mathbf{x} \in \mathbb{R}^N$ on top of the graph \Rightarrow x_i = Signal value at node i

- ▶ Associated with G is the graph-shift operator $\mathbf{S} \in \mathbb{R}^{N \times N}$ $(e.g. A, L)$ $\Rightarrow S_{ij} \neq 0$ if $i=j$ or $(i, j) \in \mathcal{E}$ (local structure in \mathcal{G}) \Rightarrow Diagonalized as S = Vdiag(λ)V⁻¹
- ▶ Motifs are subgraphs with a specific pattern (e.g., star graph, triangle) \Rightarrow Density of motifs measures the frequency with which a motif appears

Motif density from a reference graph

- Knowing the true motifs distribution of G is useful but unrealistic
- Assume access to a reference graph \tilde{G} with a similar motif distribution
	- \Rightarrow Learn G with a similar distribution to that of G
	- \Rightarrow Similar assumption to joint graph learning methods

Motif density from a reference graph

- Knowing the true motifs distribution of G is useful but unrealistic
- Assume access to a reference graph \tilde{G} with a similar motif distribution
	- \Rightarrow Learn G with a similar distribution to that of G
	- \Rightarrow Similar assumption to joint graph learning methods

Why density of motifs?

- \blacktriangleright The density of motifs can be computed **locally**
	- \Rightarrow Allows comparing graphs of different sizes
	- \Rightarrow It can be approximated from a subgraph of \tilde{G}
- Requiring similar motifs is laxer assumption than similar support

Problem statement

- \triangleright Let S be the GSO of the unknown graph G
- ▶ Given M graph signals $\mathbf{X} := [\mathbf{x}^{(1)}, ..., \mathbf{x}^{(M)}] \in \mathbb{R}^{N \times M}$

 \Rightarrow Sampled from a Gaussian distribution $\mathbf{x}^{(m)} \sim \mathcal{N}(\mathbf{0}, \mathbf{S}^{-1})$

- \triangleright Given a reference graph \tilde{G} with eigenvalues $\tilde{\lambda}$ \Rightarrow With a similar density of motifs to that of the sought graph
- **Goal:** find the maximum likelihood estimator $\hat{\mathbf{S}}$

Problem statement

- \blacktriangleright Let S be the GSO of the unknown graph G
- ▶ Given M graph signals $\mathbf{X} := [\mathbf{x}^{(1)}, ..., \mathbf{x}^{(M)}] \in \mathbb{R}^{N \times M}$

 \Rightarrow Sampled from a Gaussian distribution $\mathbf{x}^{(m)} \sim \mathcal{N}(\mathbf{0}, \mathbf{S}^{-1})$

- \blacktriangleright Given a reference graph \tilde{G} with eigenvalues $\tilde{\lambda}$ \Rightarrow With a similar density of motifs to that of the sought graph
- \triangleright Goal: find the maximum likelihood estimator \hat{S}

Challenges

- ▶ How to tractably compare densities of motifs of two graphs?
- ▶ How to incorporate motif information into the MLE?

 \Rightarrow Optimization problem will most likely be non-convex

From motif density to spectral test functions

- ▶ Computing the density of motifs of a graph is a combinatorial task
- ▶ Consider evaluating a test function $g(\lambda)$ over the spectral distribution

$$
c_g(\boldsymbol{\lambda}) = \int g(\lambda) \ d\mu_{\boldsymbol{\lambda}}(\lambda) = \frac{1}{N} \sum_{i=1}^N g(\lambda_i)
$$

 \Rightarrow With empirical spectral density function μ_{λ}

From motif density to spectral test functions

- Computing the density of motifs of a graph is a combinatorial task
- ▶ Consider evaluating a test function $g(\lambda)$ over the spectral distribution

$$
c_g(\boldsymbol{\lambda}) = \int g(\lambda) \ d\mu_{\boldsymbol{\lambda}}(\lambda) = \frac{1}{N} \sum_{i=1}^N g(\lambda_i)
$$

 \Rightarrow With empirical spectral density function μ_{λ}

Theorem

Let G and \tilde{G} be two graphs such that the distance between their densities of motifs is upper-bounded by ϵ . Then

$$
|c_g(\boldsymbol{\lambda}) - c_g(\tilde{\boldsymbol{\lambda}})| \leq \delta_{\epsilon} + \delta_r
$$

- Similar densities of motifs render similar values when evaluating $c_q(\lambda)$
	- \Rightarrow Enables easy integration into an optimization problem
	- \Rightarrow Less expressive than motive densities in describing the structure

Motif graph learning formulation

- ▶ We have a tractable approach to harnessing information about motif density \Rightarrow Evaluating a test function over the spectrum of S and S
- \triangleright The constrained maximum likelihood estimator is given by $\min_{\mathbf{S},\mathbf{V},\boldsymbol{\lambda}}\,\textsf{tr}(\hat{\mathbf{C}}\mathbf{S})\!-\!\log \det (\mathsf{diag}(\boldsymbol{\lambda}))+\alpha \|\mathbf{S}\|_1 + \frac{\beta}{2}$ $\frac{\beta}{2} \|{\mathbf{S}} - \mathbf{V} \textsf{diag}(\boldsymbol{\lambda}) \mathbf{V}^\top\|_F^2$ s.t : $|c_q(\lambda) - c_q(\tilde{\lambda})| \le \delta$, $S \in \mathcal{S}$, $V^{\top}V = I$.
	- \Rightarrow Similarity constraint stems from similar motifs of G and G $\Rightarrow c_a(\tilde{\boldsymbol{\lambda}})$ is a constant obtained from $\tilde{\textbf{S}}$ \Rightarrow Spectrum of S is close to the one satisfying similarity constraint

- ▶ We have a tractable approach to harnessing information about motif density \Rightarrow Evaluating a test function over the spectrum of S and S
- \triangleright The constrained maximum likelihood estimator is given by $\min_{\mathbf{S},\mathbf{V},\boldsymbol{\lambda}}\,\textsf{tr}(\hat{\mathbf{C}}\mathbf{S})\!-\!\log \det (\mathsf{diag}(\boldsymbol{\lambda}))+\alpha \|\mathbf{S}\|_1 + \frac{\beta}{2}$ $\frac{\beta}{2} \|{\mathbf{S}} - \mathbf{V} \textsf{diag}(\boldsymbol{\lambda}) \mathbf{V}^\top\|_F^2$ s.t : $|c_q(\lambda) - c_q(\tilde{\lambda})| \le \delta$, $S \in \mathcal{S}$, $V^{\top}V = I$.
	- \Rightarrow Similarity constraint stems from similar motifs of G and G $\Rightarrow c_a(\tilde{\boldsymbol{\lambda}})$ is a constant obtained from $\tilde{\textbf{S}}$ \Rightarrow Spectrum of S is close to the one satisfying similarity constraint
- ▶ Solving the resulting non-convex optimization problem is non-trivial \Rightarrow Similarity constraint will be non-convex for most test functions \Rightarrow Orthogonality of V and bilinear terms involving V and λ and

- \blacktriangleright Focus on concave test functions g
- ▶ Split constraint into concave/convex terms avoiding function composition

$$
|c_g(\boldsymbol{\lambda}) - c_g(\tilde{\boldsymbol{\lambda}})| \leq \delta \quad \implies \quad c_g(\boldsymbol{\lambda}) \leq c_g(\tilde{\boldsymbol{\lambda}}) + \delta, \quad c_g(\boldsymbol{\lambda}) \geq c_g(\tilde{\boldsymbol{\lambda}}) - \delta
$$

- Reformulate the optimization problem as $\min_{\mathbf{S},\mathbf{V},\boldsymbol{\lambda}}\,\text{tr}(\hat{\mathbf{C}}\mathbf{S})\!-\!\log \det (\mathsf{diag}(\boldsymbol{\lambda}))+\alpha \|\mathbf{S}\|_1 \ +\frac{\beta}{2}$ $\frac{\beta}{2} \|\mathbf{S}-\mathbf{V} \text{diag}(\boldsymbol{\lambda})\mathbf{V}^\top\|_F^2 + \gamma c_g(\boldsymbol{\lambda})$ $\mathrm{s.t:}\quad c_g(\boldsymbol{\lambda})\geq c_g(\tilde{\boldsymbol{\lambda}})-\delta,\ \ \mathbf{S}\in\mathcal{S},\ \ \mathbf{V}^\top\mathbf{V}=\mathbf{I}.$
	- ⇒ Convex feasible set yet non-convex objective

- \blacktriangleright Focus on concave test functions g
- \triangleright Split constraint into concave/convex terms avoiding function composition

$$
|c_g(\boldsymbol{\lambda}) - c_g(\tilde{\boldsymbol{\lambda}})| \leq \delta \quad \implies \quad c_g(\boldsymbol{\lambda}) \leq c_g(\tilde{\boldsymbol{\lambda}}) + \delta, \quad c_g(\boldsymbol{\lambda}) \geq c_g(\tilde{\boldsymbol{\lambda}}) - \delta
$$

- Reformulate the optimization problem as $\min_{\mathbf{S},\mathbf{V},\boldsymbol{\lambda}}\,\text{tr}(\hat{\mathbf{C}}\mathbf{S})\!-\!\log \det (\mathsf{diag}(\boldsymbol{\lambda}))+\alpha \|\mathbf{S}\|_1 \ +\frac{\beta}{2}$ $\frac{\beta}{2} \|\mathbf{S}-\mathbf{V} \text{diag}(\boldsymbol{\lambda})\mathbf{V}^\top\|_F^2 + \gamma c_g(\boldsymbol{\lambda})$ $\mathrm{s.t:}\quad c_g(\boldsymbol{\lambda})\geq c_g(\tilde{\boldsymbol{\lambda}})-\delta,\ \ \mathbf{S}\in\mathcal{S},\ \ \mathbf{V}^\top\mathbf{V}=\mathbf{I}.$
	- \Rightarrow Convex feasible set yet non-convex objective
- Approximate concave term minimizing an upper bound as in MM

$$
u(\boldsymbol{\lambda},\boldsymbol{\lambda}^{(t-1)})=\nabla c_g(\boldsymbol{\lambda}^{(t-1)})^\top\boldsymbol{\lambda}
$$

▶ Iterative alternating minimization algorithm to avoid biconvexity

 \Rightarrow Similar to the approach introduced in [Kumar2019]

Step 1: Solved approximately in closed-form $\mathbf{S}^{(t+1)} = \operatorname*{argmin}_{\mathbf{S} \in \mathcal{S}} \mathsf{tr}(\hat{\mathbf{C}}\mathbf{S}) + \alpha \|\mathbf{S}\|_1 + \frac{\beta}{2}$ $\frac{\beta}{2}\|\mathbf{S}-\mathbf{V}^{(t)}\mathbf{\Lambda}^{(t)}\mathbf{V}^{(t)}^\top\|_F^2$

Step 2. Solution given by eigendecomposition of $\mathbf{S}^{(t+1)}$ ${\bf V}^{(t+1)} = \text{argmin} \frac{\beta}{2}$ V $\frac{\partial}{\partial \mathbf{y}} ||\mathbf{S}^{(t+1)} - \mathbf{V} \mathbf{\Lambda}^{(t)} \mathbf{V}^\top ||_F^2$ s.t: $\mathbf{V}^\top \mathbf{V} = \mathbf{I}$

Step 3. Solved with over-the-shelf cvx solver

$$
\lambda^{(t+1)} = \underset{\lambda}{\text{argmin}} - \sum_{j=1}^{N} \log(\lambda_j) + \frac{\beta}{2} \|\lambda - \hat{\lambda}\|_2^2 + \gamma u(\lambda, \lambda^{(t)}) \text{ s.t: } c_g(\lambda) \ge c_g(\tilde{\lambda}) - \delta
$$

- \triangleright The algorithm is guaranteed to converge to a stationary point
- \blacktriangleright Computational complexity of $\mathcal{O}(N^3)$

Numerical evaluation - Synthetic data

Assess the influence of discrepancies between G and \tilde{G}

- \Rightarrow G: SBM graph with 100/150 nodes and 5 disconnected communities
- ⇒ Setting tailored to GSL method

- ▶ MGL robust to discrepancies in the intercluster connectivity
	- \Rightarrow Information in G beyond conn. comp.
	- Error of MGL improves with N
		- \Rightarrow $N = 150$ outperforms SGL
		- \Rightarrow Similarity constraint more informative for large graphs

- Dataset contains votes of the US Senate
	- \Rightarrow Political graph is inferred from senators votes
	- \Rightarrow G is the 115th congress and \tilde{G} is the 114th
	- \Rightarrow Labels represent ideological representation (Rep, Dem, Mix)
- ▶ First we learn the graph topology using 100 observations \Rightarrow Then use spectral clustering to infer node labels

Conclusions and future work

- ▶ We proposed a tractable approach to leverage graph structural information
	- \Rightarrow Assume access to a reference graph with a similar motif density
	- \Rightarrow Evaluate a test function over the graph spectrum
	- \Rightarrow Relation motif density/test function applicable to other tasks
- ▶ The density of motifs and the similarity constraint can be computed locally \Rightarrow Allows to compare graphs of different sizes \Rightarrow Is less restrictive than other assumptions
- \triangleright The MLE with the similarity constraint was a non-convex problem \Rightarrow Proposed convex iterative algorithm with guaranteed convergence

Conclusions and future work

- ▶ We proposed a tractable approach to leverage graph structural information
	- \Rightarrow Assume access to a reference graph with a similar motif density
	- \Rightarrow Evaluate a test function over the graph spectrum
	- \Rightarrow Relation motif density/test function applicable to other tasks
- ▶ The density of motifs and the similarity constraint can be computed locally \Rightarrow Allows to compare graphs of different sizes
	- \Rightarrow Is less restrictive than other assumptions
- \triangleright The MLE with the similarity constraint was a non-convex problem \Rightarrow Proposed convex iterative algorithm with guaranteed convergence

Future research direction

- ▶ Exploit information about motifs as prior information in other GSP tasks \Rightarrow Settings with hidden variables or imperfect topology knowledge
- ▶ Characterize and design good test functions

▶ Paper [Rey23] available at QR

Questions at: samuel.rey.escudero@urjc.es

- Dong16 X. Dong, D. Thanou, P. Frossard, P. Vandergheynst, "Learning Laplacian matrix in smooth graph signal representations", IEEE Trans. Signal Process., 2016.
- Friedman08 J. Friedman, T. Hastie, R. Tibshirani, "Sparse inverse covariance estimation with the graphical lasso", Biostatistics, 2008.
	- Segarra17 S. Segarra, A. G. Marques, G. Mateos, A. Ribeiro. "Network topology inference from spectral templates", IEEE Trans. Signal Inf. Process. Netw., 2017.
	- Navarro24 M. Navarro, S. Rey, A. Buciulea, A. G. Marques, S. Segarra, "Joint Network Topology Inference in the Presence of Hidden Nodes", IEEE Trans. Signal Process., 2024.
		- Kumar19 S. Kumar, J. Ying, J. V. de Miranda Cardoso, D. Palomar, "Structured graph learning via Laplacian spectral constraints", NEURIPS 2019.
- Roddenberry21 T. M. Roddenberry, M. Navarro, S. Segarra, "Network Topology Inference with Graphon Spectral Penalties", ICASSP 2021.
	- Rey23 S. Rey, T. M. Roddenberry, S. Segarra, A. G. Marques, "Enhanced graph-learning schemes driven by similar distributions of motifs", IEEE Trans. Signal Process., 2023.