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Introduction

▶ Graph-based methods are a popular option to process contemporary data

⇒ Graph topology useful to model underlying irregular structure

⇒ The graph topology is unknown in many relevant applications

Road network Social network Home automation network

▶ Graph learning: estimates the graph topology from nodal observations

⇒ Properties of the signals depend on the topology
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Context and goal

▶ Graph learning is a well-studied problem with many different approaches

⇒ Assuming different relation between the graph and the data

⇒ Smoothness, Gaussianity, stationarity [Dong16][Friedman08][Segarra17]

▶ Limitation: focus placed on the model relating graphs and signals

⇒ Prior graph structural information is rarely considered

▶ Works starting to pay attention to this problem

⇒ Joint network inference [Navarro24]

⇒ Spectral Laplacian constraints [Kumar19]

⇒ Graphon-based method [Roddenberry21]

▶ Contribution: exploit motif density information when learning a graph

⇒ Assuming observed signals are Gaussian
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Notation and preliminaries

▶ Graph G = (V, E) with N nodes and adjacency A

⇒ Aij = Proximity between i and j

▶ Define a signal x ∈ RN on top of the graph

⇒ xi = Signal value at node i

▶ Associated with G is the graph-shift operator S ∈ RN×N (e.g. A, L)

⇒ Sij ̸=0 if i=j or (i, j)∈E (local structure in G)
⇒ Diagonalized as S = Vdiag(λ)V−1

▶ Motifs are subgraphs with a specific pattern (e.g., star graph, triangle)

⇒ Density of motifs measures the frequency with which a motif appears
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Motif density from a reference graph

▶ Knowing the true motifs distribution of G is useful but unrealistic

▶ Assume access to a reference graph G̃ with a similar motif distribution

⇒ Learn G with a similar distribution to that of G̃
⇒ Similar assumption to joint graph learning methods

Why density of motifs?

▶ The density of motifs can be computed locally

⇒ Allows comparing graphs of different sizes

⇒ It can be approximated from a subgraph of G̃
▶ Requiring similar motifs is laxer assumption than similar support
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Graph learning driven by motifs

Problem statement

▶ Let S be the GSO of the unknown graph G

▶ Given M graph signals X := [x(1), ...,x(M)] ∈ RN×M

⇒ Sampled from a Gaussian distribution x(m) ∼ N (0,S−1)

▶ Given a reference graph G̃ with eigenvalues λ̃

⇒ With a similar density of motifs to that of the sought graph

▶ Goal: find the maximum likelihood estimator Ŝ

Challenges

▶ How to tractably compare densities of motifs of two graphs?

▶ How to incorporate motif information into the MLE?

⇒ Optimization problem will most likely be non-convex
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From motif density to spectral test functions

▶ Computing the density of motifs of a graph is a combinatorial task

▶ Consider evaluating a test function g(λ) over the spectral distribution

cg(λ) =

∫
g(λ) dµλ(λ) =

1

N

N∑
i=1

g(λi)

⇒ With empirical spectral density function µλ

Theorem

Let G and G̃ be two graphs such that the distance between their densities
of motifs is upper-bounded by ϵ. Then

|cg(λ)− cg(λ̃)| ≤ δϵ + δr

▶ Similar densities of motifs render similar values when evaluating cg(λ)

⇒ Enables easy integration into an optimization problem

⇒ Less expressive than motive densities in describing the structure
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Motif graph learning formulation

▶ We have a tractable approach to harnessing information about motif density

⇒ Evaluating a test function over the spectrum of S and S̃

▶ The constrained maximum likelihood estimator is given by

min
S,V,λ

tr(ĈS)−log det(diag(λ)) + α∥S∥1 +
β

2
∥S−Vdiag(λ)V⊤∥2F

s.t : |cg(λ)− cg(λ̃)| ≤ δ, S ∈ S, V⊤V = I.

⇒ Similarity constraint stems from similar motifs of G and G̃
⇒ cg(λ̃) is a constant obtained from S̃

⇒ Spectrum of S is close to the one satisfying similarity constraint

▶ Solving the resulting non-convex optimization problem is non-trivial

⇒ Similarity constraint will be non-convex for most test functions

⇒ Orthogonality of V and bilinear terms involving V and λ and
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Relaxed similarity constraints

▶ Focus on concave test functions g

▶ Split constraint into concave/convex terms avoiding function composition

|cg(λ)− cg(λ̃)| ≤ δ =⇒ cg(λ) ≤ cg(λ̃) + δ, cg(λ) ≥ cg(λ̃)− δ

▶ Reformulate the optimization problem as

min
S,V,λ

tr(ĈS)−log det(diag(λ)) + α∥S∥1 +
β

2
∥S−Vdiag(λ)V⊤∥2F + γcg(λ)

s.t : cg(λ) ≥ cg(λ̃)− δ, S ∈ S, V⊤V = I.

⇒ Convex feasible set yet non-convex objective

▶ Approximate concave term minimizing an upper bound as in MM

u(λ,λ(t−1)) = ∇cg(λ
(t−1))⊤λ
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Algorithmic implementation

▶ Iterative alternating minimization algorithm to avoid biconvexity

⇒ Similar to the approach introduced in [Kumar2019]

Step 1: Solved approximately in closed-form

S(t+1) = argmin
S∈S

tr(ĈS) + α∥S∥1 +
β

2
∥S−V(t)Λ(t)V(t)⊤∥2F

Step 2. Solution given by eigendecomposition of S(t+1)

V(t+1) = argmin
V

β

2
∥S(t+1) −VΛ(t)V⊤∥2F s.t : V⊤V = I

Step 3. Solved with over-the-shelf cvx solver

λ(t+1) = argmin
λ

−
N∑

j=1

log(λj) +
β

2
∥λ− λ̂∥22 + γu(λ,λ(t)) s.t : cg(λ) ≥ cg(λ̃)− δ

▶ The algorithm is guaranteed to converge to a stationary point

▶ Computational complexity of O(N3)
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Numerical evaluation - Synthetic data

▶ Assess the influence of discrepancies between G and G̃
⇒ G: SBM graph with 100/150 nodes and 5 disconnected communities

⇒ Setting tailored to GSL method

▶ MGL robust to discrepancies in the
intercluster connectivity

⇒ Information in G̃ beyond
conn. comp.

▶ Error of MGL improves with N

⇒ N = 150 outperforms SGL

⇒ Similarity constraint more
informative for large graphs
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Numerical evaluation - Real world data

▶ Dataset contains votes of the US Senate

⇒ Political graph is inferred from senators votes

⇒ G is the 115th congress and G̃ is the 114th

⇒ Labels represent ideological representation (Rep, Dem, Mix)

▶ First we learn the graph topology using 100 observations

⇒ Then use spectral clustering to infer node labels
True graph

Ground truth

UNC estimate

Unc.

SGL estimate

SGL

Poly estimate

MGL-BR
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Conclusions and future work

▶ We proposed a tractable approach to leverage graph structural information

⇒ Assume access to a reference graph with a similar motif density

⇒ Evaluate a test function over the graph spectrum

⇒ Relation motif density/test function applicable to other tasks

▶ The density of motifs and the similarity constraint can be computed locally

⇒ Allows to compare graphs of different sizes

⇒ Is less restrictive than other assumptions

▶ The MLE with the similarity constraint was a non-convex problem

⇒ Proposed convex iterative algorithm with guaranteed convergence

Future research direction

▶ Exploit information about motifs as prior information in other GSP tasks

⇒ Settings with hidden variables or imperfect topology knowledge

▶ Characterize and design good test functions
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Questions?

▶ Paper [Rey23] available at QR

Questions at: samuel.rey.escudero@urjc.es
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