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Motivation and context

▶ Contemporary data is becoming heterogeneous and pervasive
⇒ Large amounts of data are propelling the development of data-driven methods

▶ Graph neural networks (GNNs) are the tool of choice to learn from network data
⇒ Data is interpreted as signals defined on a graph
⇒ Harness the information encoded in the graph topology to deal with irregular structure
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▶ Limitation: most GNNs and graph-based methods focus on undirected graphs
⇒ Accounting for directionality plays an important role but comes with several challenges
⇒ These challenges are exacerbated when dealing with directed acyclic graphs (DAGs)

▶ Prior art: few works are starting to look into learning on DAGs [Zhang19] [Thost20]

⇒ Complex architectures combining attention and sequence processing techniques

▶ This work: design a DAG-aware convolutional GNN to learn from data defined on DAGs
⇒ Harness the partial ordering of the DAG to obtain a stronger inductive bias
⇒ Simple architecture with convolution defined in a principled manner

Preliminaries and notation

▶ In a DAG D = (V , E) the set of N nodes V is a partially ordered set
⇒ Node j is a predecessor of i if j < i
⇒ Meaning that there is a direct path from j to i
⇒ Some nodes are not comparable, i.e., i ̸≤ j and j ̸≤ i

▶ Define a signal x ∈ RN on top of the graph
⇒ xi = Signal value at node i

▶ The acyclicity and the order of V render the adjacency A ∈ RN×N strictly lower-triangular
⇒ Aij ̸= 0 if and only if there is an edge from j to i

▶ A convolutional GNN is a parametric function given by the recursion

X(ℓ+1) = σ
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⇒ The aggregation function is driven by the graph topology, X(0) are the input data

⇒ Θ
(ℓ)
r ∈ RF (ℓ)
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o collects the learnable convolutional filter coefficients

Problem formulation and goal

▶ Goal: design a convolutional GNN tailored to learn from data defined over DAGs
⇒ Given a training set T = {Xm,ym}M

m=1 containing M input-output observed signals

▶ We learn a non-linear parametric mapping fΘ(·|D) relating Xm and ym
⇒ We estimate the weights Θ by minimizing some loss function of interest L over T

min
Θ

1
M

M∑
m=1

L(ym, fΘ(Xm|D)) (2)

Challenges
▶ The architecture must account for the partially ordered V
▶ DAGs may encode causal relations, a property we wish to incorporate into our architecture
▶ The adjacency matrix A of a DAG is a nilpotent matrix

⇒ This collapsed spectrum deprives us of a spectral interpretation [Seifert23]

Graph shift operators and convolution for DAGs

▶ We build upon the work from [Seifert23] to compute convolutions in a principled way

▶ Assume a signal x can be described by the causes at predecessor nodes c ∈ RN as x = Wc
⇒ W ∈ RN×N is the transitive closure of D with Wij ̸= 0 if j < i
⇒ We focus on W = (I − A)−1 closely related to structural equation models

▶ Every node k ∈ V induces a causal GSO given by

[Tkx]i =
∑

j≤i and j≤k

Wijcj , Tkx = WDkc = WDkW−1x (3)

⇒ Diagonal matrix Dk ∈ {0,1}N×N with [Dk ]ii = 1 if i ≤ k
⇒ W−1 is a DAG Fourier transform with causes c being the spectral coefficients

▶ The most general shift-invariant DAG filter H is given by

H =
∑
k∈V

hkTk = W
∑
k∈V

hkDkW−1 (4)

⇒ Convolution given by h ∗ x = Hx with the frequency response of H being
∑

k∈V hkDk
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DAG Convolutional Network (DCN)

▶ DCN concatenates several layers where the convolution is performed using a DAG filter
⇒ We can gain expressive power by replacing the single-filter layer with a filter bank

x(ℓ+1) = σ

∑
k∈V

h(ℓ)k Tkx(ℓ)

 , X(ℓ+1) = σ

∑
k∈V

TkX(ℓ)Θ
(ℓ)
k

 (5)

⇒ Filter coefficients h(ℓ)k /Θ(ℓ)
k are the learnable parameters

⇒ The causal convolution account for the DAG topology and partial ordering

▶ Spectral interpretation: since Tkx(ℓ) = WDkc(ℓ) the convolution combines causes from
predecessors and diffuses them across the DAG

▶ Message passing interpretation: at every node i each Tk forms a message combining
features from predecessors common to nodes k and i

⇒ Filter coefficients determine how to mix these messages
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Desirable features and current limitations

Main advantages
▶ The DCN is a permutation equivariant model

▶ The spectrum of Tk is well defined endowing the DCN with a spectral representation
⇒ Fundamental to analyze properties such as stability, transferability, ...

▶ The eigenvalues collected in Dk are binary so no numerical issues are expected

▶ The GSOs are potentially very sparse matrices since sup(Tk) ⊆ sup(W)

Limitations
▶ The number of learnable parameters grows with the size of the graph

⇒ Potential computational and memory limitations
⇒ Workaround: approximate the convolution as

∑
k∈U hkTk , where U ⊂ V

⇒ Shown to perform well in practice

Numerical evaluation: Synthetic experiments I

▶ We test DCN using synthetic data over two different tasks
⇒ Network diffusion: learn to predict the output of a diffusion process given the input
⇒ Source identification: learn to identify source nodes given the output

▶ ER graphs with N = 200 nodes
⇒ Results are the average of 50 iid realizations

▶ Signals generated following the linear model ym = HXm + w, with DAG filter H and noise w
Network Diffusion Source Identification

MNSE Time (s) Accuracy Time (s)
DCN 0.016 ± 0.014 3.6 0.052 ± 0.014 7.5
DCN-30 0.029 ± 0.017 3.5 0.052 ± 0.016 7.4
DCN-10 0.058 ± 0.021 3.5 0.055 ± 0.015 7.2
DCN-T 0.098 ± 0.024 4.1 0.991 ± 0.018 8.2
DCN-30-T 0.199 ± 0.030 3.7 0.983 ± 0.032 7.64
DCN-10-T 0.229 ± 0.030 3.5 0.865 ± 0.141 7.38
LS 0.050 ± 0.022 0.4 0.05 ± 0.016 0.36
FB-GCNN 0.091 ± 0.028 3.4 0.739 ± 0.172 7.4
GCN 0.167 ± 0.037 3.3 0.155 ± 0.216 7.1
GAT 0.649 ± 0.089 13.8 0.044 ± 0.081 28.4
GraphSAGE 0.359 ± 0.039 5.9 0.676 ± 0.163 12.5
GIN 0.402 ± 0.079 6.0 0.19 ± 0.163 12.5
MLP 0.353 ± 0.039 2.2 0.050 ± 0.016 4.7

▶ DCN outperforms the baselines in both tasks
⇒ Even when using approximate convolutions with 30/10 GSOs

Numerical evaluation: Synthetic experiments II

▶ DCN sensitivity to the presence of noise (left) and the sparsity of the DAG (right)
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▶ In the absence of noise DCN results are comparable to that of LS (optimal solution)
⇒ In the presence of noise DCN outperforms the baselines

▶ Source identification task becomes more challenging as DAGs become denser
⇒ DCN and approximate DCN with 20 GSOs outperform all other alternatives

Link to the paper with code and future research directions

▶ Evaluate the performance of DCN using real-world data
▶ Benchmarking against DAG learning models [Zhang19] [Thost20]
▶ Principled approach to select the subset U or alternative simplifications
▶ Establish relevant theoretical properties of the architecture
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