
Neurocomputing 600 (2024) 128161

A
0

Contents lists available at ScienceDirect

Neurocomputing

journal homepage: www.elsevier.com/locate/neucom

Enhancing end-to-end control in autonomous driving through
kinematic-infused and visual memory imitation learning
Sergio Paniego ∗, Roberto Calvo-Palomino, JoséMaría Cañas
Robotics Lab, Universidad Rey Juan Carlos, Madrid, Spain

A R T I C L E I N F O

Communicated by X. Gu

Keywords:
End-to-end autonomous driving
Imitation learning
Deep learning
Lane-following

A B S T R A C T

This paper presents an exploration, study, and comparison of various alternatives to enhance the capabilities
of an end-to-end control system for autonomous driving based on imitation learning by adding visual memory
and kinematic input data to the deep learning architectures that govern the vehicle. The experimental
comparison relies on fundamental error metrics (MAE, MSE) during the offline assessment, supplemented
by several external complementary fine-grain metrics based on the behavior of the ego vehicle at several
urban test scenarios in the CARLA reference simulator in the online evaluation. Our study focuses on a
lane-following application using different urban scenario layouts and visual bird-eye-view input. The memory
addition involves architectural modifications and different sensory input types. The kinematic data integration
is managed with a modified input. The experiments encompass both typical driving scenarios and extreme
never-seen conditions. Additionally, we conduct an ablation study examining various memory lengths and
densities. We prove experimentally that incorporating visual memory capabilities and kinematic input data
makes the driving system more robust and able to handle a wider range of challenging situations, including
those not encountered during training, in terms of reduction of collisions and speed self-regulation, resulting
in a 75% enhancement. All the work we present here, including model architectures, trained model weights,
comparison tool, and the dataset, is open-source, facilitating replication and extension of our findings.
1. Introduction

Making cars and robots capable of driving by themselves has been
a topic of interest in both research and industry for the past years
and seems to be a topic that will have a wide impact on day-to-day
life in the coming years too [1]. The potential benefits of autonomous
driving cars and robots are enormous, including improved traffic safety
and security, as well as more optimized mobility for individuals and
globally.

Typically, this autonomy is divided into 6 levels, as described by the
SAE J3016 Standard, from no automation (0) to full automation (5),
where human intervention is not needed in any situation. Some cur-
rent commercial solutions (e.g., Tesla, Waymo, Cruise, etc.) implement
levels 2–3 and even some 4 autonomy capabilities, but most benefits
come at levels 4 and 5, which still need more progress in research
and industry. Some competitions are also helping to advance in this
research topic, including DuckieTown [2], AWS DeepRacer [3], and
F1TENTH [4].

Although research examples in autonomous driving appeared sev-
eral years ago [5], interest in this field has risen significantly thanks

∗ Corresponding author.
E-mail addresses: sergio.paniego@urjc.es (S. Paniego), roberto.calvo@urjc.es (R. Calvo-Palomino), josemaria.plaza@urjc.es (J. Cañas).

to the latest advancements in deep learning, especially with the inclu-
sion of specialized hardware (GPUs), the development of large open
datasets [6], and specialized simulators like CARLA [7] or TORCS [8],
and advancements in previous techniques, such as CNN [9]. Deep
learning and artificial intelligence-based solutions help to improve
the results of this perception and control problem, although their
application area expands across multiple domains [10–12].

The methodologies for autonomous driving control solutions are
usually divided between modular and end-to-end pipelines. The first
one includes several modules [13] whereas the end-to-end [14–16]
pipeline generates control decisions based on the direct understand-
ing of the input. Vision-based end-to-end autonomous driving has
gained significant traction in recent literature but still presents some
limitations [17] and challenges [18]. It is an integral segment of accu-
mulating exteroceptive information about the surrounding environment
of the vehicle [19–21]. Using vision for end-to-end imitation learn-
ing [22] control of autonomous vehicles was proposed by NVIDIA’s
PilotNet [23] framework where the goal was to deliver steering control
commands based on raw frontal images with the help of a CNN.
This was further analyzed by augmenting fully connected layers to
vailable online 6 July 2024
925-2312/© 2024 The Author(s). Published by Elsevier B.V. This is an open access a

https://doi.org/10.1016/j.neucom.2024.128161
Received 12 January 2024; Received in revised form 21 June 2024; Accepted 29 J
rticle under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

une 2024

https://www.elsevier.com/locate/neucom
https://www.elsevier.com/locate/neucom
mailto:sergio.paniego@urjc.es
mailto:roberto.calvo@urjc.es
mailto:josemaria.plaza@urjc.es
https://doi.org/10.1016/j.neucom.2024.128161
https://doi.org/10.1016/j.neucom.2024.128161
http://crossmark.crossref.org/dialog/?doi=10.1016/j.neucom.2024.128161&domain=pdf
http://creativecommons.org/licenses/by/4.0/


Neurocomputing 600 (2024) 128161S. Paniego et al.
Fig. 1. Details of the deep learning architectures compared in this work. One of them is memory-less and the other three are visual memory-based. A variation of each of them
also receives kinematic data input. Layers and input data marked in red are the modifications proposed in this work based on baseline architectures.
a CNN [24] to achieve performance comparable to a human driver.
Simulated images have also been used by [25] to study the importance
of road-related features in the images. Even input commands have been
considered for managing vehicle behavior [26], as well as solutions
based on reinforcement learning [27,28]. While all the above contri-
butions considered utilizing the spatial features of the camera image
inputs, [29] proposed the addition of temporal analysis using memory-
based deep neural networks, examining the importance of LSTMs and
convolutional layers with LSTMs respectively.

This use of memory-based solutions has also been explored pre-
viously in different research publications. For instance, in [30], re-
searchers combined CNN and LSTM layers in their architecture, and
in [31,32], they used analogous approaches combining ConvLSTM
modules for capturing the temporal information of the data input
for generating the control commands of the vehicle. Long Short-Term
Memory networks (LSTMs) [33] are a special type of recurrent neural
network (RNN), that are specialized in learning temporal dependencies
that are present in the dataset. A variation of the LSTMs are convolu-
tional LSTM (ConvLSTMs) [34], architectures that include convolutions
and can learn these temporal dependencies from sequences of images.
3D convolutions (Conv3D) are another commonly used architectural
layer when the temporal dependencies need to be learned.

When understanding and assessing the performance of different
solutions for end-to-end imitation learning control of an autonomous
car/robot, loss metrics are very important. Some commonly used met-
rics include mean absolute error (MAE) and mean squared error (MSE).
These metrics show the similarity of the model outputs to the super-
vised outputs on a test set of the dataset extracted from the expert. In
addition to these, it is also important to measure the actual performance
of the model when driving the car in test scenarios as these systems
ultimately need to operate in real-time on actual vehicles [35]. While
it is useful for better understanding the system, it can be difficult
to quantify. When considering urban scenarios, these external metrics
could include whether the model commits a traffic violation (collisions
or lane invasions) or the effective interval completed distance in a fixed
experimental time-lapse. Previous research has extensively examined
this question, yielding a plethora of metrics and evaluation techniques
customized to distinct elements of autonomous driving systems and
varying operational contexts [36–39].

There is a diverse range of datasets available for various tasks
in autonomous driving. For instance, comma AI [40] and Udacity
datasets [41] are dedicated to the lane-following problem and provide
car speeds. Other datasets focused on visual perception for autonomous
2

driving, such as BDD100K [42] or nuScenes [43], are also available.
However, since the focus of this manuscript is lane-following in urban
scenarios using CARLA simulator, we cannot utilize these datasets. In
Section 2, we provide a detailed explanation of a newly generated
dataset that utilizes expert data.

The research hypothesis for this paper is that integrating visual
memory capabilities into the deep learning architecture and kinematic
input data improves the quality of the generated robot control behavior.
Specifically, it aims to enhance system robustness in previously unseen
situations and improve speed self-regulation. We introduce several
contributions.

• First, we explore and compare various alternatives to enhance
end-to-end autonomous driving capabilities by adding visual mem-
ory and kinematic input data. These enhancements include deep
learning architectural modifications and different sensory input
types for the memory additions and sensory input modification
for the kinematic data input.

• Second, we perform an offline evaluation of each approach us-
ing fundamental error metrics (MAE, MSE), proving that these
metrics are not enough for a reliable comparison.

• Third, we conduct an online evaluation of each approach in
regular conditions similar to the ones in the dataset using the
state-of-the-art autonomous driving simulator CARLA in urban
scenarios, targeting a follow-lane application. We employ Behav-
ior Metrics [44], a software tool that facilitates the assessment of
different approaches to end-to-end imitation learning, which we
also describe.

• Fourth, we evaluate the models in never-seen situations to under-
stand their generalization capabilities, demonstrating that models
with visual memory and kinematic input present improvements in
these settings and understanding how and how much the addition
of memory and kinematic data enhances driving behavior and
when it can have a significant impact.

• Fifth, we conduct ablation studies of the visual memory length
and density to identify the optimal combinations.

• Sixth, we release all the materials including models, architectures,
and datasets, as open-source, along with the comparison software.

2. Kinematic-infused and visual memory end-to-end control based
on imitation learning

This section introduces the system developed, which consists of dif-
ferent deep learning architectures (see Fig. 1), some of them with inner

memory capabilities. These architectures are trained using imitation



Neurocomputing 600 (2024) 128161S. Paniego et al.
Fig. 2. End-to-end autonomous driving pipeline using Behavior Metrics software and a robot controller based on a deep learning model that controls the vehicle based on its
sensory data.
learning for a lane-follow problem and with a range of sensory input
data. We have used 8 deep learning architectures based on an end-to-
end approach. They use as input at least a sensory image and generate
motor control commands for an ego vehicle in a reactive control loop.

We focus our work on the implications in the final behavior of
the robotic system of the addition of visual memory and kinematic
data to the models. The perception data used as input is a simplified
processed data from the sensory data. While these adjustments have
been previously introduced in other studies, as detailed in Section 1,
our current work focuses on studying and assessing their impact on
the ultimate control behavior of the vehicle through comprehensive
experimental validation. Instead of directly using the frontal camera of
the car, for this work we used a bird-eye view of the scenario, removing
part of the complexity that the system needs to perceive (shadows,
weather, different textures...). The bird-eye view used is a segmented
image including only the key components of the scene (see Fig. 2 for
an example). In this case, we only need the car position information
and the lanes that surround the vehicle. The approaches are trained
and tested in the variety of towns that CARLA includes.

An imitation learning approach is used for training the neural
architectures. In this approach, an expert agent drives along the towns
while the sensory information and the behavior are recorded (behavior
cloning). The sensory data in this scenario includes the bird-eye view,
current vehicle speed (kinematic data), and the behavior includes
normalized information about control commands (throttle, steer, and
brake). Using the information extracted from the expert agent as su-
pervised output for training, the final trained agent should mimic the
behavior of the former, if the dataset is varied enough. To give the
models an understanding of different situations, four urban environ-
ments were used for training the models: Town01, Town03, Town05 and
Town07 (see Fig. 3). These towns include various common scenarios
that a vehicle could be exposed to, including urban scenarios with
different numbers of lanes, turn layouts, and road types like urban or
highways. Town02 is used for testing the trained models, as explained
in depth in Section 4. The expert agent used is the rule-based autopilot
included in the simulator, which can drive in different urban scenarios
and has access to privileged simulation information. We used only
one vehicle model to maintain a similar visual structure and physics
behavior when driving.

We have explored four different deep learning architectures: one
without memory, and three with visual memory. To augment our
investigation, we have introduced additional kinematic input data to
the baseline models, resulting in eight distinct models (see Fig. 1 for
a detailed view of each architecture and group). We introduce modi-
fications to two architectures (PilotNet and DeepestLSTMTinyPilotNet)
from previous literature, while the remainder represents evolutionary
developments from the baselines. The chosen deep learning archi-
tectures are characterized by their shallow, visual-based, end-to-end
3

design, prioritizing simplicity and efficiency, as highlighted in prior re-
search [45]. Our strategy for modifying these architectures is centered
on preserving simplicity rather than embarking on a complete redesign
to formulate entirely novel models.

2.1. Memory-less deep learning architecture

In the first group, we consider the architectures whose input only
includes the visual sensory information at the current time, a sin-
gle image, and no architectural modules that could be considered as
memory, such as LSTM cells. We include here PilotNet*. PilotNet [46]
was proposed in a previous work on end-to-end imitation learning
for steering control. In this case, we have extended it to support
throttling and braking (PilotNet*), considering that this information is
also available from the expert agent. This architecture is specialized in
understanding the context of an input sensory image and generating
control commands for the ego vehicle.

• PilotNet*: a powerful network that combines a convolutional
backbone with some connected layers and an output of the control
commands.

2.2. Deep learning architectures with visual memory

In the second group, we describe three architectures with visual
memory. We include here DeepestLSTMTinyPilotNet* and two archi-
tectures especially created for this work. DeepestLSTMTinyPilotNet is
an architecture that was proposed in a previous work on end-to-end
imitation learning for steering control where they only used one image
as input and two architectures created for this work that are extensions
of PilotNet*. Again, we have extended them to support throttling and
braking (DeepestLSTMTinyPilotNet*), considering that this information
is also available from the expert agent. The two architectures created
for this work, namely PilotNet*x3 (Conv3D) and PilotNet*x3 (TimeDis-
tributed), receive visual sensory information from the current time
instant and additionally, information from preceding instants. We study
whether this additional information helps vehicle control in some sce-
narios or situations. We explore two different variations for extracting
knowledge from the visual data input, Conv3D and TimeDistributed.

• DeepestLSTMTinyPilotNet*: update of PilotNet architecture
model making it smaller, reducing the number of convolutional
and fully connected layers. It has some ConvLSTM layers that
add some memory information. It only uses an image as input,
instead of taking full advantage of the LSTMs modules using
several images as input.



Neurocomputing 600 (2024) 128161S. Paniego et al.
Fig. 3. Set of urban environments in CARLA used.
• PilotNet*x3 (Conv3D): based on PilotNet*. In this variation,
the convolutional part is replaced by a 3D convolutional back-
bone that extracts the temporal information and understands
the content of the visual data. The second part of the architec-
ture maintains the PilotNet* structure and again generates the
collection of control commands for the vehicle.

• PilotNet*x3 (TimeDistributed): based on PilotNet*. In this vari-
ation, the model extracts information from the provided visual
data from each image, combining the extracted features after the
convolutional backbone and using LSTM modules for extracting
the temporal information. The final fully connected layers in-
cluded in PilotNet* are removed from this approach since the
LSTM modules are enough for finally generating the control
commands for the vehicle and understanding the global context.

2.3. Deep learning architectures with kinematic data as input

The previous four architectures have been also extended with an
additional variation of sensory input using kinematic data. In this vari-
ation, the same architectures are used with a modification in the
input sensory data, including information about the current ego vehicle
velocity that we named kinematic data (e.g. 20 km/h). This exploration
is motivated by the widespread availability and easy access of this
data in vehicles. We also consider the high safety standards needed for
an autonomous driving system and recognize the pivotal significance
assigned to the system’s speed in this matter. The additional velocity
data is included as an additional channel to the visual data, without
modifications to the described layers. The extra channel is uniformly
filled with the normalized speed, scaled between 0 and 1. For the
architectures with visual memory that receive more than one image as
input, the ego vehicle speed is added as a new channel in the images,
including the current velocity at the specific instant of each frame. We
opt for this data input format to maintain the architecture under study
without alterations, ensuring a fair comparison can be conducted.
4

2.4. Training

The training procedure varies slightly between the approaches con-
sidering their data structure, although we use the same amount of data
for all the presented models. For the architectures considered memory-
less, all the data collected from the expert is divided and shuffled as
in a common machine learning workflow. We collected data at a rate
of 20 images per second, so (𝑡, 𝑡 − 5, and 𝑡 − 10), which is the input
for models that receive more than one frame, is half a second. For the
memory-based architectures, we first generated mini-sequences using a
sliding window of three data points with temporal relationships before
shuffling.

A collection of image data augmentations is included in the training
procedure. We include modifications of brightness, contrast, gamma
channel, hue saturation, PCA color augmentation, gaussian blur, and
horizontal affine transformations. This augmentation is conducted us-
ing Albumentations [47]. We found horizontal affine augmentations to
be important in the final behavior of the model and its generalization.
Using imitation learning, the model can learn the behavior displayed
in the dataset but struggles when the test data differs even a little
bit from the training data distribution, as empirically proved in pre-
vious works [48]. With horizontal affine augmentation, the model can
generalize better and provide good behavior in test scenarios that are
slightly different from the rest of the data distribution. For example
when approaching a turn a few centimeters away from the center of
the lane (see Fig. 4). We use mean squared error as the loss function
during training.

3. Measuring end-to-end imitation learning for robot control

For measuring the quality of robot behavior in autonomous driving,
the common metrics used in machine learning are not enough to
understand whether a model behavior is proficient or not. Typically,
MSE or MAE are commonly utilized to calculate the loss of the model
during training. They are good indicators, but not enough to assess
robot application quality as they only measure the similarity of the



Neurocomputing 600 (2024) 128161S. Paniego et al.
Fig. 4. Affine image date augmentation example. From the training example on the
left, new examples are generated modifying the steering command accordingly.

model output and the supervised output at each instant. They do not
take into account the future effects of control decisions, so a neural
model with low loss may still exhibit poor robot behavior. In an end-to-
end control system, previous decisions and the current vehicle situation
play an important role in the next evolution of the situation. A previous
inadequate decision a few seconds ago could lead to a very difficult
situation now.

For assessment of such control systems, the external global holistic
metrics do take into account such effects and others, and provide a
more reliable indicator of the quality of the robot behavior. They are
typically application-specific.

In addition to the common metrics with supervised data, we use
as part of our experimental methodology a complete software tool
for experimental validation of the models in simulation, called Behav-
ior Metrics (see Fig. 2 for a view of its architecture), with a set of
complementary global holistic metrics.

Behavior Metrics [49] is a software tool built on top of an au-
tonomous driving simulator, in this case, CARLA, for running experi-
ments and comparing different robot controllers fairly. It uses a ROS
bridge for the communication between the tool and the simulator. It
includes support for CARLA and Gazebo simulators. The tool allows
the implementation of experiments in batches and easy comparisons of
different robot controllers with the same metrics. Moreover, it facili-
tates assessment not only based on supervised data but also on holistic
metrics. The robot controller is the master brain of the vehicle, which
generates control commands based on the sensory input following
an end-to-end approach. In this case, the sensory data is limited to
bird-eye view images and kinematic states (vehicle speed). Inside the
controller, a deep learning model, an explicitly programmed controller,
or a reinforcement learning algorithm performs the decision-making.
For this work, deep learning models control decision-making. The
software provides the sensory data to the controller and manages the
communication module that sends the control commands to the vehicle
(throttle, steer, and brake).

The software tool runs the experiments in batches, so we have
compared the different models in different urban environments and
situations at the same time, with a common framework and in the
same hardware. This configuration allows easy and fair comparison of
the models with holistic metrics complementing the common machine
learning metrics and the ones provided by the simulator itself.

Behavior Metrics supports the standard vehicle sensors compatible
with CARLA. However, for this project, we have only utilized the bird-
eye view sensor and the kinematic data (vehicle speed). We have also
5

taken advantage of the varied range of simulation towns, vehicles, and
settings that CARLA provides to test our models. The measurements
we have taken include both common values provided by the simulator,
such as collisions and lane invasions, as well as additional data that
further illustrates the vehicle’s behavior. This is particularly impor-
tant, as the specific metrics used in the CARLA Autonomous Driving
Leaderboard1 do not suit our objectives. In the experiments described
in Section 4, we have used some of the most relevant metrics, which
are:

• Effective completed distance: distance navigated during the
experiment that covers the town lanes. If the car drives outside a
lane, that distance is not counted.

• Position deviation mean per km: positional deviation from the
center of the lane per km, considering it to be the best possible
trajectory for the vehicle.

• Controller iterations frequency: this number gives an intuition
about the computation load of the robot controller and the system
in general.

• Collisions per km: number of collisions per km of the vehicle
with other elements in the environment.

• Lane invasions per km: number of lane invasions per traveled
km.

• Vehicle jerk in control commands per kilometer: metric for
understanding how much the control commands differ between
time steps. If this number is low, it shows a smooth control
behavior.

• Vehicle jerk in velocity per kilometer: metric for understanding
how much the velocity changes per time step. It indicates whether
the conduction is aggressive of smooth.

• Average speed: average speed driven by the ego vehicle.

4. Experiments

In this section, we present a series of experiments for the validation
of the models and understanding of the implication of memory in the
behavior of the robot in different situations. As described in previous
sections, we have four different deep learning models trained on an
imitation learning basis with two variations for each one. We use
Behavior Metrics with CARLA as software for experimental validation
of the models, along with the typical loss metrics discussed previously.

All the different experiments are easily reproducible, with the
model’s weights, architectures, and the tool for simulation and ex-
periment available open-source [50]. Tensorflow has been used for
programming and training the different deep learning architectures. 2
Nvidia GeForce RTX 3090 GPUs were used as hardware when running
the experiments.

The number of control decisions per time stamp is important in
this type of robotic scenario but we do not study its implications
experimentally in the present work and we leave it for other studies.
We consider a scenario where the number of iterations of the controller
is high enough for the correct control of the vehicle.

We provide six experiments, where the eight models are evalu-
ated to understand their differences. The models are tested using a
never-seen scenario (Town02). In addition, we explore a lane-following
scenario with no other vehicles or obstacles involved. Traffic lights and
signals are also ignored in these experiments since they remain out of
the scope of this study, the implications of including memory in the
robot control. In the case of an intersection, the vehicle learns to follow
a policy of going straight through it, based on the dataset provided
by the expert agent and the imitation learning policy. The starting
position is random among a set of points for each town, considering that
the vehicle can drive lane-following for at least a few hundred meters

1 https://leaderboard.carla.org/

https://leaderboard.carla.org/


Neurocomputing 600 (2024) 128161S. Paniego et al.
Table 1
MAE and MSE metrics comparison for each trained model using test data from the
dataset. Four different architectures are tested with visual memory and kinematic input
(vehicle speed). ✔: supported. ✘: unsupported.

Model Visual
memory

Kinematic
input

MAE
test

MSE
test

PilotNet* ✘ ✘ 0.0507 0.0177
PilotNet* ✘ ✔ 0.0332 0.0086

DeepestLSTMTinyPilotNet* ✔ ✘ 0.0662 0.0196
DeepestLSTMTinyPilotNet* ✔ ✔ 0.0456 0.0094

PilotNetx3* (Conv3D) ✔ ✘ 0.0295 0.0082
PilotNetx3* (Conv3D) ✔ ✔ 0.0074 0.0079

PilotNetx3* (TimeDistributed) ✔ ✘ 0.0289 0.0077
PilotNetx3* (TimeDistributed) ✔ ✔ 0.0069 0.0086

without interfering with situations that differ widely from the training
dataset. We provide results for each described architecture to display
its behavior in different situations and to extract a deeper insight into
how each architectural modification or change in input data affects the
final performance.

We do not provide experimental results comparison with the origi-
nal PilotNet or DeepestLSTMTinyPilotNet architectures from the papers
where they were proposed since our architectures feature distinct
output configurations, as elaborated in Section 2. Conducting a fair
comparison is not feasible due to these inherent differences. We also
omit a comparison with prior baseline methods as our research inquiry
focuses on whether the incorporation of kinematic input and visual
memory to shallow visual-based end-to-end deep learning models,
employing imitation learning, can lead to improvements in control
performance in certain situations. While existing state-of-the-art models
are engineered for a broad spectrum of tasks, they frequently integrate
numerous sensors, employ deeper and more intricate architectures,
and rely on extensive datasets. Previous studies emphasize the impor-
tance of compact and efficient deep learning networks for autonomous
driving, which are adaptable for deployment across diverse devices
with varying hardware capabilities. Our methodology prioritizes the
simplicity of our models.

4.1. Comparison of models using common ML metrics

In Table 1, the best values obtained for MAE and MSE in the test set
of the supervised dataset for each of the models are displayed. These
values are better for the models whose input is kinematic sensory data,
with a 90% reduction in MAE and 60% in MSE comparing the best and
worst obtained results for each metric. This suggests that models with
kinematic data are better at imitating the supervised datasets. They
adeptly encapsulate the correlation between inputs and outputs.

These results are relevant indicators, but not enough for a reliable
comparison of the models’ final control behavior due to the high variety
of situations that the vehicle could encounter at simulation test time
and other variables that are involved in its quality such as the number
of control commands per second that the model can generate. Inferring
a single non-ideal control command to the robot actuators in a key
moment may have worse consequences in robot performance than
many non-ideal commands in harmless moments. To understand the
complete behavior of the robot controller, a comparison in simulation
should be conducted. Even so, we include this comparison with the
supervised dataset since it is standard in machine learning research
although for robotics applications these metrics are not conclusive
to indicate good performance, good robot behavior. We need further
experimental validation for the validation of the models, which is
6

conducted in the following subsections.
4.2. Behavior in test scenario with top speed regulation

In this experiment, all the models are evaluated in the test scenario
(Town02), as a lane-following vehicle. Each experiment is conducted
five times starting from a random position in the test scenario. This
is the most simple and common scenario, where the vehicle follows a
lane using a reactive controller which calls the inference of a neural
model on each iteration to generate the motor commands. The expert
agent used for recording the supervised samples included in the training
dataset has a top speed of 30 km/h. In this experiment, the models
without kinematic sensory data also include a limit of 30 km/h to
make a fair comparison, the vehicle speed is truncated when this
limit is reached. In Section 4.3 the comparison without this top speed
limitation is also studied.

In Table 2, we can see the results for the different models (columns)
and the measured metrics (rows) in a test circuit, Town02. The Success-
ful experiments metric is the most informative. It represents the number
of experiments completed by the vehicle without collisions and without
exceeding the maximum speed (30 km/h) out of the five runs. We also
require that the agent reaches the average speed of the expert agent
which is between 25 and 30 km/h to be considered successful.

The differences in this point are small. All the architectures can
complete the experiments successfully, without collisions, and with an
adequate average speed. The Effective completed distance is similar for
all of them and the Positional deviation mean per km from the center of
the lane is low. The Vehicle jerk for both control commands and velocity
is also low, which translates to smooth and safe driving. The Controller
iterations frequency is also adequate for the experiment. Although some
of the models experiment some lane invasions, they are not problematic
since the numbers are low and they do not cause collisions.

4.3. Studying the model without top speed limitation

In the previous experiments, some robot controllers needed a max-
imum speed limit like the one provided by the expert agent (30 km/h)
to drive correctly. In this new experiment, we explore how removing
that top boundary affects the behavior of the models. The rest of the
experimental setup remains unchanged.

In Table 3, we can see the results of this experiment on Town02.
We exclusively account for experiments without collisions in the table
for all metrics, except for Collisions per km and Lane invasions per
km. We can observe that models without memory or with only visual
memory capabilities are more prone to collisions when the speed limit
is not controlled. Looking at their Max. speed or Average speed, we can
understand that they are not able to learn how to maintain a safe
speed (30 km/h), self-regulating it, which leads to failure in all the
experiments. For the models with kinematic sensory data input, the
results are the same as in the experiment in Section 4.2, since the robot
controllers using these models were already able to drive without a top
speed limit. The interpretation of these results is that the kinematic data
input is key for the robot to understand its state precisely and must be
included in the model as input for proficient behavior.

In Fig. 5, we provide the detail of Effective completed distance and
Max. speed metrics for each model for the case with (Experiment 4.2)
and without top speed restriction (Experiment 4.3). We can see that
models with visual memory and kinematic input can traverse a bit
longer effective distances maintaining a safe top speed. We can also see
that the standard deviation is small and the number of atypical values
is very low. The models’ behavior is always similar. The black dots
represent the mean Max. speed in the experiments. It remains similar
for the cases where the top speed is controlled (top graph) whereas
it generates extremely high value for models without kinematic input

when it is not controlled (bottom graph).



Neurocomputing 600 (2024) 128161S. Paniego et al.
Table 2
Comparison of models (columns) in different test environments considering some measured metrics (rows) provided by Behavior Metrics. Values
in bold highlight the most interesting results. ✔: supported. ✘: unsupported.
Map Town02

Model Pilotnet* DeepestLSTMTinyPilotNet* Pilotnetx3*
(Conv3D)

Pilotnetx3*
(TimeDistributed)

Visual memory ✘ ✘ ✔ ✔ ✔ ✔ ✔ ✔

Kinematic input ✘ ✔ ✘ ✔ ✘ ✔ ✘ ✔

Effective completed
distance (m)

820.6 868.9 830.6 846.6 902.6 875.2 889.0 852.3

Position deviation
mean per km (m/km)

0.25 0.26 0.22 0.33 0.24 0.25 0.29 0.29

Controller iterations
frequency (Hz)

18.32 18.40 18.25 18.05 17.10 17.05 17.65 17.51

Vehicle jerk
in control commands
per kilometer

0.31 0.19 0.16 0.15 0.18 0.12 0.19 0.12

Vehicle jerk
in velocity
per kilometer

0.34 0.33 0.30 0.31 0.33 0.49 0.34 0.51

Average speed (km/h) 24.71 26.78 25.01 26.41 27.51 26.77 27.15 26.21

Max. speed (km/h) 31.35 30.08 31.30 29.92 31.57 31.25 31.50 30.98

Experiments with
collisions

0/5 0/5 0/5 0/5 0/5 0/5 0/5 0/5

Collisions
per km

0 0 0 0 0 0 0 0

Lane invasions
per km

0 0.46 0 3.08 0 0.46 0 0

Successful
experiments

5/5 5/5 5/5 5/5 5/5 5/5 5/5 5/5
Table 3
Comparison of models in different test environments without top speed limit considering metrics from Behavior Metrics. Bold values (excluding
Successful experiments) indicate changes in results from previous experiment results. Values in red bold and bold for Successful experiments
highlight the most interesting results. ✔: supported. ✘: unsupported.
Map Town02

Model Pilotnet* DeepestLSTMTinyPilotNet* Pilotnetx3*
(Conv3D)

Pilotnetx3*
(TimeDistributed)

Visual memory ✘ ✘ ✔ ✔ ✔ ✔ ✔ ✔

Kinematic input ✘ ✔ ✘ ✔ ✘ ✔ ✘ ✔

Effective completed
distance (m)

946.3 868.9 962.0 846.6 994.8 875.2 1083.0 852.3

Position deviation
mean per km (m/km)

0.23 0.26 0.21 0.33 0.28 0.25 0.28 0.29

Controller iterations
frequency (Hz)

17.34 18.40 16.11 18.05 17.09 17.05 17.65 17.51

Vehicle jerk
in control commands
per kilometer

0.28 0.19 0.15 0.15 0.18 0.13 0.17 0.12

Vehicle jerk
in velocity
per kilometer

0.26 0.33 0.22 0.31 0.25 0.49 0.21 0.51

Average
speed (km/h)

30.37 26.78 30.13 26.41 31.72 26.77 38.82 26.21

Max. speed (km/h) 53.20 30.08 47.93 29.92 50.15 31.25 59.18 30.98

Experiments with
collisions

5/5 0/5 1/5 0/5 3/5 0/5 4/5 0/5

Collisions
per km

2.09 0.0 0.32 0.0 0.95 0.0 1.45 0.0

Lane invasions
per km

2.24 0.46 0.71 3.08 0.87 0.46 1.05 0.0

Successful
experiments

0/5 5/5 0/5 5/5 0/5 5/5 0/5 5/5
7



Neurocomputing 600 (2024) 128161S. Paniego et al.

N

4

m
h
r
t
c
v
f

c
a
t
a
c
s
s
c
t
a
d
b
d
f

Fig. 5. Effective distance completed with 30 km/h restriction (top) and without (bottom). The right 𝑦-axis shows the vehicle’s maximum speed (represented using black dots).
M: no memory. VM: visual memory. KI: kinematic input.
m
a
s
r
t
t
t
c
b
p

f

.4. Taking the control of a fast-moving car

In this experiment, the robot controller with the deep learning
odel is suddenly connected to a vehicle that is already running at
igh speed, in this case, 50 km/h and 70 km/h. Once the vehicle
eaches that speed, the model starts generating control commands for
he car (throttle, steer, and brake) and we test whether the model
an control that unseen extreme situation or not. In this situation, the
ehicle should react fast to regain control over the car. This situation
alls outside of the training dataset distribution.

In Table 4, the results of the experiment are shown. We only
onsider architectures with kinematic data as input, since we have
lready proved it to be necessary for proficient control. We can see
hat the only models able to gain back control and reduce the speed
re the ones with visual memory and kinematic input for the 50 km/h
ase and only one of them for the 70 km/h case. This is a clear
ign of the advantages of adding both types of features. In certain
cenarios, both visual memory and kinematic input data help take back
ontrol of the car. In the experiments, the vehicle reduces the speed
o the learned behaviors (less than 30 km/h) and then starts driving
s usual, as shown in Fig. 6. In the depicted figure, we illustrate both
istinct behaviors observed in our experiment. Firstly, we showcase the
ehavior of a model with both visual memory and kinematic input,
emonstrating its ability to recover from perturbations and maintain
orward progress. Conversely, we present another scenario featuring a
8

odel solely relying on visual memory where it is unable to recover
nd reduce the speed and it finally generates a collision. We can also
ee that a model with both memory types can take back the control,
educing the speed to the known point (30 km/h). On the contrary, for
he model without memory, the ego vehicle continues driving at this
op speed and control is not possible, quickly causing a collision. For
he extreme case of 70 km/h, we can see that only PilotNetx3*(Conv3D)
an control the car and reduce the speed to a known state. This could
e attributed to the enhanced memorization capabilities that Conv3D
rovides. Considering the metric of Average Speed, favorable outcomes

similar to the expert agent are observed when the model operates
without incurring collisions.

4.5. Robustness to sensory manipulation

The next experiment tests the robustness of the models to a series of
perturbations in the sensory data. In this case, we imagine a case where
input data suffers some alterations, as it could occur in a real-world
situation, and test how the memory helps in the control problem. Since
the common input data for all the models is the visual data, we alter
that information and study its implications considering the memory
capabilities. In this case, we drop out randomly some parts of each of
the visual data used as input. We again only consider architectures with
kinematic data input since we have already proved it to be necessary.

In Table 5, the results of these experiments are displayed for Town02
or a percentage of dropout of 50% and 90% (see Fig. 7 for an example).



Neurocomputing 600 (2024) 128161S. Paniego et al.
Fig. 6. Example of activating the vehicle autonomous driving system at a high-speed situation. On the left, the model with visual memory and kinematic input can restore the
speed to the known point and continue driving. On the right, the model with only visual memory is not able to restore the speed and it collides due to the high speed.
Table 4
Comparison of models in a high-speed scenario where the model takes control when the ego vehicle is already at a speed
of 70 km/h. For the Average speed, we only consider experiments without collisions. This experiment is tested in Town02.
Values in bold highlight the most interesting results. ✔: supported. ✘: unsupported.
Map Town02

Model Pilotnet* DeepestLSTMTinyPilotNet* Pilotnetx3*
(Conv3D)

Pilotnetx3*
(TimeDistributed)

Visual memory ✘ ✔ ✔ ✔

Kinematic input ✔ ✔ ✔ ✔

Speed 50 km/h

Experiments with
collisions

5/5 0/5 0/5 0/5

Average
speed

– 27.18 27.07 26.82

Collisions
per km

46.51 0.0 0.0 0.0

Successful
experiments

0/5 5/5 5/5 5/5

Speed 70 km/h

Experiments with
collisions

5/5 5/5 0/5 5/5

Average
speed

– – 29.92 –

Collisions
per km

27.25 29.95 0.0 26.95

Successful
experiments

0/5 0/5 5/5 0/5
We again only consider Succesful experiments those without collisions
and with an average speed close to the one provided by the expert
agent. We can see that with a percentage of 50% of dropout, only
two models are successful, PilotNet* and PilotNetx3*(TimeDistributed).
The explanation for these results could be that DeepestLSTMTinyPi-
lotNet* and PilotNetx3*(Conv3D) are reliant on the visual data that
they receive (the first one includes ConvLSTM layers and the second
one Conv3D layers) whereas the successful models while relying on
visual data, they are more prone to consider kinematic input. For
the extreme case of 90%, only PilotNetx3*(TimeDistributed) is still
successful, which can be attributed to the visual memory capabilities.
9

Each model with visual memory includes different ways of introducing
it, and some of them are more important in certain extreme scenarios
such as this one.

4.6. Visual memory length and density comparison

In this experiment, we evaluate the model’s memory capabilities in
terms of the length and density of the visual input data. Memory length
refers to the amount of information that the model receives. In this
case, we evaluate the implications of adding more visual input data. In
Section 2.4, we describe that the visual memory used for training the



Neurocomputing 600 (2024) 128161S. Paniego et al.
Table 5
Comparison of model performance modifying the input sensory information. For the Average speed, we only consider
experiments without collisions. Values in bold highlight the most interesting results. ✔: supported. ✘: unsupported.
Map Town02

Model Pilotnet* DeepestLSTMTinyPilotNet* Pilotnetx3*
(Conv3D)

Pilotnetx3*
(TimeDistributed)

Visual memory ✘ ✔ ✔ ✔

Kinematic input ✔ ✔ ✔ ✔

Percentage 50%

Experiments with
collisions

0/5 1/5 5/5 0/5

Average speed 26.12 22.54 – 25.96

Collisions
per km

0.0 1.52 72.75 0.0

Successful
experiments

5/5 0/5 0/5 5/5

Percentage 90%

Experiments with
collisions

5/5 0/5 5/5 0/5

Average speed – 5.19 – 25.18

Collisions
per km

23.68 0.0 12.31 0.0

Successful
experiments

0/5 0/5 0/5 5/5
Fig. 7. Example of input data: normal (left), broken 50% (middle) and broken 90% (right).
models is (𝑡, 𝑡−5, and 𝑡−10) considering that the sensors and controller
run using 20 frames per second. Considering that the vehicle receives
20 frames per second, the default visual memory used is 0.5 s long.
In this experiment, we evaluate other possible visual lengths (5 and 9
frames). 5 frames is 1 s of memory and 9 frames is 2 s if we consider
that the frame rate is the same. Similarly, memory density refers to
the time gap between frames. For the default configuration, we use (𝑡,
𝑡 − 5, and 𝑡 − 10). For the experiments, we test (𝑡, 𝑡 − 1, and 𝑡 − 2),
(𝑡, 𝑡 − 10, and 𝑡 − 20) and (𝑡, 𝑡 − 20, and 𝑡 − 40). The experiments are
conducted using the models with visual memory that receive several
frames and considering the top speed boundary (PilotNetx3*(Conv3D)
and PilotNetx3*(TimeDistributed)).

In Table 6, we present the results for the different proposed memory
lengths. We can see that adding extra frames does not help for these
models and they start failing when adding them. They are more prone
to collisions and if we look at the Position deviation mean per km, we
can see that greater frame counts correspond to heightened position
deviation. Since the models are simple and based on PilotNet, we can
attribute these results to models that are simple and that cannot under-
stand a lot of frames. While it is conceivable that further architectural
modifications could enhance their capacity to comprehend a wider
10
array of frames, such enhancements are deemed unnecessary for the
present scenario.

In Table 7, we present the results for the different studied memory
densities. A memory with a small density (𝑡, 𝑡 − 1, and 𝑡 − 2) can
drive successfully and we can see that when the space between frames
is widened, the models are more prone to collisions and its Position
deviation mean per km is deteriorated. Similar behavior is observed for
the Position deviation mean per km when the space between frames is
excessively narrow (𝑡, 𝑡 − 1, and 𝑡 − 2). The optimal configuration for
these models and scenarios appears to be (𝑡, 𝑡 − 5, and 𝑡 − 10).

Finally, after the six presented experiments, a summary of the
results obtained in the experiments is displayed in Table 8 with further
elaboration for Successful experiments metric provided in Fig. 8. As
we can see, deep learning models including integrated visual memory
and kinematic input excel in completing experiments, proving their
superiority over other architectures. Although kinematic input con-
tributes positively in certain situations (third column), the combined
effect with visual memory proves most advantageous. Remarkably,
the addition of visual memory alone (second column) shows no dis-
cernible improvements from the baseline, at least within the range of
experiments conducted in this study for the metric examined, which



Neurocomputing 600 (2024) 128161S. Paniego et al.
Table 6
Comparison of model performance with different visual memory lengths. For the Average speed and Position deviation mean per km, we only
consider experiments without collisions. Values in bold highlight the most interesting results. ✔: supported. ✘: unsupported.
Map Town02

Model Pilotnetx3*
(Conv3D)

Pilotnetx3*
(TimeDistributed)

Visual memory ✔ ✔ ✔ ✔ ✔ ✔

Kinematic input ✘ ✘ ✘ ✘ ✘ ✘

Memory length (frames) 3 5 9 3 5 9

Collisions 0 0 1.0 0 0.8 1.0

Average speed 25.18 25.64 – 26.08 26.65 –

Position deviation mean
per km

1.13 1.75 – 1.12 2.02 –

Collisions
per km

0.0 0.0 1.30 0.0 0.0 6.25

Successful
experiments

5/5 5/5 0/5 5/5 1/5 0/5
Table 7
Comparison of model performance with different visual memory densities. For the Average speed and Position deviation mean per km, we only
consider experiments without collisions. Values in bold highlight the most interesting results. ✔: supported. ✘: unsupported.
Map Town02

Model Pilotnetx3*
(Conv3D)

Visual memory ✔ ✔ ✔ ✔

Kinematic input ✘ ✘ ✘ ✘

Memory densities
(frames)

𝑡, 𝑡 − 1, 𝑡 − 2 𝑡, 𝑡 − 5, 𝑡 − 10 𝑡, 𝑡 − 10, 𝑡 − 20 𝑡, 𝑡 − 20, 𝑡 − 40

Collisions 0.0 0.0 0.4 0.6

Average speed 24.96 25.18 26.59 26.07

Positions deviation mean
per km (m/km)

1.39 1.13 1.35 1.89

Collisions
per km

0.0 0.0 5.13 5.12

Successful
experiments

5/5 5/5 3/5 2/5

Model Pilotnetx3*
(TimeDistributed)

Visual memory ✔ ✔ ✔ ✔

Kinematic input ✘ ✘ ✘ ✘

Memory densities
(frames)

𝑡, 𝑡 − 1, 𝑡 − 2 𝑡, 𝑡 − 5, 𝑡 − 10 𝑡, 𝑡 − 10, 𝑡 − 20 𝑡, 𝑡 − 20, 𝑡 − 40

Collisions 0.0 0.0 0.2 0.2

Average speed 25.94 26.08 26.63 26.01

Positions deviation mean
per km (m/km)

1.12 1.12 1.47 1.59

Collisions
per km

0.0 0.0 2.97 3.01

Successful
experiments

5/5 5/5 4/5 4/5
could be a limitation. However, this observation could potentially
change in more complex scenarios including moving obstacles or racing
situations, where visual memory might offer enhanced performance.
Nevertheless, it showcases its importance when combined with the
kinematic input. Notably, successful modifications to the model lead to
consistent success across all trials, whereas unsuccessful modifications
result in complete failure across the experiment. We have proved with
our research and experiments that adding kinematic input (vehicle
speed) data and visual memory improves the general behavior and
robustness of the deep learning model in the end-to-end control of an
autonomous car for a lane-follow application. This augmentation offers
advantages in navigating previously unseen and complex scenarios
11

while adeptly regulating the vehicle’s speed. Significantly, the most
robust models have been obtained by combining both visual memory
and kinematic input data.

5. Conclusions

In this paper, we have presented and studied four different deep
learning architectures and a proposed variation for each of them for
end-to-end robot control based on imitation learning for an autonomous
driving problem. We have studied and proved how adding visual
memory and kinematic input data to the models enhances the quality
of the final control behavior for following the lane. These architectures
are PilotNet*, DeepestLSTMTinyPilotNet*, PilotNetx3* (Conv3D), and
PilotNetx3* (TimeDistributed), with their variation with also kinematic

input. Specifically, we have studied how adding visual memory and



Neurocomputing 600 (2024) 128161S. Paniego et al.

k
s
a
r
e
d

t
i
r
s
s
w
c

f
t
d

Table 8
Comparison summary of model performance across presented experiments. The addition of at least kinematic
input data improves the final behavior and adding both types generates gains in certain scenarios. ✔: successful.
✘: failure.

Experiment
Type Visual Visual memory Kinematic input Visual memory

and kinematic input
Behavior in test scenario
with top speed regulation
(Section 4.2)

✔ ✔ ✔ ✔

Studying the model
without top speed
limitation
(Section 4.3)

✘ ✘ ✔ ✔

Taking the control
of a fast-moving car
(Section 4.4)

✘ ✘ ✘ ✔

Robustness to
sensory manipulation
(Section 4.5)

✘ ✘ ✘ ✔
Fig. 8. Comparison summary of model performance enhancements across presented experiments focusing on Successful experiments metric.
a
i

m
m

p
e
b
F
v
t

C

n
M

inematic input data to the models improves the performance in certain
ituations (by 75% in Successful experiments), such as taking control of
fast-moving car in never seen before high-speed scenarios or self-

egulating the vehicle speed correctly. The models have been tested
xtensively in diverse simulated urban scenarios with varying layout
esigns, proving the research hypothesis widely.

Incorporating kinematic input data enhances speed control within
he system. Moreover, when adding both visual memory and kinematic
nput data, the vehicle can drive in even more situations and is more
obust to sensor failure or controlling never-seen situations like high-
peed experiments. We have proved that adding at least kinematic
ensory data can help in the final system compared to the situation
here only instant visual perception is used, which leads to a less

omplete context understanding.
We have also studied different visual memory lengths and densities

or extracting insight into how it affects the control system even for
hese simple deep learning architectures. We have proved that a lower
12

ensity of frames can cause failed experiments when using simple t
rchitectures and that the length of the memory generates a comparable
nfluence, causing failures when adding an excessive number of frames.

All the materials are provided as open-source, including the dataset,
odel weights and architectures, and the comparison software tool to
ake all experiments reproducible and extendable.

In future lines of work and addressing possible limitations of the
resent work, the ideas presented and tested in this paper need to be
xperimentally validated in physical vehicles. The models should also
e tested in higher complexity settings, closer to real-world scenarios.
or instance including other agents in the environments that the ego
ehicle has to consider, such as a car driving directly in front of it in
he same lane.

RediT authorship contribution statement

Sergio Paniego: Writing – review & editing, Writing – origi-
al draft, Visualization, Validation, Supervision, Software, Resources,
ethodology, Investigation, Formal analysis, Data curation, Concep-
ualization. Roberto Calvo-Palomino: Writing – review & editing,



Neurocomputing 600 (2024) 128161S. Paniego et al.
Writing – original draft, Validation, Supervision, Project admin-
istration, Methodology, Investigation, Conceptualization. JoséMaría
Cañas: Writing – review & editing, Writing – original draft, Valida-
tion, Supervision, Project administration, Methodology, Investigation,
Formal analysis, Conceptualization.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Data availability

Data will be made available on request.

Acknowledgments

This work is supported by (GAIA) Gestión integral para la preven-
ción, extinción y reforestación debido a incendios forestales, Spain,
Proyectos de I+D en líneas estratégicas en colaboración entre organ-
ismos de investigación y difusión de conocimientos TRANSMISIONES
2023, Spain. Ref PLEC2023-010303 (2024–2026) by Agencia Estatal de
Investigación de España, Spain.

References

[1] T. Litman, Autonomous vehicle implementation predictions implications for
transport planning, 2022.

[2] L. Paull, J. Tani, H. Ahn, J. Alonso-Mora, L. Carlone, M. Cap, Y.F. Chen, C. Choi,
J. Dusek, Y. Fang, D. Hoehener, S.-Y. Liu, M. Novitzky, I.F. Okuyama, J. Pazis, G.
Rosman, V. Varricchio, H.-C. Wang, D. Yershov, H. Zhao, M. Benjamin, C. Carr,
M. Zuber, S. Karaman, E. Frazzoli, D. Del Vecchio, D. Rus, J. How, J. Leonard,
A. Censi, Duckietown: An open, inexpensive and flexible platform for autonomy
education and research, in: 2017 IEEE International Conference on Robotics and
Automation, ICRA, 2017, pp. 1497–1504, http://dx.doi.org/10.1109/ICRA.2017.
7989179.

[3] B. Balaji, S. Mallya, S. Genc, S. Gupta, L. Dirac, V. Khare, G. Roy, T. Sun,
Y. Tao, B. Townsend, E. Calleja, S. Muralidhara, D. Karuppasamy, DeepRacer:
Educational autonomous racing platform for experimentation with Sim2Real
reinforcement learning, 2019, arXiv preprint arXiv:1911.01562.

[4] M. O’Kelly, H. Zheng, D. Karthik, R. Mangharam, F1TENTH: An open-source
evaluation environment for continuous control and reinforcement learning, in:
H.J. Escalante, R. Hadsell (Eds.), Proceedings of the NeurIPS 2019 Competi-
tion and Demonstration Track, in: Proceedings of Machine Learning Research,
vol. 123, PMLR, 2020, pp. 77–89, URL https://proceedings.mlr.press/v123/o-
kelly20a.html.

[5] D.A. Pomerleau, ALVINN: An autonomous land vehicle in a neural network, in:
Proceedings of the 1st International Conference on Neural Information Processing
Systems, NIPS ’88, MIT Press, Cambridge, MA, USA, 1988, pp. 305–313, URL
https://dl.acm.org/doi/10.5555/2969735.2969771.

[6] Y. Cabon, N. Murray, M. Humenberger, Virtual KITTI 2, 2020, arXiv preprint
arXiv:2001.10773.

[7] A. Dosovitskiy, G. Ros, F. Codevilla, A. López, V. Koltun, CARLA: An Open Urban
Driving Simulator, in: 1st Annual Conference on Robot Learning, CoRL 2017, in:
Proceedings of Machine Learning Research, vol. 78, PMLR, 2017, pp. 1–16, URL
http://proceedings.mlr.press/v78/dosovitskiy17a.html.

[8] E. Espié, C. Guionneau, B. Wymann, C. Dimitrakakis, R. Coulom, A. Sumner,
TORCS, The open racing car simulator, 2005.

[9] Y. LeCun, B. Boser, J.S. Denker, D. Henderson, R.E. Howard, W. Hubbard, L.D.
Jackel, Backpropagation applied to handwritten zip code recognition, Neural
Comput. 1 (4) (1989) 541–551, http://dx.doi.org/10.1162/neco.1989.1.4.541.

[10] S. Al-Janabi, A.F. Alkaim, Z. Adel, An innovative synthesis of deep learning
techniques (DCapsNet & DCOM) for generation electrical renewable energy from
wind energy, Soft Comput. 24 (14) (2020) 10943–10962, http://dx.doi.org/10.
1007/s00500-020-04905-9.

[11] Y. Chen, R. Xia, K. Yang, K. Zou, MICU: Image super-resolution via multi-level
information compensation and U-net, Expert Syst. Appl. 245 (2024) 123111,
http://dx.doi.org/10.1016/j.eswa.2023.123111, URL https://www.sciencedirect.
com/science/article/pii/S0957417423036151.

[12] Y. Chen, R. Xia, K. Yang, K. Zou, DNNAM: Image inpainting algorithm
via deep neural networks and attention mechanism, Appl. Soft Comput. 154
(2024) 111392, http://dx.doi.org/10.1016/j.asoc.2024.111392, URL https://
13

www.sciencedirect.com/science/article/pii/S1568494624001662.
[13] C. Gómez-Huélamo, A. Diaz-Diaz, J. Araluce, M.E. Ortiz, R. Gutiérrez, F. Arango,
A. Llamazares, L.M. Bergasa, How to build and validate a safe and reliable
autonomous driving stack? A ROS based software modular architecture baseline,
in: 2022 IEEE Intelligent Vehicles Symposium, IV, 2022, pp. 1282–1289, http:
//dx.doi.org/10.1109/IV51971.2022.9827271.

[14] P. Wu, X. Jia, L. Chen, J. Yan, H. Li, Y. Qiao, Trajectory-guided control prediction
for end-to-end autonomous driving: A simple yet strong baseline, 2022, arXiv
preprint arXiv:2206.08129.

[15] L. Han, L. Wu, F. Liang, H. Cao, D. Luo, Z. Zhang, Z. Hua, A novel end-
to-end model for steering behavior prediction of autonomous ego-vehicles
using spatial and temporal attention mechanism, Neurocomputing 490 (2022)
295–311, http://dx.doi.org/10.1016/j.neucom.2021.11.093, URL https://www.
sciencedirect.com/science/article/pii/S0925231221018051.

[16] Y. Hu, J. Yang, L. Chen, K. Li, C. Sima, X. Zhu, S. Chai, S. Du, T. Lin, W. Wang, L.
Lu, X. Jia, Q. Liu, J. Dai, Y. Qiao, H. Li, Planning-oriented autonomous driving,
2023, arXiv preprint arXiv:2212.10156.

[17] F. Codevilla, E. Santana, A.M. López, A. Gaidon, Exploring the limitations
of behavior cloning for autonomous driving, 2019, arXiv preprint arXiv:1904.
08980.

[18] L. Chen, P. Wu, K. Chitta, B. Jaeger, A. Geiger, H. Li, End-to-end autonomous
driving: Challenges and frontiers, 2023, arXiv preprint arXiv:2306.16927.

[19] A. Riboni, N. Ghioldi, A. Candelieri, M. Borrotti, Bayesian Optimization and
Deep Learning for steering wheel angle prediction, 2021, arXiv preprint arXiv:
2110.13629.

[20] H. Xu, Y. Gao, F. Yu, T. Darrell, End-to-end learning of driving models from
large-scale video datasets, 2016, arXiv preprint arXiv:1612.01079.

[21] J. Kocić, N. Jovičić, V. Drndarević, An end-to-end deep neural network for
autonomous driving designed for embedded automotive platforms, Sensors 19
(9) (2019) http://dx.doi.org/10.3390/s19092064.

[22] A.O. Ly, M. Akhloufi, Learning to drive by imitation: An overview of deep
behavior cloning methods, IEEE Trans. Intell. Veh. 6 (2) (2021) 195–209,
http://dx.doi.org/10.1109/TIV.2020.3002505.

[23] M. Bojarski, P. Yeres, A. Choromanska, K. Choromanski, B. Firner, L. Jackel, U.
Muller, Explaining how a deep neural network trained with end-to-end learning
steers a car, 2017, arXiv preprint arXiv:1704.07911.

[24] V. Rausch, A. Hansen, E. Solowjow, C. Liu, E. Kreuzer, J.K. Hedrick, Learning a
deep neural net policy for end-to-end control of autonomous vehicles, in: 2017
American Control Conference, ACC, 2017, pp. 4914–4919, http://dx.doi.org/10.
23919/ACC.2017.7963716.

[25] S. Yang, W. Wang, C. Liu, W. Deng, J.K. Hedrick, Feature analysis and selection
for training an end-to-end autonomous vehicle controller using deep learning
approach, in: 2017 IEEE Intelligent Vehicles Symposium, IV, IEEE, 2017, pp.
1033–1038, http://dx.doi.org/10.48550/arXiv.1703.09744.

[26] F. Codevilla, M. Müller, A. Dosovitskiy, A.M. López, V. Koltun, End-to-End Driv-
ing Via Conditional Imitation Learning, in: 2018 IEEE International Conference
on Robotics and Automation, ICRA, 2018, pp. 1–9, http://dx.doi.org/10.48550/
arXiv.1710.02410.

[27] M. Toromanoff, E. Wirbel, F. Moutarde, End-to-end model-free reinforcement
learning for urban driving using implicit affordances, in: Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR, 2020,
pp. 7151–7160, http://dx.doi.org/10.1109/CVPR42600.2020.00718.

[28] A. Amini, I. Gilitschenski, J. Phillips, J. Moseyko, R. Banerjee, S. Karaman,
D. Rus, Learning robust control policies for end-to-end autonomous driving
from data-driven simulation, IEEE Robot. Autom. Lett. 5 (2) (2020) 1143–1150,
http://dx.doi.org/10.1109/LRA.2020.2966414.

[29] L. Chi, Y. Mu, Deep steering: Learning end-to-end driving model from spatial
and temporal visual cues, 2017, arXiv preprint arXiv:1708.03798.

[30] R. Zhao, Y. Zhang, Z. Huang, C. Yin, End-to-end spatiotemporal attention
model for autonomous driving, in: 2020 IEEE 4th Information Technology,
Networking, Electronic and Automation Control Conference, Vol. 1, ITNEC, 2020,
pp. 2649–2653, http://dx.doi.org/10.1109/ITNEC48623.2020.9085185.

[31] J. del Egio, L.M. Bergasa, E. Romera, C. Gómez Huélamo, J. Araluce, R. Barea,
Self-driving a car in simulation through a CNN, in: R. Fuentetaja Pizán, A.
García Olaya, M.P. Sesmero Lorente, J.A. Iglesias Martínez, A. Ledezma Espino
(Eds.), Advances in Physical Agents, Springer International Publishing, Cham,
2019, pp. 31–43, http://dx.doi.org/10.1007/978-3-319-99885-5_3.

[32] H.M. Eraqi, M.N. Moustafa, J. Honer, End-to-end deep learning for steering
autonomous vehicles considering temporal dependencies, 2017, arXiv preprint
arXiv:1710.03804.

[33] S. Hochreiter, J. Schmidhuber, Long short-term memory, Neural Comput. 9
(1997) 1735–1780, http://dx.doi.org/10.1162/neco.1997.9.8.1735.

[34] X. Shi, Z. Chen, H. Wang, D.-Y. Yeung, W.-k. Wong, W.-c. Woo, Convolutional
LSTM network: A machine learning approach for precipitation nowcasting,
in: Proceedings of the 28th International Conference on Neural Information
Processing Systems - Volume 1, NIPS ’15, MIT Press, Cambridge, MA, USA,
2015, pp. 802–810, URL https://proceedings.neurips.cc/paper_files/paper/2015/

file/07563a3fe3bbe7e3ba84431ad9d055af-Paper.pdf.

http://refhub.elsevier.com/S0925-2312(24)00932-9/sb1
http://refhub.elsevier.com/S0925-2312(24)00932-9/sb1
http://refhub.elsevier.com/S0925-2312(24)00932-9/sb1
http://dx.doi.org/10.1109/ICRA.2017.7989179
http://dx.doi.org/10.1109/ICRA.2017.7989179
http://dx.doi.org/10.1109/ICRA.2017.7989179
http://arxiv.org/abs/1911.01562
https://proceedings.mlr.press/v123/o-kelly20a.html
https://proceedings.mlr.press/v123/o-kelly20a.html
https://proceedings.mlr.press/v123/o-kelly20a.html
https://dl.acm.org/doi/10.5555/2969735.2969771
http://arxiv.org/abs/2001.10773
http://proceedings.mlr.press/v78/dosovitskiy17a.html
http://refhub.elsevier.com/S0925-2312(24)00932-9/sb8
http://refhub.elsevier.com/S0925-2312(24)00932-9/sb8
http://refhub.elsevier.com/S0925-2312(24)00932-9/sb8
http://dx.doi.org/10.1162/neco.1989.1.4.541
http://dx.doi.org/10.1007/s00500-020-04905-9
http://dx.doi.org/10.1007/s00500-020-04905-9
http://dx.doi.org/10.1007/s00500-020-04905-9
http://dx.doi.org/10.1016/j.eswa.2023.123111
https://www.sciencedirect.com/science/article/pii/S0957417423036151
https://www.sciencedirect.com/science/article/pii/S0957417423036151
https://www.sciencedirect.com/science/article/pii/S0957417423036151
http://dx.doi.org/10.1016/j.asoc.2024.111392
https://www.sciencedirect.com/science/article/pii/S1568494624001662
https://www.sciencedirect.com/science/article/pii/S1568494624001662
https://www.sciencedirect.com/science/article/pii/S1568494624001662
http://dx.doi.org/10.1109/IV51971.2022.9827271
http://dx.doi.org/10.1109/IV51971.2022.9827271
http://dx.doi.org/10.1109/IV51971.2022.9827271
http://arxiv.org/abs/2206.08129
http://dx.doi.org/10.1016/j.neucom.2021.11.093
https://www.sciencedirect.com/science/article/pii/S0925231221018051
https://www.sciencedirect.com/science/article/pii/S0925231221018051
https://www.sciencedirect.com/science/article/pii/S0925231221018051
http://arxiv.org/abs/2212.10156
http://arxiv.org/abs/1904.08980
http://arxiv.org/abs/1904.08980
http://arxiv.org/abs/1904.08980
http://arxiv.org/abs/2306.16927
http://arxiv.org/abs/2110.13629
http://arxiv.org/abs/2110.13629
http://arxiv.org/abs/2110.13629
http://arxiv.org/abs/1612.01079
http://dx.doi.org/10.3390/s19092064
http://dx.doi.org/10.1109/TIV.2020.3002505
http://arxiv.org/abs/1704.07911
http://dx.doi.org/10.23919/ACC.2017.7963716
http://dx.doi.org/10.23919/ACC.2017.7963716
http://dx.doi.org/10.23919/ACC.2017.7963716
http://dx.doi.org/10.48550/arXiv.1703.09744
http://dx.doi.org/10.48550/arXiv.1710.02410
http://dx.doi.org/10.48550/arXiv.1710.02410
http://dx.doi.org/10.48550/arXiv.1710.02410
http://dx.doi.org/10.1109/CVPR42600.2020.00718
http://dx.doi.org/10.1109/LRA.2020.2966414
http://arxiv.org/abs/1708.03798
http://dx.doi.org/10.1109/ITNEC48623.2020.9085185
http://dx.doi.org/10.1007/978-3-319-99885-5_3
http://arxiv.org/abs/1710.03804
http://dx.doi.org/10.1162/neco.1997.9.8.1735
https://proceedings.neurips.cc/paper_files/paper/2015/file/07563a3fe3bbe7e3ba84431ad9d055af-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2015/file/07563a3fe3bbe7e3ba84431ad9d055af-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2015/file/07563a3fe3bbe7e3ba84431ad9d055af-Paper.pdf


Neurocomputing 600 (2024) 128161S. Paniego et al.
[35] L. Liu, S. Lu, R. Zhong, B. Wu, Y. Yao, Q. Zhang, W. Shi, Computing systems
for autonomous driving: State of the art and challenges, IEEE Internet Things J.
8 (8) (2021) 6469–6486, http://dx.doi.org/10.1109/JIOT.2020.3043716.

[36] M.N. Sharath, B. Mehran, A literature review of performance metrics of au-
tomated driving systems for on-road vehicles, Front. Future Transp. 2 (2021)
http://dx.doi.org/10.3389/ffutr.2021.759125, URL https://www.frontiersin.org/
articles/10.3389/ffutr.2021.759125.

[37] L. Westhofen, C. Neurohr, T. Koopmann, M. Butz, B. Schütt, F. Utesch, B.
Neurohr, C. Gutenkunst, E. Böde, Criticality metrics for automated driving: A
review and suitability analysis of the state of the art, Arch. Comput. Methods
Eng. 30 (1) (2023) 1–35, http://dx.doi.org/10.1007/s11831-022-09788-7.

[38] D. Paz, P. jung Lai, N. Chan, Y. Jiang, H.I. Christensen, Autonomous vehicle
benchmarking using unbiased metrics, 2020, arXiv preprint arXiv:2006.02518.

[39] P.S. Chib, P. Singh, Recent advancements in end-to-end autonomous driving
using deep learning: A survey, 2023, arXiv preprint arXiv:2307.04370.

[40] E. Santana, G. Hotz, Learning a driving simulator, 2016, arXiv preprint arXiv:
1608.01230.

[41] Udacity’s Self-Driving Dataset contributors, Udacity’s self-driving dataset,
2022, https://github.com/udacity/self-driving-car. (Online; Accessed 10 January
2024).

[42] F. Yu, H. Chen, X. Wang, W. Xian, Y. Chen, F. Liu, V. Madhavan, T. Darrell,
BDD100K: A diverse driving dataset for heterogeneous multitask learning, 2018,
arXiv preprint arXiv:1805.04687.

[43] H. Caesar, V. Bankiti, A.H. Lang, S. Vora, V.E. Liong, Q. Xu, A. Krishnan, Y. Pan,
G. Baldan, O. Beijbom, nuScenes: A multimodal dataset for autonomous driving,
in: CVPR, 2020, http://dx.doi.org/10.48550/arXiv.1903.11027.

[44] Behavior Metrics contributors, Behavior metrics, 2022, https://github.com/
JdeRobot/BehaviorMetrics. (Online; Accessed 10 January 2024).

[45] S. Paniego, N. Paliwal, J. Cañas, Model optimization in deep learning based robot
control for autonomous driving, IEEE Robot. Autom. Lett. 9 (1) (2024) 715–722,
http://dx.doi.org/10.1109/LRA.2023.3336244.

[46] M. Bojarski, D. Del Testa, D. Dworakowski, B. Firner, B. Flepp, P. Goyal, L.D.
Jackel, M. Monfort, U. Muller, J. Zhang, X. Zhang, J. Zhao, K. Zieba, End to end
learning for self-driving cars, 2016, arXiv preprint arXiv:1604.07316.

[47] A. Buslaev, V.I. Iglovikov, E. Khvedchenya, A. Parinov, M. Druzhinin, A.A.
Kalinin, Albumentations: Fast and flexible image augmentations, Information 11
(2) (2020) 125, http://dx.doi.org/10.3390/info11020125.

[48] S. Ross, G.J. Gordon, J.A. Bagnell, A reduction of imitation learning and
structured prediction to no-regret online learning, 2011, arXiv preprint arXiv:
1011.0686.

[49] S. Paniego, R. Calvo-Palomino, J. Cañas, Behavior metrics: An open-source
assessment tool for autonomous driving tasks, SoftwareX 26 (2024) 101702,
http://dx.doi.org/10.1016/j.softx.2024.101702, URL https://www.sciencedirect.
com/science/article/pii/S2352711024000736.

[50] Open-source paper resources contributors, Open-source paper resources, 2023,
https://roboticslaburjc.github.io/publications/2023/enhancing_end_to_end_
control_in_autonomous_driving_through_kinematic_infused_and_visual_memory_
imitation_learning. (Online; Accessed 10 January 2024).
14
Sergio Paniego Blanco is a Ph.D. student at the Department
of Teoria de la Señal y de las Comunicaciones y Sistemas
Telemáticos y Computación at Universidad Rey Juan Carlos.
He completed his Masters in Artificial Intelligence at Uni-
versidad Politécnica de Madrid, Spain in 2019 and his B. in
Computer Engineering and Software Engineering at Univer-
sidad Rey Juan Carlos in 2018. His main research areas are
Autonomous Driving, Deep Learning, Model Optimization
and Robotics.

Roberto Calvo-Palomino currently serves as an Assistant
Professor at Rey Juan Carlos University, where he teaches
in the Software Robotics Engineering program. Previously,
he was a post-doctoral researcher at the Madrid Insti-
tute for Advanced Studies (IMDEA Networks), focusing his
research on collaborative systems for electromagnetic spec-
trum monitoring. He holds a Bachelor’s degree in Computer
Engineering from Rey Juan Carlos University and a Ph.D.
in Telematic Systems from Carlos III University of Madrid
and IMDEA Networks.

Throughout his academic and professional career,
Roberto has published over 30 articles in various journals,
11 of which are indexed in the Journal Citation Reports
(JCR). He has actively participated in 7 European and
4 national projects, and has led 13 technology transfer
projects with both national and European companies. He has
completed significant pre-doctoral internships; at the Uni-
versity of Ljubljana in Slovenia, he developed new methods
for the precise estimation of aircraft signal flight times, and
at the Swiss Defense Department, he worked on distributed
signal decoding using RTL-SDR receivers, focusing on the
security of IoT devices through artificial intelligence.

His current research interests include:
∙ Deep-learning-based autonomous navigation algo-

rithms for autonomous driving.
∙ Deep-learning-based algorithms for driver state detec-

tion and prevention.
∙ Embedded systems and security in IoT.

José-María Cañas-Plaza is tenured associate professor
at Universidad Rey Juan Carlos, where he leads the
RoboticsLabURJC. He received the M.S. and Ph.D. degrees
in telecommunications engineering from the Universidad
Politécnica de Madrid. He has done research in robotics
at Carnegie Mellon University and the Georgia Institute of
Technology. His research interests include AI/ML driven
Robotics, Computer Vision, and the engineering education
of those disciplines.

http://dx.doi.org/10.1109/JIOT.2020.3043716
http://dx.doi.org/10.3389/ffutr.2021.759125
https://www.frontiersin.org/articles/10.3389/ffutr.2021.759125
https://www.frontiersin.org/articles/10.3389/ffutr.2021.759125
https://www.frontiersin.org/articles/10.3389/ffutr.2021.759125
http://dx.doi.org/10.1007/s11831-022-09788-7
http://arxiv.org/abs/2006.02518
http://arxiv.org/abs/2307.04370
http://arxiv.org/abs/1608.01230
http://arxiv.org/abs/1608.01230
http://arxiv.org/abs/1608.01230
https://github.com/udacity/self-driving-car
http://arxiv.org/abs/1805.04687
http://dx.doi.org/10.48550/arXiv.1903.11027
https://github.com/JdeRobot/BehaviorMetrics
https://github.com/JdeRobot/BehaviorMetrics
https://github.com/JdeRobot/BehaviorMetrics
http://dx.doi.org/10.1109/LRA.2023.3336244
http://arxiv.org/abs/1604.07316
http://dx.doi.org/10.3390/info11020125
http://arxiv.org/abs/1011.0686
http://arxiv.org/abs/1011.0686
http://arxiv.org/abs/1011.0686
http://dx.doi.org/10.1016/j.softx.2024.101702
https://www.sciencedirect.com/science/article/pii/S2352711024000736
https://www.sciencedirect.com/science/article/pii/S2352711024000736
https://www.sciencedirect.com/science/article/pii/S2352711024000736
https://roboticslaburjc.github.io/publications/2023/enhancing_end_to_end_control_in_autonomous_driving_through_kinematic_infused_and_visual_memory_imitation_learning
https://roboticslaburjc.github.io/publications/2023/enhancing_end_to_end_control_in_autonomous_driving_through_kinematic_infused_and_visual_memory_imitation_learning
https://roboticslaburjc.github.io/publications/2023/enhancing_end_to_end_control_in_autonomous_driving_through_kinematic_infused_and_visual_memory_imitation_learning
https://roboticslaburjc.github.io/publications/2023/enhancing_end_to_end_control_in_autonomous_driving_through_kinematic_infused_and_visual_memory_imitation_learning
https://roboticslaburjc.github.io/publications/2023/enhancing_end_to_end_control_in_autonomous_driving_through_kinematic_infused_and_visual_memory_imitation_learning

	Enhancing end-to-end control in autonomous driving through kinematic-infused and visual memory imitation learning
	Introduction
	Kinematic-infused and visual memory end-to-end control based on imitation learning
	Memory-less deep learning architecture
	Deep learning architectures with visual memory
	Deep learning architectures with kinematic data as input
	Training

	Measuring end-to-end imitation learning for robot control
	Experiments
	Comparison of models using common ML metrics
	Behavior in test scenario with top speed regulation
	Studying the model without top speed limitation
	Taking the control of a fast-moving car
	Robustness to sensory manipulation
	Visual memory length and density comparison

	Conclusions
	CRediT authorship contribution statement
	Declaration of competing interest
	Data availability
	Acknowledgments
	References


