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Resumen

En los últimos años, hemos presenciado una explosión masiva de datos. Esto se debe prin-
cipalmente a la proliferación de dispositivos de sensores, al uso extendido de las redes sociales y
a la creciente digitalización de nuestras actividades diarias. Al mismo tiempo, conforme los sis-
temas en red contemporáneos crecen en tamaño e importancia, los datos que generan se vuelven
más complejos y diversos. Esto impulsa el rápido desarrollo de nuevos métodos y técnicas para
procesar conjuntos de datos que se definen sobre dominios irregulares (no euclidianos). Entre los
enfoques innovadores que han surgido para abordar los datos contemporáneos, uno especialmente
eficaz y prometedor implica modelar la estructura irregular subyacente mediante un grafo y luego
interpretar los datos como señales definidas en dicho grafo.

Esta perspectiva basada en grafos ha ganado popularidad rápidamente y ha tenido éxito en
diversos campos, como las redes sociales, geográficas, energéticas, de comunicación, financieras o
biológicas, entre otras. También ha atraído la atención de investigadores de diversos campos, como
la estadística, el aprendizaje automático y el procesamiento de señales. Esta forma de interpretar
señales con soporte irregular como señales definidas en grafos, y utilizar la estructura subyacente del
grafo para procesarlas, constituye el principio básico del procesado de señales definidas en el grafo,
también conocido como graph signal processing (GSP), un campo que está en rápido desarrollo.
El GSP se enfoca en crear nuevos modelos y algoritmos para el tratamiento de señales definidas en
el grafo, a menudo adaptando herramientas clásicas diseñadas originalmente para señales definidas
en un soporte regular como el tiempo o el espacio.

El GSP se fundamenta en la idea de que existe una estrecha relación entre las propiedades de
las señales y la estructura del grafo en el que se definen. Aprovechar eficazmente esta relación
es clave para el éxito de GSP. Una parte importante de la investigación en GSP se dedica a
comprender cómo las propiedades algebraicas y espectrales del grafo influyen en las propiedades de
las señales definidas en él. El graph-shift operator (GSO) juega un papel crucial en este análisis.
El GSO es una matriz dispersa que codifica la estructura del grafo, lo que lo convierte en un
elemento fundamental dentro del marco de GSP. Por ejemplo, el uso del GSO permite definir
diversas herramientas espectrales, como la transformada de Fourier en grafos. También facilita la
creación de operadores de señales definidas en el grafo más generalizados, como los sistemas de
filtros en grafos, que pueden expresarse como polinomios del GSO.

Antecedentes

GSP abarca una amplia gama de desafíos asociados con los grafos que enfrentamos en la
actualidad, lo que requiere abordar múltiples objetivos y hacer diversas suposiciones para resolver los
problemas en cuestión. A pesar de la diversidad de los problemas tratados, el concepto subyacente
de aprovechar la interacción entre grafos y señales sigue siendo de gran relevancia. Por ejemplo, la
investigación en este campo ha explorado ampliamente problemas como la identificación de filtros
de grafos, el muestreo de grafos y la reconstrucción de señales definidas en grafos. Estos esfuerzos
ilustran la amplitud de los retos que se están abordando en el campo de GSP. Sin embargo, un
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problema distinto pero igualmente fundamental para el enfoque de esta tesis se refiere a la inferencia
de topología de grafos, también conocido como network topology inference o graph learning. A
diferencia de los problemas del GSP anteriores, el problema de inferencia de topología de red centra
la atención en la estructura del grafo que se considera desconocida. En consecuencia, el objetivo
principal gira en torno a inferir la estructura del grafo basándose en un conjunto de observaciones
en los nodos. Este enfoque particular resalta la complejidad inherente del aprendizaje de grafos y
su relevancia en el contexto más amplio de la investigación sobre GSP.

Para estimar la estructura de una red a partir de datos, es crucial hacer ciertas suposiciones
sobre los datos, sobre el propio grafo o las posibles relaciones entre los datos y el grafo. En este
contexto, los enfoques existentes en la literatura pueden dividirse en tres grupos distintos. En la
primera categoría se engloban los modelos que realizan suposiciones sobre las características del
grafo. Muchos modelos populares asumen que los grafos considerados son dispersos, lo que refleja
la naturaleza típica de los grafos del mundo real, que tienden a tener conexiones limitadas en lugar
de una amplia interconectividad. Además, las distintas metodologías exploran diferentes marcos
estructurales para los grafos a la hora de evaluar las posibles conexiones entre nodos. Estos
marcos incluyen consideraciones sobre la interconectividad de los nodos, como las estructuras
comunitarias (similar a las redes sociales), las redes libres de escala (común en las redes de citas) o
los grafos jerárquicos (típicos de las estructuras organizativas), entre otros. La segunda categoría
está estrechamente relacionada con realizar suposiciones sobre los datos generados dentro de estas
redes. En este caso, los enfoques establecidos se centran en las propiedades de las señales, como
correlación, independencia condicionada, características espectrales o smoothness, por nombrar
algunas. Estas suposiciones tratan de modelar las propiedades de las señales del mundo real y
se utilizan para formular modelos matemáticos que pretenden servir para estimar la topología del
grafo subyacente. La tercera categoría tiende un puente entre el grafo y las señales considerando
las propiedades de difusión de las señales a través del grafo. Para entender la relación entre las
señales y la estructura del grafo, algunos enfoques emplean modelos de ecuaciones estructurales
dispersas o asumen que las señales son estacionarias en el grafo. Considerar estas características
de la señal permite explotar la estructura matemática del problema en cuestión obteniendo la
estimación de la topología del grafo deseada.

Además de la modelización matemática de la señal, es esencial considerar varios escenarios del
mundo real que surgen en el análisis de redes. Uno de los escenarios comunes implica suponer que
las señales definidas en el grafo contienen ruido. Por lo tanto, al inferir la estructura de la red a
partir de los datos disponibles, es crucial incorporar esta información para obtener una estimación
más precisa del gafo subyacente. En muchos casos tener en cuenta que las señales contienen ruido
no es suficiente para obtener una estimación adecuada de la red, ya que los escenarios que se nos
presentan en el mundo real son mucho más complejos. Uno de estos escenarios que ocurre con
frecuencia en el mundo real es el acceso limitado a los datos de los nodos de una red o la falta de
acceso a datos de algunos nodos. Esto es común en redes privadas, donde sólo se puede acceder
a la información de los nodos que pertenecen a la red, pero los datos asociados a esos nodos
pueden verse afectados por nodos no observados. En estos casos, la estimación del grafo obtenida
simplemente al tener en cuenta los datos asociados a los nodos observados podría no representar
de manera fiable las conexiones realmente existentes entre los nodos debido a la presencia de
nodos ocultos. En estos casos surge la necesidad de diseñar métodos de inferencia de topología
que sean capaces de modelar este tipo de escenarios para incorporar esta información adicional y
obtener una estimación del grafo más acorde a la realidad. Otro escenario muy común que se nos
puede presentar es cuando tenemos acceso a datos de redes similares. Un ejemplo típico son los
datos asociados a un mismo grupo de individuos en distintas redes sociales. En esta situación, la
opción más común es inferir la estructura de cada uno de esas redes por separado. El problema
viene cuando la cantidad de datos asociados a cada una de las redes difiere lo que podría hacer
que la estimación de los grafos no sea muy buena si el número de señales es reducido. En estos
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casos surge la necesidad de diseñar modelos que estimen la estructura de los grafos subyacentes
aprovechando las similitudes entre las redes, y de esta manera mejorar la estimación de los grafos
que tengan pocos datos asociados.

Objetivos

El propósito fundamental de esta tesis consiste en abordar diversos desafíos relacionados con
la estimación de la topología de redes a partir de conjuntos de datos generados en dichas redes.
Para llevar a cabo este objetivo, se pretende emplear herramientas pertenecientes al campo de
GSP, con el fin de modelar estos problemas de manera más realista. Posteriormente, se propon-
drán algoritmos para dar solución a los desafíos identificados. En el ámbito amplio de problemas
abordados por GSP, este trabajo de tesis se enfocará específicamente en dos de ellos.

Inferencia de Topología de Red Basada en Propiedades de la Señal (P1). Los enfoques
existentes en la literatura a menudo asumen propiedades específicas de las señales de grafos,
lo que puede limitar su aplicabilidad a datos del mundo real que presentan unas características
más complejas. Para mejorar la precisión de las estimaciones de los grafos, es crucial desarrollar
modelos de datos más flexibles que puedan capturar una variedad más amplia de características
de las señales.

Inferencia de Topología de Red Basada en Escenarios del Mundo Real (P2). Muchos
modelos matemáticos utilizados para inferir la estructura del grafo, se construyen sobre escenarios
simplificados del mundo real (escenarios con un solo grafo, observación completa de los nodos
de la red, etc.) lo que permite proponer soluciones manejables desde el punto de vista teórico
y práctico. Sin embargo, estas simplificaciones pueden no reflejar exactamente las observaciones
del mundo real. Por ello surge la necesidad de desarrollar modelos de inferencia de grafos que
consideren las complejidades inherentes a diversos escenarios del mundo real, como el acceso
limitado a información de nodos específicos o la adquisición de datos en redes con características
similares.

El objetivo de esta tesis consiste en enfrentar los desafíos delineados anteriormente, abordándo-
los desde la perspectiva de GSP. A continuación, se exponen cada uno de los objetivos considerados,
detallando los métodos propuestos como solución a los problemas tratados.

(O1) Modelado de las señales definidas en el grafo. El primer objetivo se enfoca en abor-
dar el problema de modelado de señales descrito en (P1). Proponemos un método innovador de
aprendizaje de grafos para estimar una red a partir de datos de señales observadas. Las contribu-
ciones clave incluyen: 1) la creación de un enfoque de aprendizaje de grafos asumiendo que los
datos observados son Gaussianos y estacionarios en el grafo, 2) la formulación de un problema de
optimización conjunta que estima el grafo deseado y mejora la estimación de la matriz de precisión
del proceso Gaussiano, y 3) el diseño de un algoritmo eficiente para abordar la optimización no
convexa en el problema propuesto además de los resultados de convergencia del algoritmo prop-
uesto a un punto estacionario del problema original. Este enfoque es más versátil que los métodos
comparativos, ya que considera tanto la Gaussianidad como la estacionariedad, siendo adecuado
para una gama más amplia de escenarios. Ofrece ventajas como mejor rendimiento con menos
muestras, mayor robustez frente al ruido y compatibilidad con enfoques estadísticos clásicos.

(O2) Modelado conjunto de las señales y del escenario.
El segundo objetivo combina el modelado de señales con el modelado de escenarios. Aquí,

abordamos el desafío de inferir la topología del grafo a partir de señales definidas en el grafo
que son smooth y estacionarias en presencia de nodos ocultos. Los conceptos de suavidad y
estacionariedad se refieren al modelado de señales, mientras que la presencia de nodos ocultos se
relaciona con el modelado de escenarios. Los conceptos de modelado de señales se han aplicado
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en trabajos anteriores por separado cuando todos los nodos son observados, pero su adaptación
a variables ocultas no ha sido explorada. Para cerrar esta brecha, investigamos el impacto de
variables ocultas (latentes) al asumir señales definidas en el grafo son smooth y estacionarias. A
continuación, formulamos el problema de inferencia de topología de la red como una optimización
con restricciones, considerando explícitamente tanto el modelado de señales como el de escenarios.
Para la parte algorítmica, presentamos un método de factorización de matrices de bloques que
aprovecha la dispersión del grafo y las características de baja dimensionalidad que surgen de la
presencia de nodos ocultos. Por último, para lidiar con la no convexidad del problema original,
presentamos varias formulaciones que incluyen relajaciones convexas para manejar los términos de
dispersión y baja dimensionalidad.

(O3) Modelado de escenarios del mundo real. En el tercer objetivo nos centramos en el
modelado del escenario fijando el modelo de señal a estacionarias. Abordamos el desafío de aprender
múltiples grafos relacionados en presencia de variables ocultas. Presentamos un enfoque novedoso
que amplía el aprendizaje conjunto de grafos bajo observaciones que son estacionarias en el grafo.
Formulamos un problema de optimización convexa para aprender la topología de múltiples grafos
relacionados con variables ocultas. Empleamos un método de regularización de grupo inspirado
en Lasso para capturar la similitud entre nodos ocultos y observados, y proporcionamos garantías
teóricas para la recuperabilidad de los grafos estimados. Demostramos las ventajas de incorporar
el modelado de escenarios en nuestro enfoque mediante comparaciones de rendimiento con las
alternativas existentes.

Los tres objetivos abordan el desafío de estimar la estructura de grafos a partir de datos
definidos sobre esta estructura, considerando diferentes escenarios. El primer objetivo (O1) se
enfoca en desarrollar un método más general para estimar la topología del grafo en una variedad
más amplia de situaciones del mundo real, donde los métodos actuales pueden tener dificultades
debido a la complejidad de los datos o la escasez de muestras disponibles. Por otro lado, (O2) y
(O3) continúan explorando el modelado de señales del grafo en entornos más complejos, donde la
información completa de los nodos puede no estar disponible o hay múltiples señales disponibles
asociadas a redes similares. Considerar estos escenarios más realistas mejora la calidad de las redes
estimadas y las hace más útiles para una variedad de aplicaciones futuras que dependen de la
estructura de la red.

Metodología

En la elaboración de este trabajo de tesis, se ha seguido un enfoque metódico orientado a
la búsqueda de soluciones óptimas. Para cada problema específico, nos hemos dedicado a con-
struir modelos matemáticos que capturen la complejidad inherente del problema. Posteriormente,
traducimos estos modelos matemáticos en formulaciones rigurosas de problemas de optimización.
Debido a la complejidad inherente de las tareas tratadas, es común que los problemas de op-
timización resulten ser no convexos. Por consiguiente, nuestra atención se enfoca en proponer
relajaciones convexas y/o emplear algoritmos iterativos para alcanzar soluciones (sub)óptimas.
Hemos demostrado de manera matemática la convergencia de los algoritmos iterativos hacia pun-
tos estacionarios cuando resulta pertinente.

Una vez que los algoritmos correspondientes han sido desarrollados, resulta imprescindible
llevar a cabo una evaluación numérica de su rendimiento y compararlo con diversas alternativas
disponibles. Además de la evaluación utilizando datos sintéticos, es crucial aplicar los algoritmos a
conjuntos de datos reales para comprender su potencial en escenarios prácticos. Finalmente, para
otorgar una mayor visibilidad al trabajo realizado y difundir los resultados obtenidos, el código
desarrollado se ha compartido en repositorios en línea en GitHub.
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Resultados

El trabajo llevado a cabo en esta tesis se ha plasmado en la redacción de tres artículos para
revistas JCR (uno ya publicado, otro aceptado y otro en proceso de revisión), así como en dos
publicaciones en conferencias internacionales. También se ha contribuido en la elaboración de
otros cuatro artículos de conferencia. Aunque no se consideren contribuciones explícitas de esta
tesis, dos de ellos han influido en el desarrollo de los artículos de revista como trabajo previo, y
los otros dos se consideran como trabajo futuro. A continuación, se presenta un resumen breve de
las publicaciones. Estas publicaciones están organizadas en relación directa con los objetivos de la
tesis mencionados previamente.

Las contribuciones relacionadas con el objetivo (O1) incluyen [1] y [2]. En trabajos previos
de la literatura [3, 4], se ha abordado el problema de inferir la topología de grafos asumiendo
propiedades específicas para las señales definidas en el grafo. En [3], se propuso un método que
arroja buenos resultados en la estimación de los grafos en escenarios con un número reducido
de muestras. Sin embargo, este método es poco expresivo debido a que asume un modelo muy
específico para las señales definidas en el grafo. Por otro lado, [4] propuso un modelo de señal
más general, pero requiere más muestras para obtener una estimación precisa del grafo. Nuestra
propuesta aprovecha las ventajas de ambas alternativas al ser más general que [3] desde el punto
de vista del modelado de señal y más robusta que [4] en la estimación del grafo en escenarios con
un número reducido de muestras.

La contribución de [5] está relacionada tanto con (O1) como con (O2) debido a que tiene
en cuenta el modelado de la señal y del escenario considerado. En este trabajo proponemos el
modelado de la señal asumiendo estacionariedad y también el modelado del escenario teniendo
en cuenta la presencia de nodos ocultos en el grafo. Hemos demostrado que tener en cuenta la
presencia de nodos ocultos es crítico para la estimación del grafo en muchos escenarios. A contin-
uación, ampliamos el enfoque de inferencia de topología considerando un modelado de señales más
intrínseco y cercano a la realidad y, de nuevo, validando los resultados y mostrando la importancia
de considerar tanto la presencia de nodos ocultos como el uso de un enfoque de modelado de
señales más complejo.

Por último, las contribuciones de [6] y [7] están relacionadas con (O3). En este trabajo, nos
enfocamos en la modelización de escenarios y consideramos un modelo general para las señales
asumiendo que son estacionarias en el grafo. Nuestro interés radica en modelar escenarios comple-
jos donde tenemos acceso a datos de varias redes relacionadas y queremos estimar la estructura de
estas redes, considerando la presencia de nodos ocultos. Esta configuración es más compleja, ya
que busca adaptarse a escenarios del mundo real y requiere abordarse mediante enfoques sofisti-
cados, siendo necesario realizar una serie de suposiciones para obtener una estimación de la red
acorde a la realidad. El método propuesto utiliza la similitud entre varias redes y también aprovecha
esa similitud para los nodos ocultos de la red lo que añade más estructura al problema proporcio-
nando mejores resultados de estimación de los grafos. Este enfoque ha demostrado ventajas en
comparación con los algoritmos existentes desde dos perspectivas: una, al considerar la presencia
de nodos ocultos, y la otra, al contemplar múltiples redes similares.

Conclusiones

En este trabajo de tesis, se ha contribuido a establecer los fundamentos de un enfoque sólido
para dar solución a problemas clásicos de GSP, considerando (i) la naturaleza de los datos definidos
en los nodos de la red y ii) el escenario a tener en cuenta a la hora de estimar la topología del
grafo. La primera categoría de problemas está relacionada con el objetivo (O1) y parte del objetivo
(O2). La segunda categoría está relacionada con el objetivo (O3) y parte del objetivo (O2).

En primer lugar, en el capítulo 3 se ha presentado un método de estimación de grafos el cual
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tiene en cuenta un modelo de señal más complejo que los considerados hasta la fecha en otros
métodos de la literatura. Se ha propuesto una relajación convexa al problema original que no lo
era, y además se ha diseñado un algoritmo eficiente que permite utilizar el método propuesto en
escenarios que presenten redes con un gran número de nodos. El capítulo 4 se ha considerado
un entorno en el cual se ha modelado tanto la señal como el escenario. En el caso se la señal,
se ha asumido que las señales son smooth y estacionarias en el grafo y que el escenario presenta
nodos ocultos en los cuales no tenemos acceso a la información. El método propuesto consiste en
inferir el grafo teniendo en cuenta el modelo de señal considerado y además la presencia de nodos
ocultos. Al tratar de lidiar con un entorno tan complejo, el problema resultante es no convexo, lo
que nos impulsó a proponer una relajación convexa que nos permite resolver el problema de manera
iterativa y además garantizamos la convergencia del algoritmo propuesto a un punto estacionario
del problema original. Por ultimo en el capítulo 5 se ha presentado un problema de inferencia
de topología a partir de señales definidas en redes similares teniendo en cuenta la presencia de
variables ocultas. El método propuesto consigue estimar la topología de varios grafos asumiendo
que son similares y considerando la presencia de nodos ocultos. También hemos demostrado de
manera teórica bajo que condiciones se puede recuperar la topología de los grafos considerados.

Adicionalmente, la eficacia y eficiencia de los métodos implementados ha sido testeada de
manera extensiva mediante una serie de experimentos sintéticos y también en escenarios con datos
reales. El objetivo de los experimentos ha sido demostrar la importancia a la hora de estimar la
topología de la red del uso de modelados más complejos tanto para las señales definidas en los
grafos de la red como para el propio modelado de los escenarios considerados para que se acerquen
lo máximo posible a la realidad.
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Abstract

With the proliferation of large and diverse systems, modern data is becoming more widespread,
complex, and characterized by a non-regular structure. The complexity of data generated in these
networks poses a challenge to classical processing methods for extracting meaningful information
due to its irregular support. A widely used strategy to deal with data generated on an irregular
domain is to employ Graph Signal Processing (GSP), which models network structures using graphs
and interprets the data generated by the network as graph signals. However, in many cases, the
underlying graph structure is unknown and must be estimated from the data in order to gain
valuable insights. Existing methods in the literature estimate graph topology by considering various
assumptions about both the data and the graph structure. Unfortunately, these assumptions are
often not sufficient to deal with the complex nature of real-world data and different scenarios,
such as the presence of hidden nodes or multiple networks. To overcome this limitation, this
thesis proposes several approaches that consider more sophisticated assumptions for the network
structure and the data generated in these networks. The goal is to improve graph estimation by
better capturing/modeling the complexity of the data and addressing specific real-world situations
related to network structure.

In the first part of this thesis, we delve into the problem of estimating the network structure from
data while considering more elaborate approaches for modeling the networked data. Conventional
methods for estimating graphs often assume specific/simple signal models such as sparse (direct
or partial) correlations, which may not be suitable for a wide range of scenarios due to actual
data complexity. To address this issue, we develop methods capable of handling common real-
world situations and improve graph estimation by generalizing the signal modeling assumed in
existing approaches from the literature. To solve these problems, which are usually non-convex
and computationally expensive, we propose the use of convex relaxations and the implementation
of efficient algorithms. We show that these adaptations improve graph estimation compared
to existing alternatives, reduce time complexity, and enable algorithmic suitability for network
structure estimation, especially in scenarios with large numbers of nodes.

In the second part of the thesis, our focus shifts to more complex situations that are prevalent in
real-world scenarios. One of the common situations we address is learning the topology of a graph
by assuming that there may be hidden nodes whose information is not available. Nevertheless,
they may influence the observed nodes and the estimated connections between them. We propose
several optimization-based approaches that take advantage of the considered assumptions regarding
the nature of the graph data and the presence of hidden nodes. Due to the complexity of the
considered scenarios, the resulting problems are often ill-conditioned and non-convex. We address
this challenge by proposing convex approximations and, in some cases, efficient algorithms, along
with convergence results and theoretical guarantees of graph recovery. In particular, we improve the
estimation of the underlying graph by exploiting the inherent structure of the problem formulation
that results from the considered assumptions (e.g., promoting sparsity by using the reweighted ℓ1
norm, accounting for the influence of hidden nodes by using low-rank matrix factorization).

Lastly, we extend our work focusing on scenarios where we learn a graph from data generated
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in multiple similar networks by considering the presence of hidden nodes in each network. In this
case, we propose mathematical models that estimate the multiple graphs by i) assuming that the
signals in the graph are stationary, ii) modeling the influence of hidden nodes, and iii) exploiting
the similarities between hidden and observed nodes across networks. The different assumptions
are used to propose a mathematical formulation that exploits the structure of the problem and
thus improves the accuracy of the estimated graphs. On the other hand, all these considerations
lead to highly non-convex formulations, for which we propose relaxed approaches together with
theoretical guarantees of graph recovery.

In summary, this thesis emphasizes the importance of well-modeling signals and realistic scenar-
ios for accurate graph estimation. Through theoretical developments and experimental validations
using synthetic and real-world datasets, we demonstrate the efficacy of our methods. Our find-
ings highlight the significance of nuanced signal and scenario modeling, showcase methodological
strengths and weaknesses, and underscore the potential of our approaches in addressing real-world
problems.
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Chapter 1

Introduction

To provide context for the work developed in this thesis, we begin by overviewing the general
topic of graph learning and graph-based data models, including the practical implications of dealing
with graph data in real-world scenarios. By exploring the intricacies of the field, we aim not
only to motivate our work but also to highlight the critical need for advancing practical data
models that address the complexities of graph-related applications. As we move forward, the
chapter outlines the primary objectives that guide this thesis. We then provide a list of the
publications associated with the thesis, highlighting their specific contributions and how they
address the challenges identified in previous sections. We conclude the chapter with a brief preview
of the chapters to come, providing the reader with a roadmap for the dissertation.

1.1 Motivation and context

In recent years, we have witnessed an explosion of data availability, largely driven by the
ubiquitous deployment of sensor devices, the extensive utilization of social media networks, and the
relentless digitization of our everyday activities. Simultaneously, with the expansion and significance
of contemporary networked systems, the data they generate become increasingly complex and
heterogeneous. This drives the rapid evolution of new methods and techniques for processing
datasets defined over irregular (non-Euclidean) domains [8–11]. One of the innovative methods
that has surfaced to tackle modern data involves modeling the underlying irregular structure using
a graph and subsequently interpreting the data as signals defined on this graph, often termed as
graph signals. The approach based on graphs has quickly garnered widespread attention and has
proven successful in analyzing data from various domains such as social, geographical, financial,
energy, communication, and biological networks, among others [12–14]. Researchers in fields as
diverse as statistics, machine learning, and signal processing have also become interested in this
type of approach.

The core principle of graph signal processing (GSP), an evolving field [15–18], involves in-
terpreting signals with irregular support as graph signals and subsequently utilizing the underlying
graph structure to process these signals effectively.. GSP focuses on creating new models and
algorithms for handling graph signals, often by extending classical tools originally designed for
signals with regular support in time or space. GSP operates on the fundamental premise that
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signal attributes are closely related to the underlying structure of the graph in which they reside.
Effectively exploiting this relationship is key to the success of GSP. A significant amount of GSP
research is devoted to understanding how the algebraic and spectral properties of the graph influ-
ence the properties of graph signals. The graph shift operator (GSO) plays an important role in
this analysis. The GSO is a square matrix with a sparsity pattern that encodes the graph structure,
making it a fundamental element within the GSP framework [15,19]. For example, the use of the
GSO allows the definition of various spectral tools such as the graph Fourier transform [20–22]. It
also facilitates the creation of more generalized graph signal operators such as graph filters, which
can be expressed as polynomials of GSO [19,23–25].

Many graph-related challenges fall under the umbrella of GSP, reflecting the diversity of goals
and assumptions involved in tackling these problems. Despite their diversity, the underlying con-
cept of exploiting the interplay between graphs and signals remains a constant theme. For example,
research has extensively explored problems such as graph filter identification [23, 24, 26, 27] and
graph sampling and signal reconstruction [28–35]. These efforts illustrate the wide range of chal-
lenges that are being addressed in the field of GSP. However, a different but equally fundamental
problem that is central to the focus of this thesis concerns network topology inference, also known
as graph learning [4, 36–40]. Unlike previous GSP problems, network topology inference focuses
attention on the elusive topology of the graph, which in many relevant applications is not known.
Consequently, the first step to putting forth a graph-based data methodology is to identify (infer)
the structure of the graph using prior information, nodal observations, or a combination of those.
This distinct focus underscores the intricate nature of graph learning and its importance within the
broader landscape of GSP research.

In order to infer the topology of a graph from data, it is crucial to make basic assumptions
about the data, the graph itself, and the potential relationships between them. In this context,
existing approaches in the literature can be divided into three different groups. The first category
of assumptions revolves primarily around the characteristics of the graph. Many popular models
assume that the graphs under consideration are sparse, reflecting the typical nature of real-world
networks, which tend to have limited connections rather than dense interconnectivity. In addition,
different methodologies explore various structural frameworks for graphs when evaluating potential
connections between nodes. These frameworks include considerations of node interconnectivity
such as community structure (similar to social networks), scale-free architecture (common in cita-
tion networks), or hierarchical graphs (typical of organizational structures). The second category
of assumptions is closely related to the data generated within these networks. Here, established
approaches focus on signal properties such as correlation, conditional independence, spectral char-
acteristics, or smoothness, to name a few. These properties serve as basic assumptions and are
used to formulate mathematical frameworks that aim to reveal the underlying graph topology. The
third category of assumptions bridges the gap between the graph and the signals by considering dif-
fusion properties. To define a model that relates the signal to the graph structure, sparse structural
equation models [41] assume that the signal at a node can be explained as a linear combination
of the signals at its neighbors. A more general approach, proposed in [4], is to assume that the
signals in the graph of interest are stationary so that they can be modeled as the output of a graph
filter whose input is zero mean white noise. These assumptions about the relationship between
the graph and the signals are used to exploit the mathematical structure of the problem and help
to better estimate the desired graph topology.

Beyond the mathematical modeling of the signal, it is critical to consider several real-world
scenarios that arise in network analysis. One important factor to consider is the limited access to
data from all nodes in a network. Often, we only have access to data from a subset of nodes. In
such cases, it becomes imperative to incorporate this additional information into our models to
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improve the accuracy of graph estimation. Another scenario arises when we have access to data
from similar networks. In this situation, we can use this information to build a model that exploits
the similarities between networks, thereby improving the accuracy of network estimation.

With this in mind, this thesis addresses several current challenges that are prevalent in real-
world networks and that existing approaches struggle to solve optimally. Here is a list of these
problems, for which we will present the proposed solutions in the following sections.

• Problem 1 (P1). Network topology inference using generalized signal models. The
challenge of this problem is that existing approaches in the literature are often tailored to
classical statistical properties of graph signals (such as correlation or conditional indepen-
dence). While these approaches have theoretical support and perform admirably in scenarios
where signals conform to predefined models, real-world data is oftentimes more complicated
and may not strictly adhere to these models. Consequently, there is a pressing need to
develop more generalized data models that, while preserving some of the statistical rigor,
have the flexibility to effectively capture a wider range of signal characteristics. By doing so,
we can improve the accuracy of graph estimates and provide more robust insights into the
underlying network structure.

• Problem 2 (P2). Network topology inference beyond single graphs with fully ob-
served nodes. Many of the existing graph-learning works in the literature ignore the lim-
itations of the datasets at hand so that a simplified mathematical model (leading to more
tractable solutions) can be used. However, these simplifications can give rise to graph esti-
mates that do not accurately match observations in the real world. To address this, there is
a need to design graph inference models that also consider some of the challenges present
in various real-world scenarios. Two that we analyze in this dissertation are: limited (or
lack of) access to observations at a subset of nodes, and limited observations coming from
related (but not identical) networks. Developing inference models that can account for such
real-world nuances is essential for producing more reliable and applicable network topology
estimates.

1.2 Objectives

Our goal is to address the challenges outlined in the previous section by approaching them
from a robust GSP perspective. Here, we present our objectives for dealing with each problem and
elaborate on the proposed approaches designed as solutions:

• Objective 1 (O1). This objective tackles the signal modeling problem described in (P1).
To achieve this goal, we propose a novel graph-learning method for estimating a network
from observed signal data. The key contributions encompass: 1) building a novel graph-
learning approach based on the assumption that the observed data is both Gaussian and
stationary on the graph, 2) formulating a joint optimization problem that not only estimates
the desired graph but also enhances the precision matrix estimation of the Gaussian process,
and 3) designing an efficient algorithm with convergence guarantees to address the non-
convex optimization in the joint problem. The proposed approach is more versatile than
the methods we compare to, as it accounts for both Gaussianity and stationarity, making it
suitable for a broader range of scenarios. It offers benefits such as improved performance
with fewer samples, enhanced robustness to noise, and compatibility with classical statistical
approaches.
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• Objective 2 (O2). The second objective combines signal modeling with scenario modeling.
Here, we address the challenge of network topology inference while assuming smooth and
stationary graph signals in the presence of hidden nodes. The concepts of smoothness
and stationarity pertain to signal modeling, while the presence of hidden nodes relates to
scenario modeling. Signal modeling concepts have been successfully applied separately when
all nodes are observed, but their adaptation to hidden variables has not been explored. To
bridge this gap we investigate the impact of hidden (latent) variables when assuming smooth
and stationary graph signals. Next, we formulate the network topology inference problem as
a constrained optimization, explicitly considering both signal and scenario modeling. For the
algorithmic part, we introduce a block matrix factorization method that exploits the sparsity
and low-rank characteristics arising from the presence of hidden nodes. Lastly, in order to
deal with the non-convexity of the original problem, we present various formulations which
include convex relaxations to handle the sparsity and low-rank terms.

• Objective 3 (O3). The third objective focuses on dealing with observability limitations in
real-world setups, while keeping the signal modeling restricted to stationary signals. Specif-
ically, we address the challenge of learning multiple related graphs in the presence of hidden
variables. Existing methods for joint graph learning either assumed complete observations
or focused on learning a single graph with hidden nodes, but none handled the scenario of
multiple graphs with hidden variables under graph-stationary observations. To address this,
we introduce a new approach that jointly estimates similar graphs under the assumption of
stationary observations in the presence of hidden variables. Next, we propose an approach
to approximate the proposed nonconvex problem by incorporating convex relaxations. Re-
garding the algorithmic details, we employ a regularization method inspired by group Lasso
to capture the similarity between hidden and observed nodes, promoting graph similarity
among all nodes. We also provide theoretical guarantees for the recoverability of the esti-
mated graphs in the presence of hidden nodes. Finally, we compare the performance of our
algorithm with existing alternatives, demonstrating the advantages of incorporating scenario
modeling into our problem formulation.

All three objectives aim to address the challenge of estimating network structure from available
data in different contexts. Objective (O1) focuses primarily on understanding the assumptions re-
garding the relationship between signals and the graph. The goal is to develop a more versatile
method capable of estimating graph topology in a wider range of real-world scenarios. This is par-
ticularly relevant in situations where existing methods struggle due to complicated data structures
or limited available samples, preventing meaningful recovery of network structure. Objectives (O2)
and (O3) extend this focus on graph signal modeling to more complex and realistic environments.
These scenarios present challenges such as inaccessible information associated with certain nodes
or dealing with multiple node data associated with similar networks. By considering these more
complicated settings, the goal is to improve the quality of the estimated networks, making them
more applicable to various future tasks that rely on or are influenced by the network structure.

Beyond the main objectives, a goal of this thesis is to fill the gap between theoretical methods
proposed in the literature for network topology inference and more challenging real-world scenarios.
The intention is to improve network estimation by addressing more general and realistic scenarios
in the context of network topology inference problems. Another side objective is to assess the
performance of the proposed methods both from a theoretical and practical point of view, to
further demonstrate the value of the proposed approaches.
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1.3 Summary of contributions

This section provides a compilation of publications together with concise summaries. The
publications are structured around the findings and contributions that directly relate to the posed
problems and objectives outlined in the preceding section.

• The papers related to (O1) are [1] and [2]. Previous works [3, 4] addressed the problem of
inferring the network topology by assuming certain properties of the graph signals. In [3],
the graph learning scheme performs well for small sample scenarios with the drawback of
assuming a more confined signal model. On the other hand, [4] proposes a more general
signal model, but requires more samples for an accurate graph estimation. Our proposed
approach takes advantage of both alternatives and ends up being almost as general as [4],
subsuming [3] as a particular case, and requiring far fewer samples than [4]. The publications
related to (O1) are listed below.

[1] A. Buciulea and A. G. Marques, “Graph learning from Gaussian and stationary graph
signals,” in IEEE International Conference on Acoustics, Speech and Signal Processing
(ICASSP). IEEE, 2023, pp. 1–5. DOI:10.1109/ICASSP49357.2023.10096413.

[2] A. Buciulea, J. Ying, A. G. Marques, and D. P. Palomar, “Polynomial Graphical Lasso:
Learning Edges from Gaussian Graph-Stationary Signals,” in IEEE Transactions on
Signal Processing (under review, available arXiv preprint arXiv:2404.02621).

• The contribution [5] address both (O1) and (O2). In this work, we explored three options
for signal modeling: 1) smooth, 2) stationary, and 3) smooth and stationary graph signals.
In addition, we considered the presence of hidden nodes in the graph. Then, we proposed
mathematical models for each of these scenarios and developed (bi-)convex optimization
approaches to estimate the topology of the graph based on the properties of the corresponding
signals. The designed approaches were accompanied by theoretical guarantees of convergence
to the solution of the original problem. We validated the proposed approaches through
extensive experiments where we highlighted the importance of considering both the presence
of hidden nodes and more sophisticated signal modeling approaches. The related publication
is listed below.

[5] A. Buciulea, S. Rey, and A. G. Marques, “Learning graphs from smooth and graph-
stationary signals with hidden variables,” IEEE Transactions on Signal and Information
Processing over Networks, vol. 8, pp. 273–287, 2022.
DOI:10.1109/TSIPN.2022.3161079.

• Lastly, the contributions from [6] and [7] are related to (O3). In these works, we focused on
challenging observations setups while considering graph stationary signals. More specifically,
our goal is to address scenarios with a limited number of signals per graph but where data
from multiple related networks is available. We seek to estimate the structure of these
networks jointly, taking into account the potential presence of hidden nodes. This setup
presents a higher level of complexity as it aims to capture what happens in various real-world
scenarios, necessitating the use of more advanced approaches and multiple assumptions in
order to achieve an accurate network topology estimation. A key ingredient in our approach
involves exploiting the similarity between the various networks not only for the observed but
also for the hidden nodes. The publications related to (O3) are listed below.
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[6] S. Rey, M. Navarro, A. Buciulea, S. Segarra, and A. G. Marques, “Joint graph learning
from Gaussian observations in the presence of hidden nodes,” in Asilomar Conference
on Signals, Systems, and Computers. IEEE, 2022, pp. 53-57.
DOI: 10.1109/IEEECONF56349.2022.10051977

[7] M. Navarro, S. Rey, A. Buciulea, A. G. Marques, and S. Segarra, “Joint network topol-
ogy inference in the presence of hidden nodes,” IEEE Transactions on Signal Processing
(accepted April 2024, available arXiv preprint arXiv:2306.17364.)

While not included explicitly in this thesis, additional works in the context of learning graphs,
hypergraphs and simplicial complexes from signals carried out by the author during his PhD include

[42] A. Buciulea, S. Rey, C. Cabrera, and A. G. Marques, “Network reconstruction from graph-
stationary signals with hidden variables,” in Asilomar Conference on Signals, Systems, and
Computers. IEEE, 2019, pp. 56–60. DOI:10.1109/IEEECONF44664.2019. 9048913.

[43] S. Rey, A. Buciulea, M. Navarro, S. Segarra, and A. G. Marques, “Joint inference of multiple
graphs with hidden variables from stationary graph signals,” in IEEE International Confer-
ence on Acoustics, Speech and Signal Processing (ICASSP). IEEE, 2022, pp. 5817–5821.
DOI:10.1109/ICASSP43922.2022.9747524.

[44] A. Buciulea, E. Isufi, G. Leus, and A. G. Marques, “Learning Graphs and Simplicial Complexes
from Data,” in IEEE International Conference on Acoustics, Speech and Signal Processing
(ICASSP). IEEE, 2022, pp. 9861-9865. DOI:10.1109/ICASSP48485.2024.10446559

[45] A. Buciulea, E. Isufi, G. Leus, and A. G. Marques, “Learning the Topology of a Simplicial
Complex Using Simplicial Signals: A Greedy Approach,” in IEEE Sensor Array and Multi-
channel Signal Processing Workshop (SAM 2024). (Accepted)

Although these papers are not considered as explicit contributions to this thesis, [42, 43] have
influenced the development of journal articles as previous work, while [44,45] are considered future
work.

1.4 Outline of the dissertation

The rest of this document is structured as follows: Chapter 2 presents fundamental definitions
and concepts of GSP that will be utilized throughout the thesis. Chapters 3, 4 and 5 address the
objectives identified in (O1), (O2) and (O3), respectively, encompassing the technical contribution
of this work. More specifically, Chapter 3 introduces the problem of learning a graph from noisy
nodal observations under the assumption that the graph signals at hand are Gaussian distributed
and stationary on the sought graph. Chapter 4 focuses on the case where some of the nodes
(and, accordingly, their signals) are never observed and, as a result, they are modelled as hidden
nodes. In this scenario, the goal is to learn the graph (links) between the observed nodes under
the assumptions of graph smoothness or graph stationarity. Chapter 5 goes one step further and
considers the case where multiple graphs need to be learned and hidden nodes are present in all
of them. Lastly, Chapter 6 offers concluding remarks and outlines potential avenues for future
research.



Chapter 2

Fundamentals: Graph Signal Processing and Graph Learning

This chapter briefly reviews the foundations that motivate the research carried out in this
thesis, introducing essential concepts and tools in the field of GSP. To begin with, we outline the
different notation conventions employed throughout this document. Next, we elaborate on the
basic principles of GSP. Then, we introduce some of the specific concepts and tools of GSP that
are of particular relevance to this thesis. Finally, we discuss the problem of learning graphs from
nodal observations, providing a brief summary of the contributions of GSP to this specific problem.

2.1 Notation

Along this document, we will refer to scalars, vectors, matrices, and sets using low case letters
x, low case bold letters x, upper case bold letters X, and upper case calligraphic letters X ,
respectively. The notation IM denotes the identity matrix of size M×M , while 1M×N and 0M×N

respectively represent matrices of all ones and zeros of size M ×N . We will use ∥ · ∥0, ∥ · ∥1, ∥ · ∥2,
∥ · ∥F , and ∥ · ∥∞ to denote the ℓ0, ℓ1, ℓ2, ℓF (Frobenius), and ℓ∞ norms operators respectively
applied to vectors or matrices. For a matrix Y ∈ RM×N , vec(Y) ∈ RMN denotes the vertical
concatenation of the columns of Y. For a vector x ∈ RN , diag(x) ∈ RN×N denotes a square
diagonal matrix with the values of x as its diagonal. For a matrix X ∈ RN×N , diag(X) ∈ RN

denotes a vector whose values corresponds to the diagonal of X. For a matrix X ∈ RN×N ,
tr(X) ∈ RN denotes the sum of the diagonal values of X. The transpose of a matrix X is defined
as X⊤. The operators ⊗,⊙,◦, and E[·] as Kronecker product, Khatri-Rao (column-wise Kronecker)
product, Hadamard (entry-wise) product, and expectation respectively. We let calligraphic letters
denote index sets, where, given any matrix X ∈ RM×N and any vector x ∈ RN , we let XC,· and
X·,C respectively return the rows and columns of X selected from index set C and xC returns the
entries of x selected from C. We let D, L, and U respectively denote the indices of the diagonal,
lower triangular, and upper triangular entries of a vectorized square matrix, i.e., for any matrix
Y ∈ RM×M and y = vec(Y), we have that yD contains the diagonal entries of Y. We define yL
and yU similarly. The notation O(·) and o(·) denote the usual asymptotic meaning, and we say
that f ≍ g if f = O(g) and g = O(f).
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2.2 Graphs, GSO, and graph signals

A graph, formally denoted as G := (V, E), consists of two sets: V, containing nodes or vertices,
and E ⊆ V × V, containing edges or links that connect these nodes. Throughout this thesis we
will mostly use the terms “nodes” and “edges” but sometimes we may refer to these terms as
“vertices” and “links”, respectively, which are interchangeable. A graph is typically used to encode
pairwise relationships between its nodes, represented by their edges. Nodes within V are typically
labeled with integers, such as V := {1, 2, ..., N}, where N represents the total number of nodes
in the graph. Edges in E are characterized by pairs of nodes, (i, j), where both i and j belong
to V, and (i, j) ∈ E indicates a connection between node i and node j. Regarding the direction
of the connection, can be distinguished between directed and undirected graphs. In undirected
graphs, there is no classification of the nodes in source or destiny and, in that case, the presence of
(i, j) ∈ E implies (j, i) ∈ E . In directed graphs, this symmetry does not necessarily hold, because
there may be a connection between source and destiny, (i, j) ∈ E , but not the other way around,
(j, i) ̸∈ E . Regarding the strength of the connections between nodes, graphs can be categorized as
either unweighted or weighted. Unweighted graphs convey only the presence or absence of edges
(i, j) ∈ {0, 1}, in this case, information about characteristics such as closeness or similarity can not
be extracted accurately. On the other hand, weighted graphs incorporate additional information
regarding the distance, intensity of connections, or level of influence between nodes by using non-
binary values to represent the edges. When such a relation is some type of similarity, it often
holds that (i, j) ∈ [0, 1]. Representation of an unweighted directed graph and weighted undirected
graph is shown in Fig 2.1a and b, respectively. This distinction is apparent when examining the
adjacency matrix, A, a common representation of the graph topology. The adjacency matrix, A,
is a sparse N × N matrix where Aij ̸= 0 if and only if (j, i) ∈ E . For unweighted graphs, A
comprises binary entries (A ∈ {0, 1}N×N ), while in weighted graphs, A ∈ RN×N , with non-zero
entries indicating the weights of edges. Once again, when the weights capture some notion of
node similarity, it often holds that A ∈ [0, w]N×N where w represents the maximum weight (level
of similarity) associated with the edges. For undirected graphs, A exhibits symmetry while in
the case of directed graphs, we typically have that Aij ̸= Aji. Another fundamental concept
related to graph connectivity is the neighborhood of a node. For any node i, its neighborhood,
denoted as Ni := {j ∈ V|(i, j) ∈ E}, includes the nodes connected to i. The degree of a node,
di := |Ni| = [A1]i, denotes the number of neighboring nodes, computed by summing the entries
of the i-th row of A.

Figure 2.1: Different graph representation. a) Unweighted directed graph, b) weighted undirected graph,
and c) unweighted undirected graph with the associated signal on top of each node.
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We now proceed to define some elements of the GSP framework. The most prominent actors
in GSP are graph signals. In essence, a graph signal can be conceptualized as a function that maps
the node set onto the real field. This function can be represented as x : V → R or, equivalently, as
an N -dimensional real-valued vector x = [x1, ..., xN ]⊤ ∈ RN , where each xi denotes the value of
the signal x at vertex i (see Fig. 2.1c for an example of graph signal shown in red). For simplicity,
we will focus our discussion on scalar, real-valued graph signals. However, it is important to note
that in practical applications, node values can be discrete, complex, or even vectors, especially
when multiple features per node are observed. Since the graph signal x operates in the context
of G, a fundamental assumption of GSP is that either the values or the properties of x depend
on the topology of G. For example, in a graph representing node similarity, for high values of
Aij we would expect the signal xi and xj to have similar values. This example illustrates the
benefits of considering the topology of the graph when processing graph signals. In the upcoming
section 2.4, we will look at different signal models and their relationship to graph topology. In this
work, understanding graph signals is essential for modeling different features at each node, such
as temperatures recorded at different base stations or stock prices for different companies.

The second key actor in GSP is the graph shift operator, GSO [19]. The GSO is a square
matrix, denoted as S ∈ RN×N , which plays a dual role. First, it serves as a representation of
the underlying graph G by specifying that its entry Sij can have a non-zero value only if either
i = j or (j, i) ∈ E . Second, the GSO constitutes the simplest graph-aware transformation that can
be applied to a graph signal. There are several ways to choose the GSO, with common choices
including the adjacency matrix A, the graph combinatorial Laplacian L := diag(A1)−A, and their
normalized variations [15,19]. Using S as a more abstract representation, rather than committing
to a specific GSO choice, proves advantageous as it allows the development of algorithms applicable
to a wider range of scenarios. Assuming that G is undirected, it follows that S is symmetric and
can be diagonalized as S = VΛV⊤. Here, the orthonormal matrix V ∈ RN×N accumulates
the eigenvectors of S, and the diagonal matrix Λ = diag(λ) contains the eigenvalues λ ∈ RN .
Conversely, in the case where G represents a directed graph, we maintain the assumption that S
remains diagonalizable, and its decomposition takes the form S = VΛV−1. It is important to
note that in the directed case, the eigenvalues in Λ tend to be complex numbers. Eigenvectors
of the GSO are key to define spectral modes of the graph as well as the graph Fourier transform.
Similarly, polynomials of the GSO will be essential to process and model graph signals. This is
partially discussed in the next section.

2.3 Graph filters

A versatile tool for modeling the relationship between the signal x and its underlying graph is
the graph filter. A graph filter H ∈ RN×N is a graph-aware linear graph-signal operator that is
defined as a polynomial of the GSO S of the form

H = h0S0 + h1S1 + h2S2 + ...+ hlSl =
L−1∑

l=0
hlSl =

L−1∑

l=0
hlVΛlV⊤ = V

( L−1∑

l=0
hlΛl

)
V⊤, (2.1)

where L−1 is the filter degree, {hl}L−1
l=0 are the filter coefficients, and V and Λ are the eigenvectors

and eigenvalues of the GSO, respectively. Since H is a polynomial of S, it easily follows that both
matrices have the same eigenvectors V. Interestingly, it also holds that under the model in (2.1),
the product of the graph filter and the GSO commute, i.e., that HS = SH. This property will
be extremely useful in some of our approaches presented in the following chapters. From a graph
signal perspective, graph filters can be used to spread an input graph signal x over a particular
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graph represented by S, obtaining as a result y =
∑L−1

l=0 hlSlx = Hx. Then y can be understood
as the diffusion of the graph signal x over L− 1 neighborhoods with the associated coefficients hl

modeling (capturing) the importance of the signal from the lth neighborhood.

2.4 Models for graph signals

There exists a variety of (either deterministic or statistical) models that capture different
relationships between the graph signals and their underlying graph. In this section, we introduce
some commonly used models for graph signals, which will be relevant in the following chapters.

Gaussian graph signals. A Gaussian graph signal is an N -dimensional random vector x whose
(vertex-indexed) entries are jointly Gaussian. Thus, if x ∈ RN is distributed as N (0,C), we
have that both the covariance matrix C and the precision matrix Θ are N × N matrices whose
entries capture statistical relationships between the node values. In particular, using the Gaussian
distribution, we have that

fΘ(x) = (2π)−N/2 · det(Θ)
1
2 · e− 1

2 xT Θx = (2π)−N/2 · det(Θ)
1
2 · e− 1

2
∑N

i=1 Θijxixj , (2.2)

demonstrating that, in the context of graph signals, the entries of Θ ∈ RN×N account for condi-
tional dependence relationships between the (features of the) nodes in the graph [40].

In the case where we have a collection of R Gaussian signals X = [x1, ...,xR] ∈ RN×R each
of them independently drawn from the distribution in (2.2). The log-likelihood associated with X
is

L(X|Θ) =
R∏

r=1
fΘ(xr), L(X|Θ) =

R∑

r=1
log(fΘ(xr)). (2.3)

This expression will be exploited when formulating our proposed inference approach and establishing
links with classical methods in the upcoming chapter.

Smooth graph signals. A graph signal exhibits smoothness on G if the signal values at connected
nodes are relatively close, meaning that the difference between the signal values at neighboring
nodes is small. To quantify the smoothness of a graph signal, a common approach is to use the
quadratic form

∑

(i,j)∈E
Aij(xi − xj)2 = 1

2tr(AZ) = x⊤Lx, (2.4)

where L is the Laplacian matrix and Z is the pairwise distance matrix defined as Zij = ∥xi −xj∥2

[36]. The middle expression in (2.4) measures how much the signal x changes with respect to the
similarity encoded in the edge weights of A. The right-most expression in (2.4) is often referred to
as the local variation (LV) of x. If the goal is to compute the mean LV of R graph signals stored
in the N ×R matrix X = [x1, ...,xR], it can be computed as

1
R

R∑

r=1
x⊤

r Lxr = 1
R

R∑

r=1
tr(xrx⊤

r L) = tr(ĈxL), (2.5)

where Ĉx := 1
R

∑R
r=1 xrx⊤

r = 1
RXX⊤ denotes the sample estimate of the covariance of X. More

advanced notions of smoothness can also be defined by considering ∥x−Hx∥2
2, where H represents
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a predefined low-pass graph filter, and its filter taps or frequency response can be tailored to match
the desired notion of smoothness.

Stationary graph signals. The concept of graph stationarity relates the statistical properties
of random graph signals to the underlying graph structure. More formally, a zero mean random
graph signal is said to be stationary on G if its covariance matrix Cx = E[xx⊤] can be expressed
as positive semidefinite (PSD) polynomial of the GSO S [46]. In cases where G is an undirected
graph, i.e. VV⊤ = I, a common example of stationary graph signals arises when x is generated
by a linear graph diffusion process as x =

∑L−1
l=0 hlSlw, whose input is a zero-mean white signal

w ∈ RN . In such a scenario, the covariance of w is given by E[ww⊤] = I, and x is related to w
as x = Hw. In this particular case, the covariance of x can be expressed as follows

Cx = E[xx⊤] = HE[ww⊤]H⊤ = HH⊤ = H2. (2.6)

Since the graph filter H is inherently a polynomial function of the GSO S, it follows that Cx
is also a polynomial of S. Consequently, in the spectral domain, both S and Cx share the same
eigenvectors, and the matrices S and Cx commute, i.e., CxS = SCx. It is important to note that
graph stationarity does not impose a deterministic condition on x itself, but rather a condition
on the covariance structure of the signal. The commutativity expression between Cx and S is a
compact and tractable way to account for the graph stationarity of the observed signals and will
be used later as a constraint in several of the proposed optimization problems.

2.5 Network topology inference

Network topology inference task poses a significant challenge in network science. In many GSP
endeavors, it is assumed that the underlying network is already known. This assumption holds well
for certain applications, such as directly observable social and infrastructure networks. However,
beyond these scenarios, the methods for constructing graphs are often informal and lack validation.
Statistically based network topology inference methods try to close this gap. The goal of network
topology inference problems is to estimate the graph structure from node observations. To obtain
an accurate and meaningful estimate of the graph topology, assumptions must be made about the
signals, the graph, and the relationship between the graph and the signals. Depending on the task
and the nature of the available data, several approaches to graph topology estimation have been
proposed.

Before we get into the details of the different approaches to tackle the task of estimating the
structure of a graph, we first provide a more formal definition of the network topology inference
problem. Suppose we have access to a set of R observations associated with the N nodes of
a network (graph), and that we collect those observations in the matrix X = [x1,x2, ...,xR] ∈
RN×R. These signals are typically treated as independent realizations of a random network process.
Then the goal of the network topology inference problem is to find the optimal graph descriptor
S that best explains the node observations based on the assumed relationship between X and
G. An example is given in Fig. 2.2, where we show a general representation of the network
topology inference problem. In this case, finding meaningful connections between nodes depends
on the nature of the observations, the relationship between the data and the network, and also
on the structure of the network itself (whether it is highly connected or not, whether there are
communities, etc.). It is worth mentioning that the estimated graph can be different depending on
the assumptions/priors we impose to get a meaningful graph estimation from the set of available
observations.
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Figure 2.2: General representation of the network topology inference problem. Given a set of nodal
observations X supported on the unknown graph G, find the optimal graph descriptor S under certain
assumptions/relationship between X and G.

Next, we provide a summary of several network topology inference methods, along with the
assumptions they consider for X and G.

• Correlation Networks. Early approaches are based on correlation networks [13]. The node
signals are assumed to be random vectors, and the connectivity between nodes is measured
in terms of the correlations between the signals at these nodes. In these approaches, the
graph is inferred from the Pearson correlations between the nodal signals

ρij := cov(xi, xj)√
var(xi)var(xj)

. (2.7)

where xi and xj denote the nodal random variables at nodes i and j, respectively. In this
scenario, the network topology inference problem translates into finding the subset of nonzero
correlations between the node signals. When the distributions are unknown, and only the
signals in X are available, the Pearson correlation coefficient ρij is estimated from the inner
products between the rows of X. Therefore, the GSO for correlation networks is often set
as the thresholded version of Ĉx, whose nonzero entries identify the support of the graph.

• Partial Correlation Networks. An alternative rigorous statistical-based approach to unveil
connections between nodes involves considering the influence of third-party nodes. Specif-
ically, there are scenarios where the correlation between two random variables xi and xj

associated with nodes i and j may be due to their connection with a third node k, rather
than a direct link between i and j. To account for such instances of high correlation at-
tributed to latent network effects, partial correlation coefficients are introduced to assess
conditional independence between nodes [13]. In particular, we define the partial correlation
coefficient as

ρij|V\ij := cov(xi, xj |V\ij)√
var(xi|V\ij)var(xj |V\ij)

, (2.8)

where the set V \ ij represents all N − 2 random variables, excluding those indexed by
nodes i and j. Subsequently, a partial correlation network can be derived in a manner
analogous to its unconditional correlation network counterpart. The difference being that,
in this case, the edge set is defined as E := {(i, j) ∈ V × V : ρij|V\ij ̸= 0}. As before,
the distributions of the nodal variables are typically unknown and, as a result, one should
estimate the partial correlation coefficients from X. This is carried out in two steps, where
we first the sample precision matrix is estimated as Θ̂x = (Ĉx)−1 and, then, the support of
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the graph is estimated by identifying the entries of Θ̂x that exceed a given threshold. The
main drawback of this two-step approach is that a large number R of observations is required
to guarantee that the inverse is stable. This limitation is addressed by the next method.

• Graphical Lasso. A specific instance of the previous setup that is particularly relevant is
the scenario where each column of X is independently sampled from a Gaussian distribution.
The resulting partial correlation network is commonly known as a Gaussian Markov random
field (GMRF) or Gaussian graphical model [47]. The core idea is that the partial correlation
coefficients V \ ij, which describe the topology of the graph, can be represented as the
normalized entries of the precision matrix Θx = (Ĉx)−1. Then, by considering that some
of those entries are zero, it readily follows from the Gaussian distribution in (2.2) that the
associated nodal variables are conditionally independent [13]. While this still entails that
the graph can be inferred from the inverse of the covariance, the expressions in (2.2) and
(2.3) can be used to reduce the number of required observations. Exploiting this feature, the
well-known graphical Lasso algorithm (GL) [3], which estimates the GSO S by regularized
maximum likelihood estimation, captures the graph structure in the inverse covariance matrix,
S = Θ, as follows

Ŝ = argmax
S⪰0

log det(S) − tr(ĈxS) − λ∥S∥1, (2.9)

where the term ∥S∥1 is used to promote sparsity in the estimated precision matrix. Then
the recovered graph topology can be seen as a sparse version of the precision matrix which
accounts for the indirect relationship between nodes.

• Network inference from smooth signals. From another perspective, connectivity between
nodes is sometimes measured in terms of the difference in signal values between nodes. For
these scenarios, two nodes are considered connected if the difference between their signal
values is small. Signals adhering to this model are called smooth on G, and the smoothness
level of the signals (how much the signal x changes with respect to the similarity encoded
in the edge weights of the graph representation matrix) is typically measured using the LV
metric defined in (2.4) and (2.5). Regarding the problem of estimating a graph from smooth
signals, this problem was first addressed in [38] using the following graph learning formulation

L̂ = argmin
L∈L

tr(X⊤LX) + α∥L∥2
F , (2.10)

s. t. tr(L) = s,

where L represents the set of constraints of a valid graph Laplacian matrix, s > 0 is used
to control the scale of L and α > 0 controls the sparsity of the estimated graph. The main
idea of this formulation is to find a sparse graph whose connections ensure small values of
LV for the set of the available graph signals X. Note that the ℓ1 norm is not penalized in
this formulation because it is redundant with the fact of the rows of the Laplacian having
zero sum [36].

• Network inference from stationary signals. Lastly, there are alternative approaches for
estimating the graph topology by establishing a more flexible relationship between the GSO
and the observed signals. The one discussed here assumes that the signals are stationary
within the sought graph [48–50]. Practically speaking, stationary random graph signals
provide an appropriate representation for consensus dynamics, heat diffusion processes, and
network processes that occur in structural brain networks [51–53]. From a theoretical point
of view, graph stationarity embodies a less restrictive assumption that includes correlation
and partial correlation networks as specific instances. Recall from the definition of stationary
graph signals in Section 2.4 that the covariance matrix of a graph stationary signal can be
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written as a polynomial of the GSO, C = (
∑L−1

l=0 hlSl)2. Hence, correlation networks, where
C = S, and GMRFs, where C = S−1, are very particular cases of polynomials. One possible
formulation for estimating a graph from stationary graph signals is [54]:

Ŝ = argmin
S∈S

∥S∥1 (2.11)

s. t. ∥SĈx − ĈxS∥2
F ≤ ϵ,

where Ĉx denotes the sample covariance matrix obtained from the (graph stationary signals
in X, and ϵ > 0 ensures commutativity between Ĉx and S, depending on the accuracy of
the estimate Ĉx. The value of ϵ decreases as the approximation of the sample covariance
matrix becomes more refined, and approaches ϵ = 0 when the perfect covariance matrix is
known. This formulation gives rise to an optimization problem that seeks to identify the
sparsest GSO that commutes with Ĉx. The set of valid GSOs encapsulated in S can be
of a specific class, such as adjacency or Laplacian matrices among others. Specifically, the
constraints associated with the set of valid adjacency matrices is

A := {Aij ≥ 0; A = A⊤; Aii = 0; A1 ≥ 1}, (2.12)

where the GSO is restricted to having positive weights, being symmetric, and not having
loops. The role of the last constraint is avoiding the trivial solution A = 0N×N . The
counterpart for the case of a combinatorial Laplacian matrix is

L := {Lij ≤ 0 for i ̸= j; L = L⊤; L1 = 0; L ⪰ 0}, (2.13)

where the valid GSO has off-diagonal negative weights, is a symmetric and PSD matrix, and
the sum of the entries of each row is set to be zero.
As a closing comment, we note that, up to this point, this section has primarily addressed a
network topology inference scenario known in network science as the “network association”
problem [13, Ch. 7.3.1]. While network association is the most widely studied approach in
graph learning, two related variants must be mentioned: the link prediction problem and the
network tomography problem. “Link prediction” is a simpler task where some of the graph
edges are observed in addition to the signals. This additional data can be integrated into
the existing framework by adjusting the constraint set S. Conversely, “network tomography”
presents a more challenging setup where the available observations are limited to a subset of
the nodes. In particular, the focus of chapter 4 is the development of robust algorithms that
address the latter problem by exploiting various assumptions from graph signal processing.



Chapter 3

Graph Learning from Gaussian and Stationary Graph Signals

This chapter explores the widespread presence of data defined over non-Euclidean supports, with
a focus on the utilization of graphs as a versatile tool to represent these irregular domains. In many
scenarios, the graph structure is undefined either due to the absence of a physical network or to the
absence of a unique metric to measure relationships between nodes. The main challenge addressed
in this chapter is the estimation of the graph topology by modeling the data as graph signals
under several assumptions. We propose a new graph-learning method focused on the assumption
that the observations are both Gaussian and stationary in the graph. Then, we formulate a joint
optimization problem to estimate the graph and the precision matrix of the Gaussian process,
presenting an efficient algorithm for this non-convex optimization. Compared to existing methods,
the proposed approach offers a more general solution, making it suitable for a broader range of
scenarios and outperforming or matching the results achieved by convex counterparts in numerical
experiments.

3.1 Introduction

Modern datasets often exhibit irregular non-Euclidean support. In such scenarios, graphs have
emerged as a pivotal tool, facilitating the generalization of classical information processing and
structured learning techniques to irregular domains. Today, there is a wide range of applications
that leverage graphs when processing, learning, and extracting knowledge from their associated
datasets (see, e.g., problems in the context of electrical, communication, social, geographic, finan-
cial, genetic, and brain networks [13, 14, 55–57], to name a few). When using graphs to process
structured non-Euclidean data, it is usually assumed that the underlying network topology is known.
Unfortunately, this is not always the case. In many cases, the structure of the graph is not well
defined, either because there is no underlying physical network or because the (best) metric to
assess the level of association between the nodes is not known.

Since in most cases, the existing relationships are not known beforehand, the standard approach
is to infer the structure of the network from a set of available nodal observations/signals/features.
To estimate the interactions between the existing nodes, the first step is to formally define the
relationship between the topology of the graph and the properties of the signals defined on top
of it. Early graph topology inference methods [40, 58] adopted a statistical approach, such as
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the correlation network [13, Ch. 7.3.1], partial correlations, or Gaussian Markov random fields
(GMRF), with the latter leading to the celebrated graphical Lasso (GL) scheme [13, 59]. Partial
correlation methods have been generalized to nonlinear settings [60]. Also in the nonlinear realm,
less rigorous approaches simply postulate a similarity scores, with links being drawn if their score
exceeds a given threshold. In recent years, GSP-based models [4, 61, 62] have brought new ideas
to the field, considering more complex relationships between the signals and the sought graph.
These approaches have been generalized to deal with more complex scenarios that often arise
in practice, such as the presence of hidden variables [5, 63, 64] or the simultaneous inference of
multiple networks [65,66].

The existing graph-learning methods exhibit different pros and cons, with relevant tradeoffs
including computational complexity, expressiveness, model accuracy, or sample complexity, to name
a few. For instance, correlation networks need very few samples and can be run in parallel for each
pair of nodes, but fail to capture intermediation nodal effects. On the other hand, GL (a maximum
likelihood estimator for GMRF) can handle the intermediation effect while still requiring a relatively
small number of samples compared to the size of the network. Some disadvantages of GL include
assuming a relatively simple signal model (failing to deal with, e.g., linear autoregressive network
models) and forcing the learned graph to be a positive definite matrix. To overcome some of these
issues, [4] proposed a more general model that assumed that the signals were stationary in the
network (GSR) or, equivalently, that the covariance matrix can be defined as a polynomial of the
adjacency of the graph [46]. Since GSR is a more general model, it is less restrictive in terms
of the signals it can handle. However, it has the disadvantage of requiring a significantly larger
number of observations than GL [4].

Our proposal is to combine the advantages of assuming Gaussianity, which implies solving a
maximum likelihood problem that requires fewer node observations, with the larger generality of
graph-stationary approaches. Our ultimate goal is to generalize the range of scenarios where GL can
be used, while keeping the number of observations and computational complexity under control.
To be more precise, we introduce Polynomial Graphical Lasso (PGL), a new scheme to learn graphs
from signals that works under the assumption that the samples are Gaussian and graph stationary,
so that the covariance (precision) matrix of the observations can be written as a polynomial of
a sparse graph. These assumptions give rise to a constrained log-likelihood minimization that is
jointly optimized over the precision and adjacency matrices, with GL being a particular instance of
our problem. The price to pay is that the postulated optimization, even after relaxing the sparsity
constraints, is more challenging, leading to a biconvex problem. To mitigate this issue we provide
an efficient alternating algorithm with convergence guarantees.

Contributions. To summarize, our main contributions are:

• Introducing PGL, a novel graph-learning scheme that, by assuming that the observations
are Gaussian and graph-stationary, generalizes GL and is able to learn a meaningful graph
structure in scenarios where the precision/covariance matrices are polynomials of the sparse
matrix that represents the graph.

• Formulating the inference problem as a biconvex-constrained optimization, with the variables
to optimize being the precision matrix and the graph. While our focus is on learning the
graphs, note that this implies that PGL can also be used in the context of covariance
estimation.

• Developing an efficient algorithm to solve the proposed optimization, together with conver-
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gence guarantees to a stationary point (block coordinatewise minimizer).

• Evaluating the performance of the proposed approach through comparisons with alternatives
from the literature on synthetic and real-world datasets.

Outline. The remaining of this chapter is organized as follows. In Section 3.2 the problem of
learning (inferring) graphs from signals under different assumptions on the observations is formally
stated. Section 3.3 presents a computationally tractable relaxation of the graph-learning problem,
along with an efficient algorithm and its associated convergence guarantees. Section 3.4 quantifies
and compares the recovery performance of the proposed approach with other methods from the
literature using both synthetic and real-data simulations. Section 3.5 closes the chapter with
concluding remarks. Additional details regarding the theoretical results are provided in Sections 3.6,
3.7, and 3.8.

3.2 Graph learning problem formulation

This section begins with a formal definition of the graph learning problem, followed by an
explanation of some common approaches used in the literature to tackle this problem. Afterwards,
we proceed to formalize the learning problem we aim to address and cast it as an optimization
problem. We then provide an overview of the key features of our formulation and conduct a
comparative analysis with the two closest approaches available in the literature.

To formally state the graph learning problem, let us recall that we assume: i) G is an undirected
graph with N nodes, ii) there is a random process associated with G, and iii) we denote by
X = [x1, ...,xR] ∈ RN×R a collection of R independent realizations of such a process. The
goal in graph learning is to use a given set of nodal observations to find the (estimates of the)
links/associations between the nodes in the graph (i.e., use X to estimate the S associated with
G).

This problem has been addressed under different approaches [46, 67, 68]. Differences among
these models typically arise from the underlying assumptions that are made regarding 1) the graph,
which almost universally entails just considering that the graph is sparse (see, e.g., [69] for a recent
exception), 2) the signals, which assume certain properties related to the nature of the signals such
as smoothness [68] or Gaussianity, [67] among others, and 3) the relationship between the graph
and the signal, such as the stationarity property [46].

The model we propose aims to incorporate several assumptions about both the graph and the
graph signals. To that end, we propose an approach for which we assume that: 1) the graph is
sparse, 2) the signals are Gaussian and, 3) the signals are stationary in the underlying graph.

Having established these assumptions, we now proceed to formally state our graph learning problem
as follows

Problem 1 Given a set of signals X ∈ RN×R, find the underlying sparse graph structure
encoded in S under the assumptions:

(AS1): The graph signals X are i.i.d. realizations of N (0,C).

(AS2): The graph signals X are stationary in S.
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Our approach is to recast Problem 1 as the following optimization

min
Θ⪰0,S∈S

− log(det(Θ)) + tr(ĈΘ) + ρ∥S∥0.

s. t. ΘS = SΘ, (3.1)

where S is a generic set representing additional constraints that S is known to satisfy (e.g., the
GSO being symmetric and its entries being between zero and one). The minimization takes as
input the sample covariance matrix Ĉ = 1

RXXT and generates as output the estimate for S
and, as a byproduct, the estimate for Θ. For the problem in (3.1), we require Θ to be positive
semidefinite. This constraint arises because Θ is the inverse of Ĉ which is symmetric and positive
definite by construction. Consequently, Θ inherits the properties of being symmetric and positive
semidefinite.

Next, we explain the motivation for each term in (3.1) with special emphasis on the constraint
ΘS = SΘ, which is a fundamental component of our approach.

• The first two terms in the objective function are due to (AS1) and arise from minimizing
the negative log-likelihood expression in (2.3). Indeed, it is clear that substituting (2.2) into
(2.3) yields

R∑

r=1

(
−N

2 log(2π) − log(det(Θ)) + tr(xT
r Θxr)

)
.

Since constants are irrelevant for the optimization, we drop the first term and divide the
other two by R, yielding

− log(det(Θ)) + 1
R

R∑

r=1
tr(xrxT

r Θ) = − log(det(Θ)) + tr(ĈΘ). (3.2)

• The term ρ∥S∥0 accounts for the fact of S being a GSO (hence, sparse), with ρ > 0 being
a regularization parameter that determines the desired level of sparsity in the graph.

• Finally, the equality constraint serves to embody (AS2). It is important to highlight that
the polynomial relationship between C and S, as implied by (AS2), is typically addressed in
estimation and optimization problems through either: i) extracting the eigenvectors of C and
enforcing them to be the eigenvectors of S [4], or ii) imposing the constraint CS = SC [5].
In contrast, our approach encodes the polynomial relation implied by (AS2) by enforcing
commutativity between Θ and S. Note that if C and S are full-rank matrices and commute,
it follows that Θ and S also commute. In other words, Θ = C−1 can be represented as a
polynomial in S, which can be verified by the Cayley-Hamilton theorem.

It is important to note that the assumption of stationarity may seem stringent since it implies
commutativity between S and Θ. However, it provides more degrees of freedom than many existing
methods. For example, in partial correlation methods, S is restricted to be S = Θ, while in our
case, assuming stationarity allows Θ to be any polynomial in S. This leads to a more general
approach, including partial correlation as a particular case. To further illustrate this point, consider
the sparse structural equation model X = AX + W, with W being white noise. GL will identify
S = Θ = (IN − A)2, while PGL will identify S = A.
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To better understand the features of PGL, let us briefly discuss the main differences relative to
its two closest competitors: GSR and GL.

GSR handles Problem 1 without considering the Gaussian assumption in (AS1). As a result, the
first two terms in (3.1), which are associated with the log-likelihood function, are not present. This
reduces the problem to inferring a sparse graph under the stationarity constraint. The stationarity
assumption is incorporated into (3.1) through the expression ΘS = SΘ, which is equivalent to
CS = SC if C is a full-rank matrix. This property enables learning the graph by solving the
following optimization problem with the commutativity constraint between Ĉ and S:

min
S∈S

ρ∥S∥0 s. t. ĈS = SĈ, (3.3)

where the constraint is typically relaxed as ∥ĈS − SĈ∥2
F ≤ ϵ to account for the fact that we have

Ĉ ≈ C. By assuming stationarity, the formulation in (3.3) allows the sample covariance to be
modeled as any polynomial in S, making it more general than the formulation in (3.1). However,
the absence of Gaussianity in (3.3) means that it is no longer a maximum likelihood estimation.
As a result, correctly identifying the ground truth S requires very reliable estimates of Ĉ, which
usually entails having access to a large number of signals to set ϵ close to zero. This is indeed a
challenge, especially in setups with a large number of nodes.

For the second scenario, suppose we simplify (AS2) and instead of considering Θ as any
polynomial in S, we restrict it to a particular case with the following structure: Θ = C−1 = σI+δS.
Then, up to the diagonal values and scaling issues, the sparse matrix S to be estimated and
Θ = C−1 are the same. Consequently, it suffices to optimize over one of them, leading to the
well-known GL formulation:

min
Θ⪰0,Θ∈SΘ

− log(det(Θ)) + tr(ĈΘ) + ρ∥Θ∥0. (3.4)

The main advantages of (3.4) relative to (3.1) are that the number of variables is smaller and the
resulting problem (after relaxing the ℓ0 norm) is convex. The main drawback is that by forcing the
support of S and Θ to be the same, the set of feasible graphs (and their topological properties) is
more limited. Indeed, GL can only estimate graphs that are positive definite, while the problem in
(3.1) can yield any symmetric matrix. Remarkably, when the model assumed in (3.4) holds true
(i.e., data is Gaussian and Θ is sparse), GL is able to find reliable estimates of S even when the
number of samples R is fairly low. On the other hand, simulations will show that GL does a poor
job estimating S when the relation between the precision matrix and G is more involved.

In conclusion, from a conceptual point of view, our formulation reaches a favorable balance
between GL and graph-stationarity approaches. This leads to the following two main advantages
i) a more general model than GL since our approach models Θ as any polynomial in S and ii)
a model with more structure than the graph-stationarity approaches due to the incorporation of
(AS1). However, it is important to note that the optimization in (3.1), even if the ℓ0 norm is
relaxed, lacks convexity due to the presence of a bilinear constraint that couples the optimization
variables Θ and S. These challenges will be addressed in the subsequent section.

3.3 Biconvex relation and algorithm design

As explained in the previous section, the problem in (3.1) is not convex and this challenges
designing an algorithm to find a good solution. This section reformulates (3.1), develops an
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iterative algorithm, referred to as PGL, to estimate S and Θ, and characterizes its convergence
to a coordinate-wise minimum point. The proposed approach involves several modifications: 1)
we replace the ℓ0-norm with an elastic net regularizer, which is convex [70]; and 2) we relax the
commutativity constraint using an inequality instead of an equality. Next, we explain step by step
the resulting formulation.

3.3.1 Biconvex relaxation

The first modification to reformulate (3.1) is to relax the constraint that imposes commutativity
between S and Θ. Such a constraint is stringent and significantly narrows the feasible solution
set of (3.1), which may not be practical in real-world scenarios. Furthermore, considering that
our access to the covariance (or precision) matrix is limited to its sampled estimates, enforcing
exact commutativity is excessively restrictive. To mitigate this, we relax the original constraint by
replacing the matrix equality ΘS = SΘ with the scalar Frobenius norm-based inequality ∥ΘS −
SΘ∥2

F ≤ δ. This modification not only expands the feasible region but also endows the model
with a greater degree of robustness.

The second modification addresses the non-convexity of the objective in (3.1), which originates
from the use of the ℓ0-norm. To alleviate this issue, we relax the problem using an elastic net reg-
ularizer. Specifically, we replace the ρ∥S∥0 penalty with ρ

(
∥S∥1 + η

2ρ∥S∥2
F

)
, where the parameter

η controls the trade-off between the ℓ1-norm and the Frobenius norm components, and is typically
set to a very small value. Although elastic net regularizers have demonstrated practical effective-
ness, alternative methods for relaxing the ℓ0-norm exist (see, for example, [71, 72]), each offering
distinct trade-offs in computational complexity, convergence speed, and theoretical underpinnings.

With the incorporation of these two modifications, we reformulate the original graph learning
problem presented in (3.1) as follows

min
Θ⪰0,S∈S

− log(det(Θ)) + tr(ĈΘ) + ρ∥S∥1 + η
2 ∥S∥2

F ,

s. t. ∥ΘS − SΘ∥F ≤ δ,
(3.5)

In this setup, δ serves as a hyperparameter chosen according to the quality of the estimation of
Ĉ which affects the estimation of Θ. A smaller value of δ is appropriate when the quality of Ĉ
is high, which typically corresponds to having a sample size R that is substantially larger than the
number of nodes. While the relaxation of the commutativity constraint enhances the robustness
of our formulation to data quality and simplifies the optimization by reducing the number of
Lagrange multipliers, the product of Θ and S still introduces nonconvexity into the problem.
The way we propose for dealing with the (updated) biconvex constraint is to solve (3.5) using
an alternating optimization algorithm. This family of algorithms is widely used to approximate
nonconvex problems by dividing the original problem into several convex subproblems and solving
them with respect to each of the variables by fixing all the others. In our particular case, this
methodology involves alternately solving for Θ with S held fixed, and then updating S using the
newly updated Θ, at each iteration.

In the subsequent two subsections, we delve into the detailed methodologies employed to solve
each of the two subproblems. Following this, we outline the overall algorithm and discuss its
convergence properties. To simplify exposition, in the remainder of the section, we will assume
that S represents the adjacency matrix of an undirected graph. Consequently, the feasible solution
set for S is defined as:

S :=
{
S∈RN×N |S=ST ; S≥0; diag(S)=0; S1≥1

}
, (3.6)
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where S is constrained to be symmetric with zero diagonal entries and non-negative off-diagonal
elements. The additional condition S1 ≥ 1 is imposed to preclude the trivial solution, i.e., S = 0.
Nonetheless, the techniques presented next can be readily extended to accommodate different
forms of S.

3.3.2 Solving subproblem for S

We begin by addressing the subproblem with respect to S, while holding Θ fixed. The sub-
problem is formulated as:

min
S∈S

ρ∥S∥1 + η
2 ∥S∥2

F ,

s. t. ∥ΘS − SΘ∥F ≤ δ.
(3.7)

To solve (3.7), we adopt a linearized alternating direction method of multipliers (ADMM) approach,
which introduces an auxiliary variable T and leads to the following equivalent formulation:

min
S∈S,T

ρ∥S∥1 + η
2 ∥S∥2

F ,

s. t. ΘS − SΘ = T, ∥T∥F ≤ δ.
(3.8)

The augmented Lagrangian associated with (3.8) is then given by

L(S,T,Z) = ρ∥S∥1 + η

2∥S∥2
F + ⟨Z,ΘS − SΘ − T⟩ + β

2 ∥ΘS − SΘ − T∥2
F , (3.9)

where Z is the Lagrange multiplier.

To update S at the t-th iteration, we address the following minimization problem:

min
S∈S

ρ∥S∥1 + η

2∥S∥2
F + β

2 ∥ΘS − SΘ − T + 1
β

Z∥2
F , (3.10)

where, for the sake of simplicity, we omit the iteration subscript from Θ(t) and Z(t). Problem
(3.10) does not admit a closed-form solution due to the term 1

2∥ΘS − SΘ − T + 1
β Z∥2

F . To deal
conveniently with this problem we resort to the majorization-minimization (MM) algorithm [73].
We denote this term as g(S) and proceed to majorize both g(S) and η

2 ∥S∥2
F at the point S(t),

resulting in the following problem:

min
S∈S

⟨ρIN×N + ηS(t) + β∇g(S(t)),S − S(t)⟩ + L1
2 ∥S − S(t)∥2

F , (3.11)

where ∇g(S) represents the gradient of g(S), detailed in the equation:

∇g(S) = ΘΘS + SΘΘ − 2ΘSΘ + TΘ − ΘT + 1
β

(ΘZ − ZΘ). (3.12)

Now, Problem (3.11) has a closed-form solution, allowing for the update of S(t+1) as follows:

S(t+1) = PS
(
S(t) − 1

L1

(
ρIN + ηS(t) + β∇g

(
S(t))))

, (3.13)

where PS is the projection onto the set S with respect to the Frobenius norm, which can be
computed efficiently by the Dykstra’s projection algorithm [74]. More specifically, the set S can
be written as the intersection of two closed convex sets as follows:

S = SA ∩ SB, (3.14)
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Algorithm 1: Inner loop for S update.

Input: Θ̂
(k)

, Ŝ(k), T̂(k), Ẑ(k), ρ, η, β, δ
Outputs: Ŝ(k+1), T̂(k+1), Ẑ(k+1)

1 Initialize S(0) = Ŝ(k), T(0) =T(k), Z(0) =Z(k)

2 for t = 0 to T − 1 do
3 Update S(t+1) by (3.13);
4 Update T(t+1) by (3.16);
5 Update Z(t+1) by (3.18);
6 end
7 Ŝ(k+1) = S(T ), T̂(k+1) = T(T ), Ẑ(k+1) = Z(T ).

where SA :=
{

S ∈ RN×N | S = ST
}

and SB :=
{

S ∈ RN×N | S ≥ 0; diag(S) = 0; S1 ≥ 1
}

. We
employ Dykstra’s projection algorithm [74] to compute the nearest point projection of a given point
onto the intersection of sets SA and SB. Dykstra’s algorithm achieves this by alternately projecting
the point onto SA and SB until the solution is reached. For a more comprehensive understanding
of Dykstra’s projection algorithm, the reader is directed to [74]. Detailed descriptions of the
projection computations onto sets SA and SB are provided in Appendix 3.6.

Returning to the augmented Lagrangian in (3.9), we update T at the t-th iteration by solving
the following problem:

min
T

β
2 ∥T − ΘS + SΘ − 1

β Z∥2
F ,

s. t. ∥T∥F ≤ δ,
(3.15)

where we have simplified the notation by omitting the iteration subscripts from S(t+1) and Z(t).
Problem (3.15) has a closed-form solution. As a result, T(t+1) can be updated by

T(t+1) = Pδ

(
ΘS − SΘ + 1

β
Z

)
, (3.16)

where Pδ denotes the projection defined by:

Pδ(A) =
{

δ
∥A∥F

A if ∥A∥F > δ

A otherwise.
(3.17)

Finally, the dual variable Z is updated according to:

Z(t+1) = Z(t) + β(ΘS − SΘ − T), (3.18)

where the iteration subscripts from S(t+1) and T(t+1) have been omitted for simplicity. A pseu-
docode of the steps to be performed for the update of S is summarized in Algorithm 1.

If the parameter L1 in (3.11) is larger than the Lipschitz constant of the gradient of βg
(
S

)
+η

2 ∥S∥2
F ,

then the sequence
{(

S(t),T(t))}
converges to the optimal solution of Problem (3.8), and

{
Z(t)}

converges to the optimal solution of the dual of problem (3.8), which follows from the existing
convergence result of majorized ADMM [75]. To enhance empirical convergence rates, adopting
a more proactive strategy for selecting the parameter L1 is beneficial. For example, utilizing a
backtracking line search to determine the stepsize in (3.13) can help to accelerate convergence.

We note that the choice of the penalty parameter β can affect the convergence speed of the
ADMM algorithm. A poorly chosen β may lead to very slow convergence in practice. Adaptive



3.3. Biconvex relation and algorithm design 23

schemes that adjust β have been shown to often result in better practical performance. For
example, we can adopt the adaptive update rule presented in [76]:

β(t+1) =





τ incβ(t), if
∥∥r(t)∥∥

F
> µ

∥∥s(t)∥∥
F
,

β(t)/τdec, if
∥∥s(t)∥∥

F
> µ

∥∥r(t)∥∥
F
,

β(t), otherwise,
(3.19)

where µ > 1, τ inc > 1, and τdec > 1 are predefined parameters. Here, r(t) and s(t) represent the
primal and dual residuals at iteration t, respectively. They are defined as

r(t) = ΘS(t) − S(t)Θ − P(t),

and
s(t) = β(t)Θ

(
P(t) − P(t−1)) − β(t)(P(t) − P(t−1))Θ.

Although it can be challenging to prove the convergence of ADMM when β varies by iteration,
the convergence theory established for a fixed β remains applicable if one assumes that β becomes
constant after a finite number of iterations.

3.3.3 Solving subproblem for Θ

Using the formulation from (3.5), we now turn our attention to the subproblem for Θ

min
Θ⪰0

− log(det(Θ)) + tr(ĈΘ),

s. t. ∥SΘ − ΘS∥F ≤ δ.
(3.20)

Similarly to the approach taken for the S subproblem, we reformulate the subproblem (3.20) for
Θ as follows

min
Θ⪰0, Q

− log(det(Θ)) + tr(ĈΘ),

s. t. SΘ − ΘS = Q, ∥Q∥F ≤ δ.
(3.21)

The augmented Lagrangian associated with (3.21) is given by

L(Θ,Q,Y) = − log(det(Θ)) + tr(ĈΘ) + β

2 ∥SΘ − ΘS − Q + 1
β

Y∥2
F . (3.22)

To update Θ at the t-th iteration, we solve the following optimization problem

min
Θ⪰0

− log(det(Θ)) + tr(ĈΘ) + β

2 ∥SΘ − ΘS − Q + 1
β

Y∥2
F , (3.23)

where we have omitted the iteration subscripts from Q(t) and Y(t) for simplicity.

Let f(Θ) = 1
2∥SΘ − ΘS − Q + 1

β Y∥2
F . We then construct the majorizer of the objective

function in (3.23) at the point Θ(t) and obtain

min
Θ⪰0

− log(det(Θ)) + ⟨β∇f(Θ(t)) + Ĉ,Θ − Θ(t)⟩ + L2
2 ∥Θ − Θ(t)∥2

F , (3.24)

where ∇f(Θ) denotes the gradient of f(Θ)

∇f(Θ) = SSΘ + ΘSS − 2SΘS + QS − SQ + 1
β

(SY − YS). (3.25)
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Algorithm 2: Inner loop for Θ update.

Input: C, Θ̂
(k)

, Ŝ(k+1), Q̂(k), Ŷ(k), β, δ

Outputs: Θ̂
(k+1)

, Q̂(k+1), Ŷ(k+1)

1 Initialize Θ(0) = Θ̂
(k)

, Q(0) = Q̂(k), Y(0) = Ŷ(k)

2 for t = 0 to T − 1 do
3 Update Θ(t+1) by (3.26);
4 Update Q(t+1) by (3.28);
5 Update Y(t+1) by (3.29);
6 end

7 Θ̂
(k+1)

= Θ(T ), Q̂(k+1) = Q(T ), Ŷ(k+1) = T(T ).

Lemma 1. The optimal solution of problem (3.23) is [77]

Θ(t+1) = U




Λ +
√

Λ2 + 4
L2

2


 U⊤, (3.26)

where Λ and U contain the eigenvalues and eigenvectors of Θ(t) − 1
L2

(
β∇f(Θ(t)) + Ĉ

)
, respec-

tively.

Then, Q is updated by addressing the following problem

min
Q

β
2 ∥Q − SΘ + ΘS − 1

β Y∥2
F ,

s. t. ∥Q∥F ≤ δ,
(3.27)

where the iteration subscripts from Θ(t+1) and Y(t) have been omitted for simplicity. Similar to
the case of updating T, we update Q as

Q(t+1) = Pδ

(
SΘ − ΘS + 1

β
Y

)
. (3.28)

Finally, the Lagrange multiplier Y is updated as follows

Y(t+1) = Y(t) + β(SΘ − ΘS − Q), (3.29)

where the iteration subscripts from Θ(t+1) and Q(t+1) have been similarly omitted for clarity.

We can also use the adaptive strategy in (3.19) to adjust β during iterations, with r(t) and s(t)

defined as
r(t) = SΘ(t) − Θ(t)S − Q(t),

and
s(t) = β(t)S

(
Q(t) − Q(t−1)) − β(t)(Q(t) − Q(t−1))S.

A pseudocode of the steps to be performed for the update of Θ is summarized in Algorithm 2.

3.3.4 Graph-learning algorithm and convergence analysis

Leveraging the results presented in the previous two subsections, the steps to run our iterative
scheme to find a solution (Θ̂, Ŝ) to (3.5) are summarized in Algorithm 3.
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Before presenting the associated theoretical analysis, several comments regarding the imple-
mentation of Algorithm 3 are in order:

• For simplicity, the algorithm considers a fixed number of iterations, but a prudent approach
is to monitor the cost reduction at each iteration and implement an early exit approach if
no meaningful improvement is achieved.

• The value of the hyperparameters ρ, η and δ is an input to the algorithm. We note that
η is typically set to a small value to guarantee that the (sparsity promoting) ℓ1 norm plays
a more prominent role. Moreover, the value of δ should be chosen based on the quality of
the estimate of the sample covariance matrix Ĉ. The higher the number of observations R
(hence, the better the quality of Ĉ), the smaller the value of δ. Similarly, if the number of
nodes N is high, the value of δ should be re-scaled accordingly, so that the constraint does
not become too restrictive.

• The update of S poses the primary computational challenge, mainly due to the complex
nature of its estimation. In contrast to Θ, which is primarily estimated from the data matrix
Ĉ, the estimation of S relies on its interplay with Θ through the relaxed commutativity
constraint. This indirect relationship adds to the complexity of the estimation, as it does not
directly benefit from data-driven insights, often necessitating greater precision in solving the
corresponding subproblem. Furthermore, the constraints imposed on S are substantially more
complex than those on Θ, thereby increasing the computational load to obtain a solution
that lies within the feasible set. To alleviate the computational demand, we may employ
a relatively loose stopping criterion for the Θ subproblem, which can expedite convergence
without significantly affecting the quality of the solution.

To establish the theoretical convergence of Algorithm 3, we begin by introducing several defi-
nitions and (mild) assumptions pertinent to Problem (3.5).

Let f(Θ,S) denote the objective function and X the feasible set of Problem (3.5), respectively.
We define (Θ̄, S̄) as a block coordinatewise minimizer of Problem (3.5) if:

f(Θ̄, S̄) ≤ f(Θ, S̄), for all Θ ∈ X̄Θ, (3.30)

and
f(Θ̄, S̄) ≤ f(Θ̄,S), for all S ∈ X̄S, (3.31)

where X̄Θ = {Θ ∈ RN×N | (Θ, S̄) ∈ X }, and X̄S = {S ∈ RN×N | (Θ̄,S) ∈ X }.

Furthermore, we introduce the following assumptions for our analysis:

Assumption 3.1. The parameter δ in Problem (3.5) is sufficiently large to ensure that the feasible
set of the subproblem (3.7) is nonempty at every iteration.

We require Assumption 3.1 because the intersection S ∩ {S ∈ RN×N |, ∥ΘS − SΘ∥F ≤ δ}
may otherwise be empty, implying that the feasible set of subproblem (3.7) could be nonexistent.
However, Assumption 3.1 is relatively mild, as we can always choose a sufficiently large δ to
ensure that the feasible set of subproblem (3.7) remains nonempty at every iteration. Given
Assumption 3.1, our algorithm is guaranteed to find a minimizer of subproblem (3.7) throughout
its iterations. Additionally, the feasibility of subproblem (3.20) is inherently assured.

Assumption 3.2. The matrix Ĉ in Problem (3.5) is positive definite.
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Algorithm 3: Polynomial Graphical Lasso (PGL)
Input: Ĉ, ρ, η, β, and δ
Outputs: Θ̂ and Ŝ

1 Initialize Θ̂
(0)

= Ĉ−1

2 Initialize Ŝ(0) by solving (3.3)
3 Initialize T(0), Q(0), Y(0), and Z(0) to zero
4 for k = 0 to K − 1 do
5 Update Ŝ(k+1) by running Algorithm 1;

6 Update Θ̂
(k+1)

by running Algorithm 2;
7 end

8 Θ̂ = Θ̂
(K)

, Ŝ = Ŝ(K).

Assumption 3.2, which requires all the eigenvalues to be nonzero, guarantees that subproblem
(3.20) is well defined. Without this assumption, the objective function in (3.20) may fail to
achieve a finite minimum value. In cases where Assumption 3.2 may not hold, incorporating an
norm regularizer for Θ would bound the solution, thereby ensuring the existence of a minimizer.

Theorem 3.1. Let
{(

Θ̂(k)
, Ŝ(k))}

k∈N be a sequence generated by Algorithm 3. Under Assump-
tions 3.1 and 3.2, every limit point of

{(
Θ̂(k)

, Ŝ(k))}
k∈N is a block coordinatewise minimizer of

Problem (3.5).

The proof of Theorem 3.1 is deferred to Appendix 3.8. This theorem asserts the subsequence
convergence of our algorithm to a block coordinatewise minimizer of Problem (3.5). When the
block coordinatewise minimizer lies within the interior of the feasible set, it becomes a stationary
point. The theorem’s assertions are significant both theoretically and practically. As discussed
earlier in the chapter, GMRFs are a particular case of Gaussian graph-stationary processes. Taking
this into account, we can always initialize our algorithm using the solution estimated by GL (which
is optimal for GMRF) and then, run iteratively the updates over Θ and S in Algorithm 3, to get
an (enhanced) coordinatewise minimum estimate.

3.4 Numerical experiments

This section evaluates quantitatively the performance of PGL. Since PGL can be understood as
a generalization of the widely adopted GL (with Θ being any polynomial in S), in most test cases,
we will test both algorithms. Similarly, we also test the learning performance of GSR [4], which
assumes stationarity but not Gaussianity. The performance results obtained from both synthetic
and real-data experiments are summarized in Figs. 3.1-3.6. Unless otherwise stated, to assess the
quality of the estimated GSO, we use the normalized mean error between the estimated and true
S. Mathematically, this entails computing1

nme(S∗, Ŝ) = ∥S∗ − Ŝ∥2
F

∥S∗∥2
F

, (3.32)

1Results for other recovery metrics (including accuracy and F1 score) as well as additional simulations can be
found both in our conference precursor [1] and in our online repository https://github.com/andreibuciulea/
GaussSt_TopoID.

https://github.com/andreibuciulea/GaussSt_TopoID
https://github.com/andreibuciulea/GaussSt_TopoID
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Figure 3.1: Graph estimation error nme(S∗, Ŝ) vs. number of samples R for different graph learning
approaches (PGL, GL, and GSR). The six lines reported in each subplot correspond to the combination
of 3 different graph learning methods and 2 different covariance setups (SSEM and Poly) for a noise-free
scenario.

where Ŝ and S∗ represent the estimated and true S respectively. Moreover, for the synthetic
experiments we test the graph learning algorithms over 100 realizations of random graphs {Gi}100

i=1
and report the average normalized mean error 1

100
∑100

i=1 nme(S∗
i , Ŝi).

If not specified otherwise, in our synthetic experiments, we consider graphs with N = 20
nodes generated using the Erdös-Rényi (ER) model with a link probability of p = 0.1. Regarding
the generation of the graph signals, three different setups for the covariance matrices have been
studied. For the setup referred to as “Poly”, the covariance matrix C is generated as a random
polynomial of the GSO of the form C = (

∑L−1
l=0 hlSl)2, where hl are random coefficients drawn

from a normalized zero-mean Gaussian distribution, and the square operator guarantees matrix
C to be positive definite. The setup referred to as “SSEM” constructs the covariance matrices
following the sparse structural equation model [41] for graph signal generation as C = (I − S)2,
where S is selected to ensure that C is positive definite. The setup referred to as “MRF” constructs
the covariance matrices following the assumptions made by GL as C = (µI + νS)−1, where µ is
some positive number large enough to assure that C−1 is positive definite and ν is some positive
random number.

3.4.1 Test case 1: Estimation error vs. number of samples for multiple synthetic sce-
narios.

In this first test case, we employ synthetic scenarios for testing the performance of our approach
in terms of nme(S∗, Ŝ) vs. R and also compare the results with other methods from the literature.
The different scenarios considered are detailed below.

Error vs. number of samples for different graph learning methods and signal models.
The results of the experiment depicted in Fig. 3.1a, compare the nme(S∗, Ŝ) (y-axis) of various
algorithms with respect to the number of available samples R (x-axis). Moreover, we consider
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Figure 3.2: Graph estimation error nme(S∗, Ŝ) vs. number of samples R for different graph learning
approaches (PGL, GL, and GSR). The six lines reported in each subplot correspond to the combination of
3 different graph learning methods and 2 noise levels σ ∈ {0.05, 0.2} for a Poly setup.

SSEM and Poly setups for data generation. The results shown in Fig. 3.1a reveal that: i) PGL
outperforms its competitors, ii) the error decreases as R increases, and iii) estimation is more
accurate for SSEM than for Poly. Next, we discuss these three main findings in greater detail.
All algorithms do a better job estimating the graph for the SSEM model. Since Θ for SSEM is a
specific second-order polynomial in S it can be seen as a particular case of Poly, and consequently,
a scenario from which the graph structure is easier to estimate. Indeed, while GL fails to estimate
the graph for the Poly model, it is able to estimate some of the links for the SSEM. However,
the estimation error of GL is quite large and does not change with the number of samples R,
demonstrating that the poor performance is due to a model mismatch. This will be further
confirmed in Section 3.4.2, where we simulate a GMRF data generation setup that aligns perfectly
with the assumptions made by GL. Regarding PGL and GSR, we observe that the error decreases
almost linearly with the number of samples R. Perhaps more importantly, we also observe that,
as R increases, the gap between PGL and GSR diminishes. For example, while for the Poly case
GSR needs 10 times more samples than PGL to achieve an error of 10−1, GSR only needs 3 times
more samples than PGL to achieve an error of 10−3. This illustrates that, as expected, the gains
associated with assuming Gaussianity are stronger when the number of observations R is small,
vanishing as R grows very large.

Error vs. number of samples for noisy observations. Next, we assess the performance of the
graph-learning algorithms in the presence of additive white Gaussian observation noise. The results
are shown in Fig. 3.1b. As in the previous test case, we report nme(S∗, Ŝ) vs R for PGL, GL and
GSR. The difference here is that we consider only the more intricate signal generation model (Poly)
and two normalized noise levels (σ = 0.05, σ = 0.2). The main observations in this case are: i)
PGL outperforms GSR and GL, ii) the error for PGL and GSR decreases as R increases, while the
one for GL is flat and close to 1, iii) the estimation performance for PGL and GSR worsens as the
noise level σ increases, deteriorating noticeably with respect to the setup in Fig. 3.1a, and iv) the
gap between PGL and GSR grows. The findings in i) and ii) are consistent with those found in the
previous test case. Finding iii) is expected and common in all graph-learning approaches. Finally,
the larger gap in finding iv) is due to the fact that this is a more challenging scenario (high-order
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Figure 3.3: Graph estimation error nme(S∗, Ŝ) vs. number of samples R for different graph generation
models (SW, SBM, and BA). The six lines reported in each subplot correspond to the combination of 3
graph generation models and 2 covariance models (SSEM and Poly) for the PGL algorithm in a noise-free
scenario.

polynomial covariances and observation noise), and, as a result, the higher level of sophistication
of PGL relative to GSR translates into more noticeable gains.

Error vs. number of samples for different graph models. This test case considers network
models other than ER. In particular, three different types of graphs are considered: 1) Small
World (SW) graphs with mean node degree 4 and rewiring probability 0.15; 2) Stochastic block
model (SBM) graphs with 4 clusters, and intra and inter-cluster edge probability of 0.8 and 0.05,
respectively; and 3) Barabási-Albert (BA) graphs with 2 edges to attach at every step. As in the
first test case, we consider two types of signal generation models: SSEM and Poly. Fig. 3.1c
reports the error vs. the number of samples for the six combinations considered (3 types of graphs
and 2 types of signal generation models). The results show that there is a significant difference in
performance between SW, SBM, and BA, which is part due to the sparsity level present in each
graph. One of the assumptions codified in our model is that the graph is sparse, and, as a result,
our algorithm does a better job estimating BA (the one with the lowest average degree) than SBM
and SW (the one with the highest average degree). Finally, we also note that the estimation error
achieved with SSEM consistently outperforms that of the Poly setup. These findings align with the
results presented in Fig. 3.1a for ER graphs and are in accordance with the theoretical discussion
that postulated SSEM as a specific instance of Poly.

3.4.2 Test case 2: Noisy GMRF graph signals.

In this test case, the goal is to assess the behavior of PGL for GMRF observations, which is
the setup that motivated the development of the GL algorithm.

Estimation error considering noisy GMFR signals. In this experiment, we replicate the scenario
from Fig.3.1b, utilizing a GMFR model to generate the signals. The performance of PGL, GL and
GSR for two different noise levels, σ ∈ {0.05, 0.2}, is depicted in Fig. 3.4. The main observations
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Figure 3.4: Graph estimation error nme(S∗, Ŝ) vs. number of samples R for data generated according to a
GMRF. We consider three different graph learning schemes (PGL, GL, and GSR) and two levels of additive
white noise (σ ∈ {0.05, 0.2}), giving rise to the six lines in the figure.

are: i) across all considered approaches, increasing the noise level σ leads to a deterioration in
terms of nme(S∗, Ŝ); ii) GSR always performs worse than PGL, providing very poor results when
R < 104; and iii) GL outperforms PGL when the number of observations R is small. Findings
i) and ii) are unsurprising and consistent with the behavior observed in the previous experiments,
showcasing the benefits of considering the log-likelihood regularization in the optimization run
by PGL. Regarding iii), GL outperforming PGL is expected, since the latter needs to “learn” the
particular polynomial between Θ and S.

However, as the value of R increases, the error in PGL gradually decreases, while the error
in GL remains relatively constant, leading to PGL outperforming GL for large values of R. This
behavior is more surprising and can be attributed to the fact that GL focuses on learning the
precision matrix Θ, while PGL balances the accuracy in terms of both the precision Θ and the
graph S. Since the reported error focuses on the estimation S, the values of the diagonal of Θ are
not relevant for nme(S∗, Ŝ) and this can explain that GL, which is a maximum likelihood estimate
for Θ, does not yield the minimum nme(S∗, Ŝ).

3.4.3 Test case 3: Computational complexity.

Here, we compare the runtime obtained by the efficient implementation of our PGL scheme
provided in Algorithm 3 and a generic block-coordinate alternating minimization algorithm that
uses a generic software for disciplined convex programming (CVX) [78], the most common off-the-
shelf solver for convex problems.

Computational complexity and estimation error. The objective of this experiment is to evaluate
the running time and estimation error for different versions of our algorithm as the number of nodes
increases. In particular, the experiment focuses on the Poly setup, utilizing R = 106 graph signals,
and averages the results over 50 graph realizations. Table 3.1 lists the elapsed time required to
obtain the graph and precision estimates for problems with different numbers of nodes N using
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Alg. \ N 20 30 40 50 60 Metric
PGL-CVX 2.37 · 101 3.88 · 101 1.29 · 102 1.11 · 103 3.13 · 103

Time (s)
PGL-Alg.3 2.49 · 100 2.72 · 100 2.88 · 100 3.81 · 100 4.45 · 100

PGL-CVX 7.98 · 10−4 3.12 · 10−3 1.35 · 10−2 2.59 · 10−2 9.16 · 10−2
nme(S∗, Ŝ)

PGL-Alg.3 4.66 · 10−4 1.30 · 10−3 2.18 · 10−3 5.07 · 10−3 1.59 · 10−2

Table 3.1: Test the impact in the nme(S∗, Ŝ) and time complexity comparing two different implementations
of the proposed approach using i) an off-the-shell convex solver (PGL-CVX) and ii) the method in Algorithm
3 (PGL-Alg.3) for different graph sizes. PGL-Alg.3 performs better than PGL-CVX in terms of both time
complexity and nme(S∗, Ŝ).

two algorithms: 1) solving the optimization in (3.5) with a block coordinate approach where the
minimization over Θ given S and the minimization over S given Θ are run using CVX (this
algorithm is labeled as PGL-CVX) and 2) employing the efficient scheme outlined in Algorithm 3
(this choice is labeled as PGL-Alg.3). To guarantee that the results are comparable, the nme(S∗, Ŝ)
is also reported. Examining the listed running times, we observe that as the number of nodes
increases, both solvers require more time to estimate the graph (note that the number of variables
scales with N2). More importantly, there exists a noticeable difference between PGL-CVX and
PGL-Alg.3. Not only the latter is faster for small graphs, but the gains grow significantly as
N increases. Note that the results for graphs with more than N = 60 nodes are not reported
for PGL-CVX, since the computation time exceeded two hours. In terms of nme(S∗, Ŝ), our
approach achieves similar (slightly better) results than PGL-CVX. In conclusion, the experiment
demonstrates that the efficient implementation described in Section 3.3 is more efficient than
readily available convex solvers, rendering it particularly well-suited for large graphs while yielding
comparable nme(S∗, Ŝ).

3.4.4 Test case 4: Real data scenarios.

Finally, we compare different graph-learning algorithms (including PGL) in the context of two
different graph-aware applications. The details and results are provided next.

Stock graph-based clustering from returns. For this real-data experiment, we tested our
graph learning algorithm on financial data and further performed a clustering task. Specifically,
40 companies from 4 different sectors of the S&P 500 were selected (10 companies from each
sector) and the market data (log returns) of each company in the period 2010-2015 was retrieved.
This gives rise to a data matrix of size X ∈ R40×1510. In this application, as in many others
dealing with graph learning, we do not have access to the ground truth graph. Hence, we cannot
quantify the quality of the estimated network directly by using a metric like nme or F1 score.
As a result, we need to assess the quality of the estimated graph indirectly, using the graph as
input for an ulterior task. In this experiment, we use the graph to estimate the community each
company belongs to in an unsupervised manner. More specifically, we implement the following
pipeline: 1) estimate several graphs from a subset of the available graph signals, 2) use spectral
clustering to group the nodes into 4 communities (as many as sectors were selected), and 3)
compute the ratio of incorrectly clustered nodes. To obtain more reliable results, we averaged the
clustering errors over 50 realizations in which the subset of graph signals was chosen uniformly
at random. The vertical axis of Fig.3.5 represents the normalized clustering error 1

50
∑50

i=1
N

(i)
w

N
which is computed as the average of the fraction between the number of wrongly clustered nodes
Nw and the total number of nodes N over 50 graph realizations. The horizontal axis of Fig. 3.5
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Figure 3.5: Test the impact in terms of normalized node clustering error while increasing the percentage
of available signals considering 40 companies of the S&P 500 in the period 2010-2015.

represents the percentages of graph signals used to estimate Ŝ. Results are provided for 4 graph-
learning approaches: PGL, GL, GSR, and “Corr”, which estimates the graph as a thresholded
version of the correlation matrix. The idea is that companies from the same sector have stronger
ties among them and, as a result, when running a graph-based clustering method, the 4 sectors
should arise. Based on the results presented in Fig.3.5, it can be observed that PGL outperforms
the other alternatives and additionally, as the number of available signals increases, the clustering
error for PGL drops significantly. The superiority of PGL may indicate that considering more
complex relationships among stocks (beyond the simple correlations considered in “Corr” or the
partial correlations considered in GL) is a better model to understand the dependencies between
log-returns in the stock market. On the other hand, GSR shows high clustering error with a limited
number of samples, but it improves as the number of available samples increases. This observation
aligns with our earlier discussion in Section 3.2, where we highlighted that this particular model
offers greater generality but necessitates a substantial number of samples to accurately estimate
the graph.

Learning sequential graphs for investing. This experiment deals with a different real-world
problem and dataset. We still look at stocks, but consider now the close price of the 7 FAAMUNG2

companies from Jul 2019 to May 2020. The goal is to design an investment strategy to maximize
the benefits using as input a graph describing the relationships among the companies. Inspired
by the approach in [79], we first build a graph, analyze its connectivity and then, invest (or not)
in a stock according to the graph connectivity. To be more specific, we use the close price to
estimate multiple 7 × 7 adjacency matrices. We estimate a total of 200 matrices, where each
adjacency matrix (graph) is estimated in a rolling window fashion. The window consists of 30
consecutive days and for each graph estimation, we shift the window one day at a time. These
graph estimations help to visualize how the graph topology changes during this time period. The
finding in [79] is that big changes in the graph connectivity indicate opportunities to invest. To
that end, we keep track of the algebraic connectivity value, which is the second smallest eigenvalue
(λ2) of the estimated Laplacian matrix. The lower the value, the less connected the graph is and,
as a result, the easier breaking the graph into multiple components is. Fig.3.6 shows the value

2Facebook, Amazon, Apple, Microsoft, Uber, Netflix, and Google
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(a)

(b)

Figure 3.6: (a) Value of the algebraic connectivity indicator (λ2) associated with each one of the 200
estimated graphs from July 2019 to May 2020 using three different graph learning approaches. (b) Benefits
obtained from applying four different investment strategies based on the estimated algebraic connectivity
indicator for each of the considered approaches.

of λ2 for each of the 200 considered graphs (each associated with a 30-day period). Then, using
the approach in [79] we invest only if λ2 is below a fixed threshold. We learn the graph using 3
methods (GL, GSR, and PGL) and, for each of them, we select the best possible threshold (the
one that maximizes the benefits). Correlation was not used here due to its poor performance. The
results of applying the graph-connectivity-based investment strategy to the graphs estimated with
each of the algorithms are shown in Fig. 3.6. The blue line labeled as “Strategy I” represents
the benefits of investing every day the available amount and is used as a baseline. By analyzing
the results obtained, we can observe that: i) the graph-based strategies outperform (gain more
money than) the baseline; ii) the strategies based on GL and GSR provide similar gains; and iii)
the strategy based on PGL yields the highest gains. This provides additional validation for the
graph-learning methodology proposed in this chapter.

3.5 Conclusions

This chapter has introduced PGL, a novel scheme for learning a graph from nodal signals, with
our key contribution being the modeling of the signals as Gaussian and stationary on the graph.
This approach opens the door to a graph-learning formulation that leverages the advantages of GL
(needing a relatively small number of signals to get a good estimation of the graph structure) while
encompassing a more comprehensive model (because it handles cases where the precision matrix can
be any polynomial form of the sought graph). Given the increased complexity and nonconvex nature
of the resulting optimization problem, we have developed a low-complexity algorithm that alternates
between estimating the graph and precision matrices and have characterized its convergence to a
block coordinatewise minimum. To assess its efficacy, we have conducted numerical simulations
comparing PGL with various alternatives, using both synthetic and real data. The results have
showcased the benefits of our approach, motivating the adoption and further investigation of the
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proposed graph-learning methodology.

3.6 Appendix: Computations of projections

We present the details about how to compute the projections PSA
and PSB

.

The computation of PSA
is straightforward as follows:

PSA
(A) =

(
A + A⊤)

/2. (3.33)

The projection PSB
is defined as the minimizer of the optimization problem as follows:

PSB
(A) := arg min

X∈SB

1
2∥X − A∥2

F . (3.34)

To compute the projection PSB
, we solve Problem (3.34) row by row. For the j-th row, we solve

the following problem,
min

x∈RN

1
2∥x − a∥2,

s. t. x⊤1 ≥ 1, xj = 0, x\j ≥ 0,
(3.35)

where a ∈ RN contains all entries of the j-th row of A, xj denotes the j-th entry of x, and
x\j ∈ RN−1 contains all entries of x except the j-th one.

Let x̂ denote the optimal solution of Problem (3.35). Proposition 3.1 below, proved in Ap-
pendix 3.7, presents the optimal solution of Problem (3.35).

Proposition 3.1. The optimal solution x̂ to Problem (3.35) can be obtained as follows:

• If ∑
i ̸=j max(ai, 0) ≥ 1, then x̂j = 0, and x̂i = max(ai, 0), for i ̸= j.

• If ∑
i ̸=j max(ai, 0) < 1, then x̂j = 0, and x̂i = max(ai + ϕ, 0), for i ̸= j, where ϕ satisfies∑

i ̸=j max(ai + ϕ, 0) = 1.

Several efficient approaches have been developed to tackle the piecewise linear equation
∑

i ̸=j max(ai+
ϕ, 0) = 1. Among these, the sorting-based method described in [80] is noteworthy. Central to this
method is the sorting of the vector a, which constitutes the most computationally intensive step,
generally necessitating O(N logN) operations.

3.7 Appendix: Proof of Proposition 3.1

Proof. The Lagrangian of the optimization in (3.35) is

L(x, u,v) = 1
2∥x − a∥2 − u

(
x⊤1 − 1

)
− ⟨v\j , x\j⟩ + vjxj ,
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where u ∈ R and v ∈ RN are Karush-Kuhn-Tucker (KKT) multipliers. Let (x̂, û, v̂) be the primal
and dual optimal point. Then (x̂, û, v̂) must satisfy the KKT system:

x̂i − ai − û− v̂i = 0, for i ̸= j; (3.36)
x̂j − aj − û+ v̂j = 0; (3.37)

x̂i ≥ 0, v̂i ≥ 0, v̂ix̂i = 0, for i ̸= j; (3.38)
x̂j = 0, û ≥ 0, x̂T 1 ≥ 1; (3.39)

û
(
x̂T 1 − 1

)
= 0; (3.40)

Therefore, for any i ̸= j, it holds that x̂i = ai + û+ v̂i. Then we obtain the following results:

• If ai + û < 0, then v̂i = −ai + û and x̂i = 0, following from the fact that v̂ix̂i = 0 and
x̂i ≤ 0.

• If ai +ûr ≥ 0, then v̂i = 0. This can be obtained as follows: if x̂i = 0, then v̂i = −(ai +û) ≤
0. Since v̂i ≥ 0, one has v̂i = 0; On the other hand, if x̂i ̸= 0, then v̂i = 0, following from
the fact that v̂ix̂i = 0. As a result, we get x̂i = ai + û.

Overall, we obtain that

x̂j = 0, and x̂i = max(ai + û, 0), for all i ̸= j. (3.41)

On the other hand, x̂ and û satisfy that x̂T 1 ≥ 1, û ≥ 0, and û
(
x̂T 1 − 1

)
= 0. To this end,

we can obtain the following results:

• If
∑

i ̸=j max(ai, 0) ≥ 1, then û = 0, indicating that x̂i = max(ai, 0), for any i ̸= j.

• If
∑

i ̸=j max(ai, 0) < 1, then û ̸= 0. This is because û = 0 will result in x̂⊤1 < 1, which
does not satisfy the KKT system. Together with the KKT condition that û

(
x̂T 1 − 1

)
= 0,

one has x̂⊤1 = 1. Therefore, one obtains that, for any i ̸= j, x̂i = max(ai + û, 0), where
û is chosen such that

∑
i ̸=j max(ai + û, 0) = 1.

We note that the ϕ in Proposition 3.1 is exactly the dual optimal point û.

3.8 Appendix: Proof of Theorem 3.1

Proof. The convergence result stated in Theorem 3.1 is based on the framework established by
Theorem 2.3 in [81]. To demonstrate the validity of Theorem 3.1, it suffices to establish that the
conditions and assumptions of Theorem 2.3 are satisfied in our context. Our approach to block
updates aligns with the procedure delineated in equation (1.3a) of [81].

We first verify the conditions the requisite conditions of Theorem 2.3 in [81] are met. Specif-
ically, Theorem 2.3 stipulates that the objective function, along with the feasible set of the opti-
mization problem, should exhibit block multiconvexity. For Problem (3.5), the objective function
f is convex with respect to each of the blocks Θ and S when the other block is fixed, a property
that defines block multiconvexity as per [81]. Moreover, the function f is strongly convex with
respect to both Θ and S.



36 Graph Learning from Gaussian and Stationary Graph Signals

The feasibility constraints of Problem (3.5) form a set X that satisfies the criteria for block
multiconvexity as defined in [81]. This is due to the convexity of the individual set maps XΘ and
XS. The set map XΘ is defined as

XΘ = {Θ ∈ RN×N |Θ ⪰ 0, ∥ ΘS − SΘ∥F ≤ δ} (3.42)

for some given S, and similarly, the set map XS is defined as

XS = {S ∈ RN×N | S ∈ S, ∥ΘS − SΘ∥F ≤ δ} (3.43)

for some given Θ. Consequently, the optimization subproblems with respect to Θ and S in
Problem (3.5) are convex.

We now validate the assumptions required by Theorem 2.3 in [81] within the context of our
setting. Specifically, it is required that the objective function f is bounded below over the feasible
set X , that is, inf(Θ,S)∈X f(Θ,S) > −∞. This is indeed the case here, because the term
ρ∥S∥1 + η

2 ∥S∥2
F is nonnegative. Additionally, the function − log(det(Θ))+ tr(ĈΘ) attains a finite

infimum when Ĉ is positive definite under Assumption 3.2. To see this, first observe that det(Θ) ≤
∥Θ∥N

2 , where ∥Θ∥2 is the largest eigenvalue of Θ. Consequently, − log det(Θ) ≥ −N log(∥Θ∥2).
Further, since tr(ĈΘ) ≥ γtr(Θ) ≥ γ∥Θ∥2, with γ > 0 being the smallest eigenvalue of Ĉ, we
obtain

− log det(Θ) + tr(ĈΘ) ≥ −N log(∥Θ∥2) + γ∥Θ∥2, (3.44)

which indeed has a finite minimum. Thus, we conclude that inf(Θ,S)∈X − log det(Θ) + tr(ĈΘ) >
−∞.

Furthermore, the existence of block coordinatewise minimizers is assured by the compactness
of the feasible set. Moreover, Theorem 2.3 in [81] stipulates that set maps change continuously
during iterations. Referring to (3.42) and (3.43), it is clear that the only constraint that changes
through iterations is ∥ΘS − SΘ∥F ≤ δ, while the other constraints, Θ ⪰ 0 and S ∈ S, remain
constant. Given that ∥ΘS − SΘ∥F is a continuous function with respect to both Θ and S, the
set maps indeed change continuously, satisfying the theorem’s conditions.

These verifications above have demonstrated that the conditions and assumptions of Theorem
2.3 are satisfied in our context, completing the proof.



Chapter 4

Graph Learning from Smooth and Stationary Graph Signals with
Hidden Nodes

The main goal of graph learning approaches is to estimate the graph structure from data of the
observed nodes. This is crucial in various fields, but a significant challenge arises when some nodes
are hidden or unobserved. This chapter introduces a novel approach that considers the presence
of hidden variables in a network topology inference problem while assuming smoothness and/or
stationarity for the graph signals. The approach involves constrained optimization, block matrix
factorization, and relaxation techniques to adapt to the presence of hidden nodes. Overall, this
chapter addresses the challenge of hidden variables in network topology inference within the GSP
framework, offering potential insights and directions for further research.

4.1 Introduction

As we discussed in the previous chapter, datasets with non-Euclidean support have become
prominent, leading to the adoption of graph-based techniques to address various challenges in
information processing. This approach has found success in diverse applications attracting interest
from researchers across statistics, machine learning, and signal processing domains. Although
networks may exist as physical entities, oftentimes they are abstract mathematical representations
with nodes describing variables and links describing pairwise relationships between them. More
importantly for this chapter, such relationships may not always be known a priori. In such cases,
the graph needs to be learned from a set of node observations under the fundamental assumption
that there is a relationship between the properties of the observed signals and the topology of
the sought graph. The described task represents the network topology inference problem [4, 37,
39, 40, 58, 82], discussed in Section 2.5. Noteworthy approaches include correlation networks [13],
partial correlations and (Gaussian) Markov random fields [13,59,67,83], sparse structural equation
models [41,84], GSP-based approaches [4,37,39,61,85], as well as their non-linear generalizations
[60,86], to name a few.

The standard network-inference approach in the aforementioned works is to assume that ob-
servations from all the nodes of the graph are available. In certain environments, however, only
observations from a subset of nodes are available, with the remaining nodes being unobserved or
hidden. The existence of hidden/latent nodes constitutes a relevant and challenging problem since
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closely related values from two observed nodes may be explained not only by an edge between
the two nodes but by a third latent node connected to both of them. Moreover, because there
are no observations from the hidden nodes, modeling their influence renders the network inference
problem substantially more challenging and ill-posed. Except for direct pairwise methods, which
can be trivially generalized to the setup at hand, most of the existing approaches require important
modifications to deal with hidden nodes. Network-inference works that have looked at the problem
of hidden variables include examples in the context of Gaussian graphical model selection [63,87],
inference of linear Bayesian networks [88], nonlinear regression [89], or brain connectivity [64] to
name a few. Nonetheless, there are still a number of effective network-inference methods (including
most in the context of GSP) that have not considered the presence of latent unobserved nodes.

Motivated by the previous discussion, in this chapter, we approach the problem of network
topology inference with hidden variables by leveraging two fundamental concepts of the GSP
framework: smoothness [55] and stationarity [48, 90]. Recall that, as mentioned in Section 2.4, a
signal being smooth on a graph implies that the signal values at two neighboring nodes are close so
that the signal varies slowly across the graph. This fairly general assumption has been successfully
exploited to infer the topology of the graph when values from all nodes are observed [85, 91, 92].
From a different perspective, assuming that a random process is stationary on a graph is tantamount
to assuming that the covariance matrix of the random process is a polynomial of the GSO, as
discussed in Section 2.4. This property has been leveraged in the context of network inference
to develop new algorithms and establish important links between graph stationarity and classical
correlation and partial-correlation approaches [4,54,93]. Although the assumptions of smoothness
and stationarity have been successfully adopted in the context of the network-topology inference
problem, a formulation robust to the presence of hidden variables is still missing. To fill this gap, this
chapter builds on our previous work [42] and investigates how the presence of the hidden variables
impacts the classical definitions of graph smoothness and stationarity. Then, it formulates the
network-recovery problem as a constrained optimization that accounts explicitly for the modified
definitions. A key in our formulation is the consideration of a block matrix factorization approach
and exploitation of the low rankness and the sparsity pattern present in the blocks related to
hidden variables. A range of formulations are presented and suitable (convex and non-convex)
relaxations to deal with the sparsity and low-rank terms are considered. While our focus is to learn
the connections among observed nodes, some of our approaches also reveal information related to
links involving hidden nodes. A further investigation of this matter is left as future work.

Related work and contributions. Early methods in graph topology inference, accounting for
hidden nodes, were initially introduced in [63], assuming observations follow a GMRF model. Other
related works that came later include Bayesian network inference [88], nonlinear regression [89], and
brain connectivity studies [64]. However, many effective network inference methods, particularly in
the context of GSP, have overlooked the presence of latent unobserved nodes. In this chapter, we
extend our prior work from [42] by (i) proposing different approaches for network topology inference
with hidden variables in scenarios where the available signals exhibit smoothness and/or stationarity
within the sought graph and (ii) providing convex algorithms for addressing the proposed problems,
and (iii) showing theoretical convergence guarantees of the proposed method to a stationary point.
Furthermore, the expressive capabilities of the GMRF model are constrained when observations
possess a more intrinsic structure. Addressing these challenges, our goal is to devise broader
methods for topology inference with hidden variables. This involves closing the gap in the context
of GSP and understanding the influence of hidden nodes in scenarios where graph signals exhibit
intrinsic characteristics such as smoothness, stationarity, or both, which are investigated in this
work.
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To summarize, our main contributions are:

• We analyze the influence of hidden variables on graph smoothness and graph stationarity.

• We propose several optimization approaches to solve the topology inference problem with
hidden variables when the observed signals are smooth, stationary or both in the sought
graph.

• We propose an iterative algorithm for estimating the network structure and also theoretical
guarantees of convergence to a stationary point.

• We present an extensive evaluation of the proposed models through both synthetic and real
experiments showing the benefits of the proposed approaches compared to the state-of-the-
art alternatives.

Outline. The remainder of this chapter is organized as follows. We introduce in Section 4.2 the
task of inferring the graph structure in the presence of hidden nodes. In Section 4.3, Section 4.4,
and Section 4.5 we present our proposed optimization problem that accounts for the presence
of hidden nodes when the available graph signals are smooth, stationary, and both smooth and
stationary, respectively. The performance of the proposed methods is validated and compared with
other alternatives from the literature by several synthetic and real-world experiments in Section 4.6.
In Section 4.7 a concluding discussion is provided about the work presented in this chapter. Fi-
nally, we provide theoretical convergence guarantees for the solution obtained by our method to a
stationary point in Section 4.8.

4.2 Influence of hidden variables in the network topology inference problem

The current section is devoted to formally posing the network topology inference problem
when only observations from a subset of nodes of the graph are available. We present a general
formulation and highlight the influence of the hidden variables.

Denote as X = [x1, ...,xR] ∈ RN×R the collection of R signals defined on top of the unknown
graph G with N nodes. Then, we consider that we only observe the values of X from a subset
of nodes O ⊂ V with cardinality O < N . In contrast, the values corresponding to the remaining
H = N − O nodes in the subset H = V \ O stay hidden1. For simplicity and without loss of
generality, let the observed nodes correspond to the first O nodes of the graph, so the values of the
given signals at O are collected in the submatrix XO ∈ RO×R, which is formed by the first O rows
of the matrix X. As explained in the previous section, these observations can be used to form the
sample covariance matrix. When doing so, it is important to notice the matrices S ∈ RN×N and
Ĉ ∈ RN×N , which respectively represent the GSO and the sample covariance matrix associated
with the full graph G, and the signals X, present the following block structure

X =
[
XO

XH

]
, S =

[
SO SOH

SHO SH

]
, Ĉ =

[
ĈO ĈOH

ĈHO ĈH

]
. (4.1)

The O × O matrix SO denotes the GSO describing the connections between the observed nodes,
while the remaining blocks model the edges involving hidden nodes. Similarly, ĈO = 1

RXOX⊤
O

1With a slight abuse of notation, we use H to denote the number of hidden nodes and the square matrix H to
denote a generic graph filter.
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denotes the sample covariance of the observed signals, and the other blocks denote the submatrices
of Ĉ involving signal values from the hidden nodes. Since G is undirected, both S and Ĉ are
symmetric, and thus, SHO = S⊤

OH and ĈHO = Ĉ⊤
OH.

With the previous definitions in place, the problem of network topology inference/graph learning
in the presence of hidden variables is formally introduced next.

Problem 4.1. Let G = (V, E) be a graph with N nodes and GSO S ∈ RN×N , and suppose that
{V, E , N,S} are all unknown. Given the nodal subset O ⊂ V with cardinality |O| = O, and the
observations XO ∈ RO×R corresponding to the values of R graph signals observed at the nodes
in O, find the underlying graph structure encoded in SO ∈ RO×O under the assumptions that:
(AS1) The number of hidden variables (nodes) is substantially smaller than the number of observed
nodes, i.e., O ⪅ N ; and
(AS2) There exists a (known) property relating the full graph signals X ∈ RN×R to the GSO S.

Despite having observations from O nodes, there are still H = N − O nodes that remain
unseen and influence the observed signals XO, rendering the inference problem challenging and
severely ill-conditioned. To make the problem more tractable, (AS1) ensures that the number of
hidden variables is small. Assumption (AS2) is more generic and establishes that there is a known
relationship between the graph signals X and the full graph S. The particular relationship is further
developed in the following sections, where we assume that X is either smooth (Section 4.3) or
stationary (Section 4.4) on S. The key issue to address is how (AS2), which involves the full
signals and GSO, translates to the submatrices XO, SO, and CO in (4.1).

Given the above considerations, a general formulation to solve Problem 4.1 is as follows

ŜO = argminSO f(SO) (4.2)
s. t. XO ∈ X (S),

SO ∈ S,

where f(·) is a (preferably convex) function that promotes desirable properties on the sought
graph. Typical examples include the ℓ1 norm, the Frobenius norm, the spectral radius, or linear
combinations of those [40]. Note that the first constraint in (4.2) (referred to as observation
constraint) takes into account that X involves the full matrices X and S but only XO is observed.
It is also important to remark that, as will be apparent in the following sections, for observations
that are either smooth or stationarity in the graph, the constraint XO ∈ X (S) can be reformulated
in terms of the (sample) covariance matrices ĈO = 1

RXOX⊤
O and CO = E

[
xOx⊤

O

]
. Regarding the

second constraint in (4.2), the set S collects the requirements for S to be a specific type of GSO.
As mentioned in Section 2.5, a typical example of S being a specific type of GSO is belonging to
the set of adjacency matrices

A := {Aij ≥ 0; A = A⊤; Aii = 0; A1 ≥ 1}, (4.3)

where we require the GSO to have non-negative weights, be symmetric and have no self-loops,
and the last constraint rules out the trivial 0 solution by imposing that every node has at least one
neighbor. Analogously, the set of combinatorial Laplacian matrices is

L := {Lij ≤ 0 for i ̸= j; L = L⊤; L1 = 0; L ⪰ 0}, (4.4)

where we require the GSO to be a PSD matrix, have non-positive off-diagonal values, have positive
entries on its diagonal, and have the constant vector as an eigenvector (i.e, the sum of the entries
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of each row to be zero). Lastly, we want to stress that the objective f(SO) and the constraint
SO ∈ S can be alternatively formulated based on the full GSO S, provided that we know that the
structural properties (for instance sparsity in the objective and positive entries in the constraints)
hold also for the non-observed parts of S. Such an approach is suitable when the interest goes
beyond SO and spans the estimation of the links involving the nodes in H.

Hidden variables in correlation and partial-correlation networks: Before discussing our specific
solutions to Problem 4.1, a relevant question is how classical network topology inference approaches
(namely correlation and partial-correlation networks) handle the problem of latent nodal variables.
The so-called direct methods consider that a link between nodes i and j exists based only on a
pairwise similarity metric between the signals observed at i and j. Within this class of methods,
correlation networks set the similarity metric to the correlation and, as a result, S corresponds to
a (thresholded) version of C. Given their simplicity, the generalization of direct methods to setups
where hidden variables are present is straightforward and simply given by SO = ĈO. Nevertheless,
a high correlation between two nodes can be due to global network effects rather than to the
direct influence among pairs of neighbors, calling for more involved network topology inference
methods. To that end, partial-correlation methods, including the celebrated GL algorithm [3],
propose estimating the graph as a matrix of partial correlation coefficients, which boils down to
assuming that the connectivity patterns can be identified as S = C−1, with C−1 being known as
the precision matrix. When hidden variables are present, the submatrix of the precision matrix is
given by C−1

O = SO −B, with B = SOHS−1
H SHO being a low-rank matrix since H ≪ O. Leveraging

this structure, the authors in [63] modified the GL algorithm to deal with hidden variables via a
maximum-likelihood estimator augmented with a nuclear-norm regularizer to promote low rankness
in B. The resulting algorithm is known as latent variable graphical Lasso (LVGL) and is given by

max
SO−B⪰0, B⪰0

log det(SO − B) − trace(ĈO(SO − B))

−λ1∥SO∥1 − λ2∥B∥∗,
(4.5)

where ĈO represents the sample covariance of the observed data and λ1 and λ2 are regularization
constants [63].

Rather than assuming that the relation between X and S postulated in (AS2) is given by either
correlations or partial-correlations, this chapter looks at setups where the operational assumption
is that the observed signals are: i) smooth on the graph; ii) stationary on the graph; and iii)
both smooth and stationary. Sections 4.3-4.5 deal with each of those three setups. Section 4.6
evaluates numerically the performance of the developed algorithms and compares it with that of
classical correlation and LVGL schemes.

4.3 Network topology inference from smooth signals with hidden vairables

In this section, we address Problem 4.1 by particularizing (4.2) to the case of the signals X
being smooth on G.

As explained in Section 2.4, a natural way of measuring the smoothness of (a set of) graph
signals is to leverage the graph Laplacian and compute their LV as 1

R tr(XX⊤L) [cf. (2.5)]. As a
result, in this section, we set S = L and focus on Ĉ = 1

RXX⊤. Recall that, due to the existence of
hidden variables, the whole covariance matrix is not observed. To account for this and leveraging
the block definition of Ĉ and S introduced in (4.1), we can rewrite the LV of our dataset as

tr(ĈL) = tr(ĈOLO) + 2tr(ĈOHL⊤
OH) + tr(ĈHLH), (4.6)
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where only ĈO = 1
RXOX⊤

O is assumed to be known and the influence of the hidden variables in
the LV has been made explicit.

Although the block-wise smoothness presented in (4.6) could be directly employed to approach
the network-topology inference as an optimization problem, most of the submatrices are not known
and need to be estimated. Incorporating the terms COHL⊤

OH and CHLH would directly render
the problem non-convex. To circumvent this issue, we lift the problem by defining the matrix
K := COHL⊤

OH ∈ RO×O. Since (AS1) guarantees that rank(K) ≤ H ≪ O, we exploit the
low-rank structure of the matrix K in our formulation. Correspondingly, we also define the matrix
R := CHLH ∈ RH×H and note that, since R is the product of two PSD matrices, it has positive
eigenvalues and, as a result, it holds that tr(R) ≥ 0.

With these considerations in mind, the network topology inference problem from smooth signals
is formulated as

min
LO,K,R

tr(COLO)+2tr(K)+tr(R)+α∥LO∥2
F,off

− β log(diag(LO)) + γ∥K∥∗ (4.7)
s. t. tr(COLO) + 2tr(K) + tr(R) ≥ 0,

tr(R) ≥ 0,
LO ∈ L̄,

where ∥ · ∥2
F,off denotes the Frobenius norm excluding the elements of the diagonal. This term,

together with log(diag(LO)), serves to control the sparsity of LO. Furthermore, the logarithmic
barrier rules out the trivial solution of LO = 0. The nuclear norm ∥ · ∥∗ is a convex regularizer that
promotes low-rank solutions for the matrix K and it is typically employed as a surrogate of the
(non-convex) rank constraint. The adoption of the nuclear norm, together with the consideration
of the matrices K and R, ensure the convexity of (4.7) so a globally optimum solution can be
efficiently found. The weights α, β, γ ≥ 0 control the trade-off between the regularizers, the first
constraint ensures that the LV is non-negative, and the second constraint captures that fact of
matrix2 R being PSD.

The last point to discuss in detail is the form of L̄. Mathematically, the set L̄ is equivalent
to the set of combinatorial Laplacians L, but replacing the condition L1 = 0 with L1 ≥ 0, i.e.,
L̄ := {Lij ≤ 0 for i ̸= j; L = L⊤; L1 ≥ 0; L ⪰ 0}. The modification is required because,
strictly speaking, LO is not a combinatorial Laplacian. The existence of links between the elements
in O and the hidden nodes in H give rise to non-zero (negative) entries in LOH and, as a result, the
sum of the off-diagonal elements of LO can be smaller than the value of the associated diagonal
elements (which account for the links in both O and H). Intuitively, the more relaxed condition
LO1 ≥ 0 enlarges the set of feasible solutions rendering the inference process harder to solve, an
issue that has been observed when running the numerical experiments. Moreover, when estimating
the diagonal of LO we are indirectly estimating the number of edges between the observed and the
hidden nodes. This could be potentially leveraged to estimate links with non-observed nodes, but
this entails a more challenging problem that goes beyond the scope of this chapter. An approach
to bypass some of these issues is analyzed next.

2From an algorithmic point of view, it is worth noticing that the matrix R always appears as tr(R) in (4.7). As
a result, if convenient to reduce the numerical burden, one can replace tr(R) with r and optimize over r in lieu of
R. See the related formulation in (4.9) for details.
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4.3.1 Exploiting the Laplacian of the observed adjacency matrix

The Laplacian L offers a neat way to measure the smoothness of graph signals [cf. (2.5)].
However, when addressing the problem of estimating the Laplacian from smooth signals under the
presence of hidden nodes, we must face the challenges associated with the fact of the submatrix LO

not being a Laplacian itself. As discussed in the preceding paragraphs, this requires dropping some
of the Laplacian constraints from the optimization, leading to a looser recovery framework. To
circumvent these issues, rather than estimating LO, this section looks at the problem of estimating
L̃O := diag(AO1)−AO, the Laplacian associated with the observed adjacency matrix AO ∈ RO×O.
In contrast to LO, the matrix L̃O is a proper combinatorial Laplacian (L̃O ∈ L) and, hence,
the original Laplacian constraints can be restored. The remaining of this section is devoted to
reformulating (4.7) in terms of L̃O.

Upon defining the O × O diagonal matrices DO := diag(AO1) and DOH := diag(AOH1),
which count the number of observed and hidden neighbors for the nodes in O, the matrix LO is
expressed as LO = DO +DOH −AO = L̃O +DOH. With this equivalence, the smoothness penalty
in (4.7) is rewritten as

tr(CL) = tr(COL̃O) + tr(CODOH) + 2tr(K) + tr(R)
= tr(COL̃O) + 2tr(K̃) + tr(R), (4.8)

where K̃ := CODOH/2 + K. Because the entries of DOH depend on the presence of edges
between the observed and the hidden nodes, if the graph is sparse, the matrix DOH will be a
low-rank matrix. Furthermore, since the sparsity pattern of the diagonal of DOH depends on the
matrix AOH = −LOH, it follows that the column sparsity pattern of CODOH matches that of K,
and thus, K̃ is also low rank.

With these considerations in mind, we reformulate the optimization in (4.7) replacing LO with
L̃O, resulting in the following convex optimization problem

min
L̃O,K̃,r

tr(COL̃O)+2tr(K̃)+r+α∥L̃O∥2
F,off (4.9)

− β log(diag(L̃O)) +γ∗∥K̃∥∗+γ2,1∥K̃∥2,1

s. t. tr(COL̃O) + 2tr(K̃) + r ≥ 0,
r ≥ 0
L̃O ∈ L,

where L̄ in (4.7) has been replaced with L in (4.9), which is the set of all valid combinatorial
Laplacian matrices defined in (4.4). Moreover, knowing that the matrix R only appears as tr(R)
we replace it with the nonnegative variable r to alleviate the numerical burden. Note that, although
we replaced K with K̃, the terms previously associated with K in (4.7) remain unchanged in (4.9).
Nonetheless, while the original matrix K ∈ RO×O is low rank because it is the product of a tall
O × H matrix and a fat H × O matrix, the low-rankness of K̃ is a byproduct of the sparsity of
the graph. More precisely, the matrix K̃ involves the product of the square (full rank) matrix CO

and the diagonal matrix DOH. Since the diagonal of DOH is sparse, such a product gives rise to a
matrix with several zero columns, with the rank of the resultant matrix coinciding with the number
of non-zero columns. We exploit this structure by further regularizing the matrix K̃ with the ℓ2,1
norm.

Indeed, two different configurations of (4.9) can be obtained depending on the values of the
regularization constants. Setting γ2,1 = 0 we promote a solution with a low rank on K̃ by applying
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Figure 4.1: Visual representation of the commutativity between C and S incorporating the presence of
hidden nodes by considering block matrix structure for both, C and S. Blocks in green are associated with
the observed nodes, and blocks in yellow and red are associated with the hidden nodes. Blocks in yellow
correspond to the part of the network that could be estimated by assuming stationarity.

the nuclear norm regularization. Since the nuclear norm minimization does not ensure the desired
column-sparsity of K̃, an alternative is to set γ∗ = 0 and rely on the penalty ∥K̃∥2,1. The
computation of ∥K̃∥2,1 can be understood as a two-step process where one first obtains the ℓ2
norm of each of the columns of K̃ and, then, the ℓ1 norm of the resulting row vector is computed.
This regularization is commonly known as the group Lasso penalty [94,95] and has been used in a
number of sparse-recovery problems. The results in Section 4.6 will illustrate that the formulation
in (4.9) succeeds in promoting the desired column-sparsity pattern when using the appropriate
values for the hyperparameters γ∗ and γ2,1. Note also that, by looking at the non-zero columns
of K̃, the nodes in O with connections to hidden nodes can be identified.

4.4 Network topology inference from stationary signals with hidden variables

In this section, instead of relying on the smoothness of the signals X, we approach Prob-
lem 4.1 by modifying (AS2) and considering that the data is stationary on the sought graph. The
assumption of X being stationary on G is tantamount to the matrices C and S sharing the same
eigenvectors V [48]. As a result, the approach for the fully observable case is to use the obser-
vations to estimate the sample covariance Ĉ and then rely on the sample covariance to estimate
the eigenvectors V [4]. However, when dealing with hidden variables, there is no obvious way to
obtain VO, the submatrix of the eigenvectors of the full covariance, using as input the submatrix
ĈO. To bypass this problem, instead of requiring the eigenvectors of C and S being the same, our
approach is to require that C and S commute, i.e., that the equation CS = SC must hold [96].
To see why this condition leads to a more tractable formulation, let us leverage the block structure
of C and S described in (4.1). It follows readily that the upper left submatrix of size O × O in
both sides of the equality CS = SC is given by

COSO + COHS⊤
OH = SOCO + SOHC⊤

OH. (4.10)

The above expression succeeds in relating the sought SO with CO, which can be efficiently
estimated using XO. Furthermore, (4.10) reveals that when hidden variables are present, we cannot
simply ask SO and CO to commute, but we also need to account for the associated terms COHS⊤

OH
and SOHC⊤

OH. To better understand the equation in 4.10, Fig. 4.1 shows a visual representation
of the commutativity between C and S assuming a block structure for both of them.

Implementing steps similar to those in Section 4.3, we can lift the problem defining the matrix
K = COHS⊤

OH ∈ RO×O and leverage the fact that rank(K) ≤ H ≪ O, due to (AS1). Note that
the matrix K is equivalent to the one defined in Section 4.3 with the only difference that now we
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use a block from the generic GSO SOH instead of the Laplacian LOH. Moreover, since both C and
S are symmetric matrices, we have that K⊤ = SOHC⊤

OH. Then, under the general assumption that
graphs are typically sparse, we can approach Problem 4.1 with stationary observations by solving

min
SO,K

∥SO∥0 (4.11)

s. t. COSO + K = SOCO + K⊤,

rank(K) ≤ H,

SO ∈ S,

where the ℓ0 norm promotes sparse solutions, the equality constraint ensures commutativity of the
GSO and the covariance matrix while accounting for latent nodes, and the rank constraint captures
the low rank of K due to (AS1).

Regarding the specific choice of the GSO, when the interest is in the Laplacian matrix we set
SO = L̃O, with L̃O denoting the Laplacian of the observed adjacency matrix. Then, the matrix
K is replaced with K̃ = CODOH + K, which accounts for the fact of using L̃O instead of LO in
(4.10). This was further motivated in Section 4.3.1, and the discussion provided there also applies
here.

The presence of the rank constraint and the ℓ0 norm renders (4.11) non-convex and computa-
tionally hard to solve. Furthermore, the first constraint assumes perfect knowledge of CO, which
may not always represent a practical setup. These issues are addressed in the next section.

4.4.1 Convex and robust stationary network topology inference method

A natural approach to deal with (4.11) is to relax the non-convex terms, replacing the ℓ0 norm
with the ℓ1 norm and the rank constraint with the nuclear norm, their closest convex surrogates.
Furthermore, in most practical scenarios the ensemble covariance CO is not known and one must
rely on its sampled counterpart ĈO. This requires relaxing the equality constraint COSO + K =
SOCO + K⊤ and replacing it with a constraint which guarantees that the terms on the left-hand
side and right-hand side are similar but not necessarily the same. Taking all these considerations
into account, the relaxed convex topology-inference problem is

min
SO,K

∥SO∥1 + η∥K∥∗ (4.12)

s. t. ∥ĈOSO + K − SOĈO − K⊤∥2
F ≤ ϵ,

SO ∈ S,

where η ≥ 0 controls the low rankness of K. Regarding the (relaxed) stationarity constraint, the
squared Frobenius norm has been adopted to measure the similarity between the matrices at hand,
but other (convex) distances could be alternatively used. It is also important to note that the
value of the non-negative constant ϵ should be selected based on prior knowledge on the noise
level present in the observations and, more importantly, the number of samples R used to estimate
the covariance. Clearly, if R < O, the matrix is not full rank, increasing notably the size of the
feasible set. On the other hand, if R → ∞, one can set ϵ = 0. This reduces drastically the degrees
of freedom of the formulation and, as a result, renders more likely the solution to (4.12) to coincide
with the actual GSO.

Remark 1 (Reweighted algorithm): The formulation in (4.12) is convex and robust. However,
while replacing the original ℓ0 norm with the convex ℓ1 norm constitutes a common approach, it is
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well-known that non-convex surrogates can lead to sparser solutions. Indeed, a more sophisticated
alternative in the context of sparse recovery is to define δ as a small positive number and replace the
ℓ0 norm with a (non-convex) logarithmic penalty ∥SO∥0 ≈

∑O
i,j=1 log(|[SO]ij |+δ) [72]. An efficient

way to handle the non-convexity of the logarithmic penalty is to rely on an MM approach [97],
which considers an iterative linear approximation to the concave objective and leads to an iterative
re-weighted ℓ1 minimization. To be specific, with t = 1, ..., T being the iteration index, adopting
such an approach for the problem in (4.12) results in

S(t+1)
O := argmin

SO,K

O∑

i,j=1
[W(t)]ij |[SO]ij | + η∥K∥∗ (4.13)

s. t. COSO + K = SOCO + K⊤,

SO ∈ S,

with W(t) being defined as [W(t)]ij =
(∣∣∣

[
S(t−1)

O
]
ij

∣∣∣ + δ
)−1

. Since the iterative algorithm penalizes
(assigns a larger weight to) entries of SO that are close to zero, the obtained solution is typically
sparser at the expense of a higher computational cost. Finally, note that the absolute values can
be removed whenever the constraint [SO]ij ≥ 0 is enforced.

4.4.2 Exploiting structure through alternating optimization

In the previous section, the product of the unknown matrices COH and S⊤
OH was absorbed

into matrix K. Since such a matrix is low rank, the convex nuclear norm was used to promote
low-rank solutions while achieving convexity. However, when implementing this approach, there
were other properties (such as SOH being sparse) that were ignored. A reasonable question is,
hence, if the judicious incorporation of the additional information outperforms the potential loss of
convexity. In this section, we propose an efficient alternating non-convex algorithm that accounts
for the additional structure present in our setup. Its associated recovery performance (along with
comparisons to its convex counterparts) will be tested in Section 4.6.

A well-established approach in low-rank optimization is to factorize the matrix of interest as the
product of a tall and fat matrix, which boils down to replacing K with the original submatrices COH

and S⊤
OH. Moreover, when the value of H is unknown, which determines the size of COH and S⊤

OH,
a principled approach is to rely on an upper bound on H and add the Frobenius terms ∥COH∥F

and ∥SOH∥F to the objective function (see, e.g., [98] for a formal derivation of this approach). In
our particular setup, this factorization has the additional benefit of SOH being sparse. Then, the
resulting non-convex optimization problem is given by

min
SO,COH,SOH

O∑

i,j=1
log(|[SO]ij | + δ) + η∥SOH∥2

F

+ ν
O,H∑

i,j=1
log(|[SOH]ij | + δ) + η∥COH∥2

F

+ ρ∥ĈOSO +COHS⊤
OH−SOĈO −SOHC⊤

OH∥2
F

s. t. SO ∈ S, SOH ∈ SOH, (4.14)

Clearly, problem (4.14) guarantees that the rank of the matrix SOHC⊤
OH is upper bounded by

the size of its composing factors SOH and COH. In this case, the sparse solutions for SO and
SOH are promoted by means of the (concave) logarithmic penalty, introduced on Remark 1. The
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robust commutativity constraint is placed on the objective function as a penalty term, and the
set SOH captures the fact that SOH is a block from the GSO. In its simplest form, we have that
SOH := {Sij ≥ 0} if the GSO is the adjacency matrix, and SOH := {Sij ≤ 0} if it is set to the
Laplacian matrix.

The main drawback associated with the formulation in (4.14) is that the presence of the bilinear
term COHS⊤

OH and the logarithmic penalty render the problem non-convex. To address this issue,
we implement a block successive upper bound minimization (BSUM) algorithm [99], an iterative
approach that blends techniques from MM and alternating optimization. Then, we find a solution
to (4.14) by iterating between the following thee steps.

Step 1. Given the estimates Ĉ(t)
OH and Ŝ(t)

OH, we substitute COH = Ĉ(t)
OH and SOH = Ŝ(t)

OH into
(4.14) and solve it to estimate SO. This yields

Ŝ(t+1)
O := argmin

SO∈S

O∑

i,j=1
[W(t)

O ]ij |[SO]ij | (4.15)

+ ρ∥ĈOSO +Ĉ(t)
OH[Ŝ(t)

OH]⊤−SOĈO −Ŝ(t)
OH[Ĉ(t)

OH]⊤∥2
F ,

where the logarithmic penalty is approximated by the re-weighted ℓ1 norm as detailed after (4.13).

Step 2. Given the estimate Ĉ(t)
OH from the previous iteration, and leveraging the estimate Ŝ(t+1)

O
from the last step, we estimate the matrix SOH by solving

Ŝ(t+1)
OH := argmin

SOH∈SOH

O,H∑

i,j=1
[W(t)

OH]ij |[SOH]ij | + η∥SOH∥2
F (4.16)

+ ρ∥ĈOŜ(t+1)
O +Ĉ(t)

OHS⊤
OH−Ŝ(t+1)

O ĈO −SOH[Ĉ(t)
OH]⊤∥2

F .

Step 3. With the estimates from the previous steps in place, the last step involves estimating the
matrix COH by solving

Ĉ(t+1)
OH := argmin

COH
η∥COH∥2

F (4.17)

∥ĈOŜ(t+1)
O +COH[Ŝ(t+1)

OH ]⊤−Ŝ(t+1)
O ĈO −Ŝ(t+1)

OH C⊤
OH∥2

F .

The alternating algorithm is initialized by solving (4.12) to obtain K̂ and setting Ĉ(0)
OH and Ŝ(0)

OH as

Ĉ(0)
OH = FOHΣ

1
2
H and Ŝ(0)

OH = GOHΣ
1
2
H, (4.18)

where FOH and GOH are the left and right singular vectors associated with the top H singular
values, ΣH, obtained from the singular value decomposition K̂ = FΣG⊤. A summary of the
proposed iterative algorithm is presented in Algorithm 4.

The three steps proposed in (4.15)-(4.17) are iterated until convergence to a stationary point
is achieved, a result that is formally stated next.

Proposition 1. Denote with f the objective function in (4.14). Let Y∗ be the set of stationary
points of (4.14), and let y(t) = [vec(S(t)

O )⊤, vec(S(t)
OH)⊤, vec(C(t)

OH)⊤]⊤ be the solution generated
after running the 3 steps in (4.15)-(4.17) t times. Then, the solution generated by the iterative
algorithm (4.15)-(4.17) converges to a stationary point of f as t goes to infinity, i.e.,

lim
t→∞

d(y(t),Y∗) = 0,
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Algorithm 4: BSUM network topology inference method for stationary signals with hid-
den variables (BSUM-GSHV)

Input: ĈO

Outputs: ŜO, ĈOH, and ŜOH

1 Initialize Ŝ(0)
O and K̂ by solving (4.12)

2 Initialize Ĉ(0)
OH and Ŝ(0)

OH following (4.18)
3 for t = 0 to T − 1 do
4 Update W(t)

O =
(∣∣∣Ŝ(t)

O

∣∣∣+δ
)−1

and W(t)
OH=

(∣∣∣Ŝ(t)
OH

∣∣∣+δ
)−1

5 Update Ŝ(t+1)
O by solving (4.15) using Ĉ(t)

OH and Ŝ(t)
OH

6 Update Ŝ(t+1)
OH by solving (4.16) using Ĉ(t)

OH and Ŝ(t+1)
O

7 Update Ĉ(t+1)
OH by solving (4.17) using Ŝ(t+1)

O and Ŝ(t+1)
OH

8 end

9 ŜO = Ŝ(T )
O , ŜOH = Ŝ(T )

OH , ĈOH = Ĉ(T )
OH

with d(y,Y∗) := miny∗∈Y∗ ∥y − y∗∥2.

Note that convergence was not obvious since at least one of the steps does not have a unique
minimizer, and the first and second steps employ an approximation of the objective function in
(4.14). The details of the proof, which relies on convergence results for BSUM schemes [99, Th.
1b], are provided in Section 4.8.

While incurring additional computational costs (see Remark 2 for more details), the numerical
tests in Section 4.6 confirm that the supplemental structure incorporated by replacing K with SOH

and COH together with the re-weighted ℓ1 approach for encouraging sparsity give rise to a better
network reconstruction, provided that the iterative optimization is initialized with the solution to
the convex formulation in (4.12). Last but not least, notice that an additional benefit of the
formulation in (4.14) is that, by analyzing ŜOH, information of the potential links between nodes
in O and the hidden nodes in H is obtained. While network-tomography schemes [13] go beyond
the scope of this chapter, the results in this section can be used as a first step towards that goal.

Remark 2 (Computational complexity): The computational complexity required to solve the
optimization problems proposed in this chapter scales polynomially with the size of the graph. More
specifically, since (AS1) guarantees that H ≪ O, for the convex formulations, the complexity scales
as O(O7), which is an order similar to that of the “plain vanilla” LVGL in (4.5), but considerably
larger than the order O(RO2) for correlation networks. Regarding the complexity of solving the
non-convex formulation in (4.14) using Algorithm 4, each of the steps (4.15)-(4.17) entails solving
a convex problem, so the complexity scales as O(TO7), with T denoting the number of iterations.
In practice, our simulations show that the number of iterations required to converge in all tested
scenarios is fairly low (with T taking values between 3-6), which is a behavior also observed in
other applications of the BSUM algorithm to sparsity-promoting biconvex problems. As a result,
the complexity of solving the non-convex problem in (4.14) is expected to scale similarly to that
required to solve the non-iterative convex formulations presented in the previous sections. While
this complexity is associated with the fact of considering challenging operating conditions, the
aforementioned levels hinder the application of the proposed algorithms to large graphs. An
approach to mitigate this issue is to exploit the structure of the problems at hand, developing
tailored block-coordinate algorithms that solve for each variable separately and exploit the sparsity
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of the GSO. Indeed, some algorithmic alternatives such as projected gradient and ADMM could
be applied to implement more scalable and efficient models [40,57,84]. Although interesting, the
development of efficient algorithms is beyond the scope of this chapter so it is left as future work.

Remark 3 (Graph stationary vis-à-vis graph smoothness): Suppose that we are given two
datasets XO and X′

O, both with the same number of signals. Moreover, suppose that we also
know that the observed signals XO are smooth on an unknown graph, that X′

O are stationary on an
unknown graph, and that our goal is to identify the underlying graphs. Based on that information,
we run the algorithms in Section 4.3 for the dataset XO and those in this section for the dataset
X′

O. An interesting question is which one yields a better recovery result. While the exact answer
depends on all the particularities of each of the setups, from a general point of view stationary
schemes are expected to achieve better results. The reason is that stationarity strongly limits
the degrees of freedom of the GSO, while smoothness is a more lenient assumption, an intuition
that will be validated in Section 4.6. Equally relevant, there can be situations where the data is
both stationary and smooth. That is the case, for example, if the covariance matrix shares the
eigenvectors with the graph Laplacian and its power spectral density is low pass. In such a setup,
one could combine both network-recovery approaches, leading to a better recovery performance.
This is precisely the subject of the ensuing section.

4.5 Network topology inference from stationary and smooth graph signals with hidden
variables

In this section, we address Problem 4.1 by assuming that the graph signals X are both smooth
and stationary on the unknown graph G. These two assumptions can be jointly considered to
design optimization problems with additional structure to enhance the estimation of SO. To that
end, we consider the smoothness-based inference problem described in (4.9) and incorporate the
robust commutativity constraint accounting for stationarity [cf. (4.10)], resulting in

min
L̃O,K̃,r

tr(ĈOL̃O)+2tr(K̃) + r +α∥L̃O∥2
F,off (4.19)

− β log(diag(L̃O))+γ∗∥K̃∥∗+γ2,1∥K̃∥2,1

s. t. tr(ĈOL̃O) + 2tr(K̃) + r ≥ 0,
L̃O ∈ L,
∥ĈOL̃O + K̃ − L̃OĈO − K̃⊤∥2

F ≤ ϵ.

Since the smooth formulation involves the Laplacian matrix, note that we adopted the Laplacian
of the observed adjacency matrix as the GSO. Regarding the stationarity constraint, as discussed
for (4.12), the value of ϵ should be selected based on the number of available signals R and the
observation noise. It is also worth noting that the matrix K̃ is inconspicuously absorbing the
error derived from the presence of the hidden variables and from using L̃O instead of LO in both
the smoothness penalty and the commutativity constraint. Regarding matrix K̃, two different
regularizers are considered: the nuclear norm (to promote solutions with a low rank) and the ℓ2,1
norm (to promote column sparsity). Since having solutions with columns that are zero also reduces
the rank, it is prudent to tune the value of the hyperparameters γ∗ and γ2,1 jointly, so that the
(joint) dependence between the rank and the column sparsity is kept under control.

We close the section by noting that the formulation in (4.19) is convex so that its globally
optimal solution can be found efficiently. However, non-convex versions of (4.19) that leverage the
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re-weighted ℓ2,1 norm to promote column sparsity and factorization approaches for the low-rank
penalty (similar to those used in Section 4.4) could be developed here as well.

4.6 Numerical experiments

This section runs numerical experiments to gain insights on the proposed schemes and evaluate
their recovery performance. First, we test the smooth-based approaches with synthetic data and
compare the results with existing algorithms from the literature. Secondly, we assess the perfor-
mance of the stationary-based schemes proposed in Section 4.4, comparing them with those in
Section 4.5 and the classical LVGL. Lastly, we apply the proposed algorithms to two real-world
datasets and compare the obtained results with those of existing alternatives.3

4.6.1 Synthetic experiments based on smooth signals

We start by defining the default setup for the experiments in this section. With L = VΛV⊤

denoting the eigendecomposition of the graph Laplacian, the smooth signals X are generated
as X = VJ, where the columns of J ∈ RN×R are independent realizations of a multivariate
Gaussian distribution J ∼ N (0, Λ†). Note that this model, which is oftentimes referred to as
factor analysis [85, 100, 101], assigns more energy to the low-frequency components, promoting
smoothness on the generated graph signals. Unless otherwise stated, the number of signals is set
to R = 100 and the number of nodes to N = 20. Moreover, to measure the recovery performance
of the algorithms, in this section we focus on unweighted graphs and employ the F score, which is
defined as

F score = 2 · precision · recall
precision+ recall

, (4.20)

where precision indicates the percentage of estimated edges that are edges of the ground-truth
graph and recall is the percentage of existing edges that were correctly estimated.

Influence of hidden nodes. The results in Fig. 4.2 show the variation of the F score, as the number
of hidden variables H increases, for different recovery algorithms. Graphs are randomly generated
using the model in [85], where nodes are placed in the unit square uniformly at random and edges
are computed with a Gaussian radial basis function (RBF) as Aij = exp(−d(i, j)2/2σ2), with
d(i, j) being the euclidean distance between two vertices and σ = 0.5. Edges with weights smaller
than 0.75 are removed and the surviving ones are set to 1. The hidden nodes are chosen uniformly
at random among all the nodes in the graph. The algorithms considered in this experiment are the
following: (i) GL-SigRep refers to the algorithm presented in [85]; (ii) GSm is a modified version of
GL-SigRep that incorporates the logarithmic penalty and relies on the sample covariance matrix Ĉ
for the smoothness term in the objective function; (iii) GSm-LR represents the low-rank regularized
algorithm proposed in (4.9), with γ2,1 = 0; and (iv) GSm-GL denotes the algorithm described
in (4.9), with γ∗ = 0, where column-sparsity is promoted in K̃ via group Lasso. Comparing
GL-SigRep with GSm allows us to quantify the improvement obtained exclusively from including
hidden variables in the formulation, providing a fairer analysis of the proposed algorithms. The
results in Fig. 4.2 indicate that, although the performance of all the algorithms deteriorates when
the number of hidden variables increases, the algorithms GSm-LR and GSm-GL which account for
the presence of hidden variables, outperform the alternatives. Moreover, their performance drops

3The MATLAB scripts for running all the numerical experiments presented in this section as well as additional
related test cases can be found in https://github.com/andreibuciulea/topoIDhidden

https://github.com/andreibuciulea/topoIDhidden
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Figure 4.2: Median F score for the algorithms based on smooth graph signals with N = 20 and R = 100.
Obtained results regarding the impact of varying the number of hidden variables H for different algorithms
when using RBF graphs.

slowly as H increases, demonstrating the importance of taking into account the presence of hidden
variables. The overall decay was expected since a higher number of hidden variables renders the
network topology inference problem more challenging and ill-posed, confirming the importance of
(AS1). Comparing GSm-LR with GSm-GL, we observe that their performance is similar since the
generated graphs are sufficiently sparse. It is also worth mentioning that the GSm scheme clearly
outperforms GL-SigRep, illustrating the benefits of replacing the formulation introduced in [85]
with the one presented in this chapter, which relies on the matrix Ĉ and the logarithmic barrier.

Noisy smooth observations. The second experiment assumes that the observations XO corre-
spond to the ground-truth signals corrupted by additive white Gaussian noise (AWGN). For that
setup, we evaluate the link-identification performance upon evaluating the F score achieved by
GSm-LR and GSm-GL schemes, comparing them with GSm, as the power of the AWGN increases,
for graphs with different sparsity levels. In the experiments, we use ER graphs with edge proba-
bility values of p = {0.1, 0.3, 0.5} and set the number of hidden variables to H = 1. The results,
shown in Fig. 4.3, reveal that the performance of the algorithms deteriorates not only when the
noise increases but also for higher values of p. This behavior is consistent with the discussion pro-
vided in Section 4.3, since the formulation assumes that sparsity exists and, as a result, promotes
solutions where several of the columns of K̃ are zero. Furthermore, we observe that GSm-LR
and GSm-GL have similar performance for lower values of p, but when the graphs become denser
GSm-GL outperforms GSm-LR. This illustrates the fact that the low-rank regularization ∥K̃∥∗ is
more sensitive to the sparsity of the graph than the group Lasso penalty ∥K̃∥2,1. It is also worth
noting that, even though the proposed schemes were not designed to specifically account for noisy
observations, the rate at which F score decays is smaller than the rate at which the noise power
increases, showcasing the “natural” robustness to noise of the proposed schemes. Finally, note
that GSm-LR and GSm-GL outperform GSm for the different values of p, which reinforces the
importance of considering the presence of hidden variables.

Influence of the LV level. Next, we assess the relevance of the smoothness prior to the per-
formance of the GSm-LR scheme. To that end, Fig. 4.4 depicts the F score obtained with this
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Figure 4.3: Median F score for the algorithms based on smooth graph signals with N = 20 and R = 100.
Obtained results regarding the impact of varying the noise level present in the observations X when using
Erdős Rényi graphs with different link probabilities p = {0.1, 0.3, 0.5}.

scheme for different values of LV. Note that as we move to the right on the x-axis, the observed
signals exhibit a larger variation (higher frequency) and, as a result, are less smooth. To control
the LV level, the signals are generated combining K successive eigenvectors as X = VKJ, with
V ∈ RO×K and J ∼ N (0, I) ∈ RK×R. The smoothest signals are obtained by selecting the
first K eigenvectors since they are associated with the low-frequency components. In contrast,
activating the K last eigenvectors maximizes the LV of the graph signals. For this experiment,
we set H = 1, K = 5, and N = 30. The first generated signal is associated with eigenvectors
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Figure 4.4: Median F score for the GSm-LR algorithm with N = 20 and R = 100. Obtained results
regarding the impact of varying the average level of LV of the observations X for a GSm-LR algorithm when
using RBF graphs.



4.6. Numerical experiments 53

k = 1, ..., 5, the second one with eigenvectors k = 2, ..., 6, and the last (26th) one with eigenvec-
tors k = 26, ..., 30. The link-identification performance for those 26 types of signals is shown in
Fig. 4.4, where the vertical axis represents the F score and the horizontal axis the average LV as
tr(X⊤LX)/R. Each color represents a different set of active frequencies and, for each set, 128
realizations of J have been generated (corresponding to the cloud of points shown in the figure).
The results highlight the importance of the low values of LV when assuming smooth signals on the
graph since the link identification performance decays noticeably as the signal becomes high-pass.

4.6.2 Synthetic experiments based on stationary signals

In these experiments, we focus on signals that are stationary on the sought GSO S. To facilitate
comparisons with GL, two different signal models are considered: (i) Cpoly and (ii) CMRF . For
the first one, the covariance of the observed signals is generated as a random polynomial of the
GSO of the form Cpoly = H2 with H =

∑L
l=0 hlSl, where hl are random coefficients following

a normalized zero-mean Gaussian distribution. Note that this generative model guarantees that
the covariance is PSD and a polynomial (of degree 2L) of the GSO. In the second model, the
covariance is generated as CMRF = (σI + δS)−1, where σ is some positive number large enough
to guarantee that C−1

MRF is PSD and δ is some positive random number. As in the previous
case, this generation guarantees the covariance matrix to be PSD and a polynomial of the GSO.
Moreover, it also guarantees that the sparsity pattern of C−1

MRF coincides with that of the GSO
S, which is the model assumed by GL. Regarding the metric used to evaluate the performance,
rather than using the F score, we will generate multiple graphs and report the ratio of graphs that
have been perfectly recovered (i.e., those graphs for which all the entries of the associated SO are
estimated correctly). The reason for using this metric is that the incorporation of the stationary
constraints boosts the ability of the algorithm to identify the topology, so that the value of F score
will be very close to one for all tested schemes, rendering the comparison more difficult. Differently,
reporting the ratio of graphs perfectly recovered helps us to better assess the differences between
the tested algorithms.

Leveraging the structure of K. While the ultimate goal of this work is to recover SO, the
properties of matrix K played a key role in developing several of our network topology inference
algorithms. For that reason, the goal of this experiment is to illustrate the recovered (estimated) ŜO

and K̂, so that we can gain insights on the effectiveness of the different approaches considered in
this chapter and their influence in recovering the graph. The results are shown in Fig. 4.5, where the
first row represents the GSOs and the second row the matrices K. The first column corresponds to
the ground-truth values, and the second, third and fourth columns present the estimates obtained
with the low-rank scheme GSt [cf. (4.12)], the group Lasso scheme GSm-St-GL [cf. (4.19) with
γ∗ = 0], and the factorized scheme GSt-Rw-Fact [cf. (4.15)-(4.17)], respectively. First, focusing
on K̂, it is apparent that for the depicted example the low-rank scheme GSt is not capable of
recovering the column-sparse structure of the original matrix K. Differently, when using either
the group Lasso regularization (Fig. 4.5g) or the factorized approach (Fig. 4.5h), the estimated
K̂ exhibits a row-sparsity pattern that is close to that of the ground truth. More importantly,
when looking at the estimated ŜO we observe that, as desired, the more accurate estimation of
K translates into a superior estimation of the network topology, with GSm-St-GL yielding better
estimates than GSt and GSt-Rw-Fact outperforming GSm-St-GL due to the replacement of the ℓ1
norm with the linearized version of the logarithmic penalty. Overall, we believe that this simple
experiment provides further intuition and strengthens the discussion about the different regularizers
presented in Sections 4.3 and 4.4. The next step is to test the stationary-based schemes in a more
systematic way, which is the goal of the following subsections.
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Figure 4.5: Graphical representation of the estimates of matrices SO (top row) and K = COHS⊤
OH (bottom

row) for different algorithms that assume the observed signals to be stationary on the graph, with N = 20
and H = 1. The ground-truth matrices SO and K are represented in the first column [cf. panels (a) and
(e)]. Analogously, the estimates ŜO and K̂ generated by GSt are represented in panels (b) and (f), those
generated by GSm-St-GL in panels (c) and (g), and those generated by GSt-Rw-Fact in (d) and (h).

Number of hidden variables. This experiment investigates the effect of the hidden nodes on the
ability of our approach to recover the true graph topology. To that end, we vary the number of
hidden variables H. We consider both the Cpoly and CMRF models for the observations, assume
that the covariance matrices can be perfectly estimated, and select the set of hidden nodes as
those with the minimum degree. The results are shown in Fig. 4.6, where the x-axis represents the
number of hidden variables and the y-axis the proportion of graphs successfully recovered. The
results in Fig. 4.6 confirm that larger values of H render the inference problem more challenging,
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Figure 4.6: The ratio of recovered graphs averaged over 200 realizations of random graphs with N = 20
and stationary observations. Obtained results regarding the impact of increasing the number of hidden
variables H for a scenario with perfectly known covariance matrices.



4.6. Numerical experiments 55

leading to a worse ratio of recovered graphs. We also observe that for the CMRF model, LVGL
achieves the best performance, especially when H increases. This is not surprising since the LVGL
is tailored for this specific type of signal generation. On the other hand, LVGL fails to recover any
graph when the observed signals follow the more general Cpoly model. This contrasts with the GSt
and GSt-Rw-Fact methods proposed in this chapter, which recover the graphs in both settings.
For both CMRF and Cpoly models, the proposed algorithms outperform GSt-Rw-nh, which solves
the same problem as GSt-Rw-Fact but ignores the presence of hidden variables. This behavior of
GSt-Rw-nh was expected since, as the number of hidden variables increases, their influence is more
significant and the stationarity constraint becomes less accurate. It is also worth noting that the
results obtained in Fig. 4.6 outperform those presented in Fig. 4.2. This is due to the fact that
graph stationarity imposes more structure on the observed signals than graph smoothness, at the
expense of needing more observations to accurately estimate the covariance matrices.

Sample covariance matrix. The next step is to assess the effect of replacing the true covariance
matrix with its sampled estimate ĈO = 1

RXOX⊤
O . The number of hidden variables is set to H = 1,

both CMRF and Cpoly generative models are tested, the signals are assumed to be Gaussian and
zero mean, and all other parameters are set as in the default test-case scenario. Fig. 4.7 illustrates
the ratio of recovered graphs as the number of samples R varies. Clearly, the larger the value of
R the better the estimate of ĈO. Analyzing the results in Fig. 4.7, we observe that, when using
CMRF , LVGL obtains the best performance and needs the least number of samples to achieve its
best ratio of recovered graphs. As noted in the previous experiment, we also observe that LVGL
is incapable of recovering graphs when the observations are generated using the Cpoly model. On
the other hand, GSt and GSt-Rw-Fact achieve good performance for both covariance models, even
though they need a higher number of samples.

If we focus on the covariance model CMRF , GSt-Rw-Fact achieves a performance close to
that of LVGL. This behavior is consistent with the one observed in scenarios where all nodes were
observed, and latent variables did not exist [4]. Upon comparing the results achieved by GSt and
GSt-Rw-Fact, the experiments reveal that GSt: i) needs a higher value of R than GSt-Rw-Fact to
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Figure 4.7: The ratio of recovered graphs averaged over 200 realizations of random graphs with N = 20
and stationary observations. Obtained results regarding the impact of increasing the number of signal
observations R when using the sample covariance matrix.
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achieve the same performance; and ii) converges to a worse ratio of recovered graphs. To conclude,
as mentioned in Fig. 4.6, ignoring the presence of hidden variables fails to capture the true structure
of the inference problem, impacting the recovery ratio of GSt-Rw-nh for both covariance models.
This is consistent with the results shown in previous experiments and, once again, illustrates the
benefits of incorporating additional structure and using more sophisticated regularizers.

4.6.3 Synthetic experiments based on smooth and stationary signals

To close the experiments based on synthetic data, we consider here the case where the observed
signals are simultaneously smooth and stationary on the unknown graph and evaluate the schemes
proposed in Section 4.5. As done in the smooth-based experiments, we create the graph signals
as X = VJ, with J sampled from N (0, Λ†). We note that the covariance of X is given by
C = (L†)2, which is certainly a polynomial of the GSO provided that we set S = L. In other
words, while the signals generated in Section 4.6.1 were already stationary on the graph, none of
the algorithms leveraged that existing structure.

Leveraging graph stationarity and smoothness. Hence, the goal of this last synthetic experi-
ment is to assess the benefits of considering the mentioned structure in the proposed approaches.
To that end, we compare the schemes GSm-LR and GSm-GL, which only assume that the sig-
nals are smooth on the graph, with GSm-St-LR, which corresponds to (4.19) with γ2,1 = 0, and
GSm-St-GL, which corresponds to the (4.19) with γ∗ = 0. Additionally, we compare the afore-
mentioned algorithms with two schemes that do not consider the presence of hidden variables,
GSm and GSm-St-nh, with the latter assuming that the signals are both smooth and stationary
on the graph. Note that GSm-St-LR and GSm-St-GL are, respectively, versions of GSm-LR and
GSm-GL that account for the stationarity of the signals. Fig. 4.8 shows the ratio of recovered
graphs as the number of hidden variables increases for the different algorithms. The advantages
of including the stationarity assumption are clear, since, even for H = 3, the stationary-aware
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Figure 4.8: The ratio of recovered graphs averaged over 200 realizations of random graphs with N = 20
and stationary observations. Obtained results regarding the impact of increasing the number of hidden
variables H when the inputs are not only stationary but also smooth signals.
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algorithms are able to perfectly recover more than 60% of the generated graphs. In contrast, the
algorithms that ignore stationarity and account only for smoothness recover correctly less than 20%
of the graphs. As expected, including additional information about the observed signals endows
the optimization problem with more structure and results in better estimates. Focusing on the
importance of considering the presence of hidden variables, we observe that i) GSm-St-LR and
GSm-St-GL outperform GSm-St-nh; and ii) GSm-LR and GSm-GL outperform GSm. As expected,
not considering the presence of hidden variables leads to an inaccurate estimation of the GSO,
decreasing the percentage of recovered graphs by GSm and GSm-St-nh. If, as in Section 4.6.1,
the recovery performance is measured using the F score associated with individual links, then the
differences narrow, with GSm-LR and GSm-GL achieving a (median) F score of around 0.95 and
GSm-St-LR and GSm-St-GL a F score that is basically 1.

4.6.4 Infering graph structure from real datasets

We close this section by evaluating our proposed approaches and comparing their recovery
performance with existing alternatives in the literature using three real-world datasets.

Infering meteorological graph from temperature data. We start by considering the average
monthly temperature collected at 88 measuring stations in Switzerland during the period between
1981 and 2010 [102]. This leads to a set of signals X ∈ R88×12, with 12 signals that represent the
monthly average temperatures measured at the 88 weather stations. The goal of the experiment
is to use these observations to infer a graph where stations with similar temperature patterns
across the year are connected. While using the geographical graph based on physical distances
between the stations can be a more natural (non-data-based) solution to the problem at hand, one
must note that Switzerland is a steep terrain. As a result, two nearby stations do not necessarily
record similar temperatures across the year, since, for instance, their difference in altitude is large.
Motivated by this and, as also done in [85], we build the “ground-truth” graph upon considering
the similarity between stations in terms of their altitude. More specifically, in this experiment,
we consider that two stations are connected with a unitary weight if their altitude difference is
smaller than 300 meters. As we want to infer the best-represented graph from the available smooth
signals and also take into account the presence of hidden variables, we are going to assume that
O = {1, ..., 20}, so that only the 20 first stations are observed, with our goal being inferring the
connections between those stations.

We leverage the schemes developed in Section 4.3 (GSm-LR and GSm-GL) and Section 4.5
(GSm-St-LR and GSm-St-GL) to learn the graph associated with the observed nodes from the
temperature measurements. To facilitate comparisons, the evaluation metrics used here are the
same as those in [85], namely F score, precision, recall, and normalized mutual information (NMI);

Table 4.1: Performance achieved by the schemes GL-SigRep ( [85]), GSm-LR (Section 4.3), GSm-GL
(Section 4.3), GSm-St-LR (Section 4.5) and GSm-St-GL (Section 4.5) when infering a meteorological graph.

Algorithms F score Precision Recall NMI
GL-SigRep 0.8800 0.9016 0.8594 0.5746
GSm-GL 0.9118 0.8611 0.9688 0.6647
GSm-LR 0.9130 0.8514 0.9844 0.6806
GSm-St-LR 0.9130 0.8514 0.9844 0.6806
GSm-St-GL 0.9130 0.8514 0.9844 0.6806
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in addition, the GL-SigRep algorithm from [85] is used as a baseline. The results achieved by the
optimal setting of the regularization constants for each of the algorithms are listed in Table 4.1.
The main observation is that the explicit consideration of hidden variables when inferring the graph
structure leads to better performance. Furthermore, we also observe that GSm-LR outperforms
both GL-Sig-Rep and GSm-GL. It is also worth noticing that GSm-St-LR and GSm-St-GL obtain the
same performance as GSm-LR, revealing that assuming stationarity for this dataset does not seem
to further enhance the recovery results. Although this contrasts with the results from the synthetic
experiments, it is not surprising since the number of available samples (R = 12) is smaller than
the number of nodes, which leads to a rank-deficient ĈO and renders the commutativity constrain
inefficient. Indeed, the fact of the covariance being rank-deficient was the reason for not testing
the algorithms developed in Section 4.5 in this experiment.

Infering structural properties of proteins. In this case, our goal is to identify the structural
properties of proteins from a mutual information graph of the co-variation of amino-acid residues
simulating the presence of hidden variables. We have access to the mutual information matrix
of protein BPT1 BOVIN and also to the binary ground-truth contact network built by medical
experts, see [104] and [103] for details. The original dimension of both matrices is 53 × 53, but
in our hidden-variable setup, we consider that we can only observe a submatrix of size 41 × 41
and leave the other 12 nodes as hidden. The y-axis in Fig. 4.9 represents the fraction of the
real contact edges recovered for several schemes and the x-axis represents the number of top-
edge predictions. This way, a fraction of recovered edges of 0.6 indicates that if we consider
the estimated 100 links with the highest weight, 60 of them match the ground-truth links. Five
different algorithms are considered: GSt-Rw-Fact (Section 4.5); GSt no hidden (which approaches
the topology-identification problem with stationarity assumptions but ignoring the presence of
hidden variables [48]); LVGL; network deconvolution [104]; and mutual information, with the last
two being baselines that have been advocated for this particular dataset. The best performance
is achieved by the scheme GSt-Rw-Fact that is accounting for the presence of hidden variables,
showcasing the benefits of a more robust formulation. Interestingly, we also observe that even
though LVGL accounts for hidden variables, it leads to the worst recovery performance, illustrating
the relevance of using topology-inference algorithms that go beyond classical graphical models

0 50 100 150 200 250

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Figure 4.9: Fraction of the real contact edges between amino-acids [103] recovered for each method as a
function of the number of edges considered.
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when dealing with real datasets.

Infering graph from voting data. In this final real-data experiment, our goal is to learn a political
graph from voting data [105]. More specifically, the 26 cantons of Switzerland are considered as
nodes and the percentage of votes of each canton for 37 related initiatives (submitted to the voters
between 2008 and 2012) are considered as graph signals. To validate the estimated graphs, we
require a ground truth that reflects the level of association between the political preferences of
the cantons. Since defining such a ground-truth graph is not evident, our first experiment is to
compare the graph estimated by GSm-St-LR with the one estimated by GL-SigRep, with the latter
being equivalent to the solution implemented in [85]. Once the two graphs are estimated, we
apply spectral clustering to obtain 3 clusters that group the 26 cantons according to their voting
patterns.

Figs. 4.10.a and 4.10.b show the graphs estimated by GL-SigRep and GSm-St-LR respectively,
along with the 3 clusters. To identify the cluster each node belongs to, we used 3 colors (blue,
red, and yellow). Figs. 4.10.a and 4.10.b reveal that, while GSm-St-LR estimates a sparser graph

(a) (b)

(c) (d)

Figure 4.10: Political associations among the 26 cantons of Switzerland estimated from electoral data.
The colors blue, yellow, and red denote the 3 main clusters identified using spectral clustering and represent
if a canton is against, supports, or strongly supports the initiatives, respectively. The two left-most graphs
correspond to the political association networks estimated by (a) GL-SigRep and (b) GSm-St-LR when the
voting data of all 26 cantons is considered. While the graphs are slightly different, the way in which cantons
are clustered is the same. The two right-most graphs, which have 23 nodes each, represent the association
networks estimated by (c) GL-SigRep and (d) GSm-St-LR when the voting data of 3 cantons (one belonging
to each of the clusters) is removed. We observe that, in this case, the clusters in (c) and (d) are not the
same and that (c) is less robust to the presence of hidden data.
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(in general less edges for each node) than GL-SigRep, the 3-cluster partition is the same for
both graphs. Equally important, the clusters convey meaningful information about the electoral
preferences of the cantons, implicitly validating the obtained graphs. More specifically: i) the
cantons that are against the initiatives correspond to the blue cluster; ii) the cantons that strongly
support the initiatives correspond to the red cluster; and iii) the cantons that moderately support
the initiatives correspond to the yellow cluster.

The next step is to assess the influence of (and robustness to) hidden variables. To that end,
we randomly remove the voting data associated with one canton from each cluster and re-estimate
the two graphs. The estimation results for GL-SigRep and GSm-St-LR in the presence of 3 hidden
variables are reported in Figs. 4.10.c and 4.10.d, respectively, with the particular realization shown
corresponding to the removal of Fribourg, Appenzell Ausserrhoden, and Schwyz. Focusing first
on the GSm-St-LR algorithm, the comparison of Figs. 4.10.b and 4.10.d reveals that, while the
graphs change slightly (new weak links appear in Fig. 4.10.d to account for 2-hop relations that
were broken after dropping the hidden nodes), the assignment of cantons to clusters does not
change. On the other hand, for the GL-SigRep-based graphs (Figs. 4.10.a and 4.10.c), we observe
that while the links barely change, two of the nodes (Basel-Stadt and Ticino) are assigned to a
different cluster.

In other words, the results of Figs. 4.10.c and 4.10.d confirm that GSm-St-LR is more robust
than GL-SigRep to the presence of hidden variables since it is able to maintain the same clustering
pattern even when hidden nodes are present.4

4.7 Conclusions

This chapter analyzed the problem of infering the graph of a network from nodal signal obser-
vations in the presence of hidden (latent) nodes. To approach this ill-conditioned network topology
inference task, we considered that the observed signals were (i) smooth on the sought graph; (ii)
stationary on the graph; and (iii) a combination of the two previous assumptions. To render the
problem tractable, we further assumed that the number of hidden variables was much smaller than
the number of observed nodes and formulated constrained optimization problems that accounted
for the topological and signal constraints. The key to handle the presence of hidden nodes was
to consider block-matrix factorization approaches that led to sparse and low-rank constrained op-
timizations. Since several of the resulting formulations were non-convex, novel judicious convex
relaxations were designed. The performance of the developed algorithms was evaluated in sev-
eral synthetic and real-world datasets and the results were compared with alternatives from the
literature.

4.8 Appendix: Proof of Proposition 1

Key to our proof are the results from [99], which guarantee the convergence of BSUM algo-
rithms to a stationary point.

We aim to show that our proposed algorithm satisfies the conditions specified in [99, Th. 1b].
4For conciseness, only one experiment with three missing nodes is presented, but the difference in terms of

robustness is also observed if the hidden nodes at hand change or if the value of H is either 1 or 2. We refer
interested readers to the repository provided in footnote 3, which allows them to run the experiments for any desired
configuration.
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To that end, let f(y) represent the objective function in (4.14), with y := [y⊤
1 ,y⊤

2 ,y⊤
3 ]⊤ and

y1 := vec(SO), y2 := vec(SOH), y3 := vec(COH) denoting the 3 blocks of variables considered in
our algorithm. For each of the B = 3 block of variables yb, we approximate f(y) by defining the
functions u1(y1), u2(y2), and u3(y3), corresponding to the objective functions in (4.15), (4.16)
and (4.17), respectively. Also, recall that Y∗ denotes the set of stationary points of f(y) and
that y(t) := [(y(t)

1 )⊤, (y(t)
2 )⊤, (y(t)

3 )⊤]⊤ is the solution obtained after running t iterations of our
algorithm.

With the previous definitions in place, the assumptions required to ensure the convergence of
our algorithm are the following.

(AS A) The approximation functions ub(yb) must be a global upper bound of f(y) and the first
order behavior of ub(yb) and f(y) must be the same.

(AS B) The function f(y) must be regular (cf. [99]) at every point in Y∗.

(AS C) The level set Y(0) = {y | f(y) ≤ f(y(0))} is compact.

(AS D) The problems in (4.15)-(4.17) must have a unique solution for any point y(t) ∈ Y∗ for at
least two of the blocks.

We address each of the four assumptions separately, proving that our approach satisfies all of them.

Assumption (AS A) requires the surrogate functions ub(yb) to be global upper bounds of f(y).
For the first block (b = 1), we approximate f(y) with the Taylor series of order 1 of the logarithmic
penalty, given by

ũ1(y1) =
O2∑

i=1
log

(
|[y(t)

1 ]i| + δ
)

(4.21)

+
O2∑

i=1

sign([y(t)
1 ]i)

|[y(t)
1 ]i| + δ

(
[y1]i − [y(t)

1 ]i
)

+ ρfc(y1),

where fc denotes the commutativity penalty in (4.15). Since the entries of y(t)
1 are always either

positive or negative [cf. (4.3) and (4.4)], we have that sign([y(t)
1 ]i)[y1]i = |[y1]i|. After dropping

the constant terms, we obtain

u1(y1) =
O2∑

i=1

|[y1]i|
|[y(t)

1 ]i| + δ
+ ρfc(y1), (4.22)

which is the objective function in (4.15). Because the log is a concave differentiable function it
follows that its Taylor series of order one constitutes a global upper bound. Therefore, u1 satisfies
(AS A). The proof for u2 is equivalent to the proof for u1 so it is omitted for brevity. Lastly,
u3(y3) = f(y) when the blocks y1 and y2 remain constant, so it also satisfies the requirements,
and hence, (AS A) is fulfilled.

To proof (AS B), according to the definition of regular functions presented in [99], it suffices
to show that the non-smooth parts of f(y) are separable across the different blocks of variables.
To that end, we recall that y1 := vec(SO), y2 := vec(SOH) and y3 := vec(COH), and decompose
f as f = gA + gB + gC , with functions gA, gB and gC being defined as

• gA(SO,SOH,COH) = η∥SOH∥2
F + η∥COH∥2

F + ρ∥ĈOSO +COHS⊤
OH −SOĈO −SOHC⊤

OH∥2
F ,

where gA is a smooth function,
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• gB(SO) =
∑O

i,j=1 log(|[SO]ij | + δ), where gB is a non-smooth function,

• gC(SOH) =
∑O,H

i,j=1 log(|[SOH]ij | + δ), where gC is a non-smooth function.

Since the non-smooth terms appear in gB(SO), which only involves variables of the first block
y1 = vec(SO), and gC(SOH), which only involves variables of the second block y2 = vec(SOH), it
follows that the function f(y) is regular for all feasible points.

Next, we show that the level set Y(0) = {y | f(y) ≤ f(y(0))} is compact as required by (AS C).
First, note that the entries of SO and SOH are continuous subsets of R (e.g., [SO]ij , [SOH]ij ∈ R+
when S = A), and that COH ∈ RO×H , so f(y) is continuous. Moreover, since we have that
f(y) ≤ f(y(0)), this implies that the continuous functions log(|[SO]ij | + δ), log(|[SOH]ij | + δ),
and ∥COH∥2

F are all bounded, rendering the domain of f(y) bounded. Therefore, it follows that
the level set Y(0) is compact.

Finally, since the optimization problems in (4.16) and (4.17) are strictly convex, two of the
three problems have unique solutions, satisfying (AS D) and concluding the proof.



Chapter 5

Joint Graph Inference from Stationary Graph Signals with Hidden
Nodes

In this chapter, we explore the field of network topology inference by considering scenarios
involving multiple interconnected networks and the presence of hidden nodes. It is evident from
the previous chapter that ignoring the presence of hidden nodes can significantly limit the effective-
ness of graph learning tasks. Consequently, in this chapter, we propose an approach that jointly
estimates the graph in the context of multiple interconnected networks by considering the presence
of hidden nodes. For the proposed method we assume that observed signals are stationary on
the graph and formalize the relationship between observed and hidden nodes, which is given by
the assumed signal model. We also exploit graph similarities, both between observed and hidden
nodes, and for doing so we employ a regularization inspired by the group Lasso penalty. This
approach has the potential to improve the graph learning performance of existing methods by i)
exploiting the inherent relationships between these connected graphs and ii) modeling the effect of
the hidden nodes. In order to show the benefits of the proposed approach we present mathematical
and numerical analyses, including conditions for the recovery of sparse solutions and the associated
error bounds. We conclude this chapter by evaluating the performance of the proposed method
through simulations on synthetic and real data, emphasizing the impact of hidden variables on
multiple network topology inference.

5.1 Introduction

As mentioned in the previous chapters, the task of network topology inference, has emerged
as a vibrant research area with GSP [15, 16, 19, 106]. A crucial assumption for learning the graph
topology is the statistical relationship between the signals and the unknown topology. Different
assumptions lead to different methods, with noteworthy examples including correlation networks
and GMRF [3,13,59], smooth (local total variation) models [36,38,107], GSP-based approaches [4,
62,93], and models with more elaborate graph priors [108,109]. A common feature of the previous
works is that they focus on learning a single graph. However, many contemporary setups involve
multiple related networks, each with a subset of signals. Some examples include brain analytics,
where observations from different patients are used to estimate their brain functional networks;
social networks, where the same set of users may present different types of interactions; or multi-hop
communication networks in dynamic environments, where a network needs to be inferred for each
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time instant. Intuitively, in situations where several closely related networks exist, approaching the
problem in a joint fashion can boost the performance of network topology inference by harnessing
the relationships among graphs [65,66,110–113].

Despite the clear benefits, joint network topology inference approaches usually assume that
observations from every node are available, which is often not the case. In many relevant sce-
narios, the observed signals correspond only to a subset of the nodes in the whole graph, while
the remaining nodes stay unobserved or hidden. Ignoring the presence of the hidden nodes can
drastically hinder the performance of the graph learning algorithms. Nevertheless, accounting for
their influence is not a trivial endeavor since the inference task becomes ill-posed. For single net-
work inference, some works dealing with this challenging setting include graphical models [63,64],
inference of linear Bayesian networks [88], nonlinear regression [89], and stationary-based algo-
rithms [5, 42]. However, the presence of hidden nodes is yet to be addressed for several unknown
graphs. Since the key to joint topology inference is exploiting the similarity of the graphs, it is
crucial to model the influence of the hidden nodes to measure the graph similarity between nodes
that remain unobserved.

To this end, we propose a topology inference method that simultaneously performs joint es-
timation of multiple graphs and accounts for the presence of hidden variables. Under the as-
sumption that the observed signals are realizations of a random process that is stationary on the
graph [16,46], we formalize the relationship between the nodal observations and the unknown net-
works under the influence of the hidden nodes. The joint formulation necessitates exploiting graph
similarities, not only with respect to observed nodes but also to hidden ones. To accomplish this,
we carefully model the structure associated with latent variables and exploit it with a regularization
inspired by the group Lasso penalty [95]. Finally, we conduct thorough mathematical and numeri-
cal analyses of the proposed approach, where we show the conditions under which it recovers the
sparsest solution and bounds the error of the estimated graphs, and we evaluate its performance
and the influenceof the hidden variables through simulations with synthetic and real-world data.

Related work and contributions. Early methods for joint graph learning were introduced in [65]
assuming that observations follow a GMRF and, later on, in [66] followed by a joint inference
method for graph stationary signals. However, both works assumed that observations from the
whole graphs were available. At the same time, the influence of hidden nodes when learning a single
graph was studied in [63] and [5] assuming that the observations adhered respectively to a GMRF
or a graph-stationary model. On the other hand, the relevant task of learning several graphs in the
presence of hidden nodes has only been considered under GMRF assumptions in the preliminary
results from [6]. In contrast, in this chapter, we (i) build upon our previous work from [43] for joint
graph learning with hidden variables under the more lenient assumption of stationary observations;
and (ii) develop a theoretical analysis to characterize how the hidden nodes influence the quality
of the estimated graphs. Finally, note that GMRF and graph stationarity are intrinsically different
models for the observations, resulting in materially different inference algorithms and, even more
relevant for the problem at hand, requiring different methods to encourage graph similarities with
respect to both observed and hidden nodes.

To summarize, our main contributions are:

• We design a convex optimization problem to jointly learn the topology of several related
graphs in the presence of hidden variables under graph-stationary observations.

• We rely on a regularization inspired by group Lasso to model the similarity between both
hidden and observed nodes.
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• We derive theoretical recoverability guarantees and bound the error of the estimated graphs
when considering the presence of hidden nodes.

• We evaluate the performance of the proposed approach and compare it with state-of-the-art
alternatives in synthetic and real-world datasets.

Outline. The remainder of this chapter is organized as follows. We introduce in Section 5.2
the task of learning graphs in the presence of hidden nodes. In Section 5.3 we present our pro-
posed optimization problem that accounts for hidden nodes, along with its convex relaxation. We
provide theoretical guarantees for the viability and performance of our method in Section 5.4,
which are validated by several synthetic and real-world experiments in Section 5.5. In Section 5.6
a concluding discussion is provided about the work presented in this chapter. Finally, in Sec-
tion 5.7, Section 5.8, and Section 5.9 we present the detailed proof for the results associated with
the theoretical recoverability guarantees and the error bounds of the estimated graphs stated in
Section 5.4.

5.2 Inference of multilayered graphs with latent variables

Let there be a set of K undirected networks {G(k)}K
k=1 on the same set V of N nodes with GSOs

denoted as {S∗(k)}K
k=1. We assume that for each graph there exists a set with Rk realizations of a

stationary graph signal collected in data matrices X(k) ∈ RN×Rk , where the Rk columns contain
the nodal observations on the k-th graph. For a signal x(k) on the k-th graph, its covariance
matrix is denoted by C(k) = E[x(k)(x(k))⊤]. We further assume that for every graph we do not
know the entire data matrix X(k) but only observe signal values on a subset O ⊂ V of O nodes,
where H := V\O denotes the set of H hidden nodes. Our goal is to estimate the subnetwork of
each network G(k) induced by O from partially observed graph signals.

Under this setting, we can now formalize the task of estimating the network structure at the
node subset O that is encoded in the GSOs {S∗(k)}K

k=1. Without loss of generality, we partition
the GSO and the covariance matrix of each network as

S∗(k) =
[
S∗(k)

O S∗(k)
OH

S∗(k)
HO S∗(k)

H

]
, C(k) =

[
C(k)

O C(k)
OH

C(k)
HO C(k)

H

]
, (5.1)

where S∗(k)
OH = (S∗(k)

HO )⊤ and C(k)
OH = (C(k)

HO)⊤ by the symmetry of S∗(k) and C(k). The submatrices
S∗(k)

O ∈ RO×O and S∗(k)
H ∈ RH×H encode the connectivity of the subnetworks of G(k) induced by

O and H, respectively, while S∗(k)
OH ∈ RO×H represents the edges connecting observed nodes to

hidden nodes. We similarly define C(k)
O , C(k)

H , and C(k)
OH. Given the partitions in (5.1), we aim to

estimate the subnetworks encoded in {S∗(k)
O }K

k=1.

We also partition each X(k) to be conformal with S∗(k) and C(k) as X(k) = [X(k)⊤
O ,X(k)⊤

H ]⊤,
where X(k)

O ∈ RO×Rk is the data matrix containing the partially observed graph signals and
X(k)

H ∈ RH×Rk remains unknown. We can thus apply the partially observed stationary graph
signals X(k)

O and the commutative relationship C(k)S∗(k) = S∗(k)C(k) as described in Section 2.4
to recover the structure in S∗(k)

O . Given the problem setting, we can now formalize our joint
topology inference problem in the presence of hidden nodes as follows.

Problem 1 Given the sets {X(k)
O }K

k=1 of graph signal values at the observed nodes for each of the
K graphs, recover {S∗(k)

O }K
k=1 under the following assumptions:
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(AS1) the number of hidden nodes H is much smaller than the number of observed nodes, that
is, H ≪ O;
(AS2) the signals in X(k) are realizations of a process that is stationary in S∗(k); and
(AS3) the GSOs S∗(k) and S∗(k′) are sparse and have similar sparsity patterns.

We elaborate on the implications of the assumptions. The first assumption (AS1) ensures the
tractability of the problem. When most of the nodes in the graph are observed, the covariance
submatrix C(k)

O sufficiently characterizes the structure of S∗(k)
O . Importantly, under H ≪ O, the

matrix product C(k)
OHS∗(k)

HO is low-rank, a crucial result for inferring S∗(k)
O , which is also assumed

in different single graph topology inference approaches. Assumption (AS2) establishes a global
relationship between the graph signals X(k) and the unknown graph structure S∗(k), including
both observed and hidden nodes. This assumption enables us to specify how the hidden nodes
affect X(k) by considering the connectivity between observed and hidden nodes encoded in S∗(k)

OH
from (5.1) and the commutative relationship C(k)S∗(k) = S∗(k)C(k). The final assumption (AS3)
guarantees that all K graphs have similar edge connectivity patterns across all the shared node
set V. Not only can we then benefit from jointly inferring the observed subnetworks, but we may
also share hidden node information across all K graphs during inference. We naturally expect that
the support of S∗(k)

O will be similar across all K graphs [6,65,66]; however, it is important to also
exploit the edgewise similarity for S∗(k)

OH to account for connections between observed and hidden
nodes.

Notice that for the simpler case where the set H of hidden nodes differs across graphs, (AS3)
would allow us to exploit nodal observations from graph k that are hidden for graph k′ to account
for hidden nodes. However, in this work, we address the more challenging scenario in Problem 1,
where there is a subset of nodes for which there are no direct observations for any graph. We rely
on the statistical relationship between the graph signals and the graph topology to formulate a
suitable optimization problem for jointly inferring the subnetworks in S∗(k)

O .

5.3 Joint graph inference with latent variables as a convex optimization problem

Network topology inference with stationary graph signals commonly exploits the commutativity
of the graph signal covariance matrices and the GSOs. We also adopt this approach; however,
unlike previous works, we cannot directly apply the commutative relationship due to the presence
of hidden nodes. We must revisit the commutativity of C(k) and S∗(k) with the partitions in (5.1)
before introducing our inference problem with stationary graph signals. From stationarity (AS2),
we know that S∗(k)C(k) = C(k)S∗(k) for all k = 1, . . . ,K. From (5.1) it then follows that

C(k)
O S∗(k)

O − S∗(k)
O C(k)

O = (P∗(k))⊤ − P∗(k) (5.2)

for all k = 1, . . . ,K, where P∗(k) := C(k)
OHS∗(k)

HO . The right-hand side of (5.2) fully accounts for the
influence of hidden nodes. When P∗(k) is known, estimating S∗(k)

O relies solely on the commutator
on the left-hand side. This is similar to traditional network inference with stationary graph signals,
where we also know the value of the commutator C(k)S∗(k) − S∗(k)C(k) = 0N×N .

With the prior structural information in place, we can approach estimating the subnetworks from
sample covariance submatrices Ĉ(k)

O = 1
Rk

X(k)
O (X(k)

O )⊤ by the following nonconvex optimization
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problem

min
{S(k)

O ,P(k)}K
k=1

K∑

k=1
αk∥S(k)

O ∥0 +
∑

k<k′
βk,k′∥S(k)

O − S(k′)
O ∥0

+
K∑

k=1
γk∥P(k)∥2,1 +

∑

k<k′
ηk,k′

∥∥∥∥∥

[
P(k)

P(k′)

]∥∥∥∥∥
2,1

s. t.
∑K

k=1 ∥Ĉ(k)
O S(k)

O − S(k)
O Ĉ(k)

O + P(k) − (P(k))⊤∥2
F ≤ ϵ2,

S(k)
O ∈ S, (5.3)

where we have introduced auxiliary matrices {P(k)}K
k=1 to account for the right hand side of (5.2).

We first discuss (5.3) as it relates to {S(k)
O }K

k=1. The first two terms in the objective of (5.3)
encourage sparse subnetworks with similar sparsity patterns as in (AS3). The second constraint
encourages valid GSOs for S(k)

O . In this work, we let the GSOs denote adjacency matrices, so we
define

S :=
{

S : S = S⊤, diag(S) = 0,
∑

j Sj1 = 1
}
, (5.4)

where {S(k)
O }K

k=1 denote valid submatrices of nontrivial adjacency matrices, that is, S(k)
O ̸= 0O×O.

While we select adjacency matrices as GSOs, problem (5.3) accommodates other GSOs, such as
the graph Laplacian [4], under minor modifications.

We next discuss the auxiliary matrices {P(k)}K
k=1. The first constraint encourages the commu-

tativity in (5.2) with P(k) as an approximation of P∗(k) = C(k)
OHS∗(k)

HO to avoid a bilinear formulation.
As will be discussed in Section 5.4, the upper bound ϵ accounts for both the sample covariance
submatrix error and the difference between P(k) and P∗(k). Thus, similarly to [6], we introduce
the low-rank matrices P(k) to replace entities that depend on hidden nodes. However, instead of
using the standard convex surrogate for low-rankness given by the nuclear norm, we rely on the
ℓ2,1 to impose additional structure on P(k) based on the assumptions in Problem 1.

Precisely, the last two terms in the objective apply a group Lasso penalty via the ℓ2,1 norm [95],
which evaluates the ℓ1 norm of the vector containing the ℓ2 norm of each column of the input
matrix, that is, ∥P(k)∥2,1 =

∑O
i=1 ∥P(k)

·,i ∥2. Recall that since H ≪ O by (AS1), the matrix P∗(k)

is not only low-rank but has sparse columns, hence the third term in the objective applying the ℓ2,1
norm to encourage column-sparsity in P(k). While low-rank constraints are commonly implemented
with the convex nuclear norm penalty [5], where solutions with sparse singular values are sought,
we simultaneously promote low-rankness while encouraging column sparsity by the group Lasso
penalty. Additionally, since the networks are assumed to have similar sparsity patterns by (AS3),
we expect that the column sparsity patterns of P∗(k) across networks will be similar, hence the
fourth term in the objective.

As is common with optimization problems for sparse network inference, we introduce a con-
vex relaxation of (5.3) that enjoys efficient solvability and theoretical guarantees. Our convex
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formulation is

min
{S(k)

O ,P(k)}K
k=1

K∑

k=1
αk∥S(k)

O ∥1 +
∑

k<k′
βk,k′∥S(k)

O − S(k′)
O ∥1

+
K∑

k=1
γk∥P(k)∥2,1 +

∑

k<k′
ηk,k′

∥∥∥∥∥

[
P(k)

P(k′)

]∥∥∥∥∥
2,1

s. t.
∑K

k=1 ∥Ĉ(k)
O S(k)

O − S(k)
O Ĉ(k)

O + P(k) − (P(k))⊤∥2
F ≤ ϵ2,

S(k)
O = (S(k)

O )⊤, diag(S(k)
O ) = 0, for allk = 1, . . . ,K,

∑
j [S(1)

O ]j1 = 1, (5.5)

where we have removed the nonconvexities in (5.3) by substituting the ℓ0 norms in the objective
with convex ℓ1 norms. We further specified the constraints according to (5.4) for valid adjacency
submatrices. While the last constraint is valid to preclude trivial adjacency submatrices, it would
not be viable for graph Laplacians as GSOs. However, the theoretical results in Section 5.4 still
hold for graph Laplacian GSOs by replacing the last constraint in (5.4) to enforce valid graph
Laplacian submatrices.

5.4 Theoretical results

We formalize the viability of the convex relaxation in (5.5) by presenting conditions under which
the solutions to (5.3) and (5.5) are equivalent. We also compute an upper bound on the error of
the solution to (5.5) and apply the bound to evaluate the effectiveness of (5.5) at accounting for
hidden nodes.

5.4.1 Sparsity of the convex relaxation

We first introduce the following definitions to rewrite the optimization problems in (5.3) and
(5.5) in vector form. Let the vectors α ∈ RK and β ∈ RK(K−1)/2 collect values of αk and βk,k′ ,
respectively. Let L′ := L(1)∪· · ·∪L(K), where L(k) := {i = j+(k−1)O2 : j ∈ L} for L containing
indices for a O2-length vector (corresponding to the vector form of an O×O matrix) as described
in Section 5.2. We define the directed difference matrix E := [1⊤

K ⊗−IK ]·,L +[IK ⊗1⊤
K ]·,L, where

L contains indices for a K2-length vector. We can then introduce the matrix Ψ := 2[Ψ0]·,L′

associated with the objectives of (5.3) and (5.5), where

Ψ0 :=
[

diag(α) ⊗ IO2

diag(β)E⊤ ⊗ IO2

]
.

For the first constraint of (5.3) and (5.5), we introduce Σ := blockdiag(Σ(1), . . . ,Σ(K)), where
Σ(k) := [Σ(k)

0 ]·,L + [Σ(k)
0 ]·,U and Σ(k)

0 = (−Ĉ(k)
O ⊕ Ĉ(k)

O ) for all k = 1, . . . ,K, and L and U for
Σ(k) return entries of a vector of length O2. Furthermore, let Q be a commutation matrix such
that for any square matrix Y, we have that vec(Y⊤) = Qvec(Y), and let M = blockdiag(IO2 −
Q, . . . , IO2 − Q) with K diagonal blocks. Let E(k,i) = {(k − 1)O2 + (i − 1)O + j}O

j=1 be index
sets for all k = 1, . . . ,K and i = 1, . . . , O. Based on this, define E(k,k′,i) = E(k,i) ∪ E(k′,i) for
every k, k′ = 1, . . . ,K with k < k′, where E(k,i) corresponds to the indices of the i-th column in
the vectorized version of the matrix P(k) and E(k,k′,i) to the indices of the i-th columns of the
vectorized versions of P(k) and P(k′).
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With the following vectorizations,

s = [vec(S(1)
O )⊤

L , · · · , vec(S(K)
O )⊤

L ]⊤ ∈ RKO(O−1)/2, (5.6)

p = [vec(P(1))⊤, · · · , vec(P(K))⊤]⊤ ∈ RKO2
, (5.7)

we may rewrite the optimization problem (5.3) as

{s′,p′} = argmin
{s,p}

∥Ψs∥0 +
K∑

k=1

O∑

i=1
γk∥pE(k,i)∥2

+
∑

k<k′

O∑

i=1
ηk,k′∥pE(k,k′,i)∥2

s. t. ∥Σs + Mp∥2 ≤ ϵ, (e1 ⊗ 1O−1)⊤s = 1 (5.3’)

and (5.5) as

{ŝ, p̂} = argmin
{s,p}

∥Ψs∥1 +
K∑

k=1

O∑

i=1
γk∥pE(k,i)∥2

+
∑

k<k′

O∑

i=1
ηk,k′∥pE(k,k′,i)∥2

s. t. ∥Σs + Mp∥2 ≤ ϵ, (e1 ⊗ 1O−1)⊤s = 1. (5.5’)

We further denote J as supp(Ψs′) and I as supp(s′), where supp(y) denotes the support of the
vector y. With the above definitions in place, we have the following result.

Theorem 1. Assume that problem (5.5’) is feasible. The solution {ŝ, p̂} of (5.5’) is equivalent
to the solution {s′,p′} of (5.3’) if the following two conditions are satisfied:

1) Σ·,I is full column rank; and

2) There exist constants ψ,Cs > 0 such that

∥ΨJ c,·(T1 − T2)Ψ⊤
J ,·∥∞ < 1,

where

T1 :=
(
ψ−2(Σ⊤Σ + 2ϵ2C−2

s IKO(O−1)/2)

+ Ψ⊤
J c,·ΨJ c,·

)−1
,

T2 := T1(e1 ⊗ 1O−1)(e1 ⊗ 1O−1)⊤T1
(e1 ⊗ 1O−1)⊤T1(e1 ⊗ 1O−1) .

The proof of Theorem 1 can be found in Section 5.7, but we also provide a summary here.
To decouple the joint optimization of s and p, we consider an alternating minimization algorithm,
permitting separate analysis of s-subproblems and p-subproblems at each iteration. Proximal
alternating minimization [114], an iterative optimization algorithm, applied to (5.3’) and (5.5’)
can be shown to converge to the original solutions {s′,p′} and {ŝ, p̂}, respectively. We then can
show that the p-subproblems for (5.3’) and (5.5’) are equivalent for every iteration, and therefore
p′ = p̂. When the iterations grow sufficiently large for convergence, the s-subproblems for (5.3’)
and (5.5’) are equivalent under the conditions of Theorem 1, so s′ = ŝ.
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Under the sufficient conditions of Theorem 1, the convex relaxation in (5.5) enjoys recovery of
the sparsest solution of (5.3) even in the presence of hidden nodes. Note that this result differs
significantly from that of Theorem 1 in [66] due to the presence of another variable p that is
not associated with an entrywise sparsity penalty. Condition 1) of Theorem 1 guarantees that
the solution to (5.5) is unique, and condition 2) permits the existence of a dual certificate that
ensures that the solutions to (5.5) and (5.3) are equivalent [66, 115]. Thus, under the conditions
of Theorem 1, the ℓ1 norm does not introduce any estimation error for obtaining the sparsest
GSO submatrix estimates, and we need only consider the distortion from the sample covariance
submatrices {Ĉ(k)

O }K
k=1 and auxiliary matrices {P̂(k)}K

k=1 obtained from (5.5).

5.4.2 Robust recovery under hidden nodes

By Theorem 1, we can guarantee under mild conditions when the solution to (5.5) is equivalent
to the sparsest solution from (5.3). Therefore, to evaluate the efficacy of our method in estimating
the true GSO submatrices {S∗(k)

O }K
k=1, we need only consider the estimation error of (5.5). In the

sequel, we derive an upper bound on the distortion between the true GSO submatrices {S∗(k)
O }K

k=1
and the estimated ones {Ŝ(k)

O }K
k=1 obtained from (5.5). Let s∗ be the vectorization of the true

GSO submatrices {S∗(k)
O }K

k=1 as in (5.6). We define K as supp(Ψs∗), and we let R :=
∑K

k=1Rk

and ω := maxk=1,...,K ωk, where ωk := max{maxi[C(k)
O ]ii,maxi[S∗(k)

O C(k)
O S∗(k)

O ]ii}. We present
our main result on the performance of our proposed method.

Theorem 2. Let {Ŝ(k)
O }K

k=1 be the estimated subnetworks obtained from (5.5) with ϵ = ϵR + α
for

α2 =
K∑

k=1

∥∥∥
(
P̂(k) − (P̂(k))⊤)

−
(
P∗(k) − (P∗(k))⊤)∥∥∥

2

F

and ϵR ≥ C1Oω
√

(K logO)/R for some constant C1 > 0. Under the following four conditions,

1) K = o(logO);

2) R1 ≍ R2 ≍ · · · ≍ RK ;

3) logO = o(min{R/(K7(logR)2), (R/K7)1/3}); and

4) Σ is full column rank;

with probability at least 1 − e−C2 log O for some constant C2 we have that
K∑

k=1
∥Ŝ(k)

O − S∗(k)
O ∥1 ≤ τ(ϵR + α),

where τ = 4
√

|K|σmax(Ψ)∥Ψ†∥1
σmin(Σ) (2 +

√
|K|). (5.8)

The proof of Theorem 2 can be found in Section 5.8. In brief, we first apply the commutative
relationship described in Section 2.4 to show that {s∗, p̂} is a feasible solution to (5.5’). We
can then bound the ℓ1-norm difference between the vectorization of the true GSOs s∗ and the
estimated one ŝ based on the commutativity constraint, ϵ = ϵR + α.
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Theorem 2 presents an upper bound on the estimation error of (5.5). If K and O are fixed,
then as the number of observed graph signals R increases, the sample covariance submatrices
{Ĉ(k)

O }K
k=1 approach the true covariance submatrices, and the first term τϵR in the upper bound in

(5.8) becomes negligible. With enough observed graph signals, the error primarily depends on the
second term τα, which denotes the approximation error of {P̂(k)}K

k=1, the crux of our proposed
method. If (5.5) is effective at enforcing P(k) to share structural characteristics of C(k)

OHS∗(k)
HO such

that they are close, then the estimation of the GSO submatrices S∗(k)
O becomes easier according

to (5.8). Furthermore, as P(k) becomes a more accurate approximation of P∗(k), the estimation
accuracy of Ŝ(k)

O improves increasingly when compared to estimating S∗(k)
O while ignoring the

presence of hidden nodes. We formalize this statement in the following result that characterizes
the effectiveness of our proposed formulation with respect to the auxiliary matrices {P(k)}K

k=1.

Corollary 1. Let the naive subnetwork estimates considering only observed nodes be denoted
as {S̃(k)

O }K
k=1 [66], which we define as the solution to (5.5) while fixing P(k) = 0O×O for every

k = 1, 2, . . . ,K, and we let ϵ = ϵR, where ϵR ≥ C1Oω
√

(K logO)/R for some constant C1 > 0,
and γk = 0, ηk,k′ = 0 for every k, k′ = 1, 2, . . . ,K and k < k′. Additionally, let s̃ be the
vectorization as in (5.6) of {S̃(k)

O }K
k=1 and define δ as

δ2 =
K∑

k=1
∥P∗(k) − (P∗(k))⊤∥2

F .

Then, we have that

K∑

k=1
∥S̃(k)

O − S∗(k)
O ∥1 ≤ (τ + τ ′)(ϵR + 1

2δ),

where τ = 4
√

|K|σmax(Ψ)∥Ψ†∥1
σmin(Σ) (2 +

√
|K|)

and τ ′ = 2ρKO(O − 1)(1 +
√

|K|)σmax(Ψ)∥Ψ†∥1
σmin(Σ) (5.9)

for some ρ ∈ [0, 1]. Furthermore, we have that if

K∑

k=1

∥∥∥
(
P̂(k) − (P̂(k))⊤)

−
(
P∗(k) − (P∗(k))⊤)∥∥∥

2

F

≤
(
τ ′

τ

)2
ϵ2R +

(
τ + τ ′

2τ

)2 K∑

k=1

∥∥∥P∗(k) − (P∗(k))⊤
∥∥∥

2

F
, (5.10)

then the error bound in (5.8) is lower than the error bound in (5.9).

The proof of Corollary 1 can be found in Section 5.9, which follows a similar procedure to the
proof of Theorem 2. Corollary 1 demonstrates the criticality of accounting for hidden nodes. We
describe these implications more intuitively here. First, as discussed following Theorem 2, we note
that as P̂(k) approximates P∗(k) more accurately, we achieve greater improvement over {S̃(k)

O }K
k=1

from our proposed inference problem (5.5). Indeed, as the matrix difference (P̂(k))⊤ − P̂(k)

approaches the right-hand side of (5.2), we remove the influence of the hidden nodes on the
estimation of the observed submatrices. Second, note that the second term in the upper bound
of (5.10) is proportional to δ, which measures the influence of the hidden nodes on the observed
nodes in the stationary graph signal regime. When δ is negligible, the hidden nodes have little
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effect on the observed nodes, and the inclusion of {P(k)}K
k=1 in the inference process may affect

performance detrimentally. However, as δ increases, the need to account for the right-hand side of
(5.2) becomes crucial. We verify this comparison of (5.5) and the naive solution {S̃(k)

O }K
k=1 with

synthetic simulations in Section 5.5.

5.5 Numerical evaluation

We introduce several experiments to assess the performance of the proposed network topology
inference method. The experiments employ synthetic and real-world data and compare the quality
of the graphs estimated by different algorithms. For the k-th graph, we compute the normalized
error between the target S∗(k)

O and the estimated Ŝ(k)
O as

nerr(S∗(k)
O , Ŝ(k)

O ) = ∥S∗(k)
O − Ŝ(k)

O ∥2
F

∥S∗(k)
O ∥2

F

, (5.11)

and then report the average across the K graphs being estimated, i.e., 1
K

∑K
k=1 nerr(S∗(k)

O , Ŝ(k)
O ).

The code for the proposed method and the experiments is available on GitHub1.

5.5.1 Synthetic experiments

We rely on synthetic graphs and signals to assess how different elements impact the performance
of the proposed approach. Unless specified otherwise, in the following experiments we consider
K = 3 graphs with N = 20 nodes from which O = 19 are observed. The graph G(1) is sampled
from an ER random graph model with a link probability of p = 0.2, and the related graphs
are created by randomly rewiring a fixed number of edges. We ensure that sampled graphs are
connected to preclude any isolated nodes. Stationary graph signals are generated by diffusing a
white input signal across the graph, that is, x = Hw, where the coefficients of H are drawn from
a uniform distribution and w ∼ N (0, I). Under this model, the covariance of x is a polynomial
of S, which constitutes a more general setting than, for example, graph signals sampled from a
GMRF.

Varying the effect of hidden nodes. We start by illustrating the result in (5.10) that expresses
when it is beneficial to incorporate P(k) for hidden nodes. To this end, we estimate K = 3 networks
from perfectly known covariance submatrices C(k)

O so ϵR = 0 [cf. (5.10)], to assess only the effects
of P(k) and the hidden nodes H, characterized respectively by α from Theorem 2 and δ from
Corollary 1. We compare two network inference methods: (i) JH-GSR, which denotes the method
in (5.5) that accounts for hidden nodes, and (ii) J-GSR, which denotes the method described
in Corollary 1 that ignores hidden variables [66]. Fig. 5.1 shows the network estimation error
as the edge weights connecting observed nodes and hidden nodes increase, that is, as nonzero
entries in S∗(k)

OH grow larger. While the GSO sparsity patterns do not change, the hidden node
influence δ increases with the edge weights in S∗(k)

OH . To measure performance that is consistent
with Corollary 1, we report the average error across all K graphs as the normalized ℓ1-norm
difference, equivalent to computing (5.11) with the ℓ1 norm replacing the squared Frobenius norm.
We let ϵ = 10−8 for the first constraint in (5.5); however, the solution to the naive problem with
P(k) = 0O×O may not be feasible. Indeed, when ϵ is small enough, it may be impossible to obtain

1https://github.com/reysam93/hidden_joint_inference

https://github.com/reysam93/hidden_joint_inference
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Figure 5.1: Evaluation of the performance of graph inference accounting for hidden nodes via (5.5) and
graph inference ignoring hidden nodes as described in Corollary 1 as the weights of edges between observed
and hidden nodes increase. The experiment considers different network topology inference alternatives and
the reported results are the average error of 100 independent realizations.

a feasible solution {S̃(k)
O }K

k=1 such that all constraints hold. In such a case where the solution
is infeasible, we let its error be 1. Along with network estimation error, we compare in Fig. 5.1
normalized values of α and δ to evaluate when the result in (5.10) holds. In particular, we let
ᾱ :=

∑
k nerr(P∗(k), (P∗(k))⊤ + P̂(k) − (P̂(k))⊤)/K and δ̄ :=

∑
k nerr(P∗(k), (P∗(k))⊤)/K. Since

we need only consider which value is greater, we plot ᾱ/C and δ̄/C for some constant C > 0 such
that the values are between 0 and 1.

When the edge weight is 0, the hidden nodes are decoupled from the network and thus have
no effect on the observed nodes, and indeed J-GSR perfectly recovers the target networks. For
zero-valued edge weights in S∗(k)

OH , we observe α ≥ δ, where JH-GSR is comparable but not
superior to J-GSR. As the edge weight increases and becomes nonnegligible, the effect of the
hidden nodes increases, and we observe in Fig. 5.1 that α < δ for all nonzero edge weights and
JH-GSR consistently outperforms J-GSR as expected from (5.10). We thus validate the necessity
of our proposed method, where as the influence of hidden nodes increases, we must account for
their presence to maintain a satisfactory estimation error.

Varying the number of graphs. We next assess the benefits of considering a joint network topol-
ogy inference approach when several graphs need to be learned. To that end, Fig. 5.2 illustrates
the normalized error computed according to (5.11) as the number of graphs K being estimated in-
creases. The performance of JH-GSR is compared with (i) S-GSR, the network topology inference
method from stationary observations [4] where graphs are learned individually and the presence of
hidden variables is ignored; SH-GSR, a generalization of (i) that takes into account the influence
of hidden variables [5]; and (iii) J-GSR as in Fig. 5.1. Looking at the results, we observe that
JH-GSR outperforms the alternatives, showcasing the benefits of harnessing the graph similarity
while accounting for the influence of the hidden nodes. We also observed that the joint approaches
achieve a lower error when more than one graph is being estimated, and furthermore, that the
benefits of the joint approaches increase with K. Lastly, Fig. 5.2 also shows that for the setup
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,Ŝ

(k
)

O
)/

K

JH-GSR SH-GSR
J-GSR S-GSR

Figure 5.2: Evaluation of the influence of increasing the number of graphs being estimated. The experiment
considers different graph topology inference alternatives and the reported results are the average error of
100 independent realizations.

at hand, ignoring the influence of hidden nodes results in a worse performance than ignoring the
relation across networks, which is studied in more detail in the following experiment.

Varying the number of hidden nodes. The results in Fig. 5.3 investigate the detrimental
influence of the presence of hidden nodes in the network topology inference task. We examine
fixed-size graphs with N = 20 nodes and increase the number of hidden nodes H as shown in
the x-axis. We evaluate the performance of (i) our proposed method, JH-GSR, (ii) an alternative
implementation of our method replacing the group Lasso penalty by the nuclear norm, NN, and
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Figure 5.3: Evaluation of the detrimental effects of increasing the number of hidden nodes. The experiments
consider different graph topology inference alternatives and the reported results are the average error of 100
independent realizations.
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Figure 5.4: Evaluation of the impact of the graph similarity in joint network topology inference methods in
different graph topology inference alternatives. The results reported are the average error of 100 independent
realizations.

(iii) the joint network topology inference ignoring the presence of hidden nodes, J-GSR [66]. Then,
for each baseline, we consider the estimation of either 2 or 6 graphs. First, from Fig. 5.3, it can be
seen that increasing the number of hidden nodes renders the inference problem more challenging
and, moreover, that ignoring the presence of hidden nodes results in poor performance. Second,
the superior performance of JH-GSR over NN supports our initial intuition that the group Lasso
penalty is better suited to capture the structure of the problem at hand. Furthermore, we also
observe that estimating 6 graphs leads to a better performance than estimating 2, a behavior
aligned with the previous experiment.

Varying graph similarity. Next, we evaluate the impact of (AS3), a critical assumption in joint
graph topology inference methods. More precisely, we consider estimating K = 3 graphs as the
proportion of different edges increases, i.e., as the graphs become more dissimilar. The errors of
the estimated graphs are depicted in Fig. 5.4, where we compare the performance of JH-GSR with
(i) LVGL, a GL algorithm modeling the presence of hidden nodes [63]; and (ii) FGL, a joint GL
algorithm [65]. Moreover, since GL algorithms assume that the observations are drawn from a
GMRF, we consider two different types of signals. Signals sampled from a GMRF are denoted
as “M”, and signals generated as the diffusion of a white input via a polynomial of the GSO are
denoted as “P”. As expected from (AS3), Fig. 5.4 shows that the performance of joint methods,
JH-GSR and FGL, deteriorates as we consider a higher number of different links. For the two
signal models, we observe that JH-GSR-M is superior to JH-GSR-P since the GMRF model is a
simpler special case of graph stationarity that is less sensitive to hidden nodes. Interestingly, JH-
GSR-M also outperforms GFL-M, although the latter is a method tailored for GMRF observations,
showcasing the more general nature of the stationary model and the importance of accounting
for the presence of hidden nodes. In contrast, we observe that graphical models are incapable of
estimating graphs from stationary observations, and we note that LVGL-P is not included in the
figure due to its high error.

Varying graph sparsity. In the last experiment based on synthetic data, we assess the performance
of the proposed method in terms of the recovery of the support and how the weight of the
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Figure 5.5: Evaluation of the impact of the graph sparsity in the support recovery for different hyperpa-
rameter selections. The experiment considers two settings for graph similarity by rewiring 3 and 6 links.
The results reported are the average error of 100 independent realizations.

regularizers influences the results. To that end, Fig. 5.5 depicts the evolution of the F score as
the mean node degree increases for different configurations of the hyperparameters. Graph G(1)

is drawn from a small world random graph model with a rewiring probability of 0.1, and similar
graphs are generated by rewiring either 3 or 6 links (respectively “3Rw” or “6Rw” in the legend).
The results illustrate how higher values of α obtain the best performance when the graph is sparse
but deteriorates as the graph becomes denser. Similarly, a high value of β harnesses the similar
support of the graphs but, when graphs are less alike, it may deteriorate the performance. Last
but not least, Fig. 5.5 illustrates how the support of the graphs is almost perfectly recovered when
graphs are sparse, but the performance deteriorates as the density of edges increases.

5.5.2 Application to real-world graphs

In addition to the synthetic data where we know the model relating the networks and the
observed graph signals, we assess our proposed method with real-world data to demonstrate its
efficacy in several scenarios, including those where the stationarity assumption is not explicitly
enforced.

Students dataset. The following experiment combines real-world graphs with synthetic signals.
This mixed approach allows us to investigate the applicability of the proposed method to real-world
graphs while ensuring that the observed signals are stationary. We employed three graphs defined
on a common set of 32 nodes, where nodes represent students from the University of Ljubljana,
and the different graphs encode various types of interactions among the students2. The results are
displayed in Fig. 5.6, where we observe the error of the recovered graphs as the number of samples
increases. The error reported is the average of 50 realizations of random stationary graph signals,
with only one hidden node considered. For each of the three graphs, we evaluate the performance
of both the joint and the separate estimation methods, JH-GSR and SH-GSR. From the results,
it is evident that the recovery of all three graphs significantly improves with a joint approach,

2Original data available at http://vladowiki.fmf.uni-lj.si/doku.php?id=pajek:data:pajek:students

http://vladowiki.fmf.uni-lj.si/doku.php?id=pajek:data:pajek:students
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Figure 5.6: Evaluating the performance of the proposed network topology inference in real-world scenarios.
Error estimating three graphs considering either a joint or a separate method. Graphs are obtained from
the students of the University of Ljubljana dataset.

demonstrating the benefits of leveraging the existing relationship between the networks.

Infering multiple observed graphs from voting data. Finally, we close with an experiment
aimed at learning two related political graphs from voting data3. More specifically, we consider
25 cantons of Switzerland as the nodes of the graph and the percentage of votes in favor of 185
initiatives submitted between 2000 and 2020 as the signals. In this setting, links reflect social
influence between cantons (for example, if a canton has a great influence over others its degree
will be larger), and hidden nodes correspond to cantons whose votes are never observed. Our goal
then is to infer the political graph of Switzerland for two consecutive periods of time. Intuitively,
although political representation may evolve with time, this process is typically slow and, hence,
the two graphs are expected to be closely related. We validate the estimations via ground truth
graphs whose links reflect the political preferences of the cantons, which are obtained by performing
separate inference of both graphs with all available signals. We consider two setups with H = 2
and H = 4 hidden nodes, respectively illustrated in Fig. 5.7a and Fig. 5.7b. The figures present
the normalized error of the estimated graphs as the percentage of available signals ranges from
70% to 90% of all available signals. We compare the proposed algorithm, JH-GSR, with three
alternative methods: J-GSR, SH-GSR, and J-LVGL from [6].

First, we focus on the estimation performance of the four methods when H = 2 hidden
nodes are considered as shown in Fig. 5.7a. Since the number of available signals for the second
graph is considerably smaller than the signals available for the first graph, we observe a much
larger estimation error for the second graph when the separate approach SH-GSR is employed. In
contrast, for the joint estimation method J-GSR, we observe that errors are similar for both graphs
and inferior on average compared to SH-GSR. This behavior illustrates that harnessing the similarity
of the graphs results in an improvement in performance since it allows sharing common learned
structures across graphs. Moreover, we observe that JH-GSR outperforms both SH-GSR and J-
GSR since, in addition to being a joint approach, it takes into account the influence of the hidden
nodes. We also compare JH-GSR with J-LVGL, both of which perform joint network inference

3Original data available at https://swissvotes.ch/page/home

https://swissvotes.ch/page/home


78 Joint Graph Inference from Stationary Graph Signals with Hidden Nodes

70 75 80 85 90

0.4

0.6

(a) Percentage of samples

ne
rr

(S
∗(

k
)

O
,Ŝ
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Figure 5.7: Evaluating the performance of the proposed network topology inference approach considering
voting data. (a) Error estimating two graphs from voting signals considering different approaches for H = 2.
(b) Error estimating two graphs from voting signals considering different approaches for H = 4.

while accounting for hidden nodes. However, we find that JH-GSR is drastically superior due to
complexities in the data structure that J-LVGL cannot capture accurately. Indeed, the stationary
model subsumes the GMRF model while allowing for more complex statistical relationships between
the graph topology and the signals.

Moving to the results of Fig. 5.7b, we observe that increasing the number of hidden variables
renders the problem more challenging, hence leading to a drop in the performance of all the
algorithms. It is worth mentioning that the error corresponding to “G2 J-LVGL” was too high,
so it is not included in the figure. Also note that the fraction of hidden nodes is 4/25, which is
relatively large. Nevertheless, we observe that methods accounting for the presence of hidden nodes
are more resilient to this challenging setting, while the performance of the non-robust alternatives
deteriorates significantly. Moreover, the proposed method JH-GSR continues to outperform the
alternatives, achieving a lower error in both recovered graphs.

To summarize, it is not only crucial to account for the presence of hidden nodes but, when
several related graphs are involved, it is also important to exploit the similarity between both
observed and hidden nodes. This becomes particularly relevant when data is limited to a subset
of the graphs, as demonstrated in the improved estimation of the second graph when considering
joint network inference methods.

5.6 Conclusions

In this chapter, we presented a method to infer multiple networks on the same node set in
the presence of hidden nodes. To characterize the effect of the hidden nodes, we assumed that
graph signals were stationary on their respective networks. By the inherent block structure of the
covariance matrix C(k) and the GSO S∗(k) of the k-th network, we introduced a set of auxiliary
matrices P(k) to account for the effect of hidden nodes in the relationship C(k)S∗(k) = S∗(k)C(k)

stemming from the stationarity assumption. By prior assumptions on structure and stationarity,
we derive characteristics of P(k) that permit us to form an optimization problem that performs
network inference while accounting for the presence of hidden nodes. Moreover, we verified that
the estimation of the sparsest networks is equivalent to a computationally feasible convex relaxation
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under mild conditions. We further demonstrated a bound on the error of our proposed method
dependent on the error due to the sample covariance matrices and P(k). The performance of
our method was evaluated in multiple synthetic and real-world datasets in comparison with other
baseline methods, and we also verified the improvement in estimation due to the incorporation of
P(k).

5.7 Appendix: Proof of Theorem 1

We first combine the last two terms in the objective functions of (5.3’) and (5.5’) by defining
the combined index set E :=

⋃O
i=1{E(k,i)}K

k=1 ∪ {E(k,k′,i)}k<k′ and parameters {η′
g}g∈E such that

η′
E(k,i) = γk and η′

E(k,k′,i) = ηk,k′ for every k, k′ = 1, . . . ,K such that k < k′ and i = 1, . . . , O.

Let us consider solving (5.3’) by proximal alternating minimization [114] with

p′(t) = argmin
p

∑

g∈E
η′

g∥pg∥2 + 1
2λ′

t

∥p − p′(t−1)∥2
2

s. t. ∥Σs′(t−1) + Mp∥2 ≤ ϵ, (5.12a)

s′(t) ∈ argmin
s

∥Ψs∥0 + 1
2µ′

t

∥s − s′(t−1)∥2
2

s. t. ∥Σs + Mp′(t)∥2 ≤ ϵ, (e1 ⊗ 1O−1)⊤s = 1, (5.12b)

and (5.5’) with

p̂(t) = argmin
p

∑

g∈E
η′

g∥pg∥2 + 1
2λ̂t

∥p − p̂(t−1)∥2
2

s. t. ∥Σŝ(t−1) + Mp∥2 ≤ ϵ, (5.13a)

ŝ(t) = argmin
s

∥Ψs∥1 + 1
2µ̂t

∥s − ŝ(t−1)∥2
2

s. t. ∥Σs + Mp̂(t)∥2 ≤ ϵ, (e1 ⊗ 1O−1)⊤s = 1, (5.13b)

for t ∈ N, where the parameters λ′
t, µ′

t, λ̂t, and µ̂t are bounded above and below by positive
real numbers. By the proximal terms in (5.12) and (5.13), the subproblems (5.12a), (5.13a),
and (5.13b) are strongly convex, and each iteration of these has a unique solution. Furthermore,
for every t ∈ N and any given pair of constants Cs

t , C
p
t ≥ 0, we may select positive values λ′

t, µ′
t,

λ̂t, and µ̂t such that the solutions to (5.12) and (5.13) are equivalent to

p′(t) = argmin
p

∑

g∈E
η′

g∥pg∥2

s. t. ∥Σs′(t−1) + Mp∥2 ≤ ϵ, ∥p − p′(t−1)∥2 ≤ Cp
t , (5.14a)

s′(t) ∈ argmin
s

∥Ψs∥0

s. t. ∥Σs + Mp′(t)∥2 ≤ ϵ, (e1 ⊗ 1O−1)⊤s = 1

∥s − s′(t−1)∥2 ≤ Cs
t , (5.14b)
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and

p̂(t) = argmin
p

∑

g∈E
η′

g∥pg∥2

s. t. ∥Σŝ(t−1) + Mp∥2 ≤ ϵ, ∥p − p̂(t−1)∥2 ≤ Cp
t , (5.15a)

ŝ(t) = argmin
s

∥Ψs∥1

s. t. ∥Σs + Mp̂(t)∥2 ≤ ϵ, (e1 ⊗ 1O−1)⊤s = 1
∥s − ŝ(t−1)∥2 ≤ Cs

t . (5.15b)

Let us initialize the proximal alternating minimization steps for (5.14) and (5.15) with p0 :=
p′(0) = p̂(0) and s0 := s′(0) = ŝ(0). Note that the objective functions of (5.3’) and (5.5’) are semi-
algebraic functions [116] and thus have the Kurdyka-Łojasiewicz property [114]. By [114, Theorem
3.3], there exist constants r′, s′ > 0 such that when we let ∥p′ − p0∥2 + ∥s′ − s0∥2 < r′ and

∥Ψs′∥0 +
∑

g∈E
η′

g∥p′
g∥2 ≤ ∥Ψs0∥0 +

∑

g∈E
η′

g∥[p0]g∥2

< ∥Ψs′∥0 +
∑

g∈E
η′

g∥p′
g∥2 + s′, (5.16)

where the first inequality is due to the optimality of {s′,p′} for feasible {s0,p0}, then we have
that the sequence {s′(t),p′(t)} converges to {s′,p′} in finitely many steps. Similarly, there exist
constants r̂, ŝ > 0 such that we can guarantee that the sequence {ŝ(t), p̂(t)} converges to {ŝ, p̂}
in finitely many steps. More specifically, there exist positive integers T1, T2 such that {s′,p′} =
{s′(t),p′(t)} for every t ≥ T1 and {ŝ, p̂} = {ŝ(t), p̂(t)} for every t ≥ T2.

Note that r̂ > 0 may take any arbitrarily large finite number [114], so we may select {s0,p0}
such that ∥p′ − p0∥2 + ∥s′ − s0∥2 < r′ and (5.16) are satisfied. Then, we let r̂ ≥ r′ + ∥ŝ − s′∥2.
Such a finite r̂ exists since problems (5.3’) and (5.5’) have coercive objective functions and we
assume feasibility of both, that is, ∥ŝ−s′∥2 ≤ ∥ŝ∥2 +∥s′∥2 < +∞. Similarly, we may select a finite
upper bound Cs = Cs

t ≥ ∥ŝ − s′∥2 for every t ≥ T for the last constraint in subproblems (5.14b)
and (5.15b).

We select feasible initial points {s0,p0} to guarantee convergence of (5.12) and (5.13). Recall
that we define the set M = {O,O + 1, . . . ,KO(O − 1)/2}, and let a′ := [s′

M
⊤,p′⊤]⊤ and

a0 := [[s0]⊤M,p⊤
0 ]⊤. Consider the optimization problem

min
a0

∥a0∥2
2 s. t. ∥a′ − a0∥2 ≤ r,

whose optimal solution is a0 = Ca′ where C = (∥a′∥2 − r)/∥a′∥2. Then, our optimal initial point
is [s0]Mc = s′

Mc , [s0]M = Cs′
M, and p0 = Cp′. By the inequality (a + b)2 ≤ 2a2 + 2b2 and

our assumption that r < 2−1/2(∥s′
M∥2 + ∥p′∥2) ≤ ∥a′∥2, we have that C ∈ [0, 1). Moreover, the

solution {s0,p0} satisfies ∥s′ − s0∥2 + ∥p′ − p0∥2 ≤
√

2∥a′ − a0∥2 ≤
√

2r < r′. By our condition
on ϵ, we have that

ϵ ≥ σmax(Σ)r′ + 2r̂
+

√
2(σmax(Σ) + 2)(∥s′∥2 + ∥p′∥2 − r)

≥ σmax(Σ)r′ + 2r̂
+ (σmax(Σ) + 2)(∥s′

Mc∥2 + C
√

2∥a′∥2)
≥ σmax(Σ)r′ + 2r̂

+ (σmax(Σ) + 2)(∥s0∥2 + ∥p0∥2).
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Then, since σmax(M) = 2,

∥Σs′ + Mp̂∥2 ≤ ∥Σ(s′ − s0)∥2 + ∥M(p̂ − p0)∥2

+ ∥Σs0 + Mp0∥2

≤ σmax(Σ)r′ + 2r̂
+ (σmax(Σ) + 2)(∥s0∥2 + ∥p0∥2)

≤ ϵ. (5.17)

By the finite convergence of (5.14) and (5.15), we have that s′ = s′(t) and ŝ = ŝ(t) for every
t ≥ T . We may rewrite (5.14b) and (5.15b) at iteration T + 1 as

s′ = argmin
s

∥Ψs∥0

s. t. ∥Σs + Mp′∥2 ≤ ϵ, (e1 ⊗ 1O−1)⊤s = 1,
∥s − s′∥2 ≤ Cs, (5.18)

ŝ = argmin
s

∥Ψs∥1

s. t. ∥Σs + Mp̂∥2 ≤ ϵ, (e1 ⊗ 1O−1)⊤s = 1,
∥s − ŝ∥2 ≤ Cs. (5.19)

Thus, the convergence of proximal alternating minimization allows us to consider minimization
with respect to s for both (5.3’) and (5.5’).

We next consider when the solutions to (5.18) and (5.19) are equivalent. We introduce a
modification to (5.19) without the last constraint

s̄ ∈ argmin
s

∥Ψs∥1

s. t. ∥Σs + Mp̂∥2 ≤ ϵ, (e1 ⊗ 1O−1)⊤s = 1, (5.20)

which may not have a unique solution. By (5.17), s′ is a feasible solution to (5.20).

By the proof of Theorem 1 in [66] and Theorem 1 of [115], if Σ·,I is full column rank and
there exists a constant ψ > 0 such that

∥ΨJ c,·(ψ−2T + Ψ⊤
J c,·ΨJ c,·)−1Ψ⊤

J ,·∥∞ < 1, (5.21)

then we not only have that s′ = s̄, but s′ is also the unique solution to (5.20). These are exactly
conditions 1) and 2) in the statement of Theorem 1. Thus, we need only show that s̄ = ŝ.

Since (5.19) and (5.20) share the first two constraints and ∥ŝ − s′∥2 = ∥ŝ − s̄∥2 ≤ Cs, ŝ and s̄
are both feasible solutions for (5.19) and (5.20). Moreover, both problems have unique solutions,
so ŝ = s̄ = s′, as desired.

5.8 Appendix: Proof of Theorem 2

To establish an upper bound on the estimation error of (5.5), we first provide the following
lemma necessary to determine an upper bound on the error of (5.5).

Lemma 1. Under the following four conditions,
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1) K = o(logO);

2) R1 ≍ R2 ≍ · · · ≍ RK ;

3) logO = o(min{R/(K7(logR)2), (R/K7)1/3}); and

4) ϵR ≥ COω
√

(K logO)/R for some constant C > 0;

with probability at least 1 − e−C1 log O for some constant C1 we have that
K∑

k=1

∥∥∥(Ĉ(k)
O − C(k)

O )S∗(k)
O − S∗(k)

O (Ĉ(k)
O − C(k)

O )
∥∥∥

2

F
≤ ϵ2R.

Proof. The proof of Lemma 1 follows from the proof of Claim 2 in [66]. □

Recall that s∗ is the vectorization of the target GSO submatrices {S∗(k)
O }K

k=1 as in (5.6).
We show that {s∗, p̂} is a feasible solution to (5.5’). We demonstrate an upper bound on the
commutativity of sample covariance submatrices and target subnetworks as

∣∣∣∣
K∑

k=1
∥Ĉ(k)

O S∗(k)
O − S∗(k)

O Ĉ(k)
O + P̂(k) − (P̂(k))⊤∥2

F

∣∣∣∣
1
2

≤
∣∣∣∣

K∑

k=1

∥∥∥(Ĉ(k)
O − C(k)

O )S∗(k)
O − S∗(k)

O (Ĉ(k)
O − C(k)

O )
∥∥∥

2

F

∣∣∣∣
1
2

+
∣∣∣∣

K∑

k=1

∥∥∥
(
P̂(k) − (P̂(k))⊤)

−
(
P∗(k) − (P∗(k))⊤)∥∥∥

2

F

∣∣∣∣
1
2

≤ ϵR + α, (5.22)

where we have used Lemma 1, the definition of α, and the relationship in (5.2). Because
∑O

j=1[S∗(k)
O ]j1 = 1 by definition, (5.22) is equivalent to

∥Σs∗ + Mp̂∥2 ≤ ϵR + α = ϵ, (5.23)

so {s∗, p̂} is a feasible solution to (5.5’).

We introduce a modification of (5.5’) to combine the constraints into one inequality. Consider
the following modified optimization problem that is parameterized by r > 0

{ŝr, p̂r} = argmin
{s,p}

∥Ψs∥1 +
K∑

k=1

O∑

i=1
γk∥pE(k,i)∥2

+
∑

k<k′

O∑

i=1
ηk,k′∥pE(k,k′,i)∥2

s. t. ∥Φ̄rs + R̄p − b̄r∥2 ≤ ϵ, (5.24)

where Φ̄r = [Σ⊤, r(e1⊗1O−1)]⊤, R̄ = [M⊤,0KO2 ]⊤, and b̄r = [0⊤
KO(O−1)/2, r]

⊤. The parameter
r determines the strictness of the second constraint in (5.5’) such that when r → ∞, we have
that ŝr → ŝ. Note that since (e1 ⊗ 1O−1)⊤ŝ = 1 and (e1 ⊗ 1O−1)⊤s∗ = 1, then by (5.23) and
the definition of {ŝ, p̂}, we have that {ŝ, p̂} and {s∗, p̂} are feasible solutions of (5.24) for every
r > 0.
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We next provide an upper bound on the difference between ŝ and s∗ following the proof of Claim
1 in [66]. Recall that we define K as supp(Ψs∗). First, note that as in the proof of Claim 1 of [66],
we have that when Σ is full column rank, then so is Φ̄r, which guarantees the existence of a dual
certificate y = I⊤

K,·sign(ΨK,·s∗), where Ψ⊤y = Φ̄⊤
r Φ̄r(Φ̄⊤

r Φ̄r)−1Ψ⊤I⊤
K,·sign(ΨK,·s∗) ∈ Im(Φ̄⊤

r ),
yK = sign(ΨK,·s∗), ∥yKc∥∞ < 1, and ∥Ψs∗∥1 = y⊤Ψs∗.

Consider the following inequality

∥Ψs∗ − Ψŝ∥1 ≤ ∥Ψŝ − u∥1 + ∥Ψs∗ − u∥1, (5.25)

where u ∈ RKO(O−1)/2 such that supp(u) ⊆ K. We derive an upper bound for the second term
on the right-hand side of (5.25) as

∥Ψs∗ − u∥1≤
√

|K|∥Ψs∗ − u∥2

≤
√

|K|∥Ψs∗ − Ψŝ∥2 +
√

|K|∥Ψŝ − u∥1

≤
√

|K|σmax(Ψ)∥s∗ − ŝ∥2

+
√

|K|∥Ψŝ − u∥1

≤
√

|K|σmax(Ψ)
σmin(Φ̄r)

∥Φ̄r(s∗ − ŝ)∥2

+
√

|K|∥Ψŝ − u∥1. (5.26)

For the first term on the right-hand side of (5.25), we have that

ξ := min
u:supp(u)⊆K

∥Ψŝ − u∥1

= max
v

min
u

∥Ψŝ − u∥1 (5.27)

+ v⊤IKc,·(u − Ψŝ) + v⊤IKc,·Ψŝ
= max

w:supp(w)⊆Kc
min

u
∥Ψŝ − u∥1

+ w⊤(u − Ψŝ) + w⊤Ψŝ,

where (5.27) results from the Lagrangian of ξ and duality theory. Given the dual certificate y, we
have that

ξ = max
w:supp(w)⊆Kc,

∥w∥∞≤1

(y + w)⊤Ψŝ − y⊤Ψŝ

≤ ∥Ψŝ∥1 − y⊤Ψŝ + y⊤Ψs∗ − ∥Ψs∗∥1

≤ y⊤Ψ(s∗ − ŝ), (5.28)

where the final inequality is due to the optimality of {ŝ, p̂} and the feasibility of {s∗, p̂} for (5.5’).
Lastly, since Ψ⊤y = Φ̄⊤

r Φ̄r(Φ̄⊤
r Φ̄r)−1Ψ⊤I⊤

K,·sign(ΨK,·s∗), we have that

y⊤Ψ(s∗ − ŝ)

≤ sign(ΨK,·s∗)⊤IK,·Ψ(Φ̄⊤
r Φ̄r)−1Φ̄⊤

r Φ̄r(s∗ − ŝ)

≤
√

|K|σmax(Ψ)
σmin(Φ̄r)

∥Φ̄r(s∗ − ŝ)∥2, (5.29)
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where the second inequality results from the fact that every positive scalar and its ℓ2 norm are
equal. We may substitute (5.26) and (5.29) into (5.25) and the fact that Ψ is full column rank
to obtain

∥s∗ − ŝ∥1 ≤ τr∥Φ̄r(s∗ − ŝ)∥2,

where
τr =

√
|K|σmax(Ψ)∥Ψ†∥1

σmin(Φ̄r)
(2 +

√
|K|). (5.30)

As r → ∞, we have that

∥s∗ − ŝ∥1 ≤ lim
r→∞

τr∥Φ̄r(s∗ − ŝ)∥2

≤ 2 lim
r→∞

τr(ϵR + α),

where by the feasibility of {ŝ, p̂} and {s∗, p̂} for every r > 0, we have that

∥Φ̄r(s∗ − ŝ)∥2 ≤ ∥Φ̄rs∗ + R̄p̂ − b̄r∥2

+ ∥Φ̄rŝ + R̄p̂ − b̄r∥2

≤ 2(ϵR + α). (5.31)

Finally, we return to the equivalent matrix formulation as

K∑

k=1
∥Ŝ(k)

O − S∗(k)
O ∥1 ≤ 4τr(ϵR + α). (5.32)

By the end of the proof of Theorem 2 in [66], we have that limr→∞ 4τr ≤ τ , as desired.

5.9 Appendix: Proof of Corollary 1

Consider the following optimization problem

min
{S(k)

O }K
k=1

K∑

k=1
αk∥S(k)

O ∥1 +
∑

k<k′
βk,k′∥S(k)

O − S(k′)
O ∥1

s. t.
∑K

k=1 ∥Ĉ(k)
O S(k)

O − S(k)
O Ĉ(k)

O ∥2
F ≤ ϵ2R,

S(k)
O = (S(k)

O )⊤, diag(S(k)
O ) = 0, for allk = 1, . . . ,K,

∑
j [S(1)

O ]j1 = 1, (5.33)

whose solution is equivalent to the naive solution {S̃(k)
O }K

k=1 described in the statement of Corollary
1. Similarly to (5.5), we can define a vectorized version of (5.33) as

s̃ = argmin
s

∥Ψs∥1 s. t. ∥Σs∥2 ≤ ϵR, (e1 ⊗ 1O−1)⊤s = 1, (5.34)

and a version parameterized by r > 0 as

s̃r = argmin
s

∥Ψs∥1 s. t. ∥Φ̄rs − b̄r∥2 ≤ ϵR, (5.35)
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where Φ̄r and b̄r are defined as for (5.24) and limr→∞ s̃r = s̃.

We provide the following upper bound via (5.2)
∣∣∣∣

K∑

k=1
∥Ĉ(k)

O S∗(k)
O − S∗(k)

O Ĉ(k)
O ∥2

F

∣∣∣∣
1
2

≤
∣∣∣∣

K∑

k=1

∥∥∥(Ĉ(k)
O − C(k)

O )S∗(k)
O − S∗(k)

O (Ĉ(k)
O − C(k)

O )
∥∥∥

2

F

∣∣∣∣
1
2

+
∣∣∣∣

K∑

k=1

∥∥∥P∗(k) − (P∗(k))⊤
∥∥∥

2

F

∣∣∣∣
1
2

≤ ϵR + δ,

and similarly to Theorem 2, we apply Lemma 1 to get

∥Φ̄rs∗ − b̄r∥2 ≤ ϵR + δ,

where s∗ may not be a feasible solution to (5.35). However, by the triangle inequality and the
optimality of s̃r, there exists ρ ∈ [0, 1] such that

∥Ψs̃r∥1 − ∥Ψs∗∥1 ≤ ρ∥Ψs̃r − Ψs∗∥1. (5.36)

In particular, let ρ = max{0, (∥Ψs̃r∥1 − ∥Ψs∗∥1)/∥Ψs̃r − Ψs∗∥1}, where ρ = 0 when s∗ is a
feasible solution to (5.35), but otherwise, it may be possible that ρ ∈ (0, 1]. Furthermore, since
(e1 ⊗ 1O−1)⊤s̃ = 1, then s̃ is a feasible solution to (5.35) for every r > 0.

We then can introduce a similar inequality to (5.25) as

∥Ψs∗ − Ψs̃∥1 ≤ ∥Ψs̃ − ũ∥1 + ∥Ψs∗ − ũ∥1, (5.37)

where ũ ∈ RKO(O−1)/2 such that supp(ũ) ⊆ K. The upper bound for the second term of the
right-hand side of (5.37) can be found analogously to (5.26), where we have

∥Ψs∗ − ũ∥1≤
√

|K|σmax(Ψ)
σmin(Φ̄r)

∥Φ̄r(s∗ − s̃r)∥2

+
√

|K|∥Ψs̃r − ũ∥1. (5.38)

Similarly to (5.28) in the proof of Theorem 2, we can upper bound the first term as

ξ̃ := min
ũ:supp(ũ)⊆K

∥Ψs̃ − ũ∥1

≤ ∥Ψs̃∥1 − y⊤Ψs̃ + y⊤Ψs∗ − ∥Ψs∗∥1

≤ y⊤Ψ(s∗ − s̃) + ρ∥Ψ(s∗ − s̃)∥1, (5.39)

where we account for the possible infeasibility of s∗ with (5.36). We may combine (5.39), and
(5.38) to obtain

∥s̃ − s∗∥1 ≤ (τr + τ ′
r)(2ϵR + δ), (5.40)

where τr is defined in (5.30) and we let

τ ′
r := ρKO(O − 1)(1 +

√
|K|)σmax(Ψ)∥Ψ†∥1

2σmin(Φ̄r)
.
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As with the proof of Theorem 2, we have that for r → ∞,

K∑

k=1
∥S̃(k)

O − S∗(k)
O ∥1 ≤ (τ + τ ′)(ϵR + 1

2δ), (5.41)

as desired.

Finally, the bound (5.10) is equivalent to the following inequality

α2 ≤
(
τ ′

τ

)2
ϵ2R +

(
τ + τ ′

2τ

)2
δ2,

which is a sufficient condition for the upper bound in (5.8) to be less than the upper bound in
(5.9).



Chapter 6

Concluding Remarks

The main goal of this thesis was to address the network topology inference problem from a
Graph Signal Processing (GSP) perspective, considering several scenarios involving: i) different
models for the graph signals, ii) the presence of hidden nodes, and iii) multilayer networks. To
achieve this goal, we focused on two types of setups: 1) implementing more general/elaborated
approaches for graph signal modeling; and 2) implementing approaches by considering more realistic
scenarios for the network topology inference problem, including the presence of hidden nodes and/or
scenarios involving multiple related graphs. This chapter serves a twofold purpose. First, we review
our main contributions and place them in context relative to the objectives defined in Chapter 1.
Secondly, we identify and discuss different avenues for future research.

This thesis started by tackling the challenge of learning a graph from complex data generated
in networks. Existing methods may not accurately estimate the underlying graph due to the
intricate nature of the data, the simplicity of the approaches used to model graph data, or the
limited number of available samples. Our proposed solution involved generalizing current methods
by modeling the graph signals as both Gaussian and stationary. For the designed method, we
proposed convex relaxations and an efficient algorithm to handle problems where the number
of nodes in the network is large. We also provided theoretical convergence guarantees for the
proposed algorithm to stationary points of the original problem. We tested the proposed algorithm
using synthetic and real data experiments where the results demonstrated its ability to accurately
estimate graphs from complex data in scenarios where existing methods fell short. This work,
summarized in Chapter 3, addressed the problem described in (P1) and aligned well with the goals
in (O1).

Next, in addition to considering generalizations for signal modeling, we incorporated the pres-
ence of hidden nodes into the network topology inference problem. We assumed that the graph
signals were smooth, stationary, or a combination of both, and that the number of hidden nodes
was much smaller than the observed ones. Then, we formulated constrained optimization problems
that took into account the different signal models and the topological structure. Several of the
proposed formulations were non-convex, for which we designed convex iterative algorithms and
presented convergence results to a stationary point of the original problem. The performance of
the proposed approaches has been compared to existing alternatives through synthetic and real
data experiments in scenarios where the information of some nodes was not accessible, showing
the benefits of considering their influence. This work was presented in Chapter 4, addressed part
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of the challenges outlined in (P1) and (P2), and aligned with the objectives described in (O2).

Lastly, we focused on learning graphs in environments where we had access to data generated
in multiple similar networks in the presence of hidden nodes, a scenario that has not been previously
addressed in the literature. We formulated a method that modeled the presence of hidden variables
in the graph and also took advantage of the similarity between the different graphs for both
observed and hidden nodes to improve the joint estimation of the considered graphs. We ended up
with a non-convex problem formulation, which we had to relax using convex approximations, and
then solved the problem using an iterative algorithm. We demonstrated theoretical guarantees for
recoverability and bounded the error of the estimated graphs in terms of the number of samples
and the influence of the hidden nodes. The performance of the proposed approach was tested in
several synthetic and real data scenarios showing the capability of our algorithm to jointly exploit
the structure of the multiple networks, the presence of hidden nodes, and the signal model. This
work was described in Chapter 5, addressed the problems described in (P3), and was aligned with
the research goals outlined in (O3).

6.1 Future lines of research

We conclude this thesis by presenting several avenues for further research. The proposed
directions range from exploring feasible generalizations of the schemes described in the previous
chapters to broader and more challenging research paths. Directions in the first category are
typically well-defined and feasible for short- to medium-term exploration, while those in the second
category represent a medium- to long-term research roadmap.

6.1.1 Generalizations of the previous works

Joint multilayer graph topology inference for GMRF with hidden variables. As mentioned
in the previous chapter, the use of multilayer graphs is gaining traction to accurately describe
real-world datasets containing observations from similar networks. However, progress in this area
when hidden nodes are present is almost non-existent. To address this issue, we will propose an
approach for jointly estimating similar graph topologies in the presence of hidden nodes, assuming
the data associated with each graph can be modeled as a GMRF. In general, alternative metrics for
measuring the impact of hidden nodes and the similarity between observed and hidden nodes can be
explored based on prior information or depending on the specific characteristics of the application
at hand. Another avenue of interest, which is very common but also more complex, involves
scenarios where the set of nodes is not shared between the considered networks. Additionally, the
goal is not only to design an effective algorithm but also to analyze its performance. To that end,
previous works in [54,117] offer promising starting points.

Online network topology inference with hidden variables. The increasing use of streaming data
in contemporary environments motivates the development of network topology inference methods
that can operate in an online setting. A critical aspect of this research is understanding the
relationship between the network and the data, and being able to model their evolution over time.
Given the nature of streaming data, time complexity plays a crucial role in the implementation of
algorithms for online settings. In some cases, sacrificing optimality or accuracy should be considered
to satisfy the requirements of the specific application at hand. Existing work in online settings
focuses on signal modeling by assuming either smooth or stationary graph signals [93,118]. While
our setup is more complicated, those two foundational works can serve as a starting point for
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incorporating the presence of hidden nodes. Overall, the goal is to generalize existing methods
to meet the requirements of online environments, paying particular attention to network size and
time complexity. By adapting the methodological design to the unique requirements of real-time
processing, future research efforts can yield innovative approaches that facilitate dynamic graph
topology estimation in online settings.

Design of reduced-complexity algorithms. Datasets associated with networks often contain a
large number of nodes, requiring network topology inference methods to have low computational
complexity for practical deployment. Robust and rigorously designed efficient algorithms are crucial
for this purpose, particularly when dealing with multiple networks and hidden variables. Hence,
we plan to redesign and enhance our current algorithms to accommodate larger-size networks,
enabling their application to a broader set of scenarios. To reach this objective, we will explore the
use of iterative convex approximation functions and stochastic approximation to simplify complex
computations and provide theoretical convergence guarantees. This will allow us not only to
reduce computational complexity but also to improve adaptability and scalability, which are critical
in real-world applications.

Application of the proposed methods in financial engineering. Large datasets of financial
assets are a rich source of information that can be used to shed light on the (hidden) relationships
between the considered assets. Hence, modeling the assets as nodes, the relationships as edges,
and using asset prices to learn one or multiple graphs can be a critical step in financial applications
such as portfolio optimization. The main issue with these types of datasets is that unveiling direct
relationships between financial assets is highly non-trivial. Our goal is to adapt and customize
the methods proposed in this thesis to the specificities of the financial datasets at hand. Firstly,
we aim to create signal models that accurately capture the intricate structure of financial data.
Secondly, we seek to establish a model for the connections between nodes, incorporating prior
information about external factors such as financial news or events. The resulting models could be
used in various tasks such as portfolio optimization, asset clustering, covariance estimation, and
others. The overall goal is to uncover a meaningful graph that captures the relationships between
the considered nodes (e.g., financial assets) and provides valuable insights.

6.1.2 New research paths in GSP

Consideration of more intricate graph signal models. Many existing models for graph signals
from the literature assume linearity and real-valued observations. However, there are situations
where the data exhibits greater complexity, such as non-linear dependencies or categorical data. As
a result, there is a research opportunity to develop specific methods that address these complexities
in the data structure.

One way to better capture the nonlinear or categorical aspects of the data is by employing
nonlinear signal models. In this context, our objective is to propose approaches for inferring the
network structure based on signal modeling, specifically considering nonlinear or categorical graph
signals.

To achieve this goal, a careful examination of the implications associated with these novel graph
signal models is essential. Additionally, it is crucial to define the necessary GSP tools tailored for
handling these complexities. Recent works in the literature [119,120] can serve as a starting point
to address the problem at hand.

From learning graphs to learning higher-order interactions. The fundamental approach in
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GSP is to use graphs to process, learn, and extract knowledge from node signals. As a result,
most network-topology inference works focus on unveiling pairwise interactions among the nodes.
However, there is a growing interest in processing data using higher-order structures such as
simplicial complexes [121,122] and hypergraphs [123,124]. Motivated by this, some recent studies
have started to look at the problem of inferring higher-order interactions between nodes, assuming
knowledge of the underlying graph topology or having access to signals defined on the edges of the
graph. Hence, one of our future lines of work is to use signals and higher-order signal models to
infer the presence of higher-order interactions. We aim to use not only node signals but also edge
signals when available and to address scenarios with missing values or partial observability in the
data. A key step in this task will be to define new signal models that relate nodal and edge signals
to the topology of the higher-order graph. Then, the next step will be the postulation of tractable
optimization problems that allow identifying the pairwise and higher-order interactions. As in the
rest of this thesis, we will also aim at incorporating assumptions that are consistent with the
complexity inherent in real-world scenarios, including missing information, outliers, hidden nodes,
and limited observations, to name a few. We have just started exploring this avenue, see [44, 45]
for preliminary results.

Incorporation of (uncertainty graph models). The widespread assumption when learning graphs
from data is that edges are sparse, with most methods failing to leverage more complex prior
information about the graph topology. Clearly, graph estimation can be improved by incorporating
known (desired) graph structure, provided that there is an efficient way to incorporate the prior
information into the inference and optimization schemes. Joint multilayer graph learning works [7,
65] achieve this by introducing regularizers promoting that the multiple estimated graphs are similar,
primarily by measuring similarity via their edge support. Other recent efforts integrate prior graph
information by incorporating structural conditions, such as imposing spectral constraints [125],
assuming that the estimated graph is drawn from a known graphon [108], or assuming similarity in
terms of motif density with a known reference graph [126]. However, these approaches often require
access to the graph distribution or a similar reference graph, making them unsuitable for many
scenarios and potentially yielding suboptimal solutions. Our goal is to develop different topological
regularizers to encourage the estimated graph to exhibit the desired structure. Specifically, we will
generalize previous methods by: i) incorporating more informative graph priors that are present in
many real-world networks (e.g., community structure and modularity in social networks) and ii)
focusing on learning/designing the score function (i.e., the gradient of the regularizer) rather than
the regularizer itself.



Acronyms

ADMM Alternating Direction Method of Multipliers

AWGN Additive White Gaussian Noise

BA Barabási-Albert

BSUM Block Successive Upper Bound Minimization

CVX Convex Optimization Toobox

ER Erdős-Rényi

GL Graphical Lasso

GMRF Gaussian Markov Random Field

GSO Graph-Shift Operator

GSP Graph Signal Processing

KKT Karush-Kuhn-Tucker

LV Local Variation

LVGL Latent Variable Graphical Lasso

MM Majorization-Minimization

NMI Normalized Mutual Information

PSD Positive Semi Definite

RBF Radial Basis Function

SBM Stochastic Block Model

SW Small-World
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