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Abstract

The combination of Machine Learning (ML) algorithms is a solution for con-

structing stronger predictors than a single one. However, some approximations

suggest that combining unstable algorithms provides better results than combin-

ing stable algorithms. For instance, Generative ensembles, based on re-sampling

techniques, have demonstrated high performance by fusing the information of

unstable base learners. Random Forest and Gradient Boosting are two well-

known examples, both combining Decision Trees and providing better predic-

tions than those obtained using a single tree. However, such successful results

have not been achieved by assembling stable algorithms. This paper introduces

the notion of limited learner and a new ensemble general framework called Mini-

mally Overfitted Ensemble (MOE ), a re-sampling-based ensemble approach that

constructs slightly overfitted-based learners. The proposed framework works

well with stable and unstable base algorithms, thanks to a Weighted RAndom

Bootstrap (WRAB) sampling that provides the necessary diversity for the sta-

ble base algorithms. A hyperparameter analysis of the proposal is carried out

Email addresses: victor.acena@urjc.es (Vı́ctor Aceña), isaac.martin@urjc.es (Isaac
Mart́ın de Diego), ruben.rodriguez@urjc.es (Rubén R. Fernández),
javier.moguerza@urjc.es (Javier M. Moguerza)

July 22, 2024

www.datasciencelab.es
www.madoxviajes.com


on artificial data. Besides, its performance is evaluated on real datasets against

well-known ML methods. The results confirm that the MOE framework works

successfully using stable and unstable base algorithms, improving in most cases

the predictive ability of single ML models and other ensemble methods.

Keywords: Ensemble, Generative Ensembles, Re-sampling, Bagging, Random

Forest

1. Introduction

Machine Learning (ML) is a field of Artificial Intelligence comprising algo-

rithms which provide predictions by learning from (past) data. These algorithms

implement models that are used to make inferences about new data. An im-

portant goal in these models is to make the error in the new data as low as5

possible. This error is known as the generalization error and it can be broken

down into two types of errors: reducible and irreducible. The reducible error is

avoidable, whereas the irreducible error will always be present. Therefore, the

generalization error can be reduced by decreasing the reducible error.

The reducible error can also be split into two components, the Bias and10

Variance errors. The Bias is the difference between the prediction of the model

and the actual value. The Variance is the variability in the predictions when

the model is trained with different training sets. There is a trade-off between

the Bias and Variance errors; when one of them increases, the other decreases

and vice versa. This fact becomes more evident when the high Bias corresponds15

to underfitting, and the high Variance implies overfitting. However, the Bias-

Variance decomposition for classification problems is not straightforward to

assess, especially for ensemble methods [1].

Whenever a ML model is adjusted, the aim is to achieve a low generalization

error. Thus, the model fits in some point between overfitting and underfitting,20

often referred to as well-fitted. There are many levels of overfitting that range

from strongly overfitted to well-fitted, and the same applies to underfitting.

Both scenarios lead to undesirable models. Figure 1 illustrates the concept of
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(a) Strongly overfitted classifier (b) Slightly overfitted classifier

(c) Well fitted classifier (d) Underfitted classifier

Figure 1: Representation of different overfitting level through diverse Support Vector Machine

(SVM ) hyperparamenter settings. There are four decision functions that represent strongly

overfitted, slightly overfitted, well-fitted, and underfitted classifiers, respectivelly.

different fitting levels for the well-known half-moons dataset.

Ideally, a well-fitted ML model gets the same error in the train and test sets,25

and additionally, it matches its irreducible error. In practice, it is desirable that

the training and test errors are both small and similar. On the one hand, when

the training error is much lower than the test error the overfitting phenomenom

appears. On the other hand, underfitting is reached when both, the train and

test errors, are high. A desirable ML model seeks for a balance between these30

two scenarios.

Ensembles are a group of ML techniques that combine several reduced mod-

els (referred to as single learners) rather than an overall single model. The best

known ensemble methods are Bootstrap aggregating (Bagging) [2] and Boosting

[3]. The performance of ensemble-based methods is generally better than sin-35
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gle (and probably more complex) models. The key reason of this performance

improvement in Bagging and Boosting ensembles is the diversity of the single

learners. This diversity is obtained by perturbing the learning set. In Bagging ,

the diversity is achieved by training each single learner on a dataset made of n

bootstrap samples and then combining the predictions using a voting scheme. In40

Boosting-based ensembles, the diversity is achieved by re-weighting the learning

set. These weights are calculated based on the errors of each single learner. In

Boosting, these single learners are referred to as weak learners. Intuitively, a

weak learner is a ML model that provides predictions just slightly better than

random [4]. Finally, regarding the Bias and the Variance, Bagging is designed45

to reduce the Variance, whereas Boosting reduces the Bias in the first iterations,

and the Variance in the last ones.

The most widespread instances of Bagging and Boosting are Random Forest

(RF ) [5] and eXtreme Gradient Boosting (XGBoost) [6], respectively. Both use

a Decision Tree (DT ) as base learner. The main quality that makes DT s a50

really good base learner is their instability. A ML model is considered unstable

if a small change in the input (learning set) produces major changes in the

output (prediction). It is well known that unstable models such as DT s or

Neural Networks work well in ensembles [7, 8], contrary to stable models like

k-Nearest Neighbour (kNN ), SVM or Linear Discriminant Analysis (LDA).55

An unstable model has high Variance and low Bias. In other words, unstable

models tend to overfit. Regarding overfitting, it has been empirically seen that

no-pruned trees perform better than pruned trees for Bagging [9]. Particularly,

the RF algorithm [5] grows each tree as large as possible with no pruning. More

recently, [10] verifies that bigger trees perform better in RF . Thus, a certain60

level of overfitting is beneficial for Bagging-based ensembles. This fact will be

the primary motivation for the present proposal. The success of this work lies

in how the overfitted learners perform in Bagging-based ensembles and in the

production of appropriate samples for training any base algorithm that can

produce satisfactory results.65

In this paper, we present the concept of limited learner and a novel general-
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ized ensemble learning framework called Minimally Overfitted Ensemble (MOE ).

The limited learners are base learners that overfit the training sample. The pro-

posed approach is based on the minimum overfitting of single learners, a partic-

ular case of limited learners. Furthermore, we propose the Weighted RAndom70

Bootstrap (WRAB) sampling, a new re-sampling method that provides the nec-

essary diversity to construct an ensemble method with any ML algorithm (stable

or unstable). The basic predictors obtained from this construction are limited

learners. The proposal is evaluated in eighteen real datasets and its perfor-

mance is compared with state-of-the-art ML models, including RF as the top75

representative Bagging method.

The remainder of the paper is outlined as follows. In Section 2 the different

ensemble methods and their taxonomy are presented. Section 3 introduces the

limited learner concept. The new ensemble framework is detailed in Section

4. The experiments to validate the proposal and a brief discussion with the80

lessons learned are in Section 5. Finally, Section 6 concludes and sketches future

research guidelines.

2. Generative ensembles

A large variety of combination schemes and ensemble techniques are avail-

able in the ML literature. These techniques can be grouped in different ways85

depending on the selected criterion. For the sake of simplicity, this work follows

the ensemble taxonomy proposed in [11, 12]. In this taxonomy, there are two

fundamental levels: Non-generative and Generative ensemble methods. The

distinction between these two levels depends on the prevalence of generation

and combination methods.90

Non-generative ensembles focus on the combination of the base learners.

Thus, each learner is previously fitted to achieve a high performance. Some

examples of these type of ensembles are methods that produce a prediction by

majority voting [13, 14], methods that combine the probabilistic result by a

Bayesian decision rule [15, 16], and methods that select the base learners best95
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Re-sampling method Algorithm Key Features

Bootstrap aggregating (Bagging) Random Forest (RF ) Subset of random features

Extra Trees (ET ) Subset of random features, randomly cut-points

Boosting Adaptive Boosting (AdaBoost) Weighted prediction

Gradient Boosting (GB) Weighted prediction, steepest descent minimization loss function

LightGBM Gradient-based One-Side Sampling, Exclusive Feature Building

eXtreme Gradient Boosting (XGBoost) Regularization, weighted quantile sketch

Table 1: The most popular Generative ensembles Bagging and Boosting based.

subset [17]. Notice that, in all these examples, the emphasis is placed on how

the learners are merged [18]. Non-generative ensembles have demonstrated that

combining information from the appropriate learner [19] outperforms the results

obtained from other ML single methods like SVM s [20] or DT s [21] in specific

problems like cross-domain collaborative filtering.100

Generative ensembles generate a pool of learners by perturbing the base al-

gorithm or the learning set for each base learner, focusing on the diversity and

performance of the learners. Thus, the emphasis is on how the base learners are

built, not the combination of the individual results. Instances of Generative en-

sembles are re-sampling methods [2, 3], feature selection [22], mixture of experts105

[23], and highly randomized methods [5, 24]. All these methods are designed

to ensure the diversity of the base learners. Furthermore, a necessary and suffi-

cient condition for Generative ensembles to perform better than a single learner

is that the individual learners are accurate (perform better than random) and

diverse [25].110

The most popular Generative ensemble are Bagging and Boosting. They

have been widely studied and employed over the years for classification or re-

gression tasks [26, 27]. There are several well-known instances of Boosting-based

ensembles such as AdaBoost [28], LightGBM [29], and XGBoost [6], whereas in

Bagging-based ensembles the default choice is RF [5]. All these method have115

something in common, they are re-sampling based and use a Decision Tree

(DT ) as base learner. The main advantages of DT s are their robustness against

outliers and noise, and their ability to capture non-linear patterns. On the

other hand, DT s are unstable and they usually overfit. However, these down-
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sides alongside their advantages make DT s a good choice for base learners in120

Generative ensembles [30].

The hyperparameters in Boosting-based methods have a very high influence

on the performance of the method. In contrast, the default RF configura-

tion, in the most common implementations, achieves good accuracy and can be

improved by just slightly modifying the number of estimators or the number125

of features included in each base learner. Because of the advantages of RF ,

there are Bagging attempts using stable-based learners to emulate its perfor-

mance.Table 1 shows a summary of the most common Generative ensembles

and their main characteristics. For example, in [31], Support Vector Machine

(SVM ) ensembles are considered. In such a case, linear Bagging SVM outper-130

forms Gaussian Bagging SVM , as expected since linear kernels produce a SVM

more unstable than Gaussian kernels. Other approaches found improvements

by modifying the training data using different kinds of under-sampling and over-

sampling [32, 33]. These types of sampling can be applied to ensembles using as

base learners Bayesian Neural Networks [34], where the traditional diversity and135

re-balancing techniques work together to improve the performance of a single

Bayesian Neural Network.

There are interesting alternatives to Boosting and Bagging in the litera-

ture, such as Weight Aggregation (Wagging) [9], which perturbs the dataset by

adding Gaussian noise to the vector of weights and thus modifying each replica.140

However, the performance of ensemble methods based on Wagging and Bagging

is similar [9]. In addition, it increases the complexity of the model since one

must consider the distribution parameters for adding the noise. More recent

studies to assemble stable models have turned to new sampling Bagging-based

methods to achieve the required diversity and accuracy in the different learners145

[35]. Nevertheless, the latter method is not generally applicable since it uses

specific features of the base algorithm. Therefore, it is necessary to develop tech-

niques to increase diversity to achieve effective ensembles, even for complicated

to assemble base learners such as k-Nearest Neighbour (kNN ) or SVM .
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3. Limited Learners150

In this section, we introduce the concept of the limited learner. It is a learner

that overfits the sample from which it has been constructed and predicts well

enough.

Lets consider a learning set L = {(xi, yi) : i = 1, 2, . . . , n} where xi ∈ Rr

(r ∈ N) and yi ∈ {−1, 1}. Suppose a sampling method (S), with replacement155

or not. Let be L(S)
k = {(x′i, y′i) : i = 1, 2, . . . ,m} the kth sample of the learning

set, where m ≤ n and x′i ∈ R≤r. Note that, if the sampling is over the features,

there exists a projection φ : Rr −→ R≤r such that φ(xi) 7−→ x′i, ∀(x′i, y′i) ∈ L
(S)
k

where (xi, yi) ∈ L.

Thus, any learner is built using the sample L(S)
k and it is denoted by fk :160

R≤r −→ {−1, 1}, a surjective function such that fk(x′
i) 7−→ yi where (x′i, yi) ∈

L(S)
k . In addition, the learner is tested in T ⊆ L − L(S)

k (i.e., the out-of-bag

(OOB) observations for the kth sample).

Definition 1. (Random Predictor). The random predictor is a model that pre-

dicts according exclusively to the target probability distribution.165

Definition 2. (Dummy Learner). A dummy learner is a learner that returns

the observed label for the instances in the training sample and it is a random

predictor in new samples.

Definition 3. (Overfitted Learner). An overfitted learner fk is a learner that

is not underfitted, such that Errortest(fk) > Errortrain(fk).170

Empirically, we can add a slack variable to relax the condition that the

train error should be lower than the test error (e.g., require that the difference

between them is greater than a value ε).

Definition 4. (Limited Learner). A limited learner is an overfitted learner that

is better than a random predictor in new samples.175

Notice that, limited learners have a lower generalization error than dummy

learners by construction since they are better than a random predictor.
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The only base learners in the state-of-the-art that can be considered as

limited learners are the DT s used to built a RF . In the RF , the maximum

size of the DT s is not limited and they are not pruned. Thus, these DT s are180

overfitted by construction [5]. Hence, DT s in a RF are particular cases of

limited learners that overfit as much as possible.

4. Minimally Overfitted Ensemble

This Section proposes an ensemble learning framework, the Minimally Over-

fitted Ensemble (MOE ), based on the concepts of a minimal overfitting model185

and limited learners. The MOE relies on the idea that assembling slightly over-

fitted limited learners will increase the performance of the ensemble.

A common way for choosing a well-fitted model is by defining a heuristic that

identifies the minimum test error subject to a minimal difference between train

error and test error. Thus, the overfitting is avoided in both the train and the190

test sets at the same time. Another way is to minimize the average error across

different test sets by using techniques such as k-fold cross-validation [36, 37].

In practice, there is no silver bullet to find the best Machine Learning (ML)

model because the theoretical error is almost always unknown. Nevertheless, it

is universally accepted that the solution can be founded by the analysis of the195

different kind of errors.

Following this approach, the minimum overfitting for binary classification

can be defined in terms of the train and test errors. Since the objective is

to promote minimum overfitting, the simplest approach is to minimize a loss

function that considers the train and test error. In this function, the training200

error is the main contribution and the test error will be used to control the level

of overfitting, as long as the test error is larger than the training error.

Definition 5. (Minimally overfitted model). Given a set of ML models {F}

fitted on the same train set, and evaluated on the same test set, the minimal
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(a) λ = 0.5 (b) λ = 1

(c) λ = 3 (d) λ = 5

Figure 2: Contour lines of the minimum overfitting objective function from different values

of λ parameter. The scaler color represents the value of the function, closer to zero is better.

The feasible region of the optimization problem is delimited to the right of the dotted red line.

overfitted model is the solution to:205

arg min
f∈F

Lmo(λ, f) = Errortrain(f) + λ(Errortest(f)− Errortrain(f))2

subject to

Errortest(f) > Errortrain(f)

(1)

such that λ ∈ (0,∞).

Note that Lmo(λ, f) is the overfitting loss function subject to Errortest(f) >

Errortrain(f). The f model that minimizes Lmo, for a fixed λ, is the minimally

overfitted among F set. The λ parameter allows controlling the level of over-

fitting that is considered to be the minimum. Values closer to zero promote210
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overfitted models, whereas high values penalize the overfitting. The effects of

the λ parameter are depicted in Figure 2. The overfitting grade decreases as the

value of λ increases. It is a subjective question what is the grade of overfitting

that corresponds to the minimum overfitting. Therefore, the value of λ has to

be set according to the specific problem. The empirical values of λ will mostly215

be a few units or at most tens of units, but not close to zero, and the cardinal

of {F} will be large enough. Notice that the smaller the learning set, the fewer

the possible different models there will be in {F}.

Algorithm 1 presents the pseudo-code of the MOE framework. As in Bag-

ging , the proposed framework begins by drawing m samples from the learning220

set with a sampling method S. Then, a base learner for each generated sample

L(S)
k is trained, and the minimally overfitted learner is selected. Finally, the

prediction combination procedure is performed using the majority-vote rule.

Notice that the MOE incorporates an additional step that includes limitations

over the selected learners. In Bagging , the hyperparameters are the same for225

every individual learner. However, in the MOE , given a hyperparameter pool

H, the hyperparameter setting that provides the minimal overfitted learner is

chosen. Therefore, for each sample L(S)
k , the method provides the minimal over-

fitted limited learner according to equation (1) (i.e., m limited learners). The

computational time of the MOE is O(m · card(H) · (t+ p1 + p2)), where t is the230

complexity of training the base learner, p1 is the complexity of predicting L(S)
k

with the base learner, p2 is the complexity of predicting the OOB observations,

and card(H) is the size of the hyperparameter pool.

It is straightforward to show that the learners constructed according to the

Definition 5 meet the limited learner conditions. Assuming that λ is set to235

the values recommended above and the hyperparameter pool H is large enough

for the sample L(S)
k , then a subset of the learners will overfit. Among these

overfitted learners, the minimally overfitted limited learner is selected accord-

ing to Definition 5. Notice that the training error of the limited learned is lower

than the testing error and the underfitting is avoided because both error are240

minimized. Therefore, it is straightforward to show that the minimal overfitted

11



Algorithm 1 Minimally Overfitted Ensemble

Input: (L,H, λ, n,m, S,BaseModel) . S is the sampling method

1: L← ∅ . initialize set of limited learners

2: for k ∈ [1, . . . , m] do

3: Lk = s(L, n)

4: test = L − L(S)
k

5: L∗ =∞

6: for hj ∈ H do

7: l(hj)← FitModel(hj ,Lk) . fit jth limited learner

8: if Lmo(λ, l(hj)) < L∗ then

9: L∗ ← Lmo(λ, l(hj))

10: Lk ← l(hj) . update ith limited learner

Output: F (x) = argmax
∑m

k=1 Lk(x) . output as majority-voting rule

learner outperforms the dummy learner. The corresponding theoretical bound

error analysis is provided in Appendix A. This error can be estimated in terms

of the limited learners’ accuracy and the correlation between them. In order

to compute the minimum overfitting objective function, the Errortrain is cal-245

culated in the sample L(S)
k and the Errortest is calculated in the set L − L(S)

k .

The OOB approach for measuring the error provides a precise way to assess

the overfitting level of each learner. Note that any evaluation metric could be

used to calculate both errors. However, in some classification problems, the ac-

curacy encourages overfitting over other evaluation measures such as F1-score250

or Matthews correlation coefficient [38].

As previously mentioned, a sampling method to obtain each Lk sample is

needed. Given its similarities to Bagging , the first option for sampling is Boot-

strapping. However, Bootstrap does not generate enough diversity for the mini-

mum overfitting condition. Notice that re-balancing methods are very useful to255

avoid overfitting [34]. Here, the main objective is to guarantee the diversity of

the sample to ensure that sufficiently different decision functions are combined.

Thus, modifying the sampling proportion in each class will help reach diversity

in the limited learners’ decision functions. Next, a new sampling method called

Weighted RAndom Bootstrap (WRAB), which leads to unbalanced samples and260

facilitates enough overfitting, is proposed to address this problem. Hence, this
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method will enable the combination of stable methods such as SVM or kNN .

4.1. Weighted Random Bootstrap

WRAB is a sampling procedure that consists on adding a layer of random

weights that unbalance the sample size among the different classes in a classifi-265

cation problem. Let consider a sample size n and a learning set L = {(xi, yi) :

i = 1, 2, . . . , n} where xi ∈ Rr and yi ∈ Nm. The procedure draws S samples

from L. Each WRAB sample is denoted by

m⋃
j=1

L∗b = {(x∗bi , y∗bi ) : i = 1, 2, . . . , nj} (2)

where b = 1, 2, . . . , S and nj ∈ [0, n]. Each nj ensures that
∑m
j=1 wjnj =

n where
∑m
j=1 wj = 1 and wj ∼ U(0, 1). Notice that some samples could270

appear several times because each WRAB sample is obtained by sampling with

replacement.

Thus, the MOE framework has four hyperparameters: the number of sam-

ples for each base learner, the size of these samples, the grade of overfitting,

and the sampling method (WRAB or Bootstrap). The first two parameters are275

widely known in Generative ensembles, while the last two are internal hyperpa-

rameters of the MOE .

5. Experiments

In this section, the proposed framework is studied and evaluated against

several alternatives. First, the performance and hyperparameters of the MOE280

approach are discussed in an artificial dataset. Then, twenty-five binary classi-

fication datasets, with a variety of instances, number of features, and balance

between the classes, are used to evaluate the proposal. Finally, the lessons

learned are summarized. The source code and the data to reproduce the exper-

iments can be found at https://github.com/URJCDSLab/moe.285
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(a) Decision function estimated with RF (b) Decision function estimated with SVM

Figure 3: Distribution of data for the example with 666 points for the blue class and 333

points in the orange class. It is shown the difference between the optimal decision surface for

RF and SVM .

5.1. Analysis of the overfitting hyperparameters in a controlled scenario

Let us consider a binary classification problem with three bivariate Normal

distributions which centers are randomly placed at (−0.65,−0.1), (2.96,−9.52)

and (4.05,−6.06) in the square region [−10, 10]× [−10, 10] ∈ R2 with a standard

deviation equals to 2. The first two belong to the class 0 and the last belongs290

to 1. They are independent between them and contain 333 points. In this

example, RF and SVM are considered as baseline ML models. Both models

present similar classification errors (around 10%), obtained with 10-fold cross-

validation by the sum of relative false positives and relative false negatives

in 10 test partitions. The decision functions taken as a reference, estimated295

with RF and SVM , are presented in Figure 3. In this case, for the MOE

framework, the limited learners will use SVM with Gaussian kernel. In addition,

the search space to minimize the minimal overfitting function is conformed with

the regularization parameter C ∈ {1, 10, 100, 1000}, and the kernel coefficient

γ ∈ {0.01, 0.1, 1, 10}. The results for the three different values of the overfitting300

parameter λ are shown in Figure 4. For each example, 10 limited learners are

built using Bootstrap where the sample size is equal to the 10% of the whole

learning set. A proper definition of the objective function in the definition of

minimal overfitted model is essential to achieve a high performance. A low
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(a) λ = 1 (b) λ = 3 (c) λ = 5

Figure 4: The three different decision surfaces for different values of the overfitting parameter

in the MOE framework with bootstrap sampling instead of WRAB .

(a) λ = 1 (b) λ = 3 (c) λ = 5

Figure 5: The three different decision surfaces for different values of the overfitting parameter

in the MOE framework with WRAB sampling instead of bootstrap sampling.

value of λ implies an extremely overfitted method as shown in 4a. In this case,305

the error rate equals 15% (50% worse than expected). The highest value of λ

parameter achieves the expected 10% of error rate, but as shown in Figure 4c,

the corresponding decision function is quite similar to the base algorithm. In

fact, this situation would not necessarily be wrong, because the SVM decision

function is better suited for one of the classes, as opposed to the RF decision310

function. As shown in Figure 3, both decision functions (RF and SVM ) are

appropriate for this problem. An intermediate solution can be found in Figure

4 for the largest value of λ. In this example, the distribution is denser near

the mean in each of the three bivariate Normal clouds. Thus, low values of λ

combined with Bootstrap sampling and a stable base algorithm lead to a lower315

diversity of the limited learners. Hence, to increase the diversity of the local

decision functions for each learner, the λ parameter has to be increased resulting

in high flexibility of the ensemble, as depicted in Figure 4.
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Hyperparameters Train error Test error Lmo

bootstrap, λ = 1 0.00 (0.00) 0.19 (0.03) 0.04 (0.01)

bootstrap, λ = 3 0.04 (0.02) 0.13 (0.04) 0.07 (0.03)

bootstrap, λ = 5 0.07 (0.03) 0.12 (0.03) 0.08 (0.03)

WRAB, λ = 1 0.02 (0.03) 0.20 (0.03) 0.05 (0.02)

WRAB, λ = 3 0.02 (0.03) 0.16 (0.04) 0.05 (0.02)

WRAB, λ = 5 0.05 (0.03) 0.16 (0.04) 0.10 (0.03)

Table 2: Detail of the errors for the MOE framework with different settings of sampling

methodology and overfitting control parameter. The average (and standard deviation) of the

limited learners for each setting is shown.

The underlying distribution of the data is usually unknown and scenarios

like the one in the example are not uncommon, but difficult to confirm. It320

makes it difficult to adjust the overfitting parameter together with the number

of limited learners and the sample size. The two last would be the lowest as

possible that cover all the learning set. One way to solve this issue is to change

the sampling method.

Figure 5 shows the decision surfaces by using WRAB in the MOE framework325

(instead of Boosting). The impact of the parameter setting on the decision

function decreases. Furthermore, none of the three results are quite similar to

the SVM decision function (see Figure 3b), especially as concerns the limit of

overlap between each class. In Boostrap, it has been shown that low λ values

tends to generate similar decision functions fitted around the densest region,330

like in the example for the orange class. Nevertheless, the unbalance of the

sampling, provided by the WRAB , makes it easier to promote the overfitting

in different regions of the learning set. Figure 6 presents the decision functions

obtained for different examples using both, Boostrap and WRAB methods. As

expected, it is shown that the WRAB method implies more diverse decision335

functions.

Table 2 presents the train and test errors of the MOE scheme for different

sampling methods and different values for the λ parameter. Furthermore, the
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(a) Bootstrap sample 1. (b) Bootstrap sample 2. (c) Bootstrap sample 3.

(d) WRAB sample 1. (e) WRAB sample 2. (f) WRAB sample 3.

Figure 6: Different examples of samples with WRAB and Bootstrap for the artificial example

if λ = 1. The WRAB leads to more different decision functions than Bootstrap in the case of

SVM .

minimum overfitting loss function value is also available. The results of this

table reveal that, for some elections of λ, the overfitting of the WRAB sampling340

is higher than that achieved with the Bootstrap methodology. Thus, the WRAB

provides more diversity among samples, and keeps the minimum overfitting as

well as the Bootstrap sampling.

5.2. Performance analysis of MOE variations

Next, the MOE framework is evaluated on a battery of binary classification345

datasets. The datasets have been obtained from the UCI repository [39], Penn

Machine Learning Benchmarks [40], and LIBSVM Data [41]. A summary of its

main features is presented in Table 3. In this experiment, we compare the RF ,

SVM with Radial Basis Function kernel, kNN , XGBoost , GB , and ET methods

with three MOE variations using DT , kNN , and SVM as base learners. The350

predictive quality of the models is evaluated using the Mathews Correlation

Coefficient (MCC ) measure, which is one of the most popular evaluation metrics

in the ML community [42], particularly for unbalanced datasets. Remark that

the proportion of the minority class in some datasets is less than 0.30. For
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Dataset N. instances N. features Minority class proportion

appendicitis 106 8 0.198

australian 690 15 0.445

backache 180 32 0.139

banknote 1372 5 0.445

breastcancer 569 31 0.373

bupa 345 6 0.490

cleve 303 14 0.455

colon-cancer 62 2001 0.355

diabetes 768 9 0.349

flare 1066 11 0.171

fourclass 862 3 0.356

german numer 1000 25 0.300

haberman 306 4 0.265

heart 270 14 0.444

ilpd 579 11 0.285

ionosphere 351 35 0.359

kr vs kp 3196 37 0.478

liver-disorders 145 6 0.379

lupus 87 4 0.402

mammographic 830 5 0.486

mushroom 8124 23 0.482

r2 116 10 0.448

svmguide1 3089 5 0.353

svmguide3 1243 23 0.238

transfusion 748 5 0.238

Table 3: Detail of the binary classification real datasets. The number of instances results after

removing those that have missing values.

the sake of interpretability, MCC has been re-scaled to take values between 0355

and 1. The hyperparameters are optimized using grid-search with 10-fold cross-

validation. The hyperparameter grid is detailed in Table 4 (if a parameter is

not stated, then the default value is selected).

The average and standard deviation of the MCC score in the test parti-

tions of the 10-fold cross-validation for the best hyperparameters combination360

is presented in Table 5. The overall results show that the MOE-DT and the

MOE-KNN were the best methods in 8 out of 25 datasets, being the MOE-DT

the best on MCC average. Notice that the standard deviation in all the methods
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Classification Algorithms Hyperparameters Values

MOE Wrab True, False

λ 1, 3, 5

P. Sample 0.10, 0.30, 0.50

N. Learners 10, 20, 30

KNN k 1, 3, ..., 11

SVM C 1, 10, 100, 1000

gamma 0.0001, 0.001, 0.01, 0.1, 1, 10

Random Forest Max. Features None, sqrt, log2

N. Estimators 100, 300, 500

XGBoost Max. Depth 3, 5, 7

Eta 0.1, 0.2, 0.3

N. Estimators 100, 300, 500

Extra Trees Max. Features None, sqrt, log2

N. Estimators 100, 300, 500

Gradient Boosting Max. Depth 3, 5, 7

Learning Rate 0.1, 0.2, 0.3

N. Estimators 100, 300, 500

Max. Features None, sqrt, log2

Table 4: ML methods used and their selected hyperparameter values.

is quite similar, so we can compare the mean performances in general. The Sign

Test and the Wilcoxon Signed Rank Test [43] are employed for overall dataset365

pairwise comparison to assess the individual performance of each MOE variant.

Concerning the Sign Test, the null hypothesis is that the MOE variant being

studied is equivalent to the method it is compared to, and a rejection of the

null hypothesis is that the MOE variant outperforms the alternative method.

To reject the null hypothesis the number of wins needs to be greater or equal to370

the critical value. In the case of ties, they are split between the two methods.

Figure 7 (based on [44]) presents the performance of the MOE variations in

terms of wins, ties and losses.
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(a) MOE-DT.

(b) MOE-KNN.

(c) MOE-SVM.

Figure 7: Performance of each MOE variant in terms of wins (green), ties (yellow), and losses

(red). The vertical dashed lines represent the critical values, 16 and 17 for two different

confidence levels, α = {0.05, 0.10}, respectively. The methods marked with * represent those

where the corresponding MOE variant has significantly outperformed them using the Wilcoxon

Signed Rank Test (α = 0.05).
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MOE SVM MOE KNN MOE DT Random Forest SVM KNN XGBoost Gradient Boosting Extra Trees

appendicitis 0.788 (0.177) 0.810 (0.146) 0.818 (0.161) 0.796 (0.150) 0.810 (0.146) 0.798 (0.135) 0.791 (0.148) 0.801 (0.157) 0.796 (0.150)

australian 0.871 (0.027) 0.862 (0.048) 0.881 (0.031) 0.871 (0.034) 0.871 (0.029) 0.843 (0.061) 0.885 (0.022) 0.876 (0.032) 0.865 (0.039)

backache 0.500 (0.000) 0.653 (0.123) 0.626 (0.139) 0.575 (0.163) 0.600 (0.147) 0.583 (0.143) 0.607 (0.154) 0.607 (0.170) 0.609 (0.162)

banknote 1.000 (0.000) 0.999 (0.002) 0.992 (0.008) 0.993 (0.005) 1.000 (0.000) 0.999 (0.003) 0.999 (0.003) 0.999 (0.003) 0.999 (0.002)

breastcancer 0.982 (0.018) 0.971 (0.017) 0.961 (0.024) 0.963 (0.019) 0.978 (0.018) 0.970 (0.019) 0.972 (0.021) 0.974 (0.012) 0.974 (0.009)

bupa 0.656 (0.109) 0.661 (0.049) 0.640 (0.069) 0.591 (0.101) 0.645 (0.091) 0.612 (0.110) 0.607 (0.094) 0.606 (0.093) 0.583 (0.080)

cleve 0.830 (0.067) 0.838 (0.078) 0.822 (0.046) 0.827 (0.060) 0.813 (0.063) 0.832 (0.073) 0.834 (0.034) 0.830 (0.043) 0.832 (0.070)

colon-cancer 0.876 (0.086) 0.913 (0.092) 0.886 (0.082) 0.877 (0.086) 0.862 (0.076) 0.775 (0.151) 0.859 (0.077) 0.877 (0.086) 0.887 (0.076)

diabetes 0.748 (0.034) 0.749 (0.033) 0.751 (0.045) 0.747 (0.033) 0.746 (0.041) 0.707 (0.034) 0.731 (0.037) 0.746 (0.046) 0.747 (0.036)

flare 0.639 (0.058) 0.662 (0.045) 0.658 (0.055) 0.617 (0.068) 0.613 (0.085) 0.611 (0.062) 0.632 (0.069) 0.633 (0.058) 0.586 (0.066)

fourclass 1.000 (0.000) 1.000 (0.000) 0.995 (0.008) 0.996 (0.006) 1.000 (0.000) 1.000 (0.000) 0.991 (0.010) 0.996 (0.008) 1.000 (0.000)

german numer 0.719 (0.032) 0.688 (0.038) 0.720 (0.044) 0.716 (0.033) 0.713 (0.027) 0.633 (0.042) 0.715 (0.050) 0.715 (0.048) 0.692 (0.046)

haberman 0.648 (0.123) 0.632 (0.102) 0.653 (0.119) 0.583 (0.078) 0.595 (0.089) 0.625 (0.089) 0.580 (0.110) 0.576 (0.091) 0.571 (0.059)

heart 0.868 (0.056) 0.861 (0.066) 0.847 (0.049) 0.837 (0.064) 0.854 (0.059) 0.834 (0.070) 0.814 (0.055) 0.823 (0.052) 0.846 (0.058)

ilpd 0.662 (0.062) 0.643 (0.063) 0.665 (0.040) 0.628 (0.049) 0.626 (0.055) 0.625 (0.086) 0.622 (0.068) 0.655 (0.073) 0.658 (0.041)

ionosphere 0.954 (0.042) 0.899 (0.059) 0.941 (0.051) 0.929 (0.039) 0.955 (0.056) 0.870 (0.050) 0.924 (0.052) 0.943 (0.041) 0.939 (0.039)

kr vs kp 0.993 (0.005) 0.947 (0.014) 0.994 (0.003) 0.995 (0.005) 0.994 (0.004) 0.953 (0.014) 0.995 (0.004) 0.997 (0.004) 0.996 (0.004)

liver-disorders 0.748 (0.058) 0.752 (0.055) 0.780 (0.105) 0.758 (0.097) 0.724 (0.084) 0.715 (0.133) 0.777 (0.102) 0.785 (0.088) 0.757 (0.054)

lupus 0.770 (0.123) 0.757 (0.190) 0.780 (0.116) 0.744 (0.198) 0.743 (0.126) 0.742 (0.178) 0.712 (0.160) 0.716 (0.152) 0.709 (0.208)

mammographic 0.815 (0.040) 0.814 (0.032) 0.821 (0.035) 0.789 (0.023) 0.810 (0.036) 0.802 (0.028) 0.813 (0.035) 0.807 (0.037) 0.756 (0.042)

mushroom 1.000 (0.000) 1.000 (0.000) 1.000 (0.000) 1.000 (0.000) 1.000 (0.000) 1.000 (0.000) 1.000 (0.000) 1.000 (0.000) 1.000 (0.000)

r2 0.798 (0.133) 0.749 (0.104) 0.781 (0.117) 0.765 (0.105) 0.770 (0.150) 0.722 (0.170) 0.756 (0.105) 0.785 (0.087) 0.784 (0.133)

svmguide1 0.964 (0.011) 0.959 (0.009) 0.968 (0.008) 0.966 (0.010) 0.968 (0.009) 0.960 (0.007) 0.969 (0.010) 0.971 (0.011) 0.966 (0.008)

svmguide3 0.764 (0.054) 0.694 (0.056) 0.775 (0.049) 0.766 (0.060) 0.767 (0.043) 0.708 (0.056) 0.796 (0.051) 0.785 (0.048) 0.758 (0.050)

transfusion 0.684 (0.051) 0.686 (0.061) 0.683 (0.056) 0.626 (0.074) 0.676 (0.048) 0.662 (0.046) 0.644 (0.043) 0.651 (0.043) 0.602 (0.078)

Mean 0.811 (0.055) 0.808 (0.059) 0.818 (0.058) 0.798 (0.062) 0.805 (0.059) 0.783 (0.070) 0.801 (0.061) 0.806 (0.059) 0.796 (0.060)

Table 5: The mean of the MCC scaled, standard deviation between parenthesis, calculated

in each cross-validation test partition of the nine compared methods. Best results in bold for

each dataset.

Particularly, the MOE-DT outperforms RF , SVM , kNN , XGBoost , and

ET , with statistical confidence using α = 0.05, and it is not guaranteed to be375

better than the MOE-SVM, the MOE-KNN and GB . The MOE-KNN outper-

forms kNN with statistical confidence using α = 0.05 and, RF with statistical

confidence using α = 0.10. However, it is not guaranteed to be better than the

MOE-SVM, the MOE-DT, SVM , XGBoost , GB , and ET . Finally, the MOE-

SVM outperforms RF , SVM , kNN and ET with statistical confidence using380

α = 0.05 and, XGBoost and GB with statistical confidence using α = 0.10,

and it is not guaranteed to be better than the MOE-KNN, the MOE-DT. Fi-

nally, using the Wilcoxon Signed Rank Test, with α = 0.05, it is confirmed

that the MOE-DT outperforms the other methods, with the exception of the

MOE-KNN and the MOE-SVM. The MOE-SVM outperforms the other meth-385

ods, with the exception of the MOE-KNN, the MOE-SVM, and GB . Moreover,

the MOE-SVM only outperforms the kNN .

Globally, the MOE variations have a good performance in the experiments.
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Hyperparameter Value MOE-SVM MOE-DT MOE-kNN

Wrab False 8 9 11

True 17 16 14

λ 1 6 15 7

3 6 5 5

5 13 5 13

N. Learners 10 5 3 6

20 9 11 9

30 11 11 10

P. Sample 0.10 10 7 10

0.20 8 7 5

0.50 7 11 10

Table 6: Frequency of the best hyperparameters in the MOE framework.

This fact confirms the correct construction of the limited learners in terms of

accuracy and diversity. The MOE-SVM and the MOE-KNN beat the single390

version of the algorithms in almost all the examples, and the MOE-DT beats

the RF which also uses limited learners according to Definition 4. Besides,

the MOE-DT wins more clearly over the rest. That apparent advantage of the

MOE-DT could be produced by the DT s’ overfitting propensity, along with

their instability. Thus, DT ’s provide both diversity and accuracy among all the395

limited learners. Those appreciations are derived from the best hyperparameters

selected for each different MOE version, wich can be found in Table 6.

Notice that the WRAB sampling is selected 64% of the time in the MOE-

DT, against 68% and 56% in the MOE-SVM and the MOE-kNN, respectively.

Therefore, for a stable model, the WRAB sampling is an excellent improvement400

on the desired diversity, but it also works well with unstable models like DT s.

The selected λ values present two tendencies. The MOE-kNN and the MOE-

SVM show a predilection for the highest value. The ensemble of minimally

overfitted SVM s and kNN s benefit from less overfitting in general. However,

the MOE-DT presents an inclination for the lowest value. There is no clear best405

value for the three MOE variants between 20 and 30, but these are prefered over

10. Notice that, as the complexity of the problem increases, more learners are

22



needed to cover the whole learning set. Finally, the MOE-kNN tends not to

select 0.20, with no differences between 0.10 and 0.30. The MOE-DT selects

slightly more 0.30, and the MOE-SVM selects slightly more 0.10, in neither case410

is it a very substantial difference.

5.3. Lessons learned

This section synthesizes the main lessons learned from the proposal in the

case studies.

One of the strengths of Generative ensembles based on sampling lies on415

the diversity of the different decision regions generated by the base learners

fitted on each sample. If enough base learners are used on a variety of samples,

covering the whole learning set with a high diversity, the resulting combination

of predictions will outperform the individual result. Every learner has to ensure

sufficient accuracy.420

The diversity of the decision regions could be reached using re-sampling

techniques. However, in stable algorithms, the perturbations in the learning

set generated using re-sampling methods such as Bootstrap are not enough to

significantly change the resultant decision functions. It is possible to generate

more diverse samples in classification problems by randomly sampling over the425

labels, and as a result, generating more diverse decision functions.

The WRAB sampling method has been developed to assemble any minimally

overfitted classifier for binary problems in the MOE framework. A Wilcoxon

test is performed to rigorously evaluate the differences between WRAB and

bootstrap. We obtain the best score for WRAB and bootstrap for the 25 datasets.430

To test the null hypothesis that there is no performance difference, we apply the

two-sided test, which provides a p− value = 0.0092. Hence, the null hypothesis

can be rejected at a confidence level of 95%, concluding that there is a difference

in performance between the two methods. To confirm that the median of the

differences can be assumed to be positive, we use the one-side test, obtaining435

a p − value = 0.0046. This shows that the null hypothesis that the median is

negative can be rejected at a confidence level of 95% in favor of the alternative
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that the median is greater than zero. Thus, it can be concluded that the WRAB

reaches better results than bootstrap in this context.

Regarding the hyperparameters of the MOE , it is recommendable following440

the experimental results to use the WRAB and 30 learners as default values. In

most cases, these values work well. As a starting point, the sample proportion

must be set to 0.10 for the MOE-SVM and 0.50 for the MOE-kNN and the

MOE-DT. The overfitting control parameter should be set to 1 for the MOE-

DT and 5 for the MOE-SVM and the MOE-kNN. The general advice is to445

modify the number of learners and the proportion of the sample to lower values

before changing the λ or the WRAB recommended values.

The minimum overfitting of the learners provides a good performance in the

ensemble, as long as the samples cover most of the learning set. The perturba-

tions obtained by re-sampling methods have more impact on a minimally over-450

fitted learner’s decision function than a well-fitted learner. Hence, the decision

function will vary more in a minimally overfitted learner than in a well-fitted

learner. Moreover, the sample size will be smaller than other ensembles like

RF , because the diversity among the learners is higher and the learners are

sufficiently accurate.455

6. Conclusions and future work

In this paper, the notion of limited learner is introduced. A limited learner

is an overfitted learner whose predictions are better than random predictions.

Founded on this notion, a general re-sampling-based ML framework called MOE

is proposed. It is designed to work with any base ML algorithm, both stable460

and unstable, overcoming the limitations of stable learners in ensembles. The

key idea behind the MOE is a hyper-parameter search in each sample, where

the learner is selected using the minimum overfitting concept, which promotes

slightly overfitted models. The results are minimally overfitted learners, a spe-

cific type of limited learners. In addition, the datasets for training each single465

learner are generated using a new sampling method. The WRAB is a layer
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on top of the Bootstrap sampling method that modifies the original balance

between the classes in a classification problem. Therefore, the resulting single

learners are more diverse, especially when working with stable algorithms. The

resultant learners built by the MOE framework are combined using a majority-470

voting rule.

The performance of the proposal was evaluated on twenty five real datasets

with three different base algorithms: SVM , DT , and kNN . The MOE varia-

tions outperformed their single version algorithms counterpart. The best overall

performance has been achieved by the MOE-DT. Furthermore, the hyperparam-475

eter analysis confirms that the instability and overfitting tendency of the base

algorithm benefits the overall performance of the MOE framework. In stable

base algorithms, the WRAB overcomes the limitation of lack of variability, gen-

erating diverse single learners using stable base algorithms such as SVM with

Gaussian kernel and outperforming their single version. Further, the proposal480

sightly outperforms the reference limited learner ensemble method, RF .

Regarding the minimum overfitting, the proposed definition needs a pool

of ML models, which causes an increase in the training time of the proposed

method and limits experiments for large datasets. The runtimes of the MOE

variations are driven by the exhaustive hyperparameter search that is performed485

on each sample to select the minimally overfitted learner according to Definition

5. Therefore, adding a large number of learners increases the training time

considerably, especially when assembling very complex models such as SVM s.

Future work will focus on narrowing down the pool of learners to select the

minimally overfitted learner. The WRAB sampling method provides diversity490

in the ensemble when the base algorithm is stable, but it might not be enough in

some cases. The sampling and the overfitting parameter could be context-aware

to ensure the diversity of the limited learners and choose more or less stable

ML models. For instance, by increasing the number of samples in complex

regions or reducing it when using stable models in simple regions. A promising495

research line would be to explore the inclusion within the framework of novel

approaches for the treatment of unbalanced data. Finally, the expansion of the
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MOE framework to multiclass classification and regression will be studied by

revisiting the definition of the Minimally Overfitted Model and the WRAB to

these ML paradigms.500
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Appendix A. Upper bound for the generalization error

A MOE is a collection of minimally overfitted learners, which is a particular510

case of limited learners. Hence, a MOE is an ensemble of limited learners

{lk(x)} where x is an input vector, and each limited learner votes with the

same weight for the most suitable class at input x. Every limited learner can

be represented by a parametric function l(x, k) where k is a parameter vector

defined in terms of the disjoint regions of input space. For binary classifiers, the515

parametric function takes the form:

l(x, θk) =

J∑
j=1

I[x∈Rj ] · ŷj

where Rj defines the jth disjoint region of the input space which is induced by

the classifier and the yj represent the label assigned to the jth region. For exam-

ple, for a linear SVM , the separating hyperplane defined by sign(
∑
i∈sv(ω

Txi+

b)) generates two regions R1 and R2.520

Hence, given the definition of the ensemble in terms of limited learners, the

generalization error for MOE is parallel to Breiman’s analysis [5] for Random

Forest.
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Given a collection of classifiers l1(x), l2(x), . . . , lm(x), and the training set

following the underlying distribution of the random vectors X, Y . The classifi-525

cation margin is

m(X, Y ) = PΘ(l(X,Θ) = Y )−maxc6=Y PΘ(l(X,Θ) = c) (A.1)

The generalization error for a voting ensemble can be bounded by measuring

the diversity and the accuracy of the learners. The accuracy is measured by the

expected strength, and it is defined as

PE = PX,Y (m(X, Y ) < 0) (A.2)

In the balanced binary case, it can be formulated as530

m(X, Y ) = 2PΘ(l(X,Θ) = Y )− 1 (A.3)

and meeting the condition µ > 0 means that EX,Y (PΘ(l(X,Θ) = Y )) > 0.5

and, then, we reach the condition of a weak classifier. The limited learners meet

this condition by Definition 4.

Therefore, if m(X, Y ) > 0, the collection votes for the right class. The

generalization error for a limited learner ensemble is535

PE = PX,Y (m(X, Y ) < 0) (A.4)

Applying Chebychev’s inequality with µ > 0,

PE =
varX,Y (m(X, Y ))

µ2
(A.5)

Now, we are going to deal with the expression for the variance. Let

ĉ = argmaxc6=Y PΘ(l(X,Θ) = c) (A.6)

be the class with the most incorrect votes.

Then,

m(X, Y ) = PΘ(l(X,Θ)− PΘ(l(X,Θ) = c) = EΘ(m∗(X, Y,Θ)) (A.7)
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where540

m∗(X, Y, θ) = I[l(x,θ)=Y ] − I[l(x,θ)=ĉ] (A.8)

Assuming that Θ and Θ′ are independent and identically distributed,

m(X, Y )2 = EΘ(m∗(X, Y,Θ))2

= EΘ,Θ′(m
∗(X, Y,Θ),m∗(X, Y,Θ′))

(A.9)

Therefore,

varX,Y (m(X, Y )) = EΘ,Θ′(covX,Y (m∗(X, Y,Θ),m∗(X, Y,Θ′)))

= EΘ,Θ′(ρ(Θ,Θ′)σ(Θ)σ(Θ′))
(A.10)

where,

ρ(θ, θ′) = corrX,Y (m∗(X, Y, θ),m∗(X, Y, θ′)) (A.11)

is the correlation between two learners of the ensemble, for fixed θ and θ′, and

σ(θ) is the square-root of545

σ2(θ) = varX,Y (m∗(X, Y, θ)) (A.12)

From (A.10) and the variance definition,

varX,Y (m(X,Y )) = ρ · EΘ(σ(Θ))2 ≤ ρ · EΘ(σ2(Θ)) (A.13)

where

ρ =
EΘ,Θ′(ρ(Θ,Θ′)σ(Θ)σ(Θ′))

EΘ,Θ′(σ(Θ)σ(Θ′))
(A.14)

is the average correlation between all learners taken in pairs.

Now, from (A.12)

EΘ(σ2) = EΘ(EX,Y (m∗(X, Y, θ′)2)− EX,Y (m∗(X, Y, θ′))2) (A.15)

From (A.8) we know that m∗(X, Y,Θ)2 ≤ 1, thus550

EΘ(EX,Y (m∗(X, Y,Θ′))2) ≥ (EΘ(EX,Y (m∗(X, Y,Θ′))))2

= (EX,Y (EΘ(m∗(X, Y,Θ′))))2

= (EX,Y (m∗(X, Y,Θ′)))2

= µ2

(A.16)
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Finally,

EΘ(σ2(Θ)) ≥ 1− µ2 (A.17)

Using (A.17) into (A.13), and the result into PE (A.5), we obtain the upper

bound of the generalization error for a limited learner ensemble, in terms of

accuracy and diversity, given by µ and ρ:

PE∗ ≤ ρ(1− µ2)

µ2
(A.18)
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