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Abstract— the last year, we have witnessed the 

popularization of generative artificial intelligence. Its output 

includes text, code, image, audio, speech, voice, music, and 

video. Therefore, it impacts education courses where students 

are required to elaborate on any of these artifacts. In particular, 

the generation of code affects informatics courses, where 

assignments usually ask students to develop and deliver 

programming code. The impact of generative artificial 

intelligence on informatics courses has been mainly studied for 

introductory programming courses. These studies have shown 

that generative artificial intelligence is able to produce highly 

sophisticated programs, but also that its results and rationale 

can be inaccurate. Moreover, the impact of generative artificial 

intelligence has not been studied for other informatics subjects. 

In this paper, we present our preliminary experience and 

proposals on three advanced software courses, namely video 

games, advanced algorithms and language processors. For the 

video games course, we present the opportunities of use of 

generative artificial intelligence and the results of a survey 

conducted with students on their use to obtain different media 

products. For the algorithms course, we present the result of a 

session driven by the instructor on different design techniques, 

showing the merits and demerits of the answers generated. For 

the language processors course, a proposal of use of generative 

artificial intelligence is presented, broken down into the parts of 

a typical language processor. The paper concludes with some 

suggestions for instructors. 

Keywords— informatics education, generative artificial 

intelligence, video games, advanced algorithms, language 

processors 

I. INTRODUCTION 

The field of artificial intelligence (AI) comprises different 
technologies that have been applied to education. Their uses 
also are multiple: 

• Intelligent tutors. They provide assistance and 
personalized teaching to individual students. 

• Predictive AI. They analyze students’ interactions or 
grades, and try to identify patterns of behavior that are 
symptoms of their past or future performance, e.g., 
plagiarism or drop out. 

• Other uses, such as augmenting grading efficiency and 
consistency, or assisting in administrative tasks (e.g., 
scheduling). 

In the last year, we have witnessed the popularization of 
another AI technology, generative artificial intelligence 
(GenAI for short). These tools are trained on massive amounts 

of data to recognize patterns and relationships, which they use 
to generate outputs customized to the users’ prompts. 
Examples of tasks these tools perform with success [1] are: 
answering questions, improving and summarizing text, 
writing essays, translating text from one language to another, 
generating ideas or suggestions for a given topic, and 
generating text with specific attributes, such as tone, 
sentiment, or formality. 

Actually, GenAI output is not limited to text, but it may 
also generate code, image, audio, speech, voice, music, and 
video. Consequently, GenAI is impacting all areas of content 
generation. In particular, GenAI also is impacting informatics, 
as it is a discipline which heavily relies on writing code.  

Some authors have predicted the end of programming as 
we have known it for decades [2]. They envision that 
programmers will be replaced by specification writers 
outlining to GenAI tools what code they want in natural 
language and obtaining the code. However, other authors are 
not so optimistic, arguing that GenAI will assist programmers 
to be more productive in some areas but not in others [3]. In 
particular, GenAI seems to be successful in generating pieces 
of code, i.e., “snippets”. 

GenAI also is impacting the education sector more 
profoundly than previous AI tools. GenAI can be used to 
generate different kinds of artifacts, to answer questions and 
to complete written tasks. It can also respond to prompts in a 
human-like way. GenAI can be used to solve assignments 
which involve these activities, thus raising issues of 
plagiarism. There is no study on which disciplines are more 
threatened, but the risk is obvious in disciplines where 
assignments often include essays (e.g., history) or media 
artifacts (e.g., arts). 

Obviously, the risk affects informatics education, where 
different software artifacts (e.g., algorithms or database 
queries) are usually required in assignments. Certain forms of 
low-code programming [4] have been adopted in the last 
decades for programming education, especially block-based 
languages [5]. However, the risk of GenAI comes from the 
fact that it may not require the programmer to produce any 
code at all, just to state a specification of the intended code 
behavior, which usually is the assignment statement specified 
by the instructor. 

The paper presents several experiences and proposals of 
the authors on advanced software education at the university. 
The authors are not aware of similar papers regarding the 
education of informatics subjects other than programming. 
Notable exceptions are Shoufan [6] and Pérez-Colado et al. 
[7]. The first research work focused on ChatGPT's ability to 
answer test questions on digital circuits and computer 
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architecture. The authors of the second research demonstrate 
how AI techniques can streamline the prototyping of serious 
games by automating tasks, generating personalized content, 
and optimizing the creative process, allowing developers to 
focus on more strategic and creative aspects of game design. 

The structure of the paper is as follows. In the following 
section, we present a summary of the impact of GenAI on 
education. The third section presents experiences and 
proposals at three courses of the authors’ university, namely 
advanced algorithms, video games, and language processors. 
The fourth section discusses the issues raised by these 
experiences and proposals. Finally, we summarize our 
conclusions. 

II. GENAI IN INFORMATICS EDUCATION 

In this section we introduce the use of GenAI in education 
in general, and in programming education in particular. 

A. GenAI in Education 

As any digital technology, GenAI can provide both 
benefits and damage [8]. Thus, GenAI can help students 
practice and improve their language skills, e.g., by 
encouraging interaction in natural language or by supporting 
language translation. They can also adapt learning to the 
student’s level of knowledge and may assist some minorities, 
such as students with disabilities. Even teachers may benefit, 
e.g., by assisting either in automated essay grading or by 
generating sample lesson plans, learning objectives, and 
instructional activities (which they must later review and 
refine). 

GenAI also has limitations. Thus, its outcomes may be 
inaccurate, inappropriate, outdated, or biased because they are 
not based on an understanding but on the patterns found in the   
data used for training. It also raises issues of academic 
integrity, because students may deliver outcomes of GenAI 
tools without proper attribution. 

Educational authorities and institutions have reacted in 
several ways. Some educational institutions have banned the 
use of GenAI, while others have not reacted at all or other 
governments and organizations are playing an active role in 
informing with warnings and recommendations on the 
educational use of GenAI. 

The British Government [9] acknowledges opportunities 
to reduce teachers’ workload. However, it also warns on 
several risks, such as the use of personal data or original 
products (subject to the students’ intellectual property) to train 
AI models. Students should also be aware that the contents 
generated may be inaccurate, inappropriate or biased. 
Consequently, they should develop skills to use GenAI in a 
critical way. 

The Joint Council for Qualifications (JCQ) has published 
guidance on AI use in assessments [1] to support teachers and 
exam centers to know how to protect the integrity of 
qualifications and what counts as AI misuse. The JCQ 
definition of AI misuse is clear [1]: 

“AI tools must only be used when the conditions of the 
assessment permit the use of the internet and where the student 
is able to demonstrate that the final submission is the product 
of their own independent work and independent thinking.” 

JCQ provides examples of AI misuse, which consider any 
form of copying, paraphrasing or failure to acknowledge use 

of AI tools. In addition, JCQ advocates for responsible use of 
AI tools, making students aware of AI misuse and making 
centers and teachers aware of their responsibility in defining 
policies and in informing students on appropriate use and of 
risks of using AI. 

Several organizations, coordinated by Code.org, has 
launched the TeachAI initiative, which is intended to provide 
guidance on the educational use of AI. The initiative has 
elaborated an open document [10] with guidelines to address 
AI in education. The “toolkit” identifies seven principles for 
AI use, including reaffirming adherence to existing 
educational policies, promoting AI literacy, and balancing the 
benefits and risks of AI. 

B. GenAI in Programming Education 

GenAI can be used to generate computer programs. 
Probably, the two most popular GenAI programming tools are 
ChatGPT and Github’s Copilot, but many other tools exist: 
Alphacode, AI Code Reviewer, AI Data Sidekick, and 
Figstack. Typically, they generate code for a problem 
statement written in natural language, but they can also 
perform other programming tasks, such as explain program 
code or translate code between programming languages. 

The potential of GenAI for generating programs has led to 
a profound concern within the informatics community, even 
suggesting that the very nature of informatics and its curricula 
should be revised [2]. Different experiences and research 
efforts have been conducted. We just summarize a 
representative sample. 

Some studies focus on the success of GenAI in solving 
programming problems. Tran et al. [11] experimented with a 
large collection of exercises extracted from the Kattis online 
judge system. The problems selected were evenly rated with 
varying degree of difficulty, and their statement was verbose, 
including social and cultural background contexts. Their 
results allow concluding that success of ChatGPT solving 
problems was inversely related to both the perceived problem 
difficulty and the richness of the vocabulary used. 

Puryear and Sprint [12] assumed that students will use 
GenAI for programming tasks, thus they inquired into the 
quality of the programs generated by Copilot. They found that 
Copilot generates code that can solve introductory 
assignments with human-graded scores ranging from 68% to 
95%. In addition, generated code was generally not similar 
enough to students’ code to suggest plagiarism. The authors 
made several educational suggestions based on these results, 
including promoting students’ training on GenAI 
programming tools, teaching debugging and testing 
techniques, stating unfamiliar assignment statements, and 
promoting assessment methods that guarantee students’ 
understanding of their solutions. 

Other studies have found similar results, with some 
nuances. Thus, Ouh et al. [13] found that ChatGPT does not 
help much when there are complex instructions (e.g., 
producing a sophisticated representation as output), or when 
the exercises require students to interpret API documentation 
and UML diagrams. Similar difficulties (such as poor 
handling of exercises requiring complex chains of reasoning 
steps) have been reported by other authors [14]. Mixed results 
have also been obtained when ChatGPT has been prompted to 
check, critique and provide suggestions on students’ 
submissions [15]. 



Some studies have focused on students’ experience as 
programmers in use of GenAI tools. Prather et al. [16] studied 
the interactions and the perception of novices in an 
undergraduate introductory programming course who used 
Copilot for their first time. They observed two novel 
interaction patterns (complementary to patterns documented 
in the scientific literature for professional programmers), 
explored the ethical implications of the results, and presented 
several design implications for GenAI to be used in 
programming education. 

There has been extensive research in the field of 
computing education on the relationship between a student’s 
ability to explain code and other skills such as writing and 
tracing code. In particular, the ability to describe at a high-
level of abstraction how code will behave over all possible 
inputs correlates strongly with code writing skills. Leinonen 
et al. [17] have explored the potential of GenAI in generating 
explanations that can serve as examples to scaffold students’ 
ability to understand and explain code. They found that GenAI 
created explanations being significantly easier to understand 
and more accurate summaries of code than student-created 
explanations. They argue that these tools can be useful for 
students who are practicing code reading and explaining. 

Adopting a different approach, Lehtinen [18] asked 
questions to ChatGPT about code generated by the system 
itself. The system responded to the questions better than the 
average novice, but it also lapsed into human-like errors 
producing failed reasoning about the code. 

III. EXPERIENCES AND PROPOSALS 

In this section, we present our initial experience using 
GenAI in three courses. First, we describe the results of a 
survey conducted with students of a video games project 
course on their actual use of GenAI for their project. Second, 
we report on the result of an experience conducted by the 
instructor of an advanced algorithms course to check the 
quality of ChatGPT answers to prompts mirroring the course 
assignments. Thirdly, we present a proposal of integration of 
GenAI in the different parts of an intensive software course, 
namely language processors. All the contributions are in the 
context of informatics degrees at the Universidad Rey Juan 
Carlos. 

A. Use in a Video Games Project Course 

The course “Games for Web and Social Networks” is a 
fourth-year course of the Degree in Video Game Design and 
Development with 80 students enrolled. The course focuses 
on the completion of a full video game in just fourteen weeks 
(the duration of the subject) by each of the “companies” or 
students’ teams. Video games start from their most incipient 
idea to the development of a postmortem document once the 
project is finished. In addition, at the end of the course, 
students must present their game in a limited time (elevator 
pitch) with a completely professional style (like the one done 
in the PlayStation® Talents) in front of a multidisciplinary 
group of professionals in the sector. As a result of this 
innovative proposal, several of these groups have obtained 
notable results on social networks and through the feedback of 
the members of the expert tribunal who encouraged them to    
continue with the video games developed and to try to 
introduce them into the market. The high degree of student 
satisfaction with the teaching work carried out is noted. 

The main motivation of this innovative practice is to bring 
together all the general and specific knowledge and skills 
acquired throughout the university career and expose a 
scenario as close as possible to the working world and more 
specifically, to the business, commercial and video game 
development sectors. To carry out this task, a substantial 
methodological change in the classroom has been necessary. 
This change lies in the recreation, in the form of a live role-
playing game, of a video game design and development 
company. These companies will have to make their 
elaborations and try to simulate a business model that allows 
the members of this company to stay afloat for no less than 
two years in the real market. 

The subject can be considered very demanding in terms of 
work hours and dedication on the part of the student. The 
development of the video game is carried out with an 
industrial framework of recognized prestige in the sector, 
Unity. The student can use all the aids provided by a 
professional tool. 

The chosen methodology is based on six steps: 

1) Proposal of a realistic and competitive project. 
Students must develop all the necessary infrastructure to 
establish themselves on the network of networks as an 
emerging video game design and development company. 
Therefore, they must choose a company name and register the 
following points: an email account, a Twitter account, an 
itch.io account, create a business website on GitHub and a 
YouTube channel. 

2) Creation of a realistic portfolio. One of the most 
important concerns of students who reach the last year of their 
career is the fact of finishing the career without having made 
a complete videogame or, in other words, a creation of their 
own. The different courses focus on understanding 
algorithms, creating animations, designing agile 
methodologies, etc. However, all of them are disconnected 
and without a common thread that allows students to show 
everything learned so far. For this reason, when students finish 
this course, they have a portfolio that demonstrates the skills 
acquired and two tangible and saleable products made by 
themselves. 

3) Attractive and competitive rubrics. An essential part of 
this project is to keep the student “hooked” at all times. One 
way to achieve this is to present an evaluation method that 
provides a grade on the team’s effort. Given that the subject is 
demanding, if the project meets the minimum requirements, 
the team will have achieved a passing grade. However, if the 
team performs extra tasks, that grade can gradually rise until 
obtaining the maximum grade. 

4) Undertaking a challenge. The project has a triple 
evaluation method, that is, it is evaluated by the subject’s 
teachers, the students themselves and an expert tribunal. This 
last evaluating group generates an extra level of motivation 
because the students know that they are going to be evaluated 
by people who know and live the world of video games first-
hand. For this reason, students commit to the project and their 
colleagues to successfully carry out each of the creations. 

5) A finished game...is a treasure. It must be understood 
that the video game industry, like consulting or software 
companies, requires solid evidence to be able to hire 
individuals who could become part of the staff. For this 
reason, they see this proposal as a springboard to show the 



work done to possible “talent scouts” in the world of video 
games in Spain and abroad months later. 

6) A proposal full of experts. To carry out this innovative 
proposal, professionals from the sector have been counted on, 
but most importantly, from different areas such as digital 
marketing / PR and social media expert, video game magazine 
editors, Indie video game developers, specialists in artificial 
intelligence and algorithms, lawyers specializing in patents 
and software. 

Due to the high demand for work required of students in 
coding, 2D/3D animation, music, texturing, sound effects, 
documents and more arrangements necessary for a final 
version of a video game; we considered the use of GenAI for 
the development of projects in the 2023/24 course. It should 
be noted that the use of these tools was completely optional 
and students were encouraged to use them, making it clear that 
it would not raise or lower the final grade. 

Once the course was finished and all the project deliveries 
were made, the teachers conducted a detailed survey aimed at 
obtaining information about the use of GenAI in the course. 

The survey consisted of 15 questions, of which three were 
personal data and twelve were directed at the different GenAI 
tools used for tasks such such as coding, 2D/3D design, 2D/3D 
audio, documentation, and some personal questions about this 
new paradigm. 38 students completed the questionnaire (28 of 
them used AI and the rest did not), the most relevant questions 
and answers are presented below, the percentages correspond 
to the students who used AI in their projects: 

1. Have you used any GenAI to make any part of the 

JWRS project (however minimal)? In this question, 
73% of respondents said yes, they used GenAI in some 
part of the project, while 26% did not use it at all. 

2. Let’s start with generalist GenAI, which tools did you 

use? a) ChatGPT, b) Google Bard, c) Bing chat, and 

d) None. Of the 73% of respondents who used GenAI, 
87% used ChatGPT and 12% used Bing Chat. 
However, Google Bard was not used by any 
respondent. 

3.  Regarding coding, which tools did you use? a) 

CodeGPT, b) CodeDaVinci, c) Code-Bard, d) GitHub 

Copilot, e) Code2Vec, and f) None. The outcomes 
were quite clear when it came to the use of AI for 
programming tasks. Only three out of the six options 
were chosen. 25% of the students used CodeGPT, and 
10% used the well-known, and somewhat 
controversial, GitHub Copilot. However, 
interestingly, 60% of those who did use GenAI did not 
use them for programming tasks. This suggests that 
while AI tools are being utilized in project 
development, their application in programming tasks 
is not as widespread. 

4. Regarding images and 2D design, which tools did you 

use? a) DALL-E 2, b) VQGAN+CLIP, c) GANPaint, 

d) None and e) Others. In the survey, it was found that 
26% of respondents have used this type of generative 
AI. Only a small portion of them, 13%, used DALL-E 
2 and another 13% used other unspecified tools. 
Interestingly, the remaining 73% did not use this type 

of tools for their projects. This data provides an insight 
into the current usage trends of GenAI in project 
development. It seems that while some students are 
exploring these advanced tools, a significant majority 
have yet to incorporate them into their workflow. 

5. Regarding images and 3D design, which tools did you 

use? a) Midjourney, b) 3DFY AI, c) DeepMing Image, 

and d) None. No respondent used any GenAI tool of 
this category for their projects. 

6. Regarding 2D audio, which tools did you use? a) 

Chordana, b) Magenta, c) Amper Music, and d) None. 

No respondent used any GenAI tool of this category 
for their projects. 

7. Regarding 3D audio, which tools did you use? a) 

WaveNet, b) NVIDIA Omniverse Audio2Face, c) 

3Dimensions, and d) None. No respondent used any 
GenAI tool of this category for their projects. 

8. Regarding the Game Design Document (GDD), which 

tools did you use? a) OpenAI GPT-3, b) Google AI 

LAMDA, c) DeepMind AlphaFold, d) YanwenAI, e) 

Intelligent Gaming Labs, and f) None. In this case, the 
response is dichotomous. 58% of the respondents used 
OpenAI GPT-3. The rest of the respondents did not 
use any GenAI. This indicates a clear preference for 
OpenAI GPT-3 among those who did use GenAI 
tools, while a significant portion chose not to use any 
such tools in this category. 

9. Finally, some more general questions. Have you 

relied heavily on these types of tools for the 

development of the video game? (be honest...it’s not 

negative at all). 67% of the students did not rely 
heavily on the use of these types of tools, while the 
remaining 33% found them quite beneficial. This 
suggests a mixed level of engagement with GenAI 
tools among the students, with a significant portion 
finding value in their use for project development. 

10. How much time do you think using these types of tools 

has saved you? Try to quantify it in hours, please. 

Here, the responses are multiple and varied. Some 
students suggest that they have saved more than 20 
hours of work, while others point to a maximum of 
just one hour. This indicates a wide range of 
experiences with the use of GenAI tools, with the 
time-saving benefits varying significantly among the 
students. 

11. Do you think GenAI introduces uncertainty in the 

video game or computer sector? 60% of the students 
were concerned about these types of tools, while the 
remaining 40% feel confident that their jobs are not at 
risk. This highlights a significant divide in perceptions 
about the impact of AI on job security, reflecting 
broader debates in society about the role of automation 
and AI on the future of work. 



B. Use in An Advanced Algorithms Course 

The course “Advanced Algorithms” is an elective course 
in the first quarter of the 4th year, offered to students of both 
the Degree in Informatics and the Degree of Computer 
Engineering. It relies on a previous, mandatory course of the 
second year, “Design and Analysis of Algorithms”. 

The “Advanced Algorithms” course addresses advanced 
topics of design techniques previously studied, as well as 
advanced techniques, new to the students. The advanced 
topics refer to the greedy and backtracking techniques, 
whereas the novel techniques include heuristic and 
approximation algorithms, branch-and-bound, dynamic 
programming, and probabilistic algorithms. Most techniques 
address optimization problems, which are implicitly complex 
and difficult to solve. 

The emphasis of the course is not on coding but on the 
design decisions that lead to specific code and on the analysis 
of the algorithms. Students are given guidelines to solve 
algorithms for each design technique, usually either specific 
design decisions (e.g., a bounding function for a branch-and-
bound algorithm), development methodologies (e.g., for 
dynamic programming) or code templates (e.g., for 
backtracking). Students also are given software tools that 
support the analysis of either recursive behavior (namely, the 
visualization system SRec [19]) or experimentation with 
optimality and time execution (namely, the benchmarking 
system AlgorEx [20]). 

Assessment is solely based on six assignments, each one 
devoted to a different algorithm design technique. No 
assignment but the first one is limited to code. Instead, each 
assignment asks several of the following elements: a key 
design decisions specific of the design technique; code based 
on the design decisions; formal analysis of the algorithm time 
and space complexity; experimental analysis of either time 
performance, redundancy, or optimality. Four of the six 
assignments address the same optimization problem, so that 
students may better compare the different techniques. For each 
assignment, a report template is provided that students must 
adhere to, and where students must include explanations, 
program code, formulas, or visualizations exported as 
graphical files from the SRec and AlgorEx tools. 

For the purpose of this paper, we decided to explore the 
performance of ChatGPT 3.5 on solving the problem used in 
the academic course 2023/24. The complete statement can be 
found in Kleinberg and Tardos’ textbook [20, pp. 321-322], as 
exercise 10 of the dynamic programming chapter (not solved 
in the book). A summary of the problem statement is given in 
the two following paragraphs. 

Assume you have to simulate a physical system for as 
many discrete steps as you can. There are two computers 
available, but the simulation job can only run on one of the 
computers in any given minute. Over each of the next n 
minutes, you have a prevision of how much processing time 
is available on each computer. Thus, in minute i, you would 
be able to run ai>0 steps of the simulation if the job is run on 
machine A, and bi>0 steps if it is run on computer B. You 
might also move the job from one computer to the other, but 
doing this costs one minute of time in which no processing is 
done on the job. 

Given a sequence of n minutes, a plan is specified by a 
choice of A, B or “move” for each minute, with the property 

that A and B cannot appear in consecutive minutes. Thus, 
given values a0, a1, …, an-1 and b0, b1, …, bn-1, the problem 
consists in finding a plan of maximum value. An example was 
given with values for 4 minutes, and an optimal outcome equal 
to 37. 

The author had not used ChatGPT in advance. Thus he 
registered and started a session, which started warning 
ChatGPT that he would like to speak in Spanish (to have the 
same experience as his students) so as to obtain algorithms in 
Java. The session included different prompts on assignments 
2, 3, 5, and 6. They all were based on the same optimization 
problem, but each assignment required the students to solve it 
by using one or two different techniques. The session was not 
strictly lineal, as some techniques were addressed at several 
times. In summary, the session proceeded as follows, 
grouping interactions on the same technique: 

• Heuristic algorithms. A greedy-like heuristic 
algorithm was asked, as well as its time and space 
complexity analysis. Additional heuristics were also 
asked, without coding them, as well a local search 
algorithm, which should be coded. 

• Backtracking. A search tree to solve the problem was 
asked, as well as a backtracking algorithm based on the 
tree. 

• Branch and bound. A bounding function was asked, as 
well as modifying the previous backtracking algorithm 
to integrate the bounding function. Additional 
bounding functions were also asked, without coding 
them. 

• Dynamic programming. A recursive algorithm was 
asked, as well as a recursion tree and its corresponding 
dependency graph. Finally, an iterative algorithm was 
asked, as well as its time and space complexity 
analysis. 

• Probabilistic algorithms. A probabilistic algorithm 
was asked. 

The answers of ChatGPT were of varying quality. In some 
cases, they were completely correct, whereas in others they 
were partially or completely wrong, even with wrong answers 
persisting despite being prompted to fix them. The complete 
transcription and its analysis will be available as a technical 
report. We summarize here ChatGPT behavior for the 
different techniques: 

• Heuristic algorithms. A heuristic algorithm was 
developed by ChatGPT. Its rationale was correct. The 
style was excellent, with comments embedded into the 
code, good selection of method and variable 
identifiers, indentation, etc. 

However, we noticed that the algorithm did not satisfy 
the constraints of the problem statement, as it 
computed simulation steps in all minutes, even in 
presence of a computer swap. We reported the error 
and ChatGPT acknowledged it. However, on the first 
prompt, it did not change it at all, and on the second 
one, it made a minor, irrelevant change. 

We asked a summary of the algorithm behavior and 
ChatGPT did it well, but it also included summaries of 
the problem statement (especially, the target function) 



and its complexity analysis. On prompt, it again kept 
parts of the problem statement. 

Regarding time and space complexity of the algorithm, 
ChatGPT delivered a brief reasoning and the final, 
correct order of complexity. However, when we asked 
to prove the number of iterations of the loop, it was too 
verbose, and the answer was unsatisfactory, as it never 
resorted to a mathematical reasoning, such as the use 
of a constant series. With respect to space complexity, 
it omitted the space occupied by the parameters, but it 
corrected the analysis on prompt. 

Later, ChatGPT was asked to suggest a different 
heuristic. It provided one but, on noticing that the 
target function seemed to be different, it changed it into 
another one. In addition, we asked for more heuristics, 
and it outlined five additional heuristics. It was 
interesting to note that all heuristics were given a name. 
We demanded more precision on a detail of the fifth 
heuristic. It referred to “blocks” of time, but we asked 
the length of such blocks. ChatGPT gave twice a 
lengthy description of the experiment we should do 
determine the best length. Finally, we suggested that a 
block length equal to one seemed to be adequate for 
this problem; ChatGPT accepted that the suggestion 
could work, but it was not more concrete, including 
three additional diverging paragraphs. 

Finally, a local search algorithm was demanded, and it 
provided a well-structured solution. We noticed again 
that the algorithm counted simulation steps on a move, 
and it changed it correctly. However, we warned again 
and again that a Boolean condition checked whether a 
‘onReassignment’ variable was equal to ‘R’, while 
there was no statement which assigned such a value. 
ChatGPT always agreed that the researcher was right 
and changed the algorithm slightly, but the error was 
never fixed. 

• Backtracking. Firstly, a design of a search tree was 
asked. ChatGPT explained a candidate search tree and 
included a text-based drawing of a tree for an own 
example, of length 2. Then we prompted it to draw the 
search tree for the example given in the problem 
statement. The search tree was badly constructed and, 
for three times, a source of error was successively 
pointed out to ChatGPT. First, the tree height had one 
level less than expected. Second, we warned that its 
answer claimed an optimal value not present in the tree. 
Third, we contributed the optimal sequence of 
decisions and its associated value for the given 
problem instance. However, ChatGPT was persistently 
unable to build the correct search tree. 

Later on, we asked to obtain the code of a backtracking 
based on the search tree. Surprisingly, the code 
generated three recursive calls per node, whereas the 
search tree only contained two children nodes. 
ChatGPT did not fix it despite of being warned of the 
mistake. Actually, its answer suggested that ChatGPT 
confused children nodes of the search tree with 
function arguments. 

Backtracking algorithms are often coded as recursive 
algorithms (with the if-else structure usual in recursive 
algorithms) with an inner loop (for the children of the 
current node). Horowitz et al. [22] propose a more 

efficient template for backtracking algorithms, which 
promotes the loop out from the if-else. We asked 
ChatGPT to convert its previous algorithm to this new 
format. The algorithm was successively refined along 
four prompts, resulting in an equivalent algorithm. 

• Branch and bound. We successively asked whether a 
bounding function should compute an upper or a lower 
bound for the given problem, to define a bounding 
function, and to code a branch-and-bound algorithm 
that extended the previous backtracking algorithm with 
the newly defined bound. In all cases, the answer was 
correct, but too verbose. We asked to name the 
bounding function, and the answer was satisfactory. 

We also asked for additional bounding functions. 
ChatGPT contributed with three bounding functions, 
each one with a name. We noticed that one was 
probabilistic, thus it could compute values which were 
not an upper bound, and ChatGPT agreed. We asked a 
confirmation on the correctness of the two remaining 
upper bounds. ChatGPT confirmed and argued on its 
correctness. We noticed that they did not guarantee an 
upper bound, but we did not continue arguing. 

• Dynamic programming. A recursive solution was 
asked, contributing ChatGPT with a backtracking 
algorithm. We asked a purely recursive algorithm, 
without accumulating parameters, and we then 
obtained an adequate algorithm. After three prompts, 
noting different mistakes, we obtained a correct 
algorithm. 

Given that ChatGPT had demonstrated capability to 
draw text-based trees, we asked the recursion tree 
corresponding to the example given in the problem 
statement. The tree had fewer nodes than expected, but 
ChatGPT was unable to correct it. 

We also asked to convert the last recursion tree into a 
dependency graph, obtaining an incorrect graph, with 
nodes not present in the tree and even one node 
duplicated. 

We asked a Java declaration of a table capable to store 
in a structured way the values of the graph nodes. 
ChatGPT. It twice provided a memoization algorithm 
which used an appropriate table. We also asked an 
iterative version, which was correct. Finally, we asked 
the time and space complexity analysis, which was 
right but again too verbose and without calculating the 
number of iterations in a formal way. 

• Probabilistic algorithms. We asked a probabilistic 
algorithm, and it developed a well-designed algorithm, 
except for the omission again of not accumulating 
simulation steps for the minute of a computer swap. 
However, we focused on the randomized part of the 
algorithm. The only problem here was that the 
algorithm was implemented as a method with three 
parameters, where the third parameter was the number 
of random trials to compute (non-present in the 
problem statement). On demand, it was unable to 
remove such a parameter until the third version, which 
finally was correct. 



C. Use in a Language Processors Course 

Language Processors is a compulsory course placed in the 
second semester of the third year of the Informatics Degree. 
The course spans 15 weeks, with two sessions per week, each 
two hours long. Language processors are integral to compilers 
and interpreters. A compiler analyses and translates source 
code into executable binary or low-level code. Language 
processors, a part of a compiler, provide the theoretical 
foundations for this translation and are heavily reliant on fields 
like automata and formal languages theory, making them a 
complex subject in computer science degrees [23]. 

The course syllabus comprises four main topics: 
introduction to language processors, lexical analysis, syntax 
analysis, and syntax-directed translation. The introductory 
topic briefly describes where language processing concepts 
are located within scope of computer science and what are its 
foundations. 

The lexicographic analysis topic deals with the first 
general phase of a language processor. This topic provides an 
overview with its specific foundations −finite automata and 
regular expressions−, describes its main responsibilities 
−mainly producing tokens for the syntax analyzer−, and 
explains how it can be implemented, including the use of a 
parser generation tool like ANTLR1. Therefore, students have 
to dedicate some effort to understand how the implementation 
of a lexical analyzer is actually based on a deterministic finite 
automaton (DFAs). And, assuming the automatic generation 
of DFAs from regular expressions, they have to work on 
representing the typical constructions of a programming 
language in terms of regular expressions, even deciding which 
ones can be represented and which ones cannot. The main 
result of this topic is the construction of a lexical analyzer, also 
known as the scanner. 

The syntax analysis topic deals with the second phase of a 
language processor. The product of this phase, the syntax 
analyzer, is also known as the parser. Again its foundations 
are briefly explained −stack automata and independent 
context grammars− together with its relation with the scanner. 
Afterwards, two approaches to parser design are explained: 
top-down parsing techniques (based on LL grammars) and 
bottom-up parsing techniques (based on LR grammars). The 
implementation of these approaches are easily understood, 
although it is time consuming. Therefore, students are taught 
how to use automatic parser generation tools in order to be 
able to build their own parsers; ANTLR is again used for this 
objective. 

The last topic deals with how the parsing process can be 
used to generate to subsequent actions [24] needed to perform 
the translations and produce the outcome of a language 
processor, the third phase. This topic asks to students to use a 
different approach for its comprehension. Since the two 
previous topics where mostly based on procedural concepts, 
this one has a heavy design component. The students have to 
learn how to manage information −with attributes associated 
to the symbols of the grammar− and process it −with semantic 
actions associated to the grammar rules. Again, ANTLR is 
used to facilitate students a way to implement real language 
processors. 

                                                           
1 https://www.antlr.org/ 

The course lab project progresses in a similar manner, with 
students successively developing a scanner, a parser, and a 
syntax-directed translator. Close to half of the sessions are 
dedicated to the lab project, including learning how to use 
ANTLR. 

The teaching methodology used in this course is flipped 
classroom [25]. The first time it was used in the lab part was 
for the scanner development [26], but it has been extended to 
the theoretical part of the three last topics, which is more than 
the 90% of the course. The evaluation of the course is divided 
in the theoretical part of the course (performed with a test) and 
the course project lab. Students must pass both parts in order 
to pass the course. 

The contents of this course require form the students the 
comprehension of the theoretical aspects related to the 
syllabus. However, the use of the GenAI tool will be focused 
on the practical exercises, either the simple ones used during 
class explanations or the more complex ones involved in the 
course lab project. It must be taken into account that there 
already exist many tools that support students in some parts of 
the course, for example, JFlap22 can be used to work on the 
formal languages theory as well as the construction and 
tracing of parsers with both approaches: LL(1) and SLR(1). 

This is the first time that GenAI tools will be used in this 
course. Given the existing (non GenAI) tools, the students will 
be most benefited by the use of GenAI with exercises asking 
the creation or the transformation of elements. Some examples 
have been tested to evaluate what can the GenAI tool offer to 
students: 

• Scanner. GenAI can provide solutions for exercises 
asking the specification of regular expressions for 
tokens, as well as their specification using ANTLR. 
Given the standardization of the language specification 
for regular expressions and ANTLR, the solutions 
provided by the GenAI tool are quite correct. But there 
is an issue with the ANTLR exercises, the solutions 
provided use either lexical and syntactical grammars, 
while the exercises must use only lexical grammars. 
This requires a careful design of the prompt. 

• Parser. This topic has a heavy load of algorithms, 
together with the previously mentioned supporting 
tools. Therefore, the use of GenAI will focus on LL(1) 
parsers, especially in disambiguation and left recursion 
removal exercises. Of course, this exercises are solved 
with algorithms as well, but their application is more 
difficult than the other algorithms used in this topic. 
The solutions provided by the GenAI tool are quite 
correct with useful explanations of how the algorithms 
are applied. 

• Syntax directed translation. The use of GenAI in this 
topic will provide solutions to exercises related to 
translators written for the ANTLR tool. In fact, 
solutions provided are correct but, again, the GenAI 
tool use all the possibilities of ANTLR. This requires 
from the user rewording the prompt in order to 
accomplish with requirements, e.g. use only BNF 
grammars. In addition, many exercises of this topic use 
a non-formal language for translator specification, 
similar to pseudocode for programming education. In 

2 https://jflap.org/ 



this case, the GenAI tool could only offer general 
guidelines for the specification design. 

The main role of GenAI in this course will be as a provider 
of alternative solutions or hints (when the teacher cannot 
provide them immediately) to exercises. The students will be 
asked to solve the exercises and then ask the GenAI tool to 
provide them with alternative solutions. In addition, the 
effectiveness of the answers provided by GenAI tools highly 
depends on how they are prompted [27], so GenAI tools often 
provide wrong or incomplete answers. Therefore, students 
will be involved in a reflecting exercise comparing their 
solutions with the ones provided by the GenAI tool (either 
correct or not). This will support the understanding of the 
concepts used in the exercise [28]. 

IV. DISCUSSION 

A. Video Games Project 

The case study carried out on a video game subject 
provides relevant information about its use, but even more 
important is the uncertainty it generates in the students. This 
highlights the need for further discussion and education about 
the role and impact of GenAI tools in various fields, including 
game development. 

On the one hand, it is interesting to see how AI is being 
incorporated into different fields or categories. This can 
provide students with practical experience and skills that are 
increasingly relevant in today’s digital world. On the other 
hand, the use of current tools is biased, using only a few tools.  
The results reveal that the tools most known to the general 
public are also the most used by video game students. This 
suggests that familiarity and general awareness play a 
significant role in tool selection, which may not always lead 
to the most effective or efficient choice for the task. 

Something surprising is the low percentage of use of 
GenAI coding tools. GitHub Copilot is a widely known tool, 
but not sufficiently exploited by the engineers or video game 
developers of tomorrow. This suggests that these tools are not 
fully utilized in practice, potentially due to a variety of factors 
such as lack of familiarity, comfort with existing methods, or 
perceived relevance to the task at hand. It underscores the 
importance of continued education and exploration of these 
tools among aspiring developers. 

Finally, it is worth noting a feeling of guilt and concern in 
the use of these types of tools. The students feel as if they are 
cheating or deceiving themselves, which generates a halo of 
frustration. According to the more personal responses offered 
by the respondents, the use of these tools could jeopardize 
many jobs in the near future. This highlights the ethical and 
societal implications of AI and automation, which are 
important considerations in the ongoing development and 
adoption of these technologies. 

B. Advanced Algorithms 

The experiment conducted with ChatGPT has revealed 
strengths and weaknesses. Posteriori, we may guess that the 
results can be explained from the origin of its “intelligence”: 
pattern recognition but lack of actual understanding. The pros 
and cons balance each other but, if it was a student of the 
course, the teacher would probably rate it with a fail grade. 

On the one side, ChatGPT generated apparently good 
algorithms, which corresponded to the design technique 
demanded and were coded in a good style. It was able to 

generate alternative algorithms, based on common strategies 
with a name. ChatGPT also performed consistent 
transformations of code on demand, usually after several 
prompts. Finally, it analyzed correctly the time and space 
complexity of iterative algorithms. 

On the other hand, ChatGPT was too verbose, even when 
succinctness was demanded. It had difficulties understanding 
an intricate problem statement, as it is the case of the 
combinatorial optimization problem used for the experiment. 
This produced inability to fix buggy algorithms, even when 
the error was identified. ChatGPT also had difficulties dealing 
with algorithm design decisions. In cases where sophisticated 
reasoning was required (e.g., bounding functions), wrong 
strategies were suggested. When it was asked to fix errors, it 
often persisted in the error. It was sometimes fixed after 
several prompts, but it was not in other cases. ChatGPT was 
unable to prove time complexity in mathematical terms (i.e., 
by using series). Finally, ChatGPT had problems with some 
cases of tracing, such as presenting a search tree or a recursion 
tree for given input data. We wonder whether this problem 
could also be due to the difficulty of presenting non-lineal 
structures as text. 

The difficulties identified are consistent with findings by 
other authors. Thus, the success of ChatGPT solving problems 
seems to be inverse to the problem difficulty and the intricacy 
of the problem statement [11, 12, 13]. It also has difficulties 
producing an adequate or even a correct answer when the 
output is not strictly related to the source code but it involves 
an implicit thinking, e.g., tracing (which involves operational 
semantics) or proofs (which involve mathematical thinking) 
[14]. 

However, the teacher can make use of these virtues and 
defects in the classroom. ChatGPT can be a good source of 
inspiration, according to algorithmic strategies often used in 
certain design techniques or problems. The teacher can use 
ChatGPT to obtain candidate design decisions or code and 
discuss them with students, prompting for fixing them and 
making explicit the errors and inconsistencies presented. The 
same didactic use can be given to summaries demanded of 
algorithmic behavior. Finally, ChatGPT can be used to 
illustrate good programming style. 

C. Language Processors 

The inclusion of GenAI tools in education is at an early 
stage and more experience is needed in order to find effective 
ways of use, design proper educational contexts and check the 
impact on the learning experience. Three main aspects have 
emerged from this proposal. Firstly, the usefulness of the 
solutions provided by the GenAI tool depends on the type of 
exercises. The solutions are useful and correct when the 
exercises are simple and must be specified using a standard 
and formal language, e.g. regular expressions, context free 
grammars or ANTLR specifications. This could support 
students for concrete doubts and errors [29]. However, when 
some restrictions must be applied to solutions or the 
complexity of exercises is increased, the user has to dedicate 
a significant effort to design carefully the prompt in order to 
receive a solution. 

Secondly, following the previous idea, it must be studied 
to what extent the effort dedicated to prompt design supports 
student’s learning. In addition, students must be able to 
evaluate the correctness of the solutions provided by the 
GenAI tool. Although it has been showed that working with 



wrong examples is positive [28], there is a risk of 
incorporating erroneous knowledge [30] if students do not 
recognise wrong or incomplete solutions. The approach that 
students should follow could be guided by the following 
questions: Do I completely understand the solution? Am I sure 
that this solution is sound and correct? 

Finally, the following question raises, Should the 
evaluation system be adapted to the use of GenAI tools? Given 
the current concern about cheating and plagiarism with GenAI 
tools [30], the answer is yes, it must be adapted. The 
evaluation of the theoretical part of this course has no problem 
with GenAI tools because it is performed by invigilated tests. 
On the contrary, the evaluation of the course lab project must 
be adapted taking into account that students will be able to use 
GenAI tools. This could be done in some different ways. On 
the one hand, a compulsory oral presentation of the lab project 
could be required. This means that more time will be needed 
in order to schedule the presentations of all the students. On 
the other hand, the theoretical tests could include essay 
questions directly related with the students’ solutions to lab 
project. 

V. CONCLUSIONS 

We have presented three different experiences of use of 
GenAI in informatics courses. One experience has presented 
the results of a survey on the use of GenAI by students of a 
video games degree. Another experience has presented the 
results of experimenting an instructor with different 
techniques for an optimization problem in the context of an 
advanced algorithm course. Finally, a proposal of use of 
GenAI in a language processors course has been presented. 

The main results of the experiences follow. Firstly, GenAI 
is a technology that must not be ignored by instructors, 
because students are actually using them. Furthermore, 
instructors must think carefully about how to integrate the 
different types of GenAI (text, images, code, etc.) in their 
courses. Secondly, students could benefit from being trained 
in these tools, especially when they are demanded a large 
number of artifacts and different media. In particular, GenAI 
tools often generate inaccurate code or explanations for non-
trivial tasks. Consequently, critical assessment of GenAI 
deliveries is a necessary skill that students and instructors 
must develop for their productive use. Finally, the courses 
must be adapted in their different parts to successfully 
integrate GenAI. The reflective of GenAI tools can be 
integrated into the classroom instruction, as a third part who 
may be asked to participate by contributing in the class 
dynamics. Assignments must be reconsidered to avoid 
cheating. Good potential measures are demanding students to 
generate different but related artifacts (e.g., visualizations) or 
to make an oral presentation of their work. 
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