
This is the Accepted manuscript version of the following article:

D. Palacios-Alonso, J. Urquiza-Fuentes, J. Á. Velázquez-Iturbide and J. Guillén-García,
"Experiences and Proposals of Use of Generative AI in Advanced Software Courses," 2024 IEEE
Global Engineering Education Conference (EDUCON), Kos Island, Greece, 2024, pp. 1-10, doi:
10.1109/EDUCON60312.2024.10578869.

DOI: https://doi.org/10.1109/EDUCON60312.2024.10578869

© 2024 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained
for all other uses, in any current or future media, including reprinting/republishing this material for
advertising or promotional purposes, creating new collective works, for resale or redistribution to
servers or lists, or reuse of any copyrighted component of this work in other works.

https://doi.org/10.1109/EDUCON60312.2024.10578869

XXX-X-XXXX-XXXX-X/XX/$XX.00 ©20XX IEEE

Experiences and Proposals of Use of Generative AI
in Advanced Software Courses

Daniel Palacios-Alonso
Department of Computing

and Statistics
Universidad Rey Juan

Carlos

Madrid, Spain
daniel.palacios@urjc.es

Jaime Urquiza-Fuentes
Department of Computing

and Statistics
Universidad Rey Juan

Carlos

Madrid, Spain
jaime.urquiza@urjc.es

J. Ángel Velázquez-Iturbide
Department of Computing

and Statistics
Universidad Rey Juan

Carlos

Madrid, Spain
angel.velazquez@urjc.es

Julio Guillén-García
Department of Computing

and Statistics
Universidad Rey Juan

Carlos

Madrid, Spain
julio.guillen@urjc.es

Abstract— the last year, we have witnessed the

popularization of generative artificial intelligence. Its output

includes text, code, image, audio, speech, voice, music, and

video. Therefore, it impacts education courses where students

are required to elaborate on any of these artifacts. In particular,

the generation of code affects informatics courses, where

assignments usually ask students to develop and deliver

programming code. The impact of generative artificial

intelligence on informatics courses has been mainly studied for

introductory programming courses. These studies have shown

that generative artificial intelligence is able to produce highly

sophisticated programs, but also that its results and rationale

can be inaccurate. Moreover, the impact of generative artificial

intelligence has not been studied for other informatics subjects.

In this paper, we present our preliminary experience and

proposals on three advanced software courses, namely video

games, advanced algorithms and language processors. For the

video games course, we present the opportunities of use of

generative artificial intelligence and the results of a survey

conducted with students on their use to obtain different media

products. For the algorithms course, we present the result of a

session driven by the instructor on different design techniques,

showing the merits and demerits of the answers generated. For

the language processors course, a proposal of use of generative

artificial intelligence is presented, broken down into the parts of

a typical language processor. The paper concludes with some

suggestions for instructors.

Keywords— informatics education, generative artificial

intelligence, video games, advanced algorithms, language

processors

I. INTRODUCTION

The field of artificial intelligence (AI) comprises different
technologies that have been applied to education. Their uses
also are multiple:

• Intelligent tutors. They provide assistance and
personalized teaching to individual students.

• Predictive AI. They analyze students’ interactions or
grades, and try to identify patterns of behavior that are
symptoms of their past or future performance, e.g.,
plagiarism or drop out.

• Other uses, such as augmenting grading efficiency and
consistency, or assisting in administrative tasks (e.g.,
scheduling).

In the last year, we have witnessed the popularization of
another AI technology, generative artificial intelligence
(GenAI for short). These tools are trained on massive amounts

of data to recognize patterns and relationships, which they use
to generate outputs customized to the users’ prompts.
Examples of tasks these tools perform with success [1] are:
answering questions, improving and summarizing text,
writing essays, translating text from one language to another,
generating ideas or suggestions for a given topic, and
generating text with specific attributes, such as tone,
sentiment, or formality.

Actually, GenAI output is not limited to text, but it may
also generate code, image, audio, speech, voice, music, and
video. Consequently, GenAI is impacting all areas of content
generation. In particular, GenAI also is impacting informatics,
as it is a discipline which heavily relies on writing code.

Some authors have predicted the end of programming as
we have known it for decades [2]. They envision that
programmers will be replaced by specification writers
outlining to GenAI tools what code they want in natural
language and obtaining the code. However, other authors are
not so optimistic, arguing that GenAI will assist programmers
to be more productive in some areas but not in others [3]. In
particular, GenAI seems to be successful in generating pieces
of code, i.e., “snippets”.

GenAI also is impacting the education sector more
profoundly than previous AI tools. GenAI can be used to
generate different kinds of artifacts, to answer questions and
to complete written tasks. It can also respond to prompts in a
human-like way. GenAI can be used to solve assignments
which involve these activities, thus raising issues of
plagiarism. There is no study on which disciplines are more
threatened, but the risk is obvious in disciplines where
assignments often include essays (e.g., history) or media
artifacts (e.g., arts).

Obviously, the risk affects informatics education, where
different software artifacts (e.g., algorithms or database
queries) are usually required in assignments. Certain forms of
low-code programming [4] have been adopted in the last
decades for programming education, especially block-based
languages [5]. However, the risk of GenAI comes from the
fact that it may not require the programmer to produce any
code at all, just to state a specification of the intended code
behavior, which usually is the assignment statement specified
by the instructor.

The paper presents several experiences and proposals of
the authors on advanced software education at the university.
The authors are not aware of similar papers regarding the
education of informatics subjects other than programming.
Notable exceptions are Shoufan [6] and Pérez-Colado et al.
[7]. The first research work focused on ChatGPT's ability to
answer test questions on digital circuits and computer

This work was supported by a research grant to the LITE research
group of the Universidad Rey Juan Carlos (ref. M3286) and the project
grant of Student Observatory of the Universidad Rey Juan Carlos (ref.
2023/OBSERC-37674).

architecture. The authors of the second research demonstrate
how AI techniques can streamline the prototyping of serious
games by automating tasks, generating personalized content,
and optimizing the creative process, allowing developers to
focus on more strategic and creative aspects of game design.

The structure of the paper is as follows. In the following
section, we present a summary of the impact of GenAI on
education. The third section presents experiences and
proposals at three courses of the authors’ university, namely
advanced algorithms, video games, and language processors.
The fourth section discusses the issues raised by these
experiences and proposals. Finally, we summarize our
conclusions.

II. GENAI IN INFORMATICS EDUCATION

In this section we introduce the use of GenAI in education
in general, and in programming education in particular.

A. GenAI in Education

As any digital technology, GenAI can provide both
benefits and damage [8]. Thus, GenAI can help students
practice and improve their language skills, e.g., by
encouraging interaction in natural language or by supporting
language translation. They can also adapt learning to the
student’s level of knowledge and may assist some minorities,
such as students with disabilities. Even teachers may benefit,
e.g., by assisting either in automated essay grading or by
generating sample lesson plans, learning objectives, and
instructional activities (which they must later review and
refine).

GenAI also has limitations. Thus, its outcomes may be
inaccurate, inappropriate, outdated, or biased because they are
not based on an understanding but on the patterns found in the
data used for training. It also raises issues of academic
integrity, because students may deliver outcomes of GenAI
tools without proper attribution.

Educational authorities and institutions have reacted in
several ways. Some educational institutions have banned the
use of GenAI, while others have not reacted at all or other
governments and organizations are playing an active role in
informing with warnings and recommendations on the
educational use of GenAI.

The British Government [9] acknowledges opportunities
to reduce teachers’ workload. However, it also warns on
several risks, such as the use of personal data or original
products (subject to the students’ intellectual property) to train
AI models. Students should also be aware that the contents
generated may be inaccurate, inappropriate or biased.
Consequently, they should develop skills to use GenAI in a
critical way.

The Joint Council for Qualifications (JCQ) has published
guidance on AI use in assessments [1] to support teachers and
exam centers to know how to protect the integrity of
qualifications and what counts as AI misuse. The JCQ
definition of AI misuse is clear [1]:

“AI tools must only be used when the conditions of the
assessment permit the use of the internet and where the student
is able to demonstrate that the final submission is the product
of their own independent work and independent thinking.”

JCQ provides examples of AI misuse, which consider any
form of copying, paraphrasing or failure to acknowledge use

of AI tools. In addition, JCQ advocates for responsible use of
AI tools, making students aware of AI misuse and making
centers and teachers aware of their responsibility in defining
policies and in informing students on appropriate use and of
risks of using AI.

Several organizations, coordinated by Code.org, has
launched the TeachAI initiative, which is intended to provide
guidance on the educational use of AI. The initiative has
elaborated an open document [10] with guidelines to address
AI in education. The “toolkit” identifies seven principles for
AI use, including reaffirming adherence to existing
educational policies, promoting AI literacy, and balancing the
benefits and risks of AI.

B. GenAI in Programming Education

GenAI can be used to generate computer programs.
Probably, the two most popular GenAI programming tools are
ChatGPT and Github’s Copilot, but many other tools exist:
Alphacode, AI Code Reviewer, AI Data Sidekick, and
Figstack. Typically, they generate code for a problem
statement written in natural language, but they can also
perform other programming tasks, such as explain program
code or translate code between programming languages.

The potential of GenAI for generating programs has led to
a profound concern within the informatics community, even
suggesting that the very nature of informatics and its curricula
should be revised [2]. Different experiences and research
efforts have been conducted. We just summarize a
representative sample.

Some studies focus on the success of GenAI in solving
programming problems. Tran et al. [11] experimented with a
large collection of exercises extracted from the Kattis online
judge system. The problems selected were evenly rated with
varying degree of difficulty, and their statement was verbose,
including social and cultural background contexts. Their
results allow concluding that success of ChatGPT solving
problems was inversely related to both the perceived problem
difficulty and the richness of the vocabulary used.

Puryear and Sprint [12] assumed that students will use
GenAI for programming tasks, thus they inquired into the
quality of the programs generated by Copilot. They found that
Copilot generates code that can solve introductory
assignments with human-graded scores ranging from 68% to
95%. In addition, generated code was generally not similar
enough to students’ code to suggest plagiarism. The authors
made several educational suggestions based on these results,
including promoting students’ training on GenAI
programming tools, teaching debugging and testing
techniques, stating unfamiliar assignment statements, and
promoting assessment methods that guarantee students’
understanding of their solutions.

Other studies have found similar results, with some
nuances. Thus, Ouh et al. [13] found that ChatGPT does not
help much when there are complex instructions (e.g.,
producing a sophisticated representation as output), or when
the exercises require students to interpret API documentation
and UML diagrams. Similar difficulties (such as poor
handling of exercises requiring complex chains of reasoning
steps) have been reported by other authors [14]. Mixed results
have also been obtained when ChatGPT has been prompted to
check, critique and provide suggestions on students’
submissions [15].

Some studies have focused on students’ experience as
programmers in use of GenAI tools. Prather et al. [16] studied
the interactions and the perception of novices in an
undergraduate introductory programming course who used
Copilot for their first time. They observed two novel
interaction patterns (complementary to patterns documented
in the scientific literature for professional programmers),
explored the ethical implications of the results, and presented
several design implications for GenAI to be used in
programming education.

There has been extensive research in the field of
computing education on the relationship between a student’s
ability to explain code and other skills such as writing and
tracing code. In particular, the ability to describe at a high-
level of abstraction how code will behave over all possible
inputs correlates strongly with code writing skills. Leinonen
et al. [17] have explored the potential of GenAI in generating
explanations that can serve as examples to scaffold students’
ability to understand and explain code. They found that GenAI
created explanations being significantly easier to understand
and more accurate summaries of code than student-created
explanations. They argue that these tools can be useful for
students who are practicing code reading and explaining.

Adopting a different approach, Lehtinen [18] asked
questions to ChatGPT about code generated by the system
itself. The system responded to the questions better than the
average novice, but it also lapsed into human-like errors
producing failed reasoning about the code.

III. EXPERIENCES AND PROPOSALS

In this section, we present our initial experience using
GenAI in three courses. First, we describe the results of a
survey conducted with students of a video games project
course on their actual use of GenAI for their project. Second,
we report on the result of an experience conducted by the
instructor of an advanced algorithms course to check the
quality of ChatGPT answers to prompts mirroring the course
assignments. Thirdly, we present a proposal of integration of
GenAI in the different parts of an intensive software course,
namely language processors. All the contributions are in the
context of informatics degrees at the Universidad Rey Juan
Carlos.

A. Use in a Video Games Project Course

The course “Games for Web and Social Networks” is a
fourth-year course of the Degree in Video Game Design and
Development with 80 students enrolled. The course focuses
on the completion of a full video game in just fourteen weeks
(the duration of the subject) by each of the “companies” or
students’ teams. Video games start from their most incipient
idea to the development of a postmortem document once the
project is finished. In addition, at the end of the course,
students must present their game in a limited time (elevator
pitch) with a completely professional style (like the one done
in the PlayStation® Talents) in front of a multidisciplinary
group of professionals in the sector. As a result of this
innovative proposal, several of these groups have obtained
notable results on social networks and through the feedback of
the members of the expert tribunal who encouraged them to
continue with the video games developed and to try to
introduce them into the market. The high degree of student
satisfaction with the teaching work carried out is noted.

The main motivation of this innovative practice is to bring
together all the general and specific knowledge and skills
acquired throughout the university career and expose a
scenario as close as possible to the working world and more
specifically, to the business, commercial and video game
development sectors. To carry out this task, a substantial
methodological change in the classroom has been necessary.
This change lies in the recreation, in the form of a live role-
playing game, of a video game design and development
company. These companies will have to make their
elaborations and try to simulate a business model that allows
the members of this company to stay afloat for no less than
two years in the real market.

The subject can be considered very demanding in terms of
work hours and dedication on the part of the student. The
development of the video game is carried out with an
industrial framework of recognized prestige in the sector,
Unity. The student can use all the aids provided by a
professional tool.

The chosen methodology is based on six steps:

1) Proposal of a realistic and competitive project.
Students must develop all the necessary infrastructure to
establish themselves on the network of networks as an
emerging video game design and development company.
Therefore, they must choose a company name and register the
following points: an email account, a Twitter account, an
itch.io account, create a business website on GitHub and a
YouTube channel.

2) Creation of a realistic portfolio. One of the most
important concerns of students who reach the last year of their
career is the fact of finishing the career without having made
a complete videogame or, in other words, a creation of their
own. The different courses focus on understanding
algorithms, creating animations, designing agile
methodologies, etc. However, all of them are disconnected
and without a common thread that allows students to show
everything learned so far. For this reason, when students finish
this course, they have a portfolio that demonstrates the skills
acquired and two tangible and saleable products made by
themselves.

3) Attractive and competitive rubrics. An essential part of
this project is to keep the student “hooked” at all times. One
way to achieve this is to present an evaluation method that
provides a grade on the team’s effort. Given that the subject is
demanding, if the project meets the minimum requirements,
the team will have achieved a passing grade. However, if the
team performs extra tasks, that grade can gradually rise until
obtaining the maximum grade.

4) Undertaking a challenge. The project has a triple
evaluation method, that is, it is evaluated by the subject’s
teachers, the students themselves and an expert tribunal. This
last evaluating group generates an extra level of motivation
because the students know that they are going to be evaluated
by people who know and live the world of video games first-
hand. For this reason, students commit to the project and their
colleagues to successfully carry out each of the creations.

5) A finished game...is a treasure. It must be understood
that the video game industry, like consulting or software
companies, requires solid evidence to be able to hire
individuals who could become part of the staff. For this
reason, they see this proposal as a springboard to show the

work done to possible “talent scouts” in the world of video
games in Spain and abroad months later.

6) A proposal full of experts. To carry out this innovative
proposal, professionals from the sector have been counted on,
but most importantly, from different areas such as digital
marketing / PR and social media expert, video game magazine
editors, Indie video game developers, specialists in artificial
intelligence and algorithms, lawyers specializing in patents
and software.

Due to the high demand for work required of students in
coding, 2D/3D animation, music, texturing, sound effects,
documents and more arrangements necessary for a final
version of a video game; we considered the use of GenAI for
the development of projects in the 2023/24 course. It should
be noted that the use of these tools was completely optional
and students were encouraged to use them, making it clear that
it would not raise or lower the final grade.

Once the course was finished and all the project deliveries
were made, the teachers conducted a detailed survey aimed at
obtaining information about the use of GenAI in the course.

The survey consisted of 15 questions, of which three were
personal data and twelve were directed at the different GenAI
tools used for tasks such such as coding, 2D/3D design, 2D/3D
audio, documentation, and some personal questions about this
new paradigm. 38 students completed the questionnaire (28 of
them used AI and the rest did not), the most relevant questions
and answers are presented below, the percentages correspond
to the students who used AI in their projects:

1. Have you used any GenAI to make any part of the

JWRS project (however minimal)? In this question,
73% of respondents said yes, they used GenAI in some
part of the project, while 26% did not use it at all.

2. Let’s start with generalist GenAI, which tools did you

use? a) ChatGPT, b) Google Bard, c) Bing chat, and

d) None. Of the 73% of respondents who used GenAI,
87% used ChatGPT and 12% used Bing Chat.
However, Google Bard was not used by any
respondent.

3. Regarding coding, which tools did you use? a)

CodeGPT, b) CodeDaVinci, c) Code-Bard, d) GitHub

Copilot, e) Code2Vec, and f) None. The outcomes
were quite clear when it came to the use of AI for
programming tasks. Only three out of the six options
were chosen. 25% of the students used CodeGPT, and
10% used the well-known, and somewhat
controversial, GitHub Copilot. However,
interestingly, 60% of those who did use GenAI did not
use them for programming tasks. This suggests that
while AI tools are being utilized in project
development, their application in programming tasks
is not as widespread.

4. Regarding images and 2D design, which tools did you

use? a) DALL-E 2, b) VQGAN+CLIP, c) GANPaint,

d) None and e) Others. In the survey, it was found that
26% of respondents have used this type of generative
AI. Only a small portion of them, 13%, used DALL-E
2 and another 13% used other unspecified tools.
Interestingly, the remaining 73% did not use this type

of tools for their projects. This data provides an insight
into the current usage trends of GenAI in project
development. It seems that while some students are
exploring these advanced tools, a significant majority
have yet to incorporate them into their workflow.

5. Regarding images and 3D design, which tools did you

use? a) Midjourney, b) 3DFY AI, c) DeepMing Image,

and d) None. No respondent used any GenAI tool of
this category for their projects.

6. Regarding 2D audio, which tools did you use? a)

Chordana, b) Magenta, c) Amper Music, and d) None.

No respondent used any GenAI tool of this category
for their projects.

7. Regarding 3D audio, which tools did you use? a)

WaveNet, b) NVIDIA Omniverse Audio2Face, c)

3Dimensions, and d) None. No respondent used any
GenAI tool of this category for their projects.

8. Regarding the Game Design Document (GDD), which

tools did you use? a) OpenAI GPT-3, b) Google AI

LAMDA, c) DeepMind AlphaFold, d) YanwenAI, e)

Intelligent Gaming Labs, and f) None. In this case, the
response is dichotomous. 58% of the respondents used
OpenAI GPT-3. The rest of the respondents did not
use any GenAI. This indicates a clear preference for
OpenAI GPT-3 among those who did use GenAI
tools, while a significant portion chose not to use any
such tools in this category.

9. Finally, some more general questions. Have you

relied heavily on these types of tools for the

development of the video game? (be honest...it’s not

negative at all). 67% of the students did not rely
heavily on the use of these types of tools, while the
remaining 33% found them quite beneficial. This
suggests a mixed level of engagement with GenAI
tools among the students, with a significant portion
finding value in their use for project development.

10. How much time do you think using these types of tools

has saved you? Try to quantify it in hours, please.

Here, the responses are multiple and varied. Some
students suggest that they have saved more than 20
hours of work, while others point to a maximum of
just one hour. This indicates a wide range of
experiences with the use of GenAI tools, with the
time-saving benefits varying significantly among the
students.

11. Do you think GenAI introduces uncertainty in the

video game or computer sector? 60% of the students
were concerned about these types of tools, while the
remaining 40% feel confident that their jobs are not at
risk. This highlights a significant divide in perceptions
about the impact of AI on job security, reflecting
broader debates in society about the role of automation
and AI on the future of work.

B. Use in An Advanced Algorithms Course

The course “Advanced Algorithms” is an elective course
in the first quarter of the 4th year, offered to students of both
the Degree in Informatics and the Degree of Computer
Engineering. It relies on a previous, mandatory course of the
second year, “Design and Analysis of Algorithms”.

The “Advanced Algorithms” course addresses advanced
topics of design techniques previously studied, as well as
advanced techniques, new to the students. The advanced
topics refer to the greedy and backtracking techniques,
whereas the novel techniques include heuristic and
approximation algorithms, branch-and-bound, dynamic
programming, and probabilistic algorithms. Most techniques
address optimization problems, which are implicitly complex
and difficult to solve.

The emphasis of the course is not on coding but on the
design decisions that lead to specific code and on the analysis
of the algorithms. Students are given guidelines to solve
algorithms for each design technique, usually either specific
design decisions (e.g., a bounding function for a branch-and-
bound algorithm), development methodologies (e.g., for
dynamic programming) or code templates (e.g., for
backtracking). Students also are given software tools that
support the analysis of either recursive behavior (namely, the
visualization system SRec [19]) or experimentation with
optimality and time execution (namely, the benchmarking
system AlgorEx [20]).

Assessment is solely based on six assignments, each one
devoted to a different algorithm design technique. No
assignment but the first one is limited to code. Instead, each
assignment asks several of the following elements: a key
design decisions specific of the design technique; code based
on the design decisions; formal analysis of the algorithm time
and space complexity; experimental analysis of either time
performance, redundancy, or optimality. Four of the six
assignments address the same optimization problem, so that
students may better compare the different techniques. For each
assignment, a report template is provided that students must
adhere to, and where students must include explanations,
program code, formulas, or visualizations exported as
graphical files from the SRec and AlgorEx tools.

For the purpose of this paper, we decided to explore the
performance of ChatGPT 3.5 on solving the problem used in
the academic course 2023/24. The complete statement can be
found in Kleinberg and Tardos’ textbook [20, pp. 321-322], as
exercise 10 of the dynamic programming chapter (not solved
in the book). A summary of the problem statement is given in
the two following paragraphs.

Assume you have to simulate a physical system for as
many discrete steps as you can. There are two computers
available, but the simulation job can only run on one of the
computers in any given minute. Over each of the next n
minutes, you have a prevision of how much processing time
is available on each computer. Thus, in minute i, you would
be able to run ai>0 steps of the simulation if the job is run on
machine A, and bi>0 steps if it is run on computer B. You
might also move the job from one computer to the other, but
doing this costs one minute of time in which no processing is
done on the job.

Given a sequence of n minutes, a plan is specified by a
choice of A, B or “move” for each minute, with the property

that A and B cannot appear in consecutive minutes. Thus,
given values a0, a1, …, an-1 and b0, b1, …, bn-1, the problem
consists in finding a plan of maximum value. An example was
given with values for 4 minutes, and an optimal outcome equal
to 37.

The author had not used ChatGPT in advance. Thus he
registered and started a session, which started warning
ChatGPT that he would like to speak in Spanish (to have the
same experience as his students) so as to obtain algorithms in
Java. The session included different prompts on assignments
2, 3, 5, and 6. They all were based on the same optimization
problem, but each assignment required the students to solve it
by using one or two different techniques. The session was not
strictly lineal, as some techniques were addressed at several
times. In summary, the session proceeded as follows,
grouping interactions on the same technique:

• Heuristic algorithms. A greedy-like heuristic
algorithm was asked, as well as its time and space
complexity analysis. Additional heuristics were also
asked, without coding them, as well a local search
algorithm, which should be coded.

• Backtracking. A search tree to solve the problem was
asked, as well as a backtracking algorithm based on the
tree.

• Branch and bound. A bounding function was asked, as
well as modifying the previous backtracking algorithm
to integrate the bounding function. Additional
bounding functions were also asked, without coding
them.

• Dynamic programming. A recursive algorithm was
asked, as well as a recursion tree and its corresponding
dependency graph. Finally, an iterative algorithm was
asked, as well as its time and space complexity
analysis.

• Probabilistic algorithms. A probabilistic algorithm
was asked.

The answers of ChatGPT were of varying quality. In some
cases, they were completely correct, whereas in others they
were partially or completely wrong, even with wrong answers
persisting despite being prompted to fix them. The complete
transcription and its analysis will be available as a technical
report. We summarize here ChatGPT behavior for the
different techniques:

• Heuristic algorithms. A heuristic algorithm was
developed by ChatGPT. Its rationale was correct. The
style was excellent, with comments embedded into the
code, good selection of method and variable
identifiers, indentation, etc.

However, we noticed that the algorithm did not satisfy
the constraints of the problem statement, as it
computed simulation steps in all minutes, even in
presence of a computer swap. We reported the error
and ChatGPT acknowledged it. However, on the first
prompt, it did not change it at all, and on the second
one, it made a minor, irrelevant change.

We asked a summary of the algorithm behavior and
ChatGPT did it well, but it also included summaries of
the problem statement (especially, the target function)

and its complexity analysis. On prompt, it again kept
parts of the problem statement.

Regarding time and space complexity of the algorithm,
ChatGPT delivered a brief reasoning and the final,
correct order of complexity. However, when we asked
to prove the number of iterations of the loop, it was too
verbose, and the answer was unsatisfactory, as it never
resorted to a mathematical reasoning, such as the use
of a constant series. With respect to space complexity,
it omitted the space occupied by the parameters, but it
corrected the analysis on prompt.

Later, ChatGPT was asked to suggest a different
heuristic. It provided one but, on noticing that the
target function seemed to be different, it changed it into
another one. In addition, we asked for more heuristics,
and it outlined five additional heuristics. It was
interesting to note that all heuristics were given a name.
We demanded more precision on a detail of the fifth
heuristic. It referred to “blocks” of time, but we asked
the length of such blocks. ChatGPT gave twice a
lengthy description of the experiment we should do
determine the best length. Finally, we suggested that a
block length equal to one seemed to be adequate for
this problem; ChatGPT accepted that the suggestion
could work, but it was not more concrete, including
three additional diverging paragraphs.

Finally, a local search algorithm was demanded, and it
provided a well-structured solution. We noticed again
that the algorithm counted simulation steps on a move,
and it changed it correctly. However, we warned again
and again that a Boolean condition checked whether a
‘onReassignment’ variable was equal to ‘R’, while
there was no statement which assigned such a value.
ChatGPT always agreed that the researcher was right
and changed the algorithm slightly, but the error was
never fixed.

• Backtracking. Firstly, a design of a search tree was
asked. ChatGPT explained a candidate search tree and
included a text-based drawing of a tree for an own
example, of length 2. Then we prompted it to draw the
search tree for the example given in the problem
statement. The search tree was badly constructed and,
for three times, a source of error was successively
pointed out to ChatGPT. First, the tree height had one
level less than expected. Second, we warned that its
answer claimed an optimal value not present in the tree.
Third, we contributed the optimal sequence of
decisions and its associated value for the given
problem instance. However, ChatGPT was persistently
unable to build the correct search tree.

Later on, we asked to obtain the code of a backtracking
based on the search tree. Surprisingly, the code
generated three recursive calls per node, whereas the
search tree only contained two children nodes.
ChatGPT did not fix it despite of being warned of the
mistake. Actually, its answer suggested that ChatGPT
confused children nodes of the search tree with
function arguments.

Backtracking algorithms are often coded as recursive
algorithms (with the if-else structure usual in recursive
algorithms) with an inner loop (for the children of the
current node). Horowitz et al. [22] propose a more

efficient template for backtracking algorithms, which
promotes the loop out from the if-else. We asked
ChatGPT to convert its previous algorithm to this new
format. The algorithm was successively refined along
four prompts, resulting in an equivalent algorithm.

• Branch and bound. We successively asked whether a
bounding function should compute an upper or a lower
bound for the given problem, to define a bounding
function, and to code a branch-and-bound algorithm
that extended the previous backtracking algorithm with
the newly defined bound. In all cases, the answer was
correct, but too verbose. We asked to name the
bounding function, and the answer was satisfactory.

We also asked for additional bounding functions.
ChatGPT contributed with three bounding functions,
each one with a name. We noticed that one was
probabilistic, thus it could compute values which were
not an upper bound, and ChatGPT agreed. We asked a
confirmation on the correctness of the two remaining
upper bounds. ChatGPT confirmed and argued on its
correctness. We noticed that they did not guarantee an
upper bound, but we did not continue arguing.

• Dynamic programming. A recursive solution was
asked, contributing ChatGPT with a backtracking
algorithm. We asked a purely recursive algorithm,
without accumulating parameters, and we then
obtained an adequate algorithm. After three prompts,
noting different mistakes, we obtained a correct
algorithm.

Given that ChatGPT had demonstrated capability to
draw text-based trees, we asked the recursion tree
corresponding to the example given in the problem
statement. The tree had fewer nodes than expected, but
ChatGPT was unable to correct it.

We also asked to convert the last recursion tree into a
dependency graph, obtaining an incorrect graph, with
nodes not present in the tree and even one node
duplicated.

We asked a Java declaration of a table capable to store
in a structured way the values of the graph nodes.
ChatGPT. It twice provided a memoization algorithm
which used an appropriate table. We also asked an
iterative version, which was correct. Finally, we asked
the time and space complexity analysis, which was
right but again too verbose and without calculating the
number of iterations in a formal way.

• Probabilistic algorithms. We asked a probabilistic
algorithm, and it developed a well-designed algorithm,
except for the omission again of not accumulating
simulation steps for the minute of a computer swap.
However, we focused on the randomized part of the
algorithm. The only problem here was that the
algorithm was implemented as a method with three
parameters, where the third parameter was the number
of random trials to compute (non-present in the
problem statement). On demand, it was unable to
remove such a parameter until the third version, which
finally was correct.

C. Use in a Language Processors Course

Language Processors is a compulsory course placed in the
second semester of the third year of the Informatics Degree.
The course spans 15 weeks, with two sessions per week, each
two hours long. Language processors are integral to compilers
and interpreters. A compiler analyses and translates source
code into executable binary or low-level code. Language
processors, a part of a compiler, provide the theoretical
foundations for this translation and are heavily reliant on fields
like automata and formal languages theory, making them a
complex subject in computer science degrees [23].

The course syllabus comprises four main topics:
introduction to language processors, lexical analysis, syntax
analysis, and syntax-directed translation. The introductory
topic briefly describes where language processing concepts
are located within scope of computer science and what are its
foundations.

The lexicographic analysis topic deals with the first
general phase of a language processor. This topic provides an
overview with its specific foundations −finite automata and
regular expressions−, describes its main responsibilities
−mainly producing tokens for the syntax analyzer−, and
explains how it can be implemented, including the use of a
parser generation tool like ANTLR1. Therefore, students have
to dedicate some effort to understand how the implementation
of a lexical analyzer is actually based on a deterministic finite
automaton (DFAs). And, assuming the automatic generation
of DFAs from regular expressions, they have to work on
representing the typical constructions of a programming
language in terms of regular expressions, even deciding which
ones can be represented and which ones cannot. The main
result of this topic is the construction of a lexical analyzer, also
known as the scanner.

The syntax analysis topic deals with the second phase of a
language processor. The product of this phase, the syntax
analyzer, is also known as the parser. Again its foundations
are briefly explained −stack automata and independent
context grammars− together with its relation with the scanner.
Afterwards, two approaches to parser design are explained:
top-down parsing techniques (based on LL grammars) and
bottom-up parsing techniques (based on LR grammars). The
implementation of these approaches are easily understood,
although it is time consuming. Therefore, students are taught
how to use automatic parser generation tools in order to be
able to build their own parsers; ANTLR is again used for this
objective.

The last topic deals with how the parsing process can be
used to generate to subsequent actions [24] needed to perform
the translations and produce the outcome of a language
processor, the third phase. This topic asks to students to use a
different approach for its comprehension. Since the two
previous topics where mostly based on procedural concepts,
this one has a heavy design component. The students have to
learn how to manage information −with attributes associated
to the symbols of the grammar− and process it −with semantic
actions associated to the grammar rules. Again, ANTLR is
used to facilitate students a way to implement real language
processors.

1 https://www.antlr.org/

The course lab project progresses in a similar manner, with
students successively developing a scanner, a parser, and a
syntax-directed translator. Close to half of the sessions are
dedicated to the lab project, including learning how to use
ANTLR.

The teaching methodology used in this course is flipped
classroom [25]. The first time it was used in the lab part was
for the scanner development [26], but it has been extended to
the theoretical part of the three last topics, which is more than
the 90% of the course. The evaluation of the course is divided
in the theoretical part of the course (performed with a test) and
the course project lab. Students must pass both parts in order
to pass the course.

The contents of this course require form the students the
comprehension of the theoretical aspects related to the
syllabus. However, the use of the GenAI tool will be focused
on the practical exercises, either the simple ones used during
class explanations or the more complex ones involved in the
course lab project. It must be taken into account that there
already exist many tools that support students in some parts of
the course, for example, JFlap22 can be used to work on the
formal languages theory as well as the construction and
tracing of parsers with both approaches: LL(1) and SLR(1).

This is the first time that GenAI tools will be used in this
course. Given the existing (non GenAI) tools, the students will
be most benefited by the use of GenAI with exercises asking
the creation or the transformation of elements. Some examples
have been tested to evaluate what can the GenAI tool offer to
students:

• Scanner. GenAI can provide solutions for exercises
asking the specification of regular expressions for
tokens, as well as their specification using ANTLR.
Given the standardization of the language specification
for regular expressions and ANTLR, the solutions
provided by the GenAI tool are quite correct. But there
is an issue with the ANTLR exercises, the solutions
provided use either lexical and syntactical grammars,
while the exercises must use only lexical grammars.
This requires a careful design of the prompt.

• Parser. This topic has a heavy load of algorithms,
together with the previously mentioned supporting
tools. Therefore, the use of GenAI will focus on LL(1)
parsers, especially in disambiguation and left recursion
removal exercises. Of course, this exercises are solved
with algorithms as well, but their application is more
difficult than the other algorithms used in this topic.
The solutions provided by the GenAI tool are quite
correct with useful explanations of how the algorithms
are applied.

• Syntax directed translation. The use of GenAI in this
topic will provide solutions to exercises related to
translators written for the ANTLR tool. In fact,
solutions provided are correct but, again, the GenAI
tool use all the possibilities of ANTLR. This requires
from the user rewording the prompt in order to
accomplish with requirements, e.g. use only BNF
grammars. In addition, many exercises of this topic use
a non-formal language for translator specification,
similar to pseudocode for programming education. In

2 https://jflap.org/

this case, the GenAI tool could only offer general
guidelines for the specification design.

The main role of GenAI in this course will be as a provider
of alternative solutions or hints (when the teacher cannot
provide them immediately) to exercises. The students will be
asked to solve the exercises and then ask the GenAI tool to
provide them with alternative solutions. In addition, the
effectiveness of the answers provided by GenAI tools highly
depends on how they are prompted [27], so GenAI tools often
provide wrong or incomplete answers. Therefore, students
will be involved in a reflecting exercise comparing their
solutions with the ones provided by the GenAI tool (either
correct or not). This will support the understanding of the
concepts used in the exercise [28].

IV. DISCUSSION

A. Video Games Project

The case study carried out on a video game subject
provides relevant information about its use, but even more
important is the uncertainty it generates in the students. This
highlights the need for further discussion and education about
the role and impact of GenAI tools in various fields, including
game development.

On the one hand, it is interesting to see how AI is being
incorporated into different fields or categories. This can
provide students with practical experience and skills that are
increasingly relevant in today’s digital world. On the other
hand, the use of current tools is biased, using only a few tools.
The results reveal that the tools most known to the general
public are also the most used by video game students. This
suggests that familiarity and general awareness play a
significant role in tool selection, which may not always lead
to the most effective or efficient choice for the task.

Something surprising is the low percentage of use of
GenAI coding tools. GitHub Copilot is a widely known tool,
but not sufficiently exploited by the engineers or video game
developers of tomorrow. This suggests that these tools are not
fully utilized in practice, potentially due to a variety of factors
such as lack of familiarity, comfort with existing methods, or
perceived relevance to the task at hand. It underscores the
importance of continued education and exploration of these
tools among aspiring developers.

Finally, it is worth noting a feeling of guilt and concern in
the use of these types of tools. The students feel as if they are
cheating or deceiving themselves, which generates a halo of
frustration. According to the more personal responses offered
by the respondents, the use of these tools could jeopardize
many jobs in the near future. This highlights the ethical and
societal implications of AI and automation, which are
important considerations in the ongoing development and
adoption of these technologies.

B. Advanced Algorithms

The experiment conducted with ChatGPT has revealed
strengths and weaknesses. Posteriori, we may guess that the
results can be explained from the origin of its “intelligence”:
pattern recognition but lack of actual understanding. The pros
and cons balance each other but, if it was a student of the
course, the teacher would probably rate it with a fail grade.

On the one side, ChatGPT generated apparently good
algorithms, which corresponded to the design technique
demanded and were coded in a good style. It was able to

generate alternative algorithms, based on common strategies
with a name. ChatGPT also performed consistent
transformations of code on demand, usually after several
prompts. Finally, it analyzed correctly the time and space
complexity of iterative algorithms.

On the other hand, ChatGPT was too verbose, even when
succinctness was demanded. It had difficulties understanding
an intricate problem statement, as it is the case of the
combinatorial optimization problem used for the experiment.
This produced inability to fix buggy algorithms, even when
the error was identified. ChatGPT also had difficulties dealing
with algorithm design decisions. In cases where sophisticated
reasoning was required (e.g., bounding functions), wrong
strategies were suggested. When it was asked to fix errors, it
often persisted in the error. It was sometimes fixed after
several prompts, but it was not in other cases. ChatGPT was
unable to prove time complexity in mathematical terms (i.e.,
by using series). Finally, ChatGPT had problems with some
cases of tracing, such as presenting a search tree or a recursion
tree for given input data. We wonder whether this problem
could also be due to the difficulty of presenting non-lineal
structures as text.

The difficulties identified are consistent with findings by
other authors. Thus, the success of ChatGPT solving problems
seems to be inverse to the problem difficulty and the intricacy
of the problem statement [11, 12, 13]. It also has difficulties
producing an adequate or even a correct answer when the
output is not strictly related to the source code but it involves
an implicit thinking, e.g., tracing (which involves operational
semantics) or proofs (which involve mathematical thinking)
[14].

However, the teacher can make use of these virtues and
defects in the classroom. ChatGPT can be a good source of
inspiration, according to algorithmic strategies often used in
certain design techniques or problems. The teacher can use
ChatGPT to obtain candidate design decisions or code and
discuss them with students, prompting for fixing them and
making explicit the errors and inconsistencies presented. The
same didactic use can be given to summaries demanded of
algorithmic behavior. Finally, ChatGPT can be used to
illustrate good programming style.

C. Language Processors

The inclusion of GenAI tools in education is at an early
stage and more experience is needed in order to find effective
ways of use, design proper educational contexts and check the
impact on the learning experience. Three main aspects have
emerged from this proposal. Firstly, the usefulness of the
solutions provided by the GenAI tool depends on the type of
exercises. The solutions are useful and correct when the
exercises are simple and must be specified using a standard
and formal language, e.g. regular expressions, context free
grammars or ANTLR specifications. This could support
students for concrete doubts and errors [29]. However, when
some restrictions must be applied to solutions or the
complexity of exercises is increased, the user has to dedicate
a significant effort to design carefully the prompt in order to
receive a solution.

Secondly, following the previous idea, it must be studied
to what extent the effort dedicated to prompt design supports
student’s learning. In addition, students must be able to
evaluate the correctness of the solutions provided by the
GenAI tool. Although it has been showed that working with

wrong examples is positive [28], there is a risk of
incorporating erroneous knowledge [30] if students do not
recognise wrong or incomplete solutions. The approach that
students should follow could be guided by the following
questions: Do I completely understand the solution? Am I sure
that this solution is sound and correct?

Finally, the following question raises, Should the
evaluation system be adapted to the use of GenAI tools? Given
the current concern about cheating and plagiarism with GenAI
tools [30], the answer is yes, it must be adapted. The
evaluation of the theoretical part of this course has no problem
with GenAI tools because it is performed by invigilated tests.
On the contrary, the evaluation of the course lab project must
be adapted taking into account that students will be able to use
GenAI tools. This could be done in some different ways. On
the one hand, a compulsory oral presentation of the lab project
could be required. This means that more time will be needed
in order to schedule the presentations of all the students. On
the other hand, the theoretical tests could include essay
questions directly related with the students’ solutions to lab
project.

V. CONCLUSIONS

We have presented three different experiences of use of
GenAI in informatics courses. One experience has presented
the results of a survey on the use of GenAI by students of a
video games degree. Another experience has presented the
results of experimenting an instructor with different
techniques for an optimization problem in the context of an
advanced algorithm course. Finally, a proposal of use of
GenAI in a language processors course has been presented.

The main results of the experiences follow. Firstly, GenAI
is a technology that must not be ignored by instructors,
because students are actually using them. Furthermore,
instructors must think carefully about how to integrate the
different types of GenAI (text, images, code, etc.) in their
courses. Secondly, students could benefit from being trained
in these tools, especially when they are demanded a large
number of artifacts and different media. In particular, GenAI
tools often generate inaccurate code or explanations for non-
trivial tasks. Consequently, critical assessment of GenAI
deliveries is a necessary skill that students and instructors
must develop for their productive use. Finally, the courses
must be adapted in their different parts to successfully
integrate GenAI. The reflective of GenAI tools can be
integrated into the classroom instruction, as a third part who
may be asked to participate by contributing in the class
dynamics. Assignments must be reconsidered to avoid
cheating. Good potential measures are demanding students to
generate different but related artifacts (e.g., visualizations) or
to make an oral presentation of their work.

REFERENCES

[1] Joint Council for Qualifications, “AI use in assessments: Protecting the
integrity of qualifications,” https://www.jcq.org.uk/wp-
content/uploads/ 2023/04/JCQ-AI-Use-in-Assessments-Protecting-
the-Integrity-of-Qualifications.pdf, 2023.

[2] M. Welsh, “The end of programming,” Communications of the ACM,
vol. 66, no. 1, pp. 34-35, January 2023.

[3] D. M. Yellin, “The premature obituary of programming,”
Communications of the ACM, vol. 66, no. 2, pp. 41-44, February 2023.

[4] M. Hirzel, “Low-code programming models,” Communications of the
ACM, vol. 66, no. 10, pp. 76-85, October 2023.

[5] D. Weintrop, “Block-based programming in computer science
education,” Communications of the ACM, vol. 62, no. 8, pp. 22-25,
August 2019.

[6] A. Shoufan, “Can students without prior knowledge use ChatGPT to
answer test questions? An empirical study,” ACM Transactions on
Computing Education, vol. 23, no. 4, article 45, Dec. 2023.

[7] I. J. Pérez-Colado, V. M. Pérez-Colado, A. Calvo Morata, R. Santa
Cruz Píriz and B. Fernández-Manjón, "Using new AI-driven
techniques to ease serious games authoring," 2023 IEEE Frontiers in
Education Conference (FIE), College Station, TX, USA, 2023, pp. 1-
9, doi: 10.1109/FIE58773.2023.10343021.

[8] N. Ahmad, S. Murugesan, and N. Kshetri, “Generative artificial
intelligence and the education sector,” Computer, vol. 56, no. 6, pp. 72-
76, June 2023.

[9] British Government, “Generative artificial intelligence (AI) in
education”, policy paper. Retrieved from https://www.gov.uk/
government/publications/generative-artificial-intelligence-in-
education/generative-artificial-intelligence-ai-in-education, October
2023.

[10] Code.org, CoSN, Digital Promise, European EdTech Alliance,
Larimore, J., and PACE, “AI guidance for schools toolkit”. Retrieved
from https://www.teachai.org/toolkit, December 2023.

[11] N. D. Tran, J. J. May, N. Ho, and L. B. Ngo, “Exploring ChatGPT’s
ability to solve programming problems with complex context,” Journal
of Computing Sciences in Colleges, vol. 39, no. 3, pp. 195-209, Oct.
2023.

[12] B. Puryear, and G. Sprint, “Github Copilot in the classroom: Learning
to code with AI assistance,” Journal of Computing Sciences in
Colleges, vol. 38, no. 1, pp. 37-47, Nov. 2022.

[13] E. L. Ouh, B. K. S. Gan, K. J. Shim, and S. Wlodkowski, “ChatGPT,
can you generate solutions for my coding exercises? An evaluation on
its effectiveness in an undergraduate Java programming course,” in
Proceedings of the 2023 Conference on Innovation and Technology in
Computer Science Education (ITiCSE 2023), pp. 55-60.

[14] J. Savelka, A. Agarwal, C. Bogart, Y. Song, and M. Sakr, “Can
Generative Pre-trained Transformers (GPT) pass assessments in higher
education programming courses?,” in Proceedings of the 2023
Conference on Innovation and Technology in Computer Science
Education (ITiCSE 2023), pp. 117-123.

[15] R. Balse, B. Valaboju, S. Singhal, J. M. Warriem, and P. Prasad,
“Investigating the potential of GPT-3 in providing feedback for
programming assessments,” in Proceedings of the 2023 Conference on
Innovation and Technology in Computer Science Education (ITiCSE
2023), pp. 292-298.

[16] J. Prather, B. N. Reeves, P. Denny, B. A. Becker, J. Leinonen, A.
Luxton-Reilly, G. Powell, J. Finnie-Ansley, and E. A. Santos, “«It’s
weird that it knows what I want»: Usability and interactions with
Copilot for novice programmers,” ACM Transactions on Human-
Computer Interaction, vol. 31, no. 1, article 4, Nov. 2023.

[17] J. Leinonen, P. Denny, S. MacNeil, S. Sarsa, S. Bernstein, J. Kim, A.
Tran, and A. Hellas, “Comparing code explanations created by students
and large language models,” in Proceedings of the 2023 Conference on
Innovation and Technology in Computer Science Education (ITiCSE
2023), pp. 124-130.

[18] T. Lehtinen, “Questions about learners' code: Extending automated
assessment towards program comprehension,” PhD thesis, Aalto
University, 2024.

[19] J. Á. Velázquez-Iturbide, and A. Pérez-Carrasco, “How to use the SRec
visualization system in programming and algorithm courses,”, ACM
Inroads, vol. 7, no. 3, pp. 42-49, Sept. 2016.

[20] J. Á. Velázquez-Iturbide, “A unified framework to experiment with
algorithm optimality and efficiency,” Computer Applications in
Engineering Education, vol. 29, no. 6, pp. 1793-1810, 2021.

[21] J. Kleinberg, and É. Tardos, Algorithm Design, Pearson Education,
2006.

[22] E. Horowitz, S. Sahni, and S. Rajasekaran, Computer Algorithms,
Computer Science Press, 1998.

[23] M. Hewner, “Undergraduate conceptions of the field of computer
science,” in Proc. of the Ninth Annual Intl. ACM Conf. on International
Computing Education Research, ser. ICER ’13. New York, NY, USA:
ACM, 2013, pp. 107–114. [Online]. Available:
http://doi.acm.org/10.1145/2493394.2493414

[24] D. Knuth, “Semantics of context-free languages,” 1968, pp. 127-145.
[Online]. Available: https://doi.org/10.1007/BF01692511

[25] M. Lage, G. Platt, and M. Treglia, “Inverting the classroom: A gateway
to creating an inclusive learning environment,” Journal of Economic
Education, vol. 31, no. 1, pp. 30–43, 2000. [Online]. Available:
https://doi.org/10.2307/1183338

[26] J. Urquiza-Fuentes, “Increasing students’ responsibility and learning
outcomes using partial flipped classroom in a language processors
course,” IEEE Access, vol. 8, pp. 211211–211223, 2020. [Online].
Available: https://doi.org/10.1109/ACCESS.2020.3039628.

[27] L. S. Lo, “The art and science of prompt engineering: A new literacy
in the information age,” Internet Reference Services Quarterly, vol. 27,
no. 4, pp. 203–210, 2023.

[28] T. Heemsoth and A. Heinze, “The impact of incorrect examples on
learning fractions: A field experiment with 6th grade students,”
Instructional Science, vol. 42, pp. 639–657, 2014.

[29] K. Kuramitsu, Y. Obara, M. Sato, and M. Obara, “Kogi: A seamless
integration of ChatGPT into Jupyter environments for programming
education,” in Proceedings of the 2023 ACM SIGPLAN International
Symposium on SPLASH-E. New York, NY, USA: Association for
Computing Machinery, 2023, pp. 50–59.

[30] J. Prather, P. Denny, J. Leinonen, B. A. Becker, I. Albluwi, M. Craig,
H. Keuning, N. Kiesler, T. Kohn, A. Luxton-Reilly, S. MacNeil, A.
Petersen, R. Pettit, B. N. Reeves, and J. Savelka, “The robots are here:
Navigating the generative AI revolution in computing education,” in
Proceedings of the 2023 Working Group Reports on Innovation and
Technology in Computer Science Education. New York, NY, USA:
Association for Computing Machinery, 2023, pp. 108–159.

