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Abstract

The conditional scenario approach was introduced as an effective approximation to the two-stage stochastic mixed-
integer linear programming problem. Although the original definition of conditional scenario is general, in prac-
tice it is basically suitable for the multivariate normal distribution. In this paper, we propose a new definition of
conditional scenario that is suitable for approximating any multivariate distribution (continuous or discrete). This
definition allows the approximation of a potentially large set of scenarios using a small set of conditional scenarios,
unlike the previous definition. In the computational study, dedicated to solving the portfolio optimization problem
with hard real-world constraints, the conditional scenario approach has clearly outperformed the sample average
approximation approach in terms of solution time.
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1. Introduction

A common approach to model stochastic programming problems is based on scenarios (Chen et al.,
2015). One finds this approach in different fields and applications such as air traffic flow management
(Chang et al., 2016), portfolio optimization (Tong et al., 2009), forestry planning (Alonso-Ayuso et al.,
2018), vehicle routing (Calvet et al., 2019), trading in electricity markets (Morales et al., 2009), e-
commerce supply chains (Pages-Bernaus et al., 2019), etc. Given the high dimension and complexity of
stochastic programming problems, it is common to use specialized approaches to solve them. This is even
more necessary in presence of integer variables, which make the problem size a critical issue. In this case
one can use approaches such as Lagrangian relaxation (Takriti and Birge, 2000), Benders decomposition
(Santoso et al., 2005), decomposition with branch-and-cut (Sen and Sherali, 2006), parallel computing
(Lubin et al., 2012), among others. As an alternative, one can use some heuristic approach in order to
obtain good, but suboptimal, solutions. See, for example, (Amorim et al., 2015) for a path relinking
method, (Karademir et al., 2014) for a greedy heuristic, (Raba et al., 2020) for a simheuristic, etc.
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Scenario based optimization and deterministic optimization represent two extreme choices regarding
the capability to model the uncertainty and the computational burden. The conditional scenario (CS)
approach was introduced in (Beltran-Royo, 2017) as an effective midpoint between these two choices,
since it showed a moderate computational effort and a reasonable capability to model the uncertainty, in
the context of two-stage stochastic mixed-integer linear programming (SMILP).

In scenario based optimization one solves the so-called recourse problem, whereas in deterministic
optimization one solves the so-called expected value problem (Birge and Louveaux, 2011). The CS
problem improves the ability of the expected value problem to deal with uncertainty by considering
conditional scenarios instead of the expected scenario. On the other hand, the CS problem reduces the
computational burden of the recourse problem by considering a reduced number of conditional scenarios
instead of a potentially large number of scenarios. In fact, the expected value problem is an approxima-
tion to the CS problem, which, in turn, is an approximation to the recourse problem. Therefore, the CS
solution is, in general, suboptimal for the recourse problem but hopefully better than the expected value
solution. For this reason, the CS approach should only be used in cases where the scenario approach
results impractical regarding problem size or solution time (Figure 1).

In (Beltran-Royo, 2017), the CS approach was applied to approximate the SMILP problem formulated
in terms of a multivariate normal random vector which accounted for all the uncertain parameters of the
optimization problem. Although the definition of conditional scenario given in (Beltran-Royo, 2017)
was general, in practice, it results suitable basically for the multivariate normal distribution. In order
to improve the previous results, in this paper, we will try to answer the following questions: a) How
could we make the definition of conditional scenario more useful for practitioners? b) How could we
approximate any random vector (continuous or discrete) by conditional scenarios? c) How could we
approximate a potentially large set of scenarios by a set of conditional scenarios?

To answer the previous questions we proceed as follows: In Section 2 we describe the notation and
formulate the recourse problem. In Section 3 we review the key concepts and ideas that will be used in
the other sections.In Section 4 a new definition of conditional scenario is introduced, which allows for
the approximation of a set of scenarios by a set of conditional scenarios. The CS problem is formulated
in Section 5. In Section 6 we compare, from a computational point of view, the CS approach versus
the sample average approximation approach by solving the portfolio optimization problem with hard
real-world constraints. Finally, Section 7 concludes the paper.



Fig. 1. The ‘Conditional scenario’ approach represents an effective midpoint
between the deterministic optimization (based on the ‘Expected scenario’) and

the ‘Scenario’ based optimization, regarding the capability to model the
uncertainty and the computational burden.

2. Problem formulation

2.1. Notation

Indexes:
t Decision stages t ∈ T = {1, 2}
j Integer components of decision vectors j ∈ Jt = {1, . . . , Jt}, t ∈ T
e Realizations of discrete random variables e ∈ E = {1, . . . , E}
r Components of random vectors r ∈ R = {1, . . . , R}
s Scenarios s ∈ S = {1, . . . , S}
re Index pair for conditional scenarios re ∈ RE = R× E

Random vectors:
ξ̃ Random vector with finite support which accounts for all the

random parameters of the recourse problem
ξ̃s Scenario or realization of the random vector ξ̃ s ∈ S
p̃s Probability of ξ̃s, that is, p̃s = P

(
ξ̃ = ξ̃s

)
s ∈ S

ξ̃r Component r of the random vector ξ̃ r ∈ R
ξ̂re Conditional scenario re ∈ RE
p̂re Probability of ξ̂re re ∈ RE
ξ̂r Random vector defined by the conditional scenarios

{ξ̂re}re∈RE and the probability values {p̂re}re∈RE r ∈ R
ξ̄ Expectation of ξ̃, that is, ξ̄ = E[ ξ̃ ], the expected scenario.

Notice that random vectors and random variables are indicated in boldface, scenarios are indicated by
the tilde symbol, e.g. ξ̃s, conditional scenarios by the hat symbol, e.g. ξ̂re, and expected values by the
bar symbol, e.g. ξ̄.



2.2. The recourse problem

In this paper we consider the following two-stage stochastic mixed-integer linear programming problem
with recourse, which we call the recourse problem (RP) for short:

min
x̃

zRP = cᵀ1 x̃1 +
∑
s∈S

p̃s c̃sᵀ2 x̃
s
2 (1)

s.t. A1x̃1 = b1 (2)

Ãs
2x̃1 + B̃s

2x̃
s
2 = b̃s2 s ∈ S (3)

x̃1 ≥ 0 (4)
x̃s2 ≥ 0 s ∈ S (5)
x̃1j integer j ∈ J1 (6)
x̃s2j integer s ∈ S, j ∈ J2, (7)

where Jt is the index set for the integer variables at stage t for all t ∈ T . In this context, scenario ξ̃s

represents the sth realization of the random parameters, that is, ξ̃s = vec
(
c̃s2, Ã

s
2, B̃

s
2, b̃

s
2

)
, where ‘vec’

is the operator that stacks vectors and matrix columns into a single vector. Then, ξ̃ is the random vector
defined by the set of scenarios {ξ̃s}s∈S and the corresponding probability values are {p̃s}s∈S , such that
P
(
ξ̃ = ξ̃s

)
= p̃s, for all s ∈ S.

The RP problem (1)-(7) is one of the paradigms in optimization under uncertainty, also known as
stochastic programming (Birge and Louveaux, 2011; Shapiro et al., 2009). The main feature of this
problem is that it is a two-stage one. This means that the decision-maker takes some decision in the
first stage, after which a random event occurs affecting the result of the first-stage decision. A recourse
decision can then be made in the second stage by taking into account this result. The optimal solution
from such a model is a single first-stage decision and a collection of recourse decisions defining which
second-stage decision should be taken in response to each possible result.

More precisely, the elements of the first stage are: x̃1, the decision to be taken before observing the
realization of the random vector ξ̃, and the deterministic parameters c1, A1 and b1.On the other hand, the
elements of the second stage are: the uncertain parameters c̃s2, Ã

s
2, B̃

s
2, b̃

s
2, and x̃s2, the recourse decision

that will be taken after observing the realization of the random vector ξ̃, that is, scenario ξ̃s. For this
reason there is a recourse decision x̃s2 for each possible future scenario ξ̃s, for all s ∈ S. Notice that
some of the parameters considered uncertain in the second stage, could be deterministic, depending on
the application.

2.3. The expected value problem

The RP problem can be approximated by the so-called expected value (EV) problem (Birge and
Louveaux, 2011). More precisely, the EV problem corresponds to approximate ξ̃ by ξ̄ = E[ ξ̃ ] =



vec
(
c̄2, Ā2, B̄2, b̄2

)
and can be formulated as follows:

min
x̄

zEV = cᵀ1 x̄1 + c̄ᵀ2 x̄2

s.t. A1x̄1 = b1

Ā2x̄1 + B̄2x̄2 = b̄2

x̄1 ≥ 0

x̄2 ≥ 0

x̄tj integer t ∈ T , j ∈ Jt.

The EV problem is the simplest approximation to the RP problem, given that all the parameter uncer-
tainty is summarized by a single scenario, the expected scenario ξ̄. The EV problem and the RP problem
are optimization models of the so-called deterministic optimization and stochastic optimization, respec-
tively. As already pointed out in the introduction, deterministic optimization and stochastic optimization
represent two extreme choices regarding the capability to model the uncertainty and the computational
burden. In this context, the conditional scenario problem, formulated in Section 5, represents an effective
midpoint between these two choices, since it shows a moderate computational effort and a reasonable
capability to model the uncertainty.

3. Conditional scenarios

In this section we review some key concepts and ideas that will be used in the other sections, such as
the conditional expectation of a random vector and the definition of conditional scenario introduced in
(Beltran-Royo, 2017). The readers familiar with these concepts can skip this section.

3.1. Conditional expectation of a random vector

Given a random vector ξ =
(
ξ1 . . . ξR

)ᵀ
, its expectation E[ ξ ] corresponds to the long-run average

vector of repetitions of the experiment ξ represents. In the case of having dependent components in ξ,
it can be advantageous to use the possible knowledge of one component to compute the expectation of
the whole random vector. For example, if we observe that ξ1 = 100, the conditional expectation of ξ
given ξ1 = 100, that is, E[ ξ | ξ1 = 100 ], will give us a better picture of the long-run average vector
of repetitions of the experiment ξ represents, than E[ ξ ]. In general we will write E[ ξ | ξr = ξr ] or for
short, E[ ξ | ξr ] for any r ∈ R = {1, . . . , R}. For details see (DeGroot and Schervish, 2012). In this
subsection we restrict ourselves to the multivariate normal distribution (Hardle and Simar, 2012), which
is characterized by a random vector ξ with mean µ and covariance matrix Σ � 0 (positive definite). In
this case, we write ξ ∼ NR(µ,Σ).



Proposition 1. (Hardle and Simar, 2012) Let us consider a multivariate normal random vector ξ =(
ξ1 . . . ξR

)ᵀ ∼ NR(µ,Σ). Then the conditional expectation of ξ given ξr can be calculated as follows:

E[ ξ | ξr ] = µ+
ξr − µr
σ2
r

Σ∗r r ∈ R, (8)

where Σ∗r is the rth column of the covariance matrix Σ.

Instead of only considering an observation ξr and computing E[ ξ | ξr ], we can consider the random
variable ξr itself and compute E[ ξ | ξr ] that we denote by ξr for all r ∈ R and call it the rth conditional
expectation of ξ. In the multivariate normal case E[ ξ | ξr ] can be computed by using formula (8).

3.2. Conditional scenarios for a continuous distribution

In this section we review the definition of conditional scenario for a continuous distribution given in
(Beltran-Royo, 2017).

Definition 1. (Conditional scenario) Given a continuous random vector ξ =
(
ξ1 . . . ξR

)ᵀ and any
r ∈ R, let us consider the random variable ξr and a discretization of it, say ξ̃r, with finite support
{ξ̃re}e∈E and the corresponding probability values {p̃re}e∈E , with E = {1, . . . , E} for a given E. Then,
the conditional scenarios of ξ, with their probability values, corresponding to the above discretization
of ξr are defined as follows:

conditional scenarios: ξ̂re = E[ ξ | ξr = ξ̃re ] e ∈ E , (9)
probability values: p̂re = p̃re e ∈ E ,

where the right-hand side in (9) is the conditional expectation of ξ given ξr is equal to ξ̃re. Further-
more, ξ̂r is the finite support random vector defined by the conditional scenarios {ξ̂re}re∈E and the
corresponding probability values {p̂re}re∈E , such that P

(
ξ̂r = ξ̂re

)
= p̂re.

We illustrate the previous definition with the following example.

Example 1. (Conditional scenarios of a multivariate normal random vector) Let us consider the multi-
variate normal random vector ξ =

(
ξ1 ξ2

)ᵀ ∼ N2(µ,Σ) such that

µ =
(

100 200
)ᵀ

Σ =

(
400 480
480 1600

)
.

Let us approximate ξ by six conditional scenarios based on a discretization of ξ1. First, one computes
the corresponding conditional expectation by using (8):

ξ1 = E[ ξ | ξ1 ] =

(
ξ1

80 + 1.2ξ1

)
, (10)



where ξ1 ∼ N(µ1, σ1) with µ1 = 100 and σ1 = 20. Second, one discretizes the random variable ξ1

into six representative points (see (Beltran-Royo, 2017) for details):

ξ̃1,1 = 53.7 p̃1,1 = 0.0214

ξ̃1,2 = 72.3 p̃1,2 = 0.1363

ξ̃1,3 = 90.8 p̃1,3 = 0.3423

ξ̃1,4 = 109.2 p̃1,4 = 0.3423

ξ̃1,5 = 127.7 p̃1,5 = 0.1363

ξ̃1,6 = 146.3 p̃1,6 = 0.0214.

Third, one computes the conditional scenarios combining the previous discretization of ξ1 with (10).
For example the first conditional scenario ξ̂1,1 can be computed as follows:

ξ̂1,1 = E[ ξ | ξ̃1,1 ] =

(
ξ̃1,1

80 + 1.2ξ̃1,1

)
=

(
53.7

80 + 1.2 · 53.7

)
=

(
53.7
144.4

)
p̂1,1 = p̃1,1 = 0.0214.

In summary one obtains:

ξ̂1,1 =
(

53.7 144.4
)ᵀ

p̂1,1 = 0.0214

ξ̂1,2 =
(

72.3 166.8
)ᵀ

p̂1,2 = 0.1363

ξ̂1,3 =
(

90.8 189.0
)ᵀ

p̂1,3 = 0.3423

ξ̂1,4 =
(

109.2 211.0
)ᵀ

p̂1,4 = 0.3423

ξ̂1,5 =
(

127.7 233.2
)ᵀ

p̂1,5 = 0.1363

ξ̂1,6 =
(

146.3 255.6
)ᵀ

p̂1,6 = 0.0214.

The approximation of ξ by six conditional scenarios derived from the 2nd conditional expectation ξ2

could be done analogously. In total we would obtain twelve conditional scenarios that are represented
in Figure 2. As we will see in the Section 5, the conditional scenario problem is formulated in terms of
conditional scenarios in contrast with the expected value problem, which is formulated in terms of the
expected scenario µ (the square in in the center of Figure 2). Further details can be found in (Beltran-
Royo, 2017).

4. Conditional scenarios for a general distribution

In this section we analyze and improve the definition of conditional scenario introduced in (Beltran-
Royo, 2017). Furthermore, we show how the new definition can be used to approximate a potentially
large set of scenarios by a reduced set of conditional scenarios.

As pointed out in (Beltran-Royo, 2017), the two-stage stochastic mixed-integer linear programming
problem formulated in terms of a continuous random vector, say ξ =

(
ξ1 . . . ξR

)ᵀ
, is in general

numerically intractable. To address this difficulty one can approximate ξ by a random vector, say
ξ̃ =

(
ξ̃1 . . . ξ̃R

)ᵀ
, with a discrete support consisting of S scenarios, and solve the corresponding



Fig. 2. Equiprobability contour ellipses of the multivariate normal random
vector ξ of Example 1. The dashed and the solid lines correspond to the first

(ξ1) and the second (ξ2) conditional expectations, respectively. The dots
represent the twelve conditional scenarios of Example 1 and the square

represents the ‘expected scenario’ µ.

RP problem (1)-(7). Some technique to compute a representative set of scenarios is normally used: mo-
ment matching methods (Hoyland and Wallace, 2001; Hoyland et al., 2003; King and Wallace, 2012),
the Sample Average Approximation (SAA) method (Homem-de-Mello and Bayraksan, 2014; Kleywegt
et al., 2002; Shapiro et al., 2009), approaches based on probability metrics (Dupacova et al., 2003;
Heitsch and Romisch, 2003; Pflug and Pichler, 2014), among others. If the computational effort of using
ξ̃ is too high, one can approximate it by conditional scenarios.

Let us analyze Definition 1, which corresponds to the definition of conditional scenario given in
(Beltran-Royo, 2017), and point out its drawbacks. According to Definition 1, the set of conditional
scenarios discards much of the multivariate structure of the original probability distribution of ξ. How-
ever, the basic uncertainty model based on conditional scenarios can result effective in cases where
the uncertainty model based on scenarios results computationally infeasible. See (Beltran-Royo, 2017),
where Definition 1 was successfully used within the procedure to approximate a multivariate normal
random vector by means of conditional scenarios. This is an important case since the multivariate nor-
mal distribution is one of the most relevant ones mainly because of the multivariate central limit theorem
(Jacod and Protter, 2004). The procedure introduced in (Beltran-Royo, 2017) requires to compute the
conditional expectation (9), which in the multivariate normal case it is easily done by means of the
corresponding analytical expression (see Proposition 1). Thus, if our objective is to approximate a con-
tinuous random vector by means of conditional scenarios, the first drawback of the procedure based on
Definition 1 is that it requires the analytical expression of the conditional expectation (9), which is not
known or may be difficult to compute for a general multivariate distribution (the multivariate normal
distribution is an exception).

Notice that Definition 1 could easily be adapted for a discrete random vector, say ξ̃, with a finite
support given by a set of scenarios {ξ̃s}s∈S . However, in this case appears the se second drawback since
given a particular value of ξ̃r, say ξ̃re0 , it is likely that only one scenario, say ξ̃s0 , would attain this value



in the rth component and therefore

ξ̂re0 = E[ ξ̃ | ξ̃r = ξ̃re0 ] = ξ̃s0 .

Thus, in this case, it is likely that the set of conditional scenarios would correspond to the original set of
scenarios. In summary, taking into account the previous two drawbacks one can conclude that, although
Definition 1 is a general one, in practice, it is suitable basically for the multivariate normal distribution.

Below we give a new definition of conditional scenario that overcomes the drawbacks of Definition 1.
Furthermore, the new definition is equivalent to the previous one for the multivariate normal distribution
(see Proposition 4). To this end we need the following assumption:

Assumption 1. Given a random vector ξ =
(
ξ1 . . . ξR

)ᵀ (continuous or discrete):

a) The interval Ir = [ar, br] ⊂ R, with−∞ ≤ ar < br ≤ +∞, is any interval that contains the support
of ξr, for all r ∈ R = {1, . . . , R}.

b) Ir is partitioned into finitely many subintervals Ire such that Ir = ∪e∈EIre, where Ire = [are, bre),
for all e ∈ E \ {E} and IrE = [arE , brE ], that is, all the subintervals are right-open except the last
one.

The new definition of conditional scenarios is as follows (in this paper the term ‘conditional scenario’
will refer to this definition):

Definition 2. (Conditional scenario) Let us consider the random vector ξ =
(
ξ1 . . . ξR

)ᵀ (continuous
or discrete). Given any r ∈ R, let us also consider an interval Ir and a partition of it {Ire}e∈E that
fulfill Assumption 1. Then, the conditional scenarios of ξ corresponding to the above partition of the
support of ξr, are defined as follows:

ξ̂re := Eξ

[
ξ | ξr ∈ Ire

]
e ∈ E (11)

p̂re := P
(
ξr ∈ Ire

)
e ∈ E ,

where the right-hand side in (11) is the conditional expectation of ξ given ξr ∈ Ire.

In this context, we can define the CS random vector ξ̂r =
(
ξ̂r1 . . . ξ̂rR

)ᵀ such that its support is
{ξ̂re}e∈E and such that P

(
ξ̂r = ξ̂re

)
= p̂re for all e ∈ E . As proposed in (Beltran-Royo, 2017), one can

approximate a given random vector ξ by the CS random vectors ξ̂r, for all r ∈ R, each one taken with
probability 1/R, and then formulate the CS problem in terms of these random vectors (this problem will
be defined in Section 5). Let us see some properties regarding conditional expectation and conditional
scenarios.

Proposition 2. Let us consider the random vector ξ =
(
ξ1 . . . ξR

)ᵀ (continuous or discrete). Given
any r ∈ R, let us also consider an interval Ir and a partition of it {Ire}e∈E that fulfill Assumption 1. In
this case one has that

Eξ

[
ξ | ξr ∈ Ire

]
= Eξr

[
Eξ

[
ξ | ξr

] ∣∣ ξr ∈ Ire
]

re ∈ RE ,

where, on the one hand, it is assumed that the expectation on the left-hand side of the equation is finite
and, on the other hand, Eξ

[
ξ | ξr

]
is the conditional expectation of ξ given ξr ∈ Ir.



Notice that the previous result is a generalization of the law of total probability for expectations ((De-
Groot and Schervish, 2012), Theorem 4.7.1) and it can be proved in a similar way.

Proposition 3. If L(ξr) = Eξ

[
ξ | ξr

]
is a linear function, then

Eξr

[
Eξ

[
ξ | ξr

] ∣∣ ξr ∈ Ire
]

= Eξ

[
ξ
∣∣ Eξr

[
ξr | ξr ∈ Ire

] ]
re ∈ RE .

In this case, the conditional scenarios can be computed as follows:

ξ̂re = Eξ

[
ξ
∣∣ ξ̄re ] re ∈ RE ,

where ξ̄re = Eξr

[
ξr | ξr ∈ Ire

]
.

Proof: The first statement is clear considering that the expectation is a linear operator, i.e., for any
linear function L(ξr) one has E[L(ξr) ] = L(E[ ξr ]). The second statement is also straightforward:

ξ̂re = Eξ

[
ξ | ξr ∈ Ire

]
re ∈ RE

= Eξr

[
Eξ

[
ξ | ξr

] ∣∣ ξr ∈ Ire
]

(by Proposition 2)

= Eξ

[
ξ
∣∣ Eξr

[
ξr | ξr ∈ Ire

] ]
(by the first statement)

= Eξ

[
ξ
∣∣ ξ̄re ].

Proposition 4. (Conditional scenarios of a multivariate normal random vector) Let us consider the
multivariate normal random vector ξ ∼ NR(µ,Σ). Let us also consider, for each r ∈ R, an interval
Ir and a partition of it, say {Ire}e∈E , that fulfill Assumption 1. Then, the conditional scenarios of ξ
corresponding to the above partitions can be computed as follows:

ξ̂re = µ+
ξ̄re − µr
σ2
r

Σ∗r re ∈ RE ,

where

ξ̄re = µr + σr
φ(αre)− φ(βre)

Φ(βre)− Φ(αre)
re ∈ RE (12)

αre = (are − µr)/σr and βre = (bre − µr)/σr, (13)

scalars µr and σ2
r are the mean and variance, respectively, of the random variable ξr, functions φ and Φ

are the density and distribution function, respectively, of the standard normal distribution and vector Σ∗r
is the r-th column of the covariance matrix Σ. The corresponding probability values can be computed
as follows:

p̂re = Φ(βre)− Φ(αre) re ∈ RE .



Proof: In the case of a multivariate normal random vector, the conditional expectation Eξ

[
ξ | ξr

]
can

be computed as follows (Hardle and Simar, 2012):

L(ξr) = Eξ

[
ξ | ξr

]
= µ+

ξr − µr
σ2
r

Σ∗r r ∈ R,

which is linear in ξr. Thus, by Proposition 3, one has

ξ̂re = Eξ

[
ξ | ξ̄re

]
= µ+

ξ̄re − µr
σ2
r

Σ∗r,

where ξ̄re = Eξr

[
ξr | ξr ∈ Ire

]
. This expression corresponds to the expectation of a truncated normal

distribution which can be computed by equations (12)–(13) (Johnson et al., 1994). Finally,

p̂re = P
(
ξr ∈ Ire

)
= Φ(βre)− Φ(αre) re ∈ RE .

Notice that this way to compute the conditional scenarios for the multivariate normal case is equivalent
to Method 2 in (Beltran-Royo, 2017). This is true for any set of partitions of the intervals I1, . . . , IR,
provided that both Proposition 4 and Method 2 use the same set of partitions. Otherwise said, the new
definition of conditional scenario given in this paper and the definition given in (Beltran-Royo, 2017)
are equivalent for the multivariate normal case.

Proposition 5. (Conditional scenarios of a finite support random vector) Let us consider a random
vector ξ̃ with finite support {ξ̃s}s∈S and probability mass function f(ξ̃s) = p̃s for all s ∈ S. Let us also
consider, for each r ∈ R, an interval Ir and a partition of it, say {Ire}e∈E , that fulfill Assumption 1,
then the conditional scenarios of ξ̃ corresponding to the above partitions can be computed as follows:

ξ̂re =
∑
s∈Sre

p̃s∑
s∈Sre p̃

s
ξ̃s re ∈ RE ,

where Sre = {s | ξ̃sr ∈ Ire}. Furthermore, the corresponding probability values can be computed as
follows:

p̂re =
∑
s∈Sre

p̃s re ∈ RE .

Proof: First, the probability mass function of ξ̃ given ξ̃r ∈ Ire corresponds to

f(ξ̃s | ξ̃r ∈ Ire) =
f(ξ̃s)∑

s∈Sre f(ξ̃s)
=

p̃s∑
s∈Sre p̃

s
s ∈ Sre

and f(ξ̃s | ξ̃r ∈ Ire) = 0 for all s 6∈ Sre.



Table 1
Each column corresponds to a scenario.

Scenario number 1 2 3 4 5 6 7 8 9 10
ξ̃s1 0.0 3.2 1.3 1.5 1.9 1.6 2.5 2.7 0.6 4.0
ξ̃s2 1.0 6.7 2.1 3.9 5.5 4.5 6.1 7.9 3.3 9.0
ξ̃s3 4.0 13.9 7.4 8.3 9.6 10.5 11.1 12.5 5.8 16.0

Second, by definition of conditional scenario

ξ̂re = Eξ̃

[
ξ̃ | ξ̃r ∈ Ire

]
re ∈ RE

=
∑
s∈Sre

ξ̃s f(ξ̃s | ξ̃r ∈ Ire)

=
∑
s∈Sre

p̃s∑
s∈Sre p̃

s
ξ̃s.

Finally,

p̂re = P
(
ξr ∈ Ire

)
=
∑
s∈Sre

p̃s re ∈ RE .

4.1. From scenarios to conditional scenarios

In this section we show how Proposition 5 can be used to approximate a set of scenarios by a set of
conditional scenarios. As a first step in this direction, let us illustrate Proposition 5 by means of the
following example.

Example 2. (From scenarios to conditional scenarios: Calculations)
A company has forecast the next season demand of three products in order to plan the corresponding

production. This demand forecast can be represented by means of ten equiprobable scenarios that can
be found in Table 1. We use vector ξ̃s to denote scenario s, where component ξ̃sr represents the demand
of the rth product according to scenario s for all r ∈ R = {1, 2, 3} and for all s ∈ S = {1, . . . , 10}.
Thus, the uncertain demand can be modeled by means of the random vector of demands ξ̃ with support
{ξ̃s}s∈S and probability values {p̃s}s∈S , where p̃s = 1/10 for all s ∈ S.

The simplest approximation of ξ̃ is the expected scenario, that is ξ̄ =
(

1.9 5.0 9.9
)ᵀ
, which corre-

sponds to the average of the previous ten scenarios. A more informative approximations can be obtained
by means of conditional scenarios. For example, one can compute a set of two conditional scenarios
considering low and high forecast demands of Product 1. We will use vectors ξ̂1,1 and ξ̂1,2 to denote
the conditional scenarios associated to low and high forecast demands, respectively, of Product 1. To
compute the two conditional scenarios, first, we observe in Table 1 that the forecast demands of Product



Table 2
The scenarios have been classified according to the demand of the first product
into two groups: low and high demand.

Low demand (group 1) High demand (group 2)
Scenario number 1 9 3 4 6 5 7 8 2 10

ξ̃s1 0.0 0.6 1.3 1.5 1.6 1.9 2.5 2.7 3.2 4.0
ξ̃s2 1.0 3.3 2.1 3.9 4.5 5.5 6.1 7.9 6.7 9.0
ξ̃s3 4.0 5.8 7.4 8.3 10.5 9.6 11.1 12.5 13.9 16.0

1 are in the interval I1 = [0.0, 4.0]. Second, we partition I1 into two subintervals:

I1,1 = [0.0, 2.0) (low demand)
I1,2 = [2.0, 4.0] (high demand),

and group the scenarios according to this partition of the Product 1 demand in Table 2. Notice that in
Table 2 entries in the row corresponding to ξ̃s1 are in italic font and sorted in ascending order, such that
in the first group ξ̃s1 is in I1,1 and in the second group ξ̃s1 is in I1,2. The number of scenarios is six and
four in the first and second groups, respectively.

The conditional scenario ξ̂1,1 corresponds to the conditional expectation of ξ̃ given ξ̃1 ∈ [0, 2), that
is,

ξ̂1,1 = E[ ξ̃ | ξ̃1 ∈ I1,1 ]

=
∑

s∈S1,1

p̃s∑
s∈S1,1 p̃

s
ξ̃s =

∑
s∈S1,1

1/10

6/10
ξ̃s (by Proposition 5)

=
1

6

0.0
1.0
4.0

+
1

6

0.6
3.3
5.8

+ · · ·+ 1

6

1.9
5.5
9.6

 =

1.2
3.4
7.6

 .

Analogously, the conditional scenario ξ̂1,2 can be computed as the average of the four scenarios in the
second group:

ξ̂1,2 =
1

4

 2.5
6.1
11.1

+
1

4

 2.7
7.9
12.5

+ · · ·+ 1

4

 4.0
9.0
16.0

 =

 3.1
7.4
13.4

 .

From these conditional scenarios we can define the random vector ξ̂1 with support {ξ̂1,e}e∈E and the
corresponding probability values p̂1,1 = 6/10 and p̂1,2 = 4/10. Notice that arbitrarily we have only
computed two conditional scenarios but more conditional scenarios could have been computed by con-
sidering more intervals for Product 1 demand. Furthermore, to compute the conditional scenarios we
have focused on Product 1 demand. Analogously we could focus on the demands of Products 2 and 3
and construct the corresponding conditional scenarios whose associated random vectors would be ξ̂2 and



ξ̂3, respectively.
In summary, we observe that with the set of ten scenarios ξ̃s with probability 1/10 each, we have a

probabilistic model which can be used to forecast the future demand. This probabilistic model can be
approximated by the single expected scenario ξ̄ =

(
2.0 5.0 9.9

)ᵀ. But, it can also be approximated
by two conditional scenarios ξ̂1,1 =

(
1.2 3.4 7.6

)ᵀ and ξ̂1,2 =
(

3.1 7.4 13.4
)ᵀ with probability

values 6/10 and 4/10, respectively, which define the CS random vector ξ̂1. Conditional scenarios ξ̂1,1

and ξ̂1,2 represent the demands for the three products that can be expected when demand for Product 1
is low and high, respectively.

The following method summarizes the steps performed in Example 2 and can be used to approximate
a potentially large set of scenarios into a small set of conditional scenarios.

Method 1. (From scenarios to conditional scenarios)

• Objective: To approximate a set of scenarios by a set of conditional scenarios.
• Input:

a) A set of scenarios {ξ̃s}s∈S with probability p̃s = 1/S, for all s ∈ S = {1, . . . , S}.
b) E, the number of conditional scenarios for coordinate r, for each r ∈ R = {1, . . . , R}.

• Output: For each r ∈ R, a set of conditional scenarios {ξ̂re}e∈E and the corresponding probability
values {p̂re}e∈E with E = {1, . . . , E}.
• Steps: For each r ∈ R :

1) Define the interval Ir = [ar, br] such that

ar = min
s∈S
{ξ̃sr} br = max

s∈S
{ξ̃sr}.

2) Partition the interval Ir into subintervals {Ire}e∈E , according to Assumption 1.b.
3) Classify the scenarios such that the index set Sre contains the indexes of the scenarios that fulfill

the condition ξ̃sr ∈ Ire for all e ∈ E .
4) For all e ∈ E :

i) Set Sre as the cardinality of Sre.
ii) Compute the corresponding conditional scenario and its probability value:

ξ̂re = E[ ξ̃ | ξ̃r ∈ Ire ] =
1

Sre

∑
s∈Sre

ξ̃s

p̂re = Sre/S.

Notice that:

• In this paper, for each r ∈ R, we will consider subintervals Ire of the same length, given by (br −
ar)/E (although this method could also consider subintervals of different length).
• The previous method considers equiprobable scenarios, but it could easily be adapted to the non

equiprobable case by using Proposition 5.



• The idea in the previous method is to approximate the scenarios in group Sre by the conditional
scenario ξ̂re such that its probability is proportional to the number of scenarios of the group. This
generalizes the idea of expected scenario, where one considers only one scenario group which is
approximated by ξ̄.
• The previous method is distribution free since it only requires a set of scenarios.
• This approach can also be used when the the distribution of ξ is known. The procedure is as follows:

Sample a set of scenarios from ξ and proceed with Steps 1 to 4.
• This procedure can be used to effectively approximate a possibly large set of scenarios by a small set

of conditional scenarios.

4.2. Randomized Conditional Scenarios

Prior to defining the Conditional Scenario (CS) problem in Section 5, let us explain the Randomized
Conditional Scenario (RCS) concept. Given a finite support random vector ξ̃, the CS random vector ξ̂r

is an approximation to ξ̃ for all r ∈ R. Since it would not have sense to consider all these approxi-
mations simultaneously, they are considered one each time (randomly), that is, each ξ̂r approximates ξ̃
with probability 1/R. For this reason, it is considered a random index r with support R and uniform
probability P

(
r = r

)
= 1/R for all r ∈ R, to define the RCS random vector ξ̂r (notice the r, being a

random variable, is written in boldface). Therefore, ξ̂r approximates the random vector ξ̃ by a set of R
random vectors of dimension R, that is, {ξ̂r}r∈R, each one taken with probability 1/R.

Example 3. (Randomized conditional scenarios: Calculations)
Let us continue Example 2 where the future demand was approximated by two conditional scenarios

considering low an high demands for Product 1, that is, ξ̃ was approximated by ξ̂1. Now, let us see how
ξ̃ could be approximated by conditional scenarios with high and low demand for each product (not only
for Product 1 as in Example 2).

All we need to do is to approximate ξ̃ by a set of randomized conditional scenarios: In the first step,
one computes the conditional scenarios ξre for r ∈ R = {1, 2, 3} and e ∈ E = {1, 2}, by using Method
1 (see Example 2). In the second step, the probabilities thus calculated are multiplied by 1/R (in this
case 1/3). The corresponding randomized conditional scenarios and probabilities are as follows (the first
column corresponds to ξ̂1 and son on):

ξ̂1,1 =

1.2
3.4
7.6

 ξ̂2,1 =

1.0
3.0
7.2

 ξ̂3,1 =

1.1
3.2
7.0


p̂1,1/R = 6/30 p̂2,1/R = 5/30 p̂3,1/R = 5/30

ξ̂1,2 =

 3.1
7.4
13.4

 ξ̂2,2 =

 2.9
7.0
12.6

 ξ̂3,2 =

 2.8
6.8
12.8


p̂1,2/R = 4/30 p̂2,2/R = 5/30 p̂3,2/R = 5/30,



Fig. 3. The initial set of 10, 000 scenarios (top plot) is approximated by a
random sample of 12 scenarios labelled by ‘*’ (bottom plot) and by a set of 12
randomized conditional scenarios labelled by ‘o’ (the lines are plotted to show
their trajectories). Conditional scenarios on the dotted line and the solid line
correspond to ξ̂1 and ξ̂2, respectively. The square in the center approximates

the initial set of scenarios by its expectation.

where we have indicated the low and high demands in boldface for each product.

In the following example, we show the result of approximating a large set of scenarios by a small set
of randomized conditional scenarios.

Example 4. (From scenarios to randomized conditional scenarios: Geometry) In order to illustrate the
geometry of the randomized conditional scenarios, let us draw a random sample of 10, 000 scenarios



from the bivariate normal distribution N2(µ,Σ) such that

µ =
(

100 200
)ᵀ

Σ =

(
400 480
480 1600

)
,

and approximate them by 12 randomized conditional scenarios (see Figure 3).

5. The conditional scenario problem

In this context, the CS problem can be defined as the approximation of the RP problem that is based on
the approximation of the random vector ξ̃ by the RCS random vector ξ̂r, that is, by the set of random
vectors {ξ̂r}r∈R, each one taken with probability 1/R. Otherwise said, the set of scenarios {ξ̃s}s∈S is
approximated by the set of conditional scenarios {ξ̂re}re∈RE , in order to define the CS problem:

min
x̂

zCS = cᵀ1 x̂1 +
1

R

∑
re∈RE

p̂re ĉreᵀ2 x̂re2 (14)

s.t. A1x̂1 = b1 (15)

Âre
2 x̂1 + B̂re

2 x̂
re
2 = b̂re2 re ∈ RE (16)

x̂1 ≥ 0 (17)
x̂re2 ≥ 0 re ∈ RE (18)
x̂1j integer j ∈ J1 (19)
x̂re2j integer re ∈ RE , j ∈ J2. (20)

In this context

ξ̂re = E[ ξ̃ | ξ̃r ∈ Ire ] = vec
(
ĉre2 , Â

re
2 , B̂

re
2 , b̂

re
2

)
re ∈ RE ,

such that {Ire}e∈E is a partition of Ir that fulfills Assumption 1 for each r ∈ R. Notice that, the
CS problem is always based on ‘randomized conditional scenarios’. However, we will normally drop
the term ‘randomized’ and simply say ‘conditional scenarios’. Finally, it is important to mention that
although the CS problem has the same structure as the RP problem (1)–(7), it gives suboptimal solutions
for the RP problem since it is an approximation.

6. Computational study

Let us assume that the RP problem (1)-(7) has been formulated in terms of a large set of S1 scenarios.
Approximating the RP problem by using a small set of S2 randomly sampled scenarios can be consid-
ered as a simple version of the Sample Average Approximation (SAA) method (Kleywegt et al., 2002).
The SAA method is a Monte Carlo sampling method which, according to (Henrion and Romisch, 2017),
is the preferred and mostly used scenario generation method for the numerical solution of stochastic



programming problems. The objective of this section is to compare the SAA and CS problems as ap-
proximations to the RP problem intended to reduce its computational burden. We will try to answer the
following questions: How does the CS problem, formulated in terms of a given number of conditional
scenarios, compare with the SAA counterpart formulated in terms of the same number of (randomly
sampled) scenarios? That is, do the two approaches obtain solutions of similar quality? Are the corre-
sponding solution times similar? Computations have been conducted on a PC using Windows 7 (64 bits),
with a Intel Core i5 processor, 2.67GHz and 8 GB of RAM. The corresponding MILP problems have
been solved by CPLEX 12.6 with default parameter values.

In this computational study, we will solve the well known risk-return portfolio optimization problem
where one decides how much to invest in each asset taking into account its random returns r̃j (Abdelaziz
and Masmoudi, 2014; Konno, 2011). The model here solved corresponds to the mean semi-absolute
deviation (MSAD) model with hard real-world constraints (Cesarone et al., 2015), namely, a limit on
the number of assets to be included in the portfolio (a cardinality constraint) and lower and upper limits
on their weights (a buy-in threshold). The MSAD corresponds to the mean of the deviations below the
portfolio expected rate of return and can be computed as follows:

MSAD(x) = E[ [r̃ᵀx− µᵀx]− ], (21)

where x =
(
x1 . . . xJ

)ᵀ is the portfolio selection weights, r̃ᵀx is the (uncertain) portfolio return, µᵀx
is the portfolio expected rate of return and [α]− = −min{0, α} for any number α. It can be shown that
the MSAD model is equivalent to the mean absolute deviation (MAD) model but with half the number
of variables (Konno, 2011; Speranza, 1996). According to (Cesarone et al., 2015), when hard real-world
constraints are incorporated into portfolio optimization models, most authors prefer to use MILP models
as, for example, the MSAD model instead of quadratic ones as, for example, the mean-variance model
(Markowitz, 1952), to improve the computational solvability.

The objective is to obtain an expected return of b% while attaining the lowest possible MSAD, by
investing in 13 assets, at most, from an initial set of 50 candidate assets: 25 stocks and 25 commodities
(corn, milk, oil, copper, gold, etc.). The investor considers these two types of assets since commodities
are known to move in the opposite direction of the stock market, on average. That is, commodities are,
in general, negatively correlated with stocks. In this way the investor can invest in both to diversify and
hedge his portfolio (stabilize his portfolio from volatility).

6.1. The SAA portfolio optimization problem

The SAA portfolio optimization problem, or for short, the SAA problem, corresponds to solve the portfo-
lio optimization problem with recourse formulated in terms of a small set of randomly sampled scenarios.
The deterministic parameters, the random parameters and the decision variables are described in Tables
3, 4 and 5, respectively. To formulate the SAA problem we consider S2 = 800 scenarios randomly
sampled from the initial set of S1 = 105 scenarios that model the random return rates. We consider 800
scenarios in order to match the number of conditional scenarios that we will consider in the CS coun-
terpart. For simplicity, the initial set of equiprobable scenarios were drawn from the multivariate normal
distribution NJ(µ,Σ) with values for µj and σj1,j2 reported in Table 4. However, the CS approach de-
scribed in this paper could be used for any set of scenarios (either corresponding to historical data or



Table 3
Indexes and deterministic parameters of the SAA problem.

Parameter Value Unit Description

j - Index for assets (stocks and commodities)
J 50 assets Number of assets
J {1, . . . , J} - Index set for assets
k - - Index for stocks
K 25 stocks Number of stocks
K {1, . . . ,K} - Index set for stocks
l - - Index for commodities
L 25 commodities Number of commodities
L {1, . . . , L} - Index set for commodities
rsk 0.05 + 0.10k/K % Expected return rate of stock k
rcl 0.10 + 0.10l/L % Expected return rate of commodity l
r̄ vec

(
rs, rc

)
- Vector of expected return rates

b
( ∑

j∈J r̄j
)
/J % Required level of expected return for the portfolio

U dJ/4e = 13 assets Maximum number of assets in the portfolio
lb 0.5/U = 3.85 % Buy-in lower bound
ub 1.5/U = 11.54 % Buy-in upper bound

generated in the computer by Monte Carlo sampling techniques).
The SAA portfolio optimization problem can be written as follows:

min
ũ,x̃,ỹ

zSAA =
∑
s∈S2

p̃sỹs (22)

s.t. lb ũj ≤ x̃j j ∈ J (23)
x̃j ≤ ub ũj j ∈ J (24)∑
j∈J

ũj ≤ U (25)

∑
j∈J

x̃j = 1 (26)

∑
j∈J

r̄j x̃j = b (27)

∑
j∈J

r̃sj x̃j + ỹs ≥ b s ∈ S2 (28)

ũj ∈ {0, 1} j ∈ J (29)
x̃, ỹs ≥ 0 s ∈ S2. (30)

This problem corresponds to the RP problem (1)–(7) formulated in terms of 800 randomly sampled
scenarios. Notice that the MSAD defined in equation (21) is computed by means of equations (22), (27),
(28) and (30). After solving this SAA problem by using the MILP solver we have obtained z∗SAA =



Table 4
Random parameters of the SAA problem.

Parameter Value Unit Description

r̃
(
r̃1 . . . r̃J

)ᵀ % Random return rates represented by a random sample
of S1 = 105 equiprobable scenarios {r̃s}s∈S1

r̃s
(
r̃s1 . . . r̃

s
J

)ᵀ % Realization of r̃ (scenario)
µj r̄j % Expected return rate of asset j
σj r̄j % Standard deviation of r̃j
ρsk1,k2

0.6 - Correlation between return rates of stocks k1
and k2, k1 6= k2

ρcl1,l2 0.6 - Correlation between return rates of commodities l1
and l2, l1 6= l2

ρsck1,l2
−0.4 - Correlation between return rates of stock k1

and commodity l2

ρ

(
ρs ρsc

ρsc ᵀ ρc

)
Correlation matrix

σj1,j2 ρj1,j2 σj1σj2 (%)2 Covariance between r̃j1 and r̃j2 , j1 6= j2
R J - Number of random parameters
E 16 - Number of conditional scenarios per component of r̃
S1 105 - Initial number of scenarios
S1 {1, . . . , S1} - Index set for the initial set of scenarios
S2 800 - Number of scenarios used in the SAA problem
S2 {1, . . . , S2} - Index set for the scenarios used in the SAA problem
s - - Index for scenarios

Table 5
Decision variables of the SAA problem.

Decision variable Unit Description

ũj - ũj = 1, if one invests in the jth asset
ũi = 0, otherwise

x̃j % Proportion of the funds to be placed in
the jth asset

ỹs % Negative part of the deviation from the expected return
ỹs = [r̃sᵀx̃− r̄ᵀx̃]− under scenario s

1.57% and

x̃∗ᵀ1 =
(

0 0 0 0 0 0 0 0 0 0
10.52 11.54 8.95 0 0 0 9.24 9.80 8.38 0

0 0 0 0 0 0 0 0 0 0
5.02 0 6.48 0 0 0 5.89 8.24 0 0
5.74 0 0 0 4.70 0 0 5.50 0 0

)
(in %).

We have broken vector x̃∗ᵀ1 into rows given its long length, such that the first row corresponds to the
first ten assets.



6.2. The CS portfolio optimization problem

To formulate the CS problem, first we calculate the conditional scenarios that approximate the initial set
of S1 = 105 scenarios by using Method 1, with R = 50 random parameters and E = 16 conditional
scenarios per random parameter (in total:R·E = 800 conditional scenarios). Notice that the CS problem
has the same structure as the SAA problem (22)-(30). The only difference is the way to approximate the
random vector r̃ (conditional scenarios r̂re versus randomly sampled scenarios r̃s). Therefore, the re-
sulting MILP problems have the same dimensions for the two approaches. After solving the CS problem
we have obtained z∗CS = 0.52% and

x̂∗ᵀ1 =
(

0 0 0 9.04 0 0 0 11.54 0 11.54
0 0 11.54 6.35 0 11.54 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 11.54 0 0
0 0 0 3.85 0 0 0 11.54 0 11.54

)
(in %).

6.3. Comparing the CS and SAA solutions

Let us call CS the optimal cost obtained by solving the CS problem, that is CS = z∗CS (notice that
the value CS corresponds to the optimal MSAD). As pointed out in (Beltran-Royo, 2017), the expected
cost predicted by CS is, in general, different from the expected cost achieved by the CS solution. The
achieved expected cost is known in the literature as the ‘expected result of using the CS solution’ (E-CS)
and can be computed by solving the E-CS problem, which is nothing but the RP problem (1)–(7) with
the additional constraint x̃1 = x̂∗1, that is, fixing the first stage decision to the first stage CS solution.
Notice that the E-CS replicates the concept E-EV (expected result of using the EV solution) as described
in (Birge and Louveaux, 2011). Analogously for SAA and E-SAA.

To formulate the E-CS and E-SAA problems we have used the initial set of S1 = 105 scenarios. In
Table 6 we observe that the predicted and the achieved MSAD values are different for both methods.
Notice that, for practical purposes the achieved values are more relevant that the predicted values, since
the former are the ones that measure the actual performance of the corresponding optimal solutions. For
the SAA method this difference is small and could be reduced practically to zero by taking a sufficiently
large number of scenarios (Shapiro et al., 2009) (although this could make the resulting SAA instance
intractable). The reason is that the SAA problem is nothing but the RP problem (1)–(7) formulated in
terms of a sample of scenarios of arbitrary cardinality. However, for the CS approach this difference is
larger and a relevant difference would remain even for a very large number of conditional scenarios. The
reason is that the CS problem is only an approximation to the RP problem (thus, the optimal CS solution
is, in general, suboptimal for the RP problem). Therefore, as pointed out in the introduction, the CS
approach is intended to be used only in cases where the scenario approach results impractical regarding
the solution time.

In Table 6 we also observe that the SAA solution time is more than eight times the CS solution time.
We investigate this large difference in the next section.



Table 6
Comparing the CS and the SAA solutions.

Predicted MSAD Achieved MSAD
CS SAA E-SAA E-CS

MSAD (%) 0.52 1.57 1.84 1.98
Solution time (s) 7.38 63.29 0.07 0.07

Table 7
Size of the MILP instances. The CS and the SAA problems have the same sizes.

Instance J Scenarios Rows Columns

1 20 320 363 360
2 40 640 723 720
3 60 960 1,083 1,080
4 80 1,280 1,443 1,440
5 100 1,600 1,803 1,800
6 120 1,920 2,163 2,160
7 140 2,240 2,523 2,520
8 160 2,560 2,883 2,880
9 180 2,880 3,243 3,240

10 200 3,200 3,603 3,600

6.4. Comparing the CS and SAA performances

In this section we compare the SAA and CS performances by solving the portfolio optimization problem
with hard real-world constraints for different number of assets. Table 7 reports the number of: assets
J (50% stocks and 50% commodities), scenarios S2 and rows/columns of the constraint matrix of the
corresponding MILP instances. The initial number of scenarios is constant in all the instances (S1 =
105). The other parameters are summarized in Tables 3 and 4.

The CS and SAA performances are compared in Figures 4 to 6. Figure 4 shows that the achieved
MSAD is similar for the two approaches (slightly better for SAA). Notice that the SAA instances 5 to 10
could not be solved within a solution time limit of 3,600 s. Figure 5 corresponds to the ‘solution time’. In
Table 9, we observe that the average solution time is 51 seconds and over 2,295 seconds for the CS and
SAA approaches, respectively. That is, the CS approach was, on average, over 45 times faster than the
SAA approach. Notice that the CS solution time, also accounts for the time to compute the conditional
scenarios (see Table 9).

Finally, Figure 6 plods to the ‘LP gap’ (the relative gap between the optimal MILP cost and the
optimal cost of the corresponding LP relaxation). In Table 10, we observe that the LP gap of the first
four instances is, on average, 0.0354% and 5.4175% for the CS and SAA approaches, respectively. That
is, the LP gap of the first four CS instances was, on average, 153 times smaller than the LP gap of
the corresponding SAA instances. Therefore, a possible reason for the faster performance of the CS
approach is its smaller LP gap (it is well known that the difficulty of MILP problems is strongly related
to the LP gap).



Fig. 4. The achieved MSAD obtained by the CS and SAA approaches are
similar (slightly better for the SAA approach). The SAA instances 5 to 10
could not be solved within the solution time limit (3,600 s). For details see

Tables 8 and 10.

Fig. 5. For the first four instances the CS approach was, on average, over 30
times faster than the SAA approach. For details see Table 9.

Fig. 6. The LP gap of the first four CS instances was, on average, 153 times
smaller than the LP gap of the corresponding SAA instances. For details see

Table 10.



Table 8
Comparing the E-CS and E-SAA. The SAA instances 5 to 10 could not be
solved within a solution time limit of 3,600 s.

Instance E-CS E-SAA
(%) (%)

1 2.41 2.24
2 2.12 1.91
3 1.95 1.81
4 1.87 1.76
5 1.78 -
6 1.79 -
7 1.76 -
8 1.74 -
9 1.72 -

10 1.68 -

Average 1.88 -

Table 9
Comparing the CS and SAA solution times. CS1 = ‘Time to compute the con-
ditional scenarios’, CS2 = ‘Time to solve the CS problem’, Total = CS1 + CS2

Instance CS problem SAA problem
CS1 CS2 Total (s) Total (s)

1 2 0.1 2 1
2 5 0.2 5 33
3 10 0.5 11 1047
4 18 1.2 19 273
5 29 1.5 30 > 3,600
6 43 2.6 46 > 3,600
7 60 4.0 64 > 3,600
8 80 5.4 85 > 3,600
9 103 7.7 111 > 3,600

10 131 10.3 141 > 3,600

Average 48 3 51 > 2,295

Tables 8-10 report the figures used to plot Figures 4-6, respectively.

6.5. CS performance regarding the number of scenarios (sensitivity analysis)

In this section we perform a sensitivity analysis of the CS approach regarding solution quality and
solution time. With this objective in mind, instance 10, the largest instance in Table 7, is solved for
an increasing number of scenarios: from 800 to 5600 as reported in Table 11. The solution quality is
assessed by means of the achieved MSAD which is given by the E-CS value. In Table 11 one observes
that the solution quality improves by augmenting the number of scenarios up to 3200 (best value E-CS



Table 10
Comparing the LP gaps.

Instance CS problem SAA problem
LP bound z∗CS LP gap LP bound z∗SAA LP gap

(%) (%) (%) (%) (%) (%)

1 0.6097 0.6104 0.1235 1.5438 1.7476 13.20
2 0.5360 0.5360 0.0000 1.5058 1.5823 5.08
3 0.5156 0.5157 0.0115 1.5558 1.5941 2.46
4 0.5004 0.5004 0.0065 1.4676 1.4813 0.93
5 0.4960 0.4962 0.0441 1.4883 - -
6 0.4985 0.4985 0.0115 1.5652 - -
7 0.4961 0.4961 0.0000 1.5353 - -
8 0.4896 0.4899 0.0596 1.4235 - -
9 0.4779 0.4784 0.1104 1.4791 - -

10 0.4868 0.4875 0.1398 1.4844 - -

Average 0.5107 0.5109 0.0506 1.5049 - -

Table 11
Solution quality and solution time for an increasing number of scenarios. CS1 =
‘Time to compute the conditional scenarios’, CS2 = ‘Time to solve the CS
problem’, Total = CS1 + CS2.

Number of Solution quality Solution time
conditional scenarios E-CS (%) CS1 CS2 Total (s)

800 1,82 128 1 129
1600 1.79 130 3 133
2400 1.75 130 6 136
3200 1.68 131 10 141
4000 1.72 132 15 147
4800 1.71 131 20 151
5600 1.71 131 27 158

= 1.68%). Then, with more than 3200 scenarios the results are similar (slightly worse).
Regarding the solution time, one observes in the same table that the time to compute the conditional

scenarios (CS1) is almost the same for all the cases. This is because the total number of scenarios pro-
cessed in each case is the same (S1 = 105). Roughly speaking, as the number of conditional scenarios
increases from 800 to 5600, the computational work per conditional scenario decreases proportionally
(see Method 1). On the other hand, the time to solve the corresponding MILP instance (CS2) increases
faster than the number of scenarios. All in all, regarding solution quality and solution time, 3200 scenar-
ios seems the best choice in Table 11, which corresponds to E = 16 the value used in previous sections
(E is the number of conditional scenarios per random parameter of the problem). For practical purposes
it is advisable to tune parameter E (16 represents a good starting point). Of course, the approach in this
section has been empirical and the impact of the parameter E is a matter that deserves further research.



7. Conclusions

Although the definition of conditional scenario (CS) given in (Beltran-Royo, 2017) is general, in prac-
tice, it is suitable basically for the multivariate normal distribution. The main contributions of this paper
have been: First, to give a new definition of conditional scenario that is suitable for any continuous or
discrete multivariate distribution. Second, to study some theoretical properties of this new definition. In
this respect, Proposition 3 shows that the new definition and the former definition are equivalent for the
multivariate normal case. Third, to derive an effective method, based on the new definition, to approxi-
mate a potentially large set of scenarios by a reduced set of conditional scenarios. Such a procedure was
not possible with the former definition of conditional scenario. Forth, to perform a computational study
to test this new method.

In the computational study, we have solved the portfolio optimization problem with hard real-world
constraints to compare the performances of the CS approach and the sample average approximation
(SAA) approach, with the same number of scenarios. In this comparison, we have observed that the
solution performance, in terms of the achieved MSAD (mean semi-absolute deviation), is similar for the
two approaches (slightly better for the SAA approach).

Regarding the solution time, the CS approach has shown to be much faster than the SAA counterpart.
Furthermore, the CS instances have shown a much smaller LP gap than the corresponding SAA instances,
which could explain the shorter CS solution times. This hypothesis deserves further research. Besides
studying the LP gap, there remain other research questions regarding the CS approach, as for example, its
performance in multistage stochastic optimization (Bruno et al., 2016; Shi et al., 2011) and in non-linear
stochastic optimization (Tarhan et al., 2013), among others.

All in all, the CS approach, a basic approximation of the recourse problem, could be a good choice for
practitioners interested in fast and good solutions for the portfolio problem with hard real-life constraints
in cases where the solution time of the SAA approach would result infeasible for practical purposes.
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