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Abstract

A common approach to model stochastic programming problems is based on
scenarios. An option to manage the difficulty of these problems corresponds to
reduce the original set of scenarios. In this paper we study a new fast scenario
reduction method based on Conditional Scenarios (CS). We analyze the degree of
similarity between the original large set of scenarios and the small set of conditional
scenarios in terms of the first two moments. In our numerical experiment, based on
the stochastic capacitated facility location problem, we compare two fast scenario
reduction methods: the CS method and the Monte Carlo (MC) method. The empiri-
cal conclusion is twofold: On the one hand, the achieved expected costs obtained by
the two approaches are similar, although the MC method obtains a better approxi-
mation to the original set of of scenarios in terms of the moment matching criterion.
On the other hand, the CS approach outperforms the MC approach with the same
number of scenarios in terms of solution time.

Keywords: Stochastic programming, scenario reduction, Monte Carlo sampling,
conditional scenario, stochastic capacitated facility location problem.

1 Introduction

A common approach to model stochastic programming problems is based on scenarios [8]. One finds
this approach in different fields and applications such as optimal design of energy systems [34], portfo-
lio optimization [32], forestry planning [1], influence maximization in social networks [33] and trading
in electricity markets [24], etc. Given the high dimension and complexity of stochastic programming
problems, it is common to use specialized approaches to solve them. This is even more necessary
in presence of integer variables, which make the problem size a critical issue. In this case one can
use approaches such as Lagrangian relaxation [31], Benders decomposition [27], decomposition with
branch-and-cut [28], parallel computing [23], among others. As an alternative, one can use some
heuristic approach in order to obtain good, but suboptimal, solutions. See, for example, [2] for the
branch-and-fix coordination heuristic, [21] for a greedy heuristic, etc.

A second option to manage the difficulty of stochastic programming problems corresponds to scenario
reduction methods, which aim to trim down the number of scenarios whenever the stochastic pro-
gramming problem results intractable or requires a very long solution time. The objective of scenario
reduction is to balance two conflicting objectives, namely, to obtain an accurate model of the parame-
ter uncertainty and to obtain a tractable problem. Different methods have been proposed for scenario
reduction. The simplest approach corresponds to the Monte Carlo (MC) method, which selects, from
the initial set of scenarios, a subset of scenarios by Monte Carlo sampling [25, 29]. Another well
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known approach is the moment matching method, which selects a limited number of scenarios that
satisfy specified statistical properties based on moments [18, 19]. In the scenario reduction method
based on a given probability distance, one selects a subset of scenarios which is closest to the initial set
of scenarios, in terms of a given probability distance. The choice of the probability distance is prob-
lem dependent [26]. Thus, in the case of a stochastic programming problem with continuous decision
variables one can use, for example, the Kantorovich distance [11, 25]. However, in the presence of
integer variables, one has to use a discrepancy-based probability distance [15].

The MC method is a fast scenario reduction method since it only requires selecting a subset of scenar-
ios by sampling. In contrast, the probability distance method and the moment matching method cannot
be considered fast scenario reduction methods, since they require solving an optimization problem to
select the reduced set of scenarios. As pointed out in [14], the optimization problem associated to the
probability distance method corresponds to a set-covering problem, which is NP-hard. On the other
hand, the optimization problem associated to the moment matching method is nonlinear and gener-
ally not convex [19]. Even if one uses some heuristic method to approximately solve these difficult
optimization problems, the corresponding solution times are much longer than the MC scenario re-
duction time. In this way, if the original set of scenarios is very large, only fast scenario reduction
methods may result practical. This is the case of our numerical experiment (see Section 4) where we
have an initial set of 105 scenarios to be reduced (the largest scenario dimension there considered is
75). Thus, in this paper we focus on fast scenario reduction methods. Specifically, we compare the
MC method to another fast scenario reduction method which is based on Conditional Scenarios (CS).
In the CS method, one approximates the initial set of scenarios by a set of conditional expectations,
which are called conditional scenarios. Notice that the CS method is fast since the computation of
these conditional expectations is straightforward and can be done quickly (see Section 2).

The CS problem, which is based on conditional scenarios, was introduced in [4] as an effective ap-
proximation to the two-stage stochastic mixed-integer linear programming problem with recourse. For
short, we will call it the recourse problem (RP). Some useful CS bounds for the optimal value of the
RP problem were derived there. The definition of conditional scenario, introduced in [4], was basi-
cally suitable for the multivariate normal distribution. In [5] this definition was generalized in order
to approximate any multivariate distribution (continuos or discrete). In contrast with the former def-
inition, the new definition allows to approximate a potentially large set of scenarios by a small set of
conditional scenarios.

In scenario based optimization one solves the RP problem, whereas in deterministic optimization one
solves the so-called expected value problem [7]. The CS problem improves the ability of the expected
value problem to deal with uncertainty by considering conditional scenarios instead of the expected
scenario. On the other hand, the CS problem reduces the computational burden of the RP problem
by considering a reduced number of conditional scenarios instead of a potentially large number of
scenarios. In fact, the expected value problem is an approximation to the CS problem, which, in turn,
is an approximation to the RP problem. Therefore, the CS solution is, in general, suboptimal for the RP
problem but hopefully better than the expected value solution. For this reason, the CS approach should
only be used in cases where the scenario approach results impractical regarding the solution time
(Figure 1). Notice that in this paper we compare the CS problem to the MC problem (with a reduced
number of scenarios) as approximations to the RP problem. With the MC method it would possible
to solve the RP problem to optimality by taking a number of scenarios large enough. In contrast, as
already pointed out, the CS method has only been designed to approximate the RP problem in order to
obtain good, possibly suboptimal, solutions with low computational burden.

Depending on the scenario reduction method, we will have the CS problem or the MC problem. Al-
though the CS problem has already been analyzed in [4, 5], the CS random vector, supported by the
set of conditional scenarios, has not been analyzed yet. Therefore, the theoretical results of this paper
complement the theoretical results of [4] and [5]. The objective of this paper is to study the first two
moments of the CS random vector in the context of the RP problem. With this objective in mind,
we consider the RP random vector, supported by a potentially large set of scenarios that models the
parameter uncertainty of the RP problem, and the CS random vector that has been obtained by the CS
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Figure 1: The ‘Conditional scenario’ approach represents an ef-
fective midpoint between the deterministic optimization (based
on the ‘Expected scenario’) and the ‘Scenario’ based optimiza-
tion, regarding the capability to model the uncertainty and the
computational burden.

method. In this paper, we try to answer the following questions: a) Which is the degree of similarity
between the RP and CS random vector in terms of the first two moments? b) How does the CS problem
compare with the MC problem as approximations to the RP problem?

The contribution of this paper is the following:

• Theoretical point of view: Roughly speaking, we show that the RP and CS random vectors
have the same expectation. We also show that they have covariance coefficients which are
proportional, provided that the RP random vector is a discretization of a multivariate nor-
mal random vector (see Section 3). In this case, the CS method bears some similarity to
the approaches preserving the first and second order moment information of the distribu-
tion, such as robust optimization [12] and stochastic optimization based on linear decision
rules combined with semi-infinite programming [3].

• Practical point of view: In the numerical experiment, based on the stochastic capacitated
facility location problem, we compare the MC and CS problems. The empirical conclu-
sion is twofold: On the one hand, although the MC method obtains a better approximation
to the original set of scenarios in terms of the moment matching criterion, the achieved
expected costs obtained by the CS and MC approaches are similar. On the other hand, the
CS problem outperforms the MC problem with the same number of scenarios in terms of
solution time. One of the most interesting observations of this paper is the following con-
jecture: in the context of MILP problems, the CS problem usually has a smaller LP gap
than the corresponding MC problem with the same number of scenarios, which would
explain the faster performance of the CS approach (see Section 4).

Apart from the already mentioned main Sections 3 and 4, in Section 2 we review the MC and CS
scenario reduction methods and in Section 5 the conclusions are drawn.

2 Fast scenario reduction for the recourse problem

In this paper we focus on fast scenario reduction methods for the two-stage stochastic mixed-integer
linear programming problem with recourse (for short, the Recourse Problem (RP)). A thorough de-
scription of this problem, its applications and solution methods can be found in [7, 20, 25, 29], among
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others. The RP problem can be stated as follows:

min
x

zRP = c1x1 +
∑
s∈S1

p̃s c̃s2x
s
2 (1)

s.t. A1x1 = b1 (2)

Ãs
2x1 + B̃s

2x
s
2 = b̃s2 s ∈ S1 (3)

x1 ≥ 0 (4)

xs2 ≥ 0 s ∈ S1 (5)

x1j integer j ∈ J1 (6)

xs2j integer s ∈ S1, j ∈ J2, (7)

where Jt is the index set for the integer variables at stage t for all t ∈ T = {1, 2}. In this context,
scenario ξ̃s represents the sth realization of the random parameters of the problem, that is, ξ̃s =
vec
(
c̃s2, Ã

s
2, B̃

s
2, b̃

s
2

)
, where ‘vec’ is the operator that stacks vectors and matrix columns into a single

vector. Then, ξ̃ is the RP random vector, which is defined by the set of scenarios {ξ̃s}s∈S1 and the
corresponding probability values {p̃s}s∈S1 , such that P

(
ξ̃ = ξ̃s

)
= p̃s for all s ∈ S1 = {1, . . . , S1}.

Given that the computational burden of this problem rapidly increases with the number of scenarios,
a common approach is to reduce the initial set of scenarios to obtain a small set of representative
scenarios. In this way, the new problem, formulated in terms of the reduced set of scenarios, results
computationally tractable. As already pointed out in the introduction, in this paper we will focus on
two fast scenario reduction methods, namely, the Monte Carlo method and the conditional scenario
method.

2.1 Monte Carlo method

Scenario sampling by the Monte Carlo method is the simplest scenario reduction method. Given a
potentially large set of scenarios {ξ̃s}s∈S1 , the MC method randomly selects a subset of scenarios
{ξ̂s}s∈S2 of reduced cardinality indexed by S2 = {1, . . . , S2}. The MC scenario reduction is a fast
method since it does not rely on any optimization problem [17]. The theoretical properties of the MC
method can be found in [25] and the references therein. According to [16], presently the MC sampling
method is the preferred approach for scenario generation and reduction in stochastic programming.
A closely related stochastic programming approach is the Sample Average Approximation (SAA)
method, where one formulates the RP problem in terms of a random sample of scenarios generated by
Monte Carlo sampling techniques [29].

2.2 Conditional scenario method

In stochastic programming, scenarios and the expected scenario represent two extreme choices re-
garding computational burden and ability to model the parameter uncertainty. The conditional sce-
nario (CS) concept was introduced in [4] as an effective midpoint between these two choices, since it
showed a moderate computational burden and a reasonable ability to model the parameter uncertainty.
Given a set of scenarios, computing the corresponding conditional scenarios can be seen as a scenario
reduction method. In what follows we review the CS scenario reduction method.

Method 1. (CS scenario reduction method [5])

• Objective: To approximate a set of scenarios by a set of conditional scenarios.

• Input:

a) A set of equiprobable scenarios {ξ̃s}s∈S1 , such that ξ̃s =
(
ξ̃s1 . . . ξ̃

s
R

)
, with proba-

bility value p̃s = 1/S1, for all s ∈ S1.
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b) E, the number of conditional scenarios per each coordinate r ∈ R = {1, . . . , R}.
Then, E = {1, . . . , E} is the index set for the conditional scenarios for a given
coordinate.

• Output: A set of conditional scenarios {ξ̂re}re∈R×E and the corresponding probability
values {p̂re}re∈R×E .

• Steps: For each r ∈ R :

1) Define the interval Ir = [ar, br] such that

ar = min
s∈S1
{ξ̃sr} br = max

s∈S1
{ξ̃sr}.

2) Partition Ir is into E subintervals Ire such that Ir = ∪e∈EIre, where Ire =
[are, bre) for all e ∈ E \ {E} and IrE = [arE , brE ].

3) For all e ∈ E :

i) Classify the scenarios such that the index set Sre accounts for the scenarios that
fulfill the condition ξ̃sr ∈ Ire.

ii) Set Sre as the cardinality of Sre.
iii) Compute the corresponding conditional scenario and its probability value:

ξ̂re = E[ ξ̃ | ξ̃r ∈ Ire ] =
1

Sre

∑
s∈Sre

ξ̃s (8)

p̂re =
1

R

(
Sre/S1

)
.

As we can see, the CS scenario reduction is straightforward and does not rely on any optimization
problem. In this method the input is the RP random vector ξ̃, which has support {ξ̃s}s∈S1 and prob-
ability values {p̃s}s∈S1 , and the output is the CS random vector ξ̂r, with support {ξ̂re}re∈R×E and
probability values {p̂re}re∈R×E . Notice that in the CS method, one computes each conditional sce-
nario as a convex combination of a selected set of original scenarios (Equation (8)), in contract with
the MC method where the scenarios are randomly selected from the original set of scenarios. Thus, in
the MC method the structure of the original random process remains unchanged, while the CS method
modifies this structure. In this respect, the CS method could be considered more a solution algorithm
than a scenario reduction technique. However, in this paper we will use the term CS scenario reduction
method to indicate that the initial large set of scenarios is approximated by a small set of conditional
scenarios, that is, one reduces the original number of scenarios.

3 Moment properties of the randomized conditional expectation

According to [25], in very rare cases one can solve a stochastic programming problem formulated in
terms of ξ, a random vector with a general probability distribution that models the parameter uncer-
tainty. For a numerical solution, the original problem is replaced by a simpler one, where ξ is replaced
by a simpler random vector ξ̃, which has a finite support given by a set of scenarios (we call it the
RP random vector). For quite large sets of scenarios one may ignore the fact that the model is just
an approximation since it produces accurate optimal solutions. However, in this case the approxi-
mate problem may become numerically intractable, and some scenario reduction method is needed to
balance both numerical tractability and accuracy of the uncertainty model.

In this section we address the following question formulated in the introduction: a) Which is the
degree of similarity between the RP random vector ξ̃ and the CS random vector ξ̂r in terms of the
first two moments? With this objective in mind, we consider ξ and ξr, the Randomized Conditional
Expectation (RCE) that approximates ξ by its conditional expectation [4]. At this point, it may be
useful to briefly review the RCE concept. Given a random vector ξ =

(
ξ1 . . . ξR

)
, the conditional
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expectation ξr := E[ ξ | ξr ], seen as a function of ξr, is an optimal approximation to ξ, for all r ∈ R
[13]. Since it would not have sense to consider all these approximations simultaneously, they are
considered one each time (randomly), that is, each ξr approximates ξ with probability 1/R. For this
reason, it is considered a random index r with support R and uniform probability P

(
r = r

)
= 1/R

for all r ∈ R to define the RCE random vector ξr (notice the r, being a random variable, is written in
boldface). Therefore, ξr approximates the random vector ξ by a set of R random vectors of dimension
R, that is, {ξr}r∈R, each one taken with probability 1/R (further details can be found in [4, 5]).

As already mentioned, to reach tractability, ξ and ξr are usually approximated by the finite support
random vectors ξ̃ and ξ̂r, respectively. Thus, the degree of similarity between ξ and ξr can be used as
a proxy of the degree of similarity between ξ̃ and ξ̂r, provided that ξ̃ and ξ̂r are sufficiently close to ξ
and ξr, respectively. The previous idea is summarized in the following graph:

ξ → conditional expectation → ξr

↓ ↓
finite support finite support

approximation approximation

↓ ↓
ξ̃ → conditional expectation → ξ̂r

Therefore, we address question a) in an indirect way by analyzing the similarity between ξ and ξr in
terms of the first two moments. Notice that the scenario reduction by the CS method corresponds to
the bottom of the previous graph.

3.1 Expectation of the randomized conditional expectation

In this section we show that the RCE random vector and the original random vector ξ, have the same
expectation, that is, E[ ξr ] = E[ ξ ]. First, let us consider the following result, which specializes the
law of total expectation ([9], Theorem 4.7.1) in the conditional scenario context and can be proved in
a similar way.

Proposition 1. Let us consider the random vector ξ =
(
ξ1 . . . ξR

)
, such that ξ has finite expectation,

then

E[E[ ξ | ξr ] ] = E[ ξ ] ∀r ∈ R.

In order to approximate the original stochastic programming problem, given the original random vector
ξ, the so-called expected value problem approximates it by its expectation, that is, ξ̄ = E[ ξ ]. If
we consider ξ̄ as a degenerate random vector then we have that E[ ξ̄ ] = E[ ξ ] which is a desirable
property. By the previous proposition, this result is also true for the conditional expectation ξr since
E[ ξr ] = E[E[ ξ | ξr ] ] = E[ ξ ] for all r ∈ R. Next proposition proves that this result is also true for
the RCE random vector.

Proposition 2. Let us consider the random vector ξ such that it has finite expectation (we do not
assume any probability distribution) and let us also consider the randomized conditional expectation
ξr = E[ ξ | ξr ], where r is the discrete random variable with uniform distribution onR = {1, . . . , R},
such that, P

(
r = r

)
= 1/R for all r ∈ R. Then

E[ ξr ] = E[ ξ ].

Proof.

E[ ξr ] = E[E[ ξr | r ] ] =
∑
r∈R

1

R
E[ ξr | r = r ]

=
∑
r∈R

1

R
E[ ξr ] =

∑
r∈R

1

R
E[ ξ ] = E[ ξ ].
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3.2 Covariance of the randomized conditional expectation

As is well known, the expected scenario ξ̄ = E[ ξ ] ignores the variability of the original vector ξ,
and therefore it has a null covariance matrix, that is, Var[ ξ̄ ] = 0R×R. In contrast, the RCE random
vector takes into account the variability of the original vector and Var[ ξr ] shows some degree of ‘sim-
ilarity’ with Var[ ξ ], as we will see in this section. This similarity is studied for general multivariate
distributions in Proposition 4 and for the multivariate normal distribution in Propositions 5 and 6.

Let us consider the following result, which specializes the law of total variance ([9], Theorem 4.7.4)
in the conditional scenario context and can be proved in a similar way.

Proposition 3. Let us consider the arbitrary random vector ξ =
(
ξ1 . . . ξR

)
for which the necessary

expectations and covariance matrices in equation (9) exist, then

Var[ ξ ] = E[Var[ ξ | ξr ] ] + Var[E[ ξ | ξr ] ] ∀r ∈ R. (9)

Proposition 4. Let us consider the random vector ξ =
(
ξ1 . . . ξR

)
for which the necessary expecta-

tions and covariance matrices in equation (10) exist (we do not assume any probability distribution)
and let us also consider the randomized conditional expectation ξr = E[ ξ | ξr ],where r is the discrete
random variable with uniform distribution onR. Then:

Var[ ξr ] = Var[ ξ ]− 1

R

∑
r∈R

E[Var[ ξ | ξr ] ]. (10)

Proof. By the definition of ξr, one has that

Var[ ξr ] = Var[E[ ξ | ξr ] ]

= Var[ ξ ]− E[Var[ ξ | ξr ] ], (11)

where the last equality is a consequence of the law of total variance (9). On the other hand by the law
of total expectation

E[Var[ ξ | ξr ] ] = E[E[Var[ ξ | ξr ] ] | r ]

=
∑
r∈R

1

R
E[Var[ ξ | ξr ] ].

Therefore Equation (11) can be written as

Var[ ξr ] = Var[ ξ ]−
∑
r∈R

1

R
E[Var[ ξ | ξr ] ].

The result in Proposition 4 applies for any distribution. In Propositions 5 and 6, we specialize this
result for the multivariate normal distribution. As is well known, the multivariate normal distribution
plays a central role in statistics because it can be viewed as an approximation and limit of many
other distributions (the basis justification relies on the central limit theorem) . As a consequence, the
multivariate normal distribution comes into play in many applications [13].

Proposition 5. Let us consider the multivariate normal random vector ξ =
(
ξ1 . . . ξR

)
∼ NR(µ,Σ)

and the randomized conditional expectation ξr = E[ ξ | ξr ], such that r is the discrete random
variable with uniform distribution onR. Then

Var[ ξr ] =
1

R

∑
r∈R

1

σ2r
Σ∗rΣr∗,

where Σ∗r and Σr∗ are the rth column and the rth row of the covariance matrix Σ, respectively.
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Proof. It is straightforward to see that the conditional covariance matrix of ξ given ξr can be computed
as follows:

Var[ ξ | ξr ] = Σ− 1

σ2r
Σ∗rΣr∗ (by Theorem 5.3 in [13]).

Therefore:

Var[ ξr ] = Var[ ξ ]− 1

R

∑
r∈R

E[Var[ ξ | ξr ] ] (by Proposition 4)

= Σ− 1

R

∑
r∈R

E
[
Σ− 1

σ2r
Σ∗rΣr∗

]
= Σ− 1

R

∑
r∈R

Σ +
1

R

∑
r∈R

1

σ2r
Σ∗rΣr∗

=
1

R

∑
r∈R

1

σ2r
Σ∗rΣr∗.

Proposition 6. Let us consider the multivariate normal random vector ξ ∼ NR(µ,Σ), such that
Σ = (σij), and the randomized conditional expectation ξr = E[ ξ | ξr ]. Furthermore, let us also
consider ρij , the correlation between the components ξi and ξj , for all i, j ∈ R :

1. If the components of ξ are pairwise uncorrelated (ρij = 0 for all i, j ∈ R such that i 6= j)
then

Var[ ξr ] =
1

R
Var[ ξ ].

Notice that Var[ ξ ] is a diagonal matrix (therefore, Var[ ξr ] is also diagonal).

2. If the components of ξ are pairwise correlated (ρij 6= 0 for all i, j ∈ R) then

Var[ ξr ] =
(
αijσij

)
ij∈R×R

,

where

αij =
1

R

∑
r∈R

ρirρrj
ρij

.

Proof. 1. By Proposition 5 we have

Var[ ξr ] =
1

R

∑
r∈R

1

σ2r
Σ∗rΣr∗

=
1

R

∑
r∈R

1

σ2r


σ1r

...

σRr

(σr1 . . . σrR)

=
1

R

∑
r∈R

( σirσrj
σ2r

)
ij∈R×R

=
1

R

∑
r∈R

( ρirσiσrρrjσrσj
σ2r

)
ij∈R×R

=
1

R

( ∑
r∈R

ρirρrjσiσj

)
ij∈R×R

. (12)
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By hypothesis we have that ρir = 0 if i 6= r and, as usual, ρir = 1 if i = r, for all i, r ∈ R. In this
case equation (12) becomes

Var[ ξr ] =
1

R

(
δijσiσj

)
ij∈R×R

=
1

R
Var[ ξ ],

where δij = 1 if i = j and δij = 0 otherwise. We observe that Var[ ξr ] is a diagonal matrix.

2. To prove the second statement we use equation (12):

Var[ ξr ] =
1

R

( ∑
r∈R

ρirρrjσiσj

)
ij∈R×R

=
1

R

( ∑
r∈R

ρirρrj
σij
ρij

)
ij∈R×R

=
(
αijσij

)
ij∈R×R

,

where

αij =
1

R

∑
r∈R

ρirρrj
ρij

ij ∈ R×R.

4 Numerical experiment

In this section we address the second question formulated in the introduction: b) How does the CS
problem, based on conditional scenarios, compare with the MC problem, based on scenarios, as ap-
proximations to the RP problem? To answer this question we use the Capacitated Facility Location
(CFL) problem with uncertain demand [6, 30].

In the CFL problem we have a set of candidate facilities indexed by I = {1, . . . , I} and a set of clients
indexed by J = {1, . . . , J}. In the stochastic CFL problem here solved future demand is modelled by
a set of equiprobable scenarios {d̃s}s∈S1 . The goal is to choose a subset of facilities in order to satisfy
the demand of all the clients at the minimum expected cost, which accounts for the fixed costs fi and
for the supplying costs cij (see Table 1). Since demands are unknown and facilities have a limited
capacity gi, the facilities opened in the first stage may be insufficient to satisfy all of the demands in
the second stage. In this case, a penalty term for unmet demand, proportional to qj , is added to the
objective function of the deterministic CFL formulation [10]

Notice that solving the CFL problem with recourse, formulated in terms of a set of scenarios gener-
ated by the MC method, can be considered as a simple version of the Sample Average Approximation
(SAA) method [22]. For this reason we could name it the SAA capacitated facility location prob-
lem. However, to maintain the acronyms used in previous sections, we will call it the MC capacitated
facility location problem or, for short, the MC problem. The MC problem is a mixed-integer linear
programming problem which has been solved by CPLEX 12.6 with default parameter values. Com-
putations have been conducted on a PC under Windows 7 (64 bits), with an Intel Core i5 processor,
2.67GHz and 8 GB of RAM.

4.1 The RP capacitated facility location problem

The RP capacitated facility location problem, for short, the RP problem, corresponds to solve the
stochastic CFL problem with recourse formulated in terms of a set of scenarios. The deterministic
parameters, random parameters and decision variables of the RP problem can be found in Tables 1, 2
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Table 1: Indexes and parameters of the RP problem.

Parameter Value Unit Description

I 10 - Number of (candidate) facilities

I {1, . . . , I} - Index set for facilities

i - - Index for facilities

J 30 - Number of clients

J {1, . . . , J} - Index set for clients

j - - Index for clients

IJ I × J - Index set for pairs ij

fi 1000 + 300i euros Fixed cost of facility i

cij 0.3IJ − 0.01
(
I(j − 1) + i

)
euros / unit Cost of supplying client j by facility i

qj 3
∑

i∈I cij/I euros / unit Penalty for unmet demand

d̄j 100 + 10j units Expected demand of client j

K
∑

j∈J d̄j/I units Ratio:

‘Total expected demand / Number of facilities’

gi 4
(

0.5K + (K/I)i
)

units Capacity of facility i

Table 2: Random demand of the RP problem.

Parameter Value Unit Description

d̃
(
d̃1 . . . d̃J

)
units Random demands modeled by a random sample

of S1 = 105 equiprobable scenarios {d̃s}s∈S1 drawn

from the multivariate normal distribution d ∼ NJ(µ,Σ)

µj d̄j units Expected demand of client j

σj 0.2 d̄j units Standard deviation of dj

ρj1,j2 0.7 - Correlation between dj1 and dj2 , j1 6= j2

σj1,j2 ρj1,j2 σj1σj2 units2 Covariance between dj1 and dj2 , j1 6= j2

d̃s - units Realization of d̃ (scenario)

R 30 - Number of random parameters

Er 8 - Number of conditional scenarios

corresponding to the rth component of d̃

S1 105 - Initial number of scenarios

S1 {1, . . . , S1} - Index set for the initial set of scenarios

s - - Index for scenarios

10



Table 3: Decision variables of the RP problem.

Decision Unit Description

ui - ui = 1, if facility i is opened

ui = 0, otherwise

xsij % Fraction of the demand of client j supplied by facility i

ysj % Fraction of the demand of client j unmet

and 3, respectively. Then, the RP problem can be written as follows:

min
u,x,y

zRP =
∑
i∈I

fi ui +
1

S1

∑
s∈S1

( ∑
ij∈IJ

cij d̃
s
j x

s
ij +

∑
j∈J

qj d̃
s
j y

s
j

)
(13)

s.t.
∑
i∈I

xsij + ysj = 1 s ∈ S1, j ∈ J (14)∑
j∈J

d̃sj x
s
ij ≤ gi ui s ∈ S1, i ∈ I (15)

ui ∈ {1, 0} i ∈ I (16)

xsij ≥ 0, ysj ≥ 0 s ∈ S1, ij ∈ IJ . (17)

This problem is a well known example of the two-stage stochastic MILP problem introduced in (1)–
(7). Notice that we have not included the constraints xsij ≤ ui for all s ∈ S1, ij ∈ IJ . These
constrains are normally used in facility location problems to strengthen the MILP formulation, however
in a preliminary computational test we have observed that they considerably increase the problem
dimension resulting in longer solution times compared with the current formulation (13)–(17).

4.2 Fast scenario reduction

The above RP problem, formulated in terms of the initial set of S1 = 105 scenarios that model the
random demand, is computationally intractable. In order to attain tractability we will approximate the
initial set of scenarios by three methods: the Expected Value (EV) method, the MC method and the
CS method. After these scenario reduction processes, one can formulate the corresponding EV, MC
and CS problems, respectively, which have the same structure as the RP problem (13)-(17) but with
a reduced size. The EV method approximates the initial set of scenarios by the expected scenario. In
the CS method (see Method 1) we set Er = 8 for all r ∈ R which, combined with R = 30 random
parameters, givesR·E = 240 conditional scenarios. We arbitrarily chooseEr = 8 for two reasons. On
the one hand, to keep the computational burden of the corresponding MILP problem low. On the other
hand, since we know that the scenarios, componentwise, come from the normal distribution which has
probability almost one along the interval of length 8σ centered at µ,we consider that one discretization
point per each subinterval of length σ is reasonable. Although this is a heuristic approach, takingEr =
8 represents a good balance between the computational burden and the quality of the approximated
solution, as we will see in Section 4.4. In the MC method we consider S2 = 240 scenarios randomly
sampled from the initial set of scenarios, in order to match the number of conditional scenarios.

In Table 4 we summarize the results of the three scenario reductions. In this table, d̃ is the random
vector associated to the inial set of 105 scenarios. d̂ is the random vector associated to the scenario
reduction method: EV, MC or CS. ‖‖2 and ‖‖F are the Euclidean and the Frobenius norms, respec-
tively. We have obtained the following results. Scenario reduction time: we observe that the three
methods require less than 2 seconds. Relative expectation error: the three methods approximate well
the original expectation vector, since all of them have a relative expectation error under or equal to
1%. Relative covariance error: obviously, the relative covariance error for the EV method is the max-
imum (100%) since in this case Var[ d̂ ] = 0 (d̂ = d̄ is considered a degenerate random vector). For
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the MC and CS methods this error is 7% and 37%, respectively. Otherwise said, the quality of the
approximation to the original covariance matrix is 0%, 93% and 63% by the EV, MC and CS methods,
respectively (measured by the Frobenius norm). Notice that, although moment similarity is a desired
property, it does not guarantee the similarity of two probability distributions, as pointed out in [25].

Table 4: Fast scenario reduction.

EV MC CS

Scenario reduction time (s) <1 <1 <2

Relative expectation error (%) 0 1 0

‖ E[ d̃ ]− E[ d̂ ] ‖2 / ‖ E[ d̃ ] ‖2
Relative covariance error (%) 100 7 37

‖ Var[ d̃ ]− Var[ d̂ ] ‖F / ‖ Var[ d̃ ] ‖F
Relative covariance approximation (%) 0 93 63

100 – Relative covariance error

In order to improve the quality of the scenario reduction, one could augment the number of scenar-
ios considered (at the price of worsening the computational tractability of the resulting optimization
problem). In this way the MC random vector could get arbitrarily close to the original continuous
random vector d (see Section 3). However, this would not be possible with the CS method. Even by
considering a very large number of conditional scenarios, the CS random vector d̂r could get arbitrar-
ily close to the RCE random vector dr but not to the original continuous random vector d. Thus, the
relative covariance error of the CS method in Table 4 (37%) has a theoretical lower bound which, by
Proposition 6.2, can be computed as follows (see the parameter values in Table 2):

‖ Var[d ]− Var[dr ] ‖F
‖ Var[d ] ‖F

=
1

‖ Σ ‖F

∥∥∥∥(σij − αijσij

)
ij∈R×R

∥∥∥∥
F

= 31.52%. (18)

This bound could be attained by considering a very large number of conditional scenarios. Notice that
in this paper we compare the CS problem to the MC problem (with a reduced number of scenarios) as
approximations to the RP problem. With the MC method it would possible to solve the RP problem
to optimality by taking a number of scenarios large enough. In contrast, the CS method has been
designed only to approximate the RP problem in order to obtain good, possibly suboptimal, solutions
with low computational burden.

4.3 Comparing the CS, MC and EV solutions

The simplest approximation of the RP problem corresponds to the EV problem, which approximates
the random vector of demands by its expectation d̄ = E[ d̃ ]. After solving the EV problem we have
obtained:

z∗EV = 681, 264 euros

u∗EV =
(

1 1 0 0 0 0 0 1 0 0
)
.

To formulate the MC problem we consider S2 = 240 scenarios randomly sampled from the initial
set of S1 = 105 scenarios that model the random demand. As already pointed out, we consider 240
scenarios in order to match the number of conditional scenarios that we will consider in the CS method.
After solving the MC problem we have obtained:

z∗MC = 681, 627 euros

u∗MC =
(

1 1 1 1 1 0 0 0 0 0
)
.
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Table 5: Comparing the EV, MC and CS solutions.

Predicted expected cost Achieved expected cost

EV MC CS E-EV E-MC E-CS

Cost (euros) 681,264 681,627 683,319 751,414 687,422 687,347

Solution time (s) < 1 29 18 32 32 32

To formulate the CS problem we consider 240 conditional scenarios obtained as described in Section
4.2. After solving the CS problem we have obtained:

z∗CS = 683, 319 euros

u∗CS =
(

1 1 1 0 0 0 0 1 0 0
)
.

Notice that the MC and the CS problems have the same structure and size. The only difference between
them is the way it is used to approximate the random vector d̃ (scenarios d̃s versus conditional scenar-
ios d̂re). Therefore, the resulting MILP problems have the same dimensions for the two approaches.

Let us call EV the optimal value obtained by solving the EV problem, that is EV = z∗EV . As pointed
out in [7], the expected cost predicted by EV is, in general, different from the expected cost achieved
by the EV solution. The achieved expected cost is known in the literature as the ‘Expected result of
using the EV solution’ (E-EV) and can be computed by solving the E-EV problem, which is nothing
but the RP problem (13)–(17) with the additional constraint u = u∗EV , that is, fixing the first stage
decision to the first stage EV solution.

This remark is also valid for the CS and MC problems and, therefore, one can define and compute the
values CS, E-CS, MC and E-MC in an analogous way. To set the E-EV, E-CS and E-MC problems
we have used a set of scenarios S3 randomly sampled from the initial set of scenarios S1, such that
|S3| = S3 = 104. In this case one has p̃s = 1/S3 for all s ∈ S3. In order to compare the MC, EV
and CS solutions, we have collected all the above mentioned values in Table 5. We observe that the
the achieved expected cost obtained by the CS and MC approaches are similar. We also observe that
for the EV problem the achieved expected cost (E-EV=751,414 euros) is more than 9% worse than the
MC and CS counterparts.

4.4 How many conditional scenarios?

In this section we analyze the relationship between the number of conditional scenarios and the quality
of the approximated solution. To this end we solve the CS problem by considering 120, 240 and 480
conditional scenarios, which corresponds to Er = 4, 8 and 16, respectively. In Table 6, we observe
that, as the number of conditional scenarios increases, the ‘Relative covariance error’ decreases and
asymptotically approaches 31.52%, the theoretical lower bound computed in (18). In all the cases, the
‘Relative expectation error’ has been equal to zero and the CS scenario reduction time has been under
2 seconds.
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Table 6: Covariance approximation quality.

Conditional scenarios

120 240 480

Relative covariance error (%) 49 37 32

‖ Var[ d̃ ]− Var[ d̂ ] ‖F / ‖ Var[ d̃ ] ‖F
Relative covariance approximation (%) 51 63 68

100 – Relative covariance error

In Table 7 the ‘Predicted expected cost’ increases monotonically with the number of conditional sce-
narios. However, the ‘Achieved expected cost’ does not necessarily improve as the number of condi-
tional scenarios increases (although they are similar). On the other hand, the ‘Time to solve the CS
problem’ increases quickly with the number of conditional scenarios. Therefore, in this context and
considering Tables 6 and 7, taking 240 conditional scenarios (Er=8) seems a good balance between
the computational burden and the quality of the approximated solution. In the remaining of the paper
we will use Er=8. In this section the E-CS problem has been solved with S3 = 104 in all the cases.

Table 7: Quality of the approximated solution.

Conditional scenarios

120 240 480

Predicted expected cost (euros) 683,254 683,319 683,444

Time to solve the CS problem (s) 3 18 45

Achieved expected cost (euros) 687,539 687,347 687,828

Time to solve the E-CS problem (s) 32 32 32

4.5 Comparing the MC and CS performances

In Section 4.3 we have observed that the MC and CS approaches obtain solutions with a significantly
lower achieved expected cost compared to the EV approach (see Table 5). In this section we compare
the MC and CS performances by solving the stochastic CFL problem for different number of facilities
and clients. Table 8 reports the size of the CFL instances, that is, number of facilities and clients,
the reduced number of scenarios (the initial number of scenarios is 105 for the ten instances) and the
number of rows and columns of the constraint matrix of the corresponding MILP instance. Notice that
the CS and the MC instances have the same size.
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Table 8: Size of the stochastic CFL instances.

Instance Facilities Clients Scenarios Rows Columns

1 16 48 384 24,576 313,360

2 17 51 408 27,744 374,561

3 18 54 432 31,104 443,250

4 19 57 456 34,656 519,859

5 20 60 480 38,400 604,820

6 21 63 504 42,336 698,565

7 22 66 528 46,464 801,526

8 23 69 552 50,784 914,135

9 24 72 576 55,296 1,036,824

10 25 75 600 60,000 1,170,025

Table 9 reports the value of the relative covariance approximation introduced in Table 4, whose value
is, on average, 92.15% and 63.42% for the MC and CS methods, respectively. Thus, in order to reduce
the number of scenarios, the MC method will be better than the CS method in terms of the second
moment matching criterion. However, in the context of stochastic MILP problems, it can be useful to
use the CS method in cases where the MC solution times are too long. As we will see below, in this
context the CS method may obtain solutions of the same quality with shorter solution times compared
to the MC method. Notice that, in this table, the scenario reduction time for the MC method is not
reported since it is under one second for all the instances. The relative expectation error, introduced in
Table 4, is also not reported since it is 0% and under 1% for the CS and MC approaches, respectively.

Table 9: Scenario reduction: Relative covariance approximation.

Instance Relative covariance approximation (%) Scenario reduction time (s)

MC CS CS

1 92.85 63.37 7

2 94.94 63.38 8

3 87.49 63.41 8

4 89.92 63.40 9

5 95.17 63.43 10

6 88.45 63.43 12

7 90.88 63.44 12

8 91.30 63.44 13

9 96.28 63.45 14

10 94.20 63.44 16

Average 92.15 63.42 11

The CS and MC performances are compared in Figure 2, regarding the ‘Achieved expected cost’,
in Figure 3, regarding the ‘Solution time’, and in Figure 4, regarding the ‘LP gap’ (the relative gap
between the optimal solution of the MILP problem and the optimal solution of its LP relaxation). The
figures used to plot these graphs can be found in Tables 10, 11 and 12, respectively. In these figures we
observe that: 1) The achieved expected cost obtained by the CS and MC approaches are similar. 2) On
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average, the CS approach has been 2.5 times faster than the MC approach (the solution time, plotted in
Figure 3, accounts for the scenario reduction time plus the time to solve the corresponding stochastic
CFL instance). 3) A possible reason for the faster performance of the CS approach is its smaller LP
gap (the relative gap between the optimal solution of the MILP problem and the optimal solution of its
LP relaxation).

Figure 2: The achieved expected cost obtained by the CS and MC
approaches are similar (see Table 10).

Figure 3: On average, the CS approach has been 2.5 times faster
than the MC approach (see Table 11).
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Figure 4: On average, the LP gap of the CS instances has been
almost 2 times smaller than the LP gap of the MC instances (see
Table 12).

Finally, let us have a look to the following three tables, which have been used to plot Figures 2, 3
and 4, respectively. In Table 10 we observe that, on average, the CS achieved expected cost has been
0.05% higher than the MC counterpart (CS:10,410,564 versus MC:10,405,241 euros). In Table 11 we
have used the following notation: CS1 = ‘Time to compute the conditional scenarios’, CS2 = ‘Time
to solve the CS problem’, Total = CS1 + CS2. We do not report the time to sample the MC scenarios
since it has been under one second for all the instances. On average, the CS solution time has been
2.5 times faster (CS:102 versus MC:259 seconds). In Table 12 the LP gap corresponds to the relative
gap between the optimal solution of the MILP problem and the optimal solution of its LP relaxation.
On average, the LP gap of the CS approach has been almost 2 times smaller (CS:0.0033% versus
MC:0.0065%).

Table 10: Comparing the E-CS and E-MC values.

Instance E-CS E-MC

(euros) (euros)

1 3,759,329 3,758,544

2 4,698,521 4,698,246

3 5,806,134 5,801,227

4 7,089,521 7,089,521

5 8,602,819 8,594,859

6 10,305,452 10,304,597

7 12,316,605 12,301,684

8 14,518,430 14,518,665

9 17,108,169 17,084,409

10 19,900,656 19,900,656

Average 10,410,564 10,405,241
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Table 11: Comparing the CS and MC solution times.

Instance CS problem MC problem

CS1 CS2 Total (s) Total (s)

1 7 57 64 283

2 8 23 31 266

3 8 144 152 28

4 9 37 46 33

5 10 152 162 47

6 12 67 79 638

7 12 91 103 800

8 13 110 123 230

9 14 114 128 119

10 16 113 129 142

Average 11 91 102 259

Table 12: Comparing the LP gap of the MC and CS problems.

Instance CS problem MC problem

LP bound z∗CS LP gap LP bound z∗MC LP gap

(euros) (euros) (%) (euros) (euros) (%)

1 3,755,710 3,755,909 0.0053 3,729,246 3,729,505 0.0069

2 4,697,833 4,698,096 0.0056 4,640,258 4,640,675 0.0090

3 5,806,075 5,806,346 0.0047 5,837,008 5,837,185 0.0030

4 7,098,450 7,098,711 0.0037 7,155,997 7,156,420 0.0059

5 8,594,403 8,594,634 0.0027 8,688,482 8,688,658 0.0020

6 10,313,915 10,314,097 0.0018 10,384,489 10,384,986 0.0048

7 12,278,587 12,279,282 0.0057 12,163,593 12,164,811 0.0100

8 14,510,677 14,510,728 0.0004 14,565,506 14,567,034 0.0105

9 17,032,515 17,033,095 0.0034 17,055,797 17,057,359 0.0092

10 19,868,189 19,868,204 0.0001 19,698,378 19,699,063 0.0035

Average 10,395,635 10,395,910 0.0033 10,391,875 10,392,570 0.0065

5 Conclusions

The Conditional Scenario (CS) problem was introduced in [4] as an effective approximation to the two-
stage stochastic mixed-integer linear programming problem with recourse (for short, the RP problem).
In this context, the scenario based random vector that models the uncertain parameters of the RP
problem is called the the RP random vector. From a theoretical point of view, we have analyzed the CS
random vector, obtained by the CS scenario reduction method, as an approximation to the RP random
vector. In the introduction we have raised question a): Which is the degree of similarity between the
RP and CS random vectors in terms of the first two moments? Roughly speaking, we have shown
that the RP and CS random vectors have the same expectation. We have also shown that they have
covariance coefficients which are proportional, provided that the RP random vector is a discretization
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of a multivariate normal random vector.

From a computational point of view, we have compared the CS random vector to the Monte Carlo
(MC) random vector, obtained by sampling a reduced set of scenarios. We have performed a numeri-
cal experiment where we have solved the capacitated facility location problem with uncertain demand.
We have observed that the MC method obtains a better approximation to the original probability dis-
tribution than the CS method in terms of the moment matching criterion. Furthermore, we have used
this experiment to answer se second question raised in the introduction: b) How does the CS problem
compare with the MC problem as approximations to the RP problem? Regarding the solution qual-
ity, we have observed that the two methods obtain solutions with a very similar achieved expected
cost. Regarding performance, the CS method has resulted, on average, 2.5 times faster than the MC
method. Here we compare the total time which accounts for the scenario reduction time plus the time
to solve the corresponding MILP problem. One possible explanation for this observation is that the CS
instances show an LP gap which is, on average, 2 times smaller than the LP gap of the corresponding
MC instances (with the same number of scenarios).

Of course, with the empirical results reported in this paper we can only formulate the following con-
jecture: The CS problem usually has a smaller LP gap than the corresponding MC problem with the
same number of scenarios. This conjecture is a matter of further research. Notice that this potential
computational advantage of the CS method over the MC method only applies for MILP problems.
In the case of LP problems, this potential computational advantage disappears and one should prefer
the MC method, considering its better approximation to the original set of scenarios in terms of the
moment matching criterion.

Therefore, this paper could be useful for Operations Research practitioners in order to answer the
following question: ”Which method could one use to efficiently model and solve two-stage stochastic
optimization problems?”. The answer of this paper is as follows: If the problem is continuous, the
MC approach is a good choice. However, if the problem is mixed-integer and the MC approach takes
too long, one could try the CS approach with the same number of scenarios (possibly, it will produce
smaller LP gaps and, thus, a faster solution of the problem).
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