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H I G H L I G H T S

• Steady-state analysis of the fractional-order capacitor.
• Concept of “incremental capacitance” in the transition from C to CPE.
• Charge/discharge time depends strongly on the dispersive exponent.
• Experimental study of supercapacitors using the theory proposed.
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A B S T R A C T

Electrical energy storage devices exhibit dispersive properties that control their charge and discharge processes.
To get a deeper understanding of these anomalous phenomena, it is essential to go beyond static viewpoints of
circuit theory in order to accurately characterize the complex interplay of internal mechanisms. Specifically, the
(dis)charging time of resistive-capacitive networks is commonly estimated as four times the product of the
Thévenin resistance and the capacitance itself by assuming ideal exponential relaxations in spite of the intrinsic
fractional dynamics of the real energy storage materials, leading to inaccurate and erroneous characterization
protocols. The purpose of this work is to provide recommended practices to find the steady-state operation of
such type of devices from time-domain data with a decelerated behavior of the Mittag-Leffler function at long
time scales, introducing the concept of “incremental capacitance” in the transition from ideal to fractional-order
capacitor and thus, an estimation of the charge/discharge time delay. Our theoretical analysis is validated by
providing a representative example of experimental application, based on an electrochemical power source, such
as supercapacitors under switching-type operation. We hope to bring such study to the attention of multidisci-
plinary readers, both from academia and industry, focused on energy storage device research.

1. Introduction

Conceptually, the electrical traces that describe the physics-based
internal phenomenology of the vast majority of energy storage devices
consist of resistive and capacitive features [1]. From the point of view of
network analysis, the key component here is the capacitor (C) [2] which
provides the relaxation dynamics attributable to the charging and dis-
charging processes of such electrical model due to the current iC(t) is
proportional to the rate at which the voltage vC(t) across the capacitor
varies with time [3],

iC(t)=C
dvC(t)

dt
(1)

where iC(t) is measured in amperes, C in farads, vC(t) in volts, and t in
seconds. We remind that Eq. (1) is obtained from the general theory of
the Maxwell’s equations, qC(t) = CvC(t), relating the charge qC(t) and
the voltage in a linear time-invariant (LTI) capacitor [4].

One of the most widely experiments to electrically characterize LTI
materials is Impedance Spectroscopy (IS) [5], that quantifies the oppo-
sition exhibited by the sample under test to the flow of alternating
current over a frequency range of interest. In Nyquist plots, the theo-
retical spectral picture of a capacitor shows a straight line forming an
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angle of − π/2, leading to the famous diagrams that consist of impedance
arcs underlying natural processes with resistive and capacitive features
[6]. The dielectric properties are theoretically described by the imped-
ance function of the capacitor, ZC(ω) = 1

/jωC, where j is the imaginary

number and ω is the angular frequency. In time domain, the relaxation
responses for basic step experiments, on the other hand, should be
conceptually described in terms of decaying exponential functions with
time [7] as result of the following evolution equation of the voltage
across the “internal capacitance” of the resulting electrical models:

dvC(t)
dt

+
vC(t)

τ = K (2)

where τ is a positive constant representing a single characteristic
relaxation time and, in effect, the exponential transient term e− t/τ arises
as the eigenfunction of the homogeneous version of Eq. (2), with K = 0
[8]. Note that K in Eq. (2) has the units of V/s. Any dynamical system is
characterized, in part, by the value of its time constant τ. In circuit
theory, τ is the reciprocal of the characteristic frequency (with changed
sign) of the impedance or admittance, depending on if one considers
current- or voltage-controlled operation [9,10], determining the rate at
which the exponential term approaches zero. Without loss of generality,
the time constant for electrical circuits with resistive-capacitive prop-
erties equals the product of the Thévenin resistance and capacitance [3,
11], denoted as:

τ=RThC (3)

where the value of RTh corresponds to the resistance “seen” from the
terminals of the capacitor, differing if the independent input is a current
or a voltage (deactivated for this purpose as open- and short-circuits,
respectively). Apart from the free or natural transient component asso-
ciated exclusively to the morphology of the circuit, the analytical
response can also present a forced term which, in the case of a constant
stimulus of duration T under study here, corresponds to the steady-state

solution due to dvC(t)/dt

⃒
⃒
⃒
⃒
t→∞

= 0 when vC(t) reaches its final value

(mathematically expressed as vC(∞)) [8]. In fact, the forced response
thus depends on both the electrical circuit and the excitation and thus,

vC(∞) = Kτ (4)

Differential equations theory shows that, rearranging terms in Eq. (2)
and integrating by using t = 0 and vC(0) = 0 V (initial discharge state in
the capacitor) as lower limits and t and vC(t) as upper limits,

dvC(t)
vC(t) − vC(∞)

= −
dt
τ →

∫vC(t)

0

dvC(t)
vC(t) − vC(∞)

= −
1
τ

∫t

0

dt (5)

the complete solution for vC(t) emerges as [3,8]:

vC(t) = vC(∞)
(
1 − e− t/τ), 0 < t < T (6)

which indicates that the voltage across the capacitor is zero before (t =

0− ) and just after the abrupt change (t = 0+) in the driving excitation
(continuity property, vC(0− ) = vC(0+) here [4]) and then increases
exponentially to the steady-state value. At the instant of time in which
the momentary transient event in terms of the exponential term in Eq.
(6) can be considered negligible (1≫e− t/τ), the stored energy in the
capacitor will be maximum (vC(t) ∼ vC(∞)). By inspection, it can be
easily determined that, when the elapsed time from t = 0 exceeds three
to five time constants, the dynamic route of vC(t) is triggered from the
initial discharge to the new equilibrium state, practically attaining the
steady-state level because the voltage response in the capacitor does not
differ from vC(∞) by more than ±5% (e− 3 ∼ 0.05) to ±1%
(e− 5 ∼ 0.007), respectively [3]. Let’s select

tss,C =4τ (7)

as an intermediate value that represents the optimal solution (both
efficacious and safe) [12]. At t = 4τ, the voltage given by Eq. (6) reaches
98.2% of the final value, thus remaining within 2% of the expected final
value. It is important to point out that the steady state is reached,
mathematically speaking, only after an infinite hold time. In practice,
however, a reasonable estimate of tss,C is the length of time the response
curve needs to go from 0 to approximately 98% of vC(∞) here; that is,
four time constants. Note that the above equations are also valid for an
eventual discharge phase if the stimulus is switched off at time t = T. In
this case, the transient response would show an exponential decay,
rather that rise, with an initial value of vC(T) [11], yielding

vC(t) = vC(T)e− t/τ, t > T (8)

since the steady-state value would be zero now, vC(∞) = 0 V (K = 0 in
Eq. (2)). Regarding the initial part, vC(T) = vC(∞) for 0 < t < T if the
steady-state regime was reached in the charge phase (T ≥ tss,C). Other-
wise, vC(T) < vC(∞). Note that vC(t) is again a continuous function in the
open interval (T− , T+) due to iC(t) would always remain bounded on this
time range [3,4], unless the external stimuli exhibited an abrupt
discontinuity (e.g., of impulsive nature) [8]. In any case, this ulterior
post-excitation decay involves the same time constant as the charge
process (see Eq. (6)), reaching again, in a practical purpose, its final
value four time constants (Eq. (7)) after switching.

However, it is evident from many experimental data in the literature
[13–15] that the dielectric relaxation responses in energy storage ma-
terials cannot be predicted from the simple capacitor theory. Rather,
real-world physical processes with kinetics influenced by complexity or
spatial heterogeneity generate non-Debye patterns [16], requiring a
radical departure from the established paradigms. One of the most
famous anomalous traces of the electrical responses in general are the
depressed semicircle shapes in impedance responses [7,17]. However,
this problem is classically circumvented by using the familiar constant
phase element (CPE), with impedance ZCPE(ω) = 1

/Q(jω)
α, in the fitting

procedure [18] to an electrical model whose parameters are correlated
with physical events of the material under study. In the modeling of
spectral responses, CPE is invoked as a fractional-order capacitor [19] to
account the non-ideal behavior of these complex materials, where
(jω)α

= ωα∠απ/2, Q is a pseudocapacitive parameter in units of F/s1− α

and α is the dispersion coefficient (0 < α ≤ 1) that quantifies the devi-
ation from the ideal capacitor (α = 1). Different approaches in
frequency-domain studies consider that this hybridized version of a
resistor and a capacitor is a mathematical expression that models
time-constant distributions along a surface [20] or through a film or
layer [21] at microscopical level. Experimentally, analyzing the capac-
itive response of natural systems from the perspective of time-domain
measurements also involves anomalies in terms of non-exponential or
power-law profiles [22,23]. From a theoretical perspective, (jω)α is
indeed equivalent to the non-integer order derivative dα

/dtα, which
makes relaxation processes to go beyond the exponential dynamics [24].
In response to constant stimulus, closed forms based on the theory of
fractional calculus have been already derived in the literature [25–27].
Specifically, there exists a range of published time-resolved procedures
that explain the voltage relaxation dynamics, based on
diffusion-controlled charge redistribution phenomena, in electro-
chemical power sources exhibiting non-ideal capacitive behavior. From
different equivalent circuit models containing either one [13,28] or
several CPEs [15,29] or even transmission lines [30,31] (equivalent in
some way to such a dispersive element), many authors have obtained the
corresponding analytical responses in the time domain describing the
complex transient dynamics. In this sense, distribution of relaxation
time (DRT) analyses has been also carried out during the last few years
to study the dynamic behavior of real-world energy storage systems in a
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coherent way under varying circumstances [32,33], visualizing espe-
cially the fast and slow charge phenomenology. However, the problem
arises in any case because the fractional dynamics exhibits a charac-
teristic pattern based on a long-time tail that leads to a time delay in the
charge/discharge of most electrochemical power sources. To the au-
thors’ best knowledge, this has not been investigated yet, which we
believe is important to provide a better understanding of the operational
capabilities of this type of non-ideal energy capacitive storage devices.

In this paper, we provide a quantification of the time delay Δt(α) in
the establishment of certain values of voltage across the dispersive
capacitance using pseudo-steady-state analysis under constant excita-
tions. This aspect is particularly important to estimate a differential
capacitance obtained in the transition from ideal to fractional-order
capacitor. We especially focus our attention on the impact of the frac-
tionary exponent α on Δt(α). In the experimental section, we validate
our theoretical analysis with charge/discharge cycles of voltages and
currents obtained for the case of a source of electrochemical power, such
as supercapacitors. The results provided here are essential for the opti-
mization of analytical and experimental methods based on the processes
of charge and discharge of capacitive systems, being of transversal
application to several research fields.

2. Theoretical analysis

In the time domain, the corresponding current-voltage (iQ(t)-vQ(t))
relationship of the dispersive capacitance is represented by the
fractional-order differential equation [19]:

iQ(t)=Q
dαvQ(t)

dtα
(9)

Thus, Eqs. (2) and (3) can be rewritten as:

dαvQ(t)
dtα

= −
vQ(t) − vQ(∞)

τα (10)

τ=(RThQ)1/α (11)

where vQ(∞) represents the voltage across the fractional-order capacitor
at long time scales and the value of τ in Eq. (11) denotes the charac-
teristic time constant of the peak obtained in the DRT [34,35] of a R-CPE
structure. The operator dαvQ(t)/dtα is considered in the Caputo sense
[36] as:

dαvQ(t)
dtα

=
1

Γ(1 − α)

∫t

0

dvQ(τ)
dτ

dτ
(t − τ)α (12)

which is equivalent to a convolution transform in time of dvQ(t)/dt with
the power-law kernel t− α

/Γ(1 − α). In this sense, we indeed obtain

dαvQ(t)/dt

⃒
⃒
⃒
⃒
t→∞

= 0, which leads to the same previous conclusions

regarding the free term, unlike the famous Riemann-Liouville fractional-
order definition [37]. Assuming the case of a constant excitation in the
input (same conditions as in the case of ideal capacitor mentioned
above), we can then generalize Eq. (6) [38] for the case of the CPE:

vQ(t) = vQ(∞)

(

1 − Eα

[

−
(t

τ

)α ])

, 0 < t < T (13)

where the transient dynamics now is explained by the one-parameter
Mittag-Leffler function defined by the following power series [39]:

Eα

[

−
(t

τ

)α ]

=
∑∞

k=0

[

−
(
t
τ

)α ]k

Γ(αk+ 1)
, α > 0 (14)

which is a generalization of the exponential function, to which it reduces
when α = 1. We note that Eq. (12), which is a Volterra integral equation
of the second kind with a singular kernel, can be solved by applying the
method of successive approximation to obtain the transient response of
Eq. (13) [40]. For convenience, we now separate the two components of
vQ(t), the natural vQ,trans(t) and steady-state vQ,ss responses identifiable
as the time-dependent and constant addends in Eq. (13), respectively. At
short time scales, vQ,trans(t) ∼ vQ,ss, as is the case with the ideal capacitor.
Nevertheless, the problem arises for large times [41]. Mittag-Leffler
function exhibits an asymptotic behavior toward zero but for an
α-dependent number of time constants running to infinity [42], in stark
contrast to exponential dynamics (refer to Eq. (7)), by considering the
typical error bands in control engineering (from ±1% to ±5%).
Conversely, if t/τ is sufficiently large, vQ(t) can be expressed in terms of
the following asymptotic series expansion of the Mittag-Leffler function
[43]:

Eα

[

−
(t

τ

)α ]

∼
∑∞

k=1
( − 1)k− 1

[

−
(
t
τ

)α ]− k

Γ(1 − αk) ,
(
t/τ
)

→∞ (15)

To further simplify, Eq. (15) can be rewritten by considering only the
first term, yielding [44]

Eα

[

−
(t

τ

)α ]

∼

(
t
τ

)− α

Γ(1 − α), α ∕= 1 (16)

for which the absolute value of the second term must be much smaller
that of the first, that is, (t/τ)− α

/Γ(1 − α)≫(t/τ)− 2α/

Γ(1 − 2α) or

(t
τ

)
≫
[

Γ(1 − α)
Γ(1 − 2α)

]1/α

(17)

which holds true in the vast majority of experimental cases.
At sufficiently long times satisfying the constraint imposed by Eq.

(17), we can therefore consider the approximation involved in Eq. (16)
and rewrite the voltage across the fractional-order capacitor given by
Eq. (13) as follows:

vQ(t) = vQ(∞)

[

1 −
(t/τ)− α

Γ(1 − α)

]

, 0 < t < T,
(
t/τ
)

→∞ (18)

The dynamics associated with the term (t/τ)− α can conceptually arise
from the summation of many different exponential decays e− t/τ, each
making a different contribution inversely proportional to the time con-
stant raised to the power 1 − α [45]; that is, τ1− α. In effect, it is
well-known that the inverse power-law behavior plays a universal role
of relaxation dielectric processes in nature [46].

Same as for the case of the capacitor, vQ,trans(t) also decays to zero as
time progresses. However, the Mittag-Leffler pattern requires a high
number of time constants to consider this function equals to zero [24,
47], as commented on previously. In any case, by steady-state response,
we mean the response that exits after the transient terms are negligible;
i.e., vQ,trans(t)≪vQ,ss [42]. This condition can be arranged from Eq. (18),
yielding

tss,Q = τ
[
e− 4Γ(1 − α)

]− 1/α (19)

obtaining thus the steady-state time, beyond which the step response
vQ(t) does not differ from the final value vQ(∞) by more than ±2%, as
depicted in Fig. 1(a). At this point, it should be clear that Eqs. (7) and
(19) establish steady-state times on the internal capacitive variables.
However, it is possible that external variables may require slower time
intervals to reach the equilibrium regime due to the resistive configu-
ration of the circuit [41,48]. In Appendix A, a generalization of our
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theory is formulated for the case of a step-response of voltage-excited
Randles circuits.

From a mathematical perspective, it is evident that an exponential
relaxation exhibits a faster decay than the fractional one given by the
Mittag-Leffler function for large times,

e− t/τ < Eα

[

−
(t

τ

)α ]

,
(
t/τ
)

→∞ (20)

which suggests that the fractional-order capacitor represents a delayed
version of the ideal one because the time needed to reach a fully charged

state, tss,Q > tss,C. Note that e− t/τ > Eα

[

−
(
t
/

τ
)α]

at short time scales, in

contrast to Eq. (20). Thus, if one replaces the time difference tss,Q − tss,C
by a new α-dependent variable Δt(α) obtained from Eqs. (7) and (19),
according to

Δt(α)= tss,Q − tss,C = 4RThΔC(α) (21)

emerges therefore a term based on the concept of “differential capaci-
tance” that quantifies the deviation from ideality (α = 1, Q = C) to the
real capacitance of the CPE. Hence, we obtain

ΔC(α)=Climit(α) − C (22)

where

Climit(α)=
Ceff

4[e− 4Γ(1 − α)]1/α (23)

Ceff =Q1/αR(1− α)/α
Th (24)

Eq. (23) is found by equating Eqs. (7) and (19) as 4RThClimit(α) =

τ[e− 4Γ(1 − α)]− 1/α and substituting for τ from Eq. (11) and the ratio
Q1/αR(1− α)/α

Th from the famous formula of the effective capacitance of the
CPE (refer to Eq. (24)) [49]. Here, the concept of “limit capacitance of a
CPE” is a general denomination for a class of dynamical models, present
in many processes and materials, caused by a delay effect on the physical
phenomena and visible in impedance and transient responses at long
time scales [50]. Both Ceff and Climit(α) are, in any case, virtual capaci-
tances that provide a helpful description of real-world processes under
ideal comprehensive conditions.

It is noteworthy to mention that the analysis presented above re-
mains the same for the case of discharge:

vQ(t) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

vQ(T)Eα

[

−
(t

τ

)α ]

, t > T

vQ(T)
(t/τ)− α

Γ(1 − α), t > T,
(
t/τ
)

→∞

0, t > T, t ≥ tss,Q

(25)

with the unique difference that, in the charge phase, a non-zero residual
capacitive-nature current results in vQ(t) [51,52] being lower than the
steady-state value (vQ(t) < vQ(∞) for 0 < t < T) if T < tss,Q. In contrast,
the voltage across the dissipative capacitor in the discharging is higher
than the equilibrium level (always vQ(t) > 0 for t > T) due to negative
remanent currents, as demonstrated in Fig. 1(b). Note that, in effect, the
CPE exhibits, in an approximate way, some basic properties shown by
classic capacitor theory (memory or continuity) in the transient
behavior, which are essential for the analysis of distributed-parameter
electrical circuits by inspection.

Regarding the nature of physical events in real energy storage de-
vices, even more complex situations can be expected experimentally

Fig. 1. Illustration of time-voltage profiles of (a) charging and (b) discharging classical (α = 1) or anomalous (0 < α < 1) capacitive energy storage materials.
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leading to overlapping processes with slow fractional-order traces that
rule the long timescale phenomena under certain circumstances [29].
These additional characteristics need to be described more accurately by
a more general model, but, in any case, the time delay for the char-
ge/discharge processes can be derived in the same spirit by focusing on
the slowest mechanism governing the response (RC vs R-CPE subcircuit)
if the respective characteristic time scales are well separated. Otherwise,
the fractional dynamics should be modeled by using the Prabhakar

function Eγ
α,β[ − (t/τ)α

] = (1/Γ(γ) )
∑∞

k=0
Γ(γ+k)[− (t/τ)α

]
k

k!Γ(αk+β) , α, β, γ > 0 [53],
complicating the analysis developed here and which is beyond the scope
of this work. If one, on the other hand, considers a dynamic equivalent
circuit constituted by an unlimited number of RC branches to model the
distribution of capacitance, each subcircuit is associated with a relation
time τi which leads to an infinite summation of exponential transient
terms

∑

i
e− t/τi . Therefore, this discrete model suggests a prolonged decay

over an unrestricted time scale, which is not physically reasonable [23,
50,54]. Although many references assume the CPE-type of response to
be over an infinite frequency range in the electrical modeling of elec-
trochemical power sources, they must actually deviate from such
behavior at extremely low frequencies. Thus, we here obtain a unified
steady-state time for the CPE that limits the charge of the energy storage
devices in order to yield realistic realizable responses from the concept
of “incremental capacitance” by comparing the classical and
fractional-order capacitor at long time scales.

Fig. 2 gives an overview of how the time delay Δt(α) depends on α. As
the dispersion coefficient decreases, the time delay for reaching an
equilibrium state increases, which is consistent with the deceleration
level of the transient responses shown in Fig. 1. The transition from the
ideal capacitor to the Warburg behavior is completed in almost three
decades of time, requiring thus several tens of additional seconds to
charge/discharge a real-world energy storage material (CPE behavior
with α commonly varying around 0.65 and 0.95 shown in the inset of
Fig. 2) in comparison to the conventional capacitor. However, we should
point out that if the accuracy at steady-state operation is not of prime
importance in a device under study, then we should not require un-
necessarily large time delays to consider the transient response as
negligible, since such stringent specifications could be alleviated with
lower tolerance values (e.g., ±5% of typical use in control engineering
[12]). To derive our mathematical theory, we therefore established as a
premise the compromise between the simplicity of the model and the
accuracy of the results, leading, in practice, to a good agreement be-
tween simulated and experimental studies. Note that, importantly, the

analysis developed here is equally valid for anomalous inductive phe-
nomena [55], also visible in complex energy-related materials [56,57].

From the previous theoretical analysis, explicit solutions to the
charge, power and energy behavior at long time scales for real-world
capacitive devices can be derived by taking into account their
fractional-order dynamics. Classical equations of an ideal capacitor (α =

1), such as q = Cv, p = Cvdv/dt, and W = 1 /2Cv2 cannot be true for the
CPE (0 < α < 1), thus making it necessary to return to the basic math-
ematical relationships of circuit theory and reformulate the problem for
the new steady-state time given by Eq. (19). Charge for the generalized
capacitance modeled by Eq. (9) following a step-input excitation can be

obtained by integrating the current as q =

∫tss,Q

0

iQdt. The respective

electrical power and energy analyses in pseudo-equilibrium conditions

now follow the expressions p = v
(

Q dαvQ/dtα
)

and W =

Q
∫tss,Q

0

vQdαvQ/dτα dτ. Indeed, closed-form analytical solutions for charge,

power and energy have already been reported in literature from the
theory of fractional calculus [25,56]. Unlike the ideal capacitor where
all the circuit variables are governed by the exponential function e− t/τ in
first-order circuits, here the situation becomes more complex due to the
recurrence properties of the Mittag-Leffler function [39]; that is, the
m-th derivative/anti-derivative of the classical Mittag-Leffler function,
(

d/dt

)m
Eα[ − (t/τ)α

] = tβ− m− 1Eα,β− m[ − (t/τ)α
], is expressed in terms of

the two-parametric Mittag-Leffler function Eα,β[ − (t/τ)α
] =

∑∞
k=0

[− (t/τ)α
]
k

Γ(αk+β) , α, β > 0. Such transient dynamics in charge, power and
energy do not however converge to a final value (q, p,W→∞) because
Eα,β[ − (t/τ)α

] is multiplied by the time, leading to the need to “stop” the
response at a certain time instant (here determined as t = tss,Q). Thus,
our work provides a reformulation of transient-based characterization
tests used for energy storage devices, eliminating inconsistencies in
industrial/academic standards on the proper way to charge/discharge
such materials.

3. Experimental procedure

We select one representative energy storage device with evident
dispersive behavior for an experimental study, such as the super-
capacitor, as reflected by literature results [26]. Indeed, the use of
supercapacitors in electrical circuits requires accurate protocols for their
proper characterization from charging and discharging sequences, as the
one developed here. The electrical measurements were performed on a
3 F, 2.7 V Cooper Bussmann PowerStor supercapacitor and a 3 F, 2.7 V
GHC Nanoforce device using an Autolab PGSTAT204 Potentios-
tat/Galvanostat (Metrohm). Characteristics of the electric double-layer
capacitors (EDLCs), specified by the manufacturer, are listed in
Table 1. In each case, the current in the device was recorded beginning
at the instant a rectangular voltage pulse of a height of 1 V is applied
until the time at which the subsequent relaxation process approaches to
zero. A sampling rate of 0.2 MHz was used, and all the experiments were

Fig. 2. Time delay Δt(α) required for the charging/discharging of a real-world
device in relation to the ideal non-dispersive view by considering a Thévenin
resistance of 0.5 Ω and a CPE parameter with a value of 1.5 F/s1-α.

Table 1
Characteristics of the supercapacitors supplied by the manufacturer.

Fabricant Capacitance
(F)

Maximum initial
ESR (mΩ)

Maximum working
voltage (V)

Cooper Bussmann
PowerStor

3 80 2.7

GHC Nanoforce 3 100 2.7
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repeated five consecutive times on each supercapacitor.

4. Results and discussion

A simple circuit that can be used to obtain the step-excited voltage
response of a fractional-order capacitor is shown in Fig. 3(a), where the
EDLC, modeled by an internal ohmic resistance Rs in series with a
physics-based CPE, is charged at the electric potential vin(t) = V. For this
case, RTh = Rs and τ = (RsQ)1/α. On the other hand, Fig. 3(b) shows the
self-discharge of the device into the series resistance. The selection of
supercapacitors here is justified because, in most real-world materials
tested in science, the capacitive element is an internal part of a general
equivalent circuit [51,58–60], being thus experimentally inaccessible
for the study of its anomalous dynamics.

Before proceeding to experiments, we will derive the mathematical
expressions for the transient-current response under stepped operation.
Once the transient voltages have been determined corresponding to the
charge and discharge phases, we can easily derive the expressions of the
current iQ(t), for 0 < t < T and t > T, from Eqs. (9), (13) and (25) as:

iQ(t) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

vQ(∞)

RTh
Eα

[

−
(t

τ

)α ]

, 0 < t < T (26a)

−
vQ(T)
RTh

Eα

[

−
(t

τ

)α ]

, t > T (26b)
(26)

Here, iQ(t) exhibits an undershoot of value

iQ(T+) − iQ(T− ) = −

(
vQ(T)
RTh

+
vQ(∞)

RTh
Eα

[

−

(
T
τ

)α ])

(27)

at the instant t = T and then it starts a Mittag-Leffler rise toward zero
(see below). Indeed, iQ(t) exhibits the same relaxation pattern, in terms
of the Mittag-Leffler function, validating the use of Eqs. (19)–(24) for the
evaluation of the steady-state regime. Note that, theoretically speaking,
the area of current waveform above the zero axis should be equal to that
below for a total average value of zero if T ≥ tss,Q
(iQ(T+) − iQ(T− ) = − vQ(T)/RTh

in Eq. (27)) under LTI conditions.

Nevertheless, the transient responses in supercapacitors have been
commonly found asymmetric looking at the charge and discharge se-
quences under pulsed operation in the literature, attributed to irre-
versible processes such as different regimes at the anodic and cathodic
sides of the devices [28].

Firstly, we study the Powerstor supercapacitor in response to the step
voltage V = 1 V. The waveform of the resulting current iQ(t) flowing
through the non-ideal capacitive energy storage device for t > 0 is
sketched in Fig. 4(a), where the blue line indicates iQ(t) for α = 1
(exponential behavior). In fact, the distributed relaxation dynamics
exhibits a faster decay than the ideal one, for short times. However, the
inherent fractional-order nature of supercapacitors introduces a signif-
icant deceleration in the transient response, being thus slower than the

exponential dynamics at long time scales. The internal voltage across the
capacitor of fractional nature, plotted in Fig. 4(b) and calculated as
vQ(t) = V − iQ(t)Rs, exhibits the same transient dynamics as the current
(also in comparison to ideal behavior, indicated again in blue line) being
now a non-exponential rise rather instead of a decay. Although appar-
ently the experimental-voltage waveform could be more or less

Fig. 3. Electrical circuits for (a) charging and (b) discharging the fractional model of an electric double layer capacitor (EDLC).

Fig. 4. (a) Current and (b) voltage waveforms in response to a step voltage with
height V = 1 V and duration T applied to a Powerstor supercapacitor under real
conditions (0 < α < 1) and considering α = 1 (exponential behavior). Parame-
ters obtained via fitting procedure to the equivalent circuits shown in Fig. 3 are
also shown, including the steady-state times for both cases in (c).
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inherited from traditional capacitors theory, the reality is that the use of
the classical formulation (Eqs. (1)–(8)) inevitably leads to tremendous
errors in the characterization. The Rs-CPE fitting parameters are found
to be Rs = 0.42 Ω, Q = 1.34 F/s1− α, and α = 0.87, similarly to Refs. [26,
27,61]. The effective and limit capacitances calculated using Eqs. (23)
and (24), respectively, result in Ceff = 1.23 F and Climit(α) = 3.14 F.
Even though the time constant exhibits a low value (τ = 0.52 s), an
elapsed time of more than ten time constants (tss,Q = 5.28 s) is required
for the electrical responses to reach the equilibrium for the 2% criterion.
Due to the effect of α on the transient dynamics of real-world super-
capacitive energy storage materials, conveniently represented in the
representative examples of Fig. 4(a) and (b), the charge time increases,
in comparison to the ideal behavior, according to Eq. (21), Δt(α) =

3.02 s, which represents a 134% increase over the value of tss,C, as
illustrated in Fig. 4(c). In other words, CPE effects provide an incremental
capacitance with respect to the ideal behavior (α = 1, Q = C) of Δ
C(α) = 1.80 F, which logically slows down the transient dynamics.

Fig. 5(a) shows the experimental current transient just after turning
off an input voltage of V = 1 V for the Nanoforce EDLC. After the

negative initial peak due to the device’s capacitive effects, iQ(T+) = −
1
/Rs

, the current increases because the CPE discharges through the se-

ries resistance. Note that, at instant t = T− (just before the voltage is
switched off), iQ(T− ) = 0 A which is the steady-state value (T ≥ tss,Q). In
this representative example, it can be easily appreciated a fractional
dynamics, which is slower the smaller the dispersive coefficient, as for
the case of the internal voltage vQ(t) (see Fig. 5(b)). The specific cases in
which α = 1 (ideal capacitor) have also been also plotted. Experimental
values obtained from the fitting analysis were Rs = 0.92 Ω, Q =

0.63 F/s1− α, α = 0.81, τ = 0.51 s, Ceff = 0.55 F, and Climit(α) = 2.76 F.
A close inspection of the calculated electrical quantities reveals a high
degree of deceleration of iQ(t) and vQ(t) because a 2% steady-state time
of tss,Q = 10.14 s, due to an increment of capacitance of ΔC(α) = 2.13 F,
is indeed necessary to the current response enters and remains within
our specified tolerance band. By comparing the two transient curves
(ideal and anomalous behavior) for iQ(t) and vQ(t), the effect of the time
delay observed for sufficiently long times, Δt(α) = 7.82 s, is noticeable
as can be seen in Fig. 5(c), since one would obtain a large relative error
of 77% for the charging time calculated from the conventional
Rs-C-based formulae (refer to Eq. (7)).

5. Conclusions

In this paper, a realistic dynamical model for the charging/dis-
charging time of capacitive energy storage devices have been derived
and experimentally verified on two commercial supercapacitors with a
clear dispersive nature. Our theory describes the steady-state operation
in voltage and current of this type of devices that commonly show a
transformation from the integer- (ideality described in practical docu-
mentation) to fractional-order (reality found in experimental measure-
ments) capacitive behavior, thus introducing an increment in the
duration of transient effects. Indeed, fractional dynamics modifies
standard exponential processes and gives rise to the Mittag-Leffler
relaxation with an intrinsic decelerated behavior at long time scales
due to its asymptotic properties. Therefore, we presented here the rec-
ommended procedure to be applied for complete charging/discharging
the internal capacitance of energy storage materials in the time domain,
which is consistent with the frequency-domain impedance reports found
in literature.
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Fig. 5. (a) Waveforms of the ulterior (a) transient current iQ(t) and (b) voltage
vQ(t), together with the obtained parameter values, in response to a voltage of a
1 V applied into the Nanoforce EDLC. Plots considering the Rs-C model are also
shown using green lines in (a) and (b). (c) Comparison of the steady-state times
tss,C and tss,Q by using α = 1 and α = 0.81, respectively. (For interpretation of
the references to colour in this figure legend, the reader is referred to the Web
version of this article.)
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Appendix A. General theory for the Randles circuit under potentiostatic control

Here, we want to discuss our theory in the context of the Randles circuit [62]. In this famous model, an additional resistance Rp emerges connected
in parallel to the capacitive element. However, when analyzing the steady-state transient current response under a potentiostatic control, this
apparently simple procedure becomes, in practice, a difficult task, involving extensive reformulation in the estimation of Δt(α), especially if Rp≫ Rs

[41]. Considering the ideal Randles circuit (α = 1), the steady-state time [63] is now

tss,C = τ
[

4 − ln
(
Rs

Rp

)]

(A.1)

which broads the classical expression given by Eq. (7), where it is considered Rp→∞. On the other hand, a settling reference value of tss,Q, for the case
of the modified Randles circuit (0 < α < 1) [48,64], is obtained as

tss,Q = τ
[
e− 4Γ(1 − α)

Rp
/
Rs

]− 1/α

(A.2)

Thus, the ratio Rs
/
Rp

will introduce slight changes in the formulation of the problem. The additional potential-step hold time, Δt(α) = tss,Q − tss,C, is

given, in this scenario, by

Δt(α)=4RThf
(

α,Q,Rs
/
Rp

)

(A.3)

where f
(

α,Q,Rs
/
Rp

)

represents a general resistive-capacitive function of the Randles circuits that generalize Eq. (22) as

f
(

α,Q,Rs
/
Rp

)

=
Climit(α)

(
Rs
/
Rp

)1/α − C
[

1 −
1
4

ln
(
Rs

Rp

)]

(A.4)

Interestingly, if the resistive configuration of the circuit under study involves that Rp≫Rs, hold times substantially increase due to the fact that the
initial current flowing through the CPE is extremely higher than the steady-state current, V/Rs

≫V/Rs + Rp
[41], requiring thus a superior number of

time constants to reach the equilibrium in the external current. In effect, this advanced analysis does not have implications in the calculation of the
time delay in the steady-state dynamics of the fractional-order capacitor but rather for the variable measured in the specific case of voltage-excited
parallel RC (or R-CPE) circuits.
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[48] E. Hernández-Balaguera, L. Muñoz-Díaz, C. Pereyra, M. Lira-Cantú, M. Najafi,

Y. Galagan, Universal control strategy for anomalous ionic-electronic
phenomenology in perovskite solar cells efficiency measurements, Mater. Today
Energy 27 (2022) 101031.

[49] B. Hirschorn, M.E. Orazem, B. Tribollet, V. Vivier, I. Frateur, M. Musiani,
Determination of effective capacitance and film thickness from constant-phase-
element parameters, Electrochim. Acta 55 (2010) 6218–6227.

[50] E.H. Balaguera, A. Allagui, Limit capacitance of the constant phase element,
J. Energy Storage 90 (2024) 111801.

[51] E. Hernández-Balaguera, J.L. Polo, A generalized procedure for the coulostatic
method using a constant phase element, Electrochim. Acta 233 (2017) 167–172.

[52] E. Hernández-Balaguera, Coulostatics in bioelectrochemistry: a physical
interpretation of the electrode-tissue processes from the theory of fractional
calculus, Chaos, Solit. Fractals 145 (2021) 110787.

[53] R. Garra, R. Garrappa, The prabhakar or three parameter mittag–leffler function:
theory and application, Commun. Nonlinear Sci. Numer. Simulat. 56 (2018)
314–329.

[54] J. Ross Macdonald, Note on the parameterization of the constant-phase admittance
element, Solid State Ionics 13 (1984) 147–149.

[55] E. Hernández-Balaguera, Fractional model of the chemical inductor, Chaos, Solit.
Fractals 172 (2023) 113470.

[56] M.E. Fouda, A.S. Elwakil, A.G. Radwan, A. Allagui, Power and energy analysis of
fractional-order electrical energy storage devices, Energy 111 (2016) 785–792.

[57] E. Hernández-Balaguera, B. Arredondo, C. Pereyra, M. Lira-Cantú,
Parameterization of the apparent chemical inductance of metal halide perovskite
solar cells exhibiting constant-phase-element behavior, J. Power Sources 560
(2023) 232614.
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