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A B S T R A C T

Cogeneration is used in different sectors of industry and it allows that two types of energy to be efficiently
obtained from a single source. Accurate predictions are fundamental to optimize energy production, considering
the variability that occurs in the daily market. This study adjusts and predicts cogeneration using real data from
a Spanish energy technology center, using dynamic factor analysis methodology and incorporating covariates
such as temperature and relative humidity. A comparative analysis is performed to evaluate the improvements
achieved by implementing cluster-structured dynamic models versus other methods. Furthermore, a robust
interpolation method has been implemented to handle missing data in both the main variable and the
covariates.
1. Introduction

The simultaneous production of two or more forms of energy,
usually electricity and heat, is known as cogeneration (CHP). This type
of production takes advantage of the excess heat generated during the
process, which would be lost in other electricity generation systems.
Therefore, this type of energy production is an efficient and sustainable
option to consider.

The fundamental objective of cogeneration is to avoid the loss of
energy, (He et al., 2021) that occurs in typical electricity generation
processes, where excess heat is not reused but released into the envi-
ronment. Although it is not possible to transform all the heat generated
by the thermodynamics of production, some of it can be used for
heating, cooling, or other industrial processes, reducing greenhouse gas
emissions and increasing energy efficiency.

Cogeneration plants are adapted to energy demand and operate
on a variety of fuel sources, such as natural gas, biomass, and waste
heat from industrial processes. The growing demand for sustainable
and efficient energy production has led to an increasing interest in
cogeneration technologies, which have an important contribution to
make to energy production while reducing environmental impact.

Recently, there has been a growing interest in the development
of cogeneration forecasting models that utilize both meteorological
and energy consumption data to optimize cogeneration production and
minimize daily market offer deviations, (Ebrahimi-Moghadam et al.,
2021). Various research studies have addressed the development of
forecast models for CHP using meteorological and energy consumption
data.
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The most commonly used techniques for fitting and predicting
temporal data can be categorized into two main groups: classical
methodology, and machine learning. Currently, it is common to find re-
search studies that compare methods from both categories. Miroshnyk
et al. (2021), Weber et al. (2019) use neural networks for renewable
energy and electricity forecasting. Chung et al. (2022), Sarathkumar
and Goswami (2022) utilize machine learning and parallel CNN-LSTM
attention for district heater load forecasting and renewable energy
resource forecasting for a virtual power plant in the electricity mar-
ket. Nepal et al. (2020) and Fan et al. (2019) employ clustering and
ARIMA models, as well as various machine learning techniques includ-
ing hybrid models, for energy management in buildings. Deb et al.
(2017) offer a comprehensive review of time series forecasting tech-
niques for building energy consumption. Bedi and Toshniwal (2019)
present a deep learning framework for electricity demand forecast-
ing. Klyuev et al. (2022) provide a comprehensive overview of electric
energy consumption forecasting methods. Chaturvedi et al. (2022)
conduct a benchmarking study of time series models for energy demand
forecasting in India, with the Fb Prophet model. Runge and Saloux
(2023) compare artificial intelligence models for district heating de-
mand forecasting, specifically using LSTM and XGBoost models. Shaikh
et al. (2023) propose a temporal convolutional network for seasonal
energy consumption forecasting, addressing the limitations of recurrent
neural networks. Ni et al. (2024) develop deep learning-based models
for building energy forecasting.

In Deng et al. (2022), gas distribution quality in high-temperature
proton exchange membrane fuel cells is examined using data-driven
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surrogate models. The framework proposed by Teichgraeber and Brandt
(2019) utilizes clustering methods to model time-varying operations
in complex energy systems optimization problems. Mezzi et al. (2021)
propose an approach using Echo State Network for the prognostics of
proton exchange membrane fuel cells under variable load conditions.
Finally, Ikeda and Nagai (2021) propose a hybrid algorithm combin-
ing metaheuristics and machine learning to optimize daily operating
schedules in building energy systems.

In other fields, these methodologies are currently widely used.
For example, Lee and Kang (2024) propose a dynamic method that
combines predictions from locally trained neural networks in a decen-
tralized environment. He et al. (2023) use LSTM for forecasting flight
reservation demand. Yan et al. (2024) focus on public health emer-
gencies employing a Spatiotemporal Multigraph Convolutional Net-
work (SMEGCN). Taşcı et al. (2023) predict the lifespan of production
equipment using machine learning and hybrid models.

To achieve more accurate predictions of cogeneration data, it is
proposed to use Dynamic Factor Analysis (DFA), which allows mod-
eling the relationship between observed variables and latent factors
that change over time. This approach enables the examination of
how unobserved factors affect measured variables at different tempo-
ral points. Alonso et al. (2016) employ Dynamic Factor Models on
multivariate time series, applied to European industrial production in-
dices. García-Martos et al. (2012) use DFA to forecast electricity prices,
taking into account the multivariate structure of the data. Dordonnat
et al. (2012) discussed a dynamic periodic multivariate regression
model for hourly electricity data.

Dynamic Factor Models with Cluster Structure (DFMCS) assign dif-
ferent latent factors to distinct groups of variables, thereby capturing
heterogeneity and providing a more detailed and specific analysis for
each cluster. In this context, Alonso et al. (2020) presented a procedure
to fit (DFMCS) to heterogeneous time series data that may include mul-
tivariate additive outliers and level shifts for electricity market. Vialetto
and Noro (2020) presented an innovative approach based on big data
analysis and cluster analysis to design cogeneration systems that can
suit energy demand profiles more efficiently, choosing the correct type
of cogeneration technology, operation strategy and, if necessary, the
size of energy storage. A case study based on a cogeneration plant is
analyzed, showing that the proposed method is useful for designing co-
generation systems for industry and allowing for energy and economic
savings. Bujalski and Madejski (2021) introduced a new methodol-
ogy using a big data-driven model for short-term forecasting of heat
production in combined heat and power plants. The methodology
accurately predicts hourly heat load in the day-ahead horizon, allowing
for better planning and optimization of energy and heat production
by cogeneration units. Ifaei et al. (2023) provided a comprehensive
review of the major applications and remaining challenges of machine
learning in sustainable energies, focusing on prediction, clustering, and
optimization, as well as multi-carrier energy systems, spatial–temporal
analytics, and circular integration.

In the present study, the objective is to make cogeneration pre-
dictions using the data provided by a technology energy centre for
a specific area. The aim is to minimize the deviations in offers in
the market by implementing a dynamic factor analysis approach. The
advantage of using dynamic factor analysis for predicting cogeneration
data is that it allows for the identification of underlying factors that
contribute to the observed variability in the data. Dynamic Factor
Analysis (DFA) has been used to model the time-varying relationship
between meteorological variables (such as temperature and humidity)
and CHP production. In addition, it is complemented by the Dynamic
Factor Model with Cluster Structure (DMFCS), which takes into account
features like heterogeneity and cluster structure, improving the analysis
of CHP data and providing valuable information on the underlying
factors and their impact on the system.
2 
Through a case study of the electricity market, the effectiveness
of the approach is demonstrated in terms of factor and loading es-
timation, outlier cleaning, and the utilization of cluster structure for
understanding and forecasting.

Fig. 1 presents a schematic of the research framework. One of
the challenges encountered when working with real-world data is the
presence of missing data points, which can lead to inaccuracies in
predictions. To address this, the local median interpolation method
is employed, providing robust estimates and reducing sensitivity to
outliers. In general, capturing the temporal pattern and seasonal vari-
ations of the series requires a prior study of the data, as well as the
possible factors that may influence such variations. Using Dynamic
Factor Analysis (DFA) integrated with seasonal ARIMA models allows
us to effectively capture both temporal dynamics and seasonality.
Identifying and exploiting cross-correlation structures between mul-
tiple time series is essential to obtain better forecasts. In this case,
Dynamic Factor Models with Cluster Structure (DFMCS) are designed
to capture and utilise cross-correlation structures, allowing models to
take into account inter-dependencies between different time series, im-
proving forecasting accuracy. There are several time series adjustment
methodologies available to predict future data, but it is common for
the long-run predictions of these models to be inaccurate. For this
reason, the paper tests different fitting models that integrate dynamic
latent factors with external covariates. The resulting models effectively
capture both short-term fluctuations and long-term trends. This dual
capability allows for more reliable long-term forecasts, mitigating the
impact of uncertainties.

In summary, the main contributions of this paper are the intro-
duction of an innovative modeling strategy based on DFA and DFMCS
for forecasting CHP production, with significant improvements in pre-
diction accuracy compared to competing models. The use of seasonal
ARIMA models in DFA to capture the temporal dynamics of common
factors and cross-correlation structures between time series, as well as
the implementation of the local median interpolation method to handle
missing values, improving the accuracy of the data. The proposed mod-
els have the potential to contribute to the advancement of cogeneration
as a viable alternative in energy production and to promote the use of
innovative techniques for data analysis in this field. This is a significant
advantage, as it allows for better planning and decision-making in the
energy production process.

The rest of the paper is organized as follows: Section 2 describes the
statistical methodology. The results of the statistical methods applied
to the energy data are discussed in Section 3. Finally, Section 4 presents
the conclusions.

2. Methodology applied to the forecast and estimation model

In this section, the main statistical methods used to adjust and
predict the energy data generated by an electrical plant are presented
following the scheme depicted in Fig. 1. Firstly, a robust interpolation
method for missing data is introduced for all variables involved in the
models. Subsequently, a detailed explanation of the Vector Autoregres-
sion, Dynamic Factor Model, and Dynamic Factor Models with Cluster
Structure used in the study is provided, concluding with the commonly
used metric to evaluate the accuracy of the models.

2.1. Interpolation

A first difficulty when performing data analysis is the presence
of missing values both in the variable to be predicted and in the
possible covariates that will be used in the predictive model. There are
several interpolation methods for missing data in time series, including
the most common ones such as linear interpolation, moving average,
polynomial interpolation, spline interpolation, and the geometric mean
method. The choice of method depends on the nature of the data
and the objective of the analysis, and it is important to note that
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Fig. 1. Scheme of the research framework.
interpolation methods may not be appropriate in all cases, especially
if the time series has a complex trend or seasonal pattern, (Box et al.,
2015; Chatfield, 2013).

In this paper, a robust missing data imputation procedure has been
implemented that takes into account the dependency structures of
the variables. The interpolation method uses the local median. The
first step of the procedure is to consider the daily time series, 𝐲𝑡 =
(𝑦𝑡,1, 𝑦𝑡,2,… , 𝑦𝑡,24)′, that is, 𝐲𝑡 contains the 24 values of the hours of day
𝑡. If there is any missing value in 𝐲𝑡 then a window of 𝑑 days and ℎ
hours is taken around the missing observation. Suppose the value 𝑦𝑡,𝑖 is
missing, the following set {𝑦𝑡−𝑑,𝑖−ℎ,… , 𝑦𝑡−𝑑,𝑖+ℎ,… , 𝑦𝑡+𝑑,𝑖−ℎ,… , 𝑦𝑡+𝑑,𝑖+ℎ}
is considered, and the median of these values is taken. In the few cases
in which all values from the previous set were missing, the size of
the days window was increased, keeping the number of hours in the
corresponding window constant. Taking small windows in both days
and hours ensures that both hourly and daily dependence are taken
into account. Using the median instead of the mean protects us from the
presence of outliers. The method is applied in a loop over all missing
values in the dataset. The result is a dataset in which the missing
values are replaced by local medians. Of course, other interpolation
procedures can be used that, for example, include the dependence
between the three time series, but the small number of missing values
did not make this necessary.

2.2. Vector Autoregression

The Vector AutoRegression (VAR) model is a time series analysis
technique that enables the modeling of the relationship between multi-
ple variables over time. The model assumes that each variable depends
on its past values and the past values of other variables. In this way,
the interdependence dynamics between the variables can be captured
and used to make future predictions.

VAR models have been extensively used in various fields, such as
economics, finance, and engineering, due to their ability to capture
complex relationships between multiple variables over time. For in-
stance, VAR models have been applied to study the causal relationships
between economic variables (Enders, 2004; Lütkepohl, 2009), forecast
exchange rates, and analyze the dynamics of water quality parameters
in a river system.

In the described case, the VAR model is utilized to predict energy
generation based on temperature and humidity. The inclusion of these
covariates in the model allows for a more accurate prediction of energy
generation, as they are known to influence energy production. The use
of VAR models in energy forecasting has been widely researched in
recent years, with studies focusing on applications such as wind power,
solar power, and energy demand. The general formulation for a VAR(𝑝)
model is:

𝐲 = Φ 𝐲 +Φ 𝐲 +⋯ +Φ 𝐲 + 𝜺 , (1)
𝑡 1 𝑡−1 2 𝑡−2 𝑝 𝑡−𝑝 𝑡
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where 𝐲𝑡 is a 𝑚-dimensional time series, Φ𝑖 are 𝑚 × 𝑚 matrices and
𝜺𝑡 is a 𝑚-dimensional white noise process. It should be noticed that
the estimation of matrices Φ𝑖 involves 𝑝𝑚2 parameters. The VAR(𝑝)
model is stable or stationary if all zeroes of the determinant equation
|𝐈 −

∑𝑝
𝑖=1 Φ𝑖𝐵𝑖

| = 0, where 𝐈 is the 𝑚 × 𝑚 identity matrix, are greater
than 1 in absolute value (see, for instance, Lütkepohl, 2005).

Overall, the VAR model is a powerful tool for modeling the interde-
pendence between multiple variables over time and making predictions
for future values. In Section 3, it is assumed that the vector 𝐲𝑡 is a
3-dimensional time series conformed by three univariate time series:
generated energy, temperature and relative humidity.

2.3. Dynamic Factor Model

Dynamic Factor Model (DFM) is a statistical technique used to
identify and model time-varying patterns in a multivariate time series
of data (see, for instance, Peña & Box, 1987 and Stock & Watson, 1988).
In DFM, the time series data is decomposed into a linear combination
of a set of unobserved factors that are assumed to be responsible for the
observed variation in the data. These factors are modelled as stochastic
processes that evolve over time according to a set of dynamic equations.
The model parameters can be estimated using maximum likelihood
estimation or by principal components (see, Stock & Watson, 1988),
and the resulting model can be used to forecast future values of the
time series. DFA has been applied to a wide range of fields, including
finance, economics, engineering, and environmental science, among
others. The DFM can be expressed as

𝐲𝑡 = Λ𝐟𝑡 + 𝜺𝑡, (2)

where 𝐲𝑡 is a 𝑚-dimensional time series, 𝐟𝑡 is a 𝑟-dimensional time series
called common factors, Λ is the loading matrix with dimension 𝑚 × 𝑟
that relates the set of 𝑟 common unobserved factors with the vector of
observed series 𝐲𝑡, and 𝜺𝑡 is an 𝑚-dimensional vector of innovations also
called specific factors. Also, in this work the innovation are assumed to
be white noise and no model is employed to fit them. For instance,
a vector 𝜺𝑡 could be normal with zero mean and diagonal variance–
covariance matrix 𝐒 = 𝐸(𝜺𝑡𝜺′𝑡). Alternatively, when employing Dynamic
Factor Analysis (DFA) the innovation can be modelled as independent
auto-regressive processes.

It is important to note that, in Section 3, the DFM model is applied
to the daily multivariate time series that results from considering the
24 time series formed by the hourly measurements. That is, from a
univariate time series

𝐘 = {𝑦1,… , 𝑦24, 𝑦25,… , 𝑦48,…}, (3)

a multivariate time series is obtained

�̃� =
{

𝐲 , 𝐲 ,…
}

, (4)
1 2
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where 𝐲1 = (𝑦1,… , 𝑦24)′, 𝐲2 = (𝑦25,… , 𝑦48)′ and so on (see, for
instance, Ramanathan et al., 1997). The 𝑖th time series of the vector,
𝐲𝑡, are the measurements at hour 𝑖 of each day. Therefore, the vector
𝐲𝑡 has dimension 24 × 1. The procedure defined by expressions (3)
and (4) are also called parallel approach. It should be noted that
the parallel approach is recommended when the way in which the
univariate time series is generated has a block generation component,
as is this case. The production company can decide in advance what
its production schedule (𝑃𝑆 ) will be for the next 24 h. That is, the
24 values 𝑃𝑆,1, 𝑃𝑆,2,… , 𝑃𝑆,24 are decided simultaneously. The final
production (𝑃 ) of the next day depends on the programmed values
and the weather conditions, that is, 𝑃 (the observed univariate time
series) is a function of 𝑃𝑆 (a vector time series) and other exogenous
variables. The use of a VAR(𝑝) model for a vector of this dimension
is not recommended because it requires estimating 𝑝 + 1 matrices of
dimension 24 × 24, the 𝑝 autoregressive matrices and the covariance
matrix of the noise process.

The common unobserved factors, 𝑓𝑡, can be non-stationary, in-
cluding regular or seasonal unit roots and also auto-regressive and/or
moving average regular and seasonal components. Here, this approach
is followed, and, thus, factors are modelled to follow seasonal ARIMA
(𝑝, 𝑑, 𝑞) × (𝑃 ,𝐷,𝑄)𝑠 process which are used to obtain the factors fore-
casts, and from them the energy forecasts. For instance, the 𝑖th factor
𝑓𝑡,𝑖 would be modelled by

(1 − 𝐵)𝑑 (1 − 𝐵𝑠)𝐷𝜙𝑖(𝐵)𝛷𝑖(𝐵𝑠)𝑓𝑖𝑡 =
= 𝑐𝑖 + 𝜃𝑖(𝐵)𝛩𝑖(𝐵𝑠)𝑤𝑖𝑡,

(5)

where 𝜙𝑖(𝐵) = (1 − 𝜙𝑖1𝐵 − 𝜙𝑖2𝐵2 − ⋯ − 𝜙𝑖𝑝𝑖𝐵
𝑝𝑖 ), 𝛷𝑖(𝐵𝑠) = (1 −

𝛷𝑖1𝐵𝑠 −𝛷𝑖2𝐵2𝑠 −⋯ −𝛷𝑖𝑃𝑖𝐵
𝑃𝑖𝑠) are the regular and seasonal stationary

autoregressive polynomials, 𝜃𝑖(𝐵) = (1 − 𝜃𝑖1𝐵 − 𝜃𝑖2𝐵2 −⋯− 𝜃𝑖𝑞𝑖𝐵
𝑞𝑖 ) and

𝛩𝑖(𝐵𝑠) = (1 − 𝛩𝑖1𝐵 − 𝛩𝑖2𝐵2𝑠 −⋯ − 𝛩𝑖𝑄𝑖
𝐵𝑄𝑖𝑠) are the invertible regular

and seasonal moving averages polynomials, and 𝐵 is the lag operator
such that 𝐵𝑦𝑡 = 𝑦𝑡−1.

The roots of |𝜙𝑖(𝐵)| = 0, |𝛷𝑖(𝐵𝑠)| = 0, |𝜃𝑖(𝐵)| = 0, |𝛩𝑖(𝐵𝑠)| =
0, satisfy the usual stationarity and invertibility conditions, and 𝑤𝑖𝑡
are identically distributed and uncorrelated random variables, that
is 𝐸(𝑤𝑖𝑡𝑤𝑖𝑡−ℎ) = 0,∀ℎ ≠ 0. It is also assumed that the error term
of the common factors 𝑤𝑖𝑡 is uncorrelated with the specific factors,
that is 𝐸(𝑤𝑖𝑡𝜀′𝑡−ℎ) = 0,∀ℎ. The term 𝑐𝑖 is the intercept of the model
for the common factors, and its inclusion in (5) can be particularly
relevant to calculate long term forecasts in the non-stationary case.
When exogenous variables are integrated into the ARIMA model to
explain the behavior of the time series, it is referred to as ARIMAX
models.

A two-stage procedure is used to estimate the DFM model defined by
(2) and (5). The factors and the loading matrix in (2) are estimated by a
principal components procedure and the coefficients of 𝜙𝑖, 𝛷𝑖, 𝜃𝑖 and 𝛩𝑖
in (5) for 𝑖 = 1, 2,… , 𝑟 are estimated by maximum likelihood procedure.
Once these elements have been estimated, they can be used to make
predictions of future values for the factors. After that, the prediction
for the multivariate time series 𝐲𝑡 is obtained using relation (2).

2.4. Dynamic factor models with cluster structure

Consider a vector of zero-mean stationary time series, denoted as
𝐲𝑡 = (𝑦1𝑡,… , 𝑦𝑚𝑡)′. It is assumed that each element of the observed series
vector is a linear combination of global and specific components within
𝑘 clusters or groups, with the presence of some noise. These factors can
be represented as follows:

• The global factors are denoted by the 𝑟0-dimensional vector 𝐟0𝑡 =
(𝑓01𝑡,… , 𝑓0𝑟0𝑡)

′.
• The global factor loading matrix is represented by Λ0 = [Λ′

0,1 ∣
⋯ ∣ Λ

′

0,𝑠]
′ , with dimensions 𝑘 × 𝑟0. Here, Λ0,𝑖, for 𝑖 = 1,… , 𝑠,

corresponds to the 𝑘𝑖 × 𝑟0 loading matrix for the 𝑘𝑖 series of the
𝑖th group.
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• The specific factors for the 𝑖th cluster are expressed as the 𝑟𝑖-
dimensional vector 𝐟𝑖𝑡 = (𝑓𝑖1𝑡,… , 𝑓𝑖𝑟𝑖𝑡)

′.
• The matrix of specific factor loadings, which exclusively affect the
𝑘𝑖 time series in the 𝑖th group, is denoted by Λ𝑖 = [𝟎′𝑖,1 ∣ ... ∣ Λ′

𝑖,𝑖 ∣
... ∣ 𝟎′𝑖,𝑠], with dimensions 𝑘 × 𝑟𝑖.

The (DFMCS) Dynamic Factor Model with Cluster Structure can be
expressed as follows:

𝐲𝑡 = Λ0𝐟0𝑡 +
𝑘
∑

𝑖=1
Λ𝑖𝐟𝑖𝑡 + 𝜺𝑡. (6)

It should be noticed that the previous model generalizes the DFM
since the component Λ0𝐟0𝑡 + 𝜺𝑡 is the same as in expression (2) and the
component ∑𝑘

𝑖=1 Λ𝑖𝐟𝑖𝑡 adds the specific dynamics of the series in the
clusters.

The fitting procedure of the Dynamic Factor Model with Cluster
Structure (DFMCS) involves several steps. Firstly, the observed time
series data is cleaned by removing additive outliers, level changes, and
outlying time series. Then, the factor loading matrix is estimated by
selecting the eigenvectors associated with the largest eigenvalues of the
time series’ covariance matrix. The factors and common components
are computed based on the estimated loading matrix. Next, a clustering
algorithm is applied to group the time series according to their linear
dependence using the common components. Within each group, new
factors and their loadings are estimated using a similar procedure
as before. The factors are classified as global or specific based on
empirical canonical correlation analysis. The residuals are computed,
and the final estimation of factors, groups, and loadings is performed.
The procedure aims to minimize the squared error by considering the
estimated factors, groups, and loadings. For a detailed methodology,
see Alonso et al. (2020) and Ando and Bai (2017).

2.5. Metrics used to evaluate model performance

Mean Absolute Percentage Error (MAPE), is a commonly used met-
ric for evaluating the accuracy of a forecasting model. It measures
the average percentage difference between the actual values and the
predicted values

𝑀𝐴𝑃𝐸 = 100
𝑛

𝑛
∑

𝑖=1

|

|

|

|

𝐴𝑖 − 𝑃𝑖
𝐴𝑖

|

|

|

|

, (7)

where 𝑛 is the number of observations to be predicted, 𝐴𝑖 is the actual
alue of observation 𝑖, and 𝑃𝑖 is the predicted value of observation 𝑖.

MAPE provides a useful measure of the accuracy of a forecasting model,
particularly when the data has a wide range of values. The lower the
MAPE, the more accurate the forecasting model.

3. Results of application on energy data

Using hourly energy generation data obtained from a production
center in Spain, along with temperature and humidity data collected
from a close city between 01/01/2012 and 14/04/2013, the aim is
to develop a model for predicting energy generation up to 48 h in
advance. The performance of this model will be compared against other
models that include temperature and humidity covariates information.
The calculations have been programmed using the Matlab program.

The data provided by the technology center consists of 11 280
hourly measurements (470 days × 24 h) of the generated energy,
temperature and relative humidity. The period from 01/01/2012 to
30/03/2012 (90 days) is taken as the initial training period, and the
rest of the observations, from 31/03/2012 to 14/04/2013, as the

testing period of the prediction procedures.
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Fig. 2. Examples of missing observation interpolation. Solid line corresponds to real time series and dotted line corresponds to interpolated time series.
3.1. Interpolation

In the data provided by the technology centre, there are 269 missing
data for energy and 409 and 407 missing data for temperature and
humidity, respectively. As this is a moderate amount of data, it is
decided to use a robust interpolation method, which has been described
in the methodology section. Fig. 2 shows examples of the interpolated
time series for temperature, humidity and energy. It is clear that
the local interpolation procedure captures the dynamics of the series,
accommodating to possible changes and being robust to the presence
of outliers, such as the peak on 31/12/2012.

3.2. Exploratory data analysis

Firstly, a study of the correlation structure of the time series of
energy production, temperature, and relative humidity has been carried
out. Figs. 3 and 4 show the sample autocorrelation and the sample par-
tial autocorrelation of the three time series, respectively. It is observed
that the three series have a high regular and seasonal dependence
(24 h).

Secondly, the cross-correlation between the energy series and the
two series of meteorological variables has been studied. Fig. 5 shows
the cross-correlation function using the levels of the series, and Fig. 6
shows this function using the seasonal differences of the series. In this
way, the interpretation of the cross-correlation is avoided being biased
by the high correlations at lags multiples of 24 as observed in Figs. 3
and 4.

In both Figs. 5 and 6 it is observed that the energy generated
has cross dependence on both seasonal (multiples of 24) and regular
delays. This is called regency effect and means that energy production
depends not only on the temperature at the current time but also
on temperatures from previous hours. This effect has been studied
by Wang et al. (2016) in the case of electricity demand.

Furthermore, it is interesting to study the cross-correlation structure
throughout the year. In Fig. 7, the correlation matrices of the vec-
tor

(

𝐸𝑑−1, 𝐸𝑑−2,… , 𝐸𝑑−24, 𝑇𝑑−1, 𝑇𝑑−2,… , 𝑇𝑑−24,𝐻𝑑−1,𝐻𝑑−2, … ,𝐻𝑑−24
)

in absolute value, that is, of the 24 daily (𝑑) observations of energy
(𝐸), temperature (𝑇 ) and humidity (𝐻), respectively, are represented.
In Fig. 7 the matrices calculated with blocks of three months that
correspond approximately to the seasons of winter, spring, summer and
autumn are represented. It is observed that the relationship between
5 
Table 1
Summary statistics of daily mean absolute percentage errors (MAPE) for temperature
and humidity forecasts.

Temperature Humidity

Day 1 Day 2 Day 1 Day 2

Minimum 1.23% 1.41% 3.58% 3.19%
1st. Quartile 3.26% 3.63% 8.74% 10.42%
Median 6.26% 7.46% 15.72% 17.36%
Mean 8.34% 10.11% 23.80% 26.96%
3rd Quartile 10.60% 13.23% 28.42% 28.59%
Maximum 43.08% 63.25% 222.65% 257.75%

energy and temperature changes magnitude in the different seasons of
the year. The relationship between energy and humidity also presents
changes but much smaller. These results justify the choice of the 90-day
training period used in Section 3.4.

Finally, the dependence structure of the energy time series for each
of the hours of the day has been explored. That is, all observations
corresponding to the hth hour of the day are taken to form the hth
time series. Fig. 8 shows the autocorrelation functions of these 24 time
series, where it can be observed that the series share a certain similarity
in their dependence but certain groups of series are visible. This cluster
structure will be exploited in the models in the next section.

3.3. Forecasting models

Before adjusting a model to predict energy production, the modeling
of the covariates, temperature and humidity, is considered. This will al-
low us to have predictions of the covariates and obtain energy forecasts
in a realistic context. Of course, if the exact location information of the
production center could be used, numerical weather prediction models
could be employed (see, for instance, Pu & Kalnay, 2019).

1. Models for temperature and relative humidity prediction
Given the high correlation structure between temperature
(slightly lower in the case of humidity) and the generated en-
ergy, as illustrated in Figs. 5 and 7, modeling of temperature and
humidity was considered using time series models that account
for the strong hourly seasonality of these variables, as shown in
Figs. 3 and 4.
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Fig. 3. Autocorrelation functions for (a) Temperature, (b) Relative humidity, and (c) Energy.
Fig. 4. Partial autocorrelation functions for (a) Temperature, (b) Relative humidity, and (c) Energy.
First, the two vector time series are obtained from the univariate
time series (temperature and humidity) using expressions (3)
and (4). Thus, two 24 × 1 dimensional vector time series are ob-
tained. A factorial model will be used to predict each vector time
series using a 90-days history and a two-days prediction horizon.
If the correlation matrices of the vector (𝑇𝑑−1, 𝑇𝑑−2,… , 𝑇𝑑−24)
and the vector (𝐻𝑑−1,𝐻𝑑−2,… ,𝐻𝑑−24) in Fig. 7 are analyzed, it
is verified that the cross-dependence in both temperature and
6 
humidity also depends on the season of the year. This justifies
the use of a short training period in the considered models.
The procedure employs principal component analysis (PCA) to
identify underlying factors that explain the variability of temper-
ature and humidity data. Two factors, in the case of temperature,
explain around 91.87% of the variability of that series. In the
case of humidity, three factors explain around 87.85%. Note
that it is advisable not to incorporate 100% of the variability
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Fig. 5. Cross-autocorrelation functions between (a) Energy and Temperature and (b) Energy and Humidity.
Fig. 6. Cross-autocorrelation functions between the seasonal differentiated (a) Energy and Temperature and (b) Energy and Humidity.
since it introduces random fluctuations that do not improve
the predictions. In a sense, extracting the main factors can
be understood as a smoothing procedure. The seasonal ARIMA
models are selected by the TRAMO-SEATS program (Gómez
& Maravall Herrero, 1998) for each factor. Five models are
selected and estimated in each training set, one model for each
factor. TRAMO-SEATS is a well established procedure included
in econometrics software such as EViews and there are interfaces
for Matlab and R. It implements the order selection of the
ARIMA models, as well as the outliers detection and correction.
In Maravall et al. (2015), the authors show that this approach
performs well in the context of automatic model identification
7 
for a large number of time series particularly in the selection
of regular and seasonal difference order. These models enable
predictions with a horizon of up to 48 h for these two variables.
A summary of the mean daily relative absolute errors for both
variables for one- and two-days horizons are shown in Table 1.

2. Models for the prediction of generated energy
The following models will be considered to predict the generated
energy and their prediction performance will be compared in the
next section:
Model 1: A Dynamic Factor Model (DFA) without covariates
as the one defined by (2) and (5). Initially, the DFA model
is estimated using the generated energy data series, without
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Fig. 7. Correlation (absolute value) matrices in (a) January–March, (b) April–June, (c) July–September, and (d) October–December.

Fig. 8. Autocorrelation functions for the energy time series for each hour of the day.
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incorporating the humidity and temperature data. The model has
two factors that explain around 98.24% of the variability.

• The dimensions of the vector time series (generated en-
ergy) and the factors are 24 × 1, and 2 × 1, respectively.
That is, 𝑚 = 24 and 𝑟 = 2.

Model 2: A Dynamic Factor Model in which two temperature
factors and three humidity factors are introduced as covari-
ates. That is, five covariates are introduced in the seasonal
ARIMA model defined by (5). In this case, the predictions of the
covariates that have been previously obtained are used.

• As in the previous model, 𝑚 = 24 and 𝑟 = 2. Notice that, in
this case, two DFM models are also estimated in order to
obtain the predictions of the covariates (temperature and
relative humidity). These models have 𝑚 = 24 and 𝑟 = 2
and 3, respectively.

Model 3: This model has the same structure as Model 2, but it
uses actual values of the humidity and temperature covariates.

• As in Model 1, 𝑚 = 24 and 𝑟 = 2. Notice that in this case,
the covariates are not predicted. They are assumed to be
known or reliable external predictions are available.

Remark 1. The fundamental difference between Model 1 and Models
2–3 is that the latter incorporate the information from the covariates.
Taking into account the dependence between the energy generated and
these covariates (see Figs. 5 and 6) it is expected that Models 2 and 3
outperform Model 1.

Model 1C: A Dynamic Factor Models with Cluster Structure
(DFMCS) defined by Eq. (6) without covariates. This DFMCS
have the same number of global factors as Model 1 and two
specific factors.

• The dimensions of the vector time series (generated en-
ergy) and the common factors are 24 × 1, and 2 × 1,
respectively. There are two clusters that each have one
specific factor and a cluster that does not have a specific
factor. That is, 𝑚 = 24, 𝑟0 = 2, 𝑘 = 3, 𝑟1 = 1, 𝑟2 = 0 and
𝑟3 = 1.

Model 2C: A Dynamic Factor Model with Cluster Structure in
which two temperature factors and three humidity factors are
introduced as covariates. In this case, the predictions of the
covariates that have been previously obtained are used.

• As in the previous model, 𝑚 = 24, 𝑟0 = 2, 𝑘 = 3, 𝑟1 = 1,
𝑟2 = 0 and 𝑟3 = 1. In this case, two DFM for the covariates
(temperature and relative humidity) are also estimated,
with 𝑚 = 24 and 𝑟 = 2 and 3, respectively.

Model 3C: This model has the same structure as Model 2C, but
it uses actual values of the humidity and temperature covariates.

• As in Model 1C, 𝑚 = 24, 𝑟0 = 2, 𝑘 = 3. 𝑟1 = 1, 𝑟2 = 0 and
𝑟3 = 1. In this case, additional models for the covariates
are not employed.

Remark 2. The fundamental difference between Models 1–3 and
Models 1C - 3C is that the latter use information on the existence
of clusters due to dependence between the time series. In this way,
common factors that affect all series (𝑟0) and factors that are specific (𝑟𝑖
with 𝑖 ≥ 1) to each cluster are estimated. As observed, it may happen
that some cluster does not have a specific factor associated with it.

Model 4: A linear regression model between generated energy
and the covariates, using the predictions of the covariates that
have been previously obtained, is used.
9 
• The linear model considers the three variables: generated
energy (response) and humidity and temperature (covari-
ates) as univariate variables. Only, when the prediction for
the covariates is obtained, the dimensions are 𝑚 = 24 and
𝑟 = 2 and 3, respectively.

Model 5: This model is identical in structure to Model 4 but real
values of temperature and humidity covariates are used.

• As in the previous model, the generated energy (response)
and humidity and temperature (covariates) are univariate
variables. In this case, no additional models are used for
the covariates.

Remark 3. Models 4 and 5 only take into account the relationship
between the energy generated and the covariates at the same instant
in time. This is a clear limitation considering the autocorrelation and
cross-correlation structures illustrated in Figs. 3 and 5, respectively.
The proposed models, 1 to 3 (1C to 3C), do take into account this
temporal dependence, which allows the incorporation of the regency
effect, that is, the dependence between the response variable and lags
of the covariates.

Model 6: A Vector autoregressive model, VAR, as the one de-
fined by (1) with the three considered variables, generated
energy, temperature, and humidity.

• The dimensions of the vector time series (generated en-
ergy, temperature, and humidity) is 3 × 1. That is, 𝑚 =
3.

Remark 4. Model 6 allows modeling the relationship between the
three variables 𝐸𝑡, 𝑇𝑡 and 𝐻𝑡 (energy, temperature and relative hu-
midity) with their delays. However, it has limitations if, as is the
case, we want to carry out a parallel approach because the dimen-
sion of the model grows substantially. If we want to model the vec-
tor

(

𝐸𝑡−1,… , 𝐸𝑡−24, 𝑇𝑡−1,… , 𝑇𝑡−24,𝐻𝑡−1,… ,𝐻𝑡−24
)

using a VAR, we will
have to estimate 𝑝 matrices of dimension 72 × 72, where 𝑝 is the order
of the VAR model. Even if we only consider the vector

(

𝐸𝑡−1, 𝐸𝑡−2,… ,
𝐸𝑡−24

)

, we would have to estimate 24 × 24 matrices. Dynamic factorial
odels such as models 1 to 3 (1C to 3C) are an effective response to

he problem of the dimension of VAR models.

Models 1 to 3 (DFM) and 1C to 3C (DFMCS) are our methodological
roposal. Schemes A.13–A.18 in the Appendix show a schematic rep-
esentation of these six models. Models 4 to 6, that were proposed by
he technology center, will be taken as benchmark.

In the models with group structure (Models 1C, 2C and 3C) three
lusters (𝑘 = 3) have been found, see the dendrogram Fig. 9, in which
he clustering of the time series corresponding to consecutive hours can
e seen. It is important to remember that the vector time series, 𝐲𝑡, is
ade up of the 24 time series of the measurements in each of the hours.
hen the time series of hour 𝑖 is referred to, we are talking about the

aily series formed by the observations measured at that specific hour.
ig. 9 shows that the time series corresponding to hours 1 to 12 (13 to
6, and 17 to 24) have a similar behavior and form three well-separated
lusters. The cluster formed by the time series from hours 1 to 12 is
enoted by C1, by C2 those from hours 13 to 17, and by C3 the series of
he remaining hours. The specific factors are associated to the clusters
ith a larger number of observations. That is, the cluster conformed
ith the hours from 1 to 12 (C1) has a specific factor and the cluster

onformed with the hours 17 to 24 (C3) has another specific factor.
In the next section, we also include the results using two automatic

tate-of-art time series models: (1) Trigonometric seasonality, Box–Cox
ransformation, ARMA errors, Trend and Seasonal components model
TBATS) proposed by Livera et al. (2011), and (2) Prophet proposed
y Taylor and Letham (2017). These two methods have been used for
rediction of electricity market prices and consumption by Karabiber
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Fig. 9. Dendrogram of dynamic factor models with cluster structure.

and Xydis (2019) and Yildiz and Korkut (2024), respectively. In both
models, the real values of the covariates (temperature and humidity)
have been used, therefore the comparison must be made with the
proposed models 3 and 3C.

3.4. Comparison of prediction results

In this section, the prediction results obtained from the nine models
previously described above are presented, using the period between
March 31, 2012, and April 14, 2013 as an out-of-sample testing period.
The rolling windows procedure is employed with a window size of 90
days for model estimation, that is, all models are estimated using the
90 days prior to the two-day forecast horizon, with each step moving
the window to the next day.

In Fig. 10, the daily MAPEs for the nine models are shown. The
daily MAPEs are calculated with expression (7) using the n = 48
prediction errors for each day. Firstly, three mean absolute percentage
errors with values higher than 20% stand out, which correspond to
periods of unexpected drops in production. Fig. 11 shows the energy
generated on each of those three days as well as the latest observations
of its corresponding training set. In the three cases it is clearly observed
that using historical values it is not feasible to predict these production
drops, which may correspond to the shutdown of some production
unit for one or two hours (days 71 and 201) or a longer period (day
22). Of course, if this information is known in advance, for example
because it corresponds to a shutdown for unit maintenance, it can be
incorporated into prediction models. It should be noted that all models
fail in predicting these three days. It can be seen in the drop on day 22,
which occurs at night and continues on day 23. In Fig. 10 we can see
that when we incorporate the information from day 22, the prediction
error for day 23 is much smaller because the model incorporates the
detection of this drop. For the rest of the days, the percentage errors are
smaller than 20%. In Fig. 12, the boxplots of the daily mean absolute
percentage errors (MAPE) are presented for the remaining 376 days,
i.e., omitting the three days with errors greater than 20% in order to
do not distort the scale of the graph.

Furthermore, in Table 2 we show the deciles of the daily mean
absolute percentage errors (MAPE) since it is important to focus not
only on the central values but also on the upper deciles since these
correspond to the days where the largest prediction errors occur.

The main conclusions drawn from Table 2 are as follows:

• As expected, models that use the actual values of the covariates
obtain better results than analogous models that use predictions
of the covariates.
10 
• The best prediction results are obtained with Models 3 and 3C.
It is worth noting that these models use the actual values of
temperature and humidity, and therefore their results can be
interpreted as the optimal value that could be obtained if these
two covariates were predicted with high reliability.

• The comparison of Model 1, which does not use covariates, with
Models 4 to 6, shows significant improvements from the 70th
decile and in the mean error with the simpler model. This
suggests that the factor models are capable of capturing the main
dependence structures of the energy generation time series.

• The comparison between Model 1 and Model 2 indicates an
improvement of between 5% and 15% in the deciles and 6%
in the mean error. Obviously, this improvement is greater when
compared to Model 3, increasing from 31% to 44% in the deciles
and 25% in the mean error. This implies that the incorporation
of meteorological covariates leads to a notable improvement in
the predictions.

• The comparison of Model 2 with Model 4 reveals that the pro-
posed model outperforms in almost all deciles (except the first
decile) by between 5% and 49%, and by 22% in the mean
error. It is noteworthy that there is an improvement in the upper
deciles, with improvements of 29% and 49%, respectively. These
upper deciles correspond to the largest prediction errors and
therefore result in a greater deviation between the prediction and
production and a greater penalty to the company.

• The conclusions of the previous point remain valid when compar-
ing Model 3 with Model 5. In other words, the proposed model
improves in all deciles except the first one and in the mean error
of prediction.

• The comparison of Model 2 with Model 6 shows that the proposed
model outperforms in all deciles by between 21% and 34%, and
by 17% in the mean error. Obviously, this improvement is greater
when compared to Model 3.

• It can be observed from the Table 2 that the cluster-structured
models (Models 1C, 2C, and 3C) outperform the models that
do not consider it (Models 1, 2, and 3, respectively). The per-
centage comparison between Model 1 and Model 1C shows an
improvement ranging from 7% to 15% in the deciles and a 5%
reduction in the mean error. For Model 2 and Model 2C, the
improvement ranges from 6% to 14% in the deciles, and there
is a 9% reduction in the mean error. Between Model 3 and Model
3C, the improvement increases to 37% to 46% in the deciles, and
there is a 22% reduction in the mean error.

• The proposed models 3 and 3C obtains betters results than the
TBATS and Prophet in all deciles and the mean. TBATS obtains
competitive results but Prophet does not.

Finally, the boxplots in Fig. 12, indicate that the proposed models
improve and have less dispersion in their results than the competitor
models.

4. Conclusions

This paper introduces a novel modeling strategy utilizing Dynamic
Factor Analysis (DFA) to predict cogeneration production, demonstrat-
ing superior performance compared to competitor models in terms
of mean relative absolute error. The use of seasonal ARIMA models
for modeling factors in DFA allows capturing the temporal dynamics
of common factors and incorporating the cross-correlation structures
between time series, resulting in a more flexible and robust approach
compared to static principal component analysis. This flexibility allows
DFA to handle non-stationary time series effectively, thereby improving
its ability to analyze and predict complex time series. As a consequence,
significant improvements have been achieved, with over 20% enhance-
ment in the mean error and noteworthy advancements of close to 30%
in the upper deciles, which correspond to the most costly errors for the

company.
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Fig. 10. Daily Mean Absolute Percentage Errors in the period 31/03/2012–12/04/2013. Models 1–6 (solid lines) and Models 1C–3C (dashed lines).
Fig. 11. Outlier days (22, 71, and 201) in relation to MAPE.
Table 2
Deciles and means of the daily mean absolute percentage errors.

M1 M2 M3 M1C M2C M3C M4 M5 M6 TBATS Prophet

Decile 10 0.660 0.621 0.451 0.642 0.604 0.448 0.612 0.436 0.941 0.605 0.753
Decile 20 0.961 0.821 0.550 0.870 0.797 0.533 0.897 0.728 1.227 0.792 1.057
Decile 30 1.166 1.059 0.652 1.114 1.020 0.645 1.123 0.944 1.470 0.932 1.407
Decile 40 1.416 1.236 0.802 1.353 1.197 0.738 1.414 1.180 1.781 1.177 1.956
Median 1.711 1.447 0.977 1.624 1.387 0.872 1.741 1.418 2.217 1.423 3.038
Decile 60 1.970 1.847 1.250 2.043 1.720 1.095 2.216 1.811 2.588 1.687 4.197
Decile 70 2.374 2.247 1.628 2.760 2.044 1.277 2.786 2.714 3.111 2.028 5.507
Decile 80 3.215 2.846 1.943 3.238 2.707 1.666 4.037 4.642 3.854 2.547 8.342
Decile 90 4.644 4.206 2.946 4.630 3.844 2.676 8.278 7.666 5.392 3.770 16.792

Mean 2.849 2.663 2.136 2.827 2.543 1.994 3.438 3.283 3.244 2.787 5.852
11 
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Fig. 12. Boxplots of daily MAPE obtained for the period 31/03/2012–12/04/2013.
Moreover, the incorporation of Dynamic Factor Models with Cluster
Structure (DFMCS) in Models 1C, 2C, and 3C has further extended
the model’s capabilities and yielded significant improvements. DFMCS
considers important features like heterogeneity, cluster structure, and
the presence of multivariate outliers and level shifts, facilitating a
more comprehensive and precise analysis. This innovative addition
has demonstrated remarkable results, with percentage improvements
ranging from 7% to 46% in the deciles and a substantial reduction of up
to 25% in the mean error. Such advancements highlight the potential
of DFMCS in enhancing cogeneration production predictions and its
promising role in the energy forecasting domain.

The implementation of the local median interpolation method for
handling missing values in the dataset has also contributed to the
model’s overall performance and reliability. It has enhanced data com-
pleteness and accuracy, further reinforcing the model’s ability to pro-
vide robust predictions for cogeneration production.

Furthermore, the dynamic factor models used for predicting gener-
ated energy, with humidity and temperature as covariates, offer several
advantages over machine learning and neural network models. These
advantages include a clearer and simpler interpretation of the extracted
factors, a greater ability to handle missing data and non-stationary
time series, a lower risk of over-fitting, more effective dimensionality
reduction, and multicollinearity elimination. Additionally, the ease
of incorporating and adjusting various types of dynamic models to
the data allows for enhanced adaptability and versatility in capturing
complex relationships and dynamics within the energy production
process.

Recent research has shown a wide range of approaches for forecast-
ing energy consumption in various contexts, from individual buildings
to entire regions. However, these methods face significant challenges in
capturing the inherent complexity of energy consumption data, which
can be influenced by various factors such as seasonal changes, long-
term trends, and unexpected events. Although traditional techniques
such as econometric models, machine learning, and neural networks
can provide acceptable predictions under certain circumstances, they
often struggle to adapt to rapidly changing energy consumption pat-
terns or to capture nonlinear relationships in the data. Unlike the
reviewed models, which often require specific assumptions or are lim-
ited by their ability to handle complex relationships, DFA and DFMCS
can efficiently integrate multiple sources of information and dynam-
ically adapt their latent factors to improve prediction accuracy and
12 
robustness. Moreover, DFMs allow for long-term forecasts, in this spe-
cific work up to two days (48 h) ahead, with greater accuracy than the
other models analyzed.

In summary, the combination of DFA and DFMCS has proven to be
a valuable modeling approach for predicting cogeneration production,
enabling energy companies to optimize their production, improve their
financial performance, and reduce the environmental impact of energy
production.

An aspect that has not been addressed in this paper and that will
be the subject of future research is the incorporation of uncertainty
in predictions. Recent reviews can be found in Hong and Fan (2016)
and Lin et al. (2023). An alternative that has been considered in ARIMA
models has been the use of the bootstrap, not only to incorporate the
uncertainty due to the estimation of the parameters (see Pascual et al.,
2004) but also to the selection of the models (see Alonso et al., 2006).

Abbreviations

The following abbreviations are used in this manuscript:

ARIMA Autoregressive Integrated Moving
Average model

ARIMAX Autoregressive Integrated Moving
Average model with eXogenous inputs

CHP Cogeneration
DFA Dynamic Factor Analysis
DFM Dynamic Factor Model
DFMCS Dynamic Factor Model with Cluster

Structure
MAPE Mean Absolute Percentage Error
PCA Principal Component Analysis
SEATS Signal Extraction in ARIMA Time

Series
TBATS Trigonometric seasonality,

Box–Cox transformation,
ARMA errors, Trend
and Seasonal components model

TRAMO Time series Regression with ARIMA
noise, Missing values, and Outliers

VAR Vector AutoRegression model
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Fig. A.13. Schematic representation of Model 1.

Fig. A.14. Schematic representation of Model 2.
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Fig. A.15. Schematic representation of Model 3.
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Fig. A.16. Schematic representation of Model 1C.
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Fig. A.17. Schematic representation of Model 2C.
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Fig. A.18. Schematic representation of Model 3C.
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Appendix

The appendix shows a schematic representation of the six forecast-
ing models described in Section 3.3 (see Figs. A.13–A.18).
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