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Communication
Single-Cut Phaseless Near-Field Measurements using Two Probes

Fernando Rodrı́guez Varela, Jorge Calatayud Maeso, Xiaoliang Sun,
Belén Galocha Iragüen and Manuel Sierra Castañer

Abstract—Single-cut phaseless measurements enable the testing of an-
tenna devices with no reference channel by measuring and transforming
to far-field individual pattern cuts. This typically requires performing two
single-cut measurements at different distances which may be infeasible
or too time consuming in some antenna facilities. As an alternative,
this communication proposes the use of a two-probe system connected
to the same coherent receiver. The relative phase between probes is
exploited to retrieve the absolute phase using a state-of-the-art linearized
phase retrieval approach. Simulations and measurements are performed
to validate the technique which includes an innovative probe-to-probe
calibration method.

Index Terms—Amplitude-only, multi-probe, fast measurements, phase-
less, single-cut.

I. INTRODUCTION

Single-cut antenna measurements [1]–[4] are a popular time-saving
alternative to conventional near-field spherical or cylindrical ap-
proaches [5]–[7]. From the near-field of the antenna under test (AUT)
in a cardinal cut (typically the E and H planes), the radiation pattern
over that plane is extrapolated. Drastic reductions in measurement
time are obtained since the scanning of the full spherical or cylindrical
surfaces is avoided. The approximation errors are very low for
antennas with separability of the aperture fields, typically array and
reflector antennas. In all these processing steps, the phase information
remains necessary to perform the far-field transformation.

The measurement of the phase signal in standard passive antennas
is no longer an issue with the wide availability of vectorial measure-
ment equipment. Nevertheless, the topic of phaseless measurements
has experienced a resurgence due to the increasing presence of highly
integrated and active antennas, where the extraction of a physical
phase reference channel is unfeasible. This issue can be circumvented
with the use of an auxiliary antenna which creates a phase reference
[8], but in most cases it forces the AUT to be stationary to keep a
stable reference channel.

Some efforts have been made to implement single-cut phaseless
measurement techniques [9]–[11]. This has been made possible by
the application of the two-scans technique of the more traditional
spherical [12], [13] or planar [14] phaseless measurements. If the
radiated near-field magnitude is measured in two concentric and
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Fig. 1. Geometry of the proposed antenna measurement concept.

coplanar cuts it is possible to extrapolate the phase with an iterative
algorithm. Nevertheless, the process of changing the AUT-to-probe
distance can be extremely time consuming or even infeasible for some
measurement facilities.

Two-scans phaseless measurements can be avoided by making
use of the partial coherence information provided by multi-probe
systems. The relative phase between probe signals is combined with
the measured magnitude to retrieve the complete near-field phase.
The earliest approaches were based on the concatenation of phase
differences between measurement pairs [15], [16], which imposed
some practical limitations related to positioning accuracy and error
propagation. Moreover, the manufacturing and testing of dedicated
microwave circuits was needed to extract the partial coherent signals.
Consequently, a novel and flexible methodology has recently been
introduced, wherein the phase retrieval problem is reformulated as a
linearized minimization, showcasing successful recovery guarantees
[17]–[19]. Such methodology leverages the phase coherence between
ports of microwave receivers, avoiding the need of interferometric
microwave circuitry. However, channel balance calibration issues may
complicate the practical implementation of such approaches.

The present communication focuses on the application of linearized
phase retrieval to single-cut phaseless measurements with reduced
hardware requirements. It has been implemented by measuring the
near-field of a reference-less AUT with a coherent two-probe system,
as depicted in Fig. 1. This study reveals the significant influence
of spatial and electrical mismatches between probes on the efficacy
of the linearization of the problem. To address this concern, a
pioneering probe-to-probe calibration technique is introduced. As a
result, the need for identical probes or specialized microwave circuitry
is eliminated [15], [16]. The feasibility of the proposed technique is
demonstrated through successful full phaseless measurements using
a straightforward probe arrangement that can be easily replicated in
most measurement facilities.
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II. THEORETICAL BACKGROUND

A. Single-cut near-field to far-field transformation

The near-field measurement scenario of Fig. 1 with cylindrical
coordinates (ρ, ϕ, z) is considered. The tangential components of the
electric field radiated by the AUT can be expanded in elementary
cylindrical waves [5]. However, in the single-cut methodology, the
measurement is only performed for a z = 0 cut, which can be
considered a cylinder of infinitesimal height, leading to the following
expansion [4]:

Ez(ρ, ϕ) =

N∑
n=−N

kcnH
(2)
n (kρ)ejnϕ (1)

Eϕ(ρ, ϕ) = −
N∑

n=−N

dn
∂H

(2)
n (kρ)

∂ρ
ejnϕ (2)

being Ez and Eϕ the tangential components of the radiated field,
H

(2)
n the Hankel funcion of second kind and k the free space

wave number. The terms cn and dn are single-cut wave coefficients
(SCWC) and are closely related to the cylindrical wave coefficients
[5] but in one dimension.

Without loss of generality we focus now in the Ez component of
the field. If this polarization is measured at M sampling positions
with two different probes, (1) can be expressed in a discretized way:

b1 =H1cn (3)

b2 =H2cn (4)

where cn is a column vector of size 2N + 1 containing all cn
coefficients of the AUT. Vectors b1 and b2 are formed by the near-
field samples of the first and second probe. Each of them is of size
M > 2N+1, to introduce some oversampling. Matrices H1 and H2

are of size M × (2N +1) and they perform the Fourier summations
in (1). Finally, (3) and (4) are grouped into a single equation:[

b1
b2

]
=

[
H1

H2

]
cn =⇒ b =Hcn (5)

B. Single-cut phaseless algorithm

If the AUT lacks a reference channel, only the magnitude signals
|b1| and |b2| can be measured. Their corresponding phase com-
ponents, ψ1 = ej∠b1 and ψ2 = ej∠b2 , respectively, become the
unknowns of the phaseless problem. When both probes are connected
to the same receiver it is possible to extract the relative phase
between them: ψ2,1 = ej∠b2/ej∠b1 . The introduced vectors meet
the following identity [17]:[

b1
b2

]
=

[
D(|b1|)

D(|b2| ⊗ψ2,1)

]
ψ1 =⇒ b = Bψ1 (6)

where ⊗ denotes element-wise multiplication and D() returns a
square diagonal matrix with the elements of the vector inside the
brackets on the main diagonal.

Using this notation an homogeneous linear system of equations is
defined [17]:(

I −HH†
)
Bψ1 = 0 =⇒ Rψ1 = 0 (7)

where † computes the pseudo-inverse and I is the identity matrix.
HH† can be regarded as electromagnetic filter acting over the near-
field vector b which cancels field variations incompatible with the
SCWC of the AUT. Signal variations with harmonic order higher
than N will be filtered out. To maximize the filtering capabilities
of this operator, the center of the expansion in (1-2) is selected so

that N becomes minimal. The solution vector ψ1 will be the one
that generates a vector b which is unaffected by the electromagnetic
filter. After the missing phases ψ1 have been retrieved, the complex
near-field of both probes can be reconstructed and transformed to far-
field using standard single-cut methods [4]. Finally, the average of
both patterns can be computed to reduce measurement uncertainties.

C. SVD analysis and solution of the system

The conditioning of (7) can be studied computing the Singular
Value Decomposition (SVD) ofR = USV H [17], where H denotes
Hermitian transpose. Fig. 2 depicts the magnitude-ordered singular
values of R for several simulation and measurement scenarios of
an active antenna whose details are disclosed in Section IV. The
simulations are performed with different levels of Signal to Noise
Ratio (SNR) according to:

SNR = −20log10

(
||b′ − b||2
||b||∞

)
(8)

where the primed vector b′ contains the noise-contaminated obser-
vations, and the infinity norm performs a normalization of the error
with respect to the maximum of the near-field. By the properties of
SVD, (7) has a unique solution if only the last singular value σM

is equal to zero. In a practical measurement case, σM has a level
comparable to the noise floor of the measurement, as shown in the
simulation scenarios of Fig. 2. The corresponding singular vector VM

solves (7) with a comparable accuracy level to the noise floor.
If the noise floor of the system is too high, it becomes impossible

to distinguish σM from the rest of singular values leading to the
existence of multiple solutions for (7). This does not mean that any
of those solutions is valid because there is no guarantee that they
meet the non-convex constraint |ψ1| = 1. Therefore, successful phase
retrieval is only guaranteed when the noise floor of the system is
lower than all singular values of R.

The Conjugate Gradient (CG) [20] algorithm is proposed to retrieve
the solution vector ψ1 when the SVD analysis gives multiple solu-
tions with |ψ1| ≠ 1. In an effort to relax the non-convex condition
of unitary magnitude, the linear system (7) is constrained with the
condition that one of the entries of ψ1 should be 1 [18]. The benefit
of using an iterative algorithm lies on its inherent regularization
properties, looking for vectors with the minimum norm. This helps to
filter out solution vectors with very strong amplitude variance. The
initial guess for the CG is an all-ones vector and the algorithm is
stopped when the residual of the last iteration achieves a level similar
to the estimated noise floor of the system. The resulting solution
vector is likely to not feature entries of unit magnitude. Therefore,
only the phase of this vector is extracted and used as initial guess
of a new CG algorithm. This process is repeated multiple times until
the variations between subsequent CG evaluations stagnate.

Fig. 2. Singular values of R for several simulations and measurement
scenarios.
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Fig. 3. Magnitude of σM−1 for several simulation parameters.

III. NUMERICAL RESULTS

A. Uniqueness of the phase retrieval

The uniqueness of the linearized approach is assessed by com-
puting the level of the second to last singular value σM−1 under
noise-free conditions. The higher this value the more chances of
maintaining uniqueness in the presence of noisy data. For example, a
level of σM−1 = −50 dB means that the uniqueness of the linearized
approach is compromised when the measurement is contaminated
with error signal levels higher than −50 dB.

An analytical near-field measurement scenario is simulated using
dipole-based antennas. The AUT is a L×L array of Huygens sources
fed with uniform amplitude and phase and ẑ polarization. The antenna
is centered in the coordinate system origin over the YZ plane with
the main beam pointing along x̂. Two ideal Hertz probes on the
XY plane with an angular separation ∆ϕ measure the near-field in a
single-cut of radius ρ in M sampling points each. The use of alternate
polarizations between probes has shown to be beneficial for the phase
retrieval [19]. However, single-cut measurements are known to be
unreliable for the cross polarized field components. Therefore, all
the studies will be conducted with the Hertz dipoles oriented along
ẑ to consider only the copolar component of the fields.

The linearized phase retrieval approach is evaluated for different
combinations of ∆ϕ and ρ. Fig. 3 depicts the magnitude of σM−1 of
each combination for L = 2.5λ and 5λ. Highest levels of σM−1 are
obtained for angular separations of around 30º and 20º for L = 2.5λ
and 5λ, respectively. To better understand the behaviour of these
parametric curves, Fig. 4 shows the near-field for ∆ϕ = 30º and 20º
for L = 2.5λ and 5λ, respectively, and a measurement radius of 25%
the far-field distance of the AUT (ρ = 0.25ρfar).

The proposed formulation does not impose any requirement re-
lating the number of samples and probe angular separation. An
oversampling ratio with respect to complex single-cut measurements
has been defined as s = M/(2N + 1). For s = 1 low levels
of σM−1 are obtained because there are not enough samples so
the operator HH† is able to perform a proper modal filtering.
Better performance is obtained with s = 2 which is a typical value
of phaseless measurements [12]. Unlike in conventional phaseless

Fig. 4. Near-field signals of one of the conducted simulations. The patterns
for different values of L have been shifted 90º away of each other only here
for better visualization.

retrieval approaches, the number of unknowns in this approach is
equal to the number of measurement points. As a result, too high
levels of oversampling can lead to slightly worse stability, because
the algorithm needs to retrieve more absolute phase samples. This
explains the slight degradation when s increases to 3.

When the probes are too close to each other,ψ2,1 will exhibit a low
dynamic range leading to a bad conditioning of the system. Inversely,
when ∆ϕ increases too much the amplitude ratio between |b1| and
|b2| becomes too large degrading the performance. This is specially
problematic when the main lobe is scanned by one probe while the
other is measuring a pattern null. When this happens, the magnitude
of σM−1 decreases considerably, leading to the multiple lobe-null
pattern observed for large ∆ϕ values in Fig. 3. The near-field pattern
of common antennas exhibit shallower nulls and slower angular
variations than in the far-field. Hence, low values of ρ mitigate
the aforementioned bad conditioning issues, which is reflected on
smoother curves and slightly higher values of σM−1.

B. Influence of probe imbalances

The experiment conducted in Section III.A shows that the values
of σM−1 are in the order of −50 dB in most cases. This value is
usually lower than the uncertainty provided by common measurement
facilities [21] and the error of the single-cut approximation [3]. As
a result, uniqueness condition will be hardly met in a practical case
and the accuracy of the retrieved solution will be degraded. This
degradation has been analyzed in a previous publication [11]. On
this section the analysis is extended to the uncertainties specific of
the two-probe set-up: channel balance, angular separation and radial
displacement between the probes. A metric ε is defined as the mean
square error of the reconstructed near-field of the first probe:

ε =

∣∣∣∣∣∣|b1| ⊗ ψ̃1 − |b1| ⊗ψ1

∣∣∣∣∣∣2
2

M ||b1||2∞
(9)

where ψ̃1 denotes the retrieved solution from (7) to differentiate it
from the ground truth ψ1.

The simulations of Section III.A have been repeated introducing
several distortions to the near-field data:

1) Probe separation: An imperfect characterization of this param-
eter is emulated. The nominal separation ∆ϕ is used to generate
H; but matrix B, which contains the measured near-field data, is
generated with an erroneous separation ∆ϕ´.

2) Channel imbalance: The signal measured by the probes may
suffer different levels of attenuation and phase delay on the receiver
interface. Variations in the probe gain, cable length and measurement
distance are the main contributing factors to this uncertainty. An
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Fig. 5. Effects of the two-probe system uncertainties on the retrieved solution.

imperfect channel balance is emulated weighting b2 with a complex
factor F = |F |ejα.

Fig. 5 depicts ε for the different error sources for the case
ρ = 0.25ρfar . The angular separation and phase imbalance errors
heavily impact the accuracy of the phase retrieval. For example, an
uncertainty in the determination of the probe angular separation of
1◦ can introduce errors up to −25 dB. A similar error level would
be introduced by an uncertainty of 3 dB or higher for the amplitude
imbalance, which indicates the technique is more robust against this
type of mismatches.

For the phase imbalance and probe pointing, the curves exhibit
the same ordered sequence in terms of robustness against imbalances
(blue is the most robust and green the least). Using the data of Fig.
3, the σM−1 values for the scenarios represented by the blue, purple,
red and green are roughly −45, −53, −57 and −64 dB, respectively.
They follow the same sequence, thus confirming the relation between
the magnitude of σM−1 and robustness against imbalances.

IV. PHASELESS ANTENNA MEASUREMENTS

The proposed technique is evaluated in the anechoic chamber of
the Technical University of Madrid (UPM). A spherical near-field
measurement range is used to perform single-cut measurements of a
30 GHz 8 × 8 circular patch array [22] with linear polarization at
a measurement distance of 3 m (0.7ρfar). The electrical size of the
complete antenna is around 10λ × 10λ, which yields a truncation
index N = 42. The array is connected to an integrated circuit
that controls each of the 8 patch columns individually, so different
radiation pattern configurations can be generated:

1) Configuration 1: The 4 central columns are fed with uniform
amplitude and phase and the rest are switched off.

2) Configuration 2: All 8 columns are fed with uniform amplitude
and phase.

3) Configuration 3: Same as configuration 1 but a linear phase
shift is applied to generate a 30º beam steering.

The probe system is composed by a conical and a rectangular horn
mounted in a metallic supporting structure separated 30 cm from each
other. The AUT and probes are vertically polarized and only copolar
measurements will be conducted. Fig. 6 shows the AUT and probe
system mounted in the anechoic chamber. The resulting ∆ϕ is around
6º, which is large enough to obtain phase diversity, but smaller than
the −10 dB beam-width avoiding the multi null-lobe pattern of Fig.
3. Both probes are connected to the receivers A and B of a PNA-X
N5264A [23]. The AUT is fed by a external synthesizer which is
also connected through a coupler to receiver R of the PNA-X. This
configuration allows to measure absolute and relative phases of the
probes.

The strict requirements of phase and probe separation imbalances
pose a challenge when implementing the proposed technique. No
effort has been made to ensure channel equalization on the cables
connecting the probes with the measurement receiver. In addition,
the horns have different radiation patterns. Probe pattern correction
could be incorporated by weighting the SCWC of the AUT with
those of the probe in eqs. (1-2) and its discrete versions [4]. In the
present measurement scenario both probes illuminate the AUT over
a 1º angular sector, so probe pattern effect can be neglected and
such correction has not been implemented. Nevertheless, the different
levels of directivity and phase center contribute to the channel imbal-
ance, which cannot be neglected. Therefore, an advanced calibration
technique is proposed to quantify and correct with high accuracy
all these imbalances. After the chamber has been calibrated for a
given two-probe configuration, multiple phaseless measurements can
be performed with the proposed linearized approach.

A. Probe-to-probe calibration

This step requires the measurement in a single-cut of an auxiliary
antenna with access to a reference channel so amplitude and phase
can be acquired. The measured complex signals b1 and b2 are used
to compute the SCWC of the auxiliary antenna inverting (3) and (4).
The SCWC obtained from the first and second probe are denoted
c
(1)
n and c(2)n respectively.
The angular separation ∆ϕ in the near-field is reflected as a linear

phase shift in the SCWC domain. Computing the slope of the phase
shift between c(1)n and c(2)n offers and accurate way of finding the
value of ∆ϕ. Once the linear slope is cancelled the amplitude and
phase imbalances between probes are computed by taking the average
of the ratio between both sets of coefficients.

A standard gain horn was used as the auxiliary antenna. The
obtained ∆ϕ, |F | and α were 5.73º, −0.89 dB and 3.32º, respectively.
After the equalization of the near-field patterns, differences of −40
dB between them were observed, which are in the level of typical
antenna measurement uncertainties. However, this uncertainty levels
seem too high to guarantee the uniqueness according to the studies
of Section III.A.

B. AUT measurement

The 8 × 8 array is mounted on the positioner and a two-probe
single-cut measurement is performed to obtain the complex signals
b1 and b2 using Configuration 1. The scanning is performed with
an angular step of 2º so that M = 180. A new set of calibration
coefficients was computed for the measurement, with values of 5.7º,
−0.93 dB and 3.34º confirming the validity of the calibration inde-
pendently of the antenna. However, this latter values were discarded
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and the ones of the auxiliary antenna were used for the subsequent
steps to emulate a true phaseless measurement.

From the near-field data, the signals |b1|, |b2|, ψ2,1 are extracted
and the linearized system is constructed considering the calibra-
tion coefficients. The corresponding singular value distribution is
the green curve of Fig. 2. The same plot contains the SVD of
synthetically generated measurements using the complex data of
the AUT. Only for SNR = 110 dB a magnitude gap in the SVD
distribution can be distinguished, showing that σM−1 ≈ −90 dB.
The equivalent noise floor of the measurement is well above this
level, which indicates that the uniqueness condition is not met for
the measurement data.

The system is solved taking the last singular vector VM (SVD
approach) and with the Conjugate Gradient using as starting point
a vector of ones (CG approach). Fig. 7 depicts the amplitude and
phase of ψ̃1 retrieved with both techniques. The SVD method is
equivalent to a matrix inversion and the magnitude of this vector
is far from constant which is an indication of a poor linearization
result. With CG a flatter amplitude response is obtained thanks to its
regularization properties. For both methods the phase of ψ̃1 exhibits
good agreement with the true near-field phase close to boresight, but
for the SVD approach the error increases considerably for larger ϕ
angles.

The near-field vector is obtained combining the measured
amplitude with the retrieved phase of the first probe:
b1 = |b1| ⊗ ψ̃1 ⊘ |ψ̃1|, where ⊘ indicates element wise
division. Such division is generally needed since the solution vector
is likely to not feature entries of unit magnitude. The transformed
far-field has been depicted in Fig. 8 along with the reference
far-field computed using complex data. The same measurement and
postprocessing steps are repeated for Configuration 2 and 3. The
amplitude agreement is excellent in all cases but the complex error
[12] reveals the imperfect phase reconstruction. For the CG method
the error is in the order of −30 dB, while the SVD techniques shows
higher values indicating an unreliable phase retrieval like in the
near-field case. Phase retrieval of beam steering antennas becomes
challenging because their lack of symmetry leads to more chances
of falling in local minima [12]. This explains the higher errors
observed in Configuration 3. However, the amplitude agreement is
still good.

C. Comparison with other methods

To better demonstrate the potential of the proposed technique, two
previously proposed phase retrieval methods are challenged with the
measured near-field data of Configuration 1. The details of their
implementation can be found in our previous publications [9]–[11].

The first one consists on an iterative propagation of the complex
field back and forth between two measured single-cuts [9], [10]. It
is inspired on the well-known Gerchberg–Saxton technique used in
planar and spherical phaseless measurements [13]. For its imple-
mentation, the near-field of the first probe is used to compute a
synthetic measurement at a distance of 2 m. Then, the algorithm
can be evaluated iterating between the fields at 2 m and 3 m.

The second method formulates the phase retrieval as non-linear
minimization to find the SCWC that radiate the near-field amplitude
of the two probes [11]. Therefore, no partial coherence or multiple
distance information is incorporated to the algorithm. The minimiza-
tion problem is tackled with a non convex solver employing Wirtinger
Flow derivatives [24].

Fig. 9 depicts a comparison of the far-field pattern retrieved by the
different solvers. For the linearized approach, only the CG solution
has been depicted. The iterative solver is capable of reconstructing

Fig. 6. Two-probe arrangement (left) and AUT (right) used for the anechoic
chamber measurements .

Fig. 7. Magnitude and phase of the solution ψ̃1. Ground truth is a vector of
magnitude one containing the phase of the signal measured by the first probe.

the amplitude pattern with good accuracy but the phase reconstruction
fails. This is not a surprising behaviour, since this technique has
been shown to fall frequently into sub-optimal solutions [12]. The
non-convex solver fails to reconstruct both amplitude and phase,
showcasing the well-known limitations of single-scan phaseless mea-
surements. Despite providing the solver with the near-field data from
two different probes, the two signals are virtually shifted copies of
each other, as show in Fig. 4. Two uncoherent probe measurements
are not enough to reconstruct the phase because the inversion problem
becomes highly undetermined. Only with the relative phase between
the probes new information is incorporated to the solver.

V. CONCLUSION

The implementation of a linearized phaseless single-cut mea-
surement technique with reduced hardware requirements has been
reviewed. A measurement set up with two probes connected to the
same receiver is proposed to extract partial coherence information
of the near-field. Simulation results show that the phase retrieval
is guaranteed under high accuracy conditions. The uncertainties of
real antenna measurements compromise this uniqueness condition.
A conjugate gradient approach is proposed to retrieved the absolute
phase information with improved accuracy respect to a direct matrix
inversion. In addition, it has been shown how a practical calibration
process can lead to accurate near-field to far-field transformation of
the single-cut fields. This has been validated with a phased array
antenna in different configurations.
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Fig. 8. Far-field reconstruction of the linearized matrix inversion techniques.

Fig. 9. Far-field reconstruction from the different phase retrieval solvers.
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