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A journey will have pain and failure. It is not only the steps forward that we must accept. It is
the stumbles. The trials. The knowledge that we will fail.

But if we stop, if we accept the person we are when we fail, the journey ends. That failure
becomes our destination. To love the journey is to accept no such end. I have found, through

painful experience, that the most important step a person can take is always the next one.

– Brandon Sanderson
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Resumen

Esta tesis doctoral realiza una investigación de las herramientas de ciencia de datos para
abordar dos problemas incipientes en entornos clínicos modernos: la Multiresistencia Antimi-
crobiana (MRA) y el Coronavirus 2019 (COVID-19). Al concentrarse en estas dos áreas, la
investigación aborda problemas de salud pública urgentes y de gran impacto. La MRA repre-
senta un desafío creciente en la medicina global, con patógenos que se vuelven resistentes a los
tratamientos antimicrobianos convencionales, lo que complica el manejo de infecciones y au-
menta la mortalidad. Por otro lado, el COVID-19, es una pandemia que ha afectado a millones
de personas en todo el mundo, y sigue presentando desafíos en su control y en la comprensión de
sus patrones de propagación y efectos a largo plazo. La investigación se centra en las Unidades
de Cuidados Intensivos (UCI), identificadas como epicentros críticos para la adquisición de en-
fermedades infecciosas. Este enfoque es fundamental debido a la alta vulnerabilidad de los
pacientes en las UCI, quienes a menudo presentan sistemas inmunológicos debilitados y están
expuestos a una variedad de procedimientos invasivos que aumentan el riesgo de infección.

Inicialmente, la tesis aborda un análisis detallado sobre la importancia de la MRA y el
COVID-19, explorando el impacto de estos en aspectos sociales, económicos y en los sistemas
de salud a nivel global y nacional. Se enfatiza la amenaza que suponen la evolución de amenazas
existentes, ejemplificada por el incremento de la MRA y de nuevas patologías como el COVID-
19. Al analizar las complejas repercusiones demográficas y económicas de estas amenazas
sanitarias globales, la investigación subraya la urgencia de adoptar metodologías avanzadas de
análisis de datos, indispensables para gestionar e interpretar la naturaleza compleja de los datos
clínicos, crucial para entender la progresión de estas enfermedades en las UCIs.

El objetivo principal de esta tesis es el diseño de modelos basados en aprendizaje profundo y
análisis de grafos para predecir la aparición de enfermedades infecciosas y extraer conocimiento
clínico. Para llevar a cabo este objetivo, se persigue como primer objetivo específico la creación
de bases de datos para la realización de esta tesis doctoral, implementando diversas técnicas de
modelado e integración de datos. La siguiente contribución específica de esta tesis es el de-
sarrollo de modelos de datos multimodales interpretables, específicamente diseñados para la
predicción temprana de la MRA. Estos modelos integran datos clínicos tanto estáticos como
dinámicos, y han sido específicamente diseñados para conseguir buenas prestaciones, sin com-
prometer la interpretabilidad, aspecto clave en entornos clínicos. Se logra este equilibrio me-
diante un modelado adecuado de los datos, incorporando una fase previa de selección de car-
acterísticas y mecanismos específicos para mejorar la interpretabilidad de los modelos. Los
resultados obtenidos han mostrado como utilizando modelos multimodales basados en series
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temporales pueden mejorar las prestaciones obtenidas para predecir la aparición de MRA en la
ICU. Además, se han identificado aspectos claves en la aparición de gérmenes multirresistentes
como la ventilación mecánica, el número de vecinos MRA o ciertas familias de antibióticos. Es-
tos modelos no solo son útiles en la detección y manejo temprano de la MRA, sino que también
podrían servir para futuras aplicaciones en otros problemas clínicos.

Finalmente, esta tesis introduce modelos basados en grafos para extraer conocimiento sobre
el COVID-19. Estos modelos de grafos, que representan los datos clínicos como estructuras
nodales interconectadas, son aplicados para descrubir y analizar las complejas relaciones e in-
terdependencias presentes en los datos clínicos. Empleando técnicas sofisticadas de análisis
de redes, como el análisis de centralidad para identificar nodos clave, estos modelos ofrecen
insights profundos y detallados sobre las dinámicas de transmisión, los patrones de morbili-
dad y las respuestas a los tratamientos del COVID-19. Mediante el uso de representaciones
basadas en grafos, este estudio proporciona una perspectiva innovadora en la visualización y
análisis de la interconexión de variables clínicas, revelando patrones y asociaciones complejas.
En concreto, se ha identificado la prevalencia de comorbilidades como hipertensión, diabetes
u obesidad entre otras, así como fiebre o tos como síntomas predominantes. Además algunos
tratamientos como la combinación de lopinavir/ritonavir, hydroxycloroquina, y corticosteroides
fueron identificados como tratamientos frecuentes durante la primera ola del COVID-19.

En conclusion, esta tesis doctoral constituye un trabajo pionero que aplica la ciencia de datos
en el campo de la epidemiología, ofreciendo métodos novedosos y efectivos para el análisis y
la predicción de enfermedades infecciosas. A través de una metodología que incorpora apren-
dizaje profundo y análisis de grafos, se ha logrado no solo la creación de modelos predictivos
con buenas prestaciones, sino también una comprensión más profunda de estas enfermedades,
que además pueden ser aplicables en otros casos de uso. La integración de tecnologías de cien-
cia de datos en el cuidado de la salud, como se demuestra en esta investigación muestra un
prometedor futuro en la mejora continua de los sistemas de salud global.
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Abstract

This doctoral thesis conducts an investigation of data science tools to address two emerg-
ing problems in modern clinical environments: Antimicrobial Multidrug Resistance (AMR)
and Coronavirus Disease 2019 (COVID-19). The research addresses urgent and high-impact
public health issues by focusing on these two areas. AMR represents a growing challenge in
global medicine, with pathogens becoming resistant to conventional antimicrobial treatments,
complicating infection management and increasing mortality. On the other hand, COVID-19
is a pandemic that has affected millions of people around the world and continues to present
challenges in its control and understanding of its patterns of spread and long-term effects. The
research focuses on Intensive Care Units (ICUs), which are identified as critical epicenters for
the acquisition of infectious diseases. This approach is fundamental due to the high vulnerabil-
ity of patients in ICUs, who often have weakened immune systems and are exposed to a variety
of invasive procedures that increase the risk of infection.

Initially, the thesis provides a detailed analysis of the importance of AMR and COVID-19,
exploring their impact on social, economic, and health systems at both global and national lev-
els. The thesis emphasizes the threat posed by the evolution of existing threats, exemplified by
the increase in AMR and new pathologies such as COVID-19. By analyzing the complex de-
mographic and economic repercussions of these global health threats, the research underscores
the urgency of adopting advanced data analysis methodologies, indispensable for managing and
interpreting the complex nature of clinical data and crucial for understanding the progression of
these diseases in ICUs.

The main objective of the research is to construct models based on deep learning to predict
the onset of infectious diseases and to extract knowledge through graph analysis. To accom-
plish this goal, the initial step involves developing comprehensive databases designed to carry
out this dissertation, developing various data modeling and integration techniques. The fol-
lowing specific contribution of this thesis is the development of interpretable multimodal data
models specifically designed for the early prediction of AMR. These models integrate static
and dynamic clinical data and have been specifically designed to achieve high performance
without compromising interpretability, a key aspect in clinical environments. This balance is
achieved through meticulous data modeling, incorporating an initial feature selection phase and
specific mechanisms to enhance the interpretability of the models. The results have shown
that using multimodal models based on time series can improve the performance obtained in
predicting the occurrence of AMR in the ICU. Furthermore, key aspects in the emergence of
multidrug-resistant germs have been identified, such as mechanical ventilation, the number of
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AMR neighbors, and certain families of antibiotics. These models are useful in the early de-
tection and management of AMR and could also serve for future applications in other clinical
problems.

Finally, this thesis introduces graph-based models to extract knowledge about COVID-19.
These graph models, which represent clinical data as interconnected nodal structures, are ap-
plied to decipher the complex relationships and interdependencies present in clinical data. Em-
ploying sophisticated network analysis techniques, such as centrality analysis, to identify crit-
ical nodes, these models offer deep and detailed insights into the dynamics of transmission,
morbidity patterns, and treatment responses of COVID-19. Through the use of graph-based
representations, this study provides an innovative perspective on the visualization and analy-
sis of the interconnection of clinical variables, revealing complex patterns and associations.
Specifically, the prevalence of comorbidities such as hypertension, diabetes, or obesity, among
others, as well as fever or cough as predominant symptoms have been identified. Addition-
ally, some treatments, such as the combination of lopinavir/ritonavir, hydroxychloroquine, and
corticosteroids, were identified as common treatments during the first wave of COVID-19.

In conclusion, this doctoral thesis constitutes pioneering work that applies data science in
the field of epidemiology, offering novel and effective methods for analyzing and predicting
infectious diseases. Through a rigorous methodology incorporating deep learning and graph
analysis, a deeper understanding of these diseases has been achieved, as well as the creation
of predictive models applicable in other use cases. As demonstrated in this research, the inte-
gration of data science technologies in healthcare shows a promising future in the continuous
improvement of global health systems.
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Chapter 1

Introduction

An outline of the thesis is provided in this chapter. First, the motivation for the conducted
research is explained. The primary and specific goals are then explained in detail, along with
the proposed methodology for achieving them. Additionally, it provides an overview of the
subsequent chapters.

1.1 Context and Motivation

Infectious diseases have posed a significant threat to human populations for centuries [5]. The
outbreak of Coronavirus Disease 2019 (COVID-19) serves as a reminder of how new or mutat-
ing infectious diseases can have a profound impact [6]. The evolving landscape of infectious
diseases impacts global health and requires continual vigilance and innovation in healthcare
approaches, specifically in the Intensive Care Units (ICUs). The complexity of ICU patients
renders infectious diseases a significant concern in these units.

In recent years, Antimicrobial Multidrug Resistance (AMR) has become a more pressing
worldwide health concern [7], becoming one of the most critical threats in ICUs. AMR is the
phenomenon where microorganisms evolve to withstand the effects of multiple antimicrobial
drugs designed to eliminate them [8] and can arise both naturally and as a consequence of
the overuse and misuse of antibiotics [9]. The implications of AMR are far-reaching, making
previously treatable infections potentially untreatable and increasing the complexity, cost, and
risk of treatments [10]. In a detailed study from 2019, researchers revealed concerning statis-
tics about the impact of AMR [1]. According to the study, nearly 5 million deaths worldwide
were linked to AMR, with approximately 1.27 million deaths directly caused by drug-resistant
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Figure 1.1: The mortality rate associated with AMR by Global Burden of Disease region,
2019. Figure obtained from [1].

infections [1]. Therefore, AMR emerged as the 12th leading cause of death in the Global Bur-
den of Disease Study, surpassing The Human Immunodeficiency Virus (HIV) and Malaria [1].
Furthermore, mortality rates from AMR for all ages were higher in developing countries (see
Figure 1.1). Looking into the future, Figure 1.2 predicts that in 2050, the number of fatalities
from AMR-related causes will surpass that of cancer deaths, with an alarming 10 million deaths
per year if no decisive actions are taken to tackle AMR. This prediction paints a grim scenario
of a burgeoning health catastrophe that requires urgent and effective global interventions.

AMR not only impacts health but also has a substantial economic impact. In the European
Union alone, the annual costs associated with AMR amount to approximately 1.5 billion euros,
arising from healthcare expenses and productivity losses [11]. Globally, the economic damage
by 2050 due to AMR is predicted to be comparable to those of the 2008 financial crisis [12].
That impact could result in a 100 trillion loss in Gross Domestic Product [11, 12], emphasizing
the need for economic and medical strategies to tackle AMR. Moreover, the confluence of AMR
and the development of new infectious diseases such as COVID-19 pose a severe risk for global
health [13].
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Figure 1.2: Estimated number of deaths worldwide in 2050. Figure obtained from [2].

The COVID-19 pandemic has added another layer of complexity to the landscape of in-
fectious diseases. Spain, one of the countries most severely impacted during the initial wave,
experienced an overwhelming strain on its healthcare system, particularly its ICUs [14]. This
strain has challenged the capacity of healthcare services and instigated significant economic
burdens.

In an economic context, the burden of COVID-19 on the Spanish healthcare system has
been substantial [14, 15]. The overall cost associated with ICU care for COVID-19 patients
has been high due to several factors: the necessity for highly skilled medical staff, the uti-
lization of sophisticated and costly medical equipment, and prolonged hospital admissions for
COVID-19 patients [16]. Additionally, the disruption caused in the ICUs had cascading effects
on the treatment of other medical conditions, leading to an indirect but significant economic
impact. Evaluating the economic toll of the pandemic’s initial wave is complex, but some stud-
ies have estimated it. For instance, a detailed analysis focusing on Spain’s economic indicators
in 2020 indicated a sharp decline in the Gross Domestic Product by approximately 11.41%, a
9.37% decrease in business turnover, and a notable 11.9% rise in unemployment rates during
that period [3]. Figure 1.3 illustrates the economic impact of COVID-19 on European countries,
particularly noting Spain’s significant Gross Domestic Product decline. The situation is partic-
ularly relevant in the context of ICUs, where the patient population is often at a higher risk and
where the cost - both in terms of human life and economic resources - can be substantial.
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Given these difficulties, it is clear that a rigorous and comprehensive approach is needed
to understand and manage infectious diseases effectively, especially in high-risk settings like
ICUs. The cost, both in human lives and economic terms, requires a focused effort on devel-
oping innovative solutions. Addressing the complex challenges of infectious diseases, such as
AMR and COVID-19, requires the adoption of innovative and technologically advanced ap-
proaches. Central to this endeavor is the exploitation of the rapidly evolving field of machine
learning (ML), and particularly Deep Learning (DL) [17]. Artificial Intelligence, particularly
ML and DL, demonstrates remarkable efficacy in discerning intricate patterns and correlations
within extensive datasets. This capability holds paramount importance in enhancing disease
detection, forecasting disease advancement, and formulating therapeutic strategies [17, 18].

Implementing ML and DL in healthcare is enhanced by using electronic health records
(EHRs). EHRs serve as comprehensive longitudinal data repositories, encompassing a broad
spectrum of patient information, including demographics, medical history, test results, and treat-
ment strategies. The longitudinal nature of EHRs, tracking patient data over time, can be mod-
eled to act as Multivariate Time Series (MTS). This diverse and comprehensive data collection
is a valuable resource for ML models, offering useful data necessary for robust models [19].

Analyzing MTS data from EHRs is vital in addressing the complexities of infectious dis-
eases in healthcare [20]. MTS data includes measurements of various variables over time, offer-
ing a detailed view of the dynamic aspects of disease progression, how diseases spread, and the
effectiveness of treatments. Integrating MTS analysis with ML frameworks allows for devel-
oping robust predictive models capable of capturing complex interactions in infectious disease
dynamics. These methods enable the extraction of valuable insights regarding the interplay be-
tween various clinical variables, environmental factors, and disease dynamics, facilitating more
accurate forecasting and early detection of outbreaks.

This thesis aims to address the challenges of infectious diseases by employing data-driven
methodologies. The objective is to enhance our understanding and management of clinical time-
varying data, thereby contributing to the broader effort of combating infectious diseases such as
AMR and COVID-19. By integrating healthcare and data science expertise, this research aims
to devise robust models against this health challenge.

1.2 Objectives

This dissertation aims to design DL and graph analytical models using the heterogeneity of
EHR data to facilitate the early detection of infectious diseases within the ICU.
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Figure 1.3: The COVID-19 pandemic’s impact on health and economic growth in European
nations through the second quarter of 2020. Figure obtained from [3].

In addressing the challenges inherent to the research objectives, this work employs estab-
lished methodologies, adapting existing techniques to fulfill the specified tasks. This approach
is practical, prioritizing real-world applications over theoretical exploration. The intention is to
apply ML in real clinical scenarios to demonstrate its benefits. Moreover, the thesis includes the
development of ML algorithms tailored to the specific tasks at hand. Additionally, the disser-
tation investigates the potential applicability and acceptability of explainable methods within
the healthcare system. In pursuit of the principal objective, the following specific goals are
methodically addressed:

• (O1): To develop and preprocess two datasets related to infectious diseases within the
ICU setting. In the first dataset, AMR in the complex ICU setting of the University
Hospital of Fuenlabrada (UHF) is analyzed and modeled using MTS data in addition to
other static variables from 2004 to 2022. The second dataset compiles data associated
with antibiotics and their treatment protocols used during the initial COVID-19 outbreak
gathered from the UHF. Both datasets will incorporate patient health information and have
undergone a data cleaning and modeling procedure to ensure high-quality data. These
datasets play a pivotal role in understanding infectious diseases in the ICU and facilitating
potential future research endeavors in this critical area.

• (O2): To develop multimodal architectures to predict the early detection of AMR bacteria
in the ICU. This involves using static features to model patients’ initial health status and
tracking the evolution of their conditions with MTS data. Additionally, several feature se-
lection (FS) techniques and interpretable ML models have been considered for extracting
knowledge. This dual approach is designed to improve decision-making in ICU settings
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by offering a comprehensive view of patient health and contributing to enhanced medical
practices.

• (O3): To comprehensively analyze COVID-19 patient outcomes in the ICU. Toward that
end, we undertook an exploratory analysis, identifying statistically significant differences
between patients who passed away due to the virus and those who were discharged.
This analysis included demographic variables, symptoms, comorbidities, and medication
records. Additionally, we established a methodological framework for applying graph-
based network analytics to static and dynamic (including MTS) variables within EHR.
Our approach is aimed at deepening our understanding of the key factors that affect pa-
tient outcomes in the ICU.

1.3 Summary of Contributions

This section enumerates the publications associated with the objectives previously outlined.

The goal of O1 and O2 were accomplished in [21, 22, 23, 24, 25]. In this dissertation,
we will primarily focus on [21], as it represents a key study where the author of this thesis
served as the main contributor. In [21], we employ interpretable DL and signal processing
methodologies to analyze MTS data collected from the ICU at the UHF (Madrid, Spain). Given
the prevalence of AMR bacteria as a significant threat to health systems and particularly to ICU
patients, early detection of antibiotic resistance is crucial for patient prognosis. To facilitate
the adoption and implementation of data-based processing and learning schemes in ICUs, our
research develops trustworthy, interpretable models for early AMR prediction by integrating
meaningful FS with Recurrent Neural Networks (RNNs). The models developed are designed
to handle the challenges of class imbalance, limited patient data, and data irregularity while
maintaining a balance between accuracy and user comprehension. Our models incorporate
SHapley Additive exPlanations (SHAP) post-hoc interpretability, and their understandability
and trustworthiness have been validated by clinicians for practical application. Furthermore,
we employ linguistic fuzzy systems to generate natural language explanations that are easy to
understand.

Building upon the framework presented in [21], we have developed an improved methodol-
ogy, which we propose in [26]. This new methodology involves a novel approach for analyzing
and modeling complex EHR data by combining static features and MTS to predict the emer-
gence of AMR in the ICU. To effectively characterize the patient’s initial health status and
its evolution, we developed multimodal deep neural network (DNN) architectures, with the
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most promising results obtained from the "First Hidden State Initializer" model. This sample-
dependent variable selection framework generates an encoding vector to supplement the MTS
context. Complementarily, we employed two approaches to knowledge extraction. Initially,
classical FS methods were examined, followed by the implementation of a permutation mul-
timodal FS approach. Both procedures were assessed in terms of performance and interoper-
ability. Subsequently, various interpretable mechanisms were applied to discern hidden patterns
within the dataset. Overall, the proposed interpretable multimodal DNNs demonstrate efficacy
in predicting AMR while concurrently providing explanations for AMR prediction in the ICU.
Furthermore, the methodology proposed could be used in a range of clinical issues involving
EHR data, thereby broadening its impact and usefulness.

The contributions and novelties of the works previously presented are clearly articulated to
emphasize specific advancements in the field of AMR within ICUs:

• This research introduces a comprehensive analysis and modeling of MTS and static fea-
tures pertinent to AMR. The study covers a substantial dataset of 3,470 ICU patients,
preprocessed and modeled to extract clinical knowledge. We proposed a novel method-
ology to overcome challenges inherent in AMR classification, such as addressing class-
imbalance, managing irregularities in MTS, and handling high-dimensional data.

• The development of multimodal architectures is a significant novelty in our work. These
architectures integrate the static and MTS data to characterize both the initial health status
and the progression of each patient’s condition.

• Our approach to knowledge extraction encompasses both traditional and novel methods,
considering both FS strategies and the application of interpretable mechanisms.

• Finally, the validation of our models’ interpretability by clinicians underscores the prac-
tical relevance and applicability of our findings in real-world clinical settings. This step
ensures that our models are not only statistically valid but also clinically meaningful,
making them valuable tools for predicting AMR in ICUs.

The publications related with O1, O2 are listed below:

• [21] S. Martínez-Agüero, C. Soguero-Ruiz, J. M. Alonso-Moral, I. Mora-Jiménez, J.
Álvarez-Rodríguez, and A. G. Marques, "Interpretable clinical time-series modeling with
intelligent feature selection for early prediction of antimicrobial multidrug resistance,"
Future Generation Computer Systems, vol. 133, pp. 68-83, 2022, Elsevier.
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• [22] S. Martínez Agüero, A. G. Marques, J. M. Alonso-Moral, I. Mora-Jiménez, J.
Álvarez-Rodríguez, and C. Soguero-Ruiz, "Multimodal Interpretable Data-Driven Mod-
els for Early Prediction of AMR". arXiv preprint arXiv:2402.06295, 2023

• [23] À. Hernández-Carnerero, M. Sànchez-Marrè, I. Mora-Jiménez, C. Soguero-Ruiz, S.
Martínez-Agüero, and J. Álvarez-Rodríguez, "Dimensionality reduction and ensemble
of LSTMs for antimicrobial resistance prediction," Artificial Intelligence in Medicine,
vol. 138, p. 102508, 2023, Elsevier.

• [24] L. Pascual-Sánchez, I. Mora-Jiménez, S. Martínez-Agüero, J. Álvarez-Rodríguez,
and C. Soguero-Ruiz, "Predicting multidrug resistance using temporal clinical data and
machine learning methods," in 2021 IEEE International Conference on Bioinformatics
and Biomedicine (BIBM), pp. 2826-2833, 2021, IEEE.

• [25] À. Hernández-Carnerero, M. Sànchez-Marrè, I. Mora-Jiménez, C. Soguero-Ruiz,
S. Martínez-Agüero, and J. Álvarez-Rodríguez, "Antimicrobial resistance prediction in
intensive care unit for pseudomonas aeruginosa using temporal data-driven models," In-
ternational Journal of Interactive Multimedia and Artificial Intelligence, 2021.

The COVID-19 related tasks (O1, and O3) are addressed in [27]. The work in [27] aims
to develop a graph-based methodology to identify connections between comorbidities, previ-
ous medications, symptoms, and COVID-19 treatments for patients admitted to a Spanish ICU
during the pandemic’s initial surge. By examining the trajectory of these patients, who either
passed away due to the virus or were discharged from the ICU, we employ hypothesis test-
ing via bootstrap methods to discriminate between the deceased and non-deceased populations.
Subsequently, graph-based representations and network analytics are utilized to identify associ-
ations among clinical features. This analytical approach reveals that deceased patients typically
had multiple comorbidities with solid connections and received a more comprehensive range
of drugs during their ICU stay. Furthermore, the most common treatment was the concurrent
administration of lopinavir/ritonavir and hydroxychloroquine, independent of patient outcomes.
By employing graph tools and representations, this study provides insights into the connections
among comorbidities, pharmacological treatments, and patient trajectories. In conclusion, the
methodology presented constitutes a novel data-analysis tool for clinicians, with potential appli-
cability for inspecting post-COVID symptoms or patient progression. The publications related
with O1, O3 are listed below:

• [27] S. Martínez-Agüero, C. Soguero-Ruiz, J. M. Alonso-Moral, I. Mora-Jiménez, J.
Álvarez-Rodríguez, and A. G. Marques, "Data and Network Analytics for COVID-19
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ICU Patients", IEEE Journal of Biomedical and Health Informatics. 25(12):4340–4353,
2021.

1.4 Outline of the Dissertation

This Thesis consists of seven chapters, which are described as follows:

• Chapter 1: Introduction and Objectives. In this chapter, the motivation behind this disser-
tation, the objectives, and the methodology used are presented. Furthermore, the structure
of the document and the scientific contributions are shown.

• Chapter 2: Preliminaries. This chapter establishes a solid foundation for understanding
the complex terms and behaviors associated with AMR. An explanation of the COVID-19
pandemic follows it. The chapter aims to provide clarity on these subjects by examining
EHRs and illustrating how data-driven models are applied in the healthcare sector.

• Chapter 3: Dataset Description and Exploratory Analysis. It provides a detailed overview
of the datasets utilized, along with an initial exploration of their characteristics.

• Chapter 4: Interpretable Data-Driven Modeling for Early Prediction of Antimicrobial
Multidrug Resistance. This chapter delves into the development of clinical time-series
models aimed at early prediction of AMR.

• Chapter 5: Multimodal Interpretable Models for Early Prediction of Antimicrobial Mul-
tidrug Resistance. In this chapter, we expand the scope to include multimodal, inter-
pretable, data-driven approaches, further enhancing the predictive capabilities of AMR.

• Chapter 6: Data and Network Analytics for COVID-19 ICU Patients. In this chapter,
the focus narrows to the application of data and network analytics, specifically within the
context of COVID-19 patients in ICUs.

• Chapter 7: Conclusions and Future Work. This chapter summarizes the essential findings
and outlines potential directions for future research in this rapidly evolving field.
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Chapter 2

Preliminaries

In this chapter, we conduct an analysis of infectious diseases, with a particular focus on AMR
and the COVID-19 pandemic. This exploration is undertaken through the prism of EHRs and
data-centric models in healthcare. Our objective is to establish a comprehensive understanding
of these diseases within the context of modern data analytics and ML methodologies. Firstly, the
chapter presents a description of AMR, a complex and growing challenge in modern medicine.
This description will focus on the complex dynamics of AMR, emphasizing its multifaceted na-
ture. Following this, the chapter shifts focus to COVID-19, offering a comprehensive analysis
of its impact on global health systems and patient outcomes. Then, we explore the role of EHRs
in modern healthcare, underscoring their potential as a rich source of data for epidemiological
and clinical research. Furthermore, the chapter discusses the application of data-driven mod-
els within the healthcare environment, highlighting their applicability in decision-making and
patient care. Lastly, we present the methodology and mathematical notation used throughout
this study. This section aims to present an overview of the scientific methods used, ensuring
the integrity and reproducibility of our findings. This chapter serves as the foundation for the
discussions that follow, establishing a multidisciplinary framework essential for comprehending
how the healthcare problems at hand are connected.

2.1 Infectious Diseases

The study of infectious diseases is a critical and ever-evolving field within medical research.
This study involves the investigation of illnesses caused by organisms such as bacteria, viruses,
fungi, and parasites. These diseases pose significant public health challenges globally. This

11
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section is dedicated to unraveling the complex nature of two infectious diseases: AMR and
COVID-19.

Antimicrobial Multidrug Resistance

AMR is a biological process where microorganisms, including bacteria, viruses, fungi, and
parasites, evolve to resist the effects of medications designed to kill them [9]. This phenomenon
is particularly alarming in healthcare because it renders standard treatments less effective, pro-
longs infections, and increases the likelihood of these resistant infections spreading to other pa-
tients. The development of AMR can be attributed to various factors, including genetic changes
in microorganisms and the pressure from the usage of antimicrobial drugs [28]. In clinical set-
tings, this often results from the overuse, misuse, or inappropriate prescribing of antibiotics and
other antimicrobial agents.

Analyzing clinical procedures—particularly the antibiogram—along with patient cultures is
a crucial strategy in managing AMR. Cultures involve isolating and growing microorganisms
from samples (e.g., blood, urine, wound swabs) on a growth medium. These microorganisms
are then tested for antibiotic susceptibility or resistance through antibiograms, where they are in-
cubated with antibiotics to assess their response. Antibiograms are pivotal in addressing AMR,
aiding in the selection of the most appropriate treatment for individual patients. They also play a
crucial role in more significant public health strategies aimed at preventing the spread of drug-
resistant bacteria in hospitals. Regularly performed antibiograms help to identify resistance
trends, track new resistant strains, and refine prescribing practices. These tools are also vital
for antimicrobial stewardship programs, promoting responsible antibiotic use to mitigate AMR
development. However, controlling AMR spread remains an increasingly challenging task in
modern healthcare.

The rise of AMR has significant implications for clinical practice. It has led to an increasing
number of cases where standard antibiotic therapies, once effective against infections, are now
failing [29]. As a result, conditions that were previously considered manageable are becoming
significant health concerns. This change requires more resources, more extended hospital stays,
and the use of last-resort, often more toxic and expensive antibiotics [1]. In extreme cases, some
infections have become completely untreatable, posing grave risks to patient health and public
health at large [30].

Moreover, the clinical challenges of AMR extend beyond the treatment of severe infections.
The effects of AMR are very severe in the ICU, since they are critical areas where severely ill
patients are at a heightened risk of acquiring infections, including those caused by multidrug-
resistant organisms. The presence of AMR in these settings not only complicates treatment
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strategies but also significantly increases morbidity and mortality rates [31]. For patients in the
ICU, infections with resistant pathogens mean longer hospital stays, increased medical costs,
and higher risks of unfavorable outcomes. The escalated use of broad-spectrum antibiotics in
ICUs, necessary to address severe and complex cases, further exacerbates the problem by po-
tentially promoting the development and spread of resistant germs [32]. Consequently, ICUs
often serve as epicenters for AMR, making rigorous infection control protocols and antimicro-
bial stewardship programs essential [33]. It also complicates the management of less critical
health issues, such as post-surgical recovery and the treatment of minor wounds or cuts [34].
Such cases, which were once easily handled with antibiotic treatments, now carry the risk of
developing into severe complications due to the reduced efficacy of these drugs [30]. This
scenario underscores the urgent need to employ data-driven models and knowledge acquisition
methodologies in clinical settings.

In summary, from a clinical standpoint, AMR represents a significant shift in the landscape
of infectious disease treatment and management. It necessitates a reevaluation of current pre-
scribing practices, increased vigilance in monitoring and controlling infections, and an effort in
research and development to stay ahead of this evolving challenge [35]. Efforts to mitigate the
impact of AMR include global initiatives like the World Antibiotic Awareness Week, a focus
on improved hygiene practices, and the reduction of antibiotic usage in the agriculture sector,
particularly with food-producing animals [36].

COVID-19

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), commonly known as COVID-
19, is a highly infectious respiratory illness first identified in December 2019. It is caused by
a novel coronavirus belonging to the same family as SARS-CoV and MERS-CoV (Middle
East Respiratory Syndrome Coronavirus), which have been responsible for previous epidemics.
Symptoms of COVID-19 range from mild to severe and include fever, cough, shortness of
breath, fatigue, and loss of taste or smell [37]. Severe cases can lead to pneumonia, acute
respiratory distress syndrome, multi-organ failure, and death, particularly in older adults and
those with pre-existing health conditions [38]. COVID-19 spreads primarily through respira-
tory droplets and aerosols when an infected person coughs, sneezes, talks, and touches surfaces
contaminated with the virus [39]. The disease’s rapid transmission rate and potential sever-
ity have required global public health interventions, including social distancing, mask-wearing,
and extensive vaccination campaigns.

The COVID-19 virus has emphasized the importance of effective treatments for infectious
diseases. The pandemic led to the intensive use of antibiotics in hospitals, particularly in
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COVID-19 patients during its initial stage. The overuse and misuse of antibiotics during the
pandemic have increased resistance in bacteria, posing a threat to the treatment of future infec-
tions [36].

During the early stages of the COVID-19 pandemic, Spain experienced one of the highest
mortality rates globally, significantly exceeding those reported in many other countries [40].
This situation led to considerable challenges in the Spanish healthcare system, particularly over
several months as the health system struggled to cope with the effects of the pandemic [41]. The
severity of some of the infected patients reduced the capacity of the Spanish healthcare system
to manage routine medical services and emergencies. It also highlighted the limitations in the
availability of intensive care resources, placing them under extreme pressure [42]. This was of
notable concern given the increased need for intensive care beds, medical equipment such as
ventilators, and specialized staff. It was further exacerbated by the lengthy ICU stays required
for severe COVID-19 cases, often extending for weeks [43].

Among the patients admitted to the ICU, a high mortality rate of over 50% was observed [44,
41]. This figure stands in contrast with the overall mortality rate associated with COVID-19,
which was estimated to be around 2.3% during the initial stages of the pandemic [45]. This high
ICU mortality rate was also significantly more significant than the 22% mortality rate seen in
ICU patients with other viral pneumonia [46]. These statistics underscore the exceptional sever-
ity of COVID-19, especially in critical care settings, and highlight the need for focused efforts
in ICUs during pandemics. It also reiterates the critical role of ICUs in the healthcare system,
particularly in managing patients suffering from severe infectious diseases such as COVID-
19. Therefore, there is a clear need for thorough research into the epidemiology, emergence,
prevalence, and burden of infectious diseases.

Additionally, some treatments being developed for COVID-19, such as monoclonal anti-
bodies, have potential implications for the rise of AMR [47]. These monoclonal antibodies
are produced in laboratories and are designed to target specific proteins on the virus’s sur-
face. However, if the virus mutates and changes these proteins, the monoclonal antibodies may
lose their effectiveness, potentially leading to the development of resistant strains of the virus.
Moreover, the COVID-19 pandemic has disrupted healthcare infrastructures across the globe,
causing delays in identifying and treating bacterial infections. This disruption, combined with
an increased reliance on antibiotics, could inadvertently create an environment where AMR
can develop more efficiently. The complexity of this issue requires investigation and consid-
eration of diverse solutions, as will be elaborated upon in the Future Work Section 7.2 of this
dissertation.
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Developing new solutions demands a coordinated effort from governments, industry, and
medicine. Over the past years, the development of modern, data-driven healthcare systems has
been pivotal. This approach relies on data to classify, diagnose, treat diseases, and provide
patient care [48]. In the pre-digital era, patient data was recorded and stored manually. This
process, while essential for maintaining medical records, came with significant challenges such
as potential errors, difficulties in data retrieval, and limited accessibility. The digitization of
clinical data, however, has brought about a transformation, offering enhanced scalability and
reusability of data, and in turn, providing novel opportunities for innovation and improved pa-
tient care [49]. The current digital revolution is changing the way that patients are treated by
bringing technology with transformative potential into a variety of medical sectors, including
general medical practices, hospitals, and research institutes. The conversion of analog data
sources into digital formats has optimized the storage and retrieval of patient data and enabled
the application of advanced data analysis techniques [50]. Clinical medicine has a tendency to
accept technology later than other industries. Despite efforts to integrate algorithms into every-
day practice, clinical decision support systems are not widely adopted [51]. This situation must
change, as clinical data is now a valuable resource for improving patient care, identifying dis-
ease patterns, and developing new treatments. Building upon this digital transformation, EHRs
have revolutionized how healthcare providers manage and access patient information.

2.2 Electronic Health Records

EHRs provide healthcare professionals with immediate access to longitudinal patient health in-
formation, enhancing the precision of health history analysis [52]. This real-time data access en-
ables the identification of health trends and patterns, which is crucial for crafting more targeted
and effective treatment strategies and ultimately boosting patient health outcomes. EHRs also
streamline collaboration among healthcare teams while minimizing the risk of errors stemming
from incomplete or outdated patient information. Overall, EHRs have significantly increased
the efficiency and efficacy of clinical data analysis, directly benefiting patient care.

EHRs provide healthcare professionals with immediate access to patient data, allowing for
a more accurate analysis of a patient’s health history. EHRs also enable the identification of
trends and patterns in patient data, which can be used to develop more effective treatment plans
and improve patient outcomes [53]. Furthermore, EHRs facilitate collaboration between health-
care institutions and reduce errors caused by incomplete or inaccurate information [54]. With
the use of EHRs, clinical data analysis has become an efficient and effective practice, leading
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to improved patient care [55]. The data from EHR can be used to develop powerful predictive
algorithms. By analyzing large datasets, these algorithms can identify patterns and make pre-
dictions. These algorithms fall under the broad category of ML [56]. The data contained within
EHRs is heterogeneous, constituting multimodal information such as diagnosis codes, med-
ication prescriptions, and laboratory test results; semi-structured data such as clinical notes;
and unstructured data such as images from radiology, pathology, and other medical imaging
modalities. An illustration of the multimodal EHR data used in this dissertation is provided in
Figure 2.1.

The utilization of EHR for the development of data-driven models could enhance clinical
decision-making and operational management offers. Research based on EHR data has al-
ready shown promising results in various areas, including patient mortality prediction, hospital
readmission prediction, and early detection of clinical events, indicating a shift towards more
proactive, personalized medicine [57, 58, 59]. This shift could lead to more efficient resource
use and cost optimization [60]. However, several challenges inherent in EHR data complicate
its use:

• Data heterogeneity: EHRs contain diverse data types from various clinical environments.
Integrating these data sources requires significant efforts, resources, and expert domain
knowledge [61].

• High dimensionality: The data recorded in EHRs, such as diagnoses and drug prescrip-
tions, result in a high-dimensional feature space. With over 13,000 diagnosis codes and
3,430 drug codes, the feature space becomes increasingly complex.

• Data quality: The success of models driven by EHR data depends on the quality of the
data. EHR data often includes incomplete records, outliers, and inconsistencies, poten-
tially leading to unreliable outcomes. Effective pre-processing of data is therefore crucial
to mitigate these issues [62].

• Temporal characteristics: EHRs data track patient information over time, usually record-
ing visits across various clinical departments. This longitudinal nature of the data adds
complexity, particularly in accurately interpreting the sequence and timing of these inter-
actions. This characteristic presents unique challenges for traditional ML approaches, a
concern raised by [62].

• Imbalanced classes: For ML applications in healthcare, having a representative sample
size is essential. Class imbalance in EHRs poses a significant challenge in getting a
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Figure 2.1: Illustration of the multimodal EHR data used in this dissertation.

representative sample. This occurs when there are far more records of one class compared
to the other class. This imbalance can lead to models that perform well on the majority
class but poorly on the more clinically significant minority class [63].

• Data privacy: The sensitive nature of clinical data, protected by laws like the Health
Insurance Portability and Accountability Act in the US and the General Data Protection
Regulation in the EU, limits its use. This legal framework requires institutional approvals
for data sharing, which can be restrictive and time-consuming [64, 65].

In conclusion, integrating EHRs into healthcare systems represents a significant improve-
ment in patient data management and clinical decision-making. EHRs provide an invaluable
repository of multimodal, longitudinal data, enabling a more accurate and holistic understand-
ing of patient health. These records also set the groundwork for the development of sophis-
ticated, data-driven models in healthcare. This exploration will delve into how ML and other
computational techniques can use EHR data to predict outcomes, personalize treatments, and
enhance the efficiency and effectiveness of healthcare services.

2.3 Data-driven Models in the Healthcare Environment

ML techniques are becoming vital in analyzing clinical data, primarily because they excel at
uncovering patterns and trends in EHR [17]. These algorithms are particularly adept at predict-
ing clinical outcomes, such as forecasting the likelihood of a patient developing certain diseases
or their response to treatments. This predictive power comes from ML’s ability to process and
learn from a patient’s medical history and various data types.
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One significant advantage of ML in healthcare is its capability to manage complex, multi-
faceted data [66]. Medical data often includes diverse formats like clinical notes, lab results,
and time series, all of which ML can integrate and analyze efficiently. This integration is crucial
because it enables ML models to discern relevant features from vast data sets, leading to more
precise predictions.

The use of ML techniques in clinical data analysis has become increasingly important in
recent years because ML offers a powerful tool for identifying patterns and trends in EHR
data [67]. Additionally, ML algorithms can be trained to predict clinical outcomes, such as the
likelihood of a patient developing a particular disease, based on the patient’s medical history and
other available data [68]. One of the critical advantages of ML in the clinical domain is its abil-
ity to handle complex and high-dimensional data. As was previously highlighted, medical data
is challenging to work with, as it often includes a wide range of different data types (e.g., clinical
notes, laboratory results, time series) that must be integrated and analyzed. ML models can au-
tomatically learn relevant features from this data and use them to make accurate predictions. In
this context, the use of ML in the analysis of clinical data has the potential to transform the way
that healthcare is delivered by enabling more accurate predictions and personalized treatment
plans. For example, the Manifal Hospital in Bangalore employed IBM’s Watson for Oncology
in 2015, revealing a disparity in diagnostic consensus rates among cancers, with 85% for rectal
and 17.8% for lung cancer [69]. Similarly, the Johns Hopkins University Hospital utilized AI
technologies in collaboration with GE Healthcare in 2016, improving operational efficiency in
areas such as patient bed assignment and inter-hospital transfers [70]. The Moorfields Eye Hos-
pital in London successfully incorporated AI solutions to identify eye diseases, demonstrating
94% accuracy, thereby addressing the growing demand for eye scans [71].

One of the defining characteristics of clinical data is its temporal nature. It is essential to
consider the temporal aspect of clinical data when developing ML models. One of the critical
reasons why considering the temporal aspect of clinical data is essential is that healthcare data
is inherently dynamic. Patients’ health statuses change over time, and the data collected dur-
ing each visit reflects these changes [72]. If we ignore the temporal aspect of clinical data, we
risk overlooking significant trends or patterns that could be critical for accurate predictions or
diagnoses. For example, if we are predicting the likelihood of a patient developing a particular
disease, we need to consider how their health status changes over time. Medical records typi-
cally contain a sequence of events, such as diagnoses, procedures, and medications, that unfold
over time [72]. This temporal structure can provide valuable insights into disease progression
and treatment efficacy but also poses significant challenges for data analysis.
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Recognizing this, recent ML advancements have focused on techniques that exploit this
temporal aspect of clinical data. These techniques, often categorized as temporal or sequential
models, can model dynamic relationships between events over time and make predictions about
future events based on past observations. RNNs are a common type of temporal model that is
applied to a wide range of clinical prediction tasks, such as predicting patient outcomes and
identifying disease patterns [73]. RNNs are particularly good at modeling time-varying data,
as they can process sequences of variable length and capture long-term dependencies between
events.

In clinical settings, it is crucial to consider static features that characterize the initial health
status and MTS to model the patient’s health status evolution. In such cases, fusion models
are employed to unify these two types of data [74]. Fusion models aim to combine multiple
information sources to maximize the predictive power of the resulting model [74]. Different
data fusion models can be employed to combine static variables and MTS and extract com-
plementary, accurate, and comprehensive knowledge [75, 76]. Clinical decision-making in the
healthcare arena is greatly aided by the integration of static data, such as age or comorbidities,
with MTS [77]. As a result, a number of data-fusion architectures have lately been suggested
for use in medical environments. Cheng et al., for instance, used a collection of deep early
fusion neural networks (NNs) to forecast hospitalizations for gastrointestinal bleeding based on
various multimodal data entered into the EHR. [78]; Li et al. created a joint fusion model to
combine data on demographics, notes from doctors, and clinical time series features [79]. Shuai
et al. employed an attentional joint fusion classifier to predict the illness risk using text notes
and time series [80].

While the fusion models provide a practical approach to integrating heterogeneous health
data, they do not fully utilize the intricate relational structures within the data. To address this
gap, graph-based models emerge as a promising direction, enabling a more comprehensive rep-
resentation of the data. These models can encapsulate various relationships among data points,
such as temporal dependencies in MTS and intrinsic connections among static features. Fur-
thermore, they can capture complex interactions and dependencies that standard fusion models
may overlook [81]. Graphs, consisting of a set of nodes and edges connecting them, represent
a mathematical structure that combines versatility with a wealth of analytical results derived
from disciplines such as graph theory and complex systems [81]. This versatility is evidenced
by the adoption of graphs across various data-science-related fields, such as ML [82], signal
processing [83], and statistics [84], to represent intricate dataset structures and integrate them
into data-science processing and learning pipelines [84]. In addition to their mathematical ben-
efits, graphs are a comprehensible tool for representing high-dimensional data and facilitate
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the visualization of the information in question [82, 83, 85]. Prior research has demonstrated
the value of network-based approaches in visualizing collaborative EHR usage for heart fail-
ure patients [86], modeling disease graphs [87], and predicting graphs for previously unknown
adverse drug reactions [88]. Despite the comparatively limited application of graph-based rep-
resentations for MTS in the literature, the preliminary findings are encouraging. Such analytical
methods hold the potential to detect outbreaks in their emerging stages or to characterize the
clinical progression of patients [89, 90, 91].

Although research has demonstrated the effectiveness of DL models and graph modeling in
various fields, including medicine [92, 93], their complexity often makes it difficult to under-
stand their underlying mechanisms. This leads to a situation where, rather than unraveling the
inner workings of the models, researchers are often constrained to indirect methodologies to
decipher the impact of input features [94]. This lack of interpretability has been identified as
the primary barrier to applying DL models in clinical decision-making, which requires under-
standable relationships between input data and predictions [95]. To overcome this challenge,
fundamental advances in ML interpretability are necessary [96]. In recent years, several inter-
pretable models have been developed in the healthcare domain using different methods, such
as feature importance methods [97, 98], feature interaction attribution [99, 100], neuron layer
attribution [101, 102], and explanation with high-level concepts [21, 103].



Chapter 3

Data Description and Exploratory
Analysis

This chapter describes the two datasets (the AMR dataset and the COVID-19 dataset) that the
UHF gathered, and then it presents the exploratory data analysis that was done for this thesis.

3.1 Antimicrobial Multidrug Resistance Dataset

This thesis was developed using real clinical data from 3,470 patients who were registered in
the ICU of UHF between 2004 and 2022. This dataset contains patient information, includ-
ing demographic, microbiology laboratory culture data, temporal features that reveal patient
health progression, and temporal features reflecting ICU occupancy and antibiotic pressure.
The integration of these heterogeneous data provides a view of the evolving landscape of ICU
management over nearly two decades. This dataset, therefore, stands as a valuable resource
for in-depth analysis in medical research, offering insights into long-term trends and the effec-
tiveness of care strategies. To extract new insights from this data , we will next conduct an
exploratory data analysis of the features examined.

Demographic features

Demographic features are a vital set of patient information, typically collected at the onset
of their stay in the ICU. This information forms the foundation for understanding the patient’s
baseline health status and potential care needs. These features not only include features like age
and gender but also extend to more detailed aspects such as the patient’s clinical origin before
ICU admission, which provides insight into their pre-ICU health trajectory, and the reason

21
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for ICU admission, which is coded according to the International Classification of Diseases,
Ninth Revision (ICD-9) [104]. Furthermore, we included the presence of pluripathology or the
coexistence of multiple diseases or conditions in a single patient. This aspect is crucial in the
ICU as it can complicate patient management and diagnosis.

Furthermore, we modeled critical care indices such as Acute Physiology and Chronic Health
Evaluation II (Apache-II) or Simplified Acute Physiology Score (SAPS-3) [105, 106]. These
indices are scoring systems designed to assess disease severity and predict mortality risk in ICU
patients. They incorporate a range of clinical parameters and have been validated in numer-
ous studies [106, 105]. These scoring systems assist in clinical decision-making and facilitate
comparative studies and research in critical care medicine. By including these indices in the de-
mographic profile, healthcare providers can better understand the patient’s condition and align
their care approaches with the severity of the patient’s illness.

In order to understand the behavior of the demographic features previously presented we
performed an exploratory analysis of all of them, including Age, Gender, Origin before ICU,
and Reason for Admission, as well as the Apache-II and SAPS-3 scoring systems.

Regarding age, Figure 3.1 shows the age distribution for (a) all patients, (b) non-AMR
patients, and (c) AMR patients. The subfigures (a), (b), and (c) suggest a prevalence of middle-
aged individuals, with fewer representations from younger and older age groups. Specifically,
the average ages are as follows: 60.52±15.15 years for subfigure (a), 59.93±15.50 years for
subfigure (b), and 63.31±13.02 years for subfigure (c).
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Figure 3.1: Histograms of age for (a) all patients; (b) non-AMR patients; and (c) AMR
patients.

Figure 3.2 shows the gender distribution for (a) all patients, (b) non-AMR patients, and (c)
AMR patients. The subfigures (a), (b), and (c) demonstrate a consistent predominance of male
patients in ICU admissions across the groups. Notably, there is a marginally higher proportion
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of male patients in the non-AMR group than the others.
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Figure 3.2: Bar plots comparing the gender distributions for (a) all patients; (b) non-AMR
patients; and (c) AMR patients.

Figure 3.3 presents bar plots of the origin before ICU: (a) all patients, (b) non-AMR patients,
and (c) AMR patients. Most patients generally come from the emergency room, especially in
subfigure (a) and (b), indicating that urgent conditions are common reasons for ICU admis-
sions. In contrast, subfigure (c) shows a more evenly distributed distribution across units, with
a continued but less dominant emergency room frequency.
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Figure 3.3: Bar plots comparing the origin before ICU for (a) all patients; (b) non-AMR
patients; and (c) AMR patients.

Subsequently, Figure 3.4 presents histograms comparing the SAPS-3 values for three patient
groups: (a) all patients, (b) non-AMR patients, and (c) AMR patients. The histogram for all
patients (a) indicates a clustering around the median, showing that most of the patients have
a similar score. The non-AMR group (b) follows a similar pattern with a slight shift towards
higher scores. The AMR group (c) also shows a similar distribution as the other subfigures.
Specifically, the average SAPS-3 score are as follows: 52.02±20.52 for subfigure (a), 50.70±
20.33 for subfigure (b), and 58.46±20.20 for subfigure (c).
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Figure 3.4: Histograms comparing the SAPS-3 for (a) all patients; (b) non-AMR patients; and
(c) AMR patients.

Following the analysis, Figure 3.5 offers a visual comparison of the APACHE-II scores
across three patient groups: (a) all patients, (b) non-AMR patients, and (c) AMR patients. The
histogram for all patients (a) is right-skewed, showing most have lower APACHE-II scores and,
thus, a lower mortality risk, with fewer high-risk patients. The non-AMR group (b) displays a
similar pattern but slightly shifted towards higher scores, indicating slightly more severe cases.
The AMR group (c) follows a similar distribution as the other subfigures. Specifically, the aver-
age APACHE-II score is as follows: 9.43±10.38 for subfigure (a), 9.00±10.11 for subfigure
(b), and 11.53±11.34 for subfigure (c).

(a)

0 10 20 30 40 50 600

500

1000

1500

2000

2500

(b)

0 10 20 30 40 50 600

500

1000

1500

2000

2500

(c)

0 10 20 30 40 500

500

1000

1500

2000

2500

Figure 3.5: Histograms comparing Apache-II for (a) all patients; (b) non-AMR patients; and
(c) AMR patients.

Figure 3.6 shows bar plots that compare the reasons for ICU admission across three distinct
patient groups: (a) all patients, (b) non-AMR patients, and (c) AMR patients. The bar plots
visually represent the frequency of each reason for ICU admission within these populations. All
subfigures exhibit similar right-skewed distributions, showing common ICU admission reasons
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like "acute respiratory failure" and "serious infection" as most prevalent, with others being less
frequent.
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Figure 3.6: Bar plots comparing the reason why the patients got into the ICU for (a) all
patients; (b) non-AMR patients; and (c) AMR patients.

Microbiology laboratory results

These variables detail the cultures the UHF microbiology laboratory conducts to detect pos-
sible infections. To contextualize the information in these features, it is crucial to emphasize
that the type of germ identified (if any) and the type of culture performed are essential. This
distinction is critical as having a superficial skin infection is different from having one in a
lung. However, the UHF laboratory does more than just culture to identify possible infections;
they also perform antibiograms on the identified germs. Antibiotic susceptibility tests, or an-
tibiograms, are tests that detail the effectiveness of a set of antibiotics used against the germs
detected in the cultures. This information is crucial in an era where antibiotic resistance is a
growing concern, as it aids in selecting the most appropriate and effective treatment regimen.

Processing these variables was a vital step in the study, particularly in differentiating be-
tween AMR and non-AMR patients. The dataset categorizes patients based on their AMR sta-
tus, making it a valuable tool for studying resistance trends and contributing to broader efforts
in infection control and antibiotic utilization.

Temporal features

These features track the treatments of the patient under study. We can group these MTS
into different groups of features: (i) the antibiotics taken by the patient under study, (ii) the
mechanical ventilation (MV), and (iii) the results of previous cultures performed on the patient.

The antibiotics taken by the patient were grouped into families of antibiotics such as Amino-
glycosides (AMG), Antifungals (ATF), various generations of Cephalosporins (CF1, CF2, CF3,
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CF4), Glycopeptides (GLI), Lincosamides (LIN), Glycyclines (GCC), Lipopeptides (LIP), Macrolides
(MAC), Monobactamas (MON), Nitroimidazolics (NTI), unclassified antibiotics (Others), Sul-
famides (SUL), Oxazolidinones (OXA), Penicillins (PEN), Broad-Spectrum Penicillins (PAP),
Polypeptides (POL), Quinolones (QUI) and Tetracyclines (TTC). Each was administrated based
on their specific antimicrobial properties and the patient’s health needs. Thus, for a specific pa-
tient (denoted as the i-th patient), the characteristic associated with each treatment (denoted as
the d-th treatment) is represented by a matrix of binary variables xd

i ∈ {0,1}D×Ti . This matrix
indicates whether or not the patient received the specified treatment during each of the Ti time
slots, which correspond to 24-hour periods during the patient’s stay in the ICU.

The MV metric reflects the severity of the patient’s respiratory condition and has impli-
cations for potential complications, such as ventilator-associated pneumonia. The length of
mechanical ventilation can also indicate the overall severity of the patient’s illness and their
progress in the ICU.

The results of previous cultures’ features are vital for understanding the patient’s micro-
biological background. They offer insights into any infections the patient may have had and
their response to treatments. This historical perspective is essential for identifying antibiotic
resistance patterns and tailoring future antimicrobial therapies to the patient’s needs.

These temporal features — antibiotic administration, mechanical ventilation, and previous
culture results — provide a comprehensive view of the patient’s treatment journey in the ICU.
In order to get information about the trends of those features, we performed an exploratory data
analysis.

First, to illustrate MTS length, Figure 3.7 shows three histograms, each representing the
frequency distribution of days of stay for patients, divided into two categories: AMR patients
and non-AMR patients. Additionally, the figure includes a subfigure indicating the specific
days when the first multi-resistant culture was identified in patients. This information is very
informative, providing a clear-cut-off point for our analysis. The histograms clearly show that
patients with AMR infections generally have more extended hospital stays compared to those
without AMR infections. The longer tail on the right side of the AMR patient distribution indi-
cates a greater frequency of extended hospitalizations. However, the distribution for non-AMR
patients declines more sharply, suggesting that these patients typically have shorter stays. Ad-
ditionally, we can observe an early peak in the days to culture histogram for AMR patients,
indicating that the cultures are performed quickly, which is crucial for treating their serious
infections effectively. These histograms highlight AMR’s significant healthcare burden, evi-
denced by longer hospital stays and the need for rapid diagnostic efforts.
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Figure 3.7: Histograms displaying the length of stay for (a) non-AMR patients and (b) AMR
patients. Additionally, subfigure (c) illustrates the distribution of days on which the first

multidrug-resistant organism was detected in patients.

After analyzing the duration of the patients’ stays and the length of the MTS, we examined
the antibiotics intake. In this dissertation, we treat the families of antibiotics as binary features.
A binary feature, by definition, includes only two distinct categories encoded as ‘0’ or ‘1’,
representing the absence or presence of a specific attribute, respectively. Specifically, a ‘1’
indicates that the patient received an antibiotic from that family during the time step, while a ‘0’
indicates that the patient did not receive any antibiotic from that family. Heatmaps in Figure 3.8
illustrate the proportion of AMR and non-AMR who received treatment with each antibiotic
family over time. Each column represents a different time step during the patient’s stay (only
14 days are considered), while each row corresponds to a specific family of antibiotics. The
first heatmap (Figure 3.8 (a)) details drug consumption for the AMR patient population, while
the second heatmap (Figure 3.8 (b)) represents drug intake for non-AMR patients. The third
heatmap (Figure 3.8 (c)) shows the difference in drug use between these two groups (subtracting
the antibiotic consumption values of the AMR group from the non-AMR group). From these
heatmaps, we can discern several patterns:

• Variability in drug usage: There is a variability in drug usage between the two patient
populations. This could indicate an adaptation of the treatment based on the patients’
resistance profiles, suggesting personalized treatment in the ICU.

• Time-dependent trends: The data show how drug intake varies over time, with some drugs
being administered more frequently at certain times during the patient’s stay. This could
reflect the evolving nature of treatments and the response to therapy. Families such as
ATF, CAR, or GLI are more frequently given towards the end of the stay of the patients,
while others keep the same behavior.
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• Specific drugs of interest: Certain drugs are used differently between the two groups,
as evidenced by the differences in the heatmaps. Drugs represented by larger positive
differential values may indicate those that are preferred or more effective in treating AMR
infections, such as ATF, CAR, or GLI. Conversely, drugs with negative values may be less
used in AMR patients, perhaps due to ineffectiveness against resistant germs.

Further research that combines these drug usage patterns with patient outcomes and micro-
biological data is vital for a deeper understanding of these patterns and for developing effective
treatment strategies for both AMR and non-AMR patients. The study notes that certain drug
families, like Carbapenems (CAR), Glycopeptides (GLI), and Antifungals (AFT), are more fre-
quently used in treating AMR patients. In contrast, non-AMR patients are often treated with
antibiotics like Penicillins. However, some drug families, such as Quinolones, Lipopeptides,
and broad-spectrum Penicillins, are used similarly in both AMR and non-AMR patient groups.

We continue analyzing the temporal dynamics of MV usage among patients, focusing on
showing patterns and trends over time. In Figure 3.9, we present a detailed comparison of
MV usage over time through two distinct boxplot diagrams complemented by a line plot. The
left boxplot of subfigure (a) corresponds to the AMR population, while the right boxplot of
subfigure (b) shows the non-AMR population data. Interpreting these plots, the AMR boxplots’
skewed medians and variable box sizes indicate an inconsistent need for MV during a patient’s
ICU stay, hinting at an increased requirement for intensive MV starting from day 6. In contrast,
the right plot’s uniformity suggests consistent median values over time, implying regular MV
usage for most patients upon treatment initiation. This consistent pattern potentially masks
variations, necessitating the inclusion of Figure 3.9 (c). This additional plot illustrates the daily
ratio of patients receiving MV. It reveals a consistently higher mean for AMR patients, with
a progressively steepening trend over time. Therefore, after analyzing both figures, we can
conclude that AMR patients have a higher distribution of MV usage. Additionally, this analysis
incorporates Table 3.1, which provides statistical evidence of the increased likelihood of AMR
patients receiving prolonged MV contained in the 14-time steps window, corroborating the
observations made in Figure 3.9.

Finally, we study the patient’s cultural features to identify specific time steps where partic-
ular germs have been detected. Out of the multiple germs identifiable through cultures, six are
prone to multidrug resistance: Stenotrophomonas, Pseudomonas, Enterobacter, Staphylococ-

cus Aureus, Acinetobacter, and Enterococcus. Consequently, we developed six features, each
tracking the appearance of one of the previous germs in the cultures performed in the patient.

In subsequent sections, we reference these germs with the suffix pc (previous cultures), il-
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Figure 3.8: Heatmaps representing the percentage of patients taking each family of antibiotics
over time for (a) AMR patients; (b) non-AMR patients; and (c) the comparison between AMR
and non-AMR groups. Rows represent antibiotic families, and columns represent time steps.
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Figure 3.9: Boxplots depicting the distribution of mechanical ventilation duration for patients
in each time step: (a) AMR patients and (b) non-AMR patients. Additionally, subfigure (c)
illustrates the percentage of AMR and non-AMR patients requiring mechanical ventilation

during each time step.

Feature Statistic Total Patients AMR patients Non-AMR patients

Mechanical Ventilation

Mean 14.13 17.50 13.40
Median 23.93 24.00 23.42

σ 11.34 10.09 11.46
Minimum 0.00 0.00 0.00
Maximum 24.00 24.00 24.00

Table 3.1: Statistics for the time the patients are assisted with mechanical ventilation,
presented over a period of 14 time steps.

lustrating the features discussed herein. For instance, the feature representing the occurrence
of Pseudomonas is labeled Pseudomonaspc. Additionally, the MTS incorporates a variable
Otherspc, accounting for germs outside the six groups identified in earlier cultures. The in-
clusion of Otherspc acknowledges the potential role of non-resistant germs as precursors to
multidrug-resistant strains. It is important to note that the germs referenced in the six primary
variables of previous cultures were not AMR. This aligns with our objective to forecast the
initial AMR infection in patients.

Figure 3.10 presents a set of histograms representing the specific germ detection frequency
ratio in cultures. These cultures are taken before developing an AMR culture or before ICU
discharge in non-AMR patients across 14 time steps. The data is segregated into AMR (repre-
sented by blue bars) and non-AMR (gray bars). Figures 3.10 (a), (b), and (f) show a pattern of
germ detection exclusively at the beginning of the hospital stay for AMR patients. This obser-
vation suggests a probable acquisition of pathogens such as Acinetobacter, Enterobacter, and
Stenotrophomonas by AMR patients before their ICU admission, possibly from other clinical
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departments. Figure 3.10 (c) shows a higher frequency of Enterococcus in AMR patients’ cul-
tures, especially during the early and middle phases of their ICU stay, as opposed to non-AMR
patients. Contrasting, Figure 3.10 (d) reveals a consistent pattern, with no significant change
over time, in the prevalence of Pseudomonas, more frequently found in AMR patients’ cultures.
Figure 3.10 (e) highlights a tendency for Staphylococcus to be more commonly found in the
initial stages of AMR patients’ hospitalization. Finally, Figure 3.10 (g) shows the emergence of
various germs in cultures, with both AMR and non-AMR patients demonstrating similar ratios
of germ presence throughout the observed time frame.
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Figure 3.10: Histograms representing the ratio of specific germ detection frequency in
previous cultures for: (a) Acinetobacter (b) Enterobacter; (c) Enterococcus; d) Pseudomonas;
e) Staphylococcus; f) Stenotrophomonas; and g) other types of germs. Blue bars represent the

cultures of AMR patients, and gray ones represent the cultures of non-AMR patients.

Temporal environmental features

We capture both the occupancy of the ICU and the antimicrobials administered to other
patients in the ICU (referred to as ’neighbors’) during the same periods as the patient under
study. These features are crucial to understanding the patient’s health status being examined.
By considering other patients’ conditions sharing the same clinical environment, we gain a
comprehensive perspective of the ICU’s dynamics and its impact on individual patients.
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A total of 17 numeric variables were generated to characterize the ICU occupancy and
antibiotic pressure. These variables include the total number of patients in the unit at any given
time, indicating the unit’s occupancy and potential workload for healthcare staff. Additionally,
the number of patients/neighbors with AMR is specifically noted, reflecting the potential risk
of cross-infection and the overall burden of AMR pathogens within the unit. Furthermore, the
dataset records the use of the 15 different antibiotic families administered to these neighboring
patients. This information is crucial as it sheds light on the spectrum of antimicrobial treatments
used around the patient under study. These features help in understanding the potential for AMR
development within the ICU and can provide insights into the prevailing microbial trends and
challenges within the unit.

By integrating these temporal environmental features into the dataset, researchers and health-
care professionals can comprehensively understand the factors influencing patient health in the
ICU. This includes not only the direct medical interventions and conditions of individual pa-
tients but also the collective impact of the surrounding clinical environment. Such an approach
can lead to more informed and effective strategies for infection control, resource allocation,
and patient care in these critical settings. The first step to get that information is to study the
distributions of the features by an exploratory data analysis.

We start the exploratory data analysis of these features by studying the quantity and charac-
teristics of patients’ neighbors and AMR neighbors in the ICU, as detailed in Table 3.2. These
numerical variables initially displayed similar distributions for AMR and non-AMR patients.
Temporal dynamics were subsequently introduced, as shown in Figure 3.11 through boxplots
spanning a 14-day timeline. AMR patient information is depicted in dark blue, while non-
AMR information is in gray. In Figures 3.11 (a) and (b), the spread and median values suggest
a relatively stable number of neighbors throughout the 14 days, with no significant outliers or
day-to-day variability. This could imply a consistent admission rate in the ICU. However, Fig-
ures 3.11 (c) and (d), focused on AMR neighbors, show a much lower count and less variation,
indicating that AMR cases are less frequent than the overall patient count. The day 0 value in
Figure 3.11 (c) suggests that new AMR patients may have a lower likelihood of having an AMR
neighbor upon admission, or it could be an outlier.

In conclusion, while the general ICU population around each patient remains consistent,
the AMR population is notably lower and does not follow the same distribution. These visu-
alizations underscore the importance of monitoring overall neighbor counts and AMR-specific
neighbor counts to manage infection control in a hospital setting.

We also studied the antibiotics administered to the patient’s neighbors in the ICU. The
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Feature Statistic Total Patients AMR patients Non-AMR patients

# of neighbors

Mean 8.75 9.13 8.68
Median 7.00 8.00 7.00

σ 2.35 2.36 2.34
Minimum 0.00 0.00 0.00
Maximum 15.00 15.00 15.00

# of AMR-neighbors

Mean 0.80 0.93 0.78
Median 0.00 1.00 0.00

σ 1.09 1.19 1.04
Minimum 0.00 0.00 0.00
Maximum 8.00 7.00 8.00

Table 3.2: Statistics for the number of neighbors and the number of AMR-neighbors within a
14-time-step window.

heatmaps shown in Figure 3.12 show the drug intake in the ICU, comparing the consump-
tion patterns of neighboring patients with and without AMR over a 14-day period. Figure 3.12
(a) shows the drug intake of the neighbors of non-AMR patients, and Figure 3.12 (b) presents
the drug intake of the neighbors of AMR patients, revealing a heterogeneous pattern of med-
ication use, suggesting that treatments are highly tailored to the individual conditions of each
patient. They also show that certain medications are becoming more or less prevalent over time,
possibly indicating common changes in treatment approaches in response to patients’ changing
health situations.

Figure 3.12 (c) highlights the differential impact of AMR on medication strategies by con-
trasting the data from (a) and (b). This figure reveals positive values indicating increased an-
tibiotic use among neighbors of AMR patients, thereby reflecting a higher usage of antibiotics
in the ICU when AMR patients were admitted.

Additionally, we used boxplots (see Figure 3.13) to analyze the usage of antibiotics from a
numerical point of view. These plots effectively demonstrate the variation in antibiotic usage.
A closer examination of Figures 3.13 (a) and (b) reveals comparable patterns in the usage of all
antibiotics under consideration. Notably, there is a consistently higher median usage of antibi-
otics like CAR and PAP, suggesting a more intensive treatment regimen of those antibiotics in
the ICU under study.

Following the database presentation, it should be noted that it will be used in Chapters 4
and 5, which will also go into depth on the specific modeling that was done to carry out the
particular experiments.
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Figure 3.11: Boxplot of number of (a) neighbors of AMR patients; (b) neighbors of non-AMR
patients; (c) AMR neighbors of AMR patients; (d) AMR neighbors of non-AMR patients.

3.2 COVID-19 Dataset

In the present dissertation, a dataset was constructed to examine the EHR of 97 patients diag-
nosed with COVID-19 who were admitted to the ICU at the UHF. The data includes hospital-
izations occurring between March 5, 2020, and July 15, 2020, with all patients having tested
positive1 for COVID-19. 39 patients (40.2%) died in this unit, and 58 patients (59.8%) survived.

The dataset incorporates diverse EHR features clinically chosen by UHF’s medical staff.

1Tests were based on nasopharyngeal samples and used nucleic acid transcription-mediated amplification
SARS-CoV-2 assay (Procleix® assay in Procleix Panther® system, Grifols Diagnostic Solutions Inc., San Diego,
CA).
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Figure 3.12: Heatmaps representing the percentage of neighbors taking each family of
antibiotics over time for (a) AMR patients, (b) non-AMR patients, and (c) the comparison

between AMR and non-AMR groups. Rows represent antibiotic families, and columns
represent time steps.
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Figure 3.13: Boxplot with the drug intake of neighbors of AMR patients represented in the left
panel, and (b) AMR neighbors of non-AMR patients represented in the right panel.

These features include four static variables: demographics, comorbidities, prior regular medi-
cation, and initial symptoms. Additionally, dynamic variables concerning drug administration
during hospitalization are included. A schematic representation of this data for an individual
patient is provided in Fig. 3.14. Demographics include age, gender, and the SAPS-3. Comor-
bidities related to high mortality, such as - smoking, obesity, diabetes, hypertension, chronic
obstructive pulmonary disease (COPD), hypothyroidism, HIV, heart disease, transplantation,
metastatic cancer, and blood cancer - are included. Pre-infection regular medications cover
angiotensin-converting-enzyme inhibitors (AC:R), angiotensin II receptor blocker (AR:R), in-
sulin (IN:R), corticosteroids (CO:R), and immunosuppressants (IM:R). Recorded symptoms
before hospital admission include fever, cough, diarrhea, and dyspnea.

Table 3.3 shows statistics of the previously presented features. Numeric features (age and
SAPS-3) are expressed as mean ± standard deviation. Binary features are quantified by patient
counts (with percentages in brackets) where the feature is present. The initial row details the
total, deceased, and surviving patient counts. A notable observation among non-survivors is
the elevated incidence of smoking and heart disease comorbidities, critical as many developed
acute respiratory distress syndrome. Also, symptoms like dyspnea, diarrhea, and cough were
more prevalent in the deceased than in the surviving patients.

We follow this section by examining the drug administration for COVID-19 patients, focus-
ing on daily patterns over 24-hour cycles. We use MTS to track the administration of several
specific drugs at daily intervals. For each 24-hours, we record whether patients received any of
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Demographics

Age: 64

Gender: Female

SAPS-3 score: 46
Comorbidities

Obesity
Previous Medication

ACE Inhibitors
Symptoms

Cough
Beginning of Emergency Hospital   ICU

Symptoms           department admission                           admission                    admission

.

.

.

Dynamic VariablesStatic Variables

Time

Figure 3.14: Description of the data available for a particular patient.

the following drugs: anakinra (AN:D), azithromycin (AZ:D), baricitinib (BA:D), chloroquine
(CH:D), corticosteroid (CO:D), human immunoglobulin (HU:D), hydroxychloroquine (HY:D),
imatinib (IM:D), interferon beta-1b (IN:D), lopinavir/ritonavir (LO:D), remdesivir (RE:D), and
tocilizumab (TO:D). These drugs can be grouped into immunosuppressors (anakinra, barici-
tinib, and tocilizumab); antivirals (lopinavir/ritonavir and remdesevir); antimalarials licensed
by the Food and Drug Administration during the first wave of the pandemic (chloroquine and
hydroxychloroquine); corticosteroids (dexamethasone); antitumor drug (imatinib); immunos-
timulant (interferon beta-1b); and macrolide antibiotic (azithromycin).

The heatmaps presented in Figure 3.15 provide a comprehensive view of a 30-day treatment
period for patients. Subfigures (a) and (b) begin with the onset of symptoms and extend to
the 29th day. Each heatmap row represents a different drug administered, with the final row
indicating the daily patient count. The data reveals that a significant portion of patients are
hospitalized for less than three weeks. By the 29th day (t = 29), many have either succumbed
to their condition or been released from the hospital, resulting in fewer ICU patients. Heatmaps
also show significant differences in medication usage — corticosteroids, hydroxychloroquine,
and lopinavir/ritonavir — between deceased and non-deceased patients. As pointed out earlier,
it is apparent that the number of active patients decreases with time. The first drops (days 12 to
18) are likely due to patients who die, while later reductions can be attributed to patients who
die and those who recover and are discharged to the ICU.

Subfigures 3.15 (c)-(j) offers a detailed view of the drug treatments given at various stages
of hospitalization for both patients who survived and those who did not. Here, t = 0 marks
the start of each interval, reflected in the corresponding heatmaps. More concretely, subfigure
(c) and (d) specifically illustrate the medication regimes from symptom onset to emergency
department admission for both deceased and non-deceased patients. Survived patients typ-
ically experienced a longer duration between symptom onset and hospital admission. Even
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Abbreviation All Pat. Dec. Pat. Non-Dec. Pat.
Demographic

Gender GE:S 66 (68.0%) 28 (71.8%) 38 (65.5%)
Age AG:S 62.6 ± 8.8 64.5 ± 7.5 61.4 ± 9.3

SAPS-3 SA:S 54.1 ± 11.1 57.7 ± 9.9 51.8 ± 11.3
Comorbidities

Diabetes DI:S 29 (29.9%) 10 (25.6%) 19 (32.8%)
Smoking SM:S 13 (13.4%) 8 (20.5%) 5 (8.6%)

Metastatic cancer MC:S 6 (6.2%) 2 (5.1%) 4 (6.9%)
Hypertension HY:S 49 (50.5%) 19 (48.7%) 30 (51.7%)
Transplanted TR:S 1 (1.0%) 1 (2.5%) 0 (0.0%)
Hem. Cancer HC:S 4 (4.1%) 4 (10.3%) 0 (0.0%)

Obesity OB:S 32 (33.0%) 14 (35.9%) 18 (31.0%)
Hypothyroidism HP:S 13 (13.4%) 5 (12.8%) 8 (13.8%)

COPD CO:S 18 (18.6%) 7 (17.9%) 11 (18.9%)
Heart disease HD:S 20 (20.6%) 13 (33.3 %) 7 (12.1%)

HIV HI:S 2 (2.1%) 0 (0.0%) 2 (3.4%)
None / Others NC:S 18 (18.6%) 6 (15.4%) 12 (20.7%)

Symptoms
Cough CU:S 68 (70.1%) 29 (74.3%) 39 (67.2%)
Fever FE:S 80 (82.5%) 31 (79.5%) 49 (84.5%)

Dyspnea DY:S 61 (62.9%) 28 (71.8%) 33 (56.9%)
Diarrhoea DR:S 20 (20.6%) 11 (28.2%) 9 (15.5%)

None / Others NS:S 4 (4.1%) 1 (2.6%) 3 (5.2%)
Regular Medication

ARA2 AR:R 13 (13.4%) 8 (20.5%) 5 (8.6%)
ACE inhibitors AC:R 27 (27.8%) 7 (18.0%) 20 (34.5%)
Corticosteroid CO:R 5 (5.2%) 3 (7.7%) 2 (3.4%)

Insulin IN:R 8 (8.2%) 3 (7.7%) 5 (8.6%)
Immunosuppressants IM:R 7 (7.2%) 2 (5.1%) 5 (8.6%)

None / Others NM:R 51 (52.6%) 21 (53.8%) 30 (51.7%)

Table 3.3: Statistics and abbreviations for demographic variables, comorbidities, regular
medication, and symptoms across all patients, deceased patients, and non-deceased patients.

For numeric features, the mean ±standard deviation is provided, while for binary features, the
count of patients and percentage (in parentheses) are displayed.

though only a few patients received medication in this phase, two clear trends stand out: 1) non-
deceased patients often received corticosteroids, and 2) the extended use of hydroxychloroquine
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and lopinavir/ritonavir was noticeable. Subfigures 3.15 (e)-(f) show the medications given dur-
ing the emergency department phase. Here, the volume of drug administration is substantially
higher than during the initial "Symptoms Interval", despite patients spending less time in the
emergency department. The drug treatments administered during the hospitalization phase are
shown in Figs.3.15(g)-(h). Patients continue to receive corticosteroids, hydroxychloroquine,
and lopinavir/ritonavir, but the prescription of chloroquine drops off. This reflects a shift in
treatment strategies early in the pandemic, with hydroxychloroquine gradually replacing chloro-
quine. Finally, subfigures 3.15 (i)-(j) illustrate the pattern of drug administration during the
"ICU Stay Interval". The diversity and frequency of medication use increase significantly, indi-
cating more aggressive treatment strategies for critically ill patients. A wide variety of drugs, in-
cluding antibiotics like anakinra, baricitinib, imatinib, and tocilizumab, are used. Interestingly,
chloroquine is absent in ICU treatments, likely because it was only used in the pandemic’s early
stages. Notably, patients who did not survive tended to receive more intensive drug treatments
such as anakinra, corticosteroids, hydroxychloroquine, and lopinavir/ritonavir, suggesting a link
between the severity of the illness and the intensity of the treatment.
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Figure 3.15: Heatmaps illustrating drug treatment patterns during different intervals: (a)-(b)
from symptom onset to discharge within the first 30 days; (c)-(d) during the "Symptoms

Interval"; (e)-(f) within the "Emergency-Department Interval"; (g)-(h) during the "Hospital
Stay Interval"; and (i)-(j) within the "ICU Stay Interval" for both deceased patients (left

panels) and non-deceased patients (right panels). In each heatmap, t=0 marks the beginning of
the corresponding interval. The bottom row displays the number of patients per day, while the

remaining cells show the percentage of patients receiving the indicated drug relative to the
total number of patients on the specified day.



Chapter 4

Interpretable Data-Driven Modeling for
Early Prediction of Antimicrobial
Multidrug Resistance

4.1 Introduction

This chapter introduces methodologies that integrate interpretable DL with signal processing to
predict AMR early using MTS data. We have employed trustworthy models for AMR predic-
tion to address the critical need for both accuracy and interpretability in ICUs. These models
integrate FS with interpretable RNNs developed to handle irregular clinical MTS, including
patient treatments and ICU environmental factors.

Considering the challenge of data imbalance in ICUs, where AMR cases are infrequent, our
models incorporate novel techniques to balance the data. We have also used advanced solutions
for handling missing values in MTS. Additionally, we enhance our models with SHAP-based
post-hoc interpretability, which has received positive validation from clinicians for its under-
standability and trustworthiness [107]. SHAP helps clarify how different features interact in
the model, boosting clinician confidence and supporting better decision-making in controlling
AMR in ICUs.

41
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4.2 Methods

The methods section of this study is designed to describe the approaches used to analyze and use
our data. Subsection 4.2.1 describes the criteria and techniques employed to identify the most
relevant variables for our analysis. Following this, Subsection 4.2.2 outlines the methodologies
we applied to handle MTS, emphasizing the use of advanced DL techniques to ensure robust
modeling. Lastly, Subsection 4.2.3 explains how surrogate models were utilized to extract
meaningful insights from the complex DL models, enhancing the interpretability of the results.
These subsections provide a detailed view of the framework employed and support our research
findings.

4.2.1 Feature Selection

The use of FS techniques is a useful strategy in ML, especially when working with limited
patient datasets. In medical applications, such as disease diagnosis, the volume of patient data
available for model training can often be limited due to various factors including privacy con-
cerns, the rarity of certain conditions, or logistical challenges in data collection [108]. In these
contexts, FS techniques play an indispensable role.

FS methods aid in reducing the input dimensions by identifying and retaining the most
relevant features from the dataset. This process is critical because high-dimensional data can
lead to model overfitting [109], where the model becomes excessively adapted to the training
data, losing its ability to generalize to new, unseen data [110]. By reducing the number of input
features, FS not only simplifies the computational requirements but also enhances the model’s
generalizability. This is particularly important in medical applications where models need to
perform accurately and reliably across diverse patient populations and conditions [111].

Moreover, the dimensionality reduction achieved through FS does not necessarily imply
a significant loss of information. Advanced FS techniques are designed to preserve the most
informative aspects of the data, ensuring that the essential characteristics that contribute to
accurate predictions are retained. This aspect is crucial in medical settings where every piece
of data can be vital for accurate diagnosis and treatment planning.

In this chapter, three FS techniques have been implemented, including Conditional Mu-
tual Information (CMI), Group Least Absolute Shrinkage Selection Operator (GLASSO), and
Confidence Intervals with Bootstrap (CIB).

Conditional Mutual Information
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Mutual information, a technique that originated from information theory, is increasingly
recognized as a powerful tool in data analysis, particularly in FS and ML [112]. Fundamentally,
MI quantifies the amount of information that one variable holds about another, thereby measur-
ing the degree of dependence between them [113, 114]. This metric, captures both linear and
non-linear relationships, making it a versatile tool for analyzing complex datasets. Moreover,
mutual information’s non-parametric nature makes it applicable to a wide range of data types,
including continuous, discrete, and mixed features. Overall, mutual information serves as a
robust tool for uncovering intricate relationships within data, enhancing the interpretability and
performance of ML models.

In this dissertation, the strategy is to apply a feature selection (FS) scheme that maximizes
the Conditional Mutual Information (CMI) between the chosen features and the target label
y. The notion of CMI stems from the principles of Shannon entropy. To be mathematically
precise, with X denoting the set of values the (discrete) random variable X can take, the en-
tropy of X is defined as H(X) = −∑x∈X p(x)log(p(x)), where p(x) is Pr{X = x}. When
two random variables (X and Y ) are present, two different generalizations of entropy can be de-
fined. One is the joint entropy, which is defined as H(X ,Y ) =−∑x∈X ∑y∈Y p(x,y)log(p(x,y)),
with p(x,y) = Pr{X = x,Y = y}. The second one, which is the most relevant one in the context
of FS, is conditional entropy, which is defined as

H(X |Y ) =− ∑
x∈X

∑
y∈Y

p(x,y)log(p(x|y)), (4.1)

with p(y|x) = Pr{Y = y|X = x} = Pr{X = x,Y = y}/Pr{X = x}. The MI between X and Y

measures the shared information between both variables, and is expressed as

I(X ,Y ) =H(X)−H(X |Y ) =H(Y )−H(Y |X) = I(Y,X). (4.2)

More specifically, the MI above measures how much information the variable X contains about
variable Y .

With all this notation and hand, we are ready to define the CMI as the expected value of the
MI of two random variables given a third random variable [115, 116], so that

I(X ,Y |Z) =H(X ,Z)−H(Y |Z)−H(X ,Y,Z)− I(Z). (4.3)

CMI is a widely-used metric for carrying out FS. The goal of CMI-based FS is to obtain the
set D ′ ⊆ {1,2, ...,D} of D′ features that maximize the CMI between the reduced input XD ′
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and the associated label y. To avoid the extremely complex process of solving the optimization
problem in its full form, we use a simpler, step-by-step method. In this method, we employ
an iterative unidimensional optimization of the CMI metric, selecting the most informative
feature that is not already included in D ′ at each step. Additionally, when calculating the value
of I
(
y,xd

∣∣{xd′}d′∈D ′
)

from the data, it is crucial to consider that the variables xd are multi-
dimensional. This means that X is the Cartesian product of the value sets for each of the
entries of xd′

).

Group LASSO

The Least Absolute Shrinkage and Selection Operator (LASSO) is a statistical method for
regularizing regression and classification problems, notably performing FS as detailed in Fonti’s
2017 study [117]. At its core, LASSO implements a regularization process by introducing a
penalty term to the traditional least squares method. This penalty is proportional to the abso-
lute value of the regression coefficients, compelling the model to compress some coefficients
towards zero. Consequently, this compression effect not only aids in reducing model complex-
ity but also inherently performs FS. The features corresponding to the coefficients shrunk to
zero are effectively eliminated from the model, simplifying the feature space and potentially
improving model performance.

LASSO’s efficacy in FS lies in its capacity to handle high-dimensional data, where the
number of features significantly exceeds the number of observations [117]. In such scenarios,
traditional regression models often suffer from overfitting, losing predictive power. LASSO
counters this by selectively retaining features that contribute most significantly to the model’s
predictive accuracy while discarding redundant or irrelevant features. Moreover, the technique’s
flexibility allows it to be adapted across various domains, including finance, biostatistics, and
ML [118, 119]. Having established the fundamental principles behind LASSO’s effectiveness
in FS, especially in high-dimensional data scenarios, let’s delve into how LASSO identifies the
most informative features through its optimization process.

Let’s initially concentrate on static variables zi ∈RG and that all the entries of zi are numer-
ical. The objective of LASSO is then to determine the optimal value of α ∈RG to minimize the
cost

min
α∈RG

1
2

I

∑
i=1

(
yi − z⊤i α

)2
+λ

G

∑
g=1

|αg|, (4.4)

where ∥α∥1 = ∑
D
d=1 |αd| is the ℓ1 norm of α , and λ > 0 serves as a regularization parameter.

The cost function integrates a data-fitting term alongside a regularization term that penalizes
the coefficients, effectively reducing some to zero. LASSO will automatically select the most
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informative features by minimizing the cost function while eliminating those that are redundant
or unnecesary. Consequently, the idea of using LASSO for FS involves fitting the model and
then considering only the features g with a coefficient αg different from 0.

The LASSO technique is applicable to static data; however, in this dissertation, we also
address MTS, necessitating a specialized variant of LASSO designed for handling matrices,
known as Group LASSO [120, 121]. This modification is essential for dealing with grouped
input features, where each group is either retained entirely as relevant or completely discarded.
Initially, we define vectors αd = [αd

1 ,α
d
2 , ...,α

d
I ], each corresponding to the T time steps recorded

for feature d. With D such vectors in total, we aim to determine DT coefficients. The optimal
regularized regressor for MTS variables is obtained by solving

min
{αd∈RT }D

d=1

1
2

I

∑
i=1

(
yi −

D

∑
d=1

(xd
i )

⊤
α

d

)2

+λ

D

∑
d=1

∥α
d∥2, (4.5)

where we recall that xd
i is the vector collecting the entries of the d-th row of X̄i, and ∥αd∥2 =

((αd
1 )

2 + ...+(αd
W )2)1/2 ≥ 0 is the ℓ2 norm of αd . The optimization process described aligns

with that in Eq. (4.4), but adjusted to accommodate the multidimensional input by replacing
|αd| with ∥αd∥2. This way, if the optimal solution sets αd

∗ = [0,0, ...,0]⊤, then the d-th row
of matrices {X̄i}I

i=1 is not selected [120]. By incorporating a binary cross entropy cost and
employing a logistic regressor, the formulations in (4.4) and (4.5) can be modified to address
classification challenges.

Confidence Intervals with Bootstrap

Bootstrap resampling, a non-parametric statistical technique, plays a pivotal role in esti-
mating the distribution of a statistic, such as the mean, from a given sample [122, 123]. This
method involves random sampling with replacement, as detailed by Hastie et al. (2009) [124],
simulating the process of drawing multiple samples from the same population. By resampling
from the original dataset repeatedly, Bootstrap generates numerous simulated samples, enabling
the estimation of a statistic’s distribution. This approach is invaluable for small sample sizes or
when the underlying population distribution is unknown.

Moreover, Bootstrap resampling facilitates the computation of the standard error and the
Confidence Interval (CI) for the estimated statistic, providing a measure of precision and reli-
ability of the estimate [125]. The CI provides a range that likely contains the true parameter,
offering a numerical indication of how uncertain the estimated statistic is.

In the context of data science and FS, the flexibility of the Bootstrap method becomes par-
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ticularly valuable [126]. One of its applications is in hypothesis testing, where it is employed to
assess the importance of features, especially in scenarios where traditional assumptions about
data distribution (e.g., normality) may not hold. Bootstrap resampling can test hypotheses on
feature importance or relevance without relying on parametric assumptions about the data dis-
tribution. This is particularly beneficial when dealing with complex or high-dimensional data
where the underlying distributions are either intractable or unknown. The non-parametric na-
ture of Bootstrap allows it to be applied across a wide range of data types and structures, making
it a versatile tool in the FS process.

Consider two populations, Sd representing positive patients and Snd representing negative
ones. Our objective is to ascertain if the difference between their mean values, µd for Sd and µnd

for Snd , is statistically significant. Instead of directly calculating ∆P = µd −µnd and comparing
this value to a predetermined threshold, we employ a resampling bootstrap method. Firstable,
we resample both Sd and Snd populations R times with replacement. This process yields R new
sets for each population, represented as {S(r)d }R

r=1 and {S(r)nd }
R
r=1. Following the resampling, the

mean of each variable for every resampled set is computed, resulting in R mean values each for
both {µ

(r)
d }R

r=1 and {µ
(r)
nd }

R
r=1. The next step involves calculating the difference between the

means for each resample, generating a series of differences ∆P(r) = µ
(r)
d −µ

(r)
nd ∀r = 1, · · · ,R.

Using these differences, a histogram of ∆P is constructed, from which the 95% CI for ∆P,
denoted as CI∆P is empirically determined. The final stage of the analysis involves interpreting
the results within the framework of hypothesis testing. If the value 0 is within the computed
CI∆P, it indicates that there is no significant difference between the mean values of the two
populations, thereby supporting the null hypothesis H0. Conversely, if 0 does not fall within
CI∆P, it suggests a significant difference between the means, thereby endorsing the alternative
hypothesis H1, which posits that the variable in question is relevant and informative.

Enhancing Classical Feature Selection with a Multi-Method Voting Strategy

In predictive models, selecting relevant variables is critical for the development of robust and
accurate models. Traditionally, this process relies on a single method, often leading to biased
or suboptimal selections due to the limitations inherent in any technique [127]. To improve
this process, a multi-method approach, combined with a voting strategy has gained popularity.
This approach involves using multiple FS techniques, each applied independently to the dataset.
The key is in the aggregation of results: each technique ’votes’ for or against the inclusion of
each feature. Variables that receive votes above a predetermined threshold are then selected as
relevant.

The advantages of this strategy are manifold [128]: i) It significantly reduces the bias that
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might be present in a single-method approach, as it integrates multiple perspectives; ii) the
consensus-driven nature of the voting strategy ensures that only variables with strong evidence
across different methods are chosen, leading to increased stability in model performance; and
iii) often identifies a more informative subset of variables, enhancing the model’s predictive
accuracy. Additionally, it is flexible and adaptable to various types of data and modeling objec-
tives.

Empirical studies have supported the effectiveness of this approach, demonstrating that a
multi-method FS with a voting strategy can lead to more robust and accurate predictive mod-
els [129]. This approach presents a compelling alternative to traditional methods, offering a
balanced and comprehensive pathway to identifying the most relevant predictors for robust
modeling.

4.2.2 Processing and Modeling of Time Series Using Deep Learning

In the realm of statistical analysis, MTS presents a unique challenge due to its temporal di-
mensionality and potential non-stationarity. Traditional statistical models, while effective for
certain applications, often fail to capture the complex, dynamic relationships inherent in time-
dependent data. This shortcoming has led to the investigation of more sophisticated computing
methods, particularly in the area of DL. These techniques, a subset of ML, have garnered consid-
erable attention for their ability to process and learn from vast amounts of data. Its applications
in time series analysis are particularly promising, offering a paradigm shift in how we approach,
model, and interpret temporally structured data.

The superiority of DL models in handling time series data lies in their inherent architecture,
which allows for the learning of temporal dependencies and patterns that traditional methods
might overlook. These models can adaptively learn from the temporal structure of data, making
them particularly adept at forecasting, anomaly detection, and feature extraction in time series
datasets.

This subsection of the dissertation delves into the application of various DL architectures
in time series analysis, each offering unique advantages and considerations: the Multilayer
Perceptron (MLP), the RNNs, the Long Short-Term Memory (LSTM), and the Gated Recurrent
Unit (GRU). Also, we present methodologies to deal with the complexity of MTS using the
previous methods listed.

Multilayer Perceptron

The Multilayer Perceptron is a type of feed-forward neural network (NN) characterized by
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its layered structure [130]. It typically includes three distinct types of layers: an input layer,
one or more hidden layers, and an output layer. The input layer receives the initial data, which
is then processed through subsequent hidden layers before reaching the output layer. The key
computational unit in these layers is the neuron or node.

Each neuron in the hidden layers computes an output using a scalar non-linear activation
function, which transforms a weighted sum of its inputs. The input to each neuron is a linear
combination of the outputs from the preceding layer’s neurons, represented as ∑

G
g=1 wgzg + b,

where wg denotes the weight associated with the g-th neuron in the previous layer, zg is the
output of the g-th neuron, and b is the bias term. The non-linear function could be a Sigmoid,
Hyperbolic Tangent, or Rectified Linear Unit, among others [131].

During the learning process, the weights and biases are adjusted to minimize a predefined
cost function, which measures the difference between the network’s prediction and the actual
target values. This optimization is usually performed using stochastic gradient descent or its
variants like Adam and RMSprop [132, 133]. The cost function J(w,b) is generally non-convex,
and the gradient descent update rule can be expressed as wnew = wold −η∇J(w,b), where η is
the learning rate and ∇J(w,b) is the gradient of the cost function for the weights and biases.

MLPs are fully connected networks, meaning each neuron in one layer is connected to all
neurons in the subsequent layer. This comprehensive connectivity allows MLPs to capture
complex patterns and relationships in data. Theoretically, MLPs are universal approximators,
as they can approximate any continuous function to a desired degree of accuracy given a suf-
ficient number of neurons and layers [134]. This property is formally expressed in the Univer-
sal Approximation Theorem, which underscores the potential of MLPs in modeling non-linear
mappings between input and output spaces, making them particularly suitable for a wide range
of tasks, from regression to classification [135].

Overall, the MLP’s architecture, consisting of multiple layers of neurons with non-linear
activation functions, provides a powerful framework for learning from data. Its ability to learn
non-linear relationships and its flexibility in architecture design make it a cornerstone model in
the field of NNs and DL.
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Figure 4.1: MLP architecture classic representation.

RNN Based Architectures

RNNs are a class of NNs designed for time series data, as they utilize internal states to
maintain an "artificial memory" of previous inputs [136]. They stand apart from MLPs in their
unique ability to form cyclical connections among neurons, a feature illustrated in Figure 4.2.
In contrast to MLPs, which are limited to static mappings from input to output vectors, RNNs
generate outputs that consider the entire history of previous inputs. This advanced functionality
is enabled by the presence of internal cycles within the network’s neurons, functioning as a
form of ’artificial memory.’ This memory component is critical, enabling the RNN to preserve
information from past inputs in its internal state, thereby enhancing its sequential data process-
ing capabilities. The main problem in large RNN networks is how the effect of an input on the
internal layers, and eventually on the output of the network, can greatly decrease or increase
as it goes through the network’s recurrent connections. This phenomenon, widely recognized
as the vanishing gradient problem, severely restricts the network’s ability to effectively process
long sequences of data. The vanishing gradient issue arises from the inherent properties of the
backpropagation algorithm used in neural networks. As this algorithm propagates errors back
through the network’s layers over lengthy sequences, the gradients responsible for updating
network weights either shrink to negligible levels (vanish) or grow excessively large (explode).
This results in the network being unable to learn long-range dependencies effectively, and ex-
periencing unstable, erratic training in the latter.



50
CHAPTER 4. INTERPRETABLE DATA-DRIVEN MODELING FOR EARLY PREDICTION

OF ANTIMICROBIAL MULTIDRUG RESISTANCE

Figure 4.2: Schema of RNN: A. Common neural network unfold forms (top) and schema
(bottom); B. An example of an RNN unfold form (top) and schema (bottom). One-time step

delay is represented by the red square. Figure extracted from [4].

Long Short Term Memory Networks

LSTMs are an advanced type of RNNs designed specifically to process sequential data,
playing a pivotal role in DL, particularly for time series analysis [137]. Developed to overcome
the limitations of traditional RNNs, LSTMs are exceptionally well-suited for making predic-
tions based on MTS, which makes them invaluable in various applications including speech
recognition, language modeling, and even in the medical field for patient data analysis [138].

The effectiveness of LSTMs resides in their unique architecture that allows them to remem-
ber long-term dependencies in data sequences. As it was previously commented, traditional
RNNs struggle with the vanishing gradient problem, where the network becomes unable to
learn and retain information from earlier inputs as the sequence progresses [136]. LSTMs ad-
dress this issue with their distinctive memory cell structure, which consists of a cell state (Ct)
and three gates: the input gate (it), the forget gate ( f t), and the output gate (ot) [139]. Central to
LSTM functionality is the hidden state (ht), a component of the LSTM cell that interacts with
these to equip the network with short-term memory. The hidden state works together with the
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cell state, that allows the network to remember or forget information over long periods. Both of
them contribute to the cell’s decision-making process about what to store, discard, and output at
each time step, thereby effectively capturing temporal information that traditional RNNs often
miss.

The forget gate layer is responsible for determining which information from previous states
should be discarded. To get useful information from previous states the forget gate layer per-
forms linear combination f t = w(t,D)

f [ht−1 ∗Xt ]+b f , where ht−1 is the output from the previous

state, Xt the current input, and w(t,D)
f and b f internal weights of the forget layer. This combi-

nation passes through a sigmoid activation, generating a mask that modulates the previous cell
state Ct−1 by element-wise multiplication.

The input gate layer selects information from the current input Xt to update the cell state.
This gate operates through two mechanisms: one generating a candidate vector C̃t =w(t,D)

c [ht−1∗
Xt ]+bc, and the other, it = w(t,D)

i [ht−1 ∗Xt ]+bi, that determines how much of this new infor-
mation will be used. As with the previous layer w(t,D)

c , w(t,D)
i , bc, and bi are internal weights

of the input gate layer. The product of it and C̃t is then added to the modified previous state,
C̃t−1 ∗ it .

The output gate layer computes the neuron’s final output, a filtered version of the cell state.
This process involves two activation functions. Initially, a sigmoid function selects portions of
the cell state to include in the output, denoted as ot . Subsequently, the cell state, processed
through a tanh function, is element-wise multiplied with ot , yielding the final output ht .

In healthcare and clinical data analysis, LSTMs have shown significant promise. They
are used to analyze patient data over time, predict disease progression, and assist in decision-
making for treatment strategies. For instance, LSTMs can process a patient’s medical history
and provide insights into their future health risks or the likelihood of disease recurrence [140].
This capability is valuable in the context of chronic diseases or conditions that require ongoing
monitoring and analysis [141].

Moreover, LSTMs’ ability to handle MTS data is a significant advantage in clinical settings.
They can analyze data from multiple sources – such as lab results, vital signs, and patient-
reported symptoms – to create a comprehensive view of a patient’s health status over time [142].
This multi-sourced analysis can lead to more accurate diagnoses, personalized treatment plans,
and better patient outcomes.

In terms of interpretability, a critical aspect in healthcare, LSTMs offer both challenges and
opportunities [143]. While their complex architecture can make understanding their decision-
making process difficult, various techniques have been developed to interpret LSTM models.
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Techniques such as attention mechanisms can highlight parts of the input sequence that are
most influential in the model’s predictions, providing valuable insights into how the model is
processing the data.

In this thesis, we also explore Bidirectional Long Short-Term Memory (Bi-LSTM) net-
works, a variant of RNN architectures, as delineated in Schuster and Paliwal [144]. Bi-LSTMs
employ a dual LSTM structure, with the first LSTM processing the MTS in a forward sequence
and the second in reverse. This architecture mirrors classical time-varying stochastic process
smoothing methods by utilizing past and future data for enhanced estimation accuracy. How-
ever, it’s noteworthy that the increased parameter count in Bi-LSTMs necessitates a substantial
volume of training data to capitalize on their potential performance advantages.

Gated Recurrent Unit

GRUs are another form of RNNs, similar to LSTMs, but with a simplified structure that
often enables faster training and efficient learning, particularly in cases where the amount of
data is limited [145]. Introduced as a variant of the LSTM, GRUs have been successfully
applied in various domains like natural language processing, speech recognition, and time series
prediction.

The key innovation in GRU’s design is the integration of the forget and input gates into a
single "update gate" [146]. This simplification reduces the complexity of the model without
significant loss in performance, especially in tasks where long-term dependencies are less crit-
ical. The update gate (zt) decides how much of the past information needs to be passed along
to the future. It functions similarly to LSTM’s forget and input gates, determining the balance
between the information transferred from previous states and new information added from the
current input [147]. Another feature of GRUs is the "reset gate" (rt), which decides how much
of the past information to forget. This gate works by modulating the impact of the previous
hidden state (ht−1) on the current state’s content. When the reset gate is close to 0, the model
effectively forgets the previously computed state, allowing the GRU to adapt rapidly to changes
in the input sequence’s pattern.

The GRU’s architecture also simplifies the process of updating the cell state. In each
timestep, the hidden state (ht) is a combination of the previous hidden state (ht−1) and a candi-
date hidden state (h̃t). The update gate controls this combination, enabling the GRU to capture
temporal dependencies effectively while mitigating the vanishing gradient problem common in
standard RNNs [136].

In practical applications, GRUs have shown substantial promise. For instance, in natural
language processing, GRUs have been utilized for tasks like language modeling and machine
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translation, demonstrating capabilities comparable to LSTMs but often with less computational
overhead [148]. Their simplified structure makes them particularly attractive for deployment
in systems where computational resources are a limiting factor. Moreover, in the healthcare
domain, GRUs offer the potential for analyzing time-sensitive patient data. While they may not
capture long-term dependencies as effectively as LSTMs, their efficiency in learning patterns
over shorter sequences can be advantageous in scenarios where rapid decision-making based on
recent data is critical [147].

Despite their simpler architecture, interpreting GRUs remains a challenge, similar to LSTMs.
Techniques such as visualization of activation patterns and attention mechanisms are often em-
ployed to gain insights into the network’s decision-making process. These methods help in
understanding the influence of different parts of the input data on the model’s predictions, en-
hancing the interpretability of the GRUs in practical applications.

Addressing Data Imbalance in Classification Models

In many binary classification models, an equal number of samples for each class is often
assumed [149]. This assumption, however, does not hold in numerous real-world scenarios,
particularly in healthcare, leading to an imbalance where one class (e.g., AMR patients) is un-
derrepresented compared to another (non-AMR patients). Such imbalances can result in mod-
els biased towards the majority class, affecting the generalization performance in the models
trained [150].

To mitigate class imbalance, various strategies have been proposed in past works [63]. This
study explores two effective methods: i) undersampling the majority class, and ii) employing
asymmetric misclassification costs. The undersampling approach involves randomly discarding
samples from the majority class to equalize the representation of both classes. In this disser-
tation, when undersampling is applied, we use the Binary Cross-Entropy (BCE) cost function
during model training [151].

The cost-sensitive method differs by assigning greater penalties to errors in the minority
class. This is achieved via the Balanced Binary Cross-Entropy (BBCE) function, an adaptation
of the standard BCE. The BBCE cost, influenced by the weight parameter β ∈ (0,1), is defined
as:

− 1
I′

I′

∑
i=1

(βyi log(ŷi)+(1−β )(1− yi) log(1− ŷi)) (4.6)

where I′ denotes the patient count in the training set. A balanced dataset leads to β = 0.5,
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reducing Eq.(4.6) to the BCE function. The value of β aligns with the proportion of majority
class samples within the total dataset, aiding in adjusting cost sensitivity according to class
representation. Following this approach, the value of β in this dissertation has been set as the
number of samples of the majority class divided by the number of total samples.

Approaches to Deal with Missing Values in Multivariate Time Series

Missing values are a prevalent issue in real-world datasets, particularly in MTS. This chal-
lenge is especially notable in clinical settings where data collection is irregular, varying over
time. Such missing values are often non-random, reflecting factors like patient health status
or healthcare provider decisions [152]. Additionally, when utilizing windowed data, there are
situations when the window is larger than the patient’s record. This requires deciding how to
fill the beginning or end of the record.

Typical methods to address missing values include zero-filling, linear interpolation, and sta-
tistical imputation [153]. Our approach, influenced by binary data characteristics and method-
ologies like those proposed by Lipton et al. [154] for RNN-based clinical data predictions,
encompasses three strategies for managing missing values in X̄i:

1. Removing: Exclusion of patients with missing data from the dataset. While this strategy
simplifies the issue, it reduces training sample size, potentially affecting generalization.
It is thus preferable in situations with a high number of training examples.

2. Zero Padding: Filling missing values with zeros, including the beginning or end of the
record. This method is particularly prevalent with binary data, where a zero value often
signifies a default state, such as the non-presence of a medical condition or absence of
medication prescription.

3. Masking: Implementing advanced ML architectures that use a masking scheme to ex-
plicitly account for missing values. This approach is compatible with RNN-based archi-
tectures like GRU, LSTM, and Bi-LSTM. We adopt a modified version where each input
sample is accompanied by a mask, indicating the positions of missing values in the input
vector [155].

4.2.3 Surrogated Models to Gain Interpretability

The field of computational modeling has made it possible to examine complex systems with
a high level of detail and precision. However, the increased complexity of these models often
makes them difficult to interpret, which is essential for their reliability and usefulness in making
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important decisions. This subsection focuses on surrogate models, a method developed to make
complex models more understandable. Surrogate models are simplified versions of complex
models that retain enough accuracy for practical use, making it easier to grasp, explain, and
forecast the workings of complex systems. This subsection explains how surrogate models are
created, used, and how effective they are, emphasizing their ability to maintain interpretability
without substantially losing predictive accuracy. Through discussing various surrogate mod-
eling techniques and their uses in different fields, this subsection highlights the importance of
making complex computational models both sophisticated and accessible, aiming to strike a
balance that aids in advancing our understanding.

SHapley Additive exPlanations

This dissertation presents a comprehensive evaluation of post-hoc interpretability methods
for DNNs, with a primary focus on SHAP, as pioneered by Lundberg et al. in their paper
[156]. SHAP’s based on cooperative game theory, specifically the allocation of Shapley values
to individual features of a dataset underscores its unique approach to model interpretability.
This approach transcends the limitations of specific model architectures, positioning SHAP as
a versatile, model-agnostic tool that can be applied to a wide range of ML models, including
the often complex and opaque DNNs.

The essence of SHAP lies in its capacity to create local explanations for model predictions,
achieved through a meticulous linear combination of binary variables. Those variables repre-
sent the presence or absence of each feature in the model. This process involves a detailed
computation where the effect of adding or removing a particular feature is observed and mea-
sured [157]. This measurement reflects the contribution of each feature to the final prediction,
akin to determining each player’s contribution to the overall outcome in a cooperative game.
This analogy is particularly apt for DNNs, as it allows for a granular analysis of how individual
features affect the model’s decision pathways [158].

One of the remarkable aspects of SHAP is its ability to provide a clear ranking of feature
importance. This ranking is not arbitrary but is derived from the computed Shapley values,
offering a quantifiable measure of each feature’s influence on model predictions [159]. Such
detailed insights are invaluable in domains where understanding the ’why’ behind a model’s de-
cision is as crucial as the decision itself. In DNNs, where layers of computations and non-linear
interactions often obscure the rationale behind outputs, SHAP’s interpretability framework is a
powerful tool for demystifying these complexities [160].

Additionally, the application of SHAP extends beyond mere academic interest. In practical
scenarios, especially in sensitive fields like healthcare or finance, where decisions have signifi-
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cant consequences, understanding the factors driving these decisions is essential. SHAP enables
this understanding by not only highlighting the influential features but also by providing a path-
way to scrutinize potentially biased or irrelevant features influencing the model. This level of
transparency is crucial for building trust in AI systems and for ensuring that decisions made by
these systems are fair, accountable, and aligned with ethical standards [98].

4.3 Experiments and Results

This section begins by outlining the specific design and procedures of the experiment. It then
presents and analyzes the results from the FS process. Next, it evaluates the accuracy of different
ML models tested in this research. The section ends with an analysis of the interpretability
attributes of the developed models.

4.3.1 Experimental Setup

The database employed in these experiments was detailed in Section 3.1; therefore, this sub-
section will focus solely on describing the specific modeling of the experiments conducted in
this chapter of the thesis. We define modeling as the set of decisions implemented to adapt the
original dataset to the experiments at hand. The data modeling process encompasses several
critical steps, such as conceptual design, logical design, and implementation.

The first decision in the modeling performed was to limit the years employed, from 2004
to 2020, inclusive, encompassing a total of 3,158 patients, with 433 identified as having AMR.
Although the dataset extended to 2022, analyses were deliberately confined to the 2020 thresh-
old, due to the significant impact of the COVID-19 pandemic on subsequent data, rendering
post-2020 records less representative for the purposes of this study. The dataset presented in
this chapter exclusively encompasses MTS data. It includes information on the medications ad-
ministered to the patient, the MV, and features associated with the patient’s neighbors. Notably,
it excludes static features and does not cover previous cultures performed on the patient under
study. The dataset comprises MTS with variable lengths, however necessitating a uniform input
size for the ML models. To address this, a windowing technique was employed. This technique
involves setting a window length, W , and defining a time interval [t ini

i , tend
i ] for each patient i,

where tend
i = t ini

i +W −1. The specific time interval varies per patient due to the asynchronous
nature of the data.

A graphical representation of the temporal windowing process (with W = 5) for two patients



4.3. EXPERIMENTS AND RESULTS 57

t (days)

ICU 

admission

24 h

𝒕𝒊
𝒆𝒏𝒅 − 4 𝒕𝒊

𝒆𝒏𝒅 − 3 𝒕𝒊
𝒆𝒏𝒅 − 𝟐 𝒕𝒊

𝒆𝒏𝒅 − 𝟏 𝒕𝒊
𝒆𝒏𝒅

0 1 1 1 1

0 0 0 1 0

… … … … …

0 0 0 0 1

𝒕𝒋
𝒊𝒏𝒊 𝒕𝒋

𝒊𝒏𝒊 + 1 𝒕𝒋
𝒊𝒏𝒊 + 2 𝒕𝒋

𝒊𝒏𝒊 + 3 𝒕𝒋
𝒊𝒏𝒊 + 4

1 1 1 1 1

0 1 0 1 0

… … … … …

0 1 0 0 1

First AMR 

culture

t (days)

ICU 

admission

24 h

maski

maskj

Figure 4.3: The construction of a temporal feature matrix within a specified time frame, which
is segmented into five consecutive intervals, each spanning 24 hours. In the upper section of

the figure, representing the AMR patient cohort, the term tend
i signifies the time step associated

with the first AMR culture for the i-th patient. Conversely, in the lower section, which
illustrates the non-AMR patient cohort, t ini

j indicates the admission time for the j-th patient.

(patient i, who is AMR and j who is non-AMR) is illustrated in Figure 4.3. The time series data
consists of daily observations, with the final day of the window varying depending on the patient
population. For patient i tend

i corresponds to the day an AMR culture was detected. The previous
W −1 days are then retroactively defined.

Four different window lengths were tested: W = 3, W = 4, W = 5, and W = 6. These were
chosen based on extensive data analysis, revealing that initial AMR detection typically occurs
within the first few days of a patient’s ICU stay. Notably, 50% of AMR patients had a positive
culture within five days of ICU admission, similar to the median stay duration of non-AMR
patients (four days).

4.3.2 Feature Selection Results

Figure 4.4 presents a heatmap illustrating which features were selected by each of the three FS
methods across four different window lengths. A green box in the heatmap indicates a feature
was selected by a method, whereas a gray box shows it was not selected. To decide which
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features were included in the refined set D ′, a dual-stage selection process was utilized. The
first stage was to integrate insights from FS algorithms and the second one took into account
the temporal nature of the data. Initially, the selection process used a "temporal voting" ap-
proach, where a feature was selected for a method by its selection frequency across different
time windows. A feature had to be selected in at least two separate window lengths to be con-
sidered temporally robust. This step ensured that the importance of features was consistent over
time, not just in a single, potentially anomalous, window. Subsequently, the process applied a
"majority rule" criterion, requiring a feature to be selected by at least two different FS meth-
ods for inclusion in D ′. This step provided a more comprehensive evaluation of each feature’s
relevance by incorporating diverse methodological perspectives, thus increasing the reliability
and applicability of the final selected features. This dual-stage approach effectively balances
temporal stability and methodological consensus, strengthening the confidence in the research
findings and their practical implications.

Figure 4.4 reveals that the technique utilizing CI from bootstrap resampling selected a larger
number of features (40 out of 50) compared to the CMI or Group LASSO methodologies, which
each identified 19 features. Group LASSO predominantly selected patient-related variables,
whereas CMI favored features about the ICU environment. The consistency of Group LASSO’s
selections across varying time window lengths is particularly noteworthy. Upon aggregating
results via a voting mechanism across the methods, a total of 26 features were ultimately chosen.
This set includes 14 features linked to antibiotics administered to patients (AMG, ATF, CAR,
CF1, CF3, CF4, GLI, NTI, OXA, PAP, PEN, POL, QUI, and Others), the MV, and 11 features
associated with the ICU environment (number of patients, number of AMR patients, CARn,
CF3n, GCCn, GLIn, MONn, PAPn, POLn, TTCn, and Othersn).

Considering feature importance as a means of enhancing explainability for early predic-
tion of AMR, we delve into the clinical significance of these features for model training. All
antibiotic families implicated in clinical criteria for AMR emergence were included. Notably,
certain antibiotics, regardless of window length and FS method (including ATF, CF3, PAP, MV,
the number of AMR patients, and CARn), were consistently identified as relevant. These find-
ings have been corroborated by clinicians, underscoring their potential utility in constructing
data-driven models.
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Data
Source

Strategies to
handle imbalance

Strategies to
handle missing values Models Accuracy Specificity Sensitivity ROC AUC

Non-FS

Undersampling

Removing

MLP 64.15 ± 7.76 66.1 ± 11.08 53.1 ± 14.3 59.6 ± 3.52
GRU 61.99 ± 3.99 62.91 ± 4.44 56.08 ± 4.21 59.50 ± 3.24

LSTM 61.98 ± 4.32 62.92 ± 4.7 55.64 ± 11.28 59.28 ± 5.97
Bi-LSTM 63.91 ± 6.28 65.65 ± 7.48 53.33 ± 6.86 59.49 ± 4.74

Zero Padding

MLP 59.36 ± 2.26 59.15 ± 2.57 61.08 ± 4.5 60.11 ± 2.56
GRU 59.74 ± 2.66 59.48 ± 3.71 61.1 ± 4.02 60.29 ± 0.75

LSTM 59.14 ± 2.02 59.06 ± 3.18 59.84 ± 8.32 59.45 ± 3.14
Bi-LSTM 57.99 ± 1.84 57.41 ± 2.19 61.73 ± 3.82 59.57 ± 2.16

Masking
GRU 67.38 ± 2.59 68.91 ± 3.69 57.51 ± 7.01 63.21 ± 2.48

LSTM 65.92 ± 1.79 67.38 ± 2.19 56.3 ± 1.98 61.84 ± 0.99
Bi-LSTM 65.34 ± 2.74 66.92 ± 2.63 54.95 ± 3.06 60.94 ± 2.81

BBCE

Removing

MLP 56.33 ± 6.22 54.0 ± 7.86 71.52 ± 5.41 62.76 ± 2.4
GRU 57.78 ± 7.58 57.18 ± 10.33 62.42 ± 10.62 59.8 ± 2.07

LSTM 55.54 ± 11.97 54.26 ± 14.95 65.12 ± 11.06 59.69 ± 3.27
Bi-LSTM 55.38 ± 8.89 53.55 ± 11.45 68.75 ± 11.77 61.15 ± 1.95

Zero Padding

MLP 55.47 ± 3.24 54.29 ± 3.15 63.57 ± 7.49 58.93 ± 4.66
GRU 57.80 ± 4.58 56.12 ± 5.98 69.58 ± 6.4 62.85 ± 2.02

LSTM 57.02 ± 3.58 55.71 ± 3.46 65.70 ± 4.74 60.70 ± 3.98
Bi-LSTM 59.97 ± 7.31 59.57 ± 10.64 63.88 ± 14.82 61.73 ± 3.52

Masking
GRU 67.03 ± 2.74 68.52 ± 3.92 57.51 ± 7.01 63.01 ± 2.35

LSTM 60.86 ± 3.35 60.2 ± 4.12 65.67 ± 3.71 62.93 ± 1.60
Bi-LSTM 59.52 ± 3.90 58.75 ± 5.33 65.01 ± 6.32 61.88 ± 1.49

FS

Undersampling

Removing

MLP 59.92 ± 2.97 60.19 ± 2.79 58.42 ± 5.79 59.31 ± 3.93
GRU 60.32 ± 6.07 60.52 ± 6.66 59.16 ± 6.14 59.84 ± 5.03

LSTM 64.24 ± 3.19 65.35 ± 3.71 57.12 ± 2.12 61.23 ± 1.95
Bi-LSTM 60.9 ± 5.45 61.1 ± 6.65 59.17 ± 6.85 60.13 ± 3.91

Zero Padding

MLP 63.11 ± 5.48 63.42 ± 6.9 62.14 ± 6.69 62.78 ± 2.55
GRU 61.95 ± 2.88 62.26 ± 4.04 60.38 ± 6.59 61.32 ± 2.23

LSTM 65.93 ± 1.71 66.64 ± 2.78 61.72 ± 7.32 64.18 ± 2.67
Bi-LSTM 63.1 ± 5.38 63.36 ± 6.36 61.54 ± 4.89 62.45 ± 3.53

Masking
GRU 64.08 ± 4.1 64.14 ± 5.85 64.16 ± 8.29 64.15 ± 1.65

LSTM 69.23 ± 2.28 70.79 ± 3.30 59.41 ± 6.22 65.10 ± 2.18
Bi-LSTM 68.62 ± 2.35 70.35 ± 2.69 57.18 ± 3.76 63.76 ± 1.99

BBCE

Removing

MLP 57.91 ± 7.52 57.01 ± 9.54 65.34 ± 8.24 61.17 ± 2.85
GRU 59.11 ± 4.37 57.58 ± 5.79 69.52 ± 5.81 63.55 ± 1.74

LSTM 57.15 ± 6.06 55.75 ± 8.35 66.92 ± 9.91 61.34 ± 1.05
Bi-LSTM 53.84 ± 11.01 51.33 ± 14.48 70.8 ± 12.48 61.07 ± 2.19

Zero Padding

MLP 66.24 ± 2.32 66.89 ± 2.82 62.37 ± 5.27 64.63 ± 2.54
GRU 58.01 ± 4.22 56.22 ± 5.13 69.68 ± 3.92 62.95 ± 2.56

LSTM 60.81 ± 3.83 60.43 ± 5.01 63.45 ± 6.39 61.94 ± 2.29
Bi-LSTM 55.59 ± 3.97 53.61 ± 4.93 69.19 ± 4.35 61.40 ± 1.27

Masking
GRU 63.01 ± 2.93 61.95 ± 4.17 69.94 ± 5.75 65.95 ± 1.29

LSTM 65.40 ± 3.94 64.88 ± 5.31 68.58 ± 6.43 66.73 ± 1.80
Bi-LSTM 63.33 ± 2.47 62.98 ± 3.37 65.89 ± 4.04 64.44 ± 0.78

Table 4.1: Average performance (Accuracy, Specificity, Sensitivity, and ROC AUC) presented
as mean ± standard deviation across 5 test partitions. The results are shown for neural

networks trained on a 5-day window under various conditions: without FS and with FS in the
first row; undersampling and BBCE to manage class imbalance in the second column;

handling irregular MTS with "Removing," "Zero Padding," and "Masking" techniques in the
third column; and employing MLP, GRU, LSTM, and Bi-LSTM as classifiers in the fourth

column. The highest values for each metric are highlighted in bold..

4.3.3 Early Prediction of Antimicrobial Multidrug Resistance Using Neu-
ral Networks

Table 4.1 displays the mean and standard deviation of performance metrics (Accuracy, Speci-
ficity, Sensitivity, and ROC AUC) across five test partitions, comparing conventional NNs (ex-
emplified by the MLP) and RNN models (including LSTM, GRU, and Bi-LSTM). These mod-
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Figure 4.4: Feature matrix (columns) and FS methods (CIB, CMI and Group LASSO,
distinguished by window length W ). The selected features are denoted by green cells, and the

non-selected features are depicted by gray cells.

els are evaluated based on: (a) different FS approaches, (b) class imbalance handling, and (c)
managing missing values in MTS.

The results reveal that the FS procedure enhances model performance, with models utilizing
FS data outperforming those trained on non-FS data in terms of Accuracy and Specificity. This
is evidenced by the higher average ROC AUC values for FS models (62.09) as compared to
non-FS models (60.84), suggesting that FS helps improve the precision and class differentiation
capabilities of the models.

In addressing class imbalance, two strategies, Undersampling and BBCE, were compared.
Undersampling achieved a higher average ROC AUC of 63.95, indicating its efficacy in some
scenarios, particularly in increasing Sensitivity. Conversely, BBCE performed better in Speci-
ficity and ROC AUC in certain cases, underscoring the need to select the appropriate strategy
based on the dataset characteristics and the objectives of the models.

Regarding the methods for handling missing values, the choice significantly impacts model
performance, with no single approach uniformly outperforming the others across all models
and metrics. However, "Masking" is the most effective achieving the highest mean ROC AUC
(63.66) compared to "Removing" and "Zero Padding" (60.56 and 61.58, respectively).

The comparative analysis of different classifiers reveals that LSTM models generally demon-
strate a better performance. This is particularly evident when these models are trained with FS
data, undersampling, and the "Masking" strategy. The highest overall performance is observed
in LSTM models combined with BBCE and "Masking," reaching an ROC-AUC of 66.73%
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and leading in Sensitivity (68.58%). However, the highest Accuracy (66.54%) and Specificity
(64.88%) are achieved with the undersampling strategy, suggesting a trade-off between different
performance metrics and the chosen strategies.

Further analysis of LSTM, GRU, and Bi-LSTM models using windowed modeling is shown
in Figure 4.5, focusing on Specificity, Sensitivity, and ROC AUC. Performance varied with
the window length, with four and five-day windows outperforming three and six-day ones.
GRU and LSTM generally surpassed Bi-LSTM models, potentially due to the latter’s complex
architecture or the irrelevance of considering both past and future data for this classification
task.

(a)

(b)

(c)
Figure 4.5: Boxplot analysis illustrating performance metrics (Specificity, Sensitivity, and

ROC AUC) across 5 test partitions, with considerations for FS and the use of BBCE to address
data imbalance. Varied window lengths (W = 3, W = 4, W = 5, and W = 6) and three MTS

classifiers (a) GRU, (b) LSTM, and (c) Bi-LSTM are explored.
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4.3.4 Interpreting Long Short-Term Memory Models Using SHapley Ad-
ditive exPlanations Analysis

The previous section established the LSTM network with 26 input features and a window length
of W = 5, combined with "Masking," as a high-performing model. However, the inherent com-
plexity of LSTMs poses interpretability challenges. This section delves into a post-hoc inter-
pretability analysis of the LSTM model using SHAP, aiming to unravel the model’s working.

Initially, we examined the entire patient population using SHAP, focusing on an LSTM
model incorporating W = 5, undersampling, and "Masking." Subsequently, we extended our
analysis to individual patients across various window lengths (W = 3,4,5,6), maintaining the
same model parameters. For each patient, we calculated the average Shapley values for all time
steps, offering insights into the feature contributions to the model’s predictions.

The resultant SHAP graph (Figure 4.6) visually represents these insights. In the graph, each
dot symbolizes a patient, with the dot color reflecting the actual feature value and the x-axis po-
sition indicating the feature’s impact on the model’s output, as determined by the sum of Shapley
values. A notable example is the positive correlation of high Mech.Vent. values with increased
model output, suggesting a higher likelihood of AMR in patients requiring Mech.Vent. (as was
previously indicated in Chapter 3). The top five influential features, including Mech.Vent., ATF,
CF1, the number of AMR patients, and GLIn, align with clinical intuition and existing litera-
ture, underscoring the importance of controlling AMR germs and invasive devices in healthcare
settings.

Further, Figure 4.7 presents a detailed SHAP analysis for four distinct patient types from
our dataset: both AMR and non-AMR patients, differentiated by stays longer or shorter than
five days. This analysis, considering different window lengths and the 26 selected features,
highlights the variability in feature contributions across individual patients. Notably, features
like the number of AMR patients, MV, and certain drugs (e.g., ATF, AMG, OXA) consistently
emerge as significant across models. However, the effectiveness of model classification varies
with window length, emphasizing the complexity of optimal window length selection. For
instance, models with W = 5 and W = 6 accurately classify AMR patients with incomplete
data, while W = 3 and W = 4 are more effective for non-AMR patients with complete data.

In conclusion, this SHAP-based interpretability analysis of the LSTM model offers valu-
able insights into the model’s functioning, particularly in identifying key features influencing
predictions. The differences observed across different patients and window lengths highlight
that choosing the right model is complex and that personalized methods are crucial in medical
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Figure 4.6: Distribution of Shapley values generated from the LSTM model with
undersampling and “Masking” with the 26 features selected by FS.

settings.

4.4 Conclusions

This chapter’s findings significantly contribute to the fight against AMR in ICUs. The alarming
frequency of infections in ICUs, where 20-30% of admissions lead to AMR, highlights the criti-
cal need for early prediction methods. Through the development of DL models for clinical MTS
data, we have taken a crucial step towards timely detection and treatment of infectious diseases,
potentially reducing both mortality and healthcare costs. The complexity of clinical data has
long made MTS modeling a daunting task, and while RNNs show promising classification per-
formance, their lack of interpretability poses a significant challenge in clinical decision-making
processes.



64
CHAPTER 4. INTERPRETABLE DATA-DRIVEN MODELING FOR EARLY PREDICTION

OF ANTIMICROBIAL MULTIDRUG RESISTANCE

The use of FS techniques emerged as a pivotal strategy in our approach. Employing meth-
ods like Conditional Mutual Information, Group LASSO, and Confidence Intervals with Boot-
strap, we efficiently managed high-dimensional clinical data, enhancing model performance
and interpretability. The application of these techniques ensured that the models were not only
computationally efficient but also robust and capable of generalization across diverse patient
populations. We also presented a multi-method voting strategy to enhance classical feature se-
lection, further refining the traditional FS methodology. This innovative approach, combining
multiple FS techniques, led to a more comprehensive and reliable selection of relevant features.

Our innovative approach in handling data imbalance and missing values in MTS data further
strengthened the reliability of our predictions. By implementing methods like undersampling,
asymmetric misclassification costs, and masking strategies, we effectively addressed these com-
mon challenges in clinical MTS datasets.

The incorporation of SHAP for post-hoc interpretability provided a deeper understanding of
the model’s decision-making process. This aspect was crucial for gaining the trust of clinicians
and ensuring the future practical applicability of our models in ICUs. The SHAP-based analysis
offered insights into the relevance of features like mechanical ventilation and specific antibiotic
treatments, aligning with clinical knowledge and highlighting the model’s ability to capture
essential predictive factors for AMR.

The performance of our models was rigorously tested across various settings, with a particu-
lar emphasis on LSTM networks. These tests confirmed the effectiveness of our methodologies
in early detection of AMR, with the LSTM models exhibiting strong predictive capabilities
across different scenarios.

However, to generalize these findings, future research should incorporate more MTS and
demographic features. The next chapter will explore the development of interpretable neural
network mechanisms that consider the significance of each time step, aiming to further increase
clinician trust and model adoption in real-world healthcare settings.
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Figure 4.7: Visualization of model output values and Shapley values for the LSTM model
trained with undersampling and ’Masking,’ utilizing 26 selected features, and varying window
lengths: (a) W = 3; (b) W = 4; (c) W = 5; (d) W = 6. The gray vertical line signifies the base

value of the SHAP models, while each colored line corresponds to an individual patient.
Feature relevance is ranked and presented, with the top-ranked feature being the most relevant.
’Full data’ represents patient stays longer than the respective window (Ti >W ), while ’no full

data’ denotes cases where Ti <W .
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Chapter 5

Multimodal Interpretable Models for
Early Prediction of Antimicrobial
Multidrug Resistance

5.1 Introduction

This chapter builds on the previous chapter’s methodology by exploring the development of
multimodal interpretable data-driven models and their pivotal role in the early prediction of
AMR. It introduces a new framework, integrating multimodal architectures and interpretable
mechanisms specifically tailored for analyzing complex MTS. By using multiple data types
together, the multimodal approaches provide a more complete understanding of AMR dynamics
compared to traditional unimodal models. Integrating the different data types enables a more
holistic understanding of the AMR phenomenon, enhancing the accuracy and reliability of the
models.

Additionally, the chapter emphasizes the critical role of model interpretability. In clini-
cal settings, where AMR predictions can significantly influence patient treatment options, it is
essential for models to not only be accurate but also transparent and understandable in their
decision-making. This focus on both multimodal architecture and interpretability not only in-
creases the effectiveness of the models but also enhances their trustworthiness, which is vital
for their acceptance and use in clinical environments. Furthermore, the chapter provides an
in-depth exploration of how these models are developed to handle the temporal complexities
inherent in AMR data. MTS, with its sequential nature and time-dependent variations, presents
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unique challenges. The chapter discusses the adaptation of these models to effectively capture
and analyze temporal patterns and trends in AMR data, a crucial aspect for early and accurate
predictions.

Therefore, this chapter presents a cutting-edge approach in the fight against AMR, merg-
ing multimodal data integration with interpretable modeling techniques. This approach marks
a significant step forward in developing robust, accurate, and clinically applicable tools for
early AMR prediction, thereby contributing to more effective antimicrobial stewardship and
improved patient predictions.

5.2 Methods

This section is structured into three subsections. In subsection 5.2.1, we discuss the process
of selecting appropriate features across various modalities of data. Subsection 5.2.2 explores
the integration of heterogeneous data sources using state-of-the-art multimodal DL architec-
tures to enhance model performance. Finally, subsection 5.2.3 focuses on the methodologies
implemented to gain understandability in MTS analysis, a crucial aspect when dealing with
DL models in a clinical environment. Each subsection is designed to provide a comprehensive
overview of the methods employed, contributing to the robustness and clarity of our research
outcomes.

5.2.1 Feature Selection in Multimodal Interpretable Data-Driven Models

Building upon the methodologies established in the previous chapter, this chapter explores the
application of FS in the context of multimodal data. The efficacy of the FS approach previously
presented, which demonstrated remarkable success, forms the foundation of the methodolo-
gies discussed herein. In this chapter, we largely reapply the established FS framework with a
notable enhancement: the integration of a novel method known as Permutation Feature Impor-
tance (PFI). This method is specifically designed for handling MTS. By incorporating PFI, we
aim to enhance our model’s accuracy in predicting AMR.

As a reminder, our FS approach employs four distinct methods: CMI, GLASSO, CIB, and
the newly introduced PFI. Each method contributes uniquely to our framework’s robustness
and precision. This chapter details the synergistic effects of these FS methods when applied in
tandem, particularly in the realm of complex MTS. Integrating PFI into our proven FS frame-
work enhances our model’s capability to discern pivotal features. Such understanding is critical
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for developing data-driven models that are not only accurate in early AMR prediction but also
interpretable and applicable in real-world clinical settings.

Permutation Feature Importance

PFI is a FS methodology, which is specifically designed to work with models that have
already been trained [161]. This method plays a crucial role in identifying key features that sig-
nificantly influence the output of these complex models. PFI attempts to emulate the traditional
recursive feature elimination methods, which require retraining the model with various feature
combinations. PFI addresses this challenge not by retraining the model with different feature
sets but rather by evaluating the impact of each feature on the model’s performance in a more
efficient manner. It does this by systematically altering or ’perturbing’ individual features in
the input data and observing the resultant effect on model performance. Originally, PFI was
introduced in the realm of random forest classifiers, as delineated in [161, 162]. Since then,
its applicability has been successfully expanded and generalized to various other model archi-
tectures, as evidenced in later studies [163, 164]. In our research, we have employed the PFI
method across a diverse range of trained architectures, which we will detail in the following
sections.

The implementation of PFI begins with training the ML model and then evaluating its clas-
sification performance. This evaluation is conducted using a set of validation samples and is
based on a predefined performance metric. Following this, the method selects one feature at a
time, for instance, the d-th feature. We then permute the value of the d-th feature with one fea-
ture chosen uniformly at random for each sample in the validation set, while all other features
(d′ ̸= d) are left intact. This selective permutation strategy is critical as it alters the input data
without changing the overall distribution of each feature. However, it effectively ’breaks’ the
relationships or patterns the model has learned, thus providing insights into the significance of
each feature.

After the permutation of the d-th feature, the model’s performance is reassessed using the
modified validation set. This performance is then compared to the results obtained with the
original, unaltered validation set. The underlying hypothesis driving this approach is that the
permutation of highly relevant features will lead to substantial losses in the performance of the
chosen metric, as delineated in [165]. This process is methodically repeated for each feature in
the dataset (d = 1, . . . ,D). The outcome of this iterative process is the identification and selec-
tion of the D′ most relevant features based on the extent of performance degradation observed
with each feature’s permutation.
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5.2.2 Deep Learning Data Fusion Architectures

As previously discussed, "Data Fusion," or "Multimodality," integrates data from multiple
sources, enhancing the performance and comprehensiveness in knowledge extraction [75, 76].
This process can be categorized into three approaches: early fusion, joint fusion, and late fu-
sion [74].

Early fusion models integrate inputs from various modalities before feeding them to the
model, utilizing techniques like concatenation, pooling, or gated units [166]. Conversely, joint
fusion merges feature mappings from intermediate architectural layers, refining feature extrac-
tion through backpropagated loss during training [74]. Late fusion architectures, in contrast,
aggregate predictions from multiple models to produce a single output. In the context of late
fusion classification systems that process both dynamic and static data, the architecture can be
segmented into three distinct blocks: one block generates a posteriori probabilities from static
data, another computes a posteriori probabilities from MTS, and a third block merges these
probabilities to produce the estimated label by the late fusion model. Integrating static data
such as age or comorbidities with MTS data in the healthcare sector is critically important for
clinical decision-making. This has led to the proposal of several new data fusion architectures
in the clinical setting in recent years.

We present three innovative multimodal architecture designs optimized for handling MTS
and static data. Two of them are based on joint fusion architectures — the Joint Heterogeneous
Fusioner (JHF) and the First Hidden State Initializer (FHSI) — and two are based on late fusion
— the Late Fusion Convex Optimization (LFCO) and the Late Fusion Logistic Regression
(LFLR). These architectures will be further detailed later.

Joint Heterogeneous Fusioner

As previously discussed, the field of data fusion architectures is diverse. It is a common and
often justified assumption that the fusion of different data types gets information from the target
not in isolation but through complex cross-modality interactions. Joint fusion methodologies
address this by modeling the interplay of features derived from intermediate representations.
This process typically involves concatenating the marginal representations of intermediate fea-
tures and then processing the resultant vector through fully connected layers, culminating in a
task-specific output layer [167].

The present dissertation introduces the Joint Heterogeneous Fusioner, an innovative ar-
chitecture designed to merge different data types, specifically static features and MTS. Our
approach incorporates “prior knowledge” regarding the structure of the modality variables,
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thereby optimizing the intermediate layer’s functionality. For MTS data, we employ a GRU
to capture and analyze temporal dynamics, which are then integrated into a unified feature vec-
tor. For categorical static variables, we utilize the widely-recognized entity embeddings [168],
while linear transformations are applied to binary and numeric static variables to generate fea-
ture representations.

The integration of marginal representations is a critical step in data fusion, and various
methodologies exist for this purpose. In our design, we opted for concatenation, given its
widespread usage and interpretability advantages. The concatenated representations undergo
a final transformation through a linear layer, followed by a sigmoid activation function, pro-
ducing the ultimate fusion output. This architecture is designed to leverage and enhance the in-
herent synergies within heterogeneous data sources, offering a robust foundation for advanced
analytical applications.

First Hidden State Initializer

The Temporal Fusion Transformer (TFT) is a novel model featuring numerous innovations.
It has significantly outperformed existing benchmarks in MTS forecasting that incorporate both
static data and MTS. Inspired by the success of the original TFT, we have adapted it to suit the
specific structure of our framework, resulting in the creation of a new joint fusion multimodal
architecture known as the "First Hidden State Initializer".

In the medical field, comprehending a patient’s initial condition is pivotal for gauging their
progression. This starting point significantly influences the medications and procedures admin-
istered to the patient throughout their treatment. Building on this principle, the FHSI architec-
ture integrates static features to construct a context vector that enhances the initial hidden state
of a GRU. To generate this context vector, the FHSI architecture incorporates an internal mod-
ule called the Static Encoder (SE). Figure 5.1 illustrates the overall structure of the FHSI, with
each component depicted in distinct colors. The internal workings of the FHSI are elaborated
upon below:

• To construct the context vector z̄cont
i , the SE initially maps static features into an embed-

ding. Given the diversity of feature types—categorical, binary, and numerical—distinct
embedding strategies are employed. Categorical variables zcat

i utilize entity embeddings,
a widely-adopted approach as outlined by Gugulothu et al. (2017)[168]. For binary and
numeric variables, zbin

i and znum
i , linear transformations are applied. This mapping pro-

cess is depicted in light green in Figure5.1.

• In the next block within the SE, a variable selection mechanism is incorporated, visual-
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ized in dark green in Figure 5.1. This mechanism generates a patient-specific vector by
applying a Hadamard product to the initial input [169]. To enhance the model’s adaptabil-
ity for non-linear processing, we integrate a Gated Residual Network (GRN) within the
variable selection network, drawing on established methodologies from Lim et al. (2021)
and Tan et al. (2018)[170, 171].

• We employ the context vector z̄cont
i as the initial state for the GRU, (represented as h0

i =

z̄cont
i in the light blue box in Figure 5.1). The GRU block then updates the initial hidden

state with the information contained in the MTS.
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Figure 5.1: Overview of the FHSI Architecture. FHSI processes both static and time-varying
inputs with distinct color-coded blocks. The SE component is depicted in various shades of
green, where light green signifies the initial embedding mapping network and dark green

represents the Variable Selection Network. The GRU block is denoted by a light blue box, and
the final non-linear dense layer is illustrated in a dark blue box.

Late Fusion Models

Ensemble learning approaches, which aggregate outputs from multiple models, often out-
perform their individual components in diverse applications [172]. Typically, these methods
involve training basic models, integrating their outputs through an aggregation module, and
fine-tuning them to optimize aggregation parameters. Such aggregators can adopt various
strategies, including parameter optimization, weighting coefficients, and error-processing tech-
niques [173].

This dissertation focuses on late fusion techniques for handling multimodal data. Specifi-
cally, it examines a method that designates separate models for static and MTS data and then
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fuses these outputs. This research explores two late fusion architectures, sharing the same basic
models, but with different aggregation modules. The basic model to deal with static data we
employed an MLP, while a GRU was utilized for MTS data. Both models estimate the posterior
probability of AMR infection.

Late Fusion Convex Optimization

The LFCO model implements a linear combination of MLP and GRU outputs using two
weights: wMLP ∈ [0,1] and wGRU ∈ [0,1]. Enforcing the convexity constraint wGRU +wMLP = 1,
we optimize these weights through a unidimensional exhaustive search, maximizing classifica-
tion performance on validation data. The ratio wGRU/wMLP offers interpretative insights, in-
dicating the relative significance of dynamic variables (processed by GRU) compared to static
ones (handled by MLP) in predicting AMR infections.

Late Fusion Logistic Regression

Alternatively, the LFLR approach uses Logistic Regression (LR) to merge MLP and GRU
outputs. During LR training, the MLP and GRU models remain static. The LR, a parametric
method, applies a logistic function to a linear combination of inputs (outputs from MLP and
GRU) to estimate the final prediction [174]. This process exclusively focuses on fusing the
outputs from MLP and GRU, without modifying these underlying models.

5.2.3 Interpretability in Time Series

In the previous chapter, we emphasized the crucial role of interpretability in deep learning, par-
ticularly for clinical applications where understanding model decisions is vital. This chapter
advances our exploration by refining methods to enhance interpretability in MTS-based mod-
els. Given the complexity of MTS, conventional interpretability techniques often fall short in
extracting knowledge, requiring more sophisticated approaches.

We introduce three innovative methodologies to improve the interpretability of time series
models: attention mechanisms, dynamic masking, and Time Perturbation Importances (TPI).
Each technique provides distinct benefits for uncovering patterns and relationships in MTS
data. Attention mechanisms help to pinpoint and highlight the most informative parts of the
time series, making it easier to understand which data segments are crucial for the model’s
predictions. Dynamic masking, or Dynamask, involves deliberately hiding parts of the data to
assess how these omissions affect the model’s output, thereby identifying which time steps or
features are most significant. Lastly, TPI evaluates how sensitive the model is to changes in the
time series, illustrating how data modifications impact predictions.



74
CHAPTER 5. MULTIMODAL INTERPRETABLE MODELS FOR EARLY PREDICTION

OF ANTIMICROBIAL MULTIDRUG RESISTANCE

By integrating these methodologies, this chapter aims to push the boundaries of inter-
pretability in time series analysis, moving beyond conventional approaches to offer a deep un-
derstanding of how models process and respond to MTS data. This advancement is particularly
significant in clinical contexts, where comprehending the nature of time-dependent data is cru-
cial for accurate diagnosis and treatment planning. The subsequent sections will thoroughly
examine each methodology, including its theoretical foundations, implementation strategies,
and potential applications, culminating in a comprehensive framework for interpreting complex
time series models.

Attention Mechanisms

Attention mechanisms in DNNs have emerged as indispensable tools, significantly enhanc-
ing interpretability, a critical aspect in ML, particularly in domains requiring precise and ex-
plainable outcomes [175, 176]. These mechanisms assign variable ’attention’ or ’weight’ to
different elements within an input sequence during the DNN’s computational process. This
dynamic allocation process is key in determining the model’s focus, selectively emphasizing
certain data components over others. Such a system of weighted importance plays a pivotal
role in how a DNN processes information and influences its ultimate decision or output. The
ability of these mechanisms to allocate higher relevance to specific components means that the
network, in its complex series of calculations, gives precedence to certain data features. This
discriminatory allocation is not merely a computational convenience; it forms the basis of inter-
pretability by shedding light on the decision-making process of the DNN.

The intrinsic value of attention mechanisms extends beyond their operational functionality;
they provide a window into the otherwise opaque inner workings of DNNs. By showing which
components or features are prioritized, these mechanisms reveal the aspects of data allowed
most critical for generating specific outputs [177]. This revelation is important in fields where
the rationale behind a model’s decision is as crucial as the decision itself, such as in clinical
decision support systems in healthcare. Understanding which features a DNN focuses on can
lead to more informed interpretations and trust in the model’s outputs, especially in scenarios
where decisions have significant consequences. The attention mechanism was originally devel-
oped for machine translation models [178], although it has been successfully applied to very
different problems, like medical computer vision tasks [179], ECG analysis [180], and blood
pressure response [181].

The ability of attention mechanisms to discern key features within data not only enhances
the interpretability of models but also boosts their overall performance. These mechanisms
allow DNNs to focus on the most relevant features, optimizing processing efficiency. By pri-
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oritizing significant data points, attention mechanisms prevent the network from overloading
with irrelevant information [182]. This selective focus ensures that computational resources are
allocated to the most impactful aspects of the data, leading to the development of more precise
and operationally efficient models.

Furthermore, attention mechanisms significantly enhance the capabilities of DL and AI by
offering a practical balance between computational intensity and clear, transparent decision-
making processes. These mechanisms enable models to selectively emphasize and process
key features in data, leading to the development of more advanced and understandable machine
learning systems [183]. They represent a bridge between the raw computational power of DNNs
and the need for understandable, transparent decision-making processes in AI systems.

Drawing on the approach presented in [175], our attention mechanism operates at the input
variable level by employing a dense layer with a Softmax activation function. To elucidate, for
each patient i, an attention matrix θi ∈RD×Ti is created by postulating and training an MLP that
takes Xi ∈ RD×Ti as input and produces θi as output. This matrix θi is used then to weight the
original input Xi through a Hadamard product, resulting in the weighted (attention modulated)
input X̃i. The Hadamard product and the learnable matrix θi serve the purpose of enabling the
architecture to focus on specific feature-time instant pairs that are deemed more pertinent for
patient i.

Our research introduces two novel modifications to the attention mechanism described in [175].
The first model, known as the Non-Linear Hadamard Attention (NLHA) model, is an adaptation
of the concept introduced in [175]. It substitutes the MLP layer with a GRN. In contrast, the
second model, termed as the Hadamard Attention Matrix (HAM) model, diverges more signif-
icantly from the attention mechanism in [175]. Instead of creating a unique attention matrix
θi for each patient i = 1, ..., I, HAM learns a single matrix θ which is then applied uniformly
(θi = θ ) to all MTS Xi with i = 1, ..., I.

To ensure clinical interpretability of θi, our models apply the attention matrix directly to
the raw input data Xi, before any transformation or embedding is applied to the input. Conse-
quently, the entries of θi can be directly interpreted to get the global contribution of each (d, t)

feature-time instant pairs within the classification architecture.

Dynamic Mask

Dynamask, a groundbreaking perturbation-based post-hoc methodology developed for MTS
architectures, is a significant advancement in ML interpretability. This method is designed to
work with pre-trained black-box models, enabling researchers to identify and understand the
relevance and influence of individual entries within the MTS. This approach is deeply rooted in
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the foundational research conducted by Crabbe et al. [100], and it adapts and extends the princi-
ples of post-hoc masks. These principles were initially conceptualized for image classification,
as detailed in works by Fong et al. [184, 185]. In image classification, the technique involves the
application of perturbations to selected pixels and subsequently observing the resultant effects
on the output of a black-box classifier. This process is vital as it sheds light on specific image
regions that play a pivotal role in the classifier’s decision-making mechanism.

Expanding upon this, Dynamask introduces an innovative twist by incorporating time-aware
perturbations for MTS data analysis. This method modifies the value of a particular feature
at a specific time step by replacing it with a value derived from an average of past feature
values. This is particularly crucial in analyzing MTS, where temporal dynamics play a key role.
In a practical setting, consider a classifier working with an input MTS matrix, represented as
Xi ∈ RD×Ti . This classifier generates a label, denoted as ŷi. Concurrently, Dynamask captures
and records saliency scores in a separate matrix, M∈RD×Ti . The perturbation operator, denoted
as π , utilizes this matrix M to create a perturbed version of the input, labeled XP

i . This perturbed
input is then processed by the classifier to produce an altered label, ŷP

i . The comparison and
analysis of ŷP

i and the original ŷi are crucial; the error generated from this comparison is utilized
in a back-propagation process. This process is iteratively applied, adjusting the values in M
through numerous inputs and training epochs, thereby facilitating the learning of these values
and improving the interpretability of the classifier’s decisions.

Dynamask’s flexibility is further exemplified by its compatibility with a variety of time-
averaging operators. In our application, we use a simple moving average approach. This ap-
proach is showed in equation (5.1), which defines the (d, t) entry of the perturbed input matrix
XP

i as follows:

m(t,d)x(t,d)i +(1−m(t,d))µ
(t,d)
i ,withµ

(t,d)
i =

1
WMAW +1

t

∑
t ′=t−WMAW

x(t
′,d)

i , (5.1)

Here, WMAW is the width of the moving average window. It’s important to highlight that
for the initial time steps (specifically when t ≤ WMAW ), the computation of µ

(t,d)
i is adapted to

account for the limited number of input values available for averaging. The values of m(t,d) in
equation (5.1) are of significant interest; values approaching one indicate the critical importance
of the current value x(t,d)i , whereas values closer to zero suggest that consideration should be
given to the average of previous time steps values. This mechanism offers an understanding of
the temporal dynamics within the MTS data.

To further enhance the interpretability capabilities of Dynamask, we have introduced an
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additional component in the training cost function. This component comprises a penalty de-
signed to promote the generation of mask values that are sparse and bounded within a range
of one. This strategy, advocated in the original Dynamask research by Crabbe et al. [100], is
key in ensuring that the resulting mask values are not only effective in elucidating the classi-
fier’s decision-making process but also including the constraints that render the interpretation
insightful. This penalty encourages the model to focus on the most salient features, avoiding
overfitting and ensuring that the interpretation remains focused and relevant. This approach to
interpretability is valuable in complex data environments like healthcare, where understanding
the reasoning behind a model’s decision is key.

Time Perturbation Importances

Time Perturbation Importances stands as a novel inspection methodology designed to high-
light the most significant time steps in a dataset, focusing on those that hold the greatest rel-
evance based on models that have already been trained [186, 187]. The approach of TPI is
closely aligned with the PFI method previously presented, but it introduces modifications to
adapt to the specific characteristics of MTS.

TPI’s core mechanism involves a detailed analysis of how the performance of a model,
which has already been trained, deteriorates when the information linked to a specific time
step is deliberately distorted. This performance degradation is typically measured in terms of a
specific metric. The fundamental distinction between TPI and PFI lies in the manner in which
data is handled. Instead of permuting data across different time steps, which could potentially
disrupt the inherent temporal structure of the dataset, TPI opts for a different route. It introduces
modifications to the original data by adding a layer of white Gaussian noise. This approach
ensures that the data’s temporal sequence remains intact while allowing for an analysis of the
importance of each time step.

To apply the TPI method effectively, one must initially focus on training a specific model.
Once the model is trained, the next step is to evaluate it using a chosen figure of merit, such as
accuracy, precision, or recall, on a set of samples from the validation dataset. This step is critical
as it establishes a baseline performance level for the model. After establishing this baseline, the
process involves selecting a particular time step, referred to as the t-th step, and perturbing the
information related to this time step across all patients and features within the validation dataset.
This perturbation is achieved by adding noise to the data at this time step while ensuring that the
data at other time steps, denoted as t ′ ̸= t, remains unaffected. This selective perturbation allows
for an analysis of how changes at a single time step impact the model’s overall performance.

The final step in the TPI methodology involves a comparative analysis. Here, the figures of
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merit obtained from the model after the perturbation of each time step are compared with those
derived from the original validation dataset. This comparison is essential because it demon-
strates how the model’s performance changes in response to modifications at each time step.
The larger the observed degradation in the figure of merit, the more critical that specific time
step is deemed to be for the problem at hand. This insight is particularly valuable as it helps in
understanding the dynamics of the dataset and the role of temporal information in model perfor-
mance, thereby aiding in the refinement and optimization of the model for better performance
and reliability in predictions.

5.3 Experiments and Results

In the following section, we describe the detailed experiments and the specific results obtained,
presenting a clear view of our research process. We begin with the ’Modeling’ subsection,
where we discuss the development of our models and data modeling. Next, in the ’Full Fea-
ture Set Analysis Results’ subsection, we present the results using all available features in our
model. We provide a detailed examination of these results, highlighting key findings and their
implications for the broader research context. The following subsection, ’Feature Selection
and Interpretability in Knowledge Extraction’, focuses on the methodologies for selecting the
most important features and discusses how these selections enhance the interpretability of the
extracted knowledge. Lastly, the ’Selected Feature Set: Analysis Results’ subsection presents
a detailed analysis of the results obtained by applying only these chosen features, allowing for
a comparative evaluation against the full feature set findings. This structure aims to provide
a clear and systematic exploration of our research methods and findings, underlining the rigor
and depth of our analysis.

5.3.1 Experimental Setup

The database employed in these experiments was detailed in Section 3.1; therefore, this subsec-
tion will focus solely on describing the specific modeling of the experiments conducted in this
chapter of the thesis.

Specifically, we extend our data analysis to a 16-year period, from January 2004 to February
2020, encompassing 3,158 ICU stays. Although the dataset extended to 2022, analyses were
deliberately confined to the 2020 threshold due to the significant impact of the COVID-19 pan-
demic on subsequent data, rendering post-2020 records less representative for the purposes of
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this study. The dataset presented in this chapter exclusively encompasses all the features pre-
viously presented in Section 3, both static and MTS. The MTS employed includes information
on the medications administered to the patient, the MV, the previous cultures of the patient,
and features associated with the patient’s neighbors. This study uniquely focuses on the first
instance of AMR in each patient’s culture, with AMR cultures identified in 605 cases. This
scenario presents a classification challenge due to the significant imbalance between AMR and
non-AMR cases.

Our modeling approach for the MTS differs from the previous chapter, employing a different
time window model. In Chapter 4, the initial time step depended on the patient population.
However, this chapter defines the initial time slot (t = 0) as the patient’s admission day to the
ICU for both populations. The final day (t = Ti) varies depending on the patient’s AMR status:
for non-AMR patients (yi = 0), t = Ti marks their ICU discharge, whereas for AMR patients
(yi = 1), it denotes the day their culture is identified as AMR. Given the variability in MTS
lengths, we adopt a 14-day temporal window, informed by literature and clinical expertise [188,
189]. For each patient, if Ti < 14, we use their original MTS (Xi) as input; if Ti ≥ 14, only the
first 14 columns of Xi are utilized.

This windowing choice is supported by previous studies, which suggest that longer win-
dows in models handling irregular MTS lengths are more effective in predicting AMR onset
compared to shorter windows or models that standardize MTS lengths through imputation [21].
The 14-day window is clinically significant: it represents a critical period for AMR germ emer-
gence in the ICU and is the standard quarantine duration for patients identified with AMR
infections [188]. These modeling decisions are thus deeply rooted in both empirical research
and practical clinical protocols [189].

5.3.2 Early Prediction of Antimicrobial Multidrug Resistance Emergence
Using All Features

This subsection focuses on predicting the early emergence of AMR using a range of data
recorded in EHRs. We employ various data-driven models, non-multimodal (MLP, GRU) and
multimodal (JHF, FHSI, LFCO), utilizing all the features set. The mean and standard deviation
of Accuracy, Specificity, Sensitivity, and ROC AUC are calculated across three test splits, as
shown in Table 5.1. The same three test sets were considered in all the experimental work to
maintain fairness with all methods.

The table reveals that the MLP model, limited to static variables, exhibits suboptimal per-
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Method Accuracy Specificity Sensitivity ROC AUC
MLP 58.60 ± 0.52 58.62 ± 0.48 58.37 ± 4.64 62.29 ± 2.34
GRU 63.19 ± 2.47 59.91 ± 4.17 77.83 ± 5.83 75.50 ± 0.36
FHSI 62.76 ± 3.25 59.17 ± 4.45 78.98 ± 3.56 76.74 ± 1.36
JHF 65.14 ± 1.55 62.58 ± 1.29 76.55 ± 1.80 76.20 ± 1.17

LFLR 67.25 ± 2.29 65.90 ± 3.56 73.75 ± 3.76 76.21 ± 1.31
LFCO 60.92 ± 3.14 56.39 ± 4.38 81.38 ± 3.53 76.18 ± 1.31

Table 5.1: Performance summary with mean ± standard deviation for accuracy, specificity,
sensitivity, and ROC AUC on three test partitions, considering all features. Highest

performances are highlighted in bold.

formance with an ROC AUC of 62.29%, likely attributed to its exclusion of temporal patient
data. In contrast, LFLR excels in Accuracy and Specificity, recording the highest mean scores
at 67.25% and 65.90%, respectively. Notably, LFCO surpasses its counterparts in Sensitivity,
achieving a mean score of 81.38%, indicating its superior ability to identify true positives. Re-
garding ROC AUC, a key indicator of a model’s discriminatory power between classes, FHSI
and LFLR show nearly equivalent efficacy, with FHSI marginally ahead at 76.74%. This sug-
gests that while both models proficiently classify both classes, FHSI holds a slight edge. Addi-
tionally, the GRU and multimodal models, incorporating both MTS and static variables, demon-
strate similar results, with multimodal models showing a modest enhancement.

Building on the methodology of Martinez et al. (2022) [21], further experiments will in-
tegrate FS methods and interpretable mechanisms. This approach aims to enhance our un-
derstanding and improve model performance beyond the preliminary results presented in this
section.

5.3.3 Feature Selection and Interpretability for Knowledge Extraction

The preceding subsection detailed preliminary experiments yielding unfavorable results. To
enhance our understanding and improve model performance, we delved deeper into our dataset
using FS processes and various interpretable models.

We initiated our analysis using the FS process. Figure 5.2 illustrates a matrix aligning vari-
ables in columns against FS techniques in rows (see Sec. 5.2.1). Blue cells denote selected
features. This matrix segregates classical FS methods (CIB, CMI, GLASSO) at the top, with
PFI results applied on each of the models presented at the bottom. A majority voting scheme
among the classical methods was employed, selecting features endorsed by at least two meth-
ods. The PFI analysis highlighted key features such as patient age, SAPS-3 score, and year
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of admission for static variables, as well as MV and AMR neighbors for MTS. Notably, CF1
and PEN antibiotics were frequently selected by PFI methods. Classical methods displayed
a broader feature selection range, particularly in MTS, with less consensus compared to PFI
methods. Shared selections across all methods included CAR and PEN antibiotics, patient age,
gender, SAPS-3 score, and admission year.

Clinically, the selected features align well with existing literature, as confirmed by the UHF
staff. The relevance of the SAPS-3 score, MV, and AMR neighbors corroborates clinical ex-
pectations. Once the FS approaches have been applied, we examine these features through
interpretable mechanisms outlined in Sec. 5.2.3.

C
la
ss
ic
al

P
FI

CIB

CMI

GLASSO

Voting

NM

JHF

FHSI

LFLR

LFCO

Figure 5.2: Feature Selection Matrix for Static and MTS data (in columns) and FS approaches
(classified as PFI and classical techniques in rows). Dark blue cells indicate selected features.

NM results encompass both MLP for static data and RNN for MTS.

Figure 5.3 showcases a heatmap for NLHA scores using the FHSI model, which demon-
strated optimal performance. This heatmap, depicting feature importance across time slots (with
’0’ signifying ICU admission day), focused solely on MTS. Mechanical ventilation emerged as
a crucial variable, particularly in early patient stay days.

Following the FS results, we analyze the attention scores obtained when applying the NLHA
and HAM mechanisms. Figure 5.3 showcases a heatmap for NLHA scores using the FHSI
model, which demonstrated optimal performance. The heatmap’s columns correspond to fea-
tures, while rows to time-slots of the MTS under study (‘0’ denotes the day of the ICU admis-
sion). This visualization focuses on MTS, excluding static variables, to emphasize the impor-
tance scores of features and time slots. Since NLHA generates an attention matrix θi for each
sample, the Figure 5.3 represents the average across all the attention matrices. Notably, MV
emerges as the most significant variable, followed by the patient’s number of AMR neighbors,
aligning with prior PFI technique findings. Early days of hospitalization show elevated scores
for the MV feature, underscoring its criticality in patient care during initial ICU stay.
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The scores of attention corresponding to the matrix A of the HAM architecture using the
FHSI black-box model are presented in Figure 5.4. The representation is similar to the one
presented for Figure 5.3. The importance of MV and the number of AMR neighbors is also
evidenced here, particularly during the initial phase of a patient’s hospitalization. Antibiotics
such as CAR, GLI, or PEN also have high scores on the first day of the patient’s stay.
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Figure 5.3: Heatmap of average θi matrices for the NLHA model. Displaying feature
importance scores over time steps as rows (with ’0’ denoting ICU admission day) and features

as columns.
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Figure 5.4: Heatmap of the matrix A for the Ham model. Displaying feature importance scores
over time steps as rows (with ’0’ denoting ICU admission day) and features as columns.

Figure 5.5 displays the scores of the Dynamask mechanism when applied in conjunction
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with the FHSI model, chosen for its marginally superior ROC AUC compared to alternative
models. The figure’s columns correspond to features and rows to distinct time slots of the
MTS under study, starting from ICU admission (denoted as ’0’). Similar to Figures 5.3 and
5.4, Figure 5.5 focuses solely on MTS, highlighting the significance of both features and time
steps. Notably, the figure underscores the relevance of MV and the number of AMR neighbors,
consistent with their high importance in Figures 5.3 and 5.4. Additionally, the Dynamask mech-
anism attributes considerable importance to factors such as the CAR antibiotic family, results
from prior cultures identifying non-AMR germs, and the number of neighbors of the patients,
indicating their significant roles in the model’s analysis.
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Figure 5.5: Importance score heatmap generated by the Dynamask model applied to a
pre-trained FHSI model. Columns represent features, rows indicate time-steps (’0’ Marks the

ICU Admission Day).

The LFCO model previously presented can also give us knowledge about the task to solve.
The weights wMLP and wGRU , representing the significance of static and MTS variables, respec-
tively, are pivotal for this analysis. A wMLP value above 0.5 signifies greater relevance of static
variables, whereas lower values highlight the predominance of MTS variables. This dichotomy
is predicated on the LFCO’s sole constraint: wGRU + wMLP = 1. Our experiments show
that the mean value of wMLP, is 0.34 (standard deviation of 0.03). Therefore, we can conclude
that considering the LFCO scores, the MTS are more important than the static variables. This
statement is aligned with the comparative analysis of MLP and GRU outcomes in the previous
section (see Table 5.1).

To investigate the temporal aspects of our dataset, we conducted an analysis focusing on the
patient’s stay. This research is clinically significant, as it identifies specific time frames when
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heightened vigilance is necessary to prevent the emergence of AMR germs.

Utilizing the TPI methodology applied to the previously established FHSI model , we an-
alyzed the significance of various time steps. The results revealed that the initial days of the
hospital stay (specifically the first, second, third, and fourth), together with the eleventh and
fourteenth-time steps, hold the greatest importance, as evidenced by their high TPI scores (0.26,
0.91, 1.00, 0.38, 0.29, and 0.41 respectively). In contrast, the other time steps demonstrated rel-
atively lower significance, averaging a score of 0.14. These findings suggest two key insights:
firstly, the initial days of hospitalization are crucial for predicting AMR development, a hypoth-
esis supported by many patients developing resistance within the first 72 hours. Secondly, the
significance of the last day in patients with windowed MTS implies a potential need for extended
observation windows. However, subsequent exploratory analysis indicated that extending the
observation window may not yield better predictive performance.

5.3.4 Analysis of the Selected Features

To assess the effectiveness of using FS strategies in AMR prediction models, we compared the
performance of models trained with different FS techniques. The results, detailed in Table 5.2
focus on four critical figures of merit: Accuracy, Specificity, Sensitivity, and ROC AUC. The
Table is organized based on two categories of FS strategies. The first category includes classical
FS strategies, employing methods such as CIB, CMI, GLASSO, and a voting procedure. In con-
trast, the second category focuses on features selected through PFI techniques. While various
features were initially tested, the optimal results emerged from using 3, 4, and 5 MTS alongside
3 static features (patient age, SAPS-3 score, and year of admission). Key findings indicate that
PFI strategies outperform classical FS methods, with an average ROC-AUC of 78.77 compared
to 70.46 for the latter. Within classical FS techniques, GLASSO emerges as the most effective,
while CMI shows the weakest performance.

Analyzing the performance of individual classifiers, the MLP underperforms, as was pre-
viously discussed in Sec. 5.3.2, potentially due to its limited use of static variables. The GRU
classifier tends towards higher sensitivity, especially when paired with CIB features. This char-
acteristic could be advantageous when the cost of missing a positive classification is significant.
In contrast, the FHSI classifier exhibits robustness and versatility, showing consistently high
performance across various metrics, particularly in terms of accuracy and ROC AUC. This con-
sistency points to the FHSI classifier’s potential as a reliable tool for generalizable predictive
modeling. Meanwhile, the LFLR and LFCO classifiers, though showing moderate performance,
do not distinctly excel in any specific metric, indicating a more balanced but less specialized
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performance profile.

The variability in the performance metrics, as indicated by the standard deviation values, is
crucial for understanding the consistency and reliability of the classifier-feature pairings. This
aspect is particularly important in predictive modeling, where stability and predictability of
outcomes are key. The multimodal techniques, which include static variables like the age of the
patient, SAPS-3 score, and year of admission, demonstrate the effectiveness of integrating both
dynamic and static factors in classification tasks with an average ROC AUC of 76.85.

Finally, the results indicate a particularly strong performance from the FHSI classifier using
3 MTS + 3 features, which stands out across all metrics. This finding suggests an optimal inter-
play between the classifier and the specific combination of features, highlighting the importance
of FS in enhancing classifier performance. This configuration achieved the highest Accuracy
(73.89 ± 3.55), Specificity (72.63 ± 5.43), and ROC AUC (84.33 ± 1.38). The higher bal-
ance achieved between sensitivity and specificity in this configuration underscores its potential
applicability in scenarios requiring high-precision classification.

In conclusion, the results from the table underscore the significance of selecting appropriate
classifiers and feature sets in predictive modeling, especially in complex, multimodal contexts.
The standout performance of the FHSI classifier with a specific feature combination offers
a valuable model for future studies. This analysis not only highlights the nuanced interplay
between classifiers and features but also emphasizes the necessity for careful, informed choices
in the design of predictive models to optimize performance and reliability.

5.4 Conclusions

This chapter improved the previous DL models by integrating multimodal architectures and in-
terpretable models, leveraging the synergistic potential of diverse data types. This marked a
significant advancement in the realm of AMR prediction. The application of multimodal ap-
proaches addressed the inherent limitations of unimodal systems, allowing for a more compre-
hensive understanding of AMR dynamics and enhancing the predictive accuracy and reliability
of AMR detection models.

Key contributions included the development of innovative multimodal architectures, such
as the JHF and the FHSI, alongside late fusion models like the LFCO and the LFLR. These
models were adeptly tailored to process static data and MTS, proving vital in understanding
patient conditions and predicting AMR emergence.
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Furthermore, the chapter emphasized the importance of interpretability in these models,
especially given their application in critical clinical settings. The integration of attention mech-
anisms, dynamic masking, and TPI significantly enhanced the interpretability of the models.
These methods provided insights into the most informative parts of the time series and revealed
the impact of individual time points or features on model output, thereby facilitating a deeper
understanding of the model’s decision-making processes. The extensive suite of experiments
and the analysis of results presented in this chapter demonstrated the efficacy of these models
and interpretability methods. Also, improving the previous FS process with a new methodology,
such as PFI, substantially improved model performance. These results underlined the necessity
of careful FS in building robust and accurate predictive models. Both interpretable mechanisms
and FS implementation showed that MV and the # AMR patients are key factors in AMR devel-
opment. Certain antibiotics like Carbapenems, Cephalosporins, Glycopeptides, and Penicillins
are also important. This aligns with existing research, which notes the common use of these
antibiotics and links invasive procedures like mechanical ventilation to increased infection and
resistance risks.
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Data Source Method Features Accuracy Specificity Sensitivity ROC AUC

Classical FS

MLP

CIB features 58.12 ± 4.46 58.95 ± 6.74 54.38 ± 6.58 61.92 ± 1.40
CMI features 49.74 ± 9.55 45.14 ± 13.53 70.96 ± 10.19 62.23 ± 1.23

GLASSO features 58.12 ± 4.46 58.95 ± 6.74 54.38 ± 6.58 61.92 ± 1.40
Voting features 58.12 ± 4.46 58.95 ± 6.74 54.38 ± 6.58 61.92 ± 1.40

GRU

CIB features 64.14 ± 3.71 59.96 ± 3.78 82.75 ± 3.31 78.83 ± 3.39
CMI features 37.29 ± 4.12 27.07 ± 7.64 81.84 ± 8.02 60.22 ± 3.24

GLASSO features 68.72 ± 1.65 67.31 ± 2.50 75.38 ± 3.93 78.80 ± 1.62
Voting features 47.68 ± 2.98 42.85 ± 3.18 69.43 ± 0.28 60.99 ± 2.79

JHF

CIB features 68.57 ± 2.50 67.04 ± 3.92 75.64 ± 4.38 79.05 ± 1.39
CMI features 58.02 ± 3.30 55.70 ± 5.13 67.78 ± 3.86 65.11 ± 1.64

GLASSO features 69.41 ± 2.47 67.97 ± 3.25 76.21 ± 3.33 80.07 ± 2.30
Voting features 58.23 ± 0.93 56.76 ± 1.61 64.76 ± 4.08 65.12 ± 3.06

FHSI

CIB features 71.52 ± 3.23 70.43 ± 4.68 76.82 ± 3.96 81.01 ± 0.21
CMI features 56.80 ± 1.46 54.07 ± 1.89 68.79 ± 2.36 66.66 ± 1.27

GLASSO features 68.83 ± 4.13 65.95 ± 5.73 82.46 ± 4.13 81.76 ± 2.43
Voting features 62.82 ± 2.49 63.44 ± 3.31 60.23 ± 1.58 66.95 ± 1.62

LFLR

CIB features 70.04 ± 1.81 68.78 ± 2.02 75.73 ± 0.74 78.49 ± 1.82
CMI features 54.22 ± 3.14 50.49 ± 4.53 71.44 ± 4.40 65.55 ± 0.25

GLASSO features 69.99 ± 0.49 68.51 ± 1.00 76.89 ± 2.91 79.34 ± 0.42
Voting features 54.96 ± 5.53 51.36 ± 6.60 71.02 ± 2.09 65.72 ± 3.23

LFCO

CIB features 67.62 ± 1.38 65.49 ± 1.91 77.37 ± 1.81 78.47 ± 1.23
CMI features 50.21 ± 5.18 43.66 ± 7.57 79.81 ± 7.14 65.55 ± 0.34

GLASSO features 68.93 ± 2.76 67.19 ± 4.13 77.30 ± 4.57 79.99 ± 0.66
Voting features 52.58 ± 5.75 48.85 ± 6.70 69.66 ± 2.33 65.57 ± 2.78

PFI

MLP
3 features 46.04 ± 3.77 39.54 ± 6.97 74.17 ± 7.98 62.09 ± 1.07
4 features 62.29 ± 0.97 64.00 ± 1.56 54.88 ± 1.57 62.16 ± 0.71
5 features 52.85 ± 2.02 50.50 ± 2.68 63.33 ± 2.27 62.60 ± 1.19

GRU
3 MTS 67.51 ± 3.03 64.47 ± 3.22 81.16 ± 1.37 81.85 ± 1.43
4 MTS 68.78 ± 2.90 66.42 ± 3.66 79.62 ± 1.35 80.88 ± 1.90
5 MTS 67.14 ± 2.57 64.09 ± 2.64 80.93 ± 3.16 80.68 ± 2.44

JHF
3 MTS + 3 feat. 71.89 ± 1.74 70.02 ± 2.10 80.49 ± 6.32 82.94 ± 2.01
4 MTS + 3 feat. 69.36 ± 1.90 67.18 ± 2.41 79.35 ± 1.81 81.61 ± 1.06
5 MTS + 3 feat. 69.78 ± 2.45 68.61 ± 2.72 75.23 ± 4.34 80.97 ± 2.24

FHSI
3 MTS + 3 feat. 73.89 ± 3.55 72.63 ± 5.43 79.47 ± 5.62 84.33 ± 1.38
4 MTS + 3 feat. 71.94 ± 3.03 69.49 ± 4.53 82.27 ± 5.49 83.48 ± 2.68
5 MTS + 3 feat. 71.84 ± 1.81 69.86 ± 3.48 80.01 ± 4.82 82.92 ± 2.08

LFLR
3 MTS + 3 feat. 68.88 ± 2.87 66.82 ± 3.68 78.56 ± 4.25 81.83 ± 1.69
4 MTS + 3 feat. 68.93 ± 1.55 66.60 ± 2.44 79.84 ± 4.17 82.07 ± 1.28
5 MTS + 3 feat. 68.09 ± 1.20 66.06 ± 1.10 77.28 ± 4.02 81.32 ± 1.85

LFCO
3 MTS + 3 feat. 69.78 ± 1.71 68.26 ± 2.13 76.88 ± 2.98 82.25 ± 1.37
4 MTS + 3 feat. 69.41 ± 1.47 67.61 ± 1.52 77.65 ± 2.40 81.50 ± 1.45
5 MTS + 3 feat. 69.25 ± 1.30 66.42 ± 1.42 81.72 ± 1.67 82.32 ± 1.04

Table 5.2: Performance summary with mean ± standard deviation for Accuracy, Specificity,
Sensitivity, and ROC AUC across three test partitions, This experiments consider: classical-FS
and PFI methods (first column); various classifiers including MLP, GRU, JHF, FHSI, LFLR,

and LFCO (second column); and different feature sets identified by each approach (third
column). All the multimodal methods (JHF, FHSI, LFLR, and LFCO) utilize the same static
variables (patient age, SAPS-3 score, and year of the admission). The highest values for each

figure of merit are highlighted in bold.
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Chapter 6

Data and Network Analytics for
COVID-19 Intensive Care Unit Patients

6.1 Introduction

In the wake of the COVID-19 pandemic, understanding patient health trajectories has become
crucial, particularly in the context of treatment strategies and symptom progression [190]. Tra-
ditional models have often been inadequate, leaving gaps in effective patient management and
treatment protocols. To address these limitations, our study introduces a novel graph-based data
science approach uniquely tailored to analyze COVID-19 patient trajectories more accurately
and informally. This method, diverging significantly from conventional linear or less dynamic
models, allows for a more comprehensive understanding of the interplay between patient co-
morbidities, prior medications, and symptomatology. It is designed to track patient progress
through various critical stages of the disease, from symptom onset to emergency department
arrival, hospitalization, and ICU admission. It offers a dynamic perspective on disease progres-
sion and treatment responses [191].

We classified the patient population into two groups: those who succumbed to the condition
(deceased) and those who survived ICU admission (non-deceased). This classification is essen-
tial for understanding the different trajectories and outcomes of COVID-19 patients, allowing
for a comparative analysis that can reveal critical trends and information essential for enhancing
future treatments. To unravel the complexities within the patient data, our methodology first em-
ploys a CIB method to identify significant characteristics and differences between the deceased
and ICU survivor groups. Following this, we employ graph-based models and network analysis

89
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techniques to explore simple pairwise and more intricate relationships among clinical features.
These analytical tools give clinicians novel perspectives and insights into patient evolution and
symptom development. Overall, the approach not only offers an innovative analytic tool for
the clinical setting but also improves more informed decision-making, potentially enhancing
patient care and treatment outcomes [192].

6.2 Time Series Processing Based on Graph Modeling

Clinical data, with its high-dimensional and heterogeneous characteristics, poses more signifi-
cant analysis challenges than traditional datasets. This complexity is evident in clinical records,
which include variables of diverse nature, some of which are static while others are dynamic.
This variability and the often limited number of patient samples limit the use of many traditional
statistical methods, which rely on large datasets. Addressing these issues, this dissertation em-
ploys robust non-parametric data science techniques to analyze and gain insights from EHR in
the COVID-19 dataset. We also utilize graphs representing pairwise associations among het-
erogeneous features in the EHR to model the data. Graphs, as mathematical structures, offer
versatility and a well-established analytical framework [81]. Their utility spans various data
science domains, such as ML [82], signal processing [83], and statistics to structure complex
datasets and integrate into data processing and learning pipelines [84]. Graphs also provide
relative ease of understanding and effective visualization of high-dimensional data [82, 83, 85].

Previous research has illustrated the efficacy of network approaches in various healthcare
contexts, including visualizing collaborative EHR use in heart failure [86], modeling disease
graphs [87], and predicting unknown adverse drug reactions [88]. While graph-based method-
ologies for MTS in EHR are less common, prior research findings have demonstrated their po-
tential efficacy in early outbreak detection and in enhancing our comprehension of the clinical
trajectory of COVID-19 patients [89, 90, 91].

This chapter aims to demonstrate the application of data-based and graph-based network
analytics on static, dynamic, and MTS variables in the EHRs of COVID-19 patients with vary-
ing conditions, treatments, and outcomes. We conduct a case study on COVID-19 patients in
a Spanish ICU, focusing on relational insights from their EHRs. Our approach, centered on
network analytics via graphs, seeks to understand the progression of COVID-19 and associated
drug treatments from symptom onset to ICU discharge.

Given the clinical variables available in our dataset and the constraints imposed by our
sample size, our analytical approach primarily adopts a descriptive framework. We focus on
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the identification of correlations and associations among these variables. It is important to note
that this descriptive analysis establishes the basis for future predictive studies. However, the
viability and accuracy of predictive modeling depend on the acquisition of supplementary data
in subsequent phases of the research.

6.3 Graph Modeling Using Correlation Coefficients

Analyzing MTS in clinical settings is challenging due to data sparsity, irregular sampling, and
noise. Graphs have become an effective tool for data analysis, offering an intuitive framework
for visualizing datasets with irregular structures [84]. Graphs efficiently represent, analyze, and
visualize data over irregular domains [84]. A graph G comprises a node set N = {n1, ...,nI}
and an edge set E , where an edge (ni,n j) ∈ E signifies a relationship between nodes ni and
n j. These relationships can be binary or weighted, with the weight indicating the relationship’s
strength. In data analytics, graph nodes often correspond to variables, and edges are constructed
using various methods, including correlation or influence measures [84, 85].

In this research, we compute associations between variable pairs using three correlation
coefficients due to the variables’ heterogeneous nature (numerical/binary). The Pearson coef-
ficient assesses pairwise correlations between numerical features [193], while the Phi coeffi-
cient is used for binary features and the Point-Biserial coefficient for binary-numerical feature
pairs [194]. To manage large edge counts in constructed graphs, we apply a thresholding scheme
using K-means clustering (K = 2) to categorize edges as relevant or irrelevant [124]. This tech-
nique also accommodates the variables’ heterogeneity by allowing different thresholds for each
edge type.

Once the surviving edges (and their strength) have been obtained, the graph’s global con-
nectivity is represented by the adjacency matrix A, size J × J for static and I × I for dynamic
features. In the last case, the matrix entry Ai, j is zero if nodes ni and n j are unrelated. The
adjacency matrix allows us to measure the connectivity of a specific node using the normalized
weighted degree di =

1
I ∑

I
j=1 |Ai, j| definition.

We propose a methodology that involves defining temporal intervals to address the temporal
nature of many variables within our dataset. Subsequently, we construct graphs associated with
each of these intervals separately for both deceased and non-deceased patients. In modeling
MTS, various data-processing tools are available for consideration [195]. Previous research
has utilized a feature engineering approach, drawing on clinical expertise to create tailored
features from existing data [196, 153]. In contrast, our approach follows a more conventional
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approach. We represent each of the temporal signals describing drug intake for patient m (i.e.,
each row of Xm) using a statistical summary. Specifically, we calculate the mean, such that the
matrix Xm ∈ RI×Tm is transformed into the vector xm ∈ RI . Each entry of xm corresponds to
the aggregated number of doses of drug i administered to patient m, divided by the number of
columns in Xm. Significantly, our analysis often focuses on specific periods of time, such as
the duration a patient spends in the ICU. In such instances, we condition the mean calculation
to the relevant interval by selecting only the columns of Xm corresponding to that period. We
then divide by the number of days that patient m spent within that interval. Once we have
generated the signals xm for all patients (m = 1, ...,M) within the designated interval of interest,
we proceed to construct graphs separately for the deceased and non-deceased populations. This
method allows us to effectively explore the temporal dynamics and relationships within our
data.

Beyond constructing graphs, we analyze their topological properties using graph-theoretical
tools to understand feature relationships, including their temporal evolution. Key metrics in this
analysis are edge density η(G ) = 1

I−1 ∑
I
i=1 di and edge entropy H(G ) = −∑

I
i=1 di lndi, which

help in assessing network complexity and graph complexity [84, 81]. These metrics facilitate
understanding of the global dataset properties, with edge entropy offering insights into graph
structures and motifs [197]. The overarching goal of our graph approach is to gain a deeper
understanding of the COVID-19 dataset.

Static Feature Analysis

This analysis begins by examining static features such as symptoms, comorbidities, regular
medication, and demographic variables of COVID-19 patients. In the subfigures of these sub-
sections, we construct two distinct graphs to elucidate the disparities in disease outcomes: one
for deceased patients (Gd) and another for survivors (Gnd), as illustrated in Figure 6.1. These
figures also incorporate the difference in adjacency matrices (Ā = Ad −And), with node sizes
indicating the prevalence of symptoms and comorbidities, and edge widths reflecting the corre-
lation strength between features.

The graphical analysis shown in Figure 6.1 reveals the prevalence of comorbidities, such as
hypertension, diabetes, and obesity. Moreover, it underscores the prominence of fever, cough,
and dyspnea as dominant symptoms.

It is worth noting that within G d (the graph associated with deceased patients), nodes rep-
resenting heart disease and smoking exhibit larger sizes compared to G nd (the graph linked to
non-deceased patients). Furthermore, there is a distinction in the usage of medications, with
deceased patients more frequently using ACE inhibitors, while survivors predominantly used
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(a)                                                                                                         (b)

Figure 6.1: A visual representation of the network for demographic variables, symptoms,
comorbidities, and regular medication is presented as follows: (a) Graph for deceased patients;

(b) Graph for non-deceased patients; (c) Matrix representation of the difference between the
graphs in (a) and (b). In particular, the non-diagonal entries of the matrix in (c) A matrix

representation illustrating the differences between the graphs in (a) and (b). Additionally, the
diagonal elements within (c) represent the differences in means of the corresponding variables

between deceased and non-deceased patients.

ARA2. Additionally, G d demonstrates a slightly higher edge density of 0.06 compared to G nd,
which has an edge density of 0.05. This observation implies that deceased patients possessed
more intricate medical histories prior to contracting COVID-19. This complexity is further
supported by the edge entropy values, with H(G d) = 2.71 and H(G nd) = 2.53.

Specific differences include stronger associations in Gd between ARA2 and heart-related
comorbidities and a notable disparity in the immunosuppressants-age and immunosuppressants-
SAPS-3 edges between the graphs. Additionally, Gd demonstrates a stronger link between di-
arrhea and gender, while the smoking-SAPS-3 relationship is more pronounced in Gnd . Certain
medication nodes in Gnd exhibit strong connections with comorbidities.

The study identifies distinct pairwise relationships among demographic factors, comorbidi-
ties, medications, and symptoms. However, it is imperative to note that this descriptive approach
does not establish causality nor attribute differences solely to COVID-19 treatment strategies.
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Dynamic Feature Analysis

This section explores the dynamic aspects of COVID-19 treatment, focusing on the MTS
of drug administration. We aim to analyze how drug treatments interact for both deceased and
surviving patients over time. To achieve this objective, we have created eight distinct families
of graphs by partitioning the patient journey into separate intervals, including symptom on-
set, emergency department stay, hospital stay, and ICU stay. For each of these intervals, we
construct and compare graphs for deceased (G d) and surviving (G nd) patients. These graphs
enable us to assess disparities in drug administration frequency (node size) and the strength of
inter-drug relationships (edge strength) between the two patient groups.

Figure 6.2 presents the network analysis of drug treatments across four intervals: "Symp-
toms," "Emergency-Department Stay," "Hospital Stay," and "ICU Stay," each depicted over
three columns representing deceased patients, survivors, and the adjacency matrix differences
between these groups. The graphs demonstrate a time-varying pattern of drug use, with key ob-
servations for each interval. In the "Symptoms Interval," both G

(1)
d and G

(1)
nd show limited drug

variety, with a pronounced correlation between hydroxychloroquine and lopinavir/ritonavir, par-
ticularly in deceased patients. The "Emergency-Department Interval" exhibits increased com-
plexity, with disparities in edge density and entropy between G

(2)
d and G

(2)
nd , indicating a more

intricate drug network for survivors. The "Hospital Stay Interval" reveals a further expansion
in the drug variety, with lopinavir/ritonavir, hydroxychloroquine, and corticosteroid emerging
as the most common drugs. Here, G

(3)
d shows greater complexity compared to G

(3)
nd , with sig-

nificant correlations involving anakinra and tocilizumab in the former. The "ICU Stay Interval"
presents the most connected drug network, with all nine drugs in play. Deceased patients’
graphs (G (4)

d ) exhibit higher edge density and entropy, indicating an increased variety in treat-
ment attempts, with tocilizumab-remdesivir being a notable connection.

For a more granular analysis, we segment the 28-day "ICU Stay Interval" into four non-
overlapping 7-day periods, creating a series of weekly graphs (G (τ)

d and G
(τ)
nd for τ = 1, ...,4).

This breakdown, shown in Fig. 6.3, reveals that the initial two weeks witnessed similar treat-
ment complexities for both patient groups, with various drugs administered. However, in the
subsequent weeks, the complexity of deceased patients’ treatment regimes remains elevated,
potentially indicating unsuccessful treatments.

Throughout the study, the drugs most commonly administered across all intervals were
lopinavir/ritonavir, hydroxychloroquine, and corticosteroids. It was observed that the complex-
ity of treatment regimens for deceased patients tended to be higher, especially in the later stages
of their hospitalization. A significant trend identified was the gradual decrease in the usage of
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Figure 6.2: Network visualization of the drugs when considering non-deceased patients
(central column) and deceased patients (left column). Each row corresponds to: the

“Symptoms Interval” (a, b and c); the “Emergency-Department Stay Interval” (d,e and f); the
“Hospital Stay Interval” (g,h and i); and the “ICU Stay Interval” (j,k and l). The matrices

within each cell display the differences between the adjacency matrices for the deceased and
non-deceased patient graphs (non-diagonal entries), while the diagonal entries depict the

disparities in the average values of the variables between deceased and non-deceased patients
for the corresponding intervals.

lopinavir/ritonavir and hydroxychloroquine after the first two weeks. Notably, this increased
complexity in the treatment protocols for deceased patients during the latter half of their ICU
stays did not appear to correlate with improved outcomes.

Integrating Static and Dynamic Features

The culmination of our graph analysis involves integrating static and dynamic features into
a comprehensive graph. The bipartite graph links static variables (symptoms, comorbidities,
medications) with dynamic drug administration variables, providing a holistic view of the pa-
tient data during the ICU stay. This integrated graph explores correlations between static pa-
tient characteristics and dynamic drug treatment patterns. The connections within this graph
are categorized into three types: links between nodes within N J , those within N I , and links
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Figure 6.3: Visual network analysis for MTS drug treatments using non-overlapping 7 day
intervals over a span of 28 days, with day t = 0 representing admission to the ICU) for (a)

deceased who died and (b) patients who survived.
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(a) (b)

Figure 6.4: Visual network analytics illustrating the connections between the static variables
(left-hand side nodes ) and MTS variables (right-hand side nodes) during the “ICU Stay

Interval” for (a) deceased patients and (b) non-deceased patients.

connecting nodes from N J to N I . Essentially, this graph is a union of three subgraphs: the
static variable graph, the dynamic variable graph, and a new subgraph depicting interactions
between static and dynamic variables.

In focusing on the "ICU Stay Interval," we compute and illustrate the integrated graphs for
both deceased (Ḡ d) and non-deceased (Ḡ nd) patients in Fig. 6.4. This representation shows
J = 18 static variables on the left and I = 9 dynamic variables (drugs) on the right. The re-
sulting subgraph is bipartite, as each link connects a node from N J to N I , with no overlaps
within these sets, simplifying the graph’s interpretation. The edge weights are determined using
Pearson correlation for links between age and SAPS-3 nodes in N J , drug nodes in N I , and
Point-Biserial correlation for the remaining connections.

A comparative visual analysis of Ḡ d and Ḡ nd indicates structural similarities but highlights
stronger connections in Ḡ nd, particularly between smoking and interferon beta-1b, and corti-
costeroids with regular medication variables. Notably, the complexity measures of these graphs,
such as edge density (η) and entropy (H), are quite similar for both groups, with η(Ḡ d) = 0.04,
η(Ḡ nd) = 0.04, H(Ḡ d) = 2.6, and H(Ḡnd) = 2.5. This similarity in graph structure indicates
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that the main differences between the patient groups lie in the specific strengths of certain con-
nections rather than in the overall topology of the graphs.

6.4 Results of Graph-Predictive Models

This section focuses on using graph-based methods to analyze complex interactions between
variables in datasets of deceased and non-deceased COVID-19 patients. These graphs pave the
way for developing schemes to predict patient outcomes based on their clinical data. Despite
this approach’s innovative potential, the small size of our dataset poses challenges to its reli-
ability. However, sharing preliminary findings is beneficial for evaluating the effectiveness of
such approaches. Nevertheless, sharing preliminary early results is beneficial for evaluating the
potential and effectiveness of such approaches.

To clarify how to design of a graph-based predictive model, consider a scenario where zi

represents a vector denoting the proportion of drug intakes for a given patient i. Utilizing the
graphs Gd and Gnd , we can construct a two-feature vector fi = [zT

i (I+Ad)
−1zi; zT

i (I+And)
−1zi]

for each patient i, as proposed in Marques et al. (2017) [198]. In this framework, the elements
of fi evaluate the smoothness of zi across the respective graphs. This assessment is crucial, as it
quantifies the degree of variance in the patient’s drug intake relative to the inherent variability
encapsulated within the adjacency matrices Ad and And [85].

The efficacy of such classifiers is related to their specific architecture. However, initial
experiments employing elementary classifiers, such as the nearest centroid classifier and a
3-nearest neighbors classifier [124], have demonstrated promising results, with accuracy and
specificity exceeding 70%. Furthermore, when employing a rudimentary leave-one-out cross-
validation approach, the performance only decreases marginally (approximately 5%), indicating
robustness in this preliminary methodology [124].

These early results should be viewed as an exploratory step into the potential application of
graph-based predictive models in clinical settings. Additional details into this methodology are
provided in the online appendix [199].

Results of Feature Importance within Bootstrap Confidence Intervals

We conducted a hypothesis test using CIB (see subsection 4.2.1 for the theoretical expla-
nation), resampling 3,000 times to establish the statistical significance of various parameters
related to COVID-19 treatment.

The analysis examined demographic variables, comorbidities, medications, and symptoms.
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They determined the CIs for both binary and numerical features, as illustrated in Fig. 6.5 (a) and
(b) of their bootstrapping results. Significantly, heart disease comorbidity and SAPS-3 scores
emerged as statistically significant variables. This was evidenced by a considerable divergence
of the empirical distribution’s mass from zero when comparing the means of these variables
between the two populations. Notably, certain variables like dyspnea, hematological cancer,
transplantation, ACE inhibitors, and HIV presented borderline statistical significance. Their
95% CIs marginally overlapped zero, suggesting that a lower confidence threshold (e.g., 90%)
might render these variables significant.

The research then shifted to analyzing the MTS, correlating the usage of various drugs in
treating COVID-19 with patient outcomes across the previously presented stages, as delineated
in Fig. 6.5 (c). As we work with MTS variables, we begin by computing the ratio of drug intake
days to the total duration of the interval for each patient within a given interval. Subsequently,
we employ a bootstrapping procedure on the patient data, wherein we evaluate CI∆P of each
drug and interval. It is essential to note that our statistic of interest in this context is the mean
value.

During the "Symptoms Interval," no significant differences were observed in drug admin-
istration between deceased and surviving patients. However, in the "Emergency-Department
Stay Interval," deceased patients more frequently received lopinavir/ritonavir and chloroquine.
Intriguingly, during the "Hospital Interval," chloroquine was more associated with surviving
patients, alongside tocilizumab, interferon beta-1b, and imatinib. In contrast, deceased patients
more often received hydroxychloroquine, corticosteroids, and azithromycin. The "ICU Stay In-
terval" analysis revealed that deceased patients were more likely to be treated with tocilizumab,
lopinavir/ritonavir, imatinib, hydroxychloroquine, corticosteroids, and anakinra.

6.5 Conclusions

This chapter presents a groundbreaking approach to understanding the complex trajectories
of COVID-19 patients in critical care. Employing graph-based network analytics provides a
holistic view of patient data, a significant advancement over traditional linear models.

The research makes several key contributions. It introduces a novel methodological frame-
work, employing graph-based techniques to process and analyze static and dynamic clinical
features. This approach offers a more comprehensive understanding of patient trajectories in
ICU settings. The study’s bifurcation analysis divides the patient population into deceased and
non-deceased groups and allows for a nuanced comparative analysis that reveals critical patterns
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Figure 6.5: CI∆P when employing bootstrapping techniques on both deceased and
non-deceased patient cohorts, with the mean as the chosen statistic. The figure presents the

results for three distinct feature categories: (a) binary static features encompassing
demographic variables, comorbidities, medication, and symptoms; (b) numerical static

features, specifically age and SAPS-3 (Simplified Acute Physiology Score); and (c) the ratio
denoting the patient’s drug intake days relative to the total duration of the patient’s interval.

Features exhibiting no statistically significant difference (0 ∈ CI∆P) are depicted in black. Blue
and red bars indicate features with statistically higher and lower average values, respectively,

for deceased patients.

and differences in COVID-19 patient outcomes. A significant aspect of the chapter is its use of
various correlation coefficients to construct detailed graphs, shedding light on the intricate re-
lationships between clinical variables. This enhanced interpretability of high-dimensional data
is crucial for understanding the complex interplay of patient comorbidities, medications, and
symptomatology.

The chapter also makes pioneering strides in exploring graph-based predictive models. Al-
though preliminary, this exploration sets a foundation for future research utilizing network an-
alytics for outcome prediction in clinical settings. The implications of this research are far-
reaching. It offers the potential for enhanced patient care by providing healthcare providers
with a deeper understanding of patient data, enabling more tailored and effective treatment
strategies. Additionally, the approach detailed in this thesis can be adapted to other diseases
and clinical settings, broadening its impact and applicability.

In conclusion, this thesis represents a significant advancement in the application of data
and network analytics in healthcare, particularly in the critical care of COVID-19 patients. It
not only enhances our understanding of complex patient data but also paves the way for future
innovations in healthcare analytics. The potential of this research extends beyond COVID-19,
offering a new approach to tackling various healthcare challenges with sophisticated analytical
techniques.



Chapter 7

Conclusions and Future Work

In this concluding chapter of the dissertation, we synthesize the main findings of the research
and discuss their impact and contributions to the field. This chapter is structured into three
subsections. The first, "Conclusions," recaps the main results and their contributions to the
field, linking them to the research questions and objectives outlined in Chapter 1. The subse-
quent section, "Limitations and Future Work," acknowledges the challenges faced during the
research and suggests possible areas for further investigation that could improve or expand the
current work. The chapter concludes with a "Concluding Remark," which briefly summarizes
the study’s impact and relevance, suggesting how it could influence future research and practice.

7.1 Conclusions

This thesis aims to advance DL and graph analytics for modeling clinical data of infectious
diseases by addressing challenges such as the limited number of patients, the irregularity in the
clinical MTS, and explainability.

The current global health situation is impacted by a rising wave of infectious diseases.
That situation is a challenge with economic and social impacts, which could lead to societal
changes. Consequently, it is essential to formulate and execute innovative strategies to tackle
this challenge effectively. Among the potential solutions, applying data-driven methodologies
is promising, providing healthcare professionals with advanced tools and capabilities to man-
age this critical issue. However, constructing data-driven models trained with real clinical data
introduces different challenges. These encompass the restricted number of patient data, irregu-
larities inherent in clinical MTS, and lack of interpretability, which altogether compromise the

101
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efficacy of these models. Such complexity demands careful attention to ensure the successful
use and efficacy of data-driven initiatives in the fight against infectious illnesses.

Firstly, in order to deal with the limited number of patients, we focus on two simple but
effective methods to address it: i) undersampling the majority class and ii) defining asymmetric
misclassification costs. When following an undersampling strategy, samples from the majority
class are randomly discarded until the number of elements in the majority and minority popu-
lations is similar. In the cost-sensitive approach, errors in a sample from the minority class are
penalized more than those from the majority class.

Secondly, given the time series’ irregular lengths and sampling intervals, it was necessary
to employ various modelling approaches to address these discrepancies. We have employed
different modellings: i) statistical modeling, ii) time-slot windowed modeling, iii) time-slot
masked modeling, and iv) graph modeling. Initially, statistical modeling—characterized by
summarizing the time series into a suite of statistics such as the mean, median, and standard
deviation—is employed to extract patterns and relationships within the data, serving as a foun-
dational tool for preliminary analysis. This method, however, may inadequately capture com-
plex temporal dynamics. However, time-slot windowed modeling facilitates the data analysis
within specific temporal windows, thus accounting for temporal fluctuations. However, it may
falter when handling missing data points. To rectify this, time-slot masked modeling is intro-
duced. This approach strategically masks specific time steps to handle missing data, providing a
more robust analysis in the face of incomplete data sets. Despite its strengths, this model alone
may not fully capture the interrelations between different variables. Hence, the final approach,
correlation-based graph modeling, is implemented. Correlation-based graphs are particularly
useful for analyzing irregular MTS because they do not rely on uniform time intervals to ex-
amine relationships among MTS. These graphs evaluate the strength of statistical relationships
between different observations, regardless of their occurrence time. Collectively, these diverse
modeling techniques provide a multi-faceted approach to address the complexities and irregular-
ities present in clinical MTS data, thereby bolstering the integrity and reliability of the ensuing
analyses.

Thirdly, enhancing model explainability, a crucial aspect of data-driven methodologies, de-
mands the implementation of a gamut of DL methods, each distinctive in its nature and func-
tionality. To address explainability, we use a set of explainable DL methods of different nature:
i) white-box explainable architectures, ii) post-hoc models, and iii) interpretable mechanisms
integrated into black-box models. In ML, a set of white-box models prioritizes transparency.
This transparency allows a clear understanding of their internal operations and decision-making
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processes. However, these models tend to be simpler and often fail to achieve the performance
levels of more complex models. In some situations, the use of those complex models known as
black-box models is necessary, which compromises their transparency. In such scenarios, post-
hoc models are introduced. These models understand the decision-making process of complex,
frequently black-box models and offer explanations after the fact. They reveal the "logic" be-
hind the model’s outputs, providing insights into its functionality. While post-hoc models offer
explanations for decisions after they are made, there is a need for a more proactive approach.
Thus, interpretable mechanisms integrated directly into black-box models are proposed. This
integration allows the model to offer immediate explanations, making its decision-making pro-
cess transparent. Together, these three approaches create a robust toolkit for addressing explain-
ability in DL, which is crucial for engendering user trust and facilitating effective utilization of
these models in healthcare contexts.

Finally, from a clinical standpoint, the implications drawn from this thesis are in line with
established literature, potentially validating the data-driven models in our specific clinical sce-
narios. For predicting the onset of AMR, our analysis underscores the pivotal role of mechanical
ventilation and the number of AMR patients in the ICU. Certain families of antibiotics, such
as Carbapenems, Cephalosporins, Glycopeptides, and Penicillins, emerge also as significant
features. This corroborates previous findings, highlighting the widespread use of these antibi-
otics and the association of invasive procedures, like mechanical ventilation, with heightened
infection and resistance risks.

Transitioning to the domain of COVID-19, our graphs confirm the prevalence of hyper-
tension, diabetes, and obesity as primary comorbidities, while heart disease and smoking are
more common among deceased patients. Additionally, fever, cough, and dyspnea emerge as
predominant symptoms. Moreover, deceased patients exhibit a more intricate medical history
compared to their non-deceased counterparts. Patient complexity intensifies during hospital
and ICU stays, reflecting critical conditions necessitating more complex antibiotic treatments.
Furthermore, during the initial phase of the pandemic, the combination of lopinavir/ritonavir,
hydroxychloroquine, and corticosteroids emerged as the standard treatment. Interestingly, the
association between age and hydroxychloroquine/lopinavir/ritonavir was slightly more potent
among deceased patients. However, it is essential to note that the World Health Organization
has reported that the hydroxychloroquine-and-lopinavir/ritonavir combination does not influ-
ence mortality rates among hospitalized COVID-19 patients [200].

It is important to remember that although these models provide encouraging insights, more
validation by clinical professionals through rigorous controlled trials is necessary. This is an
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important point that this work does not address.

7.2 Limitations and Future Work

While this thesis has addressed critical challenges for modeling and analyzing clinical data
associated with infectious diseases using DL and graph analytics methods, some limitations
and potential future work remain.

Focusing on the AMR dataset, the methodology outlined in this dissertation shows potential
for enhancing the administration of antibiotic treatments and the management of patient care
within ICUs. These strategies could prevent the spread of pathogens in these units. Addition-
ally, it may facilitate the prevention of potential AMR outbreaks within the ICU environment.
However, there is potential for further improvement of our future research trajectory through
more precise methodologies and enhanced analytical techniques. From a clinical perspective,
we intend to integrate novel features from supplemental sources, such as artificial nutrition and
hematological tests, into our current model. The integration of these variables could enhance
model performance and clinical interpretability. Furthermore, following encouraging results
reported by Hernandez et al. [25], we aspire to create unique models for each type of AMR
bacterial emergence. From an ML standpoint, we plan to explore alternative NN architec-
tures along with distance and similarity measures explicitly tailored for MTS and multimodal
data [201]. Another relevant line of work is to generalize the proposed model, which currently
focuses on predicting the first AMR, to provide a score of the risk of acquiring AMR infections
daily. Such an advancement could significantly aid real-time clinical decision-making, allowing
the dynamic adaptation of patient treatment strategies and swift isolation procedures, thereby
impeding AMR transmission within the ICU. Lastly, given the extensive presence of MTS and
multimodal data across various sectors, we are keen to adapt and apply our multimodal archi-
tecture to other domains, including finance, marketing, and transportation, thereby broadening
the applicability of our methodology beyond healthcare.

Focusing on the COVID-19 dataset, our future work encompasses several directions. First,
from a clinical perspective, we plan to collect and analyze a significantly larger dataset. This
expansion will include additional data from current patients, including post-COVID-19 symp-
toms, and data gathered across various healthcare institutions. We also intend to incorporate
new features like artificial nutrition and blood test results. Enriching the dataset will help val-
idate our preliminary findings, enhance the reliability of our models, and support the devel-
opment of advanced predictive algorithms. Additionally, we aim to rigorously investigate the



7.3. CONCLUDING REMARK 105

impact of COVID-19 on the increase in AMR. In the context of ML, the current research has
only employed a hypothesis test for feature selection, drawing upon bootstrap and confidence
intervals. We propose exploring alternative methodologies that foster a more dynamic interac-
tion with the model. We shall also integrate advanced tools to preprocess MTS that may enhance
robustness in assessing temporal dependencies. Our efforts shall encompass two separate yet
complementary facets of graph representation: i) the use of alternative algorithms to discern
graph structures from the data and ii) the examination of an expansive range of network-based
metrics. A crucial area of focus in our future work will be the construction of prediction models
poised to assist clinicians in making informed decisions. This encompasses models based on
MTS, graphs, or both. With the enlargement and diversification of our dataset, we anticipate de-
veloping more intricate mechanisms, such as graph neural networks. These sophisticated tools
will ensure that our models are robust and adaptable to the evolving landscape of healthcare
data.

7.3 Concluding Remark

In conclusion, this dissertation highlights the critical need for effective collaboration between
ML specialists and domain experts in the clinical context to predict the emergence of infectious
diseases. It emphasizes the necessity of interdisciplinary approaches to address the complex
real-world challenges presented. As DL and infectious disease prediction continue to develop
and converge, this dissertation will serve as a foundational work, stimulating further advance-
ments in this critical area of research. By establishing robust collaborations and implementing
cutting-edge research techniques, the scientific community can effectively contribute to address-
ing this urgent challenge.
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