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This is the first of a two-parts work on the qualitative properties and large time 
behavior for the following quasilinear equation involving a spatially inhomogeneous 
absorption

∂tu = Δum − |x|σup,

posed for (x, t) ∈ RN × (0, ∞), N ≥ 1, and in the range of exponents 1 < m <
p < ∞, σ > 0. We give a complete classification of (singular) self-similar solutions 
of the form

u(x, t) = t−αf(|x|t−β), α =
σ + 2

σ(m− 1) + 2(p− 1)
, β =

p−m

σ(m− 1) + 2(p− 1)
,

showing that their form and behavior strongly depends on the critical exponent

pF (σ) = m +
σ + 2
N

.

For p ≥ pF (σ), we prove that all self-similar solutions have a tail as |x| → ∞ of 
one of the forms

u(x, t) ∼ C|x|−(σ+2)/(p−m) or u(x, t) ∼
(

1
p− 1

)1/(p−1)
|x|−σ/(p−1),

while for m < p < pF (σ) we add to the previous the existence and uniqueness of 
a compactly supported very singular solution. These solutions will be employed in 
describing the large time behavior of general solutions in a forthcoming paper.
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1. Introduction and main results

The aim of this paper (and the forthcoming companion work Part II) is to establish qualitative properties 
and a study of the large time behavior for the following quasilinear absorption-diffusion equation

∂tu = Δum − |x|σup, (x, t) ∈ RN × (0,∞), (1.1)

posed for 1 < m < p < ∞ and σ > 0. This is a generalization, involving a spatially inhomogeneous weight, 
of an absorption-diffusion equation that is well understood by now, namely

∂tu = Δum − up, (x, t) ∈ RN × (0,∞). (1.2)

We stress here that, while the current work, devoted to the classification of self-similar solutions, which 
requires a structure that is invariant to a specific rescaling, only deals with (1.1), in the companion work 
dealing with the large time behavior of solutions, we may also consider more general weights �(x) with 
suitable properties instead of pure powers |x|σ.

The most interesting feature of Eq. (1.1) is the competition between the effects of the terms in the right 
hand side for exerting the strongest influence on the large time behavior of its solutions. Indeed, on the one 
hand, the diffusion of porous medium type expands the support of any compactly supported solution while 
conserving its L1 norm, while, on the other hand, the spatially inhomogeneous absorption term implies a 
decrease of the L1 norm of a solution to Eq. (1.1), influenced strongly by regions where |x| is large. This 
competition gives rise to a number of ranges, limited by critical exponents, in which the typical behavior 
of a solution (usually given by the particular cases of self-similar solutions) varies strongly. This is how 
different mathematical phenomena, as described below, occur.

Our range of interest in the present paper, that is, p > m > 1, originated a lot of interesting research in 
the final part of the past century in the quest to understand the mathematical analysis of the solutions to 
Eq. (1.2). One important critical exponent pF (0) = m + 2/N , known as the Fujita exponent and identified 
originally in reaction-diffusion problems starting from the seminal work by Fujita [13], plays a significant 
role also for our absorption-diffusion problem. Indeed, it has been proved that, either the porous medium 
equation governs the dynamics of Eq. (1.2) as t → ∞ if p ≥ pF (0), or there is a balance between the two 
terms leading to new asymptotic profiles in the form of very singular self-similar solutions, in the range 
m < p < pF (0). In particular, the problem of identifying self-similar solutions in the latter range has been 
considered in papers such as [7,25,26,29,33,36], where a number of different very singular solutions have 
been deduced, depending on their initial trace as t → 0. By very singular solution, we understand a solution 
(in weak or classical sense) to a partial differential equation (in our case (1.1) or (1.2)) having the following 
properties:

lim
t→0

sup
|x|>ε

u(x, t) = 0, (1.3)

and

lim
t→0

∫
|x|<ε

u(x, t) dx = +∞, (1.4)

for any ε > 0. It is by now understood that such solutions appear when a balance between the two terms 
in competition in the equation is achieved. Moreover, this class of solutions has had a great importance in 
understanding how general solutions to Eq. (1.2) behave, as considered in works such as [25,27,30,34] and 
references therein, where the large time behavior of solutions to Eq. (1.2) as t → ∞ is established. It has 
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been thus shown in the range m < p < pF (0) that the asymptotic profiles are self-similar solutions, which 
may either have a compact support or present a specific tail at infinity, depending on the decay of the 
initial condition u0(x) as |x| → ∞. Later on, very singular solutions in self-similar form have been deduced, 
emphasizing their importance for the large time behavior of integrable solutions, for a number of different 
equations involving a fast diffusion (that is, (1.2) with m < 1) in [10,31,32,40], a p-Laplacian term in, for 
example, [8,9,11,28,39] and an absorption in the form of a gradient term, see for example [4,5,16,17,43] and 
references therein.

Motivated by problems in mathematical biology as following from [15,35], equations mixing a porous 
medium diffusion and an absorption involving a spatially inhomogeneous weight have been considered at 
first by Peletier and Tesei in [37,38], where the authors study, in dimension N = 1, equations of the form

∂tu = (um)xx − a(x)up,

under some conditions on the weight a(x). The latter mentioned works are devoted to the threshold between 
positivity (that is, expansion of the support of a compactly supported data covering RN as t → ∞) and 
localization, which depends on whether p > m or p < m. Later, Belaud and Shishkov [1–3] studied the 
phenomenon of finite time extinction for absorption-diffusion equations involving more general weights than 
|x|σ but for the so-called range of strong absorption, that is, 0 < p < 1. Still considering Eq. (1.1) with 
0 < p < 1, the large time behavior of general solutions and conditions for finite time extinction, have 
been established in the recent papers [18,19]. Thus, in the present paper we extend the (well established 
for Eq. (1.2)) classification of solutions in self-similar form (either very singular or not) to Eq. (1.1), their 
application to large time behavior being left for a forthcoming work.

Main results. Our main object of study will be the radially symmetric self-similar solutions to Eq. (1.1) in 
the following form:

u(x, t) = t−αf(ξ), ξ = |x|t−β , (x, t) ∈ RN × (0,∞). (1.5)

Inserting the ansatz (1.5) into Eq. (1.1) and taking into account that p > m > 1, we obtain by direct 
calculations that

α = σ + 2
L

> 0, β = p−m

L
> 0, L = σ(m− 1) + 2(p− 1) (1.6)

are the similarity exponents, while the profiles f(ξ) are solutions to the differential equation

(fm)′′(ξ) + N − 1
ξ

(fm)′(ξ) + αf(ξ) + βξf ′(ξ) − ξσfp(ξ) = 0, (1.7)

together with the initial conditions (the second one being imposed by the radial symmetry)

f(0) = A > 0, f ′(0) = 0. (1.8)

Letting F = fm and applying the Cauchy-Lipschitz theorem to the Cauchy problem (1.7)-(1.8), we obtain 
that, for any A > 0, there is a unique solution f(·; A) which is positive in a maximal interval (of positivity) 
[0, ξmax(A)) with the property that

F (·;A) = fm(·;A) ∈ C2([0, ξmax(A)),

where either ξmax(A) = ∞ or ξmax(A) < ∞ and, in the latter case, we say that we have a compactly 
supported solution if moreover (fm)′(ξmax(A); A) = 0. With this discussion in mind, we are in a position to 
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state our results concerning the classification of the self-similar solutions f(·; A) according to their behavior 
as ξ → ξmax(A). First of all, we can establish a general result valid for any p > m.

Theorem 1.1. Let p > m > 1, N ≥ 1. Then, there exists A∗ ∈ (0, ∞) such that
(a) For any A ∈ (0, A∗], the solution f(·; A) to the Cauchy problem (1.7)-(1.8) is decreasing on its 

positivity region. Moreover, the limiting solution f(·; A∗) satisfies f(ξ; A∗) > 0 for any ξ > 0 and has the 
precise behavior at infinity

lim
ξ→∞

ξσ/(p−1)f(ξ;A∗) =
(

1
p− 1

)1/(p−1)

. (1.9)

(b) For any A ∈ (A∗, ∞), the solution f(·; A) to the Cauchy problem (1.7)-(1.8) has a unique positive 
minimum point ξ0(A) such that: f(ξ0(A); A) > 0, f(·; A) is decreasing for ξ ∈ (0, ξ0(A)) and increasing for 
ξ ∈ (ξ0(A), ∞).

Such an exhaustive classification has been given for the non-weighted case σ = 0 by Leoni in [33]. However, 
when σ > 0 things are more involved, since for σ = 0, there exists a constant solution to (1.7)-(1.8), namely

f(ξ) =
(

1
p− 1

)1/(p−1)

, (1.10)

which both corresponds to f(·; A∗) and to the local behavior (1.9) (which for σ = 0 is no longer a decay, but 
a constant behavior). In our case, such an explicit limiting solution ceases to exist for Eq. (1.1) and we have 
thus to prove the existence of a non-explicit one by different techniques. Moreover, while for σ = 0, profiles 
f(·; A) with A > A∗ are increasing always (as pointed out in [33]), in our case they start in a decreasing 
way in a right neighborhood of the origin, reach a positive minimum and then become increasing forever.

We are now left with the classification of the profiles f(·; A) with A ∈ (0, A∗), according to their behavior 
as ξ → ξmax(A) (either finite or infinite). As already noticed in the case of Eq. (1.2), this analysis will 
strongly depend on the Fujita-type exponent

pF (σ) = m + σ + 2
N

, (1.11)

which has been first analyzed in connection with reaction-diffusion problems and the phenomenon of finite 
time blow-up of solutions in, for example, [42,46]. The richest case is when m < p < pF (σ), when the 
classification is given in the next result.

Theorem 1.2. Let m > 1, σ > 0 and p ∈ (m, pF (σ)), where pF (σ) is defined in (1.11).

(a) There exists a unique decreasing, compactly supported self-similar profile solving the problem 
(1.7)-(1.8), that is, there exists a unique A∗ ∈ (0, A∗) such that ξmax(A∗) < ∞, f(·; A∗) is decreasing 
on [0, ξmax(A∗)] and (fm)′(ξmax(A∗); A∗) = 0.

(b) There exists A0 ∈ (A∗, A∗] such that for any A ∈ (A∗, A0) we have f(ξ; A) > 0 for any ξ ∈ [0, ∞)
and it has the decay

f(ξ;A) ∼ Cξ−(σ+2)/(p−m), as ξ → ∞, (1.12)

for some constant C > 0 (that might depend on A). For any A ∈ [A0, A∗], the profile f(·; A) presents the 
decay (1.9) as ξ → ∞.
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Let us stress here that the solution in the form (1.5) with self-similar profile as in Theorem 1.2, part 
(a), is a very singular solution. Indeed, for any x ∈ RN , |x| > 0, we have |x|t−β → ∞ as t → 0, and thus 
condition (1.3) is fulfilled, owing to the compact support of the profile f , while condition (1.4) follows from 
a direct calculation, based on the fact that

Nβ − α = N(p−m) − (σ + 2)
L

< 0.

In the meantime, the self-similar solutions (1.5) with profiles decaying as in (1.12) have as initial trace

lim
t→0

u(x, t) = C|x|−(σ+2)/(p−m), for |x| > 0, (1.13)

while condition (1.4) is still satisfied. Despite the fact that these solutions have a tail instead of a compact 
support, their importance for the large time behavior of general solutions for the homogeneous case σ = 0
given as Eq. (1.2) has been emphasized, for example, in [30] (see also [25]). Let us also mention here, 
in order to complete the panorama, that for A ∈ (0, A∗), the profile f(·; A) does not give rise to a non-
negative self-similar solution, as it changes sign at ξmax(A) ∈ (0, ∞) in the sense that f(ξmax(A); A) = 0
but (fm)′(ξmax(A); A) < 0.

Things are much simpler in the range p ≥ pF (σ).

Theorem 1.3. Let m > 1, σ > 0 and p ≥ pF (σ). Then, for any A ∈ (0, A∗) we have f(ξ; A) > 0 for any 
ξ ∈ (0, ∞). Moreover, there exists A0 ∈ (0, A∗] such that for any A ∈ (0, A0), f(·; A) has the decay (1.12)
as ξ → ∞, while for any A ∈ [A0, A∗], the profile f(·; A) presents the decay (1.9) as ξ → ∞.

Observe that the solutions u in the form (1.5) with profiles f(·; A), presenting once more a tail as ξ → ∞
and an initial trace as in (1.13) for |x| > 0, do no longer satisfy the condition (1.4), since now Nβ − α ≥ 0. 
Moreover, since

− σ + 2
p−m

= −α

β
≥ −N,

we also infer that f(·; A) /∈ L1([0, ∞)) and thus the corresponding solutions to profiles as in Theorem 1.3
are no longer integrable. But they are still classical solutions to Eq. (1.1).

Conjecture. We strongly expect that A0 = A∗, that is, the decreasing profile f(·; A∗) with decay (1.9) to be 
unique. However, this seems to be difficult to prove rigorously, and in particular a technique based on some 
analysis of a linear operator employed with success in [9] and in previous works by one of the authors such 
as [16] apparently fails here because of a lack of homogeneity of the corresponding operator precisely caused 
by the presence of the weight ξσ. We thus leave this uniqueness question as an open problem.

Remark. The above Theorems remain partially true if we allow σ ∈ (−2, 0). Indeed, the existence and 
uniqueness of solutions as stated in Theorems 1.2 and 1.3 still hold true, but the C2 property in a neigh-
borhood of ξ = 0 (and thus, the property of being classical solutions) is lost in this range. Moreover, in the 
range −2 < σ ≤ −1 we even lose the initial condition f ′(0) = 0 in (1.8), and thus, the profiles do no longer 
give rise to solutions in the standard weak sense at ξ = 0. We refrain from entering this range in the present 
work.

Organization of the paper. Instead of a standard shooting method, whose adaptation from [33] might 
be more tedious due to the presence of the variable coefficient |x|σ and the extra difficulties it involves 
(as commented after the statement of Theorem 1.1), the proofs of our main results rely on a shooting 
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method on a transformed version of the equation (1.7) into a three-dimensional autonomous dynamical 
system, transformation that has been employed with success by one of the authors in the study of reaction-
diffusion equations in recent works such as [20,21,23] and which has the advantage of giving also a “visual” 
understanding of how the limiting cases A = A∗, respectively A = A∗, come into play. The local analysis of 
the dynamical system is performed in Section 2, followed by some preparatory results on the global analysis 
in Section 3. Uniqueness follows from a monotonicity of the decreasing profiles f(·; A) with respect to the 
initial condition f(0) = A, which is established in Section 4. Finally, after all these preparations, the proofs 
of our main results are given in Section 5, closing the paper.

2. The transformation. An autonomous dynamical system

We consider the following transformation, which has been employed with success in previous works on 
reaction-diffusion equations (see for example [21]):

X(ξ) = m

α
ξ−2f(ξ)m−1, Y (ξ) = m

α
ξ−1f(ξ)m−2f ′(ξ), Z(ξ) = 1

α
ξσf(ξ)p−1, (2.1)

where the new independent variable η is introduced in an implicit way via the differential equation

dη

dξ
= α

m
ξf(ξ)1−m = 1

ξX(ξ) . (2.2)

Noticing that the second formula in (2.1) gives

f ′(ξ) = α

m
ξY (η)f2−m(ξ), (fm)′(ξ) = αY (η)ξf(ξ)

and

(fm)′′(ξ) = α

(
ξf(ξ)dY

dξ
+ α

m
ξf2−m(ξ)Y 2(η) + Y (η)f(ξ)

)
,

we replace the above formulas into (1.7) and, after performing some straightforward calculations and passing 
to derivatives with respect to η employing (2.2), we are left with the following autonomous three-dimensional 
dynamical system

⎧⎪⎨
⎪⎩

Ẋ = X[(m− 1)Y − 2X],
Ẏ = −Y 2 − p−m

σ+2 Y −X −NXY + XZ,

Ż = Z[(p− 1)Y + σX],
(2.3)

where the dot derivatives are taken with respect to η. Related to it, and in order to visualize and study the 
limit X → ∞ in the previous dynamical system, we also consider a further change of variable

x = 1
X

, y = Y

X
, z = Z

X
,

dη1

dη
= X(η), (2.4)

which in terms of profiles writes

x(ξ) = α

m
ξ2f(ξ)1−m, y(ξ) = ξf ′(ξ)

f(ξ) , z(ξ) = 1
m
ξσ+2fp−m(ξ), (2.5)

together with the independent variable η1 = ln ξ. Replacing the change of variable (2.4) in the system (2.3)
and taking derivatives with respect to η1, we easily obtain that (x, y, z) satisfy the autonomous system
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⎧⎪⎨
⎪⎩

ẋ = x(2 − (m− 1)y),
ẏ = −x− (N − 2)y + z −my2 − p−m

σ+2 xy,

ż = z(σ + 2 + (p−m)y).
(2.6)

Notice that the systems (2.3) and (2.6) are dual one to the other, in the sense that one more application of 
the change of variable (2.4) to (2.6) gets back to (2.3). Moreover, according to the theory of the Poincaré 
sphere (see for example [41, Theorem 5 (a), Section 3.10]), the second system represents the limit as X → ∞
of the first system and it will be used to analyze locally the critical points at infinity of it. Let us observe 
that, since we are only interested in non-negative solutions, we have X ≥ 0, Z ≥ 0 in (2.3) (respectively 
x ≥ 0, z ≥ 0 in (2.6)) and the planes {X = 0} and {Z = 0} (respectively {x = 0} and {z = 0}) are invariant 
for (2.3) (respectively (2.6)).

Let us stress here that the transformation (2.1) has been successfully employed also in works dealing 
with reaction-diffusion equations, that is, equations involving a source term of the form |x|σup instead of an 
absorption one, see for example [21]. However, the properties of the trajectories of the resulting autonomous 
dynamical system therein depart strongly from the ones of our dynamical system (2.3), and the features 
implied by the presence of a source term in a differential equation (which may lead to grow-up or finite time 
blow-up of solutions) are in sharp contrast to the ones of an absorption term.

2.1. Critical points of the system (2.3)

Equating the right-hand side of (2.3) to zero, we obtain the following critical points, all them lying in 
the plane {X = 0}:

P1 = (0, 0, 0), P2 =
(

0,−p−m

σ + 2 , 0
)
, Pγ = (0, 0, γ), γ ∈ (0,∞). (2.7)

We analyze below the local behavior of the trajectories of the system (2.3) near these points.

Lemma 2.1. The critical point P1 is a non-hyperbolic point having a one-dimensional stable manifold and 
two-dimensional center manifolds with stable direction of the flow, forming thus a three dimensional center-
stable manifold. The trajectories entering P1 on the center-stable manifold correspond to profiles having the 
local behavior (1.12).

Proof. The linearization of the system (2.3) near P1 has the matrix

M(P1) =

⎛
⎜⎝ 0 0 0

−1 −p−m
σ+2 0

0 0 0

⎞
⎟⎠ ,

leading to a one-dimensional stable manifold and two dimensional center manifolds (which may not be 
unique). In order to study the center manifold, we replace Y by the new variable

W := X + p−m

σ + 2 Y, or equivalently, Y = σ + 2
p−m

(W −X), (2.8)

obtaining, after some direct calculations, the new system
⎧⎪⎨
⎪⎩

Ẋ = − 1
βX

2 + (m−1)α
β XW,

Ẇ = −β
αW − α

βW
2 − −α(m+1)+Nβ

β XW + β
αXZ + (N−2)β−mα

β X2,

Ż = − 1XZ + α(p−1)ZW.

(2.9)
β β
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Following [6, Section 2.5], we look for a second order Taylor approximation of the center manifolds in the 
form

W = aX2 + bXZ + cZ2 + o(|(X,Z)|3),

with coefficients a, b, c to be determined. A direct substitution of the previous ansatz in the equation of the 
center manifold (see for example [41, Theorem 1, Section 2.12]) and employing the system (2.9) leads, by 
equating terms of the same degree in the resulting equation, to the following coefficients

a = σ + 2
(p−m)2 [p(N − 2) −m(N + σ)] , b = 1, c = 0,

while a simple induction then shows that, furthermore, there will be no terms of pure powers of Z (as there 
are none in the second equation of (2.9)), that is, the center manifold has the local approximation

W = σ + 2
(p−m)2 [p(N − 2) −m(N + σ)]X2 + XZ + XO(|(X,Z)|2). (2.10)

Moreover, according to the Reduction Principle (see [6, Section 2.4]), the direction of the flow on the center 
manifolds is given by the reduced system maintaining only the second degree, dominating terms in the first 
and third equation of the system (2.9) after replacing W by its approximation (2.10), namely

{
Ẋ = − 1

βX
2 + X2O(|(X,Z)|),

Ż = − 1
βXZ + XO(|(X,Z)|2), (2.11)

in a neighborhood of its origin (X, Z) = (0, 0). We thus infer that the flow goes into the stable direction on 
every center manifold, and that there are infinitely many center manifolds (according to, for example, the 
theory in [45, Section 3]), forming together with the stable manifold, a center-stable manifold of dimension 
three. The trajectories contained in this center-stable manifold have a local behavior obtained, in a first 
approximation, by the integration of the system (2.11), which leads to

Z(η) ∼ KX(η), as η → ∞, K > 0,

which in terms of profiles leads to (1.12), by undoing (2.1). �
We turn now our attention to the critical point P2.

Lemma 2.2. The critical point P2 is a (hyperbolic) saddle point, with a two-dimensional stable manifold 
and a one-dimensional unstable manifold contained in the Y axis. The trajectories contained in the two-
dimensional stable manifold correspond to profiles presenting an interface at some point ξ0 ∈ (0, ∞) with 
the precise local behavior

f(ξ) ∼
[
C − β(m− 1)

2m ξ2
]1/(m−1)

+
, as ξ → ξ0 =

√
2mC

β(m− 1) , ξ < ξ0, (2.12)

where C > 0 is a free constant.

Proof. The linearization of (2.3) near P2 has the matrix

M(P2) =

⎛
⎜⎝ − (m−1)β

α 0 0
−1 + Nβ

α
β
α 0

0 0 − (p−1)β

⎞
⎟⎠
α
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with eigenvalues λ1 = −(m − 1)β/α, λ2 = β/α and λ3 = −(p − 1)β/α, and corresponding eigenvectors

e1 =
(

1, Nβ − α

mβ
, 0
)
, e2 = (0, 1, 0), e3 = (0, 0, 1).

The invariance of the Y -axis (as the intersection of two invariant planes) together with the uniqueness of 
the unstable manifold given by [14, Theorem 3.2.1], prove that the unstable manifold is contained in the Y
axis. The stable manifold is two-dimensional and tangent to the plane spanned by the eigenvectors e1 and 
e3. The trajectories entering P1 on the stable manifold correspond to profiles such that Y (η) → −β/α as 
η → ∞, which leads by undoing (2.1) and integration to (2.12). We readily notice that (2.12) implies the 
interface condition f(ξ0) = 0, (fm)′(ξ0) = 0 and f(ξ) > 0 for ξ in a left-neighborhood of ξ0. �

Finally, the analysis of the critical points Pγ with γ > 0 leads to the appearance of the local behavior 
(1.9) as ξ → ∞.

Lemma 2.3. Letting

γ0 := 1
α(p− 1) ,

the critical point Pγ0 has a two-dimensional center-stable manifold with trajectories arriving from the region 
{X > 0, Z > 0} of the phase space. These trajectories correspond to profiles with local behavior given by 
(1.9) as ξ → ∞. For any γ > 0, γ �= γ0, there are no trajectories of the system (2.3) entering Pγ from the 
region {X > 0} of the phase space.

Proof. We give here first a direct, but formal argument in terms of profiles. Assume that there is γ ∈ (0, ∞)
and a trajectory entering the point Pγ from the region {X > 0} of the phase space. Since Z(η) → γ as 
η → ∞, it is easy to see (by undoing the first and third definitions in (2.1)) that this trajectory is locally 
mapped into a profile f(ξ) with local behavior

f(ξ) ∼ Kξ−σ/(p−1), as ξ → ∞, K = (αγ)1/(p−1) > 0.

Assuming (at a formal level) that also the derivative behaves as

f ′(ξ) ∼ − Kσ

p− 1ξ
−σ/(p−1)−1, as ξ → ∞,

and introducing these first order approximations into the differential equation (1.7), we infer that, in a first 
approximation, the dominating order ξ−σ/(p−1) is given by the three last terms in (1.7) and we get, as 
ξ → ∞,

αf(ξ) + βξf ′(ξ) − ξσfp(ξ) ∼ K

(
α− βσ

p− 1 −Kp−1
)
ξ−σ/(p−1)

∼ K

(
1

p− 1 −Kp−1
)
ξ−σ/(p−1),

hence the only possibility to cancel out the first order approximation is to take Kp−1 = 1/(p − 1), which 
leads to γ = γ0 and to the local behavior (1.9), as claimed. A rigorous proof is based on the analysis of 
the center manifold of the critical point Pγ for any γ ∈ (0, ∞), which is rather technical, relying on the 
following change of variable in the system (2.3):
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(X,Y, Z) 	→ (X,W, V ), W = β

α
Y + (1 − γ)X, V = Z − γ − kY, k = (p− 1)αγ

β
.

The calculations leading to the analysis of the center manifold follow very closely the lines of the proof of 
[24, Lemma 3.2] (see also the ones in [20, Lemma 2.4]), the only difference with respect to these references 
being the fact that the only nonzero eigenvalue of the linearization of (2.3) near Pγ is now negative, which 
leads to the formation of a center-stable two-dimensional manifold. We omit here the very similar details 
and we refer the reader to the quoted references. �
2.2. Critical points of the system (2.6)

Equating the right-hand side of (2.6) to zero, we obtain the following critical points, all them lying in 
the plane {x = 0}:

Q1 = (0, 0, 0), Q2 =
(

0,−N − 2
m

, 0
)
, Q3 =

(
0,− σ + 2

p−m
,Z0

)
, (2.13)

with

Z0 = (σ + 2)[m(N + σ) − p(N − 2)]
(p−m)2 , (2.14)

the latter of them existing only for m < p < m(N +σ)/(N − 2). We analyze below the local behavior of the 
trajectories of the system (2.6) near these points. To fix the ideas, let us work for now in dimension N ≥ 3. 
The critical point Q1 is the most interesting for our study.

Lemma 2.4. The critical point Q1 is a saddle point in the system (2.6) with a one-dimensional stable manifold 
contained in the y axis and a two-dimensional unstable manifold. The trajectories on the unstable manifold 
form a one-parameter family with first approximation

(lC) : y(η1) ∼ −x(η1)
N

, z(η1) ∼ Cx(η1)(σ+2)/2, C ∈ [0,∞) (2.15)

as η1 → −∞, and correspond to profiles with the local behavior

f(ξ) ∼
(
D − α(m− 1)

2mN
ξ2
)1/(m−1)

, as ξ → 0, D ∈ (0,∞). (2.16)

In particular, the profile f(·; A) solution to (1.7)-(1.8) corresponds to the trajectory lC in the family (2.15)
with

A = (Cm)2/L
( α

m

)(σ+2)/L
, L = σ(m− 1) + 2(p− 1). (2.17)

Proof. The linearization of the system (2.6) near Q1 has the matrix
⎛
⎜⎝ 2 0 0

−1 −(N − 2) 1
0 0 σ + 2

⎞
⎟⎠ ,

with eigenvalues λ1 = 2, λ2 = −(N−2) < 0, λ3 = σ+2 > 0 and corresponding eigenvectors e1 = (N, −1, 0), 
e2 = (0, 1, 0) and e3 = (0, 1, N + σ). The invariance of the y axis in the system (2.6), together with the 
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uniqueness of the stable manifold [14, Theorem 3.2.1], prove that the stable manifold is fully contained in 
the y axis. With respect to the unstable manifold, we deduce from the Stable Manifold Theorem [41, Section 
2.7] that the unstable manifold of Q1 is tangent to the vector subspace spanned by the eigenvectors e1 and 
e3, which readily leads to its linear approximation

y(η1) = −x(η1)
N

+ z(η1)
N + σ

+ o(|(x(η1), z(η1))|), as η1 → −∞. (2.18)

Moreover, we infer from the first and third equation of (2.6) that, in a first approximation, we have

z(η1) ∼ Cx(η1)(σ+2)/2, as η1 → −∞, (2.19)

for any C ∈ [0, ∞). This, together with the positivity of σ, imply that z(η1) is of lower order than x(η1) in 
a neighborhood of Q1, and we immediately get the approximation (2.15) by neglecting the z term in (2.18). 
Passing to profiles by undoing (2.5) and recalling that η1 = ln ξ, we get from (2.19) and an immediate 
substitution that the orbits lC correspond to profiles with f(0) = A, with A given by (2.17). Moreover, the 
second equation in (2.15) together with (2.5) lead, in a right neighborhood of ξ = 0, to

(fm−1)′(ξ) ∼ −α(m− 1)
mN

ξ,

which, together with f(0) = A, lead to the local expansion (2.16) as ξ → 0 after an integration on (0, ξ). �
Notation. We denote in the sequel by l∞ the unique trajectory belonging to the unstable manifold of Q1
and contained in the plane {x = 0}. Indeed, this is coherent with (2.15), since if we write

x(η1) ∼
(

1
C
z(η1)

)2/(σ+2)

, as η1 → −∞,

we notice that x ≡ 0 corresponds to taking 1/C = 0, that is, C = ∞.

The critical points Q2 and Q3 are not very interesting for our study, as the following result shows (recalling 
that for the moment we work in dimension N ≥ 3).

Lemma 2.5. The critical point Q2 is an unstable node if m < p < m(N +σ)/(N −2) and a saddle point with 
a two-dimensional unstable manifold fully contained in the invariant plane {z = 0} and a one-dimensional 
stable manifold fully contained in the invariant plane {x = 0}, if p > m(N + σ)/(N − 2). The critical 
point Q3 is a saddle point with a two-dimensional unstable manifold and a one-dimensional stable manifold 
contained in the plane {x = 0}. The trajectories stemming from these two critical points correspond to 
profiles presenting a vertical asymptote at ξ = 0, of the form

f(ξ) ∼
{

Cξ−(N−2)/m, for Q2,

Cξ−(σ+2)/(p−m), for Q3,
C > 0. (2.20)

Proof. The linearization of the system (2.6) near the critical points Q2, respectively Q3 has the matrix

M(Q2) =

⎛
⎜⎜⎝

mN−N+2
m 0 0

(p−m)(N−2)
m(σ+2) − 1 N − 2 1

0 0 m(N+σ)−p(N−2)

⎞
⎟⎟⎠
m
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and

M(Q3) =

⎛
⎜⎜⎝

L
p−m 0 0
0 m(N+2σ+2)−p(N−2)

p−m 1
0 (p−m)Z0 0

⎞
⎟⎟⎠ .

It is thus obvious that M(Q2) has two positive eigenvalues, while the last one changes sign at p = m(N +
σ)/(N − 2), provided N ≥ 3: if p < m(N + σ)/(N − 2) all three eigenvalues are positive and we have an 
unstable node, while if p > m(N + σ)/(N − 2) we have two positive eigenvalues and a negative eigenvalue. 
A closer inspection of the eigenvectors in this case, together with the invariance of the planes {x = 0}, 
respectively {z = 0}, lead to the conclusion. With respect to Q3, the first eigenvalue is strictly positive, 
while the second and third satisfy

λ2λ3 = −(p−m)Z0 < 0,

so that one is positive and the other is negative. Finally, the local behavior of the profiles corresponding to 
the orbits going out of these points follows from the fact that, in the case of Q3, we have z(η1) → Z0 as 
η1 → −∞, while in the case of Q2, y(η1) → −(N − 2)/m as η1 → −∞. Recalling that η1 = ln ξ, we arrive 
to (2.20) by undoing the transformation (2.5) (and an integration on (0, ξ) for ξ > 0 small, in the case of 
Q2). �
Remark. The line {y = −(σ + 2)/(p − m), z = Z0} is a trajectory of the system (2.6), provided p <
m(N + σ)/(N − 2). It corresponds to the explicit singular profile

f(ξ) = Kξ−(σ+2)/(p−m), K = (mZ0)1/(p−m). (2.21)

Dimensions N = 1 and N = 2. This is the only place where letting N = 1 and N = 2 introduces a technical 
change. Indeed, in dimension N = 2 the critical points Q1 and Q2 coincide, and the resulting point is a 
saddle-node. However, this does not affect our trajectories lC , as the unstable manifold composed by them 
and spanned by the eigenvectors e1 and e3 corresponding to the eigenvalues λ1 = 2 and λ3 = σ + 2 in 
Lemma 2.4 remains unchanged. In dimension N = 1, the point Q2 passes to the positive half-space with 
y = 1/m, while the critical point Q1 becomes an unstable node. However, we once more distinguish our 
specific shooting manifold (lC)C∈(0,∞) as in the following statement:

Lemma 2.6. The critical point Q1 is an unstable node in dimension N = 1. The trajectories stemming from 
Q1 have either the local behavior

f(ξ) ∼ [A−Kξ]2/(m−1)
, as ξ → 0, (2.22)

with A > 0 and K ∈ R \ {0} arbitrary constants, or the local behavior (2.16).

A complete proof of this fact is completely similar to the analogous one in [21, Section 6], to which we 
refer. However, one can observe before going to the proof that one can still shoot on the two-dimensional 
manifold spanned by the eigenvectors e1 and e3, which gives the desired behavior (2.16).

2.3. Other critical points at infinity

In order for the local analysis of the trajectories of the system (2.3) (or its “dual” (2.6)) to be complete, 
we have to perform an analysis of the critical points at infinity. Following, for example, the theory in [41, 
Section 3.10], this is done by passing to the Poincaré hypersphere in four variables by setting
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X = X

W
, Y = Y

W
, Z = Z

W
.

The critical points at infinity of the system (2.3), expressed in these new variables, are then given by the 
following system (according, for example, to [41, Theorem 4, Section 3.10]):

⎧⎪⎨
⎪⎩

X[XZ − (N − 2)XY −mY
2] = 0,

XZ[(σ + 2)X + (p−m)Y ] = 0,
Z[pY 2 + (σ + N)XY −XZ] = 0,

(2.23)

together with the condition of belonging to the equator of the hypersphere, which implies W = 0 and thus 
the additional equation X

2 + Y
2 + Z

2 = 1. Following [41, Theorem 5(a), Section 3.10], we find that all the 
critical points at infinity of (2.3) with X �= 0 correspond to critical points of the system (2.6), and we thus 
arrive to the points Q1, Q2 and Q3 already analyzed in the previous section. Apart from these, we can let 
X = 0 in (2.23) and find that either Z = 0 or Y = 0. We thus find three more critical points at infinity, 
namely

Q4 = (0, 0, 1, 0), Q5 = (0,−1, 0, 0), Q6 = (0, 1, 0, 0).

Let us recall here that, in terms of the variables (X, Y, Z), the critical point Q5 is characterized by trajectories 
such that

Y (η) → −∞,
X(η)
Y (η) → 0, Z(η)

Y (η) → 0, as η → ∞, (2.24)

and a similar characterization holds true for Q6 (but we will not use it in the sequel). We first analyze the 
flow of the system in the neighborhood of the pair Q5 and Q6. To this end, we follow [41, Theorem 5(b), 
Section 3.10] to conclude that the flow of (2.3) near these points is topologically equivalent with the flow 
near the origin in the following system

⎧⎪⎨
⎪⎩

±ẋ = −mx− (N − 2)x2 − β
αxw − x2w − x2z,

±ż = −pz − β
αzw − (N + σ)xz + xz2 − xzw,

±ẇ = −w − β
αw

2 − xw2 −Nxw + xzw,

(2.25)

where the signs have to be chosen according to the direction of the flow, that is, a plus sign in the system 
(2.25) corresponds to Q5 and a minus sign corresponds to Q6.

Lemma 2.7. The critical point Q5 is a stable node and the critical point Q6 is an unstable node. The 
trajectories entering the stable node Q5 correspond to profiles having a compact support such that there is 
ξ0 ∈ (0, ∞) and δ ∈ (0, ξ0) with

f(ξ0) = 0, f(ξ) > 0 for ξ ∈ (ξ0 − δ, ξ0), (fm)′(ξ0) < 0. (2.26)

The trajectories stemming from the unstable node Q6 correspond to profiles such that there is ξ0 ∈ (0, ∞)
and δ > 0 with

f(ξ0) = 0, f(ξ) > 0 for ξ ∈ (ξ0, ξ0 + δ), (fm)′(ξ0) > 0. (2.27)

Let us remark that the profiles as in (2.26) and (2.27) do not give rise to weak solutions in the form (1.5)
to Eq. (1.1) since the contact condition (fm)′(ξ0) = 0 (see [47, Section 9.8]) is not fulfilled at the edge of 
the support, but to subsolutions (if we extend them by zero either before or after ξ = ξ0).
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Proof. The fact that Q5 is a stable node and that Q6 is an unstable node both follow readily from the analysis 
of the linearization of the system (2.25) (with the above mentioned choice of the sign) in a neighborhood of 
its origin. For the local behavior, the analysis is more tedious but follows closely the calculations performed 
in [22, Lemma 2.6] (see also [24, Lemma 3.3]). We omit the details. �

Finally, we are left with the critical point Q4. Instead of performing a complete study of this point, we 
will just need to know that it cannot be reached by any trajectory arriving from the negative half-space 
{y < 0} in the system (2.6). To this end, we recall that trajectories reaching Q4 have to fulfill the limits

Z(η) → ∞,
X(η)
Z(η) → 0, Y (η)

Z(η) → 0, as η → ∞,

which is completely equivalent, by (2.4), to

z(η1) → ∞,
z(η1)
x(η1)

→ ∞,
y(η1)
z(η1)

→ 0, as η1 → ∞. (2.28)

Lemma 2.8. There is no trajectory of the system (2.6) entering the critical point Q4 from the region 
{(x, y, z) ∈ R3 : x > 0, z > 0, y < 0}.

Proof. Assume for contradiction that there is such a trajectory (x, y, z)(η1) and some η1,∗ ∈ R such that

(x(η1), y(η1), z(η1)) ∈ {(x, y, z) ∈ R3 : x > 0, z > 0, y < 0}, η1 ∈ (η1,∗,∞)

and that (x, y, z)(η1) has Q4 as ω-limit as η1 → ∞. We infer from (2.28) and by undoing the change of 
variable (2.5) that such trajectories correspond to profiles such that

ξσf(ξ)p−1 → ∞, ξσ+2f(ξ)p−m → ∞,
f ′(ξ)

ξσ+1f(ξ)p−m+1 → 0, (2.29)

as ξ → ∞, with f decreasing on (ξ∗, ∞), ξ∗ = eη1,∗ by the definition of y in (2.5). In particular, there exists

L∞ = lim
ξ→∞

f(ξ) ∈ [0,∞).

We can further write the equation (1.7) in the form

(fm)′′(ξ) − 1
2ξ

σf(ξ)p + N − 1
ξ

(fm)′(ξ) + βξf ′(ξ) + f(ξ)
[
α− 1

2ξ
σf(ξ)p−1

]
= 0, (2.30)

and we infer from (2.30) by dividing by f(ξ), taking into account that f ′(ξ) < 0, (fm)′(ξ) < 0 for ξ > ξ∗
and using (2.29), that

lim
ξ→∞

(fm)′′(ξ)
f(ξ) = +∞. (2.31)

If L∞ > 0, (2.31) gives that (fm)′′(ξ) → ∞ as ξ → ∞, which is a contradiction with the fact that f
is decreasing on (ξ∗, ∞). If L∞ = 0, the definition of the limit entails that, for any K > 0, there is 
ξ(K) > ξ∗ > 0 such that (fm)′′(ξ) > Kf(ξ), for ξ > ξ(K). By multiplying the previous estimate by 
(fm)′(ξ) < 0, integrating over (ξ0, ξ) ⊂ (ξ(K), ∞) and recalling the monotonicity of f(ξ), we find

[(fm)′]2(ξ) − [(fm)′]2(ξ0) ≤
Km (fm+1(ξ) − fm+1(ξ0)) < 0, ξ > ξ0 > ξ(K).

m + 1
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By changing signs in the previous estimate, we get

0 <
Km

m + 1(fm+1(ξ0) − fm+1(ξ)) ≤ [(fm)′]2(ξ0) − [(fm)′]2(ξ) < [(fm)′]2(ξ0),

and by letting ξ → ∞ and recalling that f(ξ) → 0 we find, after taking square roots,
√

Km

m + 1f(ξ0)(m+1)/2 ≤ |(fm)′(ξ0)| = −(fm)′(ξ0), ξ0 > ξ(K).

Relabeling ξ0 by ξ, we further deduce that
√

K

m(m + 1) ≤ −f (m−3)/2(ξ)f ′(ξ) = 2
m− 1

∣∣∣(f (m−1)/2)′(ξ)
∣∣∣ ,

for any ξ > ξ(K). Since K > 0 has been chosen arbitrarily in the previous estimates and m > 1, we get 
that

lim
ξ→∞

(f (m−1)/2)′(ξ) = −∞,

which is a contradiction with the fact that f (m−1)/2 is a positive function decreasing to zero as ξ → ∞. This 
contradiction gives that there is no such trajectory as assumed at the beginning, completing the proof. �

We are now ready to proceed with the global analysis of the system, leading to the proofs of the main 
theorems.

3. Some preparatory results of global analysis

We gather in this section some important preparatory results concerning the global analysis of the 
trajectories of the system (2.6), needed in the proofs of the main theorems. The first one establishes a 
positively invariant region which will play a very significant role in the forthcoming analysis.

Lemma 3.1. The region

R := {(x, y, z) ∈ R3 : y > 0, z > x}

is positively invariant for the system (2.6): that is, if for a trajectory, there is η1,∗ ∈ R such that 
(x, y, z)(η1,∗) ∈ R, then (x, y, z)(η1) ∈ R for any η1 > η1,∗.

Proof. The flow of the system (2.6) across the plane {y = 0} (with normal vector (0, 1, 0)) has the direction 
given by the sign of the expression z − x > 0 in R. The flow of the system (2.6) across the plane z = x

(with normal vector (−1, 0, 1)) has the direction given by the sign of the expression

f(y, z) = z(σ + 2 + (p−m)y) − z(2 − (m− 1)y) = z(σ + (p− 1)y) > 0,

in R. Thus, a trajectory passing through a point in R cannot leave this region through none of its two 
“walls” (the planes {y = 0} and {z = x}) and will remain there forever, as claimed. �

An immediate consequence of this lemma is the behavior of the trajectory l∞, that is, the unique trajectory 
on the unstable manifold of the critical point Q1 contained in the plane {x = 0}.
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Lemma 3.2. The trajectory l∞ enters and remains in the region R.

Proof. It is obvious that z > x = 0 along this trajectory. Moreover, the system (2.6) reduces in the invariant 
plane {x = 0} to

{
ẏ = −(N − 2)y + z −my2,

ż = z(σ + 2 + (p−m)y),
(3.1)

and the flow of the system (3.1) across the axis {y = 0} is given by the sign of z, which is always non-negative. 
Thus, the trajectory l∞ goes out tangent to the eigenvector e3 = (0, 1, N + σ) of the matrix M(Q1) given 
in Lemma 2.4, entering the region R and thus remaining there afterwards, according to Lemma 3.1. �

The next lemma establishes the global behavior of the trajectory l0, which is rather interesting and gives 
us a clear understanding of how the exponent pF (σ) comes into play with a decisive role in the classification.

Lemma 3.3. The trajectory l0, corresponding to taking C = 0 in (2.15) and contained in the plane {z = 0}, 
has the following properties:

(a) If m < p < pF (σ), it connects to the critical point Q5.
(b) If p = pF (σ), it is explicit and connects to the critical point P2.
(c) If p > pF (σ), it connects to the critical point P1.

Proof. The system (2.6) reduces in the invariant plane {z = 0} to

{
ẋ = x(2 − (m− 1)y),
ẏ = −x− (N − 2)y −my2 − p−m

σ+2 xy.
(3.2)

The orbit l0 goes out of Q1 tangent to the eigenvector e1 = (N, −1, 0), as established in Lemma 2.4, and 
thus enters the half-plane {y < 0} and remains there forever, since the flow of the system (3.2) across the 
axis {y = 0} points into the negative direction (as the sign of −x). We thus infer from the first equation in 
(3.2) that η1 	→ x(η1) is an increasing function along l0, hence we can invert this mapping and thus express 
the trajectory l0 as a graph y = y(x), such that, by the inverse function theorem,

dy

dx
= −x− (N − 2)y(x) −my(x)2 − [(p−m)/(σ + 2)]xy(x)

x(2 − (m− 1)y(x)) . (3.3)

A direct and easy calculation shows that y(x) = −x/N satisfies (3.3) exactly when p = pF (σ), that is, the 
trajectory l0 is the line y = −x/N . We deduce from (2.4) that, in (X, Y, Z) variables, the line y = −x/N is 
seen as

Y = y

x
= − 1

N
= −p−m

σ + 2 = −β

α
,

so that it ends at the point P2, completing the proof of part (b).
Assume now that p > pF (σ), which is equivalent to β/α > 1/N . The flow of the system (3.2) across the 

line

(r0) :
{
y = − (p−m)x

σ + 2

}
, with normal n =

(
p−m

σ + 2 , 1
)
,

is given by the sign of the expression
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F (x) = Nx(p− pF (σ))
σ + 2 > 0. (3.4)

Since on the trajectory l0 we have

y(η1) ∼ −x(η1)
N

> − (p−m)x(η1)
σ + 2 , as η1 → −∞,

we infer that l0 goes out from Q1 into the region limited by the line r0 and the x axis, and it will stay 
forever in this region, according to (3.4). Passing to the (X, Y, Z) variables by undoing (2.4), this region is 
seen as the strip

S =
{

(X,Y ) ∈ R2 : −β

α
< Y < 0

}

of the invariant plane {Z = 0}. The first equation of the system (3.2) establishes that the coordinate x is 
increasing on the trajectory l0, or equivalently, X = 1/x decreases, hence, there is X∞ = lim

η→∞
X(η) ≥ 0. 

Since Y (η) is bounded in the strip S, we readily infer from the Poincaré-Bendixon theory [41, Section 3.7]
that the trajectory should end at a critical point, as there are obviously no periodic orbits with η 	→ X(η)
monotone. Thus, it either connects to P1 or to P2. But the unique trajectory entering P2 on the stable 
manifold of it, inside the plane {Z = 0}, arrives tangent to the eigenvector

e1 =
(

1, Nβ − α

mβ

)
,

according to Lemma 2.2. Since Nβ − α > 0, it follows that this trajectory enters P2 from the region 
{Y < −β/α}, that is, outside the strip S, hence l0 cannot reach P2 and consequently, it will arrive to the 
asymptotically stable point P1, proving part (c).

Let now m < p < pF (σ), that is, β/α < 1/N . Noticing that now F (x) < 0 in (3.4), similar arguments 
as in the previous proof establish that, in this case, the trajectory l0, seen in (X, Y, Z) variables, will enter 
and stay in the half-space {Y < −β/α}, while now Nβ − α < 0, which means that the unique trajectory 
entering P2 comes from the interior of the strip S. We conclude that, once more, l0 does not arrive to P2. 
Moreover, the first equation in (2.3) implies that η 	→ X(η) is decreasing on l0, so that X(η) → X∞ ∈ [0, ∞)
as η → ∞. The Poincaré-Bendixon theory then readily implies that Y (η) → −∞ as η → ∞, since there is 
no finite critical point in the half-plane {Y ≤ −β/α} (except P2, that was discarded above). Hence, on l0
we have Y (η) → −∞, Y (η)/X(η) → −∞, as η → ∞, which shows that the limit is the stable node Q5, 
proving part (a). �

This lemma is very important in the forthcoming proofs, since it shows how the behavior of one of the 
limits of the unstable manifold of Q1 changes when p = pF (σ), being the reason for which there is a strong 
difference between the outcome of Theorem 1.2 with respect to Theorem 1.3. We conclude this section with 
one more technical result needed in the proofs of the theorems.

Lemma 3.4. Let (x, y, z)(η1) be a trajectory of the system (2.6) such that there is η1,∗ ∈ R with the property 
that x(η1,∗) > 0, z(η1,∗) > 0 and

− σ + 2
p−m

< y(η1) < 0, for any η1 > η1,∗. (3.5)

Then, this trajectory ends by connecting to one of the critical points Pγ0 or P1.
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Proof. The condition (3.5) together with the first and third equation of (2.6) show that η1 	→ x(η1), 
η1 	→ z(η1) are increasing functions on (η1,∗, ∞) on the trajectory under consideration. Thus, there exist

x∞ := lim
η1→∞

x(η1) > 0, z∞ := lim
η1→∞

z(η1) > 0.

Assume for contradiction that x∞ < ∞. If also z∞ < ∞, similar arguments as in the proof of [19, Proposition 
4.10] entail that the ω-limit of the trajectory has to be a (finite) critical point, and there is no such point 
satisfying (3.5) with x > 0, z > 0. Thus, z∞ = ∞, and since x∞ < ∞ and y(η1) is bounded by (3.5), 
we conclude that the trajectory ends at the critical point Q4, which contradicts Lemma 2.8, since the 
trajectory would reach Q4 coming from the half-space {y < 0}. We thus deduce that x∞ = ∞ and in 
particular (y/x)(η1) → 0 as η1 → ∞ by (3.5). Passing to (X, Y, Z) variables by undoing (2.4), we find that 
X(η) → 0 and Y (η) → 0 along this trajectory, as η → ∞. We thus obtain a trajectory of the system (2.3)
having an ω-limit set included in the Z axis. Lemmas 2.1 and 2.3 show that this limit is either one of the 
critical points P1 or Pγ0 , or a segment of the critical line {X = 0, Y = 0} of the system (2.3) which cannot 
have an endpoint at zero due to the stability of P1. The latter conclusion is equivalent to the corresponding 
profile oscillating between two hyperbolas

A1ξ
−σ/(p−1) ≤ f(ξ) ≤ A2ξ

−σ/(p−1), ξ ≥ ξ0 > 0,

for some constants 0 < A1 < A2 < ∞ and some ξ0 > 0 very large. Letting then g(ξ) := ξσ/(p−1)f(ξ), we 
find by direct calculation that

ξ2(gm)′′(ξ) −
(

2mσ

p− 1 −N + 1
)
ξ(gm)′(ξ) + mσ

p− 1

(
mσ

p− 1 −N + 2
)
gm(ξ)

+ ξL/(p−1)
[

1
p− 1g(ξ) + βξg′(ξ) − gp(ξ)

]
= 0.

(3.6)

Let (ξmk )k≥1, respectively (ξMk )k≥1 be two sequences of local minima of g, respectively local maxima of g, 
such that ξmk → ∞, ξMk → ∞ as k → ∞, and

g(ξmk ) → Linf := lim inf
ξ→∞

g(ξ) ∈ [A1, A2], g(ξMk ) → Lsup := lim sup
ξ→∞

g(ξ) ∈ [A1, A2].

Evaluating (3.6) at ξ = ξmk , respectively at ξ = ξMk , and taking into account that gm(ξmk ), respectively 
gm(ξMk ), are bounded, we readily deduce that the big term in brackets in (3.6) has to compensate, for k ≥ 1
sufficiently large, the term ξ2(gm)′′(ξ) on these sequences. We thus have

lim
k→∞

[
1

p− 1g(ξ
m
k ) − gp(ξmk )

]
≤ 0, lim

k→∞

[
1

p− 1g(ξ
M
k ) − gp(ξMk )

]
≥ 0,

whence

Linf ≥
(

1
p− 1

)1/(p−1)

≥ Lsup.

This implies that both limits are equal to the constant (1/(p − 1))1/(p−1) and the trajectory enters the 
critical point Pγ0 . This leads to a contradiction with the possibility of infinite, non-damped oscillations and, 
thus, to the conclusion that the trajectory ends at one of the critical points P1 or Pγ0 , as stated. �
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4. Monotonicity

In this section, we prove that the profiles f(·; A) solutions to the Cauchy problem (1.7)-(1.8) are ordered 
while they are decreasing. This fact, which paves the way towards uniqueness of the compactly supported 
very singular solution, is proved by employing a sliding technique which stems, up to our knowledge, from 
the classical paper [12] (and in the form that follows, from [48]), but has been employed with success by 
one of the authors and his collaborators in recent works such as [19,21]. In order to employ this method, we 
first need a local behavior near ξ = 0 of the profiles f(·; A) more precise than the one given in Lemma 2.4. 
We follow at this point the ideas in [19, Section 4.1]. Let us consider thus the following Cauchy problem 
associated to the part of (1.7) coming only from the porous medium equation:

(φm)′′(ξ) + N − 1
ξ

(φm)′(ξ) + αφ(ξ) + βξφ′(ξ) = 0, (4.1)

with initial conditions φ(0) = A, φ′(0) = 0, and denote by φ(·; A) its (unique) solution. The following result 
shows that a number of the first terms in the Taylor expansion of the profile f(·; A) are similar to the 
ones of the Taylor expansion of the profile φ(·; A). The following basic property (but whose proof is rather 
technical) has been published as [19, Lemma 4.2].

Lemma 4.1. For A > 0 and for any integer k such that 2 ≤ k < 2 + σ, we have

f(ξ;A) − φ(ξ;A) = o(ξk), fm(ξ;A) − φm(ξ;A) = o(ξk), as ξ → 0.

This result has been proved in [19, Lemma 4.2] under the hypothesis p ∈ (0, 1). An inspection of the 
proof therein shows that the last term ξσfp(ξ) has absolutely no influence in the calculations, thus the proof 
is completely identical and we omit it here. We next introduce the first order in the expansion as ξ → 0
which depends on σ, following [19, Lemma 4.3].

Lemma 4.2. Let k0 be the largest integer strictly below σ and let A ∈ (0, ∞). Then, as ξ → 0,

fm(ξ;A) =
k0+2∑
j=0

Bjξ
j + Ap

(σ + 2)(σ + N)ξ
σ+2 + o(ξσ+2), (4.2)

if σ �∈ N and k0 is the integer part of σ, or

fm(ξ;A) =
k0+3∑
j=0

Bjξ
j + Ap

(σ + 2)(σ + N)ξ
σ+2 + o(ξσ+2), (4.3)

if σ ∈ N and k0 = σ − 1, where Bj are the Taylor coefficients of the expansion of the function φm(·; A), 
with φ(·; A) solution to (4.1) with initial conditions φ(0) = A, φ′(0) = 0.

Proof. This is an immediate adaptation of the proof of [19, Lemma 4.3], but we give below a sketch of it, 
due to its importance for the forthcoming monotonicity result. Let us introduce the function

H(ξ;A) = ξN−1(fm)′(ξ;A) + βξNf(ξ;A).

We readily observe that
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H ′(ξ;A) = ξN−1
[
(fm)′′(ξ;A) + N − 1

ξ
(fm)′(ξ;A) + βξf ′(ξ;A)

]
+ NβξN−1f(ξ;A)

= (Nβ − α)ξN−1f(ξ;A) + ξN+σ−1fp(ξ;A).

Let us now restrict ourselves to the case σ �∈ N and let k0 be the integer part of σ (the other case being 
very similar). We infer from Lemma 4.1, (2.16) and the previous calculation that

H ′(ξ;A) = (Nβ − α)
k0+2∑
j=0

bjξ
N+j−1 + o(ξN+k0+1)

+ ξN+σ−1
[
Am−1 − α(m− 1)

2mN
ξ2 + o(ξ2)

]p/(m−1)

= (Nβ − α)
k0+2∑
j=0

bjξ
N+j−1 + o(ξN+k0+1) + ApξN+σ−1 + o(ξN+σ)

= (Nβ − α)
k0∑
j=0

bjξ
N+j−1 + ApξN+σ−1 + o(ξN+σ−1),

where bj are the coefficients of the expansion of the function φ(·; A). We further get by integration that

H(ξ;A) = (Nβ − α)
k0∑
j=0

bj
N + j

ξN+j + Ap

N + σ
ξN+σ + o(ξN+σ).

Recalling the definition of H(ξ; A), we obtain after easy manipulations the expansion of (fm)′(ξ; A) as 
follows

(fm)′(ξ;A) =
k0∑
j=0

(
−β + Nβ − α

N + j

)
bjξ

j+1 + Ap

N + σ
ξσ+1 + o(ξσ+1),

which leads to (4.2) by one more integration step. The calculation is completely analogous when σ ∈ N, 
and we refer the reader to [19, Lemma 4.3] for the details. �

We are now in a position to prove the monotonicity lemma for decreasing profiles. More precisely, we 
have

Lemma 4.3. Let 0 < A1 < A2 < ∞, f1 = f(·; A1), respectively f2 = f(·; A2) and let Ξ ∈ (0, ∞) such that 
f1(ξ) > 0, f ′

1(ξ) < 0, f ′
2(ξ) < 0 for any ξ ∈ (0, Ξ). Then f1(ξ) < f2(ξ) for any ξ ∈ (0, Ξ).

Proof. Let us denote gi = fm
i , i = 1, 2, hence gi is a solution to

g′′(ξ) + N − 1
ξ

g′(ξ) + αg1/m(ξ) + βξ(g1/m)′(ξ) − ξσgp/m(ξ) = 0. (4.4)

We introduce the following rescaling, that will be useful in the sequel:

fλ(ξ) := λ−2/(m−1)f1(λξ), gλ(ξ) := λ−2m/(m−1)g1(λξ). (4.5)

Straightforward calculations then imply that gλ is a solution to the differential equation
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g′′λ(ξ) + N − 1
ξ

g′λ(ξ) + αgλ(ξ)1/m + βξ(g1/m
λ )′(ξ) − λL/(m−1)ξσg

p/m
λ (ξ) = 0, (4.6)

where we recall that L = σ(m − 1) + 2(p − 1) > 0. Since A1 < A2, it follows that f1(ξ) < f2(ξ) in a right 
neighborhood of ξ = 0. Assume for contradiction that there is ξ0 ∈ (0, Ξ) such that f1(ξ0) = f2(ξ0), that is, 
also g1(ξ0) = g2(ξ0). Let us observe at this point that, if 0 < λ < λ′ ≤ 1, then the monotonicity of g1 on 
[0, Ξ] entails on the one hand that

g1(λ′ξ) < g1(λξ), ξ ∈ [0,Ξ],

therefore,

gλ(ξ) = λ−2m/(m−1)g1(λξ) > (λ′)−2m/(m−1)g1(λξ)

> (λ′)−2m/(m−1)g1(λ′ξ) = gλ′(ξ),

for any ξ ∈ [0, Ξ]. On the other hand,

lim
λ→0

min
[0,Ξ]

gλ = lim
λ→0

gλ(Ξ) = lim
λ→0

λ−2m/(m−1)g1(λΞ) = ∞, (4.7)

thus we can introduce the optimal sliding parameter

λ0 := sup{λ ∈ (0, 1) : g2(ξ) < gλ(ξ), ξ ∈ [0, ξ0]} (4.8)

and infer from (4.7) and the ordering g1(ξ) < g2(ξ) for ξ ∈ (0, ξ0) that λ0 ∈ (0, 1). We further deduce 
from the definition of λ0 that g2(ξ) ≤ gλ0(ξ) for any ξ ∈ [0, ξ0] and that there exists some contact point 
ξ1 ∈ [0, ξ0] such that g2(ξ1) = gλ0(ξ1) (otherwise we reach an immediate contradiction with the optimality 
of λ0, since gλ0 − g2 > 0 on the compact set [0, ξ0]). We split the rest of the proof into three cases.

Case 1: ξ1 = ξ0. We then have, owing to the monotonicity of g1 on [0, ξ0] and the fact that λ0 < 1,

g1(ξ0) = g2(ξ0) = gλ0(ξ0) = λ
−2m/(m−1)
0 g1(λ0ξ0) < g1(λ0ξ0) < g1(ξ0),

which is a contradiction.

Case 2: ξ1 ∈ (0, ξ0). In this case, we have

g2(ξ1) = gλ0(ξ1), g′2(ξ1) = g′λ0
(ξ1), g′′2 (ξ1) ≤ g′′λ0

(ξ1).

Introducing the previous relations into both (4.4) solved by g2 and (4.6) solved by gλ0 and subtracting these 
equalities, we obtain

g′′λ0
(ξ1) − g′′2 (ξ1) = ξσ1 (λL/(m−1)

0 − 1)g2(ξ1) < 0,

which is a contradiction with the fact that g′′2 (ξ1) ≤ g′′λ0
(ξ1).

Case 3: ξ1 = 0. It then follows, on the one hand, that g2(0) = gλ0(0) = Am
2 , and we infer from (4.5) that

A2 = A1λ
−2/(m−1)
0 . (4.9)

On the other hand, we know that g2(ξ) < gλ0(ξ) for any ξ ∈ (0, ξ0). Taking into account the expansions as 
ξ → 0 given in Lemma 4.2 for, respectively, the functions g2(ξ) and gλ0(ξ), we readily observe that the terms 
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depending only on the expansion coming from the solution to (4.1) are mapped one into the other in view 
of the fact that the porous medium equation is invariant to the rescaling (4.5), and the first order where 
a difference is seen is the first one involving σ, exposed in Lemma 4.2. We thus have, after also employing 
(4.9), as ξ → 0,

g2(ξ) − gλ0(ξ) = Ap
2

(σ + 2)(σ + N)ξ
σ+2 − Ap

1λ
−2m/(m−1)
0

(σ + 2)(σ + N) (λ0ξ)σ+2 + o(ξσ+2)

= Ap
2

(σ + 2)(σ + N)

[
1 − λ

L/(m−1)
0

]
ξσ+2 + o(ξσ+2) > 0,

since L/(m − 1) > 0 and λ0 ∈ (0, 1). But the latter is a contradiction with the fact that g2(ξ) < gλ0(ξ) in a 
right neighborhood of the origin. Reaching a contradiction also in this last case completes the proof. �
5. Proofs of the main results

We are now ready to proceed with the proofs of Theorems 1.1, 1.3 and 1.2. Recalling the local analysis 
performed in Section 2, and specially Lemmas 2.1, 2.2, 2.3 and 2.4, the proofs are based on a shooting 
method from the critical point Q1 on the trajectories lC defined in (2.15) for C ∈ (0, ∞). We recall here 
that these trajectories are in a one-to-one and onto correspondence with profiles f(·; A) with A ∈ (0, ∞), 
the correspondence being given in (2.17). Thus, we will be looking for shooting parameters C ∈ (0, ∞) such 
that lC either connects to the critical point Pγ0 leading to the decay (1.9) as ξ → ∞, or to the critical point 
P1 leading to the decay (1.12), or finally to the critical point P2 leading to compactly supported profiles 
(and very singular solutions, as explained in the Introduction). For the easiness of the reading, we split the 
proofs into several subsections.

5.1. Proof of Theorems 1.1 and 1.3 for p ≥ pF (σ): existence

Let us fix throughout this section p ≥ pF (σ). We need one more preparatory lemma, before proceeding 
with the proof.

Lemma 5.1. Let p ≥ pF (σ) and (X, Y, Z)(η) be a trajectory of the system (2.3) such that there is η∗ ∈ R

with X(η∗) > 0, Z(η∗) > 0 and

−β

α
< Y (η) < 0, for any η ∈ (η∗,∞). (5.1)

Then the trajectory ends either at the critical point P1 or at the critical point Pγ0 . Moreover, the plane 
{Y = −β/α} cannot be crossed towards the negative side by trajectories of the system (2.3).

Proof. We infer from the first equation of (2.3) that η 	→ X(η) is decreasing along the trajectory for η > η∗, 
hence there exists a limit X0 = lim

η→∞
X(η) ≥ 0. It follows that the ω-limit set of the trajectory (which is 

either a critical point or not) lies in the plane {X = X0}. If X0 > 0, the ω-limit set cannot be a critical 
point (as there is none with X = X0) and, as an orbit, it is itself a trajectory of the system (according to, for 
example, [41, Theorem 2, Section 3.2]). But this, together with the first equation, gives (m −1)X0−2Y = 0
in this ω-limit set, which contradicts the fact that Y (η) < 0 for η ≥ η∗. It thus follows that X0 = 0. 
Observing that the system (2.3) reduces, in the invariant plane {X = 0}, to

{
Ẏ = −Y 2 − p−m

σ+2 Y,

Ż = (p− 1)Y Z,
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which has no periodic orbits in the half-plane {Y < 0} due to the fact that Ż = (p − 1)Y Z < 0, the 
Poincaré-Bendixon theory together with Lemma 2.8 and arguments as in the final part of the proof of 
Lemma 3.4 entail that the ω-limit set of our trajectory must be a critical point among P1, Pγ0 or P2. In the 
case p > pF (σ), an inspection of the eigenvectors e1 and e3 spanning the stable manifold of the critical point 
P2 in Lemma 2.2 show that the trajectories entering P2 on its stable manifold (except the one belonging 
to the plane {X = 0}) arrive through the half-space {Y < −β/α}, contradicting (5.1). In the limit case 
p = pF (σ), we have to look for the second order of the Taylor expansion of the stable manifold of P2. Indeed, 
if we set

Y = −β

α
+ aX + bZ + cX2 + dXZ + eZ2 + o(|(X,Z)|2),

and ask for the flow of the system to be of order o(|(X, Z)|2) across the previous surface, we find after some 
calculations a = b = c = e = 0 and

Y = −β

α
− N2

2mN −N + σ + 2XZ + o(|(X,Z)|2),

whence also in this case, the orbits entering P2 arrive from the half-space {Y < −β/α}. We infer that 
P2 cannot be reached from the strip (5.1), completing the proof of the first statement. The last statement 
follows from the direction of the flow of the system (2.3) across the plane {Y = −β/α} (with normal 
direction (0, 1, 0)), given by the sign of the expression

F (X,Z) = X

(
Z + N(p− pF (σ))

σ + 2

)
> 0. � (5.2)

We can now pass to the (rather simultaneous) proofs of 1.1 and 1.3 in the range p > pF (σ).

Proof of Theorem 1.3: existence. Let p ≥ pF (σ). We split the interval (0, ∞) in the following disjoint sets:

A := {C ∈ (0,∞) : there is η1,∗ ∈ R, y(η1,∗) > 0 on the trajectory lC},
C := {C ∈ (0,∞) : y(η1) < 0 on lC for any η1 ∈ R and it ends at P1},
B := (0,∞) \ (A ∪ C).

(5.3)

We readily find that A is an open set, by definition and continuity with respect to C. Similarly, the attracting 
stability of P1 as established in Lemma 2.1 entails that C is an open set. Since the orbits lC with C > 0 go 
out from Q1 into the region {y < 0} and the direction of the flow across the plane {y = 0} is given by the 
sign of z − x, it follows from Lemma 3.1 that for any C ∈ A, the trajectory lC enters the region R defined 
in Lemma 3.1 and remains there. On the one hand, Lemma 3.2 and the continuity with respect to C then 
imply that A is non-empty, and more precisely there is C∗ > 0 such that (C∗, ∞) ⊆ A. On the other hand, 
the non-emptyness of C follows from Lemma 3.3, the continuity with respect to C and the stability of P1
if p > pF (σ). In the limit case p = pF (σ), the trajectory l0 enters P2 by Lemma 3.3, but an application of 
the behavior near a saddle point (see for example [44, Theorem 2.9]) to the saddle P2 leads to the same 
conclusion, as for C > 0 small, the orbits lC follow the unstable manifold of P2, which is contained in the 
Y axis and approaches P1.

We then infer that B �= ∅. Pick C0 ∈ B. Since C0 �∈ A, we deduce that lC0 is fully contained in the 
half-space {y ≤ 0}, that is, also in {Y ≤ 0} according to (2.4). Then, it has two possibilities:

• either lC0 is tangent to the plane {y = 0}, that is, there is η1,∗ ∈ R such that y(η1,∗) = 0, ẏ(η1,∗) = 0 and 
y′′(η1,∗) ≤ 0. From the system (2.6) and these conditions, we infer that x(η1,∗) = z(η1,∗) and furthermore, 
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by taking derivatives in the second equation of (2.6) and taking into account the previous equalities, we 
have

y′′(η1,∗) = ż(η1,∗) − ẋ(η1,∗) = (σ + 2)z(η1,∗) − 2x(η1,∗) = σz(η1,∗) > 0,

which is a contradiction with the condition of maximum point y′′(η1,∗) ≤ 0. Thus, this case is not possible.
• or lC0 is fully included in the half-space {y < 0}, that is, also in {Y < 0}, and does not connect to P1, 

as C0 �∈ C. Moreover, Lemma 2.4 together with the fact that p ≥ pF (σ) and the linearization (2.18) imply 
that all the orbits lC with C > 0 on the unstable manifold of Q1 go out in the region

y(η1) > −x(η1)
N

≥ −βx(η1)
α

, that is, Y = y

x
> −β

α
,

entering the strip (5.1). Lemma 5.1 and the fact that C0 �∈ C give that lC0 has to end up on the center-stable 
manifold of the critical point Pγ0 . The local behaviors (1.9), (1.12) and Lemma 4.3 ordering decreasing 
profiles (corresponding to trajectories fully contained in the region {Y < 0}) show that A = (C∗, ∞), C =
(0, C∗) and B = [C∗, C∗], for some 0 < C∗ ≤ C∗ < ∞ (eventually relabeled), and the similar classification 
for profiles f(·; A) follows from (2.17), completing the proof of both Theorems 1.1 and 1.3. �

We plot in Fig. 1 below the typical behavior of several trajectories lC with C > 0, for several C ∈ A
and several C ∈ C. We have also plotted the plane {y = −(σ + 2)/(p −m)} and we see how all trajectories 
either go directly towards it, or cross it and then go back, in order to reach the critical point P1, according 
to (5.4) below. This will be in strong contrast with the range m < p < pF (σ) considered in the next section.

5.2. Proof of Theorems 1.1 and 1.2 for m < p < pF (σ): existence

Let us fix p ∈ (m, pF (σ)) throughout this section. We consider the plane {y = −(σ + 2)/(p −m)}, which 
is a kind of “filter” for the trajectories of the system (2.6). We thus prove a preparatory lemma.

Lemma 5.2. A trajectory (x, y, z)(η1) of the system (2.6) crossing the plane {y = −(σ + 2)/(p − m)} and 
entering the half-space {y < −(σ+2)/(p −m)} cannot return afterwards to {y > −(σ+2)/(p −m)}. Moreover, 
there are no trajectories (x, y, z)(η1) of the system (2.6) tangent to the plane {y = −(σ + 2)/(p −m)}.

Proof. The flow of the system (2.6) across the plane {y = −(σ+2)/(p −m)} (with normal (0, 1, 0)) is given 
by the sign of the expression F (z) = z − Z0, where Z0 has been introduced in (2.14), hence, if a trajectory 
crosses the plane coming from the half-space {y > −(σ + 2)/(p −m)}, it is through a point with z < Z0. 
But we infer from the third equation of the system (2.6) that in the half-space {y < −(σ + 2)/(p − m)}
the z coordinate is decreasing, thus it cannot increase again up to a value z > Z0 in order to return to 
the half-space {y > −(σ + 2)/(p −m)}. For the second statement, assume for contradiction that there is a 
trajectory (x, y, z)(η1) and some η1,∗ ∈ R such that

y(η1,∗) = − σ + 2
p−m

, ẏ(η1,∗) = 0, y′′(η1,∗) ≥ 0.

It then follows that z(η1,∗) = Z0 and thus, by the uniqueness theorem, we infer that the trajectory has to 
coincide with the line z = Z0 fully included in the plane {y = −(σ + 2)/(p −m)}, leading to a contradic-
tion. �

Let us recall now that the critical point P1, according to (2.8) and (2.10), together with (2.4), is seen in 
(x, y, z) variables as the limit
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Fig. 1. Trajectories lC going out of Q1. Numerical experiment for m = 3, N = 3, σ = 2.5 and p = 5.

x(η1) → ∞, y(η1) → − σ + 2
p−m

, as η1 → ∞. (5.4)

With these preparations, we are in a position to prove the existence part of Theorem 1.2.

Proof of Theorem 1.2: existence. Let m < p < pF (σ). In a first step we introduce the disjoint sets

A := {C ∈ (0,∞) : there is η1,∗ ∈ R, y(η1,∗) > 0 on the trajectory lC},

C :=
{
C ∈ (0,∞) : y(η1) < 0 on lC for any η1 ∈ R and inf

η1∈R
y(η1) ≤ − σ + 2

p−m

}
,

B := (0,∞) \ (A ∪ C).

(5.5)

Similarly as in the previous section, Lemmas 3.1 and 3.2 imply that there is C∗ > 0 such that (C∗, ∞) ⊆ A. 
Let us now look at the set C. According to Lemma 5.2 and to (5.4), for C ∈ C, the trajectory lC has only 
two possibilities:

• either lC crosses the plane {y = −(σ + 2)/(p −m)} and then remains in that region forever. The set of 
parameters C for which this occurs is an open set by definition.

• or lC stays in the half-space {y = −(σ + 2)/(p − m)} and enters the critical point P1 in the limit 
η1 → ∞, according to (5.4). This is also an open set, according to the stability of P1.

Altogether, C is an open set. Moreover, Lemma 3.3 and the continuity with respect to C give that there 
is C∗ > 0 such that (0, C∗) ⊆ C. This also shows that B is non-empty and closed. Picking C0 ∈ B, we infer 
from the fact that C0 �∈ A, C0 �∈ C and the fact that the trajectory lC0 cannot be tangent to any of the 
planes {y = 0} or {y = −(σ + 2)/(p −m)} (as shown in the previous section, respectively in Lemma 5.2) 
that lC0 satisfies the condition (3.5) and does not enter P1. Lemma 3.4 then entails that lC0 connects to the 
critical point Pγ0 . The monotonicity of the decreasing profiles given in Lemma 4.3 proves that B is a closed 
interval and completes the proof of Theorem 1.1 in this range.

In a second step, we are left to show that there is some C ∈ (0, ∞) such that lC connects to P2

(corresponding then to the profile of the very singular, compactly supported self-similar solution as stated 
in Theorem 1.2). To this end, we split now the open set C defined in (5.5), at its turn, into three disjoint 
sets



26 R.G. Iagar, D.-R. Munteanu / J. Math. Anal. Appl. 543 (2025) 128965
U := {C ∈ C : the trajectory lC connects to Q5},
V := {C ∈ C : the trajectory lC connects to P1},
W := C \ (U ∪ V).

(5.6)

Once more, the non-emptyness of U follows from Lemma 3.3, while the stability of both Q5 and P1 shows 
that U and V are open sets. It remains to prove that V is non-empty. In order to show it, let

S :=
{
C ∈ C : the trajectory lC crosses the plane y = − σ + 2

p−m

}
.

It is obvious that S is an open set. Pick C0 = supS ∈ (0, ∞). Since S is open, we deduce that C0 �∈ S, that 
is, the trajectory lC0 remains forever in the half-space {y > −(σ+2)/(p −m)}, since Lemma 5.2 shows that 
there cannot be η1 ∈ R such that y(η1) = −(σ + 2)/(p −m) without crossing the plane immediately after. 
Moreover, by the definition of supremum, there is a sequence (Cn)n≥1 such that Cn ∈ S, Cn < C0 for every 
n ≥ 1 and Cn → C0 as n → ∞. By the definition of S, for every n ≥ 1 there is η1,n ∈ R such that the point

(
x(η1,n),− σ + 2

p−m
, z(η1,n)

)
belongs to lCn

, 0 < z(η1,n) < Z0,

and is the crossing point between lCn
and the plane {y = −(σ+2)/(p −m)}. Assume for contradiction that 

(x(η1,n))n≥1 is bounded. Since (z(η1,n))n≥1 is also bounded, by extracting a subsequence (relabeled also 
η1,n), we may assume that both x(η1,n) and z(η1,n) are convergent as n → ∞ to some limits x∞ and z∞. 
By continuity with respect to C, we conclude that the point

P∞ :=
(
x∞,− σ + 2

p−m
, z∞

)

either belongs to lC0 or is the limit as η1 → ∞ of lC0 , in both cases reaching a contradiction. Indeed, the 
former contradicts Lemma 5.2, while the latter would imply that P∞ is a finite critical point for the system 
(2.6), and there is no such point. Observe that in fact, this contradiction shows that (xη1,n)n≥1 has no 
convergent subsequences. Thus, x(η1,n) → ∞ as n → ∞, and the continuity with respect to C, (5.4), and 
the stability of P1 then give that lC0 connects to P1, that is, C0 ∈ V.

We thus conclude that U and V are non-empty and open, and thus W is non-empty (and closed). Pick 
now C1 ∈ W. In particular, since C1 ∈ C but C1 �∈ V, it follows from Lemma 3.4 that the trajectory lC1

crosses the plane {y = −(σ + 2)/(p −m)}. We further infer from Lemma 5.2 that there exists η1,∗ ∈ R such 
that at points (x, y, z)(η1) belonging to lC1 with η1 > η1,∗, we have y(η1) < −(σ + 2)/(p −m). We deduce 
then from the third equation of the system (2.6) that z(η1) < Z0 for any η1 > η1,∗ and z(η1) decreases on 
(η1,∗, ∞). Since η1 	→ x(η1) is increasing, it is easy to show by an argument by contradiction that x(η1) → ∞
as η1 → ∞. Moreover, since C1 �∈ U , owing to the fact that Q5 is an attractor characterized by the limit 
y/x → −∞, we deduce that the function η1 	→ y(η1)/x(η1), η1 ∈ (η1,∗, ∞), is uniformly bounded from below 
by some negative constant −κ with κ > 0 sufficiently large.

We change now the viewpoint of the trajectory lC1 and move to the (X, Y, Z) variables by undoing (2.4). 
The previous arguments imply that, on the trajectory lC1 , we have

X = 1
x
→ 0, Z = z

x
→ 0, Y = y

x
∈ (−κ, 0), (5.7)

as η → ∞. If we assume for contradiction that Y (η) is not convergent, but bounded, it follows that it has 
infinitely many oscillations, so that, there are sequences (ηk)k≥1 and (ηj)j≥1 of respectively minima and 
maxima of Y (η), such that ηj → ∞ and ηk → ∞. Since Ẏ (ηj) = Ẏ (ηk) = 0, we infer from the second 
equation in the system (2.3) evaluated at ηk, respectively ηj , and (5.7) that
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Fig. 2. Trajectories lC going out of Q1. Numerical experiment for m = 3, N = 3, σ = 2.5 and p = 3.4.

−Y 2(ηj) −
β

α
Y (ηj) → 0, −Y 2(ηk) −

β

α
Y (ηk) → 0,

which together with the boundedness, readily gives that Y (ηj) and Y (ηk) may have only zero or −β/α as 
limit points. Since zero as limit point is excluded by the asymptotic stability of P1 and the fact that C1 �∈ V, 
we are left with Y (ηj) → −β/α as j → ∞ and Y (ηk) → −β/α as k → ∞. We conclude that lC1 ends up at 
the critical point P2, and the existence is proved. �

We plot in Fig. 2 a bunch of trajectories for several values of C ∈ (0, ∞), illustrating by a numerical 
experiment the previous alternative with several different behaviors and the “filter” realized by the plane 
{y = −(σ + 2)/(p −m)}.

5.3. Proof of Theorem 1.2: uniqueness of the compactly supported profile

In this section we prove that there exists only one compactly supported profile, as claimed in Theorem 1.2, 
part (a). The proof is done directly working with profiles f(·; A) with A > 0, and follows rather closely the 
analogous one in [21, Section 5]. As done there, we begin with a preparatory result.

Lemma 5.3. Let f be a solution to (1.7) and define

Uλ(x, t) := t−αfλ(|x|t−β), fλ(ξ) = λ−2/(m−1)f(λξ), (5.8)

for λ ∈ (0, 1), where α, β are given in (1.6). Then Uλ is a supersolution to Eq. (1.1).

Proof. It follows by direct calculation. Indeed, we have

Uλ,t − ΔUm
λ − |x|σUp

λ = t−α−1
[
−αfλ − βξf ′

λ − (fm
λ )′′ − N − 1

ξ
(fm

λ )′ + ξσfp
λ

]

= t−α−1ξσfp
λ

(
1 − λL/(m−1)

)
> 0. �

We are now in a position to complete the proof of part (a) of Theorem 1.2.

Proof of Theorem 1.2, part (a). Assume for contradiction that there exist two profiles f1 = f(·; A1) and 
f2 = f(·; A2) with A1 < A2 and with interfaces (in the sense described in the statement of Theorem 1.2, 
part (a)) at finite points ξ1 = ξmax(A1), respectively ξ2 = ξmax(A2) ∈ (0, ∞). We infer from Lemma 4.3 that 
ξ1 < ξ2 and f1(ξ) < f2(ξ) for any ξ ∈ [0, ξ1]. Consider now the same rescaling introduced in (4.5) and define 
λ0 ∈ (0, 1) to be the optimal parameter as defined in (4.8). We already know from the proof of Lemma 4.3
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that gλ0 and g2, thus also fλ0 and f2, remain strictly ordered in [0, ξ2). The optimality of λ0 thus entails 
that the contact point between fλ0 and f2 has to lie at their common edge of the support ξ = ξ2. We thus 
have

0 = f2(ξ2) = fλ0(ξ2), 0 < f2(ξ) < fλ0(ξ) for any ξ ∈ [0, ξ2).

We go back to the time variable and construct the self-similar functions

U2(x, t) = t−αf2(|x|t−β), Uλ0 = t−αfλ0(|x|t−β),

thus U2 is a solution to Eq. (1.1) and Uλ0 is a supersolution to Eq. (1.1) by Lemma 5.3. We next apply an 
idea of separation of supports similar to the one used in [21]. More precisely, since at t = 1 we have a perfect 
identification between the function and its profile, we notice that

U2(x, 1) ≤ Uλ0(x, 1) < Uλ0(x, 1 + δ),

provided we take a small δ > 0. Indeed, contrasting with the proof in [21, Section 5], in our case a small 
time advance means a small advance of the support but a small decrease in amplitude. Thus, we have to 
ensure that we still keep the order at zero (since a tangency at an interior point cannot appear, in the same 
way as shown in the proof of Lemma 4.3), that is,

U2(0, 1) = A2 < (1 + δ)−αλ
−2/(m−1)
0 A1 = Uλ0(0, 1 + δ),

which allows us to choose a δ > 0 sufficiently small, since by the strict ordering we already know that 
A2 < λ

−2/(m−1)
0 A1. With this choice of δ, we find that U2(x, 1) and Uλ0(x, 1 + δ) are strictly separated 

on the compact interval [0, ξ2]. There exists thus, by continuity with respect to λ, a better parameter 
λ1 ∈ (λ0, 1) such that

U2(x, 1) < λ
−2/(m−1)
1 (1 + δ)−αf1(λ1|x|(1 + δ)−β) = Uλ1(x, 1 + δ).

Since U2 is a solution and Uλ1 is a supersolution to Eq. (1.1) (according to Lemma 5.3), we deduce that 
U2(x, t) < Uλ1(x, t + δ) for any t > 1. This follows from the comparison principle (which is a standard 
property for absorption-diffusion equations, and will also be proved for completeness in the companion 
paper to this work), but since we are dealing with functions having the specific self-similar form, we can 
actually show that no contact point between U2(t) and Uλ1(t + δ) may appear at a first later time t1 > 1 by 
removing the contact points in the same way as we did in the proof of Lemma 4.3. Recalling the expressions 
of U2(x, t) and Uλ1(x, t + δ), we are left with

f2(ξ) ≤
(
t + δ

t

)−α

λ
−2/(m−1)
1 f1

(
λ1ξ

(
t + δ

t

)−β
)
, (5.9)

for any t > 1. By letting t → ∞ in the right hand side of (5.9), we deduce that f2(ξ) ≤ fλ1(ξ) for any 
ξ ∈ [0, ξ2], contradicting the optimality of λ0 in (4.8). This contradiction implies the uniqueness of the 
compactly supported profile, ending the proof. �
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