
A Solution Method for the Shared Resource-Constrained Multi-Shortest

Path Problem⋆

David Garćıa-Herediaa,∗, Elisenda Molinaa, Manuel Lagunab, Antonio Alonso-Ayusoc

aDepartamento de Estad́ıstica, Universidad Carlos III de Madrid, Getafe (Madrid), Spain
bLeeds School of Business, University of Colorado Boulder, USA

cÁrea de Estad́ıstica e Investigación Operativa, Universidad Rey Juan Carlos, Móstoles (Madrid), Spain

Abstract

We tackle the problem of finding, for each network within a collection, the shortest path between

two given nodes, while not exceeding the limits of a set of shared resources. We present an integer

programming (IP) formulation of this problem and propose a parallelizable matheuristic consisting

of three phases: 1) generation of feasible solutions, 2) combination of solutions, and 3) solution

improvement. We show that the shortest paths found with our procedure correspond to the solution

of some type of scheduling problems such as the Air Traffic Flow Management (ATFM) problem.

Our computational results include finding optimal solutions to small and medium-size ATFM

instances by applying Gurobi to the IP formulation. We use those solutions to assess the quality

of the output produced by our proposed matheuristic. For the largest instances, which correspond

to actual flight plans in ATFM, exact methods fail and we assess the quality of our solutions by

means of Lagrangian bounds. Computational results suggest that the proposed procedure is an

effective approach to the family of shortest path problems that we discuss here.

Keywords: Matheuristics, Shortest Path Problem, Shortest Path with Constrained Resources,

Air Traffic Flow Management.

2010 MSC: 00-01, 99-00

1. Introduction

⋆This research was partially funded by projects MTM2015-63710-P and RTI2018-094269-B-I00 (A. Alonso-Ayuso
and D. Garćıa-Heredia) from the Government of Spain

∗Corresponding author.
Email addresses: dgheredi@est-econ.uc3m.es (David Garćıa-Heredia), emolina@est-econ.uc3m.es (Elisenda

Molina), laguna@colorado.edu (Manuel Laguna), antonio.alonso@urjc.es (Antonio Alonso-Ayuso)

Preprint submitted to Elsevier December 17, 2023

Antonio Alonso Ayuso
This document is the accepted version of the research paper:

David García-Heredia, Elisenda Molina, Manuel Laguna, Antonio Alonso-Ayuso (2021). A Solution Method for the Shared Resource-Constrained Multi-Shortest Path Problem Expert Systems with Applications 182, 115193. Doi: 10.1016/j.eswa.2021.115193

Dataset and codes used in computational experiments are available at

https://github.com/DavidGarHeredia/ATFM-datasets

Antonio Alonso Ayuso

The Shortest Path Problem (SPP) is very well known in the Operations Research literature.

The goal is to find the minimum-cost path connecting an origin node and a destination node in

a network. The variety of applications is what makes this problem relevant. Applications range

from computing the best route in GPS navigators and obtaining minimum risk routes for haz-5

mat shipments (Carotenuto, Giordani & Ricciardelli, 2007; Holeczek, 2019) to routing protocols

in IP or Wireless networks (Pióro, Szentesi, Harmatos, Jüttner, Gajowniczek & Kozdrowski, 2002;

Yan, Zhou & Ding, 2016). Moreover, it often appears as a subproblem of other optimization prob-

lems, e.g., in Air Traffic Flow Management (Garćıa-Heredia, Alonso-Ayuso & Molina, 2019).

SPP is commonly solved with algorithms that have a polynomial-time complexity, such as10

Dijkstra’s (Dijkstra, 1959) and Bellman-Ford (Bellman, 1958). In directed acyclic networks, SPP

has a solution complexity that is linear with respect to the number of arcs (Bellman, 1957).

Some extensions of SPP include the k-shortest path problem (Yen, 1971; Eppstein, 1998), where

the goal is to find the k paths of minimum cost between two nodes (e.g., for hazmat shipments),

the multi-objective shortest path problem (Aneja & Nair, 1979; Guerriero & Musmanno, 2001;15

Raith & Ehrgott, 2009; Hrnč́ı̌r, Žileckỳ, Song & Jakob, 2016), where the goal is to find efficient

(non-dominated) solutions according to more than one criterion (e.g., to balance time and fuel con-

sumption), and the dynamic shortest path problem (Chabini, 1998; Ahuja, Orlin, Pallottino & Scutella,

2003; Thomas & White, 2007; Sever, Zhao, Dellaert, Demir, Van Woensel & De Kok, 2018), where

properties such as the cost of each arc may change over time (e.g., shipping costs may vary through-20

out a day).

One of the most popular extensions of SPP is the Resource Constrained Shortest Path Problem

(RCSPP), where the consumption of various resources is associated with each arc of the network.

The objective is to find the Shortest Path (SP) connecting two nodes, while ensuring that available

resource quantities are not exceeded (Handler & Zang, 1980; Beasley & Christofides, 1989). In ad-25

dition to the straightforward application of finding the shortest path subject to time or fuel limits,

RCSPP with one resource has been embedded as a pricing subproblem in column-generation proce-

dures for vehicle routing problems (see Chabrier (2006) or Montoya, Guéret, Mendoza & Villegas

(2016)).

RCSPP belongs to the NP−complete class (Ahuja et al. (1993, Appx. B)) and it is usually30

solved by means of specialized algorithms (see, for instance, Dumitrescu & Boland (2003), Garcia

2

(2009), Lozano & Medaglia (2013) or Horváth & Kis (2016)). The basic idea behind these algo-

rithms is to identify and prune dominated and infeasible paths in order to reduce the size of the

problem to be able to solve it via dynamic programming or similar approaches.

In this work we address an extension of RCSPP that, as far as we know, has not appeared35

in the literature: the Shared Resource-Constrained Multi-Shortest Path Problem (SRMSPP). The

problem consists of finding, for each network within a collection, a path between a given source (or

origin) node and a given sink (or destination) node that minimizes the total cost (i.e., the sum of

the costs in the arcs that are in the optimal path), while not exceeding a limit in the usage of a set

of common resources shared by all networks. This extension is motivated by previous research that40

some of the authors carried out in Air Traffic Flow Management (ATFM) (Garćıa-Heredia et al.,

2019).

ATFM problem (see a detailed description in (Garćıa-Heredia et al., 2019)) consists of deter-

mining the optimal routes for a set of flights. Each route includes the departure and arrival time,

regions of the airspace (air sectors) to cross, and the time spent passing through each region (air-45

craft speed). The solution space is restricted by capacity values that limit the number of aircraft

that can be in an air sector at the same time. Likewise, airports are limited in the number of de-

parture and landing operations that they can handle. The collection of possible time-space routes

for the flights assigned to an aircraft can be represented as a time-expanded network. A path

represents an aircraft route. Without capacity constraints, the optimal route for each aircraft is50

given by the solution of SPP in its associated time-expanded network. However, as these capacity

restrictions do exist, the problem to be solved becomes SRMSPP.

Our interest is to study SRMSPP by first formulating the problem as a mathematical program-

ming model and then developing a heuristic solution approach. We also discuss how the problem

can be applied to settings other than ATFM.55

The motivation for the development of a heuristic solution method for SRMSPP is that exact

mathematical programming solvers are not able to solve instances of the size found in practice and

that, as we discuss in Section 2, it is not possible to simply apply the solution methods available

in the literature that have been developed for the resource constrained shortest path problem.

Our work falls within the area known as matheuristic optimization, which combines mathematical60

programming and heuristic search (Fischetti & Fischetti, 2018). Our heuristic approach uses some

3

metaheuristic principles but it cannot be classified as one of the well-known methodologies, such

as tabu search (Glover & Laguna, 1998) or scatter search (Laguna & Mart́ı, 2012).

Applications of SRMSPP include the aforementioned ATFM problem, the train rescheduling

problem (Törnquist, 2006, 2012; Josyula, Törnquist Krasemann & Lundberg, 2018) or planning65

garbage collection (Jin, Qin, Zhang, Zhou & Wang, 2020). The problem is also linked to project

scheduling (see Kolisch & Padman (2001), Kolisch & Hartmann (2006), Hartmann & Briskorn (2010),

or Zheng & Wang (2015)) where all the activities are serial. Problems of this type include exten-

sions such as several execution modes (Kuster, Jannach & Friedrich, 2009; Kellenbrink & Helber,

2015), time lag between activities (Klein & Scholl, 1999; Klein, 2000; Chassiakos & Sakellaropoulos,70

2005), forbidden periods (Drexl, Nissen, Patterson & Salewski, 2000), multiple projects (Confessore, Giordani &

2007; Gonçalves, Mendes & Resende, 2008; Krüger & Scholl, 2009), project selection (Chen & Askin,

2009), flexible objective functions (Achuthan & Hardjawidjaja, 2001), and alternative sequences of

activities to complete a project.

The main contributions of this work are: 1) The introduction of a shortest path formulation75

that can be employed to model some scheduling problems (Section 2), 2) A matheuristic search to

solve the problem that is designed to take advantage of the modern computer architecture with

multiple cores (Section 3), and 3) Testing and analysis of the proposed procedure to assess the

contribution of its key elements (Section 4).

2. Problem Description and Mathematical Formulation80

Before formally formulating SRMSPP, we introduce mathematical formulations for SPP and

RCSPP. The notation employed in this section can be found in Table 1.

4

Table 1: Notation for the problem formulation.

Sets

N = {1, . . . , |N |} set of network indices.

Vn set of vertices (or nodes) of the n-th network, n ∈ N .

An set of arcs of the n-th network, n ∈ N .

Cn set costs of the n-th network.

Gn = (Vn,An, Cn) n-th network, n ∈ N .

GN = {Gn}n∈N set of networks.

Λ+
n (i),Λ

−
n (i) set of incoming and outgoings arcs, respectively, of node i ∈ Vn, n ∈ N .

R set of constrained resources.

Indices

n network index, n ∈ N .

i, j two nodes of a given network, i, j ∈ Vn, n ∈ N .

a arc of a given network, a ∈ An, n ∈ N .

r resource of the constrained set, r ∈ R.

Parameters

ca cost of using arc a, ∀a = (i, j) ∈ An, n ∈ N .

on, dn source and sink nodes, respectively, of the n-th network, on, dn ∈ Vn, n ∈ N .

wr
a consumption of resource r ∈ R by arc a ∈ An, n ∈ N .

W r availability of resource r ∈ R.

Variables

xa binary variable equal to 1 if arc a ∈ An, n ∈ N is part of the solution, and 0 otherwise.

2.1. Shortest Path Problem and Resource Constrained Shortest Path Problem

Since SRMSPP is a generalization of SPP and RCSPP, we first present mathematical program-

ming formulations of these two problems. This is a formulation of SPP1.85

min
∑

a∈A

caxa, (1)

1Note that as both problems, SPP and RCSPP, deal only with one network, the subscript n employed when

defining notation in Table 1 is not needed.

5

subject to:

∑

a∈Λ−(i)

xa −
∑

a∈Λ+(i)

xa =



























1, if i = o,

−1, if i = d,

0, otherwise.

∀i ∈ V (2)

xa ∈ {0, 1}, ∀a ∈ A. (3)

In this formulation, (1) establishes the objective of minimizing the cost of the arcs selected, while

(2) are the classical flow conservation constraints which guarantee that the arcs in the solution

form a path.

An IP formulation of RCSPP is obtained by adding to model (1)-(3) the following capacity

(knapsack) constraints:

∑

a∈A

wr
axa ≤ W r, ∀r ∈ R. (4)

2.2. Mathematical formulation of the Shared Resource-Constrained Multi-Shortest Path Problem

The goal of SRMSPP is to find, for each network in GN , a path between a given source node on90

and a given sink node dn, on, dn ∈ Vn, n ∈ N , that minimizes the overall cost while not exceeding

the capacity of a set of resources shared by all networks. The problem can be formulated as an

integer program as follows:

min
∑

n∈N

∑

a∈An

caxa, (5)

subject to:

∑

a∈Λ−
n (i)

xa −
∑

a∈Λ+
n (i)

xa =



























1, if i = on,

−1, if i = dn,

0, otherwise.

∀i ∈ Vn, n ∈ N (6)

∑

n∈N

∑

a∈An

wr
axa ≤ W r, ∀r ∈ R, (7)

xa ∈ {0, 1}, ∀a ∈ An, n ∈ N . (8)

6

The objective function (5) minimizes the cost of the arcs in the solution. Equations (6) are

the flow conservation constraints for each network, which force the arcs of each network to form95

a path from origin to destination. Constraints (7) enforce the resource limits. The model finishes

with the integrality constraints (8).

2.3. The Shared Resource-Constrained Multi-Shortest Path Problem

We now highlight the main features of the shared resource-constrained multi-shortest path

problem, while pointing out the differences with the resource constrained shortest path problem.100

First of all notice that in contrast to RCSPP, where the arcs in a single path compete for a

set of available resources, in SRMSPP, the arcs in paths from multiple networks must share the

constrained set of resources (see constraints (7)).

In second place, the structure of the solutions is also different. In RCSPP, a solution (i.e., a

single path) is infeasible when, for one or more resources, it consumes more than what is available.105

That is, the feasibility of a path depends only on the arcs in the path and it can be detected

without any additional information (local conditions). By contrast, while the path for each single

network in a solution to SRMSPP may be feasible (local conditions), the entire solution may not

be feasible when considering the aggregated resource consumption of all paths (global conditions).

In other words, instead of infeasible paths, SRMSPP deals with infeasible combinations of paths.110

This is why the methods for RCSPP, which are largely based on identifying and pruning dominated

and infeasible paths, instead of combinations of paths, are not applicable to the problem addressed

here.

To illustrate this point, consider ATFM problem described in the introduction. Under typical

circumstances, all elements forming the set of shared resources (sectors and airports) have enough115

capacity to handle at least one aircraft. Therefore, no route by itself is ever infeasible (local

conditions). This means that a route cannot be eliminated when considered in isolation. The

feasibility of a route depends on other routes in a chosen set. Therefore, there are certain route

combinations that are feasible and others that are infeasible.

SRMSPP formulation allows each arc, when used, to consume a specified amount of all of the120

available resources, i.e., wr
a > 0 , ∀a ∈ {An}n∈N , r ∈ R. However, in real applications (such as

train rescheduling) arcs require only a subset of the resources. That is, for some resources r ∈ R,

wr
a = 0.

7

As we mentioned in the introduction, SRMSPP allows the modeling of project scheduling

problems for which the activities are serial and that simultaneously consider some extensions. We125

illustrate these extensions with ATFM problem. An aircraft in ATFM can be viewed as a project.

Therefore, the multiple project extension corresponds to the problem with multiple aircraft. For

each aircraft, the sequence of serial activities corresponds to the airports and sectors that the

aircraft encounters in a flight. The route schedule is known as the flight plan. A flight plan

specifies the departure time (which is restricted to a time window), the sectors to cross (different130

possibilities exist to reach a destination, which is equivalent to alternative sequences of activities

to complete the project), the speed of the aircraft when traversing each air sector (execution

modes), and the landing time (completion time of the project). Furthermore, each aircraft must

cross each sector within a given time interval (forbidden time periods, in project scheduling).

There is a setup time between flights that can be equated to the lag time extension in project135

scheduling. Several objective functions can be considered, such as minimizing the cost of the

routes or minimizing late landings. To solve this type of scheduling projects as a SRMSPP, the

graph of serial activities of each project has to be transformed into a time-expanded network, as

illustrated in Garćıa-Heredia et al. (2019) for ATFM.

3. Solution Method for the Shared Resource-Constrained Multi-Shortest Path Prob-140

lem

In this section, we propose a three-phase matheuristic algorithm to solve SRMSPP. We first

give an overview of the procedure and then provide a detailed description of each phase. The

notation for the algorithm can be found in Table 2 and 3.

In the first phase, a pool X = {X 1, . . . ,X S} of solutions is generated. A solution s in the pool145

is represented as X s = {X s
n}n∈N , where X s

n ⊆ An is a set of arcs defining a path from on to dn in

network Gn. This phase attempts to generate solutions X s ∈ X that are feasible for the original

problem (5)-(8). However, as we discuss below, the resulting pool may include some solutions that

violate one or more capacity constraints.

In the second phase, the solutions in X are combined to obtain new (and perhaps better)150

feasible solutions, denoted by X II. This is done by solving the original IP model (5)-(8) only with

the arcs in X . By construction, X II cannot be worse than the best feasible solution in X .

8

The third phase applies a local search to X II. The local search attempts to close the gap

between the cost of each path in X II and its corresponding lower bound. The lower bound for

each network can be found by solving the corresponding RCSPP in that network. For instances155

of SRMSPP for which all paths are feasible for an individual network, the solution of RCSPP is

equivalent to the solution of SPP. Therefore, the lower bound for an individual network can be

found by solving SPP instead of RCSPP. The goal of the local search is to find improved solutions,

which tend to be those for which the gaps are balanced across all networks. Solution X III denotes

the outcome of the local search.160

Algorithm 1 shows a pseudo-code of the proposed procedure.

Algorithm 1 Matheuristic
1: function matHeuristic

2: X ← GeneratePool(GN ,R,maxIter,minIterIP,maxNets, penalty, α, β, S);

3: X II ← SolutionCombination(GN ,R,X);

4: X III ← LocalSearch(GN ,R,X II, δ, γ);

5: return X III;

6: end function

9

Table 2: Parameters for the algorithm.

Parameter

maxIter maximum number of failed attempts to generate a feasible solution.

minIterIP
minimum number of failed attempts between calls to the IP solver.

The IP solver is used, as shown later, to help the heuristic find feasible solutions.

maxNets
maximum number of networks with penalized arcs in the previous

iteration to consider using the IP solver.

penalty value to penalize the usage of arcs contributing to solution infeasibility.

α
probability of penalizing a set of arcs that has been identified as contributing to

the solution infeasibility.

β
percentage of networks, whose arcs have not been penalized in the previous iteration,

that are fixed to their current paths when calling the IP solver.

S number of solutions to generate in the first phase of the algorithm.

∆n difference between the solution cost after the second phase and its lower bound, n ∈ N .

δ
number of networks for which the algorithm tries to improve their solution in the third phase.

The networks with larger ∆n values are the ones to be improved.

γ number of networks that the algorithm will use to trade resources with the δ networks above.

10

Table 3: Sets for the algorithm.

Set

X s
n ⊆ An

set of arcs defining a path from on to dn in the n-th network

for the s-th solution generated, n ∈ N , s ∈ {1, . . . , S}.

X s = {X s
n}n∈N s-th solution generated, s ∈ {1, . . . , S}.

X = {X 1, . . . ,XS}
set of solutions generated in the first phase of the algorithm. For analogy with

other metaheuristics such as Scatter Search, we will refer to X as pool instead of set.

X II solution generated in the second phase of the algorithm.

X III solution generated in the third and last phase of the algorithm.

XLB lower-bound solution to the problem.

G∗
n = (Vn,An, C

∗
n)

n-th network of the problem with the set of costs different (due to the penalization

process of the algorithm) than the original network Gn, n ∈ N .

G∗
N = {G∗

n}n∈N

set of networks with modified costs in the problem.

G∗
n = Gn for those networks whose costs have not been modified.

Ar
n ⊆ An

subset of arcs in network Gn, n ∈ N that use resource r ∈ R.

Note that an arc may belong to more than one Ar
n.

N ∗ ⊆ N network indices with at least one penalized arc in the previous iteration.

Gβ
N , N β networks and the corresponding indices as described for parameter β above.

Gδ
N , N δ networks and the corresponding indices as described for parameter δ above.

Gγ
N , N γ networks and the corresponding indices as described for parameter γ above.

3.1. Phase I: The GeneratePool Function

The goal of the first phase of our procedure is to generate a pool of feasible solutions X . The

procedure (shown in Algorithm 2) starts with the solution of SPP2 (i.e., model (1)–(3)) for each

network (line 2). The total cost associated with the collection of all the shortest paths, X LB, is165

a lower bound for the original problem. If this collection of shortest paths meets all the capacity

constraints, then X LB is an optimal solution to the original problem and the procedure terminates

(lines 3–5). Otherwise (i.e., at least one capacity constraint has been violated), a for-loop to

2We tackle SRMSPP instances for which the W r values are such that no individual shortest path violates the

capacity constraints, making RCSPP for each network equivalent to solving SPP. Since the networks in our compu-

tational testing are acyclic, we solve SPP using the Bellman principle of optimality (Bellman, 1957).

11

generate S feasible solutions is executed (lines 8–11). At each iteration of the loop, the FeasibleSol

function attempts to generate a feasible solution using X LB as a starting seed. This for-loop is170

amenable to parallel execution in the presence of multiple cores because the calls to FeasibleSol

are independent. FeasibleSol is a non-deterministic iterative procedure that attempts to create

a feasible solution X s from a starting solution X LB that does not meet the capacity constraints in

the original model (5)-(8). Due to its non-deterministic nature, it is expected that FeasibleSol

will generate a different solution every time is called.175

Algorithm 2 Generating pool X
1: function GeneratePool(GN ,R,maxIter,minIterIP,maxNets, penalty, α, β, S)

2: XLB ← ShortestPath(GN);

3: feasible ← CheckFeasibility(R,XLB);

4: if feasible == true then

5: X ← {XLB};

6: else

7: X ← ∅;

8: for s = 1, . . . , S do

9: X s ← FeasibleSol(GN ,R,XLB,maxIter,minIterIP,maxNets, penalty, α, β);

10: X ← X ∪ {X s};

11: end for

12: end if

13: return X ;

14: end function

Algorithm 3 shows the steps associated with the function that attempts to produce a feasible

solution from the collection of shortest paths X LB. The procedure identifies, for the current

solution, the arcs that are contributing to the infeasibility of the solution and adds a penalty to the

cost of a random subset of these arcs. Then, SPP is solved for each penalized network (denoted

as G∗
n), producing shortest paths that exclude most or all of the penalized arcs. These steps are180

repeated in search for a feasible solution. If this fails, a final attempt to find a feasible solution

is made by way of solving a reduced version of the original integer programming model. In this

reduced version, some of the arcs are fixed and only a subset of the arcs is included as decision

variables in the model. This step does not guarantee a feasible solution because the variable fixing

may render the model infeasible. The search for a feasible solution ends once one is found or after a185

specified limit on the number of failed attempts. For reasons that will become clear below, adding

12

an infeasible solution to the pool is not an issue as long as the pool contains at least one feasible

solution.

The FeasibleSol function takes as input the set of networks (i.e., GN), the set of resources (R),

the collection of shortest paths associated with the lower bound (i.e., X = X LB), the maximum190

number of failed attempts (maxIter), the number of failed attempts between calls to the IP solver

for the reduced model (minIterIP), the maximum number of networks with penalized arcs in

the previous iteration to consider using the IP solver (maxNets), the penalty value (penalty),

the probability of penalizing a set of arcs that has been identified as contributing to the solution

infeasibility (α), and the percentage of networks, whose arcs have not been penalized in the previous195

iteration, that are fixed to their current paths when solving the reduced IP model (β).

Lines 2–6 initialize the local elements of the FeasibleSol function. Let Ar
n ⊆ An be the

subset of arcs in network Gn that use resource r. We point out that an arc may belong to more

than one Ar
n. AR

N contains the unpenalized subsets of arcs that use resource r ∈ R. At the

beginning, no arc subsets have been penalized and therefore all arcs subsets are included in AR
N .200

G∗
N = {(Vn,An, C

∗
n)}n∈N consists of all the penalized networks and starts as a copy of GN , indicating

that at the beginning no arcs have been penalized (i.e., C∗
n = Cn). The feasible Boolean variable

keeps track of the feasibility of the solution obtained at the current iteration. The nIter counter

is the number of failed attempts to produce a feasible solution and nIterIP counts the number of

failed attempts since the last time the IP model was executed.205

After the initialization, a while-loop (lines 7–27) that attempts to create a feasible solution out

of the current X begins. In the first step of the loop, the PenalizeArcs function (see pseudo-code

and detailed description in Appendix A) seeks to identify and penalize (using a non-deterministic

procedure) subsets of arcs that are contributing to infeasibility in the current solution. For that,

PenalizeArcs creates a list of resources for which their capacity is exceeded by the current solution.210

We will refer to this as the list of infeasible resources. Then, for each resource r∗ in the list of

infeasible resources, the procedure, with probability α, penalizes each unpenalized subsetAr∗

n ∈ AR
N

if at least one arc in Ar∗

n is also in X . The subset penalization consists of adding a penalty value

to the current cost of all arcs in Ar∗

n . That is, the penalization process is cumulative.

PenalizeArcs returns the set of network indices with at least one penalized arc in the current215

iteration (N ∗ ⊆ N), the set of networks with penalized costs (G∗
N), and an updated AR

N set in

13

Algorithm 3 Producing a feasible solution from X LB

1: function FeasibleSol(GN ,R,X ,maxIter,minIterIP,maxNets, penalty, α, β)

2: AR
N ←

{

Ar
n |n ∈ N , r ∈ R

}

;

3: G∗N ← GN ;

4: feasible ← false;

5: nIter ← 0;

6: nIterIP ← minIterIP ;

7: while feasible == false & nIter ≤ maxIter do

8: N ∗, G∗N , AR
N ← PenalizeArcs(X ,G∗N ,R,AR

N , penalty, α);

9: if N ∗ == ∅ then

10: AR
N ←

{

Ar
n |n ∈ N , r ∈ R

}

;

11: else

12: if |N ∗| ≤ maxNets & nIterIP ≥ minIterIP then

13: X trial ← SolveIPModel(R,GN ,N ∗,X , β);

14: feasible ← CheckFeasibility(R,X trial);

15: if feasible == true then

16: X ← X trial;

17: else

18: nIterIP ← 0;

19: end if

20: else

21: X ← ShortestPath(G∗N);

22: feasible ← CheckFeasibility(R,X);

23: end if

24: end if

25: nIterIP ← nIterIP + 1;

26: nIter ← nIter + 1;

27: end while

28: return X ;

29: end function

14

which the penalized arc subsets have been removed. This is to avoid penalizing the same subsets

Ar
s more than once and to foster diversity in the search. Note that, since an arc can consume more

than one resource, removing a subset does not completely remove an arc. That is, an arc that

has been penalized for consuming one resource may belong to an unpenalized subset of a different220

resource. Thus, an arc can be penalized multiple times, once per infeasible constraint to which it

belongs. The algorithm allows penalizing an arc multiple times to further discourage the use of

those arcs with the largest contribution to the infeasibility of the solution.

Since PenalizeArcs removes penalized arc subsets from AR
N after each iteration, a point may

be reached in which AR
N is of a size that PenalizeArcs might return an empty N ∗ set. If this225

occurs, AR
N is reset to include all arcs (line 10).

As long asN ∗ is not empty, an attempt to find a feasible solution is made. The attempt takes on

two different forms. An exact method solves a reduced version of the integer programming model

(lines 12–20) or new shortest paths are found for the networks in G∗ (lines 21–22). The exact method

is used when the number of penalized networks is small enough (i.e.: |N ∗| ≤ maxNets) and the230

number of attempts to reach feasibility by recomputing the shortest paths reaches minIterIP .

The exact method solves a reduced version of the original model (5)–(8) in which we fix a large

percentage of the variables in the original problem. We start by selecting β% of the networks3 in

{Gn}n∈N\N ∗ . The selection is made balancing solution quality (networks with the best objective

function are selected) and diversity (networks are selected at random). We alternate the use of235

these two criteria. We denote the resulting subset of networks as Gβ
N , indexed by N β. Then,

variables in the set {xa | a ∈ {An}n∈Nβ} are fixed to 1 if a ∈ X , and to 0 otherwise. This means

that the paths for the networks in Gβ
N are fixed as dictated by the current solution. Therefore,

the only variables in the reduced model are those associated with the arcs in {An}n∈N\Nβ . The

reduced model uses the original cost values for the objective function calculation and a resource240

availability that is reduced by the resources requirements of the fixed variables.

After obtaining a new solution (by either of the methods described above), the procedure checks

for feasibility (lines 14 and 22). If the solution is feasible, then the procedure ends and returns X .

If the solution is not feasible then the current solution changes only if the SPP method was used

3In our original algorithmic design, we fixed all paths in networks without penalized arcs, i.e., all networks in

{Gn}n∈N\N∗ . However, this proved to be too restrictive, frequently making the reduced model infeasible. The β

parameter allows us to include some additional networks in the formulation and increase the flexibility of the model.

15

to find it. The current solution is not changed when the IP model is not able to find a feasible245

solution. The process ends after maxIter failed attempts and it returns the current infeasible

solution. If the solution pool does not include any feasible solutions, then SolutionCombination

might not return a feasible solution. The probability of observing this, however, decreases with

the size of the solution pool. In fact, with the size that we used in our computational experiences,

the procedure never encountered this situation.250

Before describing additional elements of the proposed procedure, we would like to make a

brief comment on the use of the IP model to solve the reduced problem. Our original design

of the FeasibleSol function did not include this component. We added it after preliminary

computational experiences showed that, for small |N ∗| values, feasibility could be reached faster

and with better solution quality by solving the reduced problem instead of continuing to penalize255

arcs and finding the revised shortest paths. In this design, the IP exact solver is meant to be

invoked occasionally. That is, it is not meant to be the first option. Therefore, the values of

the maxNets and minIterIP parameters must be chosen accordingly. The maxNets parameter

controls the size of the subproblem. Given that we are using an exact solver, we need to limit the

size of the model that we are asking the solver to tackle. The minIterIP parameter is a proxy260

for directly monitoring the changes in N ∗. Note that if the IP model fails to produce a feasible

solution with a particular N ∗, it only makes sense to invoke it again after N ∗ has experienced some

changes. Instead of keeping track of the changes in N ∗, we experimentally adjusted the value of

minIterIP to allow the arc penalization function to change the composition of N ∗.

3.2. Phase II: The SolutionCombination Function265

As discussed at the beginning of Section 3, the SolutionCombination function combines the

solutions in X and produces a new solution X II, as long as at least one solution in the pool is

feasible. The combination process consists of solving a reduced version of the original IP model

(5)–(8), where the only variables are those associated with arcs in the pool of solutions. That is,

the set of variables in the model is {xa}a∈X .270

This form of combination of solutions has two key properties. First, the resulting solution X II

is at least as good as the best feasible in X . In our computational experiments, we observed that

X II was always better than any of the solutions in X . Second, X II is guaranteed to be no worse

than any solution found as a combination of the paths associated with the solutions in X . This

16

is due to the generation of X II by a combination of arcs (instead of paths) that allows forks and275

joints to be produced at the nodes of the subnetwork induced by the arcs in X , leading to paths

that are not in the pool of solutions. Our experiments with various designs led us to conclude that

this combination method is superior to others in terms of the quality of the combined solution and

the computational time to find it.

3.3. Phase III: The LocalSearch Function280

In preliminary experimentation we observed that, for a given solution X II resulting from the

combination method, some networks used paths whose cost was much higher (relative to the known

lower bound) than the cost associated with other networks. For each network Gn, we calculate this

difference as follows:

∆n =
∑

a∈An

ca(x
II
a − xLBa). (9)

We concluded that the X II solutions tend to be unbalanced, with a relatively small number of net-

works with much larger ∆n values than others. We therefore developed the LocalSearch function

(Algorithm 4) taking into account the structure of the X II solutions. In particular, LocalSearch

focuses on improving the paths in networks with relatively large ∆n values. This is done at the

possible expense of worsening the delta values of other networks. The search, in other words, is for285

a balanced solution. That is, one for which the collection of ∆n values for all networks have less

variance.

The local search uses two parameters, δ and γ to operate on X II. The value of δ is the number

of networks being improved. The value of γ is number of networks that the algorithm will use to

trade resources with those networks being improved.290

The procedure starts by identifying the δ networks with the largest ∆n values (lines 2–5). In

Algorithm 4, ∆[δ] is the δ-th element in the descending-ordered set ∆. Set N δ contains the indices

of the networks for which the local search is trying to improve their ∆n values. We denote the

subset of networks indexed by N δ as Gδ
N . The procedure then selects, from all the networks not

in Gδ
N , using a first-match rule, γ networks, each of them sharing at least one resource with one295

or more networks in Gδ
N (lines 6–14). We denote the resulting subset of networks as Gγ

N , indexed

by N γ . The networks in Gγ
N are used as “partners” for the networks in Gδ

N in order to trade off

17

Algorithm 4 Improving solution X II

1: function LocalSearch(GN ,R,X II, δ, γ)

2: ∆n ←
∑

a∈An
ca(x

II
a − xLB

a) ∀n ∈ N ;

3: ∆ ← {∆n}n∈N ;

4: ∆ ← SortDescending(∆);

5: N δ ← {n ∈ N |∆n ≥ ∆[δ]};

6: N γ ← ∅;

7: for n ∈ N \ N δ
do

8: if ∃ r ∈ R, a ∈ An, a
′ ∈ {An′}n′∈Nδ : wr

a > 0 & wr
a′ > 0 then

9: N γ ← N γ ∪ {n};

10: end if

11: if |N γ | == γ then

12: break;

13: end if

14: end for

15: X III ← SolveIPModel(R,GN ,N δ ∪N γ ,X II);

16: return X III;

17: end function

the use of resources. The values of the parameters associated with the local search are such that

δ ≪ γ.

We define N LS = N δ ∪N γ and solve the original model (5)–(8) by fixing the paths in N \N LS.300

That is, variables in the set {xa | a ∈ {An}n∈N\NLS} are fixed to 1 if a ∈ X II, and to 0 otherwise;

and the remaining variables (i.e., {xa | a ∈ {An}n∈NLS) are the only ones in the IP model. The

solution of the IP model is denoted by X III. This solution is guaranteed to be no worse than X II.

We have observed that the local search, as defined above, is often able to improve upon the solution

constructed by the combination method, except in those cases when X II is near-optimal. We have305

experimented with a local search that focuses only on the reduced set of networks with the worst

∆n values (i.e., the networks in Gδ
N) and determined that this strategy provides very little room

for improvement because most of the resources are committed to the paths that are fixed prior to

solving the IP model.

18

4. Computational Experience310

We test our procedure on a set of instances of an Air Traffic Flow Management (ATFM)

problem, which represents a context where SRMSPP arises in practice.

In this approach, each aircraft (with one or multiple continued flights) corresponds to a network

where the potential modifications to the flight plan (e.g., departure delays or speed changes) are the

arcs (Garćıa-Heredia et al. (2019)). Air sectors and airports are the set of resources with limited315

capacity. For ATFM, SRMSPP has weights wr
a equal to 1 in constraints (7) because the capacity

W r is given as number of aircraft.

4.1. Problem Instances

We use publicly available flight plans for our computational experience (Bureau of Transportation Statistics

(a,b)). The data correspond to domestic flights in the US for the 16th of January, May, and Septem-320

ber of 2019. The choice of the 16th is due to the high-volume of air traffic on that day for each of

these months.

With the values in the data sets and customary procedures in ATFM literature (see Bertsimas, Lulli & Odoni

(2011) or Agust́ın, Alonso-Ayuso, Escudero & Pizarro (2012)), we generated all the data required

for the problem, including capacity limits.325

In order to build a test set with various problem sizes, we created smaller versions of the

original flight plans with 30% and 65% of the total number of aircraft. The dimensions of the

instances in our test set are shown in Table 4. Note that each arc corresponds to a variable

in the original IP model (5)-(8), each node to a flow constraint, and each resource to a capacity

constraint. The large number of capacity constraints is due to the product of the number of capacity330

elements and periods in the planning horizon. Since most of the constraints in the problem define

facets (flow constraints), a strong LP relaxation is expected when attempting to solve the problem

using exact methods. Our computational experiments corroborate this important characteristic of

the model, which others have pointed out as related to time-expanded network IP formulations

(Boland & Savelsbergh, 2019).335

For each case in the table, we generated twelve scenarios based on different capacity levels to

test robustness of the proposed solution method. Thus, a total of 108 instances form our test set.

The twelve scenarios are grouped in three categories (easy, medium, and difficult). To generate

them, we first created a base scenario of capacity values which is based on the minimum value

19

Table 4: Dimensions of the instances in our test set.

Flight plan Size #Flights #Networks #Arcs #Nodes #Resources

Jan 30% 5,596 1,329 3,116,931 1,482,732 136,887

May 30% 6,951 1,368 4,043,046 1,868,888 145,711

Sep 30% 6,610 1,368 3,6706,44 1,729,221 142,734

Jan 65% 11,788 2,879 7,195,904 3,336,779 173,249

May 65% 13,752 2,963 9,717,333 4,341,805 178,451

Sep 65% 13,530 2,964 8,597,363 3,922,250 185,519

Jan 100% 18,100 4,429 11,934,419 5,446,911 184,404

May 100% 20,634 4,558 14,475,487 6,457,815 204,724

Sep 100% 20,581 4,559 13,993,972 6,248,302 201,451

required for the original flight plan to be feasible.340

Easy cases simulate the effect of bad weather moving across sectors and causing capacity re-

ductions (Bertsimas et al., 2011). The reductions were set at 10%, 20%, 30% and 40% of the base

capacity, leading to a total of four scenarios. Medium cases are based on the easy ones with an

additional capacity reduction randomly applied to 50% of the elements and enforced during the

entire planning horizon. The additional reduction of the capacity of each element is randomly345

chosen between 1% and 20%. For the difficult cases, the randomly generated capacity reduction is

applied to all elements.

4.2. Parameter Setting

We perform all experiments on an HP Z230 Tower Workstation (processor i7-4770 3.40GHz)

and 32 GB of RAM. Our MIP solver is Gurobi 9.0 (Gurobi Optimization (2020)). The algorithm350

was coded in C++, compiled using the GNU compiler 6.3, and run on a Debian 9 Operating Sys-

tem. The for-loop to generate the pool of solutions (Algorithm 2) was parallelized using OpenMP

(OpenMP Architecture Review Board (2015)) with 8 threads. The code and data sets can be found

in https://github.com/DavidGarHeredia/SRC-MSPP.

To take into account the random elements in the proposed procedure, we solved each problem355

instance five times. We represent the associated variability with violin plots, a well-known extension

of the boxplot that shows the distribution of the data. In violin plots, the quantiles corresponding

20

https://github.com/DavidGarHeredia/SRC-MSPP

to 25%, 50% (median), and 75% are depicted with a solid line, while a dark diamond shows the

mean.

We used ParamILS, an automated system for parameter setting and algorithm configuration,360

(Hutter, Hoos & Stützle, 2007) to set the values for the parameters of our search procedure, except

for the value of S, the size of the solution pool. (Below, we discuss how we set this value.) The

parameter values that we used for our experimentation are shown in Table 5. The penalty value is

about 4 times the maximum cost in the networks.

Table 5: Parameters values in experimentation.

maxIter minIterIP maxNets penalty α β δ γ

100 20 5%|N | 6000 50% 95% 2% 30%

In addition, we set the MIP gap in Gurobi at various levels depending on the purpose for365

calling this optimizer: solving full model (0.5%), generating the pool of solutions (1%), combining

the solutions (1%), and applying local search (0.5%).

To determine the pool size (parameter S), we apply the procedure to the instances of size 30%

using four different pool size values (16, 32, 48, and 64). We compared the results obtained with

those from Gurobi. We observed that larger pool sizes achieve smaller optimality gaps with lower370

variability. For instance, for a pool size of 64, the optimality gap is always less than 5%. For the

easy cases, solution times exceeded those of Gurobi. The procedure outperformed Gurobi in the

medium and difficult cases.

Extrapolating from the experiments with instances of size 30% and in order to balance solution

quality and computational effort, we chose a pool of 80 solutions for instances of size 65% and a375

pool of 96 solutions for instances with the complete flight plans.

4.3. Integer Programming Results

We attempted to solve the IP model for the 108 instances in our test set with Gurobi. However,

44 of the runs terminated in an out-of-memory error and without an integer solution. These

instances correspond to the full flight plans and for the 65% reduced flight plans for the May and380

September days under the difficult scenario. Table 6 summarizes the results of the Gurobi runs.

The first three columns of the table show the date of the flight plan, the percentage of flights

21

Table 6: Summary of Gurobi results.

Flight plan Size Difficulty t̄ t∆ root% Gap Gap∆ col% row%

Jan 30% easy 126.84 1.12 75% 0.08% [0, 0.34]% 17.81% 38.34%

Jan 30% medium 238.34 1.87 0% 0.11% [0.05, 0.15]% 17.94% 38.39%

Jan 30% difficult 337.61 1.19 0% 0.34% [0.27, 0.4]% 18.12% 38.62%

May 30% easy 172.56 1.15 100% 0% [0, 0]% 16.32% 35.77%

May 30% medium 253.61 1.68 75% 0.02% [0, 0.06]% 16.39% 35.80%

May 30% difficult 722.91 2.33 0% 0.33% [0.18, 0.44]% 16.50% 35.89%

Sep 30% easy 155.68 1.14 100% 0% [0, 0]% 17.38% 37.69%

Sep 30% medium 163.59 1.16 100% 0% [0, 0]% 17.40% 37.65%

Sep 30% difficult 505.21 1.41 0% 0.44% [0.35, 0.52]% 17.51% 37.70%

Jan 65% easy 335.97 1.38 75% 0.04% [0, 0.15]% 16.61% 36.13%

Jan 65% medium 856.33 1.79 25% 0.14% [0, 0.24]% 16.68% 36.18%

Jan 65% difficult 2,117.18 1.44 0% 0.29% [0.25, 0.39]% 16.75% 36.28%

May 65% easy 523.56 1.72 75% 0.05% [0, 0.21]% 14.87% 33.35%

May 65% medium 1,271.99 1.89 25% 0.17% [0, 0.37]% 14.91% 33.39%

Sep 65% easy 374.24 1.05 100% 0% [0, 0]% 15.73% 34.74%

Sep 65% medium 862.39 1.30 0% 0.31% [0.29, 0.38]% 15.78% 34.76%

chosen from the flight plan (Size), and the level of difficulty. This is followed by the average solution

time in seconds (t̄) and the tmax

tmin
ratio (t∆), where tmax and tmin are the worst and best solution

times. t∆ measures solution time variability, where values close to one indicate less sensitivity385

to the different weather scenarios. root% denotes the percentage of instances solved at the root

node of the Branch & Bound (B&B) tree. In all other instances, only an additional node had to be

explored. Gap andGap∆ are the average and the range of the integrality gap, defined as 100 zIP−zLP

zLP ,

where zLP and zIP are the objective function value of the LP relaxation and the integer solution,

respectively. These values along with root% measure the strength of the IP formulation. col%390

and row% represent the percentage of columns and rows that Gurobi deleted in the preprocessing

phase.

The following observations relate to the values in Table 6:

1. Gurobi’s solution times are within a range that is acceptable in practice for ATFM problem

(35 minutes in the worst case).395

2. The value of t∆ is greater than or equal to 1.3 in 10 out of 16 cases, indicating that for a

given difficulty level, weather scenarios have a significant impact (i.e., 30% difference) in the

22

solution time.

3. As customary in B&B, solution times exhibit nonlinear increases with the problem size.

4. root%, Gap and Gap∆ show that the formulation has a strong LP relaxation, with 18 out of400

64 instances solved at the root node and an integrality gap of less than 0.45% after one node.

5. The last two columns show that Gurobi achieved a significant reduction of the original size

of the problem.

ATFM problems have a very specific cost structure, as described in (Garćıa-Heredia et al.,

2019). To test the sensitivity of Gurobi to the cost structure in the IP formulation, we generated405

costs from a continuous uniform distribution (0, 100) for the arcs in the networks in our problem

test set. This new cost structure turned out to increase the difficulty of the problems in such a

way that, out of the 108 instances, Gurobi was able to solve only 24. All of these instances belong

to the sets of size 30%.

4.4. Performance Assessment410

We used the smallest problem instances to find the best values for our search parameters as

well as adjusting the size of the solution pool. We now assess the performance of the procedure

with the larger problem instances. For the cases that we would also solve with Gurobi, we are able

to calculate optimality gaps and speed-up values when applying our procedure to these problem

instances. The speed up is computed as wall time required by our procedure divided by the wall415

time required by Gurobi. The results are summarized in Figure 1 (a) and (b), where violin plots

show, for each difficulty level (X axis), the distribution of the optimalitiy gap and the speed-up (Y

axis) with respect to Gurobi’s solutions.

The first figure shows that the proposed heuristic generates high-quality solutions for these

instances. For the easy cases, the heuristic solutions are, on average, less than 3% away from420

optimality. For the medium cases, in more than 75% of the times the optimality gap is below 9%

and the average is less than 7.5%. For the difficult cases, the optimality gap is below 10%, with an

average of 8.5%. In terms of computational effort (second figure), our speed-up calculation shows

that the heuristic was faster (values above the dashed line) than the exact method in the medium

and difficult cases, but not in the easy ones. It is interesting to point out that in the instances when425

the proposed heuristic is faster than the exact method, Gurobi is still solving the LP relaxation at

the root node when the heuristic has already finished.

23

65%

easy medium difficult

0.0%

3.0%

6.0%

9.0%

12.0%

instance difficulty

o
p
tim

a
lit

y
g
a
p
 (

%
)

Distribution of the optimality gapa

65%

easy medium difficult

1

2

3

instance difficulty

sp
e
e
d
-u

p

Distribution of the speed-upb

Figure 1: Results of the algorithm for instances of size 65% that exact methods could also solve.

A possible conclusion from these results is that Gurobi should be the preferred method to solve

the easy problems, since it can confirm optimality before our procedure finishes. However, this

result depends on the cost structure. Recall that when we used randomly generated costs, Gurobi430

was only able to solve 24 out of the 108 test problems. For those cases, the solutions achieved by

our procedure are near-optimal (optimality gaps below 1%), and they are reached faster (1.5 to

8 times faster than Gurobi). This experiment shows that the performance of the exact method

within Gurobi is sensitive to the cost structure. On the other hand, our heuristic-based approach

exhibits a robust performance across cost structures.435

For the cases that, due to memory limitations, Gurobi4 was unable to even solve the LP

relaxation of the problem, we obtained lower bounds dualizing the capacity constraints of the

original problem (5)-(8) and solving the corresponding Lagrangian Relaxation. Since the non-

dualized constraints (flow constraints) define facets for the problem, the optimum of the Lagrangian

dual problem is guaranteed to be equal to the LP relaxation of problem (5)-(8) (Guignard (2003)).440

Based on the gaps reported in Table 6, the lower bounds resulting from the Lagrangian Relaxation

are expected to be tight.

Figure 2 shows, for each instance (X-axis) and size group, the gap between all the solutions

found throughout our experimentation and the Lagrangian bound (Y-axis). The dashed line is the

mean gap of the heuristic solution with respect to the Lagrangian bound. The band around the445

4We also attempted to find solutions for these instances with LocalSolver (LocalSolver (2020)), a general-purpose

optimizer based on metaheuristic principles and methodologies, but this software also failed to handle them.

24

100%

65%

30%

0.0%

2.5%

5.0%

7.5%

10.0%

0.0%

5.0%

10.0%

15.0%

0.0%

4.0%

8.0%

12.0%

16.0%

Instances

G
a
p
 w

ith
 L

a
g
ra

n
g
ia

n
 b

o
u
n
d
 (

%
)

Solution Optimal Average algorithm Range algorithm

Figure 2: Deviation from Lagrangian lower bounds.

mean, represents the range of gaps obtained from the 5 runs of our procedure. Similarly, the solid

line in the figure shows the gap of Gurobi’s solutions (when available) with the Lagrangian bound.

The general observation from Figure 2 is that the deviation from the Lagrangian bounds in-

creases with the size of the problem. This is true for both the heuristic and the optimal solutions.

For the full flight plans, our procedure obtained, in the worst case, solutions with average gaps of450

16%. However, in most cases the gap varied between 4% and 14.5%. Considering that these gaps

are against a lower bound, these results are more than reasonable for the practical application that

we studied. Note that some of the optimal solutions have gaps of up to 5% with respect to the

lower bound. In terms of computational time, our procedure found the solutions to most of the

full-size problems in less than 25 minutes. In the worst case, the procedure took 40 minutes. These455

computational times are within the valid range for ATFM.

25

4.5. Analysis of the Search Procedure

The preceding results show that we are able to produce high-quality solutions in reasonable

computational times. Our procedure was able to find solutions to problems that a commercial

solver could not handle. The purpose of the following analysis is to provide insights into the460

performance of our procedure.

In terms of computational effort, we observed that our parallelization scheme for generating

the pool of solutions scaled linearly. That is, twice as much time is required to generate the

same amount of solutions with half the threads. Furthermore, we observed that: 1) the solution

pool generation represents the bottleneck, consuming from 52% to 79% of the solution time; 2)465

combining solutions consumes a negligible amount of time (2.5% in the worst case); and 3) the

time required by local search is sensitive to the difficulty of the problem, ranging from 21% to 46%

for the biggest and most difficult instances.

The good news of the solution pool generation being the procedure’s bottleneck is that, as

mentioned, the parallelization of this phase linearly scales with the number of threads. This means470

that when generating a pool of 96 solutions, if instead of 8 threads we had 48, the time in this

phase would have been 1
6 of the time obtained. In such a situation, the procedure could be set up

to generate more solutions, which in turn could improve the quality of the results.

Figure 3 (a) and (b) shows the percentage of improvement (Y-axis) in solution quality achieved

after each phase of the procedure, as a function of the problem size (X-axis) and level of difficulty.475

Figure 3 (a) reveals the large improvement achieved by the solution combination phase, particularly

as the difficulty of the problem increases. The large solution-quality improvement combined with

the modest amount of computational time make this phase one of the key elements for the success

of the solution method.

When compared to the solution combination phase, the local search achieves a significantly480

smaller improvement in solution quality. This is mainly due to the reduced opportunities for

improvement after solutions are combined. Nonetheless, the improvement achieved by the local

search justifies its computational requirements and therefore its inclusion as part of the solution

process.

We also studied how much our algorithm could reduce the optimality gaps reported in the485

previous subsection by simply using larger pool sizes. For that, we employed pools of 200 solutions

26

easy medium difficult

30% 65% 100% 30% 65% 100% 30% 65% 100%

20%

40%

60%

80%

problem size

%
 o

f
so

lu
tio

n
 im

p
ro

ve
m

e
n
t
re

sp
e
c
t
to

 t
h
e
 b

e
st

 s
o
lu

tio
n
 in

 t
h
e
 p

o
o
l

Combination phasea

easy medium difficult

30% 65% 100% 30% 65% 100% 30% 65% 100%

0.0%

2.0%

4.0%

6.0%

8.0%

problem size

%
 o

f
so

lu
tio

n
 im

p
ro

ve
m

e
n
t
re

sp
e
c
t
to

 t
h
e
 s

o
lu

tio
n
 in

 C
o
m

b
in

a
tio

n
 p

h
a
se

Local Search phaseb

Figure 3: Solution improvement achieved at each phase of the proposed procedure.

for the instances of size 30%, and 300 for instances of size 65%. We verified that in the worst case

the optimality gap was below 6.5%, being only larger than 2% in 16 of the 64 instances. Moreover,

except for 7 instances, less than 30 minutes were required to complete the search. These times

are valid for ATFM application, but larger than the times required by Gurobi. Thus, larger pool490

sizes result in near-optimal solutions, but large pool sizes are only recommended when more than

8 threads are available.

To conclude the analysis of the proposed procedure, we point out that we designed the algo-

rithmic elements to take advantage of the structure of the problem. In particular, the generation

of the solution pool exploits a very specific characteristic of our problem, which turns out to also495

be true in the context of the resource constrained shortest path problem. In general, the least

expensive arcs are also those that consume the most limited resources at a higher rate. The key

is to generate a set of diverse solutions that include the use of arcs with limited or nonexistent

consumption of the most limited resources. Typically, these arcs are the most costly or else the

27

trivial solution in which all origins and destinations are connected by their shortest paths would500

be feasible and therefore optimal. The controlled random element included in the generation of

solutions results in a diversity of arcs in the solution pool that is then exploited by the combination

method.

5. Conclusions and Future Research

In this work we presented a new problem, the Shared Resource-Constrained Multi-Shortest505

Path Problem (SRMSPP), and a matheuristic algorithm for obtaining good feasible solutions for it.

Applications of SRMSPP include the Air Traffic Flow Management (ATFM) problem, a problem

that has been used to test the algorithm, or the train rescheduling problem. These problems

can actually be considered multi-project scheduling problems where the activities of the projects

are serial, and multiple extensions (e.g., different execution modes) are considered at the same510

time. Insights on how and why the algorithm works have been exposed along the computational

experience. Among the conclusions drawn for the algorithm, we emphasize the following: 1) It

is parallel-computing oriented, with a design that allows to efficiently take advantage of all the

cores available in a computer; 2) It achieves good-quality solutions in short periods of time for

large instances; 3) It can solve bigger and more difficult instances than exact methods; and 4) It515

is robust across changes problem size, difficulty, and cost structure.

Future research directions include: 1) Exploring a local search phase able to achieve larger

improvements in shorter time; 2) Studying new algorithms with which to compare the one pro-

posed in this paper (e.g., trying to adapt the ideas from Tian, Ren & Zhou (2016)), 3) Extending

the Shortest Path Problem to the Generalized Minimum Cost Flow Problem to model more com-520

plex scheduling situations; and 4) Addressing the stochastic version of the problem. A stochastic

approach to the problem would be particularly relevant in the context of ATFM.

28

References

Achuthan, N., & Hardjawidjaja, A. (2001). Project scheduling under time dependent costs–a branch and bound

algorithm. Annals of Operations Research, 108 , 55–74.525

Agust́ın, A., Alonso-Ayuso, A., Escudero, L. F., & Pizarro, C. (2012). On air traffic flow management with rerouting.

part I: Deterministic case. European Journal of Operational Research, 219 , 156–166.

Ahuja, R. K., Magnanti, T. L., & Orlin, J. B. (1993). Network flows: theory, algorithms, and applications. Upper

Saddle River (New Jersey): Prentice Hall.

Ahuja, R. K., Orlin, J. B., Pallottino, S., & Scutella, M. G. (2003). Dynamic shortest paths minimizing travel times530

and costs. Networks: An International Journal , 41 , 197–205.

Aneja, Y. P., & Nair, K. P. (1979). Bicriteria transportation problem. Management Science, 25 , 73–78.

Beasley, J. E., & Christofides, N. (1989). An algorithm for the resource constrained shortest path problem. Networks,

19 , 379–394.

Bellman, R. (1957). Dynamic Programming . (1st ed.). Princeton, NJ, USA: Princeton University Press.535

Bellman, R. (1958). On a routing problem. Quarterly of applied mathematics, 16 , 87–90.

Bertsimas, D., Lulli, G., & Odoni, A. (2011). An integer optimization approach to large-scale air traffic flow

management. Operations research, 59 , 211–227.

Boland, N. L., & Savelsbergh, M. W. (2019). Perspectives on integer programming for time-dependent models. Top,

27 , 147–173.540

Carotenuto, P., Giordani, S., & Ricciardelli, S. (2007). Finding minimum and equitable risk routes for hazmat

shipments. Computers & Operations Research, 34 , 1304–1327.

Chabini, I. (1998). Discrete dynamic shortest path problems in transportation applications: Complexity and algo-

rithms with optimal run time. Transportation research record , 1645 , 170–175.

Chabrier, A. (2006). Vehicle routing problem with elementary shortest path based column generation. Computers545

& Operations Research, 33 , 2972–2990.

Chassiakos, A. P., & Sakellaropoulos, S. P. (2005). Time-cost optimization of construction projects with generalized

activity constraints. Journal of Construction Engineering and Management , 131 , 1115–1124.

Chen, J., & Askin, R. G. (2009). Project selection, scheduling and resource allocation with time dependent returns.

European Journal of Operational Research, 193 , 23–34.550

Confessore, G., Giordani, S., & Rismondo, S. (2007). A market-based multi-agent system model for decentralized

multi-project scheduling. Annals of Operations Research, 150 , 115–135.

Dijkstra, E. W. (1959). A note on two problems in connexion with graphs. Numerische mathematik , 1 , 269–271.

Drexl, A., Nissen, R., Patterson, J. H., & Salewski, F. (2000). Progen/πx–an instance generator for resource-

constrained project scheduling problems with partially renewable resources and further extensions. European555

Journal of Operational Research, 125 , 59–72.

Dumitrescu, I., & Boland, N. (2003). Improved preprocessing, labeling and scaling algorithms for the weight-

constrained shortest path problem. Networks: An International Journal , 42 , 135–153.

Eppstein, D. (1998). Finding the k shortest paths. SIAM Journal on computing , 28 , 652–673.

29

Fischetti, M., & Fischetti, M. (2018). Matheuristics. In R. Mart́ı, P. M. Pardalos, & M. G. C. Resende (Eds.),560

Handbook of Heuristics (pp. 121–153). Cham: Springer International Publishing. URL: https://doi.org/10.

1007/978-3-319-07124-4_14. doi:10.1007/978-3-319-07124-4_14.

Garcia, R. (2009). Resource constrained shortest paths and extensions. Ph.D. thesis Georgia Institute of Technology.

Garćıa-Heredia, D., Alonso-Ayuso, A., & Molina, E. (2019). A combinatorial model to optimize air traffic flow

management problems. Computers & Operations Research, 112 , 104768.565

Glover, F. W., & Laguna, M. (1998). Tabu Search. Springer Science & Business Media.

Gonçalves, J. F., Mendes, J. J., & Resende, M. G. (2008). A genetic algorithm for the resource constrained multi-

project scheduling problem. European Journal of Operational Research, 189 , 1171–1190.

Guerriero, F., & Musmanno, R. (2001). Label correcting methods to solve multicriteria shortest path problems.

Journal of optimization theory and applications, 111 , 589–613.570

Guignard, M. (2003). Lagrangean relaxation. Top, 11 , 151–200.

Gurobi Optimization, L. (2020). Gurobi optimizer reference manual. URL: http://www.gurobi.com accessed on

December 17, 2023.

Handler, G. Y., & Zang, I. (1980). A dual algorithm for the constrained shortest path problem. Networks, 10 ,

293–309.575

Hartmann, S., & Briskorn, D. (2010). A survey of variants and extensions of the resource-constrained project

scheduling problem. European Journal of operational research, 207 , 1–14.

Holeczek, N. (2019). Hazardous materials truck transportation problems: A classification and

state of the art literature review. Transportation Research Part D: Transport and Environ-

ment , 69 , 305 – 328. URL: http://www.sciencedirect.com/science/article/pii/S1361920918311362.580

doi:https://doi.org/10.1016/j.trd.2019.02.010.

Horváth, M., & Kis, T. (2016). Solving resource constrained shortest path problems with lp-based methods. Com-

puters & Operations Research, 73 , 150–164.

Hrnč́ı̌r, J., Žileckỳ, P., Song, Q., & Jakob, M. (2016). Practical multicriteria urban bicycle routing. IEEE Transactions

on Intelligent Transportation Systems, 18 , 493–504.585

Hutter, F., Hoos, H. H., & Stützle, T. (2007). Automatic algorithm configuration based on local search. In Aaai

(pp. 1152–1157). volume 7.

Jin, X., Qin, H., Zhang, Z., Zhou, M., & Wang, J. (2020). Planning of garbage collection service: An arc-routing

problem with time-dependent penalty cost. IEEE Transactions on Intelligent Transportation Systems, .

Josyula, S. P., Törnquist Krasemann, J., & Lundberg, L. (2018). A parallel algorithm for train rescheduling.590

Transportation Research Part C: Emerging Technologies, 95 , 545 – 569. URL: http://www.sciencedirect.com/

science/article/pii/S0968090X18309410. doi:https://doi.org/10.1016/j.trc.2018.07.003.

Kellenbrink, C., & Helber, S. (2015). Scheduling resource-constrained projects with a flexible project structure.

European Journal of Operational Research, 246 , 379–391.

Klein, R. (2000). Project scheduling with time-varying resource constraints. International Journal of Production595

Research, 38 , 3937–3952.

Klein, R., & Scholl, A. (1999). Computing lower bounds by destructive improvement: An application to resource-

30

https://doi.org/10.1007/978-3-319-07124-4_14
https://doi.org/10.1007/978-3-319-07124-4_14
http://dx.doi.org/10.1007/978-3-319-07124-4_14
http://www.gurobi.com
http://www.sciencedirect.com/science/article/pii/S1361920918311362
http://dx.doi.org/https://doi.org/10.1016/j.trd.2019.02.010
http://www.sciencedirect.com/science/article/pii/S0968090X18309410
http://www.sciencedirect.com/science/article/pii/S0968090X18309410
http://dx.doi.org/https://doi.org/10.1016/j.trc.2018.07.003

constrained project scheduling. European Journal of Operational Research, 112 , 322–346.

Kolisch, R., & Hartmann, S. (2006). Experimental investigation of heuristics for resource-constrained project schedul-

ing: An update. European journal of operational research, 174 , 23–37.600

Kolisch, R., & Padman, R. (2001). An integrated survey of deterministic project scheduling. Omega, 29 , 249–272.

Krüger, D., & Scholl, A. (2009). A heuristic solution framework for the resource constrained (multi-) project

scheduling problem with sequence-dependent transfer times. European Journal of Operational Research, 197 ,

492–508.

Kuster, J., Jannach, D., & Friedrich, G. (2009). Extending the rcpsp for modeling and solving disruption management605

problems. Applied Intelligence, 31 , 234.

Laguna, M., & Mart́ı, R. (2012). Scatter search: methodology and implementations in C volume 24. Springer Science

& Business Media.

LocalSolver (2020). Localsolver reference manual. URL: https://www.localsolver.com/ accessed on December 17,

2023.610

Lozano, L., & Medaglia, A. L. (2013). On an exact method for the constrained shortest path problem. Computers

& Operations Research, 40 , 378–384.

Montoya, A., Guéret, C., Mendoza, J. E., & Villegas, J. G. (2016). A multi-space sampling heuristic for the green

vehicle routing problem. Transportation Research Part C: Emerging Technologies, 70 , 113–128.

OpenMP Architecture Review Board (2015). OpenMP application program interface version 4.5. URL: https://615

www.openmp.org/wp-content/uploads/openmp-4.5.pdf accessed on December 17, 2023.

Pióro, M., Szentesi, Á., Harmatos, J., Jüttner, A., Gajowniczek, P., & Kozdrowski, S. (2002). On open shortest path

first related network optimisation problems. Performance evaluation, 48 , 201–223.

Raith, A., & Ehrgott, M. (2009). A comparison of solution strategies for biobjective shortest path problems. Com-

puters & Operations Research, 36 , 1299–1331.620

Sever, D., Zhao, L., Dellaert, N., Demir, E., Van Woensel, T., & De Kok, T. (2018). The dynamic short-

est path problem with time-dependent stochastic disruptions. Transportation Research Part C: Emerging

Technologies, 92 , 42 – 57. URL: http://www.sciencedirect.com/science/article/pii/S0968090X1830531X.

doi:https://doi.org/10.1016/j.trc.2018.04.018.

Thomas, B. W., & White, C. C. (2007). The dynamic shortest path problem with anticipation. European Jour-625

nal of Operational Research, 176 , 836 – 854. URL: http://www.sciencedirect.com/science/article/pii/

S0377221705007228. doi:https://doi.org/10.1016/j.ejor.2005.09.019.

Tian, G., Ren, Y., & Zhou, M. (2016). Dual-objective scheduling of rescue vehicles to distinguish forest fires via

differential evolution and particle swarm optimization combined algorithm. IEEE Transactions on intelligent

transportation systems, 17 , 3009–3021.630

Törnquist, J. (2006). Computer-based decision support for railway traffic scheduling and dispatching: A review of

models and algorithms. In L. G. Kroon, & R. H. Möhring (Eds.), 5th Workshop on Algorithmic Methods and

Models for Optimization of Railways (ATMOS’05). Dagstuhl, Germany: Schloss Dagstuhl–Leibniz-Zentrum fuer

Informatik volume 2 of OpenAccess Series in Informatics (OASIcs). URL: http://drops.dagstuhl.de/opus/

volltexte/2006/659. doi:10.4230/OASIcs.ATMOS.2005.659.635

31

https://www.localsolver.com/
https://www.openmp.org/wp-content/uploads/openmp-4.5.pdf
https://www.openmp.org/wp-content/uploads/openmp-4.5.pdf
http://www.sciencedirect.com/science/article/pii/S0968090X1830531X
http://dx.doi.org/https://doi.org/10.1016/j.trc.2018.04.018
http://www.sciencedirect.com/science/article/pii/S0377221705007228
http://www.sciencedirect.com/science/article/pii/S0377221705007228
http://dx.doi.org/https://doi.org/10.1016/j.ejor.2005.09.019
http://drops.dagstuhl.de/opus/volltexte/2006/659
http://drops.dagstuhl.de/opus/volltexte/2006/659
http://dx.doi.org/10.4230/OASIcs.ATMOS.2005.659

Törnquist, J. (2012). Design of an effective algorithm for fast response to the re-scheduling

of railway traffic during disturbances. Transportation Research Part C: Emerging Technolo-

gies, 20 , 62 – 78. URL: http://www.sciencedirect.com/science/article/pii/S0968090X10001671.

doi:https://doi.org/10.1016/j.trc.2010.12.004. Special issue on Optimization in Public Trans-

port+ISTT2011.640

Bureau of Transportation Statistics, U. D. o. T. (a). Airline on-time performance data. URL: https://www.

transtats.bts.gov/tables.asp?db_id=120&DB_Name= accessed on December 17, 2023.

Bureau of Transportation Statistics, U. D. o. T. (b). Aviation support tables. URL: https://www.transtats.bts.

gov/tables.asp?DB_ID=595&DB_Name=&DB_Short_Name= accessed on December 17, 2023.

Yan, J., Zhou, M., & Ding, Z. (2016). Recent advances in energy-efficient routing protocols for wireless sensor645

networks: A review. IEEE Access, 4 , 5673–5686.

Yen, J. Y. (1971). Finding the k shortest loopless paths in a network. management Science, 17 , 712–716.

Zheng, X.-l., & Wang, L. (2015). A multi-agent optimization algorithm for resource constrained project scheduling

problem. Expert Systems with Applications, 42 , 6039–6049.

Appendix A. Pseudo-code for function PenalizeArcs650

In the first two lines, N ∗ saves the networks’ indices whose arcs are penalized, and R∗ is the

set of resources whose capacity is exceeded by the current solution.

Then, the algorithm loops through the elements in R∗ and N . In each loop r ∈ R∗, the local

variable total (line 5) represents the amount by which resource r is exceeded.

Ar
n is a candidate to be penalized if: 1) It has not been penalized in previous iterations (Ar

n ∈655

AR
N), and 2) At least one of its arcs is in the current solution (Ar

n ∩ X 6= ∅). If both conditions

hold, then subset Ar
n is penalized with probability α.

When penalizing, the cost of the arcs inAr
n is increased by penalty (line 9), subsetAr

n is removed

from AR
N , set N ∗ is updated, and total is reduced by the amount the penalized subset contributes

to infeasibility. If total becomes less or equal to zero, then the penalization of the resource stops.660

This early stopping rule is based on the idea that, if the penalized arcs were not used any longer,

then the constraint would not be violated, and penalizing more would be counterproductive (it

would discourage other networks from using their best current path).

Note that some of the arcs in a penalized subset Ar
n might not be in the current solution X .

The reason for penalizing these inactive arcs too is to decrease their attractiveness in subsequent665

iterations, since their addition to the solution may cause a resource that has been made feasible to

become infeasible again.

32

http://www.sciencedirect.com/science/article/pii/S0968090X10001671
http://dx.doi.org/https://doi.org/10.1016/j.trc.2010.12.004
https://www.transtats.bts.gov/tables.asp?db_id=120&DB_Name=
https://www.transtats.bts.gov/tables.asp?db_id=120&DB_Name=
https://www.transtats.bts.gov/tables.asp?DB_ID=595&DB_Name=&DB_Short_Name=
https://www.transtats.bts.gov/tables.asp?DB_ID=595&DB_Name=&DB_Short_Name=

Algorithm 5 Penalizing arcs contributing to infeasibility

1: function PenalizeArcs(X , G∗N , R, AR
N , penalty, α)

2: N ∗ ← ∅;

3: R∗ ← {r ∈ R |
∑

a∈X wr
a −W r > 0};

4: for r ∈ R∗
do

5: total ←
∑

a∈X wr
a −W r;

6: for n ∈ N do

7: if Ar
n ∈ A

R
N & Ar

n ∩ X 6= ∅ then

8: if Rand() < α then

9: c∗a ← c∗a + penalty, ∀ a ∈ Ar
n, c

∗
a ∈ C

∗
n;

10: AR
N ← A

R
N \ {A

r
n};

11: N ∗ ← N ∗ ∪ {n};

12: total ← total −
∑

a∈Ar
n
∩X wr

a;

13: if total ≤ 0 then

14: break;

15: end if

16: end if

17: end if

18: end for

19: end for

20: return N ∗, G∗N , AR
N ;

21: end function

33

Note also that penalizing by subsets is valid as far as not every arc of every network consumes

all the resources. In cases where all wr
a values are greater than zero, then penalizing subsets would

not be recommended. This is because all the arcs in a network would belong to the same subset670

and, therefore, they would be penalized at the same time, making no difference between penalizing

or not. For those cases, the penalization must be done only for the arcs that belong to the current

solution, not for the subsets with at least one arc in the current solution.

After termination, the procedure returns sets N ∗, G∗
N , AR

N .

34

	Introduction
	Problem Description and Mathematical Formulation
	Shortest Path Problem and Resource Constrained Shortest Path Problem
	Mathematical formulation of the Shared Resource-Constrained Multi-Shortest Path Problem
	The Shared Resource-Constrained Multi-Shortest Path Problem

	Solution Method for the Shared Resource-Constrained Multi-Shortest Path Problem
	Phase I: The GeneratePool Function
	Phase II: The SolutionCombination Function
	Phase III: The LocalSearch Function

	Computational Experience
	Problem Instances
	Parameter Setting
	Integer Programming Results
	Performance Assessment
	Analysis of the Search Procedure

	Conclusions and Future Research
	Pseudo-code for function PenalizeArcs

