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A B S T R A C T

This work proposes a methodology for the reformulation of chance-constrained stochastic optimal control
problems that ensures reliable uncertainty management of epidemic outbreaks. Specifically, the chance
constraints are reformulated in terms of the first four moments of the stochastic state variables through the
so-called fourth moment method for reliability. Moreover, a spectral technique is employed to obtain surrogate
models of the stochastic state variables, which enables the efficient computation of the required statistics. The
practical implementation of the proposed approach is demonstrated via the optimal control of two different
stochastic mathematical models of the COVID-19 transmission. The numerical experiments confirm that, unlike
those reformulations based on the Chebyshev–Cantelli’s inequality, the proposed method does not exhibit the
undesired outcomes that are typically observed when a higher precision is required for the risk level associated
to the given chance constraints.
1. Introduction

Stochastic optimal control [1] is a powerful tool for decision-making
under uncertainty. It is rooted in the principles of optimal control
theory [2] and probability theory [3], providing a framework for
optimizing the behavior of dynamic systems that are subject to un-
certainties in the system dynamics or random disturbances. Utilizing
a Bayesian probability-driven approach, it assumes that random noise
with a known probability distribution influences the future evolution
of the state variables’ statistics. Moreover, stochastic optimal control
develops the future trajectory of the controlled variables to achieve
the desired control task, typically with some notion of minimum cost.
However, real-world instances of stochastic optimal control problems
often come with constraints that must be fulfilled. Specifically, prob-
abilistic constraints, also known as chance constraints [4], are be-
coming increasingly relevant in various applications. These constraints
limit the probability of certain undesirable events, thereby ensuring a
determined level of performance or safety.

In particular, this paper delves into the application of chance-
constrained stochastic optimal control to the uncertainty management
of epidemic outbreaks. The model of disease spread is governed by dif-
ferential equations with uncertain parameters [5]. Thus, it is a stochas-
tic dynamical system, making chance-constrained stochastic optimal
control techniques especially suitable for the control of the spread. The
probability of severe outbreaks can be limited and public health inter-
ventions can be optimized by incorporating probabilistic constraints.
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Formulating an appropriate Chance-Constrained Stochastic Optimal
Control Problem (CCSOCP) enables efficient resource allocation, such
as vaccines or medical personnel, while minimizing the spread of the
disease. It also aids in risk mitigation by quantifying uncertainty and
incorporating it into decision-making processes, which contributes to
mitigate the risks associated with public health decisions. Furthermore,
the formulation of CCSOCPs can lead to more accurate and robust
prediction models for disease spread, which can guide public health
strategies and interventions. Notice that epidemics due to previously
unknown or expected pathogens, or radically new strains, are Black
Swan events, which are very difficult to predict and quantify probabilis-
tically. In this sense, this paper assumes that the outbreak has already
started and is recognized with some preliminary trend. Therefore,
control over the future Black Swan events associated with the epidemic
is not included in the scope of this work.

Various methodologies have been proposed to formulate and solve
CCSOCPs. They include second-order cone programming [6], kernel
density estimation [7], a combination of Polynomial Chaos Expansion
(PCE) and subset simulation [8], statistical learning, [9] and Hilbert
space embedding [10].

Specifically, with regard to the chance-constrained stochastic op-
timal control of epidemic outbreaks, the following recent works are
noteworthy. The effects of isolation and weather on the control of
the COVID-19 pandemic transmission have been investigated in [11].
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Different kinds of mathematical epidemic models have been employed
n [12] to predict the dynamic behavior of the COVID-19 spread
y means of the formulation and resolution of various inverse prob-

lems. A stochastic nonlinear Model Predictive Control (MPC) technique
has been proposed in [13] to tackle the COVID-19 pandemic waves
hrough nonpharmaceutical strategies. The optimal quarantine dura-
ion for COVID-19 uninfected people has been studied in [14]. Various

social distancing strategies for the COVID-19 epidemic have been de-
signed in [15] using an MPC approach. The optimal allocation of

OVID-19 vaccines and tests has been addressed in [16]. A data-
riven PCE approach has been presented in [17] to find the optimal

vaccination and testing policies for the mitigation of the COVID-19
pandemic.

This paper presents a methodology for the reformulation of CC-
OCPs, which ensures a reliable uncertainty management of epidemic
utbreaks. In particular, the same data-driven PCE technique used
n [17] is considered to obtain surrogate models of the optimal stochas-
ic state variables. Nevertheless, the chance constraints are redefined
sing a different approach. In [17], the reformulation of the chance
onstraints is based on the Chebyshev–Cantelli’s (CC) inequality. How-

ever, the bounds provided by the CC inequality may be too wide,
leading to unsatisfactory results when a higher level of accuracy is
needed. In this paper, the chance constraints are reformulated through
the so-called Fourth-Moment Method (FMM) for reliability [18]. Unlike
he reformulation based on the CC inequality, the FMM does not exhibit
he unacceptable outcomes that are observed when a higher precision
s required for the risk level associated to the given chance constraints.
pecifically, the superior performance of the proposed approach is

demonstrated via the optimal control of two different mathematical
models of the COVID-19 transmission.

This paper is organized as follows. The mathematical statement of
he general CCSOCP is presented in Section 2. The PCE-based technique
sed to model the propagation of the uncertainties induced by the

random parameters through the CCSOCP is described in Section 3.
The spectral approach to the efficient computation of the statistical
moments of the optimal state variables is outlined in Section 4. Two
different approaches to the reformulation of chance constraints are
introduced in Section 5. The practical application of the proposed

ethodology is illustrated in Section 6 via the optimal control of two
stochastic mathematical models of the COVID-19 transmission. Finally,
he conclusions are reported in Section 7.

2. Chance-constrained stochastic optimal control

2.1. Statement of the chance-constrained stochastic optimal control problem

Consider a probability space (𝛺 , ,), with 𝛺 being the space of
events,  a 𝜎-algebra, and  a probability measure. The CCSOCP is
stated as follows

min
u(𝑡)

𝜇𝑆 (𝐽 (z(𝑡, 𝜻),u(𝑡), 𝜻)) + 𝜅0 ⋅ 𝜎𝑆 (𝐽 (z(𝑡, 𝜻),u(𝑡), 𝜻)) , (1a)

subject to:

ż(𝑡, 𝜻) = f(z(𝑡, 𝜻),u(𝑡), 𝜻) a.s., (1b)
(a z(𝑡, 𝜻) ≤ b) ≥ 1 − 𝜼, (1c)

𝜇𝑆
(

z(𝑡𝐼 , 𝜻)
)

= z𝐼 , 𝜎𝑆
(

z(𝑡𝐼 , 𝜻)
)

≤ 𝜀𝐼 ,

𝜇𝑆
(

z(𝑡𝐹 , 𝜻)
)

= z𝐹 , 𝜎𝑆
(

z(𝑡𝐹 , 𝜻)
)

≤ 𝜀𝐹 , (1d)
where 𝑡 denotes time, z(𝑡, 𝜻) = (𝑧1(𝑡, 𝜻),… , 𝑧𝑛(𝑡, 𝜻)) is the vector of
stochastic state variables, u(𝑡) = (𝑢1(𝑡),… , 𝑢𝑚(𝑡)) is the vector of control
variables, 𝜅0, 𝜀𝐼 , and 𝜀𝐹 are scalar parameters, a = (𝑎1,… , 𝑎𝑛𝐶 ),
b = (𝑏 ,… , 𝑏 ), and 𝜼 = (𝜂 ,… , 𝜂 ), with 1 ≤ 𝑛 ≤ 𝑛, are vector
1 𝑛𝐶 1 𝑛𝐶 𝐶

2 
parameters, and 𝜻 = (𝜁1,… , 𝜁𝑁𝑈
) ∈ 𝛺 is the vector of random pa-

rameters, whose components are supposed to be independent random
variables,. Therefore, the joint PDF of 𝜻 can be computed as 𝑔(𝜻) =
∏𝑁𝑈

𝑖=1 𝑔𝑖(𝜁𝑖), where 𝑔𝑖(𝜁𝑖) denotes the marginal PDF of component 𝜁𝑖, 𝑖 =
,… , 𝑁𝑈 . The initial and final time instants are represented by 𝑡𝐼 and
𝑡𝐹 , respectively. Vectors z𝐼 and z𝐹 denote the initial and final states,
respectively. The operators 𝑃 (⋅), 𝜇𝑆 (⋅), and 𝜎𝑆 (⋅) denote the probability,
he expected value, and the standard deviation, respectively.

The objective functional 𝐽 (⋅) in (1a) is assumed to be given in Bolza
form. Thus, it is formulated as a combination of a Mayer term and a
Lagrange term, namely:

𝐽 (z(𝑡, 𝜻),u(𝑡), 𝜻) = 𝑀(z(𝑡𝐹 , 𝜻)) + ∫

𝑡𝐹

𝑡𝐼
𝐿(z(𝑡, 𝜻),u(𝑡), 𝜻) 𝑑 𝑡. (2)

In (2), the Mayer term, 𝑀(⋅), denotes a terminal cost and the Lagrange
term, 𝐿(⋅), denotes a running cost. However, the Lagrange term can be
ewritten in Mayer form. Thus, without loss of generality, the objective

functional (2) can be assumed to be given in Mayer form [19].
The set of differential Eqs. (1b) represents the dynamical equa-

tions of the stochastic epidemic model, whereas the boundary condi-
tions (1d) express the initial and final conditions.

The inequality (1c) represents a chance constraint on the vector
of stochastic state variables, with 1 − 𝜼 = (1 − 𝜂1,… , 1 − 𝜂𝑛𝐶 ). The
term 1 − 𝜂𝑙, 𝑙 = 1,… , 𝑛𝐶 , is usually referred to as guaranteed constraint
satisfaction probability or chance constraint probability, whereas the
parameter 𝜂𝑙 , 𝑙 = 1,… , 𝑛𝐶 , is known as probability of violation or
risk level. The formulation of the chance constraint (1c) is understood
element-wise, namely

𝑃
(

𝑎1 𝑧1(𝑡, 𝜻) ≤ 𝑏1
)

≥ 1 − 𝜂1,… , 𝑃
(

𝑎𝑛𝐶 𝑧𝑛𝐶 (𝑡, 𝜻) ≤ 𝑏𝑛𝐶
)

≥ 1 − 𝜂𝑛𝐶 , (3)

with 1 ≤ 𝑛𝐶 ≤ 𝑛, meaning that at least a chance constraint is set on one
of the components of z(𝑡, 𝜻).

Notice that the state variables z(𝑡, 𝜻) are functions of both the time
𝑡 and the random vector 𝜻 . Therefore, the objective functional and
he differential equations introduced in (1) are stochastic functions,

and the stochastic relations are supposed to be fulfilled almost surely
(a.s.). On the contrary, the control variables u(𝑡) are assumed to be
deterministic functions of time 𝑡. Moreover, a robust formulation of
the objective functional and the boundary conditions is assumed. In
particular, the objective functional (1a) is formulated as a weighted
sum of the expected value and the standard deviation of the stochastic
objective functional (2), being 𝜅0 the weighting parameter. The robust
boundary conditions (1d) are modeled by separating the conditions
on the expected value and the standard deviation of the initial and
final state values. The expected values of the boundary conditions are
assumed to take some specific nominal values, whereas the values of
the standard deviation are assumed to fulfill some particular upper
bound constraints represented by 𝜀𝐼 and 𝜀𝐹 . The weighting parameter
𝜅0, the probabilities 𝜂𝑙 , 𝑙 = 1,… , 𝑛𝐶 , and the bounds 𝜀𝐼 and 𝜀𝐹 are
determined by the designers of the CCSOCP.

2.2. Joint chance constraints

In the statement of the CCSOCP (1), joint chance constraints of the
orm

𝑃
(

𝑎1 𝑧1(𝑡, 𝜻) ≤ 𝑏1,… , 𝑎𝑛𝐶 𝑧𝑛𝐶 (𝑡, 𝜻) ≤ 𝑏𝑛𝐶
)

≥ 1 − 𝜂𝐽 , with 1 ≤ 𝑛𝐶 ≤ 𝑛,

(4)

can also be included, since they can be separated into multiple con-
straints of the form (3) by means of the Bonferroni’s inequality [20].
More specifically, the joint chance constraint (4) can be reformulated
as
𝑃
(

𝑎1 𝑧1(𝑡, 𝜻) ≥ 𝑏1
)

≤ 𝜂1,… , 𝑃
(

𝑎𝑛𝐶 𝑧𝑛𝐶 (𝑡, 𝜻) ≥ 𝑏𝑛𝐶
)

≤ 𝜂𝑛𝐶 ,
with
𝑛𝐶
∑

𝑙=1
𝜂𝑙 = 𝜂𝐽 .
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3. Moment-based arbitrary polynomial chaos expansion

Following the spectral technique described in [21], the propagation
f the uncertainties induced by the random parameters 𝜻 = (𝜁1,… , 𝜁𝑁𝑈

)
in the CCSOCP stated in (1) can be represented by means of multi-
imensional polynomial expansions, which are surrogate models of the

components of the vector of stochastic state variables z(𝑡, 𝜻).
In particular, each state variable 𝑧𝑙(𝑡, 𝜻), 𝑙 = 1,… , 𝑛, is approxi-

mated by means of a linear combination of 𝑁𝑃 stochastic multivariate
orthonormal polynomials 𝜳 𝑙

𝑘(𝜻) with deterministic coefficients 𝑐𝑙𝑘(𝑡),
namely

𝑧𝑙(𝑡, 𝜻) = 𝑧𝑙(𝑡; 𝜁1,… , 𝜁𝑁𝑈
) ≈

𝑁𝑃
∑

𝑘=1
𝑐𝑙𝑘(𝑡) ⋅ 𝜳

𝑙
𝑘(𝜁1,… , 𝜁𝑁𝑈

), 𝑙 = 1,… , 𝑛, (5)

where the coefficients 𝑐𝑙𝑘(𝑡), 𝑘 = 1,… , 𝑁𝑃 , 𝑙 = 1,… , 𝑛, can be calculated
as

𝑐𝑙𝑘(𝑡) = ∫𝜻∈𝛺
𝑧𝑙(𝑡, 𝜻)𝛹 𝑙

𝑘(𝜻)𝑑(𝜻). (6)

To solve the integral (6), different methods can be employed, such
as numerical integration, Galerkin projection, or collocation [22]. In
this paper, following [23], a Gaussian cubature rule based on the
statistical moments of the random vector 𝜻 = (𝜁1,… , 𝜁𝑁𝑈

) is used. It
is computed in terms of the nodes and weights associated to the
multivariate orthonormal polynomials 𝜳 𝑙

𝑘(𝜻), which are denoted as 𝜁 𝑖𝑗
and 𝜔𝑖𝑗 , 𝑖 = 1,… , 𝑝, 𝑗 = 1,… , 𝑁𝑈 , respectively, being 𝑝 the order of the
polynomial expansion. The reader is referred to Appendix A for more
details.

4. Uncertainty quantification

The statistical moments of the stochastic vector of state variables
(𝑡, 𝜻) of the CCSOCP (1) can be efficiently computed through the

surrogate models represented by the polynomial expansions (5) [23].
In particular, the first four moments of the stochastic state variables

𝑙(𝑡, 𝜻), 𝑙 = 1,… , 𝑛, can be obtained in terms of scalar products of
vectors, which involve the Gaussian cubature nodes and weights in-
troduced in Section 3. More specifically, the mean value, the variance,
the skewness, and the kurtosis of 𝑧𝑙(𝑡, 𝜻), 𝑙 = 1,… , 𝑛, can be computed,
respectively, as

𝜇𝑧𝑙 (𝑡) = 𝑧𝑙
(

𝑡; 𝜁 𝑖1 ,… , 𝜁 𝑖𝑁𝑈
)

⋅ 𝝎, (7a)

𝜎2𝑧𝑙 (𝑡) =
(

𝑧𝑙
(

𝑡; 𝜁 𝑖1 ,… , 𝜁 𝑖𝑁𝑈
)

− 𝜇𝑧𝑙 (𝑡)
)2

⋅ 𝝎, (7b)

3𝑧𝑙 (𝑡) =
1

𝜎3𝑧𝑙 (𝑡)

(

𝑧𝑙
(

𝑡; 𝜁 𝑖1 ,… , 𝜁 𝑖𝑁𝑈
)

− 𝜇𝑧𝑙 (𝑡)
)3

⋅ 𝝎, (7c)

𝛼4𝑧𝑙 (𝑡) =
1

𝜎4𝑧𝑙 (𝑡)

(

𝑧𝑙
(

𝑡; 𝜁 𝑖1 ,… , 𝜁 𝑖𝑁𝑈
)

− 𝜇𝑧𝑙 (𝑡)
)4

⋅ 𝝎, (7d)

where 𝝎 =
(

𝜔𝑖1 ,… , 𝜔𝑖𝑁𝑈

)

is the vector of Gaussian cubature weights,
with 𝑖 = 1,… , 𝑝.

As it will be explained in Section 5, the CCSOCP (1) can be rewritten
n terms of the moments (7) of the stochastic state variables 𝑧𝑙(𝑡, 𝜻),
𝑙 = 1,… , 𝑛, which in turn are derived from the nodes and weights
related to the statistical moments of the input random variables 𝜻 =
(𝜁1,… , 𝜁𝑁𝑈

).
Moreover, a global sensitivity analysis can be undertaken by com-

puting the so-called Sobol’ indices, which provide a comprehensive
understanding of the system’s sensitivity to the random parameters,
based on the variance of the optimal state variables z(𝑡, 𝜻). These
ndices can also be efficiently determined using the coefficients from
he expansion (5), as explained in [24]. The reader is referred to

Appendix B for more details.
Notice that certain epidemic models consider values such as trans-

mission or recovery rates as time-dependent quantities. Therefore, the
uncertainty in the corresponding CCSOCP (1) would be induced by
3 
random processes 𝜁𝑖(𝑡), 𝑖 = 1,… , 𝑁𝑈 , instead of random variables 𝜁𝑖,
𝑖 = 1,… , 𝑁𝑈 . In this case, as explained in [22], the proposed method-
ology could still be applied. Specifically, each random process 𝜁𝑖 could
e expressed as a linear combination of time-dependent deterministic

functions and uncorrelated random variables by means of the so-called
arhunen–Loève (KL) expansion. Then, the spectral approach described

in Section 3 would be applied, assuming these uncorrelated random
variables provided by the KL expansion as the input random variables
of the CCSOCP.

5. Reformulation of the chance constraints

In this section, two different approaches to the reformulation of the
hance constraints (3) are presented. The first approach is based on

the CC inequality, whereas the second approach relies on the FMM for
reliability.

5.1. The Chebyshev-Cantelli’s inequality

The chance constraints (3) can be expressed by means of the risk lev-
els 𝜂𝑙 and the first two statistical moments of the stochastic state vari-
ables 𝑧𝑙(𝑡, 𝜻), 𝑙 = 1,… , 𝑛𝐶 . In particular, according to the CC inequal-
ty [25], the chance constraint (1c) is equivalent to the deterministic

constraint

a2 𝝁z(𝑡) + 𝜿𝜼 a 𝝈z(𝑡) ≤ b, (8)

where 𝝁z(𝑡) = (𝜇𝑧1 (𝑡),… , 𝜇𝑧𝑛𝐶 (𝑡)), 𝝈z(𝑡) = (𝜎𝑧1 (𝑡),… , 𝜎𝑧𝑛𝐶 (𝑡)), and 𝜿𝜼 =

𝜅𝜂1 ,… , 𝜅𝜂𝑛𝐶 ), with 𝜅𝜂𝑙 =
√

(1 − 𝜂𝑙)∕𝜂𝑙, 𝑙 = 1,… , 𝑛𝐶 . The parameter 𝜅𝜂𝑙
is usually known as the safety parameter [26].

This approach to the reformulation of the chance constraints (3) will
be referred to as CC reformulation. Notice that it has been already ap-
plied to the chance-constrained stochastic optimal control of epidemic
models in [17].

5.2. The fourth-moment method for reliability

The chance constraints (3) are particular cases of constraints of the
orm

𝑃 (𝐺(𝑧(𝑡, 𝜻)) ≤ 0) ≥ 1 − 𝜂𝐺 , (9)

which can be expressed in terms of the risk level 𝜂𝐺 and the first four
moments of the state variable 𝑧(𝑡, 𝜻). More specifically, the probability
in the left side of the chance constraint (9), which is referred to as
ailure probability, can be obtained through the Cumulative Distribu-
ion Function (CDF) of a standard Gaussian random variable using the
igher-Order Moments Standardization Technique (HOMST) [18].

In particular, the failure probability for the performance function
𝐺(𝑧(𝑡, 𝜻)) based on the FMM for reliability can be computed as

𝑃 (𝐺(𝑧(𝑡, 𝜻)) ≤ 0) = 𝛷(−𝛽𝐹 𝑀 (𝑡)), (10)

where 𝛷(⋅) denotes the CDF of a standard normal random variable, and

𝛽𝐹 𝑀 (𝑡) =
3(𝛼4𝐺(𝑡) − 1)𝛽𝑆 𝑀 (𝑡) + 𝛼3𝐺(𝑡)(𝛽2𝑆 𝑀 (𝑡) − 1)
√

(9𝛼4𝐺(𝑡) − 5𝛼22𝐺(𝑡) − 9)(𝛼4𝐺(𝑡) − 1)
(11)

with

𝛽𝑆 𝑀 (𝑡) = 𝜇𝐺(𝑡)
𝜎𝐺(𝑡)

, (12)

being 𝜇𝐺(𝑡), 𝜎𝐺(𝑡), 𝛼3𝐺(𝑡), and 𝛼4𝐺(𝑡) the mean value, the standard
eviation, the skewness, and the kurtosis of 𝐺(𝑧(𝑡, 𝜻)), respectively.
otice that 𝛽𝑆 𝑀 (𝑡) and 𝛽𝐹 𝑀 (𝑡) are referred to as the reliability in-
exes based on the second-moment and the fourth-moment method,
espectively. Alternatively, as shown in [18], the failure probability
or the performance function 𝐺(𝑧(𝑡, 𝜻)) derived from the HOMST can be
btained using the Edgeworth expansion [27]. The reader is referred to

Appendix C for more details.
This approach to the reformulation of the chance constraints (3) will

be referred to as FMM reformulation.
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5.3. Reformulation of the chance-constrained stochastic optimal control
roblem

The surrogate models of the state variables 𝑧𝑙(𝑡, 𝜻), 𝑙 = 1,… , 𝑛, pro-
vided by the polynomial expansions (5), allow the numerical resolution
of the CCSOCP formulated in (1) to be carried out. In particular,
the objective functional (1a), the stochastic differential Eqs. (1b), the
chance constraint (1c), and the boundary conditions (1d) can be refor-

ulated by means of the computational and statistical properties of the
polynomial expansions described in Section 4, together with the two
reformulation approaches described in Sections 5.1 and 5.2.

Specifically, the CCSOCP defined in (1) can be rewritten as the
ollowing deterministic Optimal Control Problem (OCP)

min
u(𝑡)

𝜇𝑀 (𝑡𝐹 ) + 𝜅0 ⋅ 𝜎𝑀 (𝑡𝐹 ), (13a)

subject to:

ż1(𝑡, 𝜻1) = f(z(𝑡, 𝜻1),u(𝑡), 𝜻1), (13b)
̇ 2(𝑡, 𝜻2) = f(z(𝑡, 𝜻2),u(𝑡), 𝜻2), (13c)

⋯

ż𝑝(𝑡, 𝜻𝑝) = f(z(𝑡, 𝜻𝑝),u(𝑡), 𝜻𝑝), (13d)

a2 𝝁z(𝑡) + 𝜿𝜼 a 𝝈z(𝑡) ≤ b or 𝜱(−𝜷𝐹 𝑀 (𝑡)) ≤ 1 − 𝜼. (13e)

𝝁z(𝑡𝐼 ) = z𝐼 , 𝝈z(𝑡𝐼 ) ≤ 𝜀𝐼 , 𝝁z(𝑡𝐹 ) = z𝐹 , 𝝈z(𝑡𝐹 ) ≤ 𝜀𝐹 , (13f)
where 𝜱(−𝜷𝐹 𝑀 (𝑡)) =

(

𝛷(−𝛽𝐹 𝑀1
(𝑡)),… , 𝛷(−𝛽𝐹 𝑀𝑛𝐶

(𝑡))
)

, with

𝛷(−𝛽𝐹 𝑀 𝑙
(𝑡)) being the failure probability associated to the state vari-

able 𝑧𝑙(𝑡, 𝜻), 𝑙 = 1,… , 𝑛𝐶 .
According to (13a), the objective functional (1a) is expressed in

erms of 𝜇𝑀 (𝑡) and 𝜎𝑀 (𝑡), which are calculated using (7a) and (7b)
nd denote, respectively, the mean value and the standard deviation
f the state variable 𝑧𝑀 (𝑡, 𝜻) introduced to reformulate the objective
unctional (2) in Mayer form.

The reformulation of the stochastic differential equations consist of
the set of deterministic differential Eqs. (13b)–(13d), which is obtained
by substituting the random parameter vector 𝜻 = (𝜁1,… , 𝜁𝑁𝑈

) in (1b)
ith the multivariate nodes 𝜻 𝑖 = (𝜁 𝑖1 ,… , 𝜁 𝑖𝑁𝑈 ), 𝑖 = 1,… , 𝑝.

Based on (13e), either one of the two approaches described in
ections 5.1 and 5.2, can be used to rewrite the chance constraints (1c).

Thus, if the CC inequality is employed, the chance constraints will be
eformulated using the first two moments of the state variables 𝑧𝑙(𝑡, 𝜻),
𝑙 = 1,… , 𝑛𝐶 , whereas, if the FMM is used, they will be expressed in
erms of the first four moments, which are calculated using (7).

Finally, according to (13f), the boundary conditions (1d), can be
ritten in terms of the expected value and standard deviation of the

tate variables using (7a) and (7b).
Since (13) is a deterministic OCP, it can be solved using any

conventional numerical method devised for solving continuous OCPs.
Specifically, the Hermite-Simpson direct collocation technique is used
in this paper [28].

The flow chart represented in Fig. 1 summarizes the computational
teps required to solve the CCSOCP (1) using the proposed approach.

6. Chance-constrained stochastic optimal control of the COVID-19
transmission

In this section, various numerical experiments are conducted us-
ng two different stochastic mathematical models of the COVID-19
ransmission. First, the CC and FMM reformulations are compared
hrough the chance-constrained optimal control of the so-called SEIsI-

aQRS model considered in [17]. Then, the capability of the proposed
MM reformulation to deal with larger, more complex epidemic models
erived from real-world data is analyzed via the chance-constrained
ptimal control of the so-called SIDARTHE model introduced in [29].
𝑣

4 
Fig. 1. Computational steps for the resolution of the CCSOCP stated in (1).

6.1. SEIsIaQRS model

As mentioned in Section 5.1, the CC reformulation has already
been applied to the chance-constrained stochastic optimal control of
epidemic models in [17]. Moreover, the accuracy of the corresponding
spectral surrogate of the SEIsIaQRS epidemic model has been already
assessed in [30]. Therefore, for the sake of comparison, the same
stochastic optimal control problem stated in [17] has been considered
in this work, in which the underlying dynamical system consists of a
COVID-19 epidemic model with 6 compartments, namely susceptible
(𝑆), exposed (𝐸), symptomatic (𝐼𝑠), asymptomatic (𝐼𝑎), isolated (𝑄),
and recovered (𝑅) subjects. The flow chart of this epidemic model is
represented in Fig. 2. More specifically, the stochastic optimal control
roblem is formulated as follows

min 𝑀 (𝑡, 𝜻) + 𝜅 ⋅ 𝛴 (𝑡, 𝜻) (14a)

(𝑡),𝜅𝑎(𝑡)

𝐽 0 𝐽
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Fig. 2. Flow chart of the SEIsIaQRS epidemic model (14b)–(14g).
subject to:

𝑆̇(𝑡, 𝜻) = − 𝜃
𝑇𝑖𝑛𝑓

(1 − 𝜀𝑣(𝑡))
𝐼(𝑡, 𝜻)
𝑁

𝑆(𝑡, 𝜻) − 𝜀𝑣(𝑡)𝑆(𝑡, 𝜻) + 𝛿 𝑅(𝑡, 𝜻) a.s., (14b)

𝐸̇(𝑡, 𝜻) = 𝜃
𝑇𝑖𝑛𝑓

(1 − 𝜀𝑣(𝑡))
𝐼(𝑡, 𝜻)
𝑁

𝑆(𝑡, 𝜻) − 𝐸(𝑡, 𝜻)
𝑇𝑙 𝑎𝑡

a.s., (14c)

𝐼̇𝑠(𝑡, 𝜻) = (1 − 𝛽)
𝐸(𝑡, 𝜻)
𝑇𝑙 𝑎𝑡

−
(

𝜅𝑠 +
1

𝑇𝑖𝑛𝑓

)

𝐼𝑠(𝑡, 𝜻) a.s., (14d)

𝐼̇𝑎(𝑡, 𝜻) = 𝛽
𝐸(𝑡, 𝜻)
𝑇𝑙 𝑎𝑡

−
(

𝜅𝑎(𝑡) + 1
𝑇𝑖𝑛𝑓

)

𝐼𝑎(𝑡, 𝜻) a.s., (14e)

𝑄̇(𝑡, 𝜻) = 𝜅𝑠𝐼𝑠(𝑡, 𝜻) + 𝜅𝑎(𝑡)𝐼𝑎(𝑡, 𝜻) −
𝑄(𝑡, 𝜻)
𝑇𝑠𝑒𝑟

a.s., (14f)

𝑅̇(𝑡, 𝜻) = 𝐼𝑠(𝑡, 𝜻) + 𝐼𝑎(𝑡, 𝜻)
𝑇𝑖𝑛𝑓

+
𝑄(𝑡, 𝜻)
𝑇𝑠𝑒𝑟

+ 𝜀𝑣(𝑡)𝑆(𝑡, 𝜻) − 𝛿 𝑅(𝑡, 𝜻) a.s., (14g)

𝜇𝑆
(

𝑆(𝑡𝐼 , 𝜻)
)

= 𝑆𝐼 , 𝜇𝑆
(

𝐸(𝑡𝐼 , 𝜻)
)

= 𝐸𝐼 , 𝜇𝑆
(

𝐼𝑠(𝑡𝐼 , 𝜻)
)

= 𝐼𝑠𝐼 , (14h)

𝜇𝑆
(

𝐼𝑎(𝑡𝐼 , 𝜻)
)

= 𝐼𝑎𝐼 , 𝜇𝑆
(

𝑄(𝑡𝐼 , 𝜻)
)

= 𝑄𝐼 , 𝜇𝑆
(

𝑅(𝑡𝐼 , 𝜻)
)

= 𝑅𝐼 , (14i)

𝜎𝑆
(

𝑆(𝑡𝐼 , 𝜻)
)

≤ 𝜀𝐼 , 𝜎𝑆
(

𝐸(𝑡𝐼 , 𝜻)
)

≤ 𝜀𝐼 , 𝜎𝑆
(

𝐼𝑠(𝑡𝐼 , 𝜻)
)

≤ 𝜀𝐼 , (14j)

𝜎𝑆
(

𝐼𝑎(𝑡𝐼 , 𝜻)
)

≤ 𝜀𝐼 , 𝜎𝑆
(

𝑄(𝑡𝐼 , 𝜻)
)

≤ 𝜀𝐼 , 𝜎𝑆
(

𝑅(𝑡𝐼 , 𝜻)
)

≤ 𝜀𝐼 , (14k)

where 𝐼(𝑡, 𝜻) = 𝐼𝑠(𝑡, 𝜻) +𝛼𝐼𝐼𝑎(𝑡, 𝜻), 𝜻 = (𝜃 , 𝜀, 𝛿) is the vector of random pa-
rameters, and 𝑣(𝑡) ∈ [0, 𝑣𝑈 ] and 𝜅𝑎(𝑡) ∈ [0, 𝜅𝑈 ] denote the deterministic
control variables that represent the vaccination and testing rates, re-
spectively, with 𝑣𝑈 and 𝜅𝑈 being upper bounds, which are determined
by the designers of the stochastic optimal control problem according to
their preferences. The value and meaning of the parameters in (14) are
described in Table 1. The reader is referred to [17] for further details.

In the objective functional (14a), 𝑀𝐽 (𝑡, 𝜻) = 𝜇𝑆
(

𝐽 (𝐼𝑠(𝑡, 𝜻), 𝐼𝑎(𝑡, 𝜻),
𝑣(𝑡), 𝜅𝑎(𝑡), 𝜻)

)

, and 𝛴𝐽 (𝑡, 𝜻) = 𝜎𝑆
(

𝐽 (𝐼𝑠(𝑡, 𝜻), 𝐼𝑎(𝑡, 𝜻), 𝑣(𝑡), 𝜅𝑎(𝑡), 𝜻)
)

, where

𝐽 (𝐼𝑠(𝑡, 𝜻), 𝐼𝑎(𝑡, 𝜻), 𝑣(𝑡), 𝜅𝑎(𝑡), 𝜻) =

∫

𝑡𝐹

𝑡𝐼

(

𝐶1 ⋅ 𝐼𝑠(𝑡, 𝜻) + 𝐶2 ⋅ 𝐼𝑎(𝑡, 𝜻) + 𝐶3 ⋅ 𝑣
2(𝑡) + 𝐶4 ⋅ 𝜅

2
𝑎 (𝑡)

)

𝑑 𝑡, (15)

with 𝐶𝑖, 𝑖 = 1, 2, 3, 4, being weights, which are specified by the de-
signers of the stochastic optimal control problem according to their
preferences.
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Table 1
Value and meaning of the model parameters used in the numerical experiments A and
B [17].

Parameter Meaning Value Units

𝛼 Asymptomatic over symptomatic
subjects ratio

1.000 Dimensionless

𝛽 Population ratio that remains
asymptomatic

0.800 Dimensionless

𝛿 Immunity loss Random Days−1

𝜀 Vaccine efficacy Random Dimensionless
𝜅𝑠 Isolation rate of symptomatic

subjects
0.950 Dimensionless

𝜃 Replication factor Random Dimensionless
𝑇𝑠𝑒𝑟 Mean serial time interval 7.500 Days
𝑇𝑙 𝑎𝑡 Mean incubation period 5.200 Days
𝑇𝑖𝑛𝑓 Mean infectious period 2.300 Days

Following [17], a non-dimensionalized form of the stochastic op-
timal control problem (14) has been used in all the experiments pre-
sented in this section, along with the initial conditions:
(𝑆0 = 0.84908, 𝐸0 = 0.00102, 𝐼𝑠0 = 0.0002, 𝐼𝑎0 = 0.0008,

𝑄0 = 0, 𝑅0 = 0.1489).
Moreover, the replication factor 𝜃 has been assumed to follow a gamma
distribution G(3500, 0.001), the vaccine efficacy 𝜀 a beta distribution
B(160, 10), and the immunity loss rate 𝛿 a beta distribution B(20,
6000). Furthermore, the order of the aPC expansion has been set to
𝑝 = 4, the upper bounds have been set to 𝜀𝐼 = 10−6, 𝑣𝑈 = 0.007,
and 𝜅𝑈 = 0.5, and the weighting parameters have been set to 𝛼𝐼 = 1,
𝐶1 = 0.15, 𝐶2 = 0.095, 𝐶3 = 0.75, and 𝐶4 = 0.005.

6.1.1. Experiment A
In this experiment, for all 𝑡 ∈ [𝑡𝐼 , 𝑡𝐹 ], the chance constraint

𝑃
(

𝐼𝑎(𝑡, 𝜻) ≤ 𝐼𝑎𝑈
)

≥ 1 − 𝜂𝑎 (16)

has been added to the stochastic optimal control problem (14), and
the resulting CCSOCP has been solved using both the CC and the FMM
reformulations. Specifically, to mitigate the spread of the disease, the
upper bound on the proportion of daily asymptomatic infected subjects
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Fig. 3. Experiment A. Expected values of the proportions of subjects for each state variable, along with the corresponding 2-sigma confidence envelope. The optimal solutions
obtained using the CC and the FMM reformulations are shown in blue and green, respectively. The optimal solutions obtained without chance constraint are shown in red.
Table 2
Experiment A. Maximum scores of the upper values of the 2-sigma confidence envelopes
for the optimal state variables 𝐸 , 𝐼𝑠 , 𝐼𝑎, and 𝑄.

𝐸 𝐼𝑠 𝐼𝑎 𝑄

WC 0.0391 0.0011 0.0087 0.0226
CC 0.0254 0.0007 0.0013 0.0167
FMM 0.0300 0.0008 0.0061 0.0188

has been set to 𝐼𝑎𝑈 = 0.006 and the corresponding risk level has been
set to 𝜂𝑎 = 0.05.

Fig. 3 shows the expected values of the proportions of subjects
for each optimal state variable, along with the corresponding 2-sigma
confidence envelopes obtained using both the CC and the FMM refor-
mulations, which are represented in blue and green lines, respectively.
The associated deterministic optimal control variables are depicted in
Fig. 4. For the sake of comparison, Figs. 3 and 4 also include the optimal
solutions of the SOCP (14) represented in red lines, namely the optimal
solutions obtained if the chance constraint (16) is not considered. The
maximum scores of the upper values of the corresponding 2-sigma
confidence envelopes are reported in Table 2 for the state variables
𝐸 , 𝐼𝑠, 𝐼𝑎, and 𝑄, where WC stands for without constraints.

The influence of the chance constraint (16) on the optimal solutions
can be clearly appreciated in Fig. 3, particularly in Fig. 3.d, when
6 
compared to the optimal solutions obtained without considering such
constraint. The reduction in the proportion of asymptomatic subjects
caused by constraint (16) is mainly achieved at the expense of increas-
ing the testing of asymptomatic subjects during the first third of the
time interval, as it can be seen in Fig. 4.b.

However, a noticeable difference exists between the solutions pro-
vided by the two reformulations. The 2-sigma confidence envelope for
the proportion of asymptomatic subjects provided by the CC refor-
mulation complies amply with the chance constraint. In other words,
the chance constraint is not binding. Conversely, the envelope corre-
sponding to the FMM reformulation saturates the chance constraint,
indicating that the chance constraint is binding in this case.

Monte Carlo (MC) simulations have been conducted using the cor-
responding aPC surrogate models of the optimal proportion of asymp-
tomatic subjects computed from both the CC and the FMM reformula-
tions. For the sake of clarity, Fig. 5 shows a random selection of 100
runs. According to these MC simulations, the estimated probability of a
threshold violation is 0.0546 for the FMM reformulation, whereas it is
0.001 for the CC reformulation. The latter is significantly lower than the
predetermined risk level 𝜂𝑎 = 0.05. This undesirable behavior worsens
as the risk level decreases.

Fig. 6 shows the optimal proportions of asymptomatic subjects
obtained using both the CC and the FMM reformulations for different
values of the risk level 𝜂𝑎, ranging from 0.00001 to 0.05. For the sake of
clarity, only the upper values of the 2-sigma confidence envelopes are
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Fig. 4. Experiment A. Optimal vaccination and testing rates. The optimal controls obtained using the CC and the FMM reformulations are shown in blue and green, respectively.
he optimal controls obtained without chance constraint are shown in red.
Fig. 5. Experiment A. MC simulations of the proportion of asymptomatic subjects using the CC reformulation (left) and the FMM reformulation (right).
Fig. 6. Experiment A. Proportions of asymptomatic subjects obtained using the CC reformulation (left) and the FMM reformulation (right) for different values of the risk level 𝜂𝑎.
or the sake of clarity, only the upper values of the 2-sigma confidence envelopes have been depicted.
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depicted. The corresponding optimal vaccination and testing rates are
hown in Fig. 7. With the CC reformulation, as the risk level decreases,

the curve representing the proportion of asymptomatic subjects flattens
excessively, which results in inefficient or even impractical control
strategies for the public health system. Conversely, when the FMM
reformulation is used, both the proportion of asymptomatic subjects
and the associated optimal controls evolve consistently as the risk level
varies.

Finally, the Sobol’ indices corresponding to the optimal solutions
of the CCSOCP obtained using the CC and the FMM reformulations
are shown in Fig. 8, which are depicted in dashed and solid lines,
respectively. Specifically, the Sobol’ indices associated with the random
parameters 𝜃, 𝜀, and 𝛿 are represented in blue, orange, and green colors,
respectively. The Sobol’ indices computed from both reformulations
show similar trends. In particular, the variance of the state variables
𝐸 , 𝐼𝑠, 𝐼𝑎, and 𝑄, which can be attributed to the variance of 𝜀 is almost
nsignificant. Besides, the variance of the state variables 𝑆 and 𝑅 shows
inor yet noteworthy values within the first 30 days. Furthermore, the

elative impact of the variance of 𝜃 and 𝛿 on the variance of the state

ariables 𝐸 , 𝐼𝑠, 𝐼𝑎, and 𝑄 fluctuates over the considered time span. More e
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specifically, the variance of 𝜃 primarily influences the variance of these
state variables for the initial 80 days, while the variance of 𝛿 takes over
s the dominant influence during the subsequent 100 days.

6.1.2. Experiment B
In this experiment, for all 𝑡 ∈ [𝑡𝐼 , 𝑡𝐹 ], the joint chance constraint

𝑃
(

𝐼𝑠(𝑡, 𝜻) ≤ 𝐼𝑠𝑈 , 𝐼𝑎(𝑡, 𝜻) ≤ 𝐼𝑎𝑈
)

≥ 1 − 𝜂𝐽 , (17)

with 𝜂𝐽 = 𝜂𝑠 + 𝜂𝑎, has been added to the stochastic optimal control
roblem (14), and the resulting CCSOCP has been solved using both the
C and the FMM reformulations. Specifically, the upper bounds on the
roportion of daily symptomatic and asymptomatic infected subjects

have been set to 𝐼𝑠𝑈 = 0.0006 and 𝐼𝑎𝑈 = 0.006, respectively, and the
corresponding risk levels have been set to 𝜂𝑠 = 𝜂𝑎 = 0.025.

Fig. 9 shows the optimal proportions of symptomatic and asymp-
tomatic subjects obtained using both the CC and the FMM reformula-
ions for different values of the joint risk level 𝜂𝐽 , ranging from 0.00001
o 0.05. In all cases, the risk levels 𝜂𝑠 and 𝜂𝑎 are assumed to be equal.
or the sake of clarity, only the upper values of the 2-sigma confidence
nvelopes are depicted. The corresponding optimal vaccination and
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Fig. 7. Experiment A. Optimal vaccination and testing rates obtained using the CC reformulation (left) and the FMM reformulation (right) for different values of the risk level 𝜂𝑎.
f

Table 3
Nominal value and meaning of the model parameters used in the numerical experiments
 and D.
Parameter Meaning Nominal value Unit

𝛼 Susceptible-infected transmission
rate

0.570 People per day

𝛽 Susceptible-diagnosed
transmission rate

0.011 People per day

𝛾 Susceptible-ailing transmission
rate

0.456 People per day

𝛿 Susceptible-recognized
transmission rate

0.011 People per day

𝜃 Symptomatic testing rate 0.371 Dimensionless
𝜁 Unaware relevant symptoms rate 0.125 Days−1

𝜂 Aware relevant symptoms rate 0.125 Days−1

𝜇 Undetected life-threatening
symptoms rate

0.017 Days−1

𝜈 Detected life-threatening
symptoms rate

0.027 Days−1

𝜏 Mortality rate 0.010 Days−1

𝜆 Infected recovery rate 0.034 Days−1

𝜅 Diagnosed recovery rate 0.017 Days−1

𝜉 Ailing recovery rate 0.017 Days−1

𝜌 Recognized recovery rate 0.034 Days−1

𝜎 Threatened recovery rate 0.017 Days−1

testing rates are shown in Fig. 10. As in Experiment A, an undesirable
utcome is obtained when using the CC reformulation. In contrast, the
MM reformulation provides the expected result. More specifically, in
his case, the constraint on the proportion of symptomatic subjects is
inding, being the primary cause of the rise in the testing rate, which
n turn implies that the constraint on the proportion of asymptomatic
ubjects is not binding.

6.2. SIDARTHE model

In order to further test the practical applicability of the proposed
FMM reformulation, a second epidemic model has been considered as
a benchmark. This model, referred to as the SIDARTHE model, has been
fitted from real-world data. Both the mathematical model and the data
are freely available online [29]. Specifically, the underlying dynamical
8 
system consists of a COVID-19 epidemic model with 8 compartments,
namely susceptible (S), infected (I), diagnosed (D), ailing (A), recog-
nized (R), threatened (T), healed(H), and extinct (E) subjects. The flow
chart of this epidemic model is represented in Fig. 11. In particular,
the stochastic optimal control of the SIDARTHE model is formulated as
ollows

min
𝑣(𝑡), 𝜀(𝑡) 𝜇𝑆 (𝐽 (𝐼(𝑡, 𝜻), 𝜀(𝑡), 𝜻)) + 𝜅0 ⋅ 𝜎𝑆 (𝐽 (𝐼(𝑡, 𝜻), 𝜀(𝑡), 𝜻)) , (18a)

subject to:

𝑆̇(𝑡, 𝜻) = −𝑆(𝑡, 𝜻)𝛬(𝑡, 𝜻) a.s., (18b)
𝐼̇(𝑡, 𝜻) = 𝑆(𝑡, 𝜻) 𝛬(𝑡, 𝜻) − (𝜀(𝑡) + 𝜁 + 𝜆)𝐼(𝑡, 𝜻) a.s., (18c)
𝐷̇(𝑡, 𝜻) = 𝜀(𝑡)𝐼(𝑡, 𝜻) − (𝜂 + 𝜌)𝐷(𝑡, 𝜻) a.s., (18d)
𝐴̇(𝑡, 𝜻) = 𝜁 𝐼(𝑡, 𝜻) − (𝜃 + 𝜇 + 𝜅)𝐴(𝑡, 𝜻) a.s., (18e)
𝑅̇(𝑡, 𝜻) = 𝜂 𝐷(𝑡, 𝜻) + 𝜃 𝐴(𝑡, 𝜻) − (𝜈 + 𝜉)𝑅(𝑡, 𝜻) a.s., (18f)
𝑇̇ (𝑡, 𝜻) = 𝜇 𝐴(𝑡, 𝜻) + 𝜈 𝑅(𝑡, 𝜻) − (𝜎 + 𝜏)𝑇 (𝑡, 𝜻) a.s., (18g)
𝐻̇(𝑡, 𝜻) = 𝜆𝐼(𝑡, 𝜻) + 𝜌𝐷(𝑡, 𝜻) + 𝜅 𝐴(𝑡, 𝜻) + 𝜉 𝑅(𝑡, 𝜻) + 𝜎 𝑇 (𝑡, 𝜻) a.s., (18h)
𝐸̇(𝑡, 𝜻) = 𝜏 𝑇 (𝑡, 𝜻) a.s., (18i)

𝜇𝑆
(

𝑆(𝑡𝐼 , 𝜻)
)

= 𝑆𝐼 , 𝜇𝑆
(

𝐼(𝑡𝐼 , 𝜻)
)

= 𝐼𝐼 ,

𝜇𝑆
(

𝐷(𝑡𝐼 , 𝜻)
)

= 𝐷𝐼 , 𝜇𝑆
(

𝐴(𝑡𝐼 , 𝜻)
)

= 𝐴𝐼 , (18j)

𝜇𝑆
(

𝑅(𝑡𝐼 , 𝜻)
)

= 𝑅𝐼 , 𝜇𝑆
(

𝑇 (𝑡𝐼 , 𝜻)
)

= 𝑇𝐼 ,

𝜇𝑆
(

𝐻(𝑡𝐼 , 𝜻)
)

= 𝐻𝐼 , 𝜇𝑆
(

𝐸(𝑡𝐼 , 𝜻)
)

= 𝐸𝐼 , (18k)

𝜎𝑆
(

𝑆(𝑡𝐼 , 𝜻)
)

≤ 𝜀𝐼 , 𝜎𝑆
(

𝐼(𝑡𝐼 , 𝜻)
)

≤ 𝜀𝐼 , 𝜎𝑆
(

𝐷(𝑡𝐼 , 𝜻)
)

≤ 𝜀𝐼 ,

𝜎𝑆
(

𝐴(𝑡𝐼 , 𝜻)
)

≤ 𝜀𝐼 , (18l)

( ) ( ) ( )
𝜎𝑆 𝑅(𝑡𝐼 , 𝜻) ≤ 𝜀𝐼 , 𝜎𝑆 𝑇 (𝑡𝐼 , 𝜻) ≤ 𝜀𝐼 , 𝜎𝑆 𝐻(𝑡𝐼 , 𝜻) ≤ 𝜀𝐼 ,
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Fig. 8. Experiment A. Sobol’ indices associated with 𝜃 (blue), 𝜀 (orange), and 𝛿 (green). The curves obtained in the solution of the CCSOCP with the CC and the FMM reformulation
are shown in dashed and solid lines, respectively.
o
o
i

a

𝜎𝑆
(

𝐸(𝑡𝐼 , 𝜻)
)

≤ 𝜀𝐼 , (18m)
where 𝛬(𝑡, 𝜻) = 𝛼 𝐼(𝑡, 𝜻) +𝛽 𝐷(𝑡, 𝜻) +𝛾 𝐴(𝑡, 𝜻) +𝛿 𝑅(𝑡, 𝜻), 𝜻 = (𝛼 , 𝛽 , 𝛾 , 𝛿 , 𝜆, 𝜅 , 𝜉 ,
𝜌, 𝜎) is the vector of random parameters, and 𝜀(𝑡) ∈ [0, 𝜀𝑈 ] denote the
deterministic control variable that represents the testing rate for the
detection of asymptomatic infected subjects, 𝜀𝑈 being an upper bound,
which is determined by the designers of the stochastic optimal control
problem according to their preferences. Notice that 𝜀 is considered as
a constant parameter in [29]. The nominal value and meaning of the
parameters in (18) are described in Table 3.

In the objective functional (18a),
𝐽 (𝐼(𝑡, 𝜻), 𝜀(𝑡), 𝜻) = ∫

𝑡𝐹

𝑡𝐼

(

𝐶1 ⋅ 𝐼(𝑡, 𝜻) + 𝐶2 ⋅ 𝜀
2(𝑡)

)

𝑑 𝑡,
with 𝐶𝑖, 𝑖 = 1, 2, being weights, which are specified by the designers of
the stochastic optimal control problem according to their preferences.

According to [29], a non-dimensionalized form of the stochastic
optimal control problem (18) has been used, along with the initial
onditions: 𝑆0 = 0.999996, 𝐼0 = 3.33 ⋅ 10−6, 𝐷0 = 3.33 ⋅ 10−7, 𝐴0 =
.67 ⋅ 10−8, 𝑅0 = 3.33 ⋅ 10−8, 𝑇0 = 0, 𝐻0 = 0, and 𝐸0 = 0. More-
ver, all the components of the vector of random parameters 𝜻 =
𝛼 , 𝛽 , 𝛾 , 𝛿 , 𝜆, 𝜅 , 𝜉 , 𝜌, 𝜎) have been modeled by adding a 5% Gaussian

noise to their corresponding nominal values. In other words, all the
transmission and recovery rates of the SIDARTHE model have been
assumed to be random parameters. Furthermore, the order of the aPC
9 
expansion has been set to 𝑝 = 3, the upper bounds have been set to
𝜀𝐼 = 10−6 and 𝜀𝑈 = 0.4, and the weighting parameters have been set to
𝐶1 = 𝐶2 = 0.01.

6.2.1. Experiment C
In this experiment, the computational scalability of the proposed

method is tested on the stochastic optimal control problem (18). More-
ver, a sensitivity analysis is carried out to identify which components
f the vector of random parameters 𝜻 = (𝛼 , 𝛽 , 𝛾 , 𝛿 , 𝜆, 𝜅 , 𝜉 , 𝜌, 𝜎) have more
nfluence on the variability of the optimal stochastic state variables

obtained in the solution of (18).
To analyze the scalability of the proposed approach, the number of

iterations and CPU time required to solve the stochastic optimal control
problem (18) for different sizes 𝑁𝑈 of the vector of random parameters
𝜻 have been calculated. Specifically, a full tensor cubature, with order
of the polynomial expansion 𝑝 = 4, has been used for 𝑁𝑈 = 1, 2, 3,
whereas a Smolyak cubature, with order 𝑝 = 4 and level 𝜄 = 3, has
been employed for 𝑁𝑈 = 4, 5, 6, 7, 8, 9. The obtained mean number of
iterations (#iter) and mean CPU time (CPUT) are reported in Table 4,
along with the number of weights (#CW) required to perform the
corresponding Gaussian cubature. It can be concluded that, despite the
vailability of the sparse-grid cubature, the computational burden of

the stochastic optimal control problem increases significantly as the size
of the vector of random parameters grows. Thus, a sensitivity analysis
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Fig. 9. Experiment B. Proportions of symptomatic and asymptomatic subjects obtained using the CC reformulation (left) and the FMM reformulation (right) for different values of
the joint risk level 𝜂𝐽 . For the sake of clarity, only the upper values of the 2-sigma confidence envelopes have been depicted.
Fig. 10. Experiment B. Optimal vaccination and testing rates obtained using the CC reformulation (left) and the FMM reformulation (right) for different values of the joint risk
level 𝜂.
should be carried out to rule out those random parameters that do
not actually contribute to the variability of the optimal stochastic state
ariables.

The Sobol’ indices corresponding to the optimal solutions of (18)
re shown in Fig. 12. The variance of all the optimal state variables

can be mainly attributed to the variance of the susceptible-infected
ransmission rate 𝛼, the ailing recovery rate 𝜉, and the threatened
ecovery rate 𝜎. This is useful information that can be taken into
ccount to alleviate the computational burden in further experiments.
10 
6.2.2. Experiment D
In this experiment, for all 𝑡 ∈ [𝑡𝐼 , 𝑡𝐹 ], the chance constraint

𝑃
(

𝑇 (𝑡, 𝜻) ≤ 𝑇𝑈
)

≥ 1 − 𝜂𝑇 (19)

has been added to the stochastic optimal control problem (18), and
the resulting CCSOCP has been solved using the FMM reformulation,
taking into account the results of the sensitivity analysis undertaken
in Experiment C. Thus, the vector of random parameters has been set
to 𝜻 = (𝛼 , 𝜉 , 𝜎). Specifically, to mitigate the unwanted effects of the
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Fig. 11. Flow chart of the SIDARTHE epidemic model (18b)–(18i).
Table 4
Experiment C. Mean number of iterations (#iter), mean CPU time (CPUT), and number of quadrature weights (#QW).

Number of random parameters, 𝑁𝑈

1 2 3 4 5 6 7 8 9

#iter 1107 5804 34 569 9745 14 319 19 853 26 251 32 798 36 980
CPUT (s) 27.73 143.16 905.80 243.95 360.51 501.19 651.59 820.04 893.46
#CW 5 25 125 45 66 91 120 153 190
disease, the upper bound on the proportion of daily threatened subjects
has been set to 𝑇𝑈 = 0.15 and the corresponding risk level has been set
to 𝜂𝑇 = 0.05.

Fig. 13 shows the expected values of the proportions of subjects
for each optimal state variable, along with the corresponding 2-sigma
confidence envelopes obtained using the FMM reformulation, which are
represented in green lines. The associated deterministic optimal control
variable is depicted in Fig. 14. For the sake of comparison, Figs. 13 and
14 also include the optimal solutions of the stochastic optimal control
problem (18), represented in red lines, namely the optimal solutions
obtained if the chance constraint (19) is not considered and assuming
𝜻 = (𝛼 , 𝜉 , 𝜎).

As in Experiment A, the influence of the chance constraint (19) on
the optimal solutions can be clearly appreciated in Fig. 13, particularly
in Fig. 13.d, when compared to the optimal solutions obtained without
considering such constraint. The reduction in the proportion of threat-
ened subjects caused by constraint (19) is achieved at the expense of
increasing the testing of asymptomatic subjects during the first half of
the time interval, as it can be seen in Fig. 14.

7. Conclusions

A methodology for the reformulation of chance-constrained stochas-
tic optimal control problems has been proposed with the aim of guar-
anteeing a dependable uncertainty management in the context of epi-
demic models. It relies on the so-called fourth moment method within
a spectral approach, in which a reliable reformulation of the chance
constraints is based on the efficient computation of the first four
statistical moments of the stochastic state variables.
11 
This approach requires the calculation of two more moments in
comparison with those methods based on the Chebyshev–Cantelli’s in-
equality. However, the surrogate models of the optimal state variables
provided by the polynomial chaos spectral expansion allow these two
moments to be computed at a very low extra computational cost. More-
over, the fourth moment-based approach does not present the reliability
issues suffered by the methods that rely on the Chebyshev–Cantelli’s
inequality.

Specifically, when high accuracy is required for the risk level associ-
ated to the fulfillment of the chance constraints, the bounds provided by
the Chebyshev–Cantelli’s inequality are too coarse, which usually result
in solutions of the epidemic chance-constrained stochastic optimal con-
trol problem that, in practice, imply the implementation of inefficient
or even infeasible control strategies for the public health system.

The optimal control of two stochastic mathematical models of the
COVID-19 transmission has been considered to show the practical
implementation of the proposed methodology. In the numerical ex-
periments, in which single and joint chance constraints have been
considered, both reformulation approaches have been compared. The
results show the presence of the reliability issues that arise when the
reformulation based on the Chebyshev–Cantelli’s inequality is used.
In particular, as the risk level decreases, the corresponding optimal
control variables provide increasingly inefficient strategies until they
become practically unviable or infeasible. Conversely, the optimal con-
trol variables obtained when the fourth moment-based reformulation is
employed yield strategies that behave accordingly to the required risk
levels and are viable for the public health system.

Given these promising results in the framework of the COVID-19
epidemic models, an appealing line of future research would be to
apply the proposed methodology to dengue fever control. Dengue, like
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Fig. 12. Experiment C. Sobol’ indices associated with the random parameters 𝜻 = (𝛼 , 𝛽 , 𝛾 , 𝛿 , 𝜆, 𝜅 , 𝜉 , 𝜌, 𝜎) in the solution of the stochastic optimal control problem (18).
COVID-19, is an infectious disease that poses significant challenges in
terms of prevention and control. In fact, it is the fastest-growing infec-
tious disease globally [31]. The application of the proposed methodol-
ogy could provide new insights and tools to address these challenges,
thereby enhancing dengue control strategies.
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Fig. 13. Experiment D. Expected values of the proportions of subjects for each state variable, along with the corresponding 2-sigma confidence envelope. The optimal solutions
obtained using the FMM reformulation are shown green. The optimal solutions obtained without chance constraint are shown in red.
Appendix A. Gaussian cubature rule

As mentioned in Section 3, to solve the integral (6), a Gaussian
cubature rule based on the statistical moments of the random vector
𝜻 = (𝜁1,… , 𝜁𝑁𝑈

) is used in this paper. Specifically, given an arbitrary
multivariate function 𝐹 (𝜻), its full tensor product cubature can be
formulated as

∫

𝑑1

𝑐1
⋯∫

𝑑𝑁𝑈

𝑐𝑁𝑈

𝐹 (𝜻) 𝑑(𝜻) ≈
𝑝1
∑

𝑖1=1
⋯

𝑝𝑁𝑈
∑

𝑖𝑁𝑈 =1
𝐹
(

𝜁 𝑖1 ,… , 𝜁 𝑖𝑁𝑈
)

×
(

𝜔 ⊗⋯⊗ 𝜔
)

, (A.1)
𝑖1 𝑖𝑁𝑈

13 
with 𝜁 𝑖𝑗 and 𝜔𝑖𝑗 , 𝑖 = 1,… , 𝑝, 𝑗 = 1,… , 𝑁𝑈 , denoting, respectively, the
nodes and weights obtained from the statistical moments of the random
vector 𝜻 [32].

Moreover, a sparse-grid cubature, such as the Smolyak cubature
rule [33], can be employed instead of the tensor-grid cubature when
the number of random variables 𝑁𝑈 grows, in order to avoid the curse
of dimensionality [22]. Specifically, given the random parameters 𝜁𝑖,
𝑖 = 1,… , 𝑁𝑈 , let  𝑖𝑗 , 𝑖 = 1,… , 𝑝, 𝑗 = 1,… , 𝑁𝑈 , denote a sequence
of 𝑁 univariate quadrature rules. That is, each of this univariate
𝑈
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Fig. 14. Experiment D. Optimal testing rate. The optimal control obtained using the
FMM reformulation is shown in green. The optimal control obtained without chance
constraint is shown in red.

quadrature rules can be expressed in terms of a set of nodes and weights
s

 𝑖𝑗 =
𝑚𝑖𝑗
∑

𝑘=1
𝜔𝑘
𝑖𝑗
𝐹 (𝜁

𝑖𝑗
𝑘 ), (A.2)

where 𝑚𝑖𝑗 , 𝑗 = 1,… , 𝑁𝑈 , is the maximum order for each univariate
quadrature. Thus, individual orders for the random parameters are
taken into account, which allows to consider an anisotropic grid if
required.

Then, the Smolyak quadrature rule for multiple random parameters
can be calculated as

𝜄,𝑁𝑈 =
∑

𝜄+1≤|𝒊|≤𝜄+𝑁𝑈

(𝜄 − 1)𝜄+𝑁𝑈−|𝒊|
(

𝑁𝑈 − 1
𝜄 +𝑁𝑈 − |𝒊|

)

(

 𝑖1 ⊗ 𝑖2 ⊗⋯⊗ 𝑖𝑁𝑈
)

(A.3)

with

|𝒊| =
𝑁𝑈
∑

𝑘=1
𝒊𝑘 =

𝑁𝑈
∑

𝑘=1
𝑘
𝑗 ,

where 𝜄 is the so-called level of the quadrature rule and |𝒊| denotes the
norm of the vector of indices 𝒊 = {𝑖1, 𝑖2,… , 𝑖𝑁𝑈

}, that is, the sum of
a row 𝑗 of the index matrix 𝑘

𝑗 that represents the Smolyak graded
lexicographic ordering. In other words, the rows of the index matrix
𝑖
𝑘 contain which order of each univariate polynomial contributes to a
articular multivariate polynomial.

The level 𝜄 in (A.3) can be considered as the order in the full
Gaussian quadrature setting, that is, it controls the accuracy of the rule.
Thus, for a fixed number of random parameters, increasing the level
𝜄 provides a better accuracy. For instance, the sparse Smolyak index
matrix for 𝑁𝑈 = 3 and 𝜄 = 2 is the following

𝜄+1≤|𝒊|≤𝜄+𝑁𝑈
= 3≤|𝒊|≤5 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

1 1 1
2 1 1
1 2 1
1 1 2
3 1 1
2 2 1
1 3 1
2 1 2
1 2 2
1 1 3

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

.

The set of sparse nodes in (A.2) and (A.3) is calculated as
𝜄,𝑁𝑈 =

⋃

𝜄+1≤|𝒊|≤𝜄+𝑁𝑈

(

𝜁 𝑖1 × 𝜁 𝑖2 ×⋯ × 𝜁 𝑖𝑁𝑈
)

,

where 𝜁 𝑖𝑗 , 𝑗 = 1,… , 𝑁𝑈 , represent the 𝑚𝑖𝑗 collocation points used by
the quadrature  𝑖𝑗 . The corresponding vector of sparse weights 𝝎𝑆 is
calculated as

(

𝑖1 𝑖2 𝑖𝑁
)

𝝎𝑆 = 𝑄𝑆 ⋅  ⊗ ⊗⋯⊗ 𝑈 ,

14 
where  𝑖𝑗 is the matrix whose columns are the univariate nodes of
the 𝑗th random parameter, and 𝑄𝑆 is the so-called Smolyak counting
coefficient, which is obtained as

𝑄𝑆 = (−1)𝑁

(

𝑁𝑈 − 1
𝑁𝑆

)

, with 𝑁𝑆 = 𝜄 +𝑁𝑈 −
𝑁𝑈
∑

𝑖=1
𝑖
𝑗 .

As in the case of the full tensor quadrature (A.1), the coefficients
of the corresponding multi-dimensional polynomial chaos expansion
can be calculated through Smolyak sparse integration following the
integral quadrature approach already described in (6), with 𝑐𝑙𝑘(𝑡), 𝑘 =
1,… , 𝑁𝑆 𝑃 , 𝑙 = 1,… , 𝑛, being 𝑁𝑆 𝑃 the number of Smolyak sparse
collocation points.

Alternatively, the coefficients 𝑐𝑙𝑘(𝑡), 𝑘 = 1,… , 𝑁𝑆 𝑃 , 𝑙 = 1,… , 𝑛,
an be estimated by means of linear regression, which is specially
ecommended for high values of the Smolyak level 𝜄. In particular,
et 𝒄̂𝑙(𝑡) = (𝑐𝑙1(𝑡), 𝑐𝑙2(𝑡),… , 𝑐𝑙𝑁𝑆 𝑃 (𝑡)) denote the vector of estimated co-

efficients. Then, 𝒄̂𝑙(𝑡) can be computed solving the system of linear
quations
(

𝑹𝑇
𝑙 𝑹𝑙

)

𝒄̂𝑙(𝑡) = 𝑹𝑇
𝑙 z̃𝑙(𝑡),

where

𝑹𝑙 =

⎡

⎢

⎢

⎢

⎢

⎣

𝜳 𝑙
1(𝜁

𝑖1 ) 𝜳 𝑙
2(𝜁

𝑖1 ) ⋯ 𝜳 𝑙
𝑁𝑆 𝑃 (𝜁

𝑖1 )
𝜳 𝑙

1(𝜁
𝑖2 ) 𝜳 𝑙

2(𝜁
𝑖2 ) ⋯ 𝜳 𝑙

𝑁𝑆 𝑃 (𝜁
𝑖2 )

⋮ ⋮ ⋱ ⋮
𝜳 𝑙

1(𝜁
𝑖𝑁𝑈 ) 𝜳 𝑙

2(𝜁
𝑖𝑁𝑈 ) ⋯ 𝜳 𝑙

𝑁𝑆 𝑃 (𝜁
𝑖𝑁𝑈 )

⎤

⎥

⎥

⎥

⎥

⎦

and

z̃𝑙(𝑡) =
⎡

⎢

⎢

⎢

⎢

⎣

𝑧𝑙(𝑡, 𝜁 𝑖1 )
𝑧𝑙(𝑡, 𝜁 𝑖2 )

⋮
𝑧𝑙(𝑡, 𝜁 𝑖𝑁𝑈 )

⎤

⎥

⎥

⎥

⎥

⎦

.

Appendix B. Sobol’ indices computation

As mentioned in Section 4, the surrogate model provided by the
olynomial expansion (5) can be employed to undertake a global
ensitivity analysis, which is based on the variance of the optimal state

variables z(𝑡, 𝜻). This sensitivity analysis relies on the computation of
the Sobol’ indices, which quantify how much of the variance of z(𝑡, 𝜻)
is explained by the variance of each component of the vector of random
parameters 𝜻 = (𝜁1,… , 𝜁𝑁𝑈

). To this end, z(𝑡, 𝜻) is assumed to be square
integrable and the random parameters 𝜁𝑖, 𝑖 = 1,… , 𝑁𝑈 , are supposed
to be independent. Specifically, if the full tensor product cubature is
considered, the Sobol’ index  𝑙

𝑖 (𝑡) associated to the random parameter
𝜁𝑖, 𝑖 = 1,… , 𝑁𝑈 , and the state variable 𝑧𝑙(𝑡, 𝜻), 𝑙 = 1,… , 𝑛, is computed
as

 𝑙
𝑖 (𝑡) =

1
𝜎2𝑧𝑙 (𝑡)

∑

k∈𝑖 ,k≠0
𝑐𝑙𝑘(𝑡)

2, (B.1)

where 𝜎2𝑧𝑙 (𝑡) is the variance calculated in (7b) and 𝑖 represents the set
of multi-indices
𝑖 =

{

k ∈ N𝑁𝑈 ∶ |k| ≤ 𝑁𝑃 | 𝑘𝑖 > 0, 𝑘𝑗≠𝑖 = 0} .
Otherwise, if the Smolyak cubature is used, the set 𝑖 in (B.1) must be
replaced by
 𝑆
𝑖 =

{

k ∈ N𝑁𝑈 ∶ |k| ≤ 𝜄 +𝑁𝑈 | 𝑘𝑖 > 0, 𝑘𝑗≠𝑖 = 0}

Appendix C. Failure probability computation

As mentioned in Section 5.2, the failure probability for the perfor-
mance function 𝐺(𝑧(𝑡, 𝜻)) can be also obtained using the Edgeworth
expansion, as
𝑃 (𝐺(𝑧(𝑡, 𝜻)) ≤ 0) = 𝛷(−𝛽𝑆 𝑀 (𝑡)) −𝛷(𝛽𝑆 𝑀 (𝑡))𝛥𝐹 𝑀 (𝑡),
with
𝛥𝐹 𝑀 (𝑡) =
1𝛼 (𝑡)𝐻 (−𝛽 (𝑡)) + 1 (

𝛼 (𝑡) − 3)𝐻 (−𝛽 (𝑡))

6 3𝐺 2 𝑆 𝑀 24 4𝐺 3 𝑆 𝑀
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𝛼23𝐺(𝑡)𝐻5(−𝛽𝑆 𝑀 (𝑡)),

where 𝐻2(⋅), 𝐻4(⋅), and 𝐻5(⋅), respectively, denote the Hermite polyno-
mials of second, third, and fifth order, namely
𝐻2(𝑥) = 𝑥2 − 1,
𝐻3(𝑥) = 𝑥3 − 3𝑥,
𝐻5(𝑥) = 𝑥5 − 10𝑥3 + 15𝑥.
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