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Abstract: Vegetation dynamics is very sensitive to environmental changes, particularly in arid zones 
where climate change is more prominent. Therefore, it is very important to investigate the response 
of this dynamics to those changes and understand its evolution according to different climatic fac-
tors. Remote sensing techniques provide an effective system to monitor vegetation dynamics on 
multiple scales using vegetation indices (VI), calculated from remote sensing reflectance measure-
ments in the visible and infrared regions of the electromagnetic spectrum. In this study, we use the 
normalized difference vegetation index (NDVI), provided from the MOD13Q1 V006 at 250 m spatial 
resolution product derived from the MODIS sensor. NDVI is frequent in studies related to vegeta-
tion mapping, crop state indicator, biomass estimator, drought monitoring and evapotranspiration. 
In this paper, we use a combination of forecasts to perform time series models and predict NDVI 
time series derived from optical remote sensing data. The proposed ensemble is constructed using 
forecasting models based on time series analysis, such as Double Exponential Smoothing and auto-
regressive integrated moving average with explanatory variables for a better prediction perfor-
mance. The method is validated using different maize plots and one olive plot. The results after 
combining different models show the positive influence of several weather measures, namely, tem-
perature, precipitation, humidity and radiation. 

Keywords: forecast model; NDVI; crops; remote sensing; MODIS; weather variables; time series 
analysis; ARIMAX 
 

1. Introduction 
Vegetation dynamic is very sensitive to environmental changes, particularly in arid 

zones where climate change is more prominent. Therefore, it is very important to investi-
gate the response of this dynamics to those changes and understand its evolution accord-
ing to different climatic factors. Pointed out as a cumulative effect on vegetation in com-
bination with environmental changes that generates a temporary delay in the response of 
plants, this must be considered in order to understand the variations in vegetation and 
predict its changing characteristics under future climate changes [1–5]. 
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According to this, several studies claim that the main factors that determine the rela-
tionship between vegetation and climate change are temperature and precipitation [6]. 
Therefore, the water content of the unsaturated zone determines the optimal development 
of vegetation. The availability of water in the soil over a period of time (year, month and 
day) is conditioned by the inflows of water, the effective precipitation reaching the soil 
and the water reserves accumulated in the soil itself [7,8]. However, the loss of moisture 
in the soil occurs as a consequence of the direct evaporation of water from the soil and the 
transpiration of the plants, which are direct functions of the ambient temperature and soil 
temperature [9–12]. 

Remote sensing techniques provide an effective system to monitor vegetation dy-
namics on multiple scales using vegetation indices (IV) that are based on the difference of 
near infrared (NIR) and red visible (R) spectral reflectance [13]. The normalized difference 
vegetation index (NDVI) is the most widely used because it quantifies vegetation health 
by measuring the difference between near infrared (strongly reflected) and red light (ab-
sorbed). This index (Equation (1)) is calculated from remote sensing measurements in the 
visible and infrared bands as: 

NDVI =  ሺ୍ୖ ି ୖሻሺ୍ୖ ା ୖሻ (1)

where ρNIR is the surface reflectance in the near infrared region and ρR is the surface 
reflectance in the red visible region of the electromagnetic spectrum. The NDVI of a veg-
etated area tends toward positive values, whereas water and urban areas are represented 
by near zero or negative values [14]. This relationship between NDVI with vegetation 
health is well known and used, among other studies, for vegetation mapping, as a crop 
state indicator, as a biomass estimator and for drought or evapotranspiration monitoring 
[15–22]. 

In accordance with the above time series, vegetation indices with high spatial reso-
lution and high temporal frequency are important to describe and analyze the spatial pat-
terns for vegetation monitoring and management [23]. Additionally, important issues, 
such as the prediction of vegetation response induced for climatic factors, are based on 
forecasting models of NDVI [24]. 

NDVI series have been studied in different ways applying several analyses. Han et 
al. (2010) proposed ARIMA models to simulate the vegetation temperature condition in-
dex (VTCI) series, and forecast their changes in the future [25]. In addition, the (2010) 
MODIS LAI (Leaf Area Index) model proposed by Jiang et al. applies three models that 
can characterize the non-stationary time series data and predict the future values, includ-
ing Dynamic Harmonics Regression (DHR), Seasonal-Trend Decomposition Procedure 
based on Loess (STL) and seasonal autoregressive integrated moving average (SARIMA) 
[26]. 

Fernández-Manso et al. (2011) developed a method for forecasting the short-term re-
sponse of forest vegetation on the basis of an autoregressive integrated moving average 
(ARIMA) [27]. Gonçalves et al. (2012) applied different statistical forecasting methods to 
an agroclimatic index (the water requirement satisfaction index: WRSI) and the sugarcane 
spectral response (normalized difference vegetation index: NDVI) registered on National 
Oceanic and Atmospheric Administration Advanced Very High Resolution Radiometer 
(NOAA-AVHRR) satellite images [28]. Rhee and Im (2017) tested drought forecast using 
long-term forecast data and compared it with using just climatological data to obtain 
drought forecast information in uncalibrated areas. Additionally, they used machine 
learning techniques of long-term forecast data or climatological data combined with re-
mote sensing data to compare the performance with Kriging spatial interpolation [29]. 
Reddy and Prasad (2018) predicted the vegetation dynamics using MODIS NDVI time 
series data sets, a long short term memory network and an artificial neural network [30]. 
Most recently, Ba et al. (2020) and Li et al. (2017) approached the study of NDVI series 
using multi-scaling analysis [31,32]. 
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The objective of this paper is to offer an algorithm for forecasting vegetation indices 
(NDVI) time series derived from optical remote sensing data. Specifically, we use NDVI 
data derived from a Moderate Resolution Imaging Spectroradiometer sensor (MODIS) for 
different types of crops across seasons during the February 2013—December 2017 period. 
This main objective can help to resolve the following questions: (1) Does it makes sense to 
combine forecasting model temporal series to obtain a more accurate prediction model? 
(2) What weather parameters have an impact on the forecasting NDVI models associated 
with crop response? (3) Can NDVI temporal series trends be predicted with prediction 
models? (4) How long in advance can we forecast the crop NDVI associated with the 
changes in environmental conditions? 

The main contribution of this paper is to analyze predictions associated with different 
univariate methods (smoothed and ARIMAX) and their combinations, comparing their 
behavior. The literature shows that a combination of the predictions made by different 
procedures improves the precision of the individual predictions. The idea of combining 
predictions implicitly assumes that it is not possible to identify the underlying process in 
a series, and that each prediction method is capable of capturing different aspects of the 
information available for prediction; hence, a combination of predictions made using dif-
ferent techniques is the most accurate approach. 

The paper is organized as follows: Section 2 describes the estimation and forecast 
methodologies used and the satellite datasets. The results and discussion are shown in 
Section 3, and Section 4 describes the main conclusions of this work and further future 
research. 

2. Materials and Methodology Applied to the Forecast and Estimation Model  
The target of the present study was to analyze vegetation indices (NDVI) obtained 

by a MODIS satellite and to construct models for forecasting and explanatory purposes. 
We considered time-dependent models to enrich the information given by the satellites in 
a given time period for a seasonal evolution of the vegetation indices for two types of 
Mediterranean crops (maize and olive tree) of the agricultural producing Jarama region 
(Madrid, Spain) during the February 2013—December 2017 period (Figure 1). 



Appl. Sci. 2021, 11, 1859 4 of 25 
 

 
Figure 1. Lower Jarama River Basin, maize, olive and weather station location. 

NDVI data were provided from a MOD13Q1 V006 at 250 m spatial resolution prod-
uct derived from the MODIS sensor, produced at 16 day interval composite time series of 
the mean, which provide consistent spatial and temporal comparisons of vegetation sta-
tus. The NDVI product chose the best available pixel value from all the acquisitions from 
the 16 day period, without clouds, low view angle and the highest NDVI value [33]. To 
eliminate possible errors in the NDVI data, the algorithm computes from surface reflec-
tance corrected for molecular scattering, ozone absorption and aerosols, thus minimizing 
background variations and maintaining sensitivity in dense vegetation conditions [34].  

The MOD13Q1 V006 NDVI products are available from the EarthExplorer website 
(http://earthexplorer.usgs.gov/) provided by U.S. Geological Survey (USGS). The down-
loaded data were in HDF-EOS data format and sinusoidal projection. Therefore, they were 
reprojected using MODIS Reprojection Tool (MRT). To extract the NDVI data set, we used 
a vectorial mask for each plot (maize and olive), using a geographic information system 
(GIS). The GIS provides the ability to manage and analyze spatial and geographic data, 
thus improving the acquisition of data. Finally, we calculated the average value of the 
NDVI in each mask of the plots, as this is more representative of the state of the crops. 

For the analysis of the data, four plots of maize and one of olive trees were selected, 
with areas larger than 7 hectares to ensure the consistency of the spatial resolution of the 
NDVI, which was 250m, and to eliminate errors due to the edge effect of the crop plots. In 
the case of maize, four different parcels were considered to carry out the study because in 
the Jarama region, the seeding and harvesting seasons of the maize crop can vary from 
one to two months, depending on the variety of maize and according to the use for which 
it is intended (human food or animal feed); the availability of water for irrigation; or the 
agroclimatic conditions of each year, such as rainfall and higher or lower temperatures. 

In the database built for this paper, we added data monthly, from February 2013 to 
December 2017, with a total of 70 records for each plot. We chose the M02 (Arganda del 
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Rey — UTM30N X457693; Y4462410) SiAR Network weather station for the agroclimatic 
data, because it is representative of the weather in the Lower Jarama River Basin and is 
near one of the maize plots [35] (Figure 1). The Agroclimatic Information System for Irri-
gation (SiAR) is an infrastructure of weather stations that captures, records and dissemi-
nates agroclimatic data. This information can be used to calculate the water demand of 
irrigation areas, which allows useful, rigorous and high-quality information that contrib-
utes to better planning, management, handling and control of irrigated farms to be ob-
tained. The M02 station provides data from temperature (°C), wind speed (km/h), radia-
tion (W/m2) and rainfall (mm) mainly. 

2.1. B-Splines: Data Interpolation 
The frequency in data sets obtained by satellites measures the appearance of missing 

observations due to climatological circumstances. Unobservable measures can be derived 
from cloudy atmospheric conditions when the satellite captures images on a given day or 
in a certain area. Unfortunately, time series methods for estimating purposes require full 
data bases, with no missing observations. Interpolation techniques allow us to construct 
new data points within the range of a discrete set of known data points. The simplest 
methods include linear interpolation, i.e., considering the two nearest available points and 
the linear expression between them to estimate missing observations, and polynomial in-
terpolation, which is a generalization of the previous method considering a higher degree 
polynomial data. These methods have the advantage of being computationally fast, but 
the error is proportional to the square of the distance between the data points in the case 
of linear interpolation, and polynomial interpolations are computationally expensive and 
may exhibit oscillatory artifacts, especially at the end points (Runge’s phenomenon) [36]. 
B-splines is generally used in this case, like global regression interpolation considering 
polynomial interpolation locally. The advantage of this method is the availability to gen-
erate maximum and minimum values, which is not possible when obtained by weighted 
averages. These methods also provide smoother interpolants. The best results for the pre-
sent study were obtained considering cubic B-splines when compared to Lagrange and 
Newton polynomials, avoiding Runge’s phenomenon. 

2.2. Time Series Analysis: Estimation Models 
A useful methodology to study the evolution of time-dependent measures consider-

ing a period is time series analysis. This econometric model allows us to combine struc-
tural and time dimensions in an estimating model for forecast purposes. The main objec-
tive in time series analysis is to capture unobservable heterogeneity, between agents un-
der study as well as in time. Several models are considered, attending to the structural 
patterns of the time series derived from the different crops in the study. 

The simplest case can be modelled using the single exponential smoothing method, 
which is appropriate for series that move randomly above and below a constant mean 
with no trend and no seasonal patterns, and the error terms associated with the estimation 
model are uncorrelated. For the different crops considered in the study, we applied a dou-
ble smoothing fit, appropriated for time series with a linear trend. Equation (2) presents 
the general mathematical model assumed for the variable in the study as a dynamic ex-
planatory response in time. Let yt be the observation of time series Y at period 𝑡 ∈{1, … , 𝑇}, then the single smoothed series St and the double smoothed series Dt are given 
by: 𝑆௧ = 𝛼 𝑦௧ + ሺ1 − 𝛼ሻ𝑆௧ିଵ 𝐷௧ = 𝛼 𝑆௧ + ሺ1 − 𝛼ሻ𝐷௧ିଵ (2)

where α is the damping factor (0 < α ≤ 1). Equation (3) presents the forecast mathematical 
model for a new observation at time period k. 
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𝑦்ା = ൬2 + 𝛼 𝑘1 − 𝛼൰ 𝑆் − ൬1 + 𝛼 𝑘1 − 𝛼൰ 𝐷் = ቀ2𝑆் − 𝐷் + 𝛼 1 − 𝛼 ሺ𝑆் − 𝐷்ሻ𝑘ቁ 
(3)

where α is the weight used in the level component of the smoothed estimate. α is like a 
moving average of the observations. The weights adjust the level of smoothing by defin-
ing the reaction of each component to current conditions. Lower weights offer less weight 
to recent data, which produces a smoother line. Higher weights give more weight to recent 
data, which produces a less smooth line. 

More complex time-dependent structures can be modelled by dynamic regression 
methods and the composed autoregressive and moving averages method (ARIMA). These 
methods have been used widely in different application areas due to their flexibility and 
fitness ability for time-dependent data. ARIMA models were proposed by Box and Jen-
kins (1970) for stationary time series with linear autodependence [37]. They were devel-
oped with the aim of estimating and forecasting the behavior of the time data based on 
the previous performance considering autocorrelation in the error terms associated with 
the estimation model. These models were improved to include regressive variables known 
as the autoregressive integrated moving average with explanatory variables (ARIMAX). 
Equation (4) presents the general ARIMAX model, where B is the lag operator, d is the 
number of differences that must be applied to the series to make it stationary, 𝜙𝑖 is the 
parameters of the p autoregressive part of the model, 𝜃𝑖 is the parameters of the moving 
average part, xj represents the model’s exogenous variables, λj is the parameters of the 
exogenous part and 𝜀𝑡 is the error terms [37,38]. The error terms 𝜀𝑡 are generally assumed 
to be independent, identically distributed variables sampled from a normal distribution 
with zero mean. 

ሺ1 − 𝐵ሻௗ𝑦௧ = 𝑎 +  ϕ𝑦௧ି +  θε௧ି
ୀଵ


ୀଵ +  λ𝑥

ୀଵ + ε௧ (4)

In general, these models improve the prediction quality of the general model and 
allow us to analyze the impact of the explicative variables in the time series. In the present 
study, weather variables (precipitation, temperature and radiation) were considered as 
possible explicative measures in the estimation models. To evaluate the goodness of fit of 
the different proposed models, we considered the R2 determination coefficient and Akaike 
Criteria (AIC). To validate the proposed estimation models for forecasting purposes, we 
considered the Box Ljung Test, where the null hypothesis, H0, is that data are inde-
pendently distributed (i.e., the correlation in the population from which the sample is 
taken is 0, so that any observed correlation in the data results from randomness of the 
sampling process), and the alternate hypothesis, H1, is that the model does show a lack of 
fit (i.e., data are not independently distributed and show serial correlation). When the p-
values do not detect serial correlation at the chosen lags, this test does not reject the null 
hypothesis; thus, the time series are not autocorrelated [38,39]. 

2.3. Forecast Averaging: Prediction Model 
Different forecast methods, from intuitive and subjective to more complex quantita-

tive models, aim to develop accurate predictions. Furthermore, considering that the fore-
cast related to a given magnitude can be developed by different agents and derived from 
various methods, the consideration of a prediction composed by the combination of sev-
eral predictions is relevant. Since procedures differ in their philosophy, computational 
cost, complexity and accuracy, the selection of alternative methods or their combination 
results in a difficult task, the use of evaluation measures based on forecast errors being 
usual in practice. The main idea of the model is to use the concept of predictive combina-
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tion, which has proven to be an effective method in the predictive literature. Several meth-
ods can be used to forecast the same variable, and the literature shows that a combination 
of predictions made through different processes can improve the precision of a single pre-
diction. The idea of a combination of predictions implicitly assumes that the model cannot 
identify a number of basic processes, and that each prediction method can capture differ-
ent aspects of information that can be used for prediction, so predictions made with dif-
ferent technologies are the most accurate forecasts. 

Therefore, a combination of predictions derived from different methods usually im-
proves the forecast accuracy. In this study, we combined predictions obtained by the pro-
posed methods by means of forecast averaging. This method has the advantage of com-
bining the relevant information of the time series given the different elements captured 
by each estimation model. The resulting prediction is expressed as a weighted average of 
the predictions resulting from the selected relevant estimation models, enriching the final 
forecast [40–42]. Among different approaches described in the literature, we selected the 
weighted average forecast procedure: 
• Least Squares Weights (LS), computed as a regression of predicted values to real val-

ues and employing regression coefficients as weights for the prediction combinations 
[43]. 

• Mean Squared Error (MSE), assigning higher weight values to predictions associated 
with the model with smaller average quadratic error. MSE weighting, proposed by 
Stock-Watson (2001), compares the individual forecasts with the actual values over a 
forecast period [44]. The MSE (Equation (5)) of each forecast is computed and used 
to form individual forecast weights (Equation (6)): 

MSE = 1𝑛 ሺ𝑦 − 𝑦ሻଶ
ୀଵ  (5)

𝑤 = 1 MSEൗ∑ 1 MSE൘ேୀଵ  (6)

k is used to raise the MSE to different power; k = 1 is the most used power, and yields a 
weight based on the ratio of each forecast’s MSE to the total of all the MSEs. 

To forecast procedures, we applied an inside proof-rolling sample, and in order to 
evaluate the proposed methods, we applied the MSE as a forecast sample measure. 

2.4. Econometric Data: Weather Variables, Outliers and Satellite Measures 
Influence causes or factors in a process require adequate research to avoid non-desir-

able effects and control their dissemination. The cause search allows us to observe changes 
and study their mechanisms to generate new hypotheses and design plans to modify or 
mitigate their effects. When constructing an explanatory model, relationships between 
causes and a given effect can be represented in such a way that the proportion of each 
cause to the effect can be computed. The aim of this paper was to find a mathematical 
model that relates vegetation indices for different types of crops with possible explanatory 
variables. Additionally, it is important to detect the presence of outliers in the given effect. 
Their presence can be derived from multiple causes: a single time instant in which an 
outstanding value is obtained; a period in which the observed behavior of the time series 
changes drastically or returns gradually to the previous level. To consider all the possible 
factors that can provoke effects in the vegetation indices obtained by satellite, we consid-
ered as part of the explanatory model the following components: 
• Weather variables, namely, temperature (T), precipitation (P), humidity (H) and ra-

diation (R), were measured in the same time period as the satellite measures; 
• Autoregressive measures obtained through the lags of the time series in the studio; 
• Intervention measures to deal with outliers presented in the time series. 
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On the other hand, satellite measures obtained by MODIS are collected fortnightly. 
To apply time series modelling techniques, data must be aggregated in monthly frequen-
cies. 

We considered the following aggregation models for the five types of crops (Figure 
2): time series obtained by the average values of available data in each month (Figure 2a); 
time series obtained by the maximum values of available data in each month (Figure 2b); 
and time series obtained by the minimum values of available data in each month (Figure 
2c). 
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Figure 2. Time series obtained by the average values (a), maximum values (b) and minimum val-
ues (c) of available data in each month. 

In this paper, we consider the case obtained by the average values of the data avail-
able in each month, as there are no observable significant differences between the three 
proposed aggregation methods. In the case of unbalanced data, other aggregation 
measures can be used as an alternative, such as the median value. In our case, data were 
balanced, and the variation between the minimum and maximum values was small; there-
fore, the average was able to appropriately represent the sample population. 

3. Results and Discussion 
Using time series analysis, we developed forecasting and estimation models for the 

behavior of NVDI using satellite measures. We considered the time series obtained by the 
average values of available data in each month. However, the same methodology can be 
applied for the series obtained considering the maximum and minimum values. We con-
sidered an aggregated final model to forecast the time series values in the short term, con-
sidering 10 months of horizon planning (forecast values from January 2018 to September 
2018). For model validation, we used the cross-validation method; divided the samples 
into training time series, comprising the available data from January 2013 to January 2015; 
and tested time series from February 2015 to December 2017. In consequence, we present 
final model equations avoiding non-significant parameters. The motivation for using 
cross-validation techniques is that when we fit a model, we fit it to the training data set. 
Without cross validation, we will only obtain information about how the model works 
with the sample data. Ideally, we want to see the performance of the model when new 
data are available based on the accuracy of the prediction. 

Exponential smoothing models and ARIMAX were combined to include the meteor-
ological measurement variables, namely, temperature (T), precipitation (P), humidity (H) 
and radiation (R), whose prediction errors were greater than the combination of their pre-
dictions using different methods. 

For the elaboration of forecasts of the different crops with the ARIMAX structure, 
considering the dynamic structure of the time series and by means of transference func-
tions, the variables that have an impact on their behavior must be identified, and in turn, 
the methodology used for the construction of the prediction model. The first step is the 
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development of the iterative process to analyze the variables whose coefficients are sig-
nificant to explain the behavior of the response variable. 

In all the ARIMAX models that we present below, the meteorological measurements 
are included, and after adjusting and verifying the significance of the coefficients, the re-
sults of the diagnosis are presented below. 

3.1. Type 1 Maize 
Double smoothing and ARIMAX models were applied to estimate the type 1 maize. 

Weather measures were found to be significantly influential in the models, contributing 
to the explanatory power of the proposed models. Equation (7) presents the estimation 
model for type 1 maize considering the interpolation obtained by means of the single ex-
ponential smoothing method. 𝑆௧ = 0.87 𝑦௧ + ሺ1 − 0.87ሻ𝑆௧ିଵ 𝐷௧ = 0.87 𝑆௧ + ሺ1 − 0.87ሻ𝐷௧ିଵ (7)

The Sum of Squared Residuals (SSR) associated value for the model presented in 
Equation (6) is 0.709, and the Root Mean Squared Error (RMSE) is 0.111. The associated 
mean value for the model presented in Equation (7) is 0.5284, and the trend is −0.0014. 
Since α = 0.87 is the weight used in the level component of the smoothed estimate, the 
high weight gives more weight to the recent data. 

Considering the dynamic structure of the time series and by means of transference 
functions, Equation (8) presents the estimation model for type 1 maize. The best selected 
model was ARIMAX(2,0,0)X(1,0,0) considering the smallest AIC value. 𝑌௧ = 0.39 + 0.0116T + 0.117P + 0.657𝑌௧ିଵ + 0.356𝑌௧ିଶ + 0.414𝑌௧ିଵଶ + 𝜀௧   (8)
where Yt is type 1 maize at time t, T is the average temperature and P is the precipitation. 
All estimated parameters were significant at the 0.05 level. The SSR associated value for 
the model presented in Equation (8) is 0.629, and the Akaike info criterion (AIC) is −1.369. 
We can observe the positive impact of temperature and precipitation over type 1 maize 
and a dynamic dependence. Ljung Box autocorrelation proof validates the hypothesis of 
white noise in the residuals of the model, confirming the adequacy and reliability of the 
estimation model. Figure 3 (Equation (8)) presents the estimation model as a dynamic ex-
planatory response in time and the residuals of the estimation model given by Equation 
(8). 
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Figure 3. Representation for Maize 1 variety, estimation model and residuals given by Equations 
(8)–(11). 

A similar model considering the dynamic structure of the time series and by means 
of transference functions is presented in Equation (9). The selected model was ARI-
MAX(2,0,0)x(1,0,0) considering the smallest AIC value. 𝑌௧ = 0.34 + 0.011R + 0.723𝑌௧ିଵ + 0.351𝑌௧ିଶ + 0.449𝑌௧ିଵଶ + 𝜀௧   (9)
where Yt is type 1 maize at time t and R is radiation. All estimated parameters were sig-
nificant at the 0.05 level. The Sum of Squared Residuals (SSR) associated value for the 
model presented in Equation (9) is 0.608, and the Akaike info criterion (AIC) is −1.38. We 
can observe the positive impact of the radiation over type 1 maize and a dynamic depend-
ence. Ljung Box autocorrelation proof validates the hypothesis of white noise in the resid-
uals of the model, confirming the adequacy and reliability of the estimation model. Figure 
3 (Equation (9)) presents the estimation model as a dynamic explanatory response in time 
and the residuals of the estimation model given by Equation (9). 

A similar model considering the dynamic structure of the time series and by means 
of transference functions is presented in Equation (10). The selected model was ARI-
MAX(2,0,0)X(1,0,0). 𝑌௧ = 0.82 + 0.004H + 0.761𝑌௧ିଵ + 0.372𝑌௧ିଶ + 0.466𝑌௧ିଵଶ + 𝜀௧   (10)
where Yt is type 1 maize at time t and H is humidity. All estimated parameters were sig-
nificant at the 0.05 level. The Sum of Squared Residuals (SSR) associated value for the 
model presented in Equation (10) is 0.598, and the Akaike info criterion (AIC) is −1.39. We 
can observe the positive impact of the average humidity over type 1 maize and a dynamic 
dependence. Ljung Box autocorrelation proof validates the hypothesis of white noise in 
the residuals of the model, confirming the adequacy and reliability of the estimation 
model. Figure 3 (Equation (10)) presents the estimation model as a dynamic explanatory 
response in time and the residuals of the estimation model given by Equation (10). 

The last considered model considering the dynamic structure of the time series and 
by means of transference functions is presented in Equation (11). The selected model was 
ARIMAX(2,0,0)X(1,0,1). 𝑌௧ = 0.55 + 0.708𝑌௧ିଵ + 0.575𝑌௧ିଶ + 0.547𝑌௧ିଵଶ + 𝜀௧ + 0.533𝜀௧ିଵଶ   (11)
where Yt is type 1 maize at time t. All estimated parameters were significant at the 0.05 
level. The Sum of Squared Residuals (SSR) associated value for the model presented in 
Equation (11) is 0.563, and the Akaike info criterion (AIC) is −1.39. We can observe a dy-
namic dependence. Ljung Box autocorrelation proof validates the hypothesis of white 
noise in the residuals of the model, confirming the adequacy and reliability of the estima-
tion model. Figure 3 (Equation 11) presents the estimation model as a dynamic explana-
tory response in time and the residuals of the estimation model given by Equation (11). 
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The forecast model is constructed as a combination of models presented in Equations 
(7)–(11). Therefore, the dynamic structure of the type 1 maize time series is included as 
the effect of average temperature, precipitation, average humidity and radiation. The 
combination of the models was obtained through least squares and mean squares, with a 
resulting MSE of 0.01 and 0.011, respectively. Figure 4 presents the forecast values for a 
one-year time horizon given by the estimation models presented in Equations (7) to (11) 
and least squares and mean squares aggregation models. The associated MSEs for each 
estimation model presented in Equations (7) to (11) were 0.011, 0.017, 0.017, 0.019 and 
0.019. The best forecast model attending to the best MSE value was obtained by least 
squares. 

  

Figure 4. Forecast values for one-year time horizon given by the estimation models presented in 
Equation (7) to Equation (11) and least squares and mean squares aggregation models. 

3.2. Type 2 Maize 
Double smoothing, ARIMA and ARIMAX models were applied to estimate the type 

2 maize. Weather measures were found to be significantly influential in the models, con-
tributing to the explanatory power of the proposed models. Equation (12) presents the 
estimation model for type 2 maize considering the interpolation obtained by means of the 
single exponential smoothing method. 𝑆௧ = 0.86 𝑦௧ + ሺ1 − 0.86ሻ𝑆௧ିଵ 𝐷௧ = 0.86 𝑆௧ + ሺ1 − 0.86ሻ𝐷௧ିଵ (12)

The Sum of Squared Residuals (SSR) associated value for the model presented in 
Equation (12) is 1.418, and the Root Mean Squared Error (RMSE) is 0.157. The associated 
mean value for the model presented in Equation (12) is 0.647, and the trend is 0.001. The 
weight α = 0.86, being high, offers more weight to recent data. 

Considering the dynamic structure of the time series and by means of transference 
functions, Equation (13) presents the estimation model for type 2 maize. The best selected 
model was ARIMAX(2,0,0)X(0,0,0) considering the smallest AIC value. 𝑌௧ = 0.45 + 0.099T + 0.606𝑌௧ିଵ + 0.494𝑌௧ିଶ + 𝜀௧   (13)
where Yt is type 2 maize at time t and T is the average temperature. All estimated param-
eters were significant at the 0.05 level. The Sum of Squared Residuals (SSR) associated 
value for the model presented in Equation (12) is 1.343, and the Akaike info criterion (AIC) 
is −0.72. We can observe the positive impact of temperature over type 2 maize and a dy-
namic dependence. Ljung Box autocorrelation proof validates the hypothesis of white 
noise in the residuals of the model, confirming the adequacy and reliability of the estima-
tion model. Figure 5 presents the estimation model as a dynamic explanatory response in 
time and the residuals of the estimation model given by Equation (13). 
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Figure 5. Representation for type 2 maize, estimation model and the residuals given by Equations 
(13) and (14). 

A similar model considering the dynamic structure of the time series and by means 
of transference functions is presented in Equation (14). The selected model was ARI-
MAX(2,0,0)X(0,0,0). 𝑌௧ = 0.436 + 0.01R + 0.602𝑌௧ିଵ + 0.499𝑌௧ିଶ + 𝜀௧   (14)
where Yt is type 2 maize at time t and R is radiation. All estimated parameters were sig-
nificant at the 0.05 level. The Sum of Squared Residuals (SSR) associated value for the 
model presented in Equation (14) is 1.32, and the Akaike info criterion (AIC) is −0.73. We 
can observe the positive impact of the radiation over type 2 maize and a dynamic depend-
ence. Ljung Box autocorrelation proof validates the hypothesis of white noise in the resid-
uals of the model, confirming the adequacy and reliability of the estimation model. Figure 
5 presents the estimation model as a dynamic explanatory response in time and the resid-
uals of the estimation model given by Equation (14). 

The forecast model is constructed as a combination of models presented in Equations 
(12)–(14). Therefore, the dynamic structure of the type 2 maize time series is included as 
the effect of average temperature and radiation. The combination of the models was ob-
tained through least squares and mean squares, with a resulting MSE of 0.016 and 0.017, 
respectively. Figure 6 presents the forecast values for a one-year time horizon given by 
the estimation models presented in Equations (12) to (14) and least squares and mean 
squares aggregation models. The associated MSEs for each estimation model presented in 
Equations (12) to (14) were 0.026, 0.035 and 0.035. The best forecast model attending to the 
best MSE value was obtained by least squares. 

  

Figure 6. Forecast values for one-year time horizon given by the estimation models presented in 
Equations (12) to (14) and least squares and mean squares aggregation models. 
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3.3. Type 3 Maize 
Double smoothing, ARIMA and ARIMAX models were applied to estimate the type 

3 maize. Weather measures were found to be significantly influential in the models, con-
tributing to the explanatory power of the proposed models. Equation (15) presents the 
estimation model for type 3 maize considering the interpolation obtained by means of the 
single exponential smoothing method. 𝑆௧ = 0.75 𝑦௧ + ሺ1 − 0.75ሻ𝑆௧ିଵ 𝐷௧ = 0.75 𝑆௧ + ሺ1 − 0.75ሻ𝐷௧ିଵ (15)

The Sum of Squared Residuals (SSR) associated value for the model presented in 
Equation (15) is 0.662, and the Root Mean Squared Error (RMSE) is 0.107. The associated 
mean value for the model presented in Equation (15) is 0.6, and the trend is 0.003. The 
weight α = 0.75, being high, offers more weight to recent data. 

Considering the dynamic structure of the time series and by means of transference 
functions, Equation (16) presents the estimation model for type 3 maize. The best selected 
model was ARIMAX(1,0,0)X(1,0,0) considering the smallest AIC value. 𝑌௧ = 0.39 + 0.01T + 0.001P + 0.494𝑌௧ିଵ + 0.185𝑌௧ିଵଶ + 𝜀௧   (16)
where Yt is type 3 maize at time t, T is the average temperature and P is the precipitation. 
All estimated parameters were significant at the 0.05 level. The Sum of Squared Residuals 
(SSR) associated value for the model presented in Equation (16) is 0.688, and the Akaike 
info criterion (AIC) is −1.35. We can observe the positive impact of temperature and pre-
cipitation over type 3 maize and a dynamic dependence. Ljung Box autocorrelation proof 
validates the hypothesis of white noise in the residuals of the model, confirming the ade-
quacy and reliability of the estimation model. Figure 7 presents the estimation model as a 
dynamic explanatory response in time and the residuals of the estimation model given by 
Equation (16). 

 

Figure 7. Representation for type 3 maize, estimation model and the residuals given by Equations 
(16)–(18). 
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A similar model considering the dynamic structure of the time series and by means 
of transference functions is presented in Equation (17). The selected model was ARI-
MAX(1,0,0)X(1,0,0). 𝑌௧ = 0.813 + 0.005H + 0.502𝑌௧ିଵ + 0.213𝑌௧ିଵଶ + 𝜀௧   (17)
where Yt is type 3 maize at time t and H is the average humidity. All estimated parameters 
were significant at the 0.05 level. The Sum of Squared Residuals (SSR) associated value for 
the model presented in Equation (17) is 0.71, and the Akaike info criterion (AIC) is −1.34. 
We can observe the positive impact of the average humidity over type 3 maize and a dy-
namic dependence. Ljung Box autocorrelation proof validates the hypothesis of white 
noise in the residuals of the model, confirming the adequacy and reliability of the estima-
tion model. Figure 7 presents the estimation model as a dynamic explanatory response in 
time and the residuals of the estimation model given by Equation (17). 

The last considered model taking into account the dynamic structure of the time se-
ries and by means of transference functions is presented in Equation (18). The selected 
model was ARIMAX(2,0,0)X(0,0,0). 𝑌௧ = 0.33 + 0.01R + 0.529𝑌௧ିଵ + 0.263𝑌௧ିଶ + 𝜀௧   (18)
where Yt is type 3 maize at time t and R is radiation. All estimated parameters were sig-
nificant at the 0.05 level. The Sum of Squared Residuals (SSR) associated value for the 
model presented in Equation (18) is 0.736, and the Akaike info criterion (AIC) is −1.305. 
We can observe the positive impact of the radiation over type 3 maize and a dynamic 
dependence. Ljung Box autocorrelation proof validates the hypothesis of white noise in 
the residuals of the model, confirming the adequacy and reliability of the estimation 
model. Figure 7 presents the estimation model as a dynamic explanatory response in time 
and the residuals of the estimation model given by Equation (18). 

The forecast model is constructed as a combination of models presented in Equations 
(15) to (18). Therefore, the dynamic structure of the type 3 maize time series is included as 
the effect of average temperature, precipitation, average humidity and radiation. The 
combination of the models was obtained through least squares and mean squares, with a 
resulting MSE of 0.009 and 0.011, respectively. Figure 8 presents the forecast values for a 
one-year time horizon given by the estimation models presented in Equations (15) to (18) 
and least squares and mean squares aggregation models. The associated MSEs for each 
estimation model presented in Equations (15) to (18) were 0.012, 0.0182, 0.022 and 0.029. 
The best forecast model attending to the best MSE value was obtained by least squares. 

  

Figure 8. Forecast values for one-year time horizon given by the estimation models presented in 
Equations (15) to (18) and least squares and mean squares aggregation models. 

3.4. Type 4 Maize 
Double smoothing, ARIMA and ARIMAX models were applied to estimate the type 

4 maize. Weather measures were found significantly to be influential in the models, con-
tributing to the explanatory power of the proposed models. Equation (19) presents the 



Appl. Sci. 2021, 11, 1859 16 of 25 
 

estimation model for type 4 maize considering the interpolation obtained by means of the 
single exponential smoothing method. 𝑆௧ = 0.85 𝑦௧ + ሺ1 − 0.85ሻ𝑆௧ିଵ 𝐷௧ = 0.85 𝑆௧ + ሺ1 − 0.85ሻ𝐷௧ିଵ (19)

The Sum of Squared Residuals (SSR) associated value for the model presented in 
Equation (19) is 0.318, and the Root Mean Squared Error (RMSE) is 0.074. The associated 
mean value for the model presented in Equation (19) is 0.548, and the trend is −0.0005. The 
weight α = 0.85, being high, offers more weight to recent data. 

Considering the dynamic structure of the time series and by means of transference 
functions, Equation (20) presents the estimation model for type 4 maize. The best selected 
model was ARIMAX(2,0,1)X(0,0,0) considering the smallest AIC value. 𝑌௧ = 0.025T + 0.001P + 0.003H + 0.703𝑌௧ିଵ + 0.589𝑌௧ିଶ + 𝜀௧ + 0.357𝜀௧ିଵ (20)
where Yt is type 4 maize at time t, T is the average temperature, P is the precipitation and 
H is the average humidity. All estimated parameters were significant at the 0.05 level. The 
Sum of Squared Residuals (SSR) associated value for the model presented in Equation (20) 
is 0.401, and the Akaike info criterion (AIC) is −1.85. We can observe the positive impact 
of temperature, precipitation and humidity over type 4 maize and a dynamic dependence. 
Ljung Box autocorrelation proof validates the hypothesis of white noise in the residuals 
of the model, confirming the adequacy and reliability of the estimation model. Figure 9 
presents the estimation model as a dynamic explanatory response in time and the residu-
als of the estimation model given by Equation (20). 

Figure 9. Representation for type 4 maize, estimation model and the residuals given by Equations 
(20) and (21). 

A similar model considering the dynamic structure of the time series and by means 
of transference functions is presented in Equation (21). The selected model was ARI-
MAX(1,0,0)X(2,0,1). 𝑌௧ = 0.028R + 0.426𝑌௧ିଵ + 0.85𝑌௧ିଵଶ + 0.174𝑌௧ିଶସ + 0.049𝜀௧ିଵଶ + 𝜀௧ (21)
where Yt is type 4 maize at time t and R is radiation. All estimated parameters were sig-
nificant at the 0.05 level. The Sum of Squared Residuals (SSR) associated value for the 
model presented in Equation (21) is 0.298, and the Akaike info criterion (AIC) is −1.613. 
We can observe the positive impact of the radiation over type 4 maize and a dynamic 
dependence. Ljung Box autocorrelation proof validates the hypothesis of white noise in 
the residuals of the model, confirming the adequacy and reliability of the estimation 
model. Figure 9 presents the estimation model as a dynamic explanatory response in time 
and the residuals of the estimation model given by Equation (21). 

The forecast model is constructed as a combination of models presented in Equations 
(19) to (21). Therefore, the dynamic structure of the type 4 maize time series is included as 
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the effect of average temperature, precipitation, average humidity and radiation. The 
combination of the models was obtained through least squares and mean squares, with a 
resulting MSE of 0.001 and 0.002, respectively. Figure 10 presents the forecast values for a 
one-year time horizon given by the estimation models presented in Equations (19) to (21) 
and least squares and mean squares aggregation models. The associated MSEs for each 
estimation model presented in Equations (19) to (21) were 0.004, 0.008 and 0.008. The best 
forecast model attending to the best MSE value was obtained by least squares. 

  

Figure 10. Forecast values for one-year time horizon given by the estimation models pre-
sented in Equations (19) to (21) and least squares and mean squares aggregation models. 

3.5. Type of Maize Aggregate 
Double smoothing and ARIMAX models were applied to estimate the type of maize 

aggregate. Weather measures were found to be significantly influential in the models, 
contributing to the explanatory power of the proposed models. Equation (22) presents the 
estimation model for type of maize aggregate considering the interpolation obtained by 
means of the single exponential smoothing method. 𝑆௧ = 0.85 𝑦௧ + ሺ1 − 0.85ሻ𝑆௧ିଵ 𝐷௧ = 0.85 𝑆௧ + ሺ1 − 0.85ሻ𝐷௧ିଵ (22)

The Sum of Squared Residuals (SSR) associated value for the model presented in 
Equation (22) is 1.4163, and the Root Mean Squared Error (RMSE) is 0.157. The associated 
mean value for the model presented in Equation (22) 0.49451, and the trend is 0.002152. 
The weight α = 0.85, being high, offers more weight to recent data. 

Equation (23) presents the estimation model for type of maize aggregate. The best 
selected model was ARIMAX(2,0,0)X(0,0,0) considering the smallest AIC value. 𝑌௧ = 0.34 + 0.0122R + 0.67𝑌௧ିଵ + 0.354𝑌௧ିଶ + 𝜀௧   (23)
where Yt is type of maize aggregate at time t, and R is the radiation. All estimated param-
eters were significant at the 0.05 level. The Sum of Squared Residuals (SSR) associated 
value for the model presented in Equation (23) is 0.496374, and the Akaike info criterion 
(AIC) is −1.720534. We can observe the positive impact of the radiation over type of maize 
aggregate and a dynamic dependence. 

Ljung Box autocorrelation proof validates the hypothesis of white noise in the resid-
uals of the model, confirming the adequacy and reliability of the estimation model. Figure 
11 presents the estimation model as a dynamic explanatory response in time and the re-
siduals of the estimation model given by Equation (23). 
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Figure 11. Representation for type of maize aggregate, estimation model and the residuals 
given by Equations (23) and (24). 

A similar model considering the dynamic structure of the time series and by means 
of transference functions is presented in Equation (24). The selected model was ARI-
MAX(2,0,0)x(0,0,0). 𝑌௧ = 0.022T + 0.0011 P + 0.041H + 0.473𝑌௧ିଵ + 0.365𝑌௧ିଶ + 𝜀௧ (24)
where Yt is type of maize aggregate at time t and R is radiation. All estimated parameters 
were significant at the 0.05 level. The Sum of Squared Residuals (SSR) associated value for 
the model presented in Equation (24) is 0.47194, and the Akaike info criterion (AIC) is 
−1.73. We can observe the positive impact of the radiation over type of maize aggregate 
and a dynamic dependence. Ljung Box autocorrelation proof validates the hypothesis of 
white noise in the residuals of the model, confirming the adequacy and reliability of the 
estimation model. Figure 11 presents the estimation model as a dynamic explanatory re-
sponse in time and the residuals of the estimation model given by Equation (24). 

The forecast model is constructed as a combination of models presented in Equations 
(22)–(24). Therefore, the dynamic structure of the type of maize aggregate time series is 
included as the effect of average temperature, precipitation, average humidity and radia-
tion. The combination of the models was obtained through least squares and mean 
squares, with a resulting MSE of 0.091 and 0.011, respectively. Figure 12 presents the fore-
cast values for a one-year time horizon given by the estimation models presented in Equa-
tions (22)–(24) and least squares and mean squares aggregation models. The associated 
MSEs for each estimation model presented in Equations (22) to (24) were 0.026, 0.012 and 
0.013. The best forecast model attending to the best MSE value was obtained by least 
squares. 

  

Figure 12. Forecast values for one-year time horizon given by the estimation models pre-
sented in Equations (22) to (24) and least squares and mean squares aggregation models. 
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3.6. Olive 
Double smoothing, ARIMA and ARIMAX models were applied to estimate olive 

crops. Weather measures were found to be significantly influential in the models, contrib-
uting to the explanatory power of the proposed models. Equation (25) presents the esti-
mation model for olive considering the interpolation obtained by means of the single ex-
ponential smoothing method. 𝑆௧ = 0.14 𝑦௧ + ሺ1 − 0.14ሻ𝑆௧ିଵ 𝐷௧ = 0.14 𝑆௧ + ሺ1 − 0.14ሻ𝐷௧ିଵ (25)

The Sum of Squared Residuals (SSR) associated value for the model presented in 
Equation (25) is 0.354, and the Root Mean Squared Error (RMSE) is 0.078. The associated 
mean value for the model presented in Equation (25) is 0.503, and the trend is 0.001. The 
weight α = 0.14, being low, offers less weight to recent data. 

Considering the dynamic structure of the time series and by means of transference 
functions, Equation (26) presents the estimation model for olive crops. The best selected 
model was ARIMAX(1,0,0)X(0,0,0) considering the smallest AIC value. 𝑌௧ = 0.011P + 0.06H + 0.09R + 0.217𝑌௧ିଵ + 𝜀௧ (26)
where Yt is olive crops at time t. All estimated parameters were significant at the 0.05 level. 
The Sum of Squared Residuals (SSR) associated value for the model presented in Equation 
(26) is 0.314, and the Akaike info criterion (AIC) is -2.18. We can observe a dynamic de-
pendence. Ljung Box autocorrelation proof validates the hypothesis of white noise in the 
residuals of the model, confirming the adequacy and reliability of the estimation model. 
Figure 13 presents the estimation model as a dynamic explanatory response in time and 
the residuals of the estimation model given by Equation (26). 

 
Figure 13. Representation for olive, estimation model and the residuals given by Equation (26). 

The forecast model is constructed as a combination of models presented in Equations 
(25) and (26). The combination of the models was obtained through least squares and 
mean squares, with a resulting MSE of 0.003 and 0.003, respectively. Figure 14 presents 
the forecast values for a one-year time horizon given by the estimation models presented 
in Equations (25) and (26) and least squares and mean squares aggregation models. The 
associated MSEs for each estimation model presented in Equations (25) and (26) were 
0.005 and 0.006. The best forecast model attending to the best MSE value was obtained by 
least squares. 
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Figure 14. Forecast values for one-year time horizon given by the estimation models pre-
sented in Equations (25) and (26) and least squares and mean squares aggregation models. 

The model equations present a positive contribution of the atmospheric variables T, 
P, H and R to the plant’s growth. In the case of type 1 and 3 maize crops, the model con-
siders lags in periods t = 1, t = 2 and t = 24 because they have been maintained over several 
years, whereas for type 2 and 4 maize crops and the aggregated maize crops, the model 
considers solely lags in periods t = 1 and t = 2 because years of fallow have been inter-
spersed. 

The corresponding MSE is quite low for each model, which represents a good accu-
racy of the model fitting. The trends of all the considered models are near to zero, which 
implies very few variations in the considered time sample. For maize crops, the variation 
fluctuates between −0.0005 (Type 1) and 0.003 (Type 1): 0.002 for the aggregated maize 
crop model and 0.001 for olive crop. 

The weight obtained from double smoothing models (α ∈ [0.75;0.87]) associated with 
maize crops is positive and near to one, which implies more weight to recent data; this is 
consistent with the phases of rapid evolution in the development of maize cultivation. In 
the case of olive trees, since it is a perennial tree crop with less physiological changes, the 
dependency of recent data is lower (α = 0.14). 

As an example, we divided the sample into a training time series, comprising the 
available data from January 2013 to January 2015, and a tested (validation) time series 
from February 2015 to December 2017. Data from January 2018 to December 2018 were 
forecast out of the given sample. Figure 15 and Table 1 show the coefficients applied for 
the 2018 monthly prediction of the different types of crops. 

Table 1. Forecast for type 1–4 maize crops and olive crops from January 2018 to October 2018. 

Time 
Period 

Maize 
Type 1 

Maize 
Type 2 

Maize 
Type 3 

Maize 
Type 4 

Maize 
Aggregate Olive 

01/2018 0.418990 0.533135 0.451573 0.439748 0.449730 0.496241 
02/2018 0.422720 0.591989 0.483806 0.426376 0.442843 0.461002 
03/2018 0.402227 0.678137 0.412611 0.388669 0.462257 0.410330 
04/2018 0.456171 0.811104 0.485727 0.402678 0.537400 0.522606 
05/2018 0.529588 0.621669 0.530057 0.499155 0.580861 0.537193 
06/2018 0.609008 0.638714 0.659564 0.686565 0.609717 0.504093 
07/2018 0.747731 0.721217 0.742334 0.849985 0.652915 0.504024 
08/2018 0.767648 0.893007 0.766180 0.827189 0.645175 0.473098 
09/2018 0.562713 0.700946 0.647841 0.662895 0.608800 0.507662 
10/2018 0.478441 0.623085 0.562679 0.508142 0.526868 0.496602 
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Figure 15. Forecast out of sample for the first ten months of 2018 for four types of maize crops, 
olive and aggregated maize. 

Finally, we display the associated forecast confidence intervals for α = 0.05 in Figure 
16. These are the confidence intervals for the predictions shown in Table 1 for each of the 
crops: maize varieties, aggregated maize and olive. 

  
(a) (b) 

  
(c) (d) 
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(e) (f) 

Figure 16. Subfirgures (a–d) presents maize crop types (1)-(4) forecast intervals with the associated α = 0.05. Subfigure (e) 
presents aggregatemMaize crop types (1)-(4) forecast intervals with the associated α = 0.05. Subfigure (f) presents olive 
crop type forecast intervals with the associated α = 0.05. 

In addition, it would be interesting to incorporate NDVI data obtained on the ground 
to check if the accuracy of these models can be improved. The NDVI derived from satellite 
sources and on the ground are not directly comparable; the NDVI data sets produced from 
these sources are frequently similar [45]. In this sense, the technological advances in un-
manned vehicle systems (UAVS) that acquire NDVI data at low altitude [46] are of great 
help to monitor vegetation and crops with high spatial and radiometric precision, because 
they eliminate the effects of the atmosphere in the acquisition of reflectivity values in red 
and infrared. 

4. Conclusions 
The results of this study presented above show a forecast model constructed as a 

combination of models applied to monitor crop dynamics, more specifically, a forecast 
algorithm applied to vegetation indices (NDVI) time series data closely related to the type 
and crop state derived from optical remote sensing. 

The combination of predictions improves the precision of the individual predictions, 
and this work analyzed predictions associated with different univariate methods 
(smoothed and ARIMAX) and their combinations, comparing their behavior. 

By comparing the different forecast models combinations, it was found that the equa-
tions of the models present a positive contribution of the climatological parameters of T, 
P, H and R for the growth of the plants. The considered climatological parameters are 
within the favorable ranges for the growth of the crops. Extreme climatic situations that 
could affect the normal development of the crops were not considered. This issue will be 
further developed in the future. 

Following this, the equation models revealed that the temporal variable (Yt-1, Yt-2, Yt-

12, Yt-24) included in each model depends on the type of crop, the interval being greater in 
the case of maize crops because they are seasonal crops and have a faster evolution. Fur-
thermore, the weighting from the double smoothing model is high (α = 0.85). In the case 
of olive trees, as it is a perennial crop with fewer transformations, the dependence on the 
temporal variable is lower.Finally, considering the results obtained in this study, we high-
light the following conclusions: 

(1) Because each prediction method is capable of capturing different aspects of the 
information available for prediction, in this study, we offered a forecast algorithm com-
bining different univariate methods (smoothed and ARIMAX) and their combinations for 
forecasting vegetation indices (NDVI) time series derived from optical remote sensing 
data. 
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(2) The accuracy of the prediction of the results, estimated as a weighted average of 
the predictions resulting from the selected relevant estimation models, was proved to be 
relevant in the final forecast. 

(3) The considered climatological variables (temperature, air humidity, precipitation 
and solar radiation) have a positive and coherent contribution with the temporal evolu-
tion of the vegetation indexes but with different influence weights, according to the type 
of cultivation. Although in this work, we only explored data from two types of crops, four 
maize crops of different cycles, one aggregate for all maize crops and one plot of olive 
trees, in the future, it would be important to extend our methodology to other agricultural 
areas with other types of crops. 

(4) The results of the prediction models were validated for a time series of one year 
and are very useful to be applied in the short term, in the management and planning of 
agricultural activities or availability of water resources for irrigation. In order to incorpo-
rate these forecasting models into climate models or hydrological models that require time 
series of tens of years, more data must be collected (NDVI and environmental conditions) 
to advance in longer forecasting models. 
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