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Featured Application: The main finding shows that characteristics assessed using the G-STRIDE
device can effectively stratify participants according to their state of frailty and occurrence of falls.

Abstract: Background: The World Health Organization recommends health initiatives focused on
the early detection of frailty and falls. Objectives: 1—To compare clinical characteristics, functional
performance and gait parameters (estimated with the G-STRIDE inertial sensor) between different
frailty groups in older adults with and without falls. 2—To identify variables that stratify participants
according to frailty status and falls. 3—To verify the sensitivity, specificity and accuracy of the model
that stratifies participants according to frailty status and falls. Methods: Observational, multicenter
case-control study. Participants, adults over 70 years with and without falls were recruited from two
outpatient clinics and three nursing homes from September 2021 to March 2022. Clinical variables and
gait parameters were gathered using the G-STRIDE inertial sensor. Random Forest regression was
applied to stratify participants. Results: 163 participants with a mean age of 82.6 ± 6.2 years, of which
118 (72%) were women, were included. Significant differences were found in all gait parameters
(both conventional assessment and G-STRIDE evaluation). A hierarchy of factors contributed to
the risk of frailty and falls. The confusion matrix and the performance metrics demonstrated high
accuracy in classifying participants. Conclusions: Gait parameters, particularly those assessed by
G-STRIDE, are effective in stratifying individuals by frailty status and falls. These findings underscore
the importance of gait analysis in early intervention strategies.

Keywords: gait analysis; inertial sensors; early detection; falls; frailty

1. Introduction

Population ageing is a reality of recent decades, especially in developed countries. By
2033, people over 65 years old will make up 25.2% of the Spanish population [1]. Biological
aging and sociodemographic changes lead to an increase in chronic diseases, functional
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disability and the use of health resources [2]. In this context, the concept of frailty has
gained interest, as its early detection and intervention can promote healthy aging.

Frailty is a clinical condition characterized by reduced capacities in multiple physio-
logical systems, resulting in a state of increased vulnerability and susceptibility to adverse
health outcomes, including disability, falls, hospitalization, institutional care, or even
death [3]. Around 10% of people aged over 65 years have frailty, rising to between a quarter
and a half of those aged over 85 [4], and it is more frequent in women and nursing home
residents [5]. There are two major approaches to defining frailty. The first considers frailty
as the result of deficit accumulation [6]. The second, proposed by Linda Fried, defines the
frailty phenotype according to five criteria [3], with the locomotor system being crucial as
three of the criteria depend on it (gait speed, physical activity and muscle strength).

Although the frailty concept is shared by both approaches (physical phenotype and
cumulative deficit theory), the two definitions have different ways to identify frail people
and this appears to influence the prevalence of frailty and biomarkers identification or key
aspects to consider during diagnosis. Both approaches have strengths and limitations, but
both are associated with adverse health outcomes as has been proven [7,8], and studies
comparing their predictive abilities have shown mixed results [9]. The key point is that both
identify frail people allowing an integrated and individual intervention plan to reverse
this dynamic process. It seems that they approach frailty from different perspectives, so
in clinical practice, it is accepted to use either of them. Regardless of the definition used,
there is a growing interest in searching for biomarkers (laboratory, imaging or clinical)
that identify those subgroup populations at high risk of complications in order to improve
clinical decision making [10].

Falls are one of the main “geriatric syndromes”, representing a complex geriatric
syndrome with multifactorial physiopathology as the walking process is the result of neu-
rological, musculoskeletal, nutritional and cardiovascular integration. The relationship
between falls and frailty has been widely described [11–14], falls being one of the first clini-
cal manifestations of frailty adverse events as was described by Linda Fried in 2001 [3,15].
Changes in bone and muscles (osteosarcopenia) are present in both and can explain why
frail people have more falls. Deficits in physical activity, energy and gait speed are some of
the components of the frailty phenotype and are intrinsically linked to falls; on the other
hand, people who suffer falls with consequences (such as fractures, contusions or fear of
falling syndrome) or those with recurrent falls are especially vulnerable and, therefore,
present a greater risk or probability of frailty, leading to a greater risk of new falls [13,16].

Given this close relationship, the World Health Organization (WHO) recommends
implementing public health initiatives focused on the early detection of frailty and falls to
increase individual’s resilience by improving their health status [17].

The multidimensional assessment of frail patients or those with falls must pay special
attention to physical performance, gait analysis and balance [18]. This is usually carried
out by performing tests such as gait speed [19], the time up and go test (TUG) [20] or
the Short Physical Performance Battery (SPPB) [21] that are useful tools in frailty or falls
assessment and screening [22–25]. However, all these tests have some limitations; the
data are potentially subject to bias due to the subjectivity of the examiner, the patient’s
collaboration attitude, and the characteristics of the physical space where the assessments
are conducted. Additionally, multidimensional frailty assessment requires a considerable
amount of time, which is limited in daily clinical practice.

The use of electronic devices, wearable sensors and other technologies to measure
physical activity or evaluate gait functions is relatively new but with a growing interest in
the past ten years [26–29]. These technologies have obtained interesting results regarding
falls evaluation [26,30–32] and frailty assessment [31,33–35], improving clinical information
with additional advantages as they are cheap, easy-to-use and accurate [36]. They also
provide continuous detailed data on multiple variables and higher sensitivity and specificity
for detecting frailty or falls [32,34,37,38]. But they require complex data analysis, so at
present, they are used in investigation settings as they need standardization in clinical
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practice. In conclusion, while wearable sensors show promise in the early detection of
frailty, they complement rather than replace traditional tests like TUG, gait speed or SPPB
right now [30].

The purpose of this study is to examine spatiotemporal gait parameters with a wear-
able sensor system (G-STRIDE) in participants with and without falls according to frailty
status. The objectives of the study are: 1—To compare clinical characteristics, functional
performance and gait parameters (estimated with the G-STRIDE inertial sensor) between
different frailty groups in older adults with and without falls. 2—To identify variables
that stratify participants according to frailty status and falls. 3—To verify the sensitivity,
specificity and accuracy of the model that stratifies participants according to frailty status
and falls.

2. Materials and Methods

This is an observational, multicenter case-control study in older adults with and
without falls. Participants were recruited from two outpatient clinics in public hospitals
and three public nursing homes from September 2021 to March 2022.

The number of subjects to be recruited was calculated from the estimated effect size for
a t-test for differences between two independent means based on data from our previous
study [28] with a statistical power of 0.8 and an alpha error of 0.05. A sample size of 164
subjects was obtained.

The study protocol was approved by the Ethics Review Committee of University
Hospital La Paz (Registration Number: PI-4486) and informed consent was signed by
all participants.

Fallers were defined according to the criteria proposed by the American Geriatrics
Society (AGS) and the British Geriatrics Society (BGS) [39] and more recently Montero-
Odasso [18] in the world guideline of falls “Fallers Group” as those adults over 70 years to
whom one of the following circumstances applied: One fall with consequences in the last
year (requiring medical attention); two or more falls in the same period. The participants
without falls were volunteers over 70 years that gave informed consent. Exclusion criteria
for the study were terminal illness with a life expectancy of fewer than six months.

Clinical assessment was carried out in a single visit and the following data were
registered: sociodemographic characteristics, physical activity, weight, height, body mass
index (BMI), cognitive status using the Deterioration Scale from Reisberg (GDS) [40], gait
speed (GS) [19], the time up and go test (TUG) [20], and fear of falling syndrome using the
Short Falls Efficacy Scale—International (Short FES-1) [41].

2.1. Frailty Assessment by Standardized Frailty Phenotype Criteria (S-FPC)

Frailty status was defined according to the standardized Fried’s phenotype criteria [42].
This assessment considers five different parameters, which are scored as 1 if they are
affirmative or 0 if negative. The final frailty assessment index ranges between 0 and 5. The
0 index indicates a fit person or a non-frail subject, an index of 1 or 2 indicates prefrailty
status, and 3 to five criteria indicates frailty status.

There are three questions about unintentional weight loss, low energy or exhaustion
and level of physical activity and the other two criteria are gait speed (GS) (stratified
by gender and height) and hand grip strength (HGS) (stratified by gender and body
mass index).

2.2. Gait Analysis: The G-STRIDE System

The G-STRIDE device is based on the device presented in a previous paper [28]. The
G-STRIDE device comprises an inertial sensor (IMU) and processing electronics that allow
obtaining kinematic gait-related variables when the device is attached to the foot. Raw
inertial data are stored in an SD memory card for subsequent off-line processing. These
Raw IMU data (accelerations and angular rates) are post-processed for the estimation
of spatio-temporal and cinematic parameters, which describe the gait pattern of each
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subject. The architecture of the G-STRIDE system for gait analysis can be separated into
two development blocks: hardware for IMU data registration and software for gait analysis.
The device is lightweight with dimensions 57 mm × 27 mm × 32 mm and is attached to
the shoe with an elastic band during walking tests; the obtained variables are then stored
in a database hosted in the Raspberry itself and are post-processed (removal of outliers, or
steps not in straight line) (Figure 1).
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Figure 1. G-STRIDE device attached to a participant’s foot.

The variables estimated by the G-STRIDE are described in Table 1. The parameters
are computed as the mean on a step-by-step basis, but we also estimate the standard
deviation (STD).

Table 1. Sensor-based gait estimated variables.

Parameter Description

Total distance (m) The total distance covered during a long free walk.

Total time (s) The total time spent in the free walk.

Total steps The total number of steps in the free walk.

Gait cycle time (GCT) (s) The time elapsed during a stride.

Velocity (m/s) The mean walking speed computed over the total detected
steps measured in meters per second.

Cadence (steps/min) The number of steps per minute.

Swing time (% GCT) Swing time (from toe-off to heel strike) as percentage of GCT.

Stance-foot flat time (% GCT) Foot-flat (from start to end) time as percentage of GCT. It
occurs between toe-strike and heel-off.

Toe Off (% GCT) Percentage of the stride since the mid-stance until the foot is in
the Toe Off instant, which corresponds to the Push Off phase.
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Table 1. Cont.

Parameter Description

Heel strike angle (deg) The maximum pitch angle at heel strike measured in degrees.

Toe-off angle (deg) The maximum pitch angle at toe off measured in degrees.

Stride Length (m) Distance from one stance position to the next stance of the
same foot.

Step Speed (m/s) The forward speed of the foot only during the swing phase.

2D Path (m)
The path length of the foot in the horizontal plane with
respect to the stride length, which includes the lateral
deviations of the strides.

3D Path (m)
The path length of the foot in 3D space during a step with
respect to the stride length, which includes the lateral
deviations of strides and the foot elevation.

Clearance(m) The clearance or maximum height of the foot with respect to
the ground during the swing phase.

Note: (m) = meters; (s) = seconds; GCT = gait cycle time; (deg) = degrees; (steps/min) = steps per minute.

The database containing all the IMU recordings, the estimated parameters in Ex-
cel format, and the Python code to process the IMU signals are available in a Zenodo
repository [43].

2.3. Classification Model

To evaluate the performance of a classification model, we use several metrics that are
based on the counts of true positives (TP), true negatives (TN), false positives (FP) and false
negatives (FN):

• True Positive (TP): The number of correctly predicted positive cases.
• True Negative (TN): The number of correctly predicted negative cases.
• False Positive (FP): The number of incorrectly predicted positive cases (Type I error).
• False Negative (FN): The number of incorrectly predicted negative cases (Type

II error).

Using these fundamental components, we can calculate various performance metrics
to understand different aspects of the model’s performance:

Precision measures the proportion of true positive predictions (TP) out of the total
positive predictions (true positives plus false positives). It indicates how many of the
predicted positives are actually positive.

Precision =
TP

TP + FP

Recall measures the proportion of true positive predictions (TP) out of the total actual
positives (true positives plus false negatives). It indicates how many of the actual positives
are correctly identified by the model.

Recall =
TP

TP + FN

The F1-score is the harmonic mean of precision and recall. It provides a single metric
that balances both the precision and recall of the model.

F1 = 2 × Precision × Recall
Precision + Recall
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Specificity measures the proportion of true negative predictions (TN) out of the total
actual negatives (true negatives plus false positives). It indicates how many of the actual
negatives are correctly identified by the model.

Specificity =
TN

TN + FP

2.4. Main Parameters Configuration

For the selection of hyperparameters of the Random Forest, the Leave-One-Out Cross-
Validation (LOOCV) method was applied, which is a reliable evaluation technique for
assessing unseen data. This method is feasible due to the relatively small sample size

In developing the Random Forest model, the Leave-One-Out Cross-Validation (LOOCV)
method combined with GridSearchCV was implemented, utilizing the scikit-learn library
in Python. This approach was chosen to optimize and validate the Random Forest Regres-
sor (https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomFores
tRegressor.html) (accessed on 26 July 2024), allowing for a precise and thorough evaluation
of each hyperparameter configuration.

Leave-One-Out Cross-Validation (LOOCV) is a cross-validation technique where each
sample in the dataset is used once as the test set, while the remaining samples are used to
train the model. This process is repeated such that each sample in the dataset serves as
a unique test case in a model trained on all other samples. LOOCV is particularly useful
for small datasets as it maximizes the use of available data for training, providing a very
detailed and accurate assessment of model performance.

GridSearchCV facilitated a systematic and exhaustive exploration of hyperparameter
combinations. The hyperparameters adjusted included the maximum depth of the trees
(max_depth), the number of trees (n_estimators), and the minimum thresholds for splitting
nodes and forming leaves (min_samples_split and min_samples_leaf).

The application of GridSearchCV, in conjunction with LOOCV, enabled the identifi-
cation of the optimal hyperparameter configuration that balances model complexity and
generalization capability. The optimal hyperparameters identified were:

• max_depth: 5
• n_estimators: 100
• min_samples_split: 3
• min_samples_leaf: 1

2.5. Statistical Analysis

Statistical analysis was carried out with SPSS v.28 (Copyright© 2013 IBM SPSS Corp.,
Armonk, NY, USA). The normality of the sample was checked using the Kolgomorov–
Smirnov test. Continuous variables were analyzed using the mean and standard deviation
and the frequency and percentages of categorical variables. Subsequently, parametric tests
were used to measure the differences between independent samples (ANOVA); the chi-
square test was used to analyse the differences in percentages. To study the characteristics
of participants associated with frailty status and falls and to stratify according to these
variables, we applied Random Forest regression using ensemble learning and describing
the confusion matrix and metrics: precision (positive predictive value), recall (sensitivity),
F1-score (average of precision and recall) and specifity.

We chose the Random Forest regression algorithm due to its strengths in handling
complex, nonlinear relationships and its robustness against overfitting, which was particu-
larly important given the variety of gait and frailty variables in our study. Additionally,
Random Forest helps us gauge the importance of each variable, which is crucial for inter-
preting our results. Prior to this, we used principal component analysis (PCA) and factor
analysis to reduce dimensionality and uncover the data structure, finding that the first
two principal components explained a significant amount of variance. We also applied
multinomial logistic regression, which identified significant variables but showed lower

https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestRegressor.html
https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestRegressor.html
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accuracy compared to Random Forest. The Random Forest model’s superior performance
in classification accuracy and its ability to manage intricate interactions made it the most
appropriate choice.

3. Results

There were 163 participants with a mean age of 82.6 ± 6.2 years and 118 (72%)
were women.

According to Fried’s phenotype criteria there were 50 fit participants with no falls
(36.7%), 70 fit participants with falls (51.5%), 7 frail participants without falls (5.2%), and 36
participants meeting frailty criteria with falls (26.5%).

Table S1 (Supplementary Materials) shows the baseline characteristics of the sample
showing significant differences in age, height and type of terrain the device was tested on
during free walking. We also found significant differences in all gait parameters both in
conventional evaluation and in gait parameters measured by the G-STRIDE device.

Random Forest regression shows the hierarchy of factors contributing to the risk of
frailty and falls in our study population (Figure 2).
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The results of the Random Forest model’s confusion matrix are shown in Figure 3 and
the metrics’ performance in Table 2. We found high accuracy in classifying participants in
the four categories of frailty and falls.
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Table 2. Model performance metrics for Random Forest model predicting the four categories.

Class Precision Recall (TPR) F1 Score Specificity

Fit with falls 0.88 0.98 0.93 0.98

Fit without falls 0.88 0.9 0.89 0.97

Frail without falls 1.0 0.14 0.25 1.0

Frail with falls 0.94 0.86 0.90 0.99

The confusion matrix gives information about the capacity of the model to classify
participants in the four categories, showing a high number of correct predictions along the
main diagonal and very few false positives or false negatives, indicating a high degree of
accuracy in the classification. The specificity is equally high in all classes.

4. Discussion

The results reveal that both conventional and G-STRIDE functional evaluations show
significant differences between participants with and without falls according to frailty
status, falls being more frequent in frail subjects. It is possible to identify gait parameters
using the G-STRIDE device that discriminate between fit and frail subjects with and without
falls and this is of great interest as it creates the opportunity for early frailty detection.

To our knowledge, this is the first study to stratify participants according to both
aspects at the same time to identify people at higher risk of adverse events. The results show
significant differences between groups according to frailty status and falls and identifies
gait parameters explored by the G-STRIDE device that can stratify participants according
to frailty status and falls, which is of great interest as it allows for early intervention. The
descriptive variables indicate that fit participants without falls are those who walk on
mixed terrain, whereas the percentage of frail participants or those with falls that walk on
flat terrain increases, consistent with lower walking difficulty on such surfaces.

Conventional evaluation results show significant differences in gait speed (GS), TUG
and Short-FES1 among the four groups studied. Seong-Hi Park’s review of falls assessment
tools finds the TUG and Tinetti Test to be the most appropriate in community settings,
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with a sensitivity > 0.7, recommending the use of multiple tools simultaneously to improve
falls prediction [44]. A recent review also found that no single gait, balance or functional
mobility assessment can predict fall risk in older adults with high certainty, although
moderate evidence suggests gait speed can be useful [45]. Regarding the Short-FES1 scale,
similar results have been published, with higher scores in subjects with falls relating to self-
perception of risk [46,47]. Current global guidelines for patient care with falls recommend
using these three tools with a grade of 1A [18].

The study suggests that variables detected by the G-STRIDE device enhance the
ability to distinguish between subjects based on frailty status and fall history, enabling
proper differentiation among frail subjects with falls, frail subjects without falls, and fit
subjects with or without falls. G-STRIDE quantitative measurements of physical activity
(total distance, total time, total number of steps), along with gait speed and step speed,
contribute significantly to the model, distinguishing fit from frail subjects. Parameters
related to gait characteristics (3D path, swing time, stance-foot flat time, clearance, stride
length) contribute to distinguishing between subjects with and without falls. These results
support the need for technological data collection systems that enhance clinical evaluation
in daily practice.

Other studies have used sensor devices under different testing conditions (sensor
location, test duration, variables measured) and with different objectives (some evaluating
frailty, others focusing on falls) [29–32]. Many propose mixed models with functional and
sensor parameters, generally finding that technological devices improve diagnosis. We
found only one study that analyzed both frailty and falls; Green et al. studied functional
and sensor variables in 124 participants to identify a model for classifying participants
according to frailty and falls separately, without relating the two variables [48].

A recent review [36] concluded that the parameters that best differentiate between
frailty subgroups are gait speed, in particular during habitual walking, cadence, step width
variability, step length during habitual walking, and double support time during fast
walking, but in general, most studies focused on frailty detection using sensor devices, and
recommend number of steps, physical activity, gait speed, cadence or sleep activity [33,34].
They also conclude that more research is needed to identify distinct, clinically interpretable
features and develop a general framework for fall and frailty assessment.

In this context, the G-STRIDE device shows good characteristics for implementation in
clinical practice for frailty and falls assessment, making it possible to identify frail patients
early and implement interventions. It is easy to use, does not require any specialized
personnel or knowledge, has no related adverse events, has high accuracy, no subjectivity
in interpretation, and no time limitation as it can be used outside the clinic.

Our study has some limitations. Firstly, the sample size is not particularly large;
however, the sample’s homogeneity and the type of statistical analysis ensure reliable
prediction of results. Additionally, there are more fit subjects, likely due to a higher number
of participants from home settings. The frail group without falls is smaller, possibly due to
the difficulty in finding frail individuals without adverse events such as falls. These factors
may have partly influenced the results. However, the study’s strength lies in analyzing
many variables in subjects from diverse environments and with a high average age, which
is valuable for research in the elderly population.

Finally, these results suggest new lines of research to confirm current findings and
identify cut-off points to distinguish fit from frail subjects and those at higher risk of falls.

5. Conclusions

The study confirms that gait parameters explored by the G-STRIDE device differ
significantly between participants according to frailty status and falls history. The device
effectively discriminates between fit and frail subjects with and without falls, identifying
those at higher risk of adverse events which is of great interest. Future investigations must
confirm the best clinical biomarkers of frailty and falls using this inertial system and how
to use these clinical biomarkers in clinical practice.
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