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Abstract: This paper aims to both fit and predict crop biophysical variables with a SAR image series
by performing a factorial experiment and estimating time series models using a combination of
forecasts. Two plots of barley grown under rainfed conditions in Spain were monitored during the
growing cycle of 2015 (February to June). The dataset included nine field estimations of agronomic
parameters, 20 RADARSAT-2 images, and daily weather records. Ten polarimetric observables
were retrieved and integrated to derive the six agronomic and monitoring variables, including the
height, biomass, fraction of vegetation cover, leaf area index, water content, and soil moisture. The
statistical methods applied, namely double smoothing, ARIMAX, and robust regression, allowed
the adjustment and modelling of these field variables. The model equations showed a positive
contribution of meteorological variables and a strong temporal component in the crop’s development,
as occurs in natural conditions. After combining different models, the results showed the best
efficiency in terms of forecasting and the influence of several weather variables. The existence of
a cointegration relationship between the data series of the same crop in different fields allows for
adjusting and predicting the results in other fields with similar crops without re-modelling.

Keywords: RADARSAT-2; polarimetric SAR; biophysical variables; time series; cointegration

1. Introduction

Assessing and quantifying the biophysical variables of vegetation cover such as
biomass, leaf area index (LAI), height, and the fraction of vegetation cover (FVC), among
others, have been identified as a paramount challenge in agriculture due to their role
in modelling the growth and development of plants [1], improving prediction of crop
yields [2–4], and in hydrological processes or droughts monitoring [5–9]. Furthermore,
monitoring such parameters through ground sensors or field measurements is expensive
and highly time-consuming; thus, remote sensing represents an appealing alternative.

Remote sensing data acquired from space are a good source of information to regu-
larly derive biophysical variables. Although optical remote sensing has been successfully
used [10–14], acquiring data using these types of sensors is limited to nearly cloud-free
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conditions. Alternatively, remote microwave sensors provide an effective means of mon-
itoring and assessing biophysical variables because of the ability of synthetic aperture
radar (SAR ) systems to acquire data under all weather conditions and the sensitivity of
the microwave interactions to the dielectric and geometrical properties of crops, which is
largely recognized [15,16].

In general, several approaches comprising empirical, semi-empirical, and physical
models that embed SAR data have been developed or used for vegetation retrievals. The
simplest models use empirical, regressive analysis to estimate biophysical variables from
synthetic aperture radar [17–19]. These models are easy to implement but depend mainly on
the data used and are site-specific. Semi-empirical models consist of fitting statistical data
analysis with the predictions of physical scattering models [17], which enlarge the applica-
tion areas of the empirical models [17]. For example, the water cloud model (WCM) [20] is
widely used in the literature. Hosseini and McNairn [21] used C-band (RADARSAT-2) and
L-band (UAVSAR) SAR, and the WCM along with the Ulaby soil moisture model [22] to
estimate biomass and soil moisture over an agricultural area of wheat fields in western
Canada. This study revealed promising results, specifically from RADARSAT-2 data when
wheat biomass and soil moisture were jointly estimated. Also, the use of L-band data
showed good results for soil moisture during crop ripening. Guo et al. [23] carried out
research to explore the ability of compact polarimetry (CP) synthetic aperture radar data
to retrieve biophysical parameters from rice using a modified water cloud model. They
demonstrated the capability of CP SAR data to retrieve specific biophysical parameters
(height, volumetric water content, and ear biomass) from rice, suggesting the potential use
of this data for rice monitoring applications. Mandal et al. [24] presented research using
C-band dual-pol Sentinel-1 data and a multi-output support vector regression (MSRV) tech-
nique used for the inversion of the WCM to retrieve the biophysical parameters (plant
area index and wet biomass) of wheat, canola, and soybean. For bare soil areas, the semi-
empirical models of Chen, Oh, and Shi [25–28] are commonly used for soil moisture in
the literature [29,30]. Finally, physical models, such as the integral equation model [31],
geometrical optics model [32], small perturbation model [32], and advanced integration
equation model [33,34], predict backscatter based on inputs such as surface roughness,
dielectric constant, incidence angle, and radar frequency. Physical models, coupled with
vegetation scattering models, have shown to be very useful for the retrieval of soil mois-
ture over vegetated areas [35–37]. Apart from the modelling approaches, interferometric
coherence methods have been applied to monitor crops and phenologic states [38–40].

The importance of and interest in applying statistical analysis procedures to remote
sensing data for agriculture has grown in the last decades. Time series models (e.g., autore-
gressive integrated moving average (ARIMA), autoregressive integrated moving average
with explanatory variable (ARIMAX), and smoothed models) fit the time series data and
allow forecasting. Jiang et al. [41] modelled a MODIS LAI time series and predicted fu-
ture values by exploring three types of models that can characterize time series data and
non-stationary series and predict future values, including dynamic harmonic regression
(DHR), loess-based seasonal trend decomposition procedure (STL), and seasonal ARIMA
(SARIMA). Han et al. [42] proposed ARIMA models to simulate and forecast a vegetation
temperature condition index series. Fernandez-Manso et al. [43] used autoregressive inte-
grated moving average models for forecasting the short-term response of forest vegetation.

The main contribution of this research is to analyze predictions associated with dif-
ferent univariate methods (smoothed and ARIMAX) and their combinations, comparing
their behaviour. The literature demonstrated that the prediction combination improves the
data precision obtained by individual predictions. This methodology is able to aggregate
different aspects in the time series modelling obtained by different procedures and, there-
fore, derive more accurate predictions. The objective of this study is to adjust crop growth
models over time, considering the data obtained in situ versus satellite measurements,
establishing the dependence and relationship between them. Finally, analyzing the results
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obtained in one plot using cointegration techniques proved that the model can successfully
make accurate predictions for the other plot when used as a reference.

The paper is organized as follows: Section 2 presents the study area and data used.
Section 3 describes the statistical methodology. The results from the statistical methods are
analyzed and discussed in Sections 4 and 5. Finally, the conclusions are drawn in Section 6.

2. Materials
2.1. Study Area and Field Data

The Iberian Peninsula is extremely sensitive to future climate changes, especially
the inner areas, where rainfed agriculture depends solely on rainfall. The study area
(Figure 1) belongs to the central part of the Duero basin (41.1◦ to 41.5◦ N and 5.1◦ to 5.7◦

W), a fragile semi-arid area where a soil moisture station network (REMEDHUS) has been
working since 1999, which is the property of the University of Salamanca in Spain. This
network monitors the climatic and soil conditions of the area and provides ground data
for agricultural and hydrological applications. A detailed description of the network,
together with its agrometeorological equipment, is available in [44–46]. Two stations of
REMEDHUS, namely F11 and M9 (Figure 1), were chosen in 2015 for a field campaign
in their corresponding plots (both planted with barley) devoted to estimating field crop
vegetation throughout their growing cycle. Soil moisture probes (Hydra Probes, Stevens
Water Monitoring System, Inc.) provided a soil moisture dataset for each area, and the
automatic weather stations of the network (Figure 1) supplied the meteorological data
(precipitation, P, and evapotranspiration, ET0). The study spanned from February to
June 2015, and the crops measurements were taken fortnightly (nine measurements in
total). The objective of the campaign was to seek consistent relationships between ground
measurements and remote-sensed SAR data acquired simultaneously by the RADARSAT-2
mission, as explained in the next section. Previous experiments successfully proved the
relationships between both datasets using simple correlations [47].
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Figure 1. Location of F11 and M9 plots.

The crop measurements (taken either in situ or in the laboratory) aimed to estimate the
following parameters: height, FVC, LAI, fresh biomass, and percentage of water content
(PWC). The FVC was estimated using supervised image classification of photographs
taken zenithally over the canopy. For the LAI estimation, a binary-threshold segmentation
was applied to the scanned leaf samples. Biomass and PWC were obtained by weighting
the fresh/dry samples. Finally, the soil moisture (SM) records (in volumetric units) were
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retrieved from the REMEDHUS probes at the F11 and M9 stations daily. See [47,48] for a
more detailed explanation of the measurements.

The field data were measured fortnightly over the study period (excepting the soil
moisture, with daily records), producing a total of 9 observations. As the dates of the
field observations and those of the satellite images did not coincide (because the satellite’s
passage over the area is not known in advance), the image series was interpolated to fit in
with the field observations, as explained in the next section.

2.2. Satellite Data and Pre-Processing

RADARSAT-2 is a satellite launched by MacDonald, Dettwiler and Associates Ltd.
(MDA) and the Canadian Space Agency (CSA) in December 2007. It has a C-band synthetic
aperture radar (SAR) operating at 5.4 GHz, with multiple beam modes and an orbit repeat
cycle of 24 days. For this study, a time series of 20 RADARSAT-2 images from February to July
2015 was acquired in Fine Quad-Pol Single Look Complex (SLC) from three different beam
modes (FQ16W, FQ11W, and FQ6W) at different incidence angles (36◦, 31◦, and 25◦) (Table 1).

Table 1. List of RADARSAT-2 data grouped by beam mode and their correspondence with field
measurements.

Beam Mode Acquisition Date
(2015)

Day of Year
(DoY)

Avg. Incidence
Angle (◦)

Slant-Range
Pixel Spacing

(m)

Azimuth Pixel
Spacing (m)

Field Measurements
(2015)

FQ16W

16 February 47

36 4.73 5.49

17 February
12 March 71
5 April 95 08 April

29 April 119
23 May 143
16 June 167 16 June
10 July 191

FQ11W

23 February 54

31 4.73 4.61

03 March
19 March 78 19 March
12 April 102
06 May 126 06 May
30 May 150 02 June
23 June 174
17 July 198

FQ6W

26 March 85

25 4.73 4.70

19 April 109 21 April
13 May 133 19 May
06 June 157
30 June 181
24 July 205

As shown in Table 1, there is a mismatch between field measurements and RADARSAT-
2 acquisition dates. This can be a source of uncertainty in the statistical analysis, especially
when field measurements show trend changes or rapid changes; thus, a spline interpolation
was applied to avoid this problem [47].

RADARSAT-2 data were processed using the Sentinel-1 Toolbox of the Sentinel Ap-
plication Platform (SNAP, https://step.esa.int/main/toolboxes/snap/, accessed on 21
July 2020) provided by the European Space Agency (ESA) as follows: (1) radiometrically
converting the images into backscattering coefficients using the look-up table from the im-
ages; (2) polarimetric coherency matrix generation [49]; (3) speckle filtering (9 × 9 boxcar);
(4) terrain correction and geocoding using the Range Doppler orthorectification method
and the digital elevation model from the Shuttle Radar Topographic Mission (SRTM);
and (5) retrieving the polarimetric parameters using the PolSARpro software provided
by the ESA (https://earth.esa.int/eogateway/tools/polsarpro, accessed on 21 July 2020).
A detailed description of the procedure and parameters may be found in [47]. Table 2
summarizes both the polarimetric parameters and field observations, together with the
weather records.

https://step.esa.int/main/toolboxes/snap/
https://earth.esa.int/eogateway/tools/polsarpro
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Table 2. List of polarimetric parameters derived from RADARSAT-2, field/laboratory estimations,
and weather records used in this study.

Polarimetric Parameters Symbol/Acronym

Backscattering coefficient at HH, HV, and VV channels HH, HV, VV
Ratio of backscattering coefficients at HH, HV, and VV channels HH/VV, HV/VV

Normalized correlation between the copular channels (HH and VV) γHHVV
Polarization phase difference between the copular channels (PPD) PPD

Entropy and dominant alpha angle H, α1
Normalized between the 1st two channels in the Pauli basis (HH +

VV and HH − VV) γP1P2

Field/laboratory Parameters

Height
Fraction of Vegetation Cover FVC

Leaf Area Index LAI
Fresh Biomass

Percentage of Water Content PWC
Soil Moisture SM

Weather Records

Precipitation P
Evapotranspiration ET0

Temperature TEMP

3. Methods

In order to adjust and predict the field measurements, different statistical techniques
based on time series analysis were used, such as exponential smoothing on the in situ vari-
ables, ARIMAX, and regression by robust least squares. These methods were enriched with
the contribution of potential meteorological explicative variables and linear combinations
obtained from principal component analysis (PCA) of the satellite variables for each type
of crop.

Once the adjustments and predictions of the aforementioned models were refined, the
forecast combination methodology was used to obtain the final adjustment and prediction.
Further, the cointegration method allows taking advantage of previous training to transfer
the model to a new plot, provided the plot demonstrates a similar behaviour.

3.1. Interpolation

As previously mentioned, the dates of the field observations and satellite images do
not coincide, so it seemed necessary to interpolate the data to compare the time series. Four
data were taken per month starting in February 2015 and ending in June 2015. Since the
meteorological records have a daily rate, weekly averages were also calculated to fit the
temporal frequency of the other data. Twenty observations were used for the estimation
models, and four were used for the prediction model.

Interpolation of missing data was carried out using cubic spline and least squares.
Interpolation fits a cubic spline curve to the input values, which is a segmented function
consisting of polynomial (cubic) functions joined so that the total curve and its first and
second derivatives are continuous [50].

3.2. Dimension Reduction

Owing to the high number of parameters led by the images, the dimensionality of
the information collected by these 10 satellite parameters was reduced by a principal
component analysis. This methodology computes new variables as linear combinations of
the original set, extracting the most relevant information in terms of variance. As a result,
new variables (Factors) are calculated as linear combinations of the original variables. The
first factor or principal component has the largest possible variance. The second component
is calculated under the constraint of being orthogonal to the first component with the
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highest relevance, and so on. These components can be considered new axes representing
the cloud of points that form the original variables. The projection of the points on the
components serves to interpret the relationship between the different variables. If this
interpretation is complex, the components (axes) can be rotated to redistribute the variance
of the original variables in the factors to achieve a better interpretation of the results. For the
rotation, the equamax rotation method is used, which minimizes the number of variables
that contribute to a factor and the number of factors necessary to explain a variable [51–53].

3.3. Fitting Models

Several methodologies were used to adjust the time series of crop measurements,
namely height, FVC, LAI, biomass, PWC, FVC, and SM. Exponential smoothing, which
uses the information from the dynamics of the series, considers only the raw values of the
field variables. The ARIMAX models also incorporate the information from the correlation
of the white noise together with external variables such as the satellite variables (previously
summarised in the factors obtained by the PCA) and meteorological variables. For field
variables where the ARIMAX methodology did not provide a good fit, a robust regression
was used to model them instead.

3.3.1. Exponential Smoothing

The simple exponential smoothing method is an evolution of the weighted moving
average method. In this case, the average value of the time series is calculated using a
self-correcting mechanism that aims to adjust the forecast in the opposite direction of the
past deviation through the correction affected by the smoothing coefficient, α ∈ [0, 1].
This parameter controls the influence of the observations, i.e., large values indicate that
the most recent past observations influence the forecasts the most, while smaller values
mean that most of the historical data is considered when making a prediction. The single
exponential smoothing method is appropriate for series that move randomly above and
below a constant mean without trends or seasonal patterns [54]. A double smoothing
adjustment was applied for each of the previously interpolated variables since they have
a trend but no seasonality. This method repeats the single smoothing adjustment twice,
appropriate for a series with a linear trend.

For a time series yt at instant t, we define:

St = αyt + (1− α)St−1
Dt = αSt + (1− α)Dt−1

(1)

where St is the single smoothed series, Dt is the double smoothed series, and α is the
smoothing coefficient.

The forecast of a new observation at time t is computed as:

yT+k =

(
2 +

αk
1− α

)
ST −

(
1 +

αk
1− α

)
DT =

(
2ST − DT +

α

1− α
(ST − DT)k

)
(2)

3.3.2. ARIMAX Models

ARIMAX models are ARIMA that incorporate exogenous variables into the adjustment.
ARIMA are statistical models for time series that take into account the existing dependence
between the data through its three components: autoregressive (AR), integrated (I), and
moving averages (MA), which include cyclical or seasonal components and allow the
description of the temporal variable as a linear function of previous data and errors due
to randomness.

The general ARIMAX model is described by Equation (3):

(1− B)dyt = α + ∑p
i=1 Φiyt−i + ∑q

h=1 θhεt−h + ∑r
j=1 γjXj + εt (3)



Remote Sens. 2022, 14, 614 7 of 20

where Byt = yt−1, d is the number of differences that must be applied to the series to make
it stationary, α is the prerequisite for fitting an ARMA model using the Box Jenkins method-
ology, p is the number of autoregressive components in the equation and Φi the associated
parameter, Xj is the model’s exogeneous variables and γj the associated parameter, and εt
is the error at time t [55,56].

The Akaike information criterion (AIC) is used to determine which possible ARIMAX
model is the best. This method serves to identify and select ARIMAX models as a measure
of goodness-of-fit, which describes the relationship between the bias and variance in the
model construction. It provides a means for comparison between models and a tool for
model selection, with the best model being the one with the lowest AIC value [57].

The Ljung–Box test [58] was used to validate the assumptions of the model, i.e., that
the residuals follow a time series where values in different time instants are not statistically
correlated (white noise) and, therefore, have a constant power spectral density.

3.3.3. Robust Regression

The most used method to estimate the coefficients of linear regression is the least
squares. This method, while optimal in the case of normally distributed errors, is very
sensitive to the presence of outliers. To solve this problem, other, more robust estimation
methods have been developed, which are less affected by the presence of atypical data,
such as M-estimation [59], S-estimation [60], and MM-estimation [61], referred to hereafter
as robust least squares methods.

To evaluate the accuracy of the forecasts from both the ARIMAX and robust regression
models, measures of accuracy (mean absolute error (MAE) and Theil’s inequality coefficient
(TIC)) were used. A Theil’s inequality coefficient of less than one confirms the model’s
suitability for forecasting [62].

3.4. Forecast Combination Techniques

A combination of predictions made through different processes can improve the precision
of a single prediction [63]: the more diverse the prediction model, the more accurate the
prediction result. The combination of predictions aggregates the different forecasts obtained
from each model into a single one as a weighted average of all the predictions by considering
the information collected by each model individually, see [64–66].

Different prediction combination techniques were used [67]:

• Weighted least squares (WLS) requires knowledge of the true values of the forecasted
variable for some of the forecast period. It compares real values with predictions
using the regression coefficients as weights. This method does not require that the
underlying individual forecasts are unbiased, and the resulting average can lie outside
the range of the underlying forecasts.

• Weighted mean squared error (MSE) consists of making a weighted average giving
greater weight to the predictions of the models with less mean squared error. Stock
and Watson [68] propose MSE weighting, which compares individual forecasts with
real values over a forecast period.

The mean squared error of each forecast is computed and used to form individual
forecast weights:

wi =

1
MSEk

i

∑N
j=1

1
MSEk

j

(4)

3.5. Cointegration Analysis

Engle and Granger [69] developed the concept of cointegration, i.e., two series are said
to be cointegrated if they move together over time, and the differences between them are
stable. Hence, cointegration reflects the presence of a long-term equilibrium toward which
the system converges over time. If more than two series are cointegrated, at least one must
cause the other. The differences (or term error) in the cointegration equation are interpreted
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as the disequilibrium error for each particular point in time. Cointegration implies that
there is a trend common to both series, so a properly weighted combination cancels this
component. There is also a long-term equilibrium between both series, so deviations from
equilibrium tend to disappear in relatively short terms.

A simple procedure to estimate the cointegration relationship consists of fitting a linear
regression for the potentially cointegrated variables and then evaluating the stationarity of
the residuals (constant mean and variance) that occurs in these data series. Different tests
were used to analyze the feasibility of the cointegration:

• The existence of cointegration between time series requires that each one is non-
stationary, but the linear combination is stationary [70]. The augmented Dicky–Fuller
test contrasts the null hypothesis for the existence of a unit root, equivalent to non-
stationarity. To assess that both series are non-stationary, the augmented Dicky–Fuller
test is used [56,71].

• Granger’s causality test [72] checks whether the results of one variable serve to predict
another variable analyzing the causal relationships between time series. Once this test
is carried out, the cointegration equation is constructed, permitting one variable to be
predicted using the results from another.

• Johansen’s cointegration test [73,74] is another method to test the cointegration of
several series. There are two types of Johansen tests, either with trace or with eigen-
value (maximum eigenvalue test). The inferences obtained with both alternatives may
derive quite similar results; in this case, the results have been obtained with the trace.

4. Results
4.1. Dimension Reduction

After the series interpolation, PCA was performed to reduce the size of the satellite
variables. The constructed factors are a linear combination of the original satellite variables:
HH, HV, VV, HH/VV, HV/VV, γHHVV, PPD, H, α1, and γP1P2. An equamax rotation has
been performed to improve the scoring of the satellite variables’ contributions for the
factors. The results showed that the first four factors preserve 98% of the information in
terms of cumulative variance, while the first two factors explain about 76% of the variability.
Table 3 shows the coefficients of the linear combination of the satellite variable in each factor.

Table 3. Factor adjustment coefficients for each variable.

HH VV HV HH/VV HV/VV γHHVV PPD H α1 γP1P2

F1 −0.06 0.029 0.354 −0.11 0.28 −0.22 −0.167 0.369 0.043 −0.228
F2 0.18 −0.127 −0.144 0.388 −0.027 −0.009 −0.067 −0.189 0.208 0.446
F3 0.489 0.38 0.3054 0.046 −0.029 0.061 −0.059 −0.073 −0.015 0.072
F4 −0.01 0.021 −0.074 −0.089 −0.081 −0.016 1.006 0.038 0.032 0.063

The constructed factors with the parameters associated with each variable according
to the values are presented in Figure 2, indicating which variables have the greatest weight
for each of the factors.

The incidence angle of the satellite observations was not used to subdivide the sample
due to the scarcity of data. Of the 20 satellite data, 6 were observed with an angle of 25◦,
7 with 31◦, and 7 with 36◦. However, the influence of the angle on the four new factors
was analyzed employing an ANOVA test, using the angle as the factor. Table 4 shows the
p-values of the tests for independence between the new variables and the angle and the
associated Levene’s test for homogeneity of variances.
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Table 4. p-values ANOVA of the factor angle.

Independence Levene’s Test

Factor 1 0.05 0.428
Factor 2 0.791 0.084
Factor 3 0.09 0.067
Factor 4 0.763 0.0586

The results showed that the null hypothesis of homogeneity of variances was assumed
in all cases (p-value > alpha = 0.05) for the Levene’s test, and there were no significant
differences between Factors 1, 2, and 4 and the angle (p-value > alpha = 0.05) for the
independence test, but significant differences were found for Factor 3.

Based on these results, of the four factors that explain 98% of the variability, the two
that provide the greatest explanatory power while not being influenced by the angle (Factor
1 and Factor 2) were used as explanatory variables in the following adjustment models.

4.2. Analysis of Fitting Models over the Barley Crop on Field F11

In this section, the selected adjustment models described in Section 3 were evaluated to
forecast the field variables (height, biomass, FVC, PWC, LAI, and SM) of the F11 crop field.
When applied to the fittings, the meteorological variables (precipitation, evapotranspiration,
and temperature) and the factors that summarize the satellite variables obtained from
the principal component analysis were considered as explanatory variables. Once the
adjustment models were obtained, the combination of predictions was carried out to obtain
the final prediction.

4.2.1. Double Smoothing Adjustment

The double smoothing adjustment (Equation (1)) was performed for the field variables.
Table 5 shows the fit coefficient (α), the residual sum of squares (RSS, which measures the
amount of variance that is not explained by the model), and the mean squared difference
between the estimated values and the true value: the mean squared error (MSE).
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Table 5. Double smoothing results.

α RSS MSE

Height 0.89 224.31 10.31
Biomass 0.79 365,394.30 40,203.01

FVC 0.89 1047.06 85.32
PWC 0.70 102.63 7.54
LAI 0.70 0.75 0.45
SM 0.89 0.01 0.93

The α values near one highlighted the importance of the last measurements in the
fitting model. This result agreed with the growing cycle behaviour of this crop, in which
the last dates, corresponding to the fruit developing and ripening (around May), are vital
for predicting the yield and final performance of the crop.

4.2.2. ARIMAX Adjustment and Robust Regression

The adjustment was carried out using ARIMAX models for the field variables. Table 6
presents the results of the models (parameters significant at 5%) with the lowest AIC, mean
absolute error (MAE), MSE, and Theil’s inequality coefficient (TIC). The adequacy of the
models for forecast purposes was confirmed by Theil’s inequality coefficient (<1), whereas
the Ljung-Box assumed the hypothesis that the residuals are white noise at 5% and not
autocorrelated. The results in Table 6 made clear that the influence of satellite variables
(summarized in the constructed factors) was significant for all the considered measures to
be estimated. Moreover, the adjustments are all dependent on the previous time instant,
which is supported by the natural behaviour of barley plants, i.e., their state in a given
moment is a consequence of the previous conditions.

Table 6. ARIMAX adjustment.

Model ARIMAX Equation MAE MSE AIC TIC

Height Ht = 5.72 + Ht−1 + 2.39 F1t + 6.12 F2t + εt (5) 1.97 11.32 5.21 0.06
Biomass Bt = 251.84 + Bt−1 + 164.59 F1t + 60.61 ET0 + 0.82 εt−1 + εt (6) 87.21 30,510.02 12.98 0.12

FVC FVCt = 31.95 + FVCt−1 + 15.57 F1t + 0.59 εt-1 + εt (7) 6.70 83.42 7.62 0.14
PWC PWCt = 63.44 + 0.94 PWCt−1 + 2.86 F1t + 0.23 TEMPt + εt (8) 3.55 8.72 6.88 0.03
LAI LAIt = 0.77 + LAIt−1 + 0.40 F1t + 0.68 εt−1 + εt (9) 0.20 0.91 0.54 0.16

As can be seen in Table 6, the dynamic structure of the time series for height was
an ARIMAX (0,1,0) (Equation (5)). In this case, there was a positive impact of the two
factors (F1t and F2t), dependence on the previous past observation (Ht−1), and a dynamic
dependence with its lagged variable (εt). For the biomass variable, the fitting model was
an ARIMAX (0,1,1) (Equation (6)), where there was a positive impact of the first factor and
the ET0 variable, dependence on the previous instant (Bt−1), and a dynamic dependence
of their errors. The ARIMAX highlighted the dependence of the biomass on the ET0.
Equation (7) presents the estimation model for FVC, an ARIMAX (0,1,1), where there was a
positive impact of F1 over FVC, dependence on the earlier time (FVCt−1), and a dynamic
dependence of their errors. An ARIMAX (1,0,0) resulted for PWC (Equation (8)), where
there was a positive impact of the first factor and temperature and a dynamic dependence
on its own variable at the previous stage. Finally, the fit for LAI (Equation (9)) was an
ARIMAX (0,1,1), and there was a positive impact of F1, dependence on the time instant
past (LAIt−1), and a dynamic dependence on the errors.

In the case of the SM variable, the adjustment using ARIMAX models was not appro-
priate (TIC > 1 and adjustment coefficients not significant at 5%), so it was modelled using
robust regression. The robust least squares estimation method allows better adjustments
when there are outliers, as it is less sensitive to them. In this case, the S-estimation was used.
After the estimation of this model for SM (Equation (10)), all resulting parameters were
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significant at the 0.05 level. A positive impact of F1 and the meteorological variables, ET0
and precipitation, took place for the SM. This is not surprising since the SM is the residual
of the water inputs (rain) and outputs (ET0) of the soil–plant–atmosphere system [75]. The
goodness-of-fit had an R-squared of 80%, the MAE was 0.02, the MSE was 0.83, and the
TIC was 0.26.

SMt = 0.16 + 0.02 F1t + 0.03 ET0t + 0.96 Pt + εt (10)

4.2.3. Combination of Forecasts

In the previous subsections, two models have been obtained for the adjustment and
prediction of the field variables, double smoothing, and ARIMAX/robust regression. Thus,
two different predictions for each field variable were available. To obtain the final prediction,
a combination of the two predictions was made using the weighted least squares (LSW) and
mean squared (MS) methods. Table 7 shows the mean squared error (MSE) of both methods
for each field variable. As demonstrated, these results have a lower MSE than that obtained
for the predictions of the individual models, double smoothing, and ARIMAX/robust
regression (Table 6). The LSW is the method with the lowest MSE.

Table 7. MSE of LSW and MS methods.

MSE-LSW MSE-MS

Height 7.51 8.48
Biomass 21,708.02 36,664.60

FVC 62.95 75.92
PWC 5.4 22.1
LAI 0.04 0.07
SM 0.005 0.01

Figures 3–8 show the results of the model adjustments. The results obtained show the
goodness-of-fit and its feasibility to predict.
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4.3. Prediction of Biophysical Variables of Barley on M9

Since the time evolution of barley in plots F11 and M9 is similar for all field variables
(Figure 9), a cointegration may be expected. Thus, the results obtained for F11 may be used
to adjust and predict those of plot M9.
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To ensure that cointegration is possible, the three tests described in Section 3.5 were
applied to both series. The results of the augmented Dicky–Fuller test showed that all the
series were non-stationary. In all cases, the null hypothesis of non-stationarity at 5% was
accepted, and the p-values were height (0.99), biomass (0.39), FVC (0.18), PWC (0.95), LAI
(0.16), and SM (0.16). Granger’s causality test found a bidirectional relationship between
the same measures of the two fields at a significance level of 5%. Granger’s causality test as-
sumes the null hypothesis that the second series does not cause the first series with a certain
time lag. Thus, if p-values below the significance level are obtained (p-value < alpha = 0.05),
the hypothesis can be rejected, concluding that causality exists: height (p-value = 0.014),
biomass (p-value = 0.04), FVC (p-value = 0.005), PWC (p-value = 0.003), LAI (p-value = 0.01),
and SM (p-value = 0.02). Finally, the Johansen cointegration test reflects at 5% the exis-
tence of cointegration relationships between the two fields. The Johansen cointegration
test shows that the null hypothesis of cointegration between the series is assumed in
all cases (p-value > alpha = 0.05): height (p-value = 0.20), biomass (p-value = 0.09), FVC
(p-value = 0.10), PWC (p-value = 0.30), LAI (p-value = 0.36), and SM (p-value = 0.22).

Therefore, it seemed unnecessary to repeat the adjustments in plot M9 for each field
variable since the predictions of the modelling of plot F11 would be used to predict plot M9
with the cointegration equation. Table 8 shows the fit of the field measurements of the two
plots by the cointegration equations, indicating a stable linear relationship. Furthermore,
the residuals of the regression were stationary, which indicated the fit robustness. Figure 10
shows the results of the biophysical variables of M9 adjusted by cointegration through the
data of the F11 plot.

Table 8. Cointegration equations between the biophysical variables of F11 and M9 plots.

Cointegration Equations R2

Height(M9) 6.92 + 1.01 Height(F11) 0.6898
Biomass(M9) 116.55 + 1.12 Biomass(F11) 0.9169

FVC(M9) 7.96 + 0.74 FVC(F11) 0.7464
PWC(M9) −27.94 + 1.29 PWC(F11) 0.6323
LAI(M9) 0.11 + 0.78 LAI(F11) 0.8764
SM(M9) 0.09 + 1.22 SM(F11) 0.9669
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5. Discussion

To develop efficient adjustment and prediction models for the biophysical variables
of crops, it is necessary to have a good dataset, including meteorological data, to fulfil the
remote sensing series and the in situ measurements. Prior to analyzing the datasets, an
interpolation had to be carried out to be able to compare the data series over time. The
satellite data provide many variables, so they are clustered using PCA to obtain factors that
explain a high percentage of the variability of these variables. These factors were used as
exogenous variables in the adjustment and the rest of the meteorological variables. The
weather data was shown to be especially helpful in the case of the soil moisture adjustment,
although this variable is one of the most typically retrieved from radar data [76]. Moreover,
ARIMAX highlighted the dependence of both the biomass on the ET0, as it is recognized
and applied in many crop models [77,78], and the temperature as an indicator of the water
status of plants and soils jointly with the FVC [79–81].

To choose the most appropriate method for modelling and predicting each of the
field variables (heigh, biomass, FVC, PWC, LAI, and SM), comparing different statistical
methodologies is necessary to finally choose the two models with the best results for each
field variable (double smoothing and ARIMAX/robust regression). Once the adjustment
and forecast was performed with the chosen models, the accuracy was improved using the
combined predictions. In this study, different methodologies were tested and compared
to obtain the best fit for LSW. To date, this method has been scarcely applied to SAR data.
Statistical methods have usually been applied for crop classification [82] or to characterize
polarimetric parameters [83,84]; however, statistical modelling is rare. Not surprisingly,
Yuzugullu et al. [85] stated that “most of the current statistical methods are not capable of
explaining the growth cycle of rice crops in different areas while avoiding high training
costs”. We tried to show effective statistical modelling with limited field data and without
training to fit the growing cycle of several parameters of barley.

The statistical analysis carried out for one of the barley plots can be extrapolated to
the other. Considering the specific characteristics derived from the same crop, the analysis
of the cointegration existing between the data series of both plots (F11 and M9) allows
adjusting the field variables of one through the adjustments made in the other.

The results obtained show the suitable adjustments made with the different statistical
methods used, despite having a small sample of field data and many satellite variables.
Therefore, the use of satellite images makes it possible to adjust the field variables, avoiding
costly in situ measurements. For this reason, the field measurements are usually scarce in
comparison with SAR observations and, therefore, limit other fitting methods such as sim-
ple regression, as done in Maity et al. [86] (three measurements over cotton), Lim et al. [87]
(six measurements over rice) and our previous application with the same dataset [47].

In comparison with the results of the reviewed literature where statistical time series
methodologies are used, the novelty of this paper is that these were performed with data
obtained from remotely sensed observations, together with field data and meteorological
variables. In addition, the best fitting models are combined, and, using cointegration
techniques, the results are extrapolated to other fields.

As ideas for further research, different machine learning methodologies could be
used if a large amount of satellite data is available and to compare fields with different
crop types.

6. Conclusions

This research showed a statistical procedure for modelling and predicting crop bio-
physical variables with time series of SAR images. Although the method is well-known in
the statistical community, it was never applied to temporal series retrieved from remote
sensing observations. The strategy is specifically convenient when the temporal series of
field data, usually accompanying the image series, are short or scarce, a situation rather
frequent owing to the difficulty of gathering field observations.
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The real dimensionality of image variable parameters was reduced by the PCA analy-
sis, obtaining four factors that could explain 98% of the variability of the satellite variables,
among which only the first two factors were relevant in the model.

The field data were modelled and adjusted by several statistical procedures (double
smoothing, ARIMAX, and robust regression), generating two models with their correspond-
ing coefficients, influence variables, and predictions for each field variable (height, biomass,
FVC, PWC, LAI, and SM). The model equations showed a positive contribution of the me-
teorological variables, in particular, ET0 and precipitation for SM, ET0 for the biomass, and
temperature for PWC. Further, the modelled series noted the importance of the crop status
from one measurement to the next, highlighting the strong temporal component in crop
development. The contributions found in the modelling reflect the dependence between
the crop parameters and the effect of time, mirroring the real behaviour of this crop. The
combination of the predictions obtained for the field variables by the two models improves
the accuracy of the predictions. To make the combination of predictions, the weighted least
squares (LSW) and the mean squared (MS) methods were tested and compared, concluding
that the LSW provides a better fit.

Cointegration is an interesting tool to avoid replicating the model for different crops. In
this case, the M9 field variables were fitted with the data from field F11, both producing barley.

The methodology employed is very popular with economic data, where different
model adjustments are made to subsequently combine them to obtain the best possible fit.
Moreover, cointegration between time series is commonly performed in econometrics. In
this case, despite the small sample of filed data, the procedures have provided good results.

Alternative methods of statistical fitting applied between fields and remote sensing
images pave the way to use the imagery as a subrogate of the crop behaviour, avoiding
time-consuming field measurements.
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