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Abstract

The problem of estimating the constant parameters of the Kuramoto-Sivashinsky (KS) equation from

observed data has received attention from researchers in physics, applied mathematics and statistics. This

is motivated by the various physical applications of the equation and, also, because it often serves as a

test model for the study of space-time pattern formation. Remarkably, most existing inference techniques

rely on statistical tools, which are computationally very costly yet do not exploit the dynamical features

of the system. In this paper we introduce a simple, online parameter estimation method that relies on

the synchronization properties of the KS equation. In particular, we describe a master-slave setup where

the slave model is driven by observations from the master system. The slave dynamics are data-driven

and designed to continuously adapt the model parameters until identical synchronization with the master

system is achieved. We provide a simple analysis that supports the proposed approach and also present and

discuss the results of an extensive set of computer simulations. Our numerical study shows that the proposed

method is computationally fast and also robust to initialization errors, observational noise and variations in

the spatial resolution of the numerical scheme used to integrate the KS equation.

I. INTRODUCTION

A. The Kuramoto-Sivashinsky equation

The Kuramoto-Sivashinsky (KS) equation is a partial differential equation (PDE) that describes

the spatio-temporal evolution of certain nonlinear systems. It was independently developed by Y.

Kuramoto [1, 2], to model waves in Belousov–Zhabotinsky reactions, and A. Sivashinsky [3, 4]

to study instabilities in laminar flame fronts. Other significant applications include the modeling

of liquid films [5], long waves in viscous fluids [6], drift waves in plasmas [7] or ion-sputtered

surfaces [8].

The generalized KS equation in 1-dimensional space can be written as [9]

ut +uux +αuxx +βuxxx + γuxxxx = 0, (1)

where t ∈ R and x ∈ R are continuous time and space, respectively, u(t,x) is a scalar field rep-

resenting the physical magnitude of interest, ut =
∂u
∂ t , uxx =

∂ 2u
∂x2 , uxxx =

∂ 3u
∂x3 , uxxxx =

∂ 4u
∂x4 , and the

constants α,β ,γ ∈ R determine the dynamics of the signal u(x, t). This equation has received

considerable attention because it displays a rich space-time behavior, including chaotic dynamics,
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depending on the choice of parameter values [10–15]

B. Parameter estimation for the KS model

The problem of estimating the values of the constant parameters (α,β ,γ) from observations

of the signal u(t,x) is of interest because of the physical applications of the KS equation and also

because this model has become a testbed to assess inference techniques that can then be applied

to other spatially-extended systems.

Most parameter estimation methods designed for the KS model rely on statistical tools. Hurst et

al. [16] describe a maximum likelihood (ML) inference scheme that runs an ensemble of Kalman-

based estimators. Huttunen et al. [17] rely on a Fourier spectral decomposition of the KS equation

with periodic boundary conditions. The Fourier series is truncated to K modes and an ad hoc noise

term is added to the Fourier coefficients. Inference on the signal and the parameters is carried out

by way of extended Kalman filtering and an importance sampling step. Lu et al. [18] start from a

similar approach (a truncated Fourier-series representation) and then approximate the dynamics of

the Fourier modes by way of an autoregressive time-series model. Martina-Perez et al. [19] also

advocate a statistical scheme. They rely on the approximation of the PDE by way of a pre-selected

set of basis functions and then tackle the Bayesian estimation of the basis dimension and the basis

coefficients from the observed data.

Other methods include the use of deep learning schemes [20], a joint smoothing and parameter

estimation method that aims at estimating both the solution u(t,x) and the parameters (α,β ,γ)

using a quasi-Newton optimization algorithm [21] or a nonlinear least-squares fitting scheme that

relies on the ability to simulate batches of data using a kinetic Monte Carlo procedure [22]. These

schemes are offline (i.e., they require the iterative batch processing of the whole set of observa-

tions) and [20] requires an offline training stage before it can be applied.

All the methodologies described above share two limitations:

• they do not exploit the specific dynamics of the KS model and, as a consequence,

• they are computationally demanding –at least when compared with typical numerical inte-

gration schemes for the KS equation.

An alternative approach to the parameter estimation problem that has proved successful for

chaotic dynamical models relies on the ability to synchronize two suitably coupled systems. In
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a typical setup, one assumes that the observed data are generated by a master system with un-

known parameters. The observations are used to drive a slave model that has the same form as

the master system plus a coupling term that depends on the discrepancy between the two systems.

The coupling is chosen in such a way that the slave model synchronizes with the master when the

two systems are identical, including their parameters. Hence, the problem of parameter estimation

reduces to finding the parameter values in the slave model that make the synchronization error

vanish.

The general strategy described above, in different forms, has been advocated by several authors,

e.g., in [21, 23–32]. However, it is hard to find applications of these methodologies to the KS

equation. Most authors choose the Lorenz 63/96 or Rössler models to test their techniques [21,

23–28] (let us note that the KS equation is indeed considered as a case study in [21] but this is

done only to show synchronization of a KS slave model with known parameters α = γ = 1 and

β = 0, while parameter estimation is tackled by other means). An outstanding exception is the

recent work by Pachev et al. [30], who propose a synchronization-based procedure to estimate the

parameters of a KS system online (i.e., concurrently with the numerical integration of the model).

The main drawback of the method in [30] is that it requires the time derivatives of the observed

signals, which are hard to estimate reliably in the presence of observational noise. In addition,

their method also runs a Gram-Schmidt orthogonalization procedure and solves a system of linear

equations at each time step of the numerical integration scheme –which results in a significant

computational cost.

Master-slave synchronization of KS systems has been specifically shown and investigated, e.g.,

in [33, 34], and synchronization-based data assimilation schemes (aimed at the tracking and fore-

casting of the signal u(t,x)) have been proposed in [35–37]. In all these references, however, the

parameters of the KS model are assumed known –there is no parameter estimation.

C. Contributions

The parameter estimation method introduced in this paper relies on a master-slave setup, similar

to the general schemes of [30] and [26, 27]. Both the master and slave systems are KS models

with periodic boundary conditions and they are approximated with truncated Fourier series: the

master model is represented with M time-varying Fourier coefficients and we construct a slave

model with K coefficients, K ≤ M. We assume that the state u(t,x) of the master system can be

4



observed over a spatial grid x0, . . . ,xJ−1 and the collected data u(t,x j), j = 0, . . . ,J−1, are used to

drive the slave system via a diffusive coupling term. We prove that this configuration yields local

synchronization (according to the definition in [38]) when the parameters (α,β ,γ) are identical in

the master and slave models. We also show numerically that the scheme is robust, in the sense that

synchronization is attained even when the initial conditions of the master and slave model differ

significantly.

A key difference with the method in [30] lies in the parameter update rule. In the scheme in-

troduced in this paper, the parameters of the slave model evolve continuously over time according

to an ODE designed to have a stationary point where identical synchronization of the master and

slave models is attained. In particular, there is no need for Gram-Schmidt orthogonalization steps

and the computation of time derivatives of the observables is explicitly avoided. The slave param-

eters are integrated numerically with the same procedure used to integrate the Fourier coefficients

of the master and slave models.

We present a detailed numerical assessment of the proposed synchronization-based parameter

estimation scheme. In particular, we study

• the robustness of the method to initial errors in the slave model and the effect of the coupling

strength;

• the robustness of the synchronization scheme and the parameter estimation method to ob-

servational noise in the data collected from the master system;

• the adaptation rate of the parameters, i.e., how quickly they converge to the master parameter

values;

• the effect of underestimating the number of significant Fourier coefficients M in the master

system, i.e., the performance of the proposed scheme when K < M;

• the relative accuracy and computational cost of the proposed scheme compared to the un-

scented Bucy-Kalman filter; and

• the performance of the parameter estimation method for different dynamical regimes

(chaotic and periodic) of the master system.

5



D. Organization of the paper

The rest of this paper is organized as follows. A master-slave scheme that guarantees local

identical synchronization is described in Section II. The parameter estimation methodology is

introduced in Section III, which also includes an extensive set of computer simulation results.

Finally, Section IV is devoted to a summary and a brief discussion of the methodology.

II. SYNCHRONIZATION OF GENERALIZED KURAMOTO-SIVASHINSKY MODELS

A. Master model

The methods described in this paper rely on a master-slave setup. The master system is de-

scribed by Eq. (1) and we are interested on the evolution of the scalar field u(t,x) during a

time interval of length T , namely for t ∈ [0,T ]. We assume a periodic boundary condition of

the form u(t,x) = u(t,x+X), for all t ∈ [0,T ] and some X < ∞, and denote the initial condition as

u0(x) := u(0,x). The parameters of the master model (α,β ,γ) are constant and assumed unknown.

The periodic-in-space field u(t,x) can be equivalently represented by its time-varying Fourier

series coefficients {ak(t) : k ∈ Z} [39]. To be specific, if we let φk(x) := exp
{

i2π

X kx
}

for k ∈ Z

then we can write

u(x, t) =
∞

∑
k=−∞

ak(t)φk(x), (2)

for t ∈ [0,T ] and x ∈R. If we substitute (2) into (1), multiply by φ∗
k (x) and integrate over x ∈ [0,X)

on both sides of the equation, then we arrive at the infinite system of nonlinear ordinary differential

equations (ODEs)

ȧk = ak
(
αω

2
0 k2 + iβω

3
0 k3 − γω

4
0 k4)− 1

2
ikω0

∞

∑
ℓ=−∞

aℓak−ℓ, (3)

for k ∈ Z, where ω0 =
2π

X . We restrict our attention to real fields, u(t,x)∈R for all x and t ∈ [0,T ],

hence the Fourier coefficients are Hermitian, ak(t) = a∗−k(t), and the one-sided sequence {ak(t) :

k = 0,1,2, . . .} determines the signal u(t,x).

B. Slave model

Assume that the master model can be observed at a grid of spatial locations x0, . . . ,xJ−1 ∈

[0,X) during the time interval t ∈ [0,T ], i.e., we collect measurements u(t,x j), j = 0, . . . ,J − 1.
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It is possible to use these observations to estimate the Fourier coefficients of the signal u(t,x).

Specifically, let us assume a truncation of Eq. (2) to the first K harmonics. Provided that J ≥ 2K+1

and assuming that u(t,x) ∈ R (hence ak(t) = a∗−k(t)), it is possible to estimate the coefficients

a0(t), . . . ,aK(t) by solving the linear least-squares (LS) problem

min
ãk(t),k≥0

J−1

∑
j=0

∣∣∣∣∣u(t,x j)− ã0(t)−

[
K

∑
k=1

ãk(t)φk(x j)+ ã∗k(t)φ
∗
k (t)

]∣∣∣∣∣
2

. (4)

The solution of problem (4) can be explicitly (and compactly) written as

â(t) :=
(
ΦHΦ

)−1
ΦHu(t), (5)

where (·)H denotes the conjugate-transpose of a matrix or vector, u(t)= [u∗(t,x0), . . . ,u∗(t,xJ−1)]
H

is the J×1 vector of observations at time t, Φ= [ϕ∗
K · · ·ϕ∗

1 ϕ0 ϕ1 · · ·ϕK] is the J× (2K+1) ma-

trix with columns given by

ϕk :=


φk(x0)

...

φk(xJ−1)

 , and â(t) =



â∗K(t)
...

â∗1(t)

â0(t)

â1(t)
...

âK(t)


(6)

is a 2K +1 vector that contains the LS estimates of the Fourier coefficients of u(t,x).

Remark 1 The coefficients in â(t) are estimates because we assume a truncation to order K when

we specify problem (4). The truncation implies that âk(t) = 0 for |k|>K, while the true coefficients

ak(t) can be non-zero for any k.

Given the empirical estimates in Eq. (5) we construct a (truncated) slave system with Fourier

coefficients bk(t) that evolve over time according to the nonlinear set of ODEs

ḃk = bk
(
αω

2
0 k2 + iβω

3
0 k3 − γω

4
0 k4)− 1

2
ikω0

K

∑
ℓ=−K

bℓbk−ℓ+
K

∑
j=0

Dk j(â j −b j), k = 0, . . . ,K, (7)

subject to bk(t) = 0 for |k| > K and bk(t) = b∗−k(t) for every k. The first two terms in (7) mimic

the master model of Eq. (3), and
{

Dk j ∈ C : k, j ∈ {0, . . . ,K}
}

are the coefficients of a (K+1)×
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(K + 1) coupling matrix that we denote as D. We assume identical parameters (α,β ,γ) in the

master and slave models for the moment.

The field of the slave system is constructed from the Fourier modes obtained via Eq. (7),

namely,

vK(x, t) :=
K

∑
k=−K

bk(t)φk(x)

for t ∈ [0,T ] and periodic boundary condition vK(t,x) = vK(t,x+X). Since bk(t) = b∗−k(t) for

k =−K, . . . ,−K, it follows that the signal is real, i.e., vK(t,x) ∈ R.

Remark 2 Truncation of the Fourier modes amounts to a spatial discretization. If we let v(x, t) :=

limK→∞ vK(t,x) be the limit field generated by the slave model, then the signal v(t,x) may display

small-scale spatial effects which are not present in the truncation approximation vK(t,x) if K is

too small. If those small-scale effects are of interest, one needs to increase K in order to obtain a

finer spatial resolution.

C. Identical synchronization

Assume that the master system is integrated numerically using a truncation scheme similar to

the slave model. To be specific, assume that u(t,x)≈ uM(t,x), where

uM(t,x) :=
M

∑
k=−M

āk(t)φk(x), (8)

and the coefficients āk(t) evolve over time according to the set of ODEs

˙̄ak = āk
(
αω

2
0 k2 + iβω

3
0 k3 − γω

4
0 k4)− 1

2
ikω0

M

∑
ℓ=−M

āℓāk−ℓ, , (9)

for k = 0, . . . ,M, subject to āk(t) = 0 for |k| > M and āk(t) = ā∗−k(t) for all k, so as to guarantee

that uM(t,x) ∈ R. We remark that the Fourier coefficients in (2) and (8) are different, in general,

for finite K, hence the notation āk(t) for the approximation versus ak(t) for the true master system.

We are interested in the synchronization error between the master and slave models, which we

denote as

E (t,x) := uM(t,x)− vK(t,x), t ∈ [0,T ], x ∈ R. (10)

It is relatively simple to show that, when the truncation order is the same in the two models

(K = M) and we choose a suitable coupling matrix D, E (t,x)→ 0 for all x provided that the initial
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conditions uM(0,x) and vK(0,x) are sufficiently close. This is the notion of local synchronization

as defined, e.g., in [38]. The proposition below provides a precise statement and a formal proof of

this result.

Proposition 1 Assume that the observations of the master system are u(t,x j) = uM(t,x j), for j =

0, . . . ,J−1, and J ≥ 2M+1. If

(i) |u|∞ := supx∈R;t∈[0,T ] |uM(t,x)|< ∞,

(ii) K = M and

(iii) D = DI , where I is the identity matrix and D ∈ R+,

then the synchronization error field has a stationary point at E (t,x) = 0 whenever D is sufficiently

large.

Proof: Since K = M, the observations have the form uK(t,x j), j = 0, . . . ,J − 1. The assumption

J ≥ 2M + 1 ensures that Eq. (5) yields the coefficients āk exactly, i.e., âk = āk for k = 0, . . . ,K,

with āk = 0 when |k|> K and āk = ā∗−k for all k.

Let us denote b(t) :=
[
b∗0(t), . . . ,b

∗
K(t)

]H and ā(t) :=
[
ā∗0(t), . . . , ā

∗
K(t)

]H . Then, the systems of

ODEs (9) and (7) yield, respectively,

˙̄a = Ψ(θ,ω0)ā− 1
2

iω0η(ā), (11)

ḃ = Ψ(θ,ω0)b−
1
2

iω0η(b)+D (ā−b) , (12)

were θ = [α,β ,γ]⊤ is the 3×1 parameter vector, Ψ(θ,ω0) is a (K+1)× (K+1) diagonal matrix

with k-th diagonal entry [Ψ]kk = αω2
0 k2 + iβω3

0 k3 − γω4
0 k4 and η(c) is a (K + 1)× 1 vector for

which the k-th entry is [η(c)]k = k ∑
K
ℓ=−K cℓck−ℓ.

If we define

ek(t) := āk(t)−bk(t) and e(t) := [e∗0(t), . . . ,e
∗
K(t)]

H ,

and then subtract (12) from (11), we obtain the system of ODEs

ė= χ(e), (13)

where χ(e) := (Ψ(θ,ω0)−D)e− 1
2 iω0 (η(ā)−η(ā−e)). It is apparent from Eq. (10) that the

synchronization error admits a Fourier series representation with coefficients ek(t),

E (t,x) =
K

∑
k=−K

ek(t)φk(t), (14)
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hence the field E (t,x) has a stationary point at E (t,x) = 0 if, and only if, the ODE (13) has a

stationary point at e(t) = 0. In order to prove that e(t) = 0 is a stationary point it is sufficient to

show that the Jacobian of χ(e), denoted Jχ(e), is negative definite at e= 0, i.e., Jχ(0)≺ 0 [40].

Some straightforward calculations show that

Jχ(e) =Ψ(θ,ω0)− iω0Q(ā,e)−D,

where the matrix Q(ā,e) is

Q(ā,e) =



0 0 · · · 0

ā1 − e1 ā0 − e0 · · · ā1−K − e1−K

ā2 − e2 ā1 − e1 · · · ā2−K − e2−K
...

... . . . ...

āK − eK āK−1 − eK−1 · · · ā0 − e0


.

Assumption (i) in the statement of Proposition 1 implies that supk,t |āk(t)| < ∞ which, in turn,

implies that there exists some real constant Do < ∞ such that, for every D > Do,

Jχ(0) =Ψ(θ,ω0)− iω0Q(ā,0)−DI ≺ 0.

□

Remark 3 The coupling matrix D can be chosen to be non-diagonal and still obtain local syn-

chronization. Simply note that Eq. (13) has a stationary point at e(t) = 0 whenever Ψ(θ,ω0)−

iω0Q(ā,0)−D is negative definite.

Remark 4 We have introduced the coupling term D(â−b), that leads to synchronization, in the

ODE of the Fourier coefficients (12). The synchronization schemes in [30, 33, 34] are similar but

the coupling is introduced as an additional term directly in Eq. (1).

The study of synchronization schemes for chaotic models based on a diffusive term (often called

‘nudging’ in the context of data assimilation [28, 30]) can be traced back to the 90s, with the

seminal paper by Pecora and Carroll [41].

D. Numerical results

Proposition 1 guarantees that the slave system attains identical synchronization with the mas-

ter system only when their initial conditions are sufficiently close. Our computer experiments,
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(a) uK(t,x) (b) vK(t,x)

(c) E (t,x) = uK(t,x)− vK(t,x)

Figure 1: (a) Real signal uK(t,x) generated by the master model, with K = 32 Fourier modes

(2K +1 = 65 coefficients), T = 100 and X = 120. (b) Real signal vK(t,x) generated by the slave

model with the same values of K, T and X , and a coupling constant D = 1. (c) Synchronization

error. We see how the large error at time t = 0 due to the different initializations of the two

systems vanishes quickly.

however, show that the scheme is robust and synchronization is achieved even when the initial

conditions are significantly apart. These numerical results are discussed below.

Figure 1 shows the results of a computer simulation of the master and slave models with

M = K = 32 Fourier modes, a time horizon of T = 100 time units, a spatial period X = 120

and parameter values α = 1.15, β =−0.05 and γ = 0.98. Observations are collected at positions

x j = j for j = 0, . . . ,X − 1, hence J = X = 120 > 2K + 1 = 65. Numerical integration has been

carried out using an Euler scheme with (sufficiently small) time step h = 0.005, but higher order
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methods can obviously be used as well –the setting described in this section does not preclude the

use of any numerical scheme. The coupling matrix for this simulation is D = DI with D = 1.

The Fourier coefficients of the slave model are initialized as b−1(0)= b1(0)= 0.5 and bk(0)= 0

otherwise. In order to have a significantly different initialization in the master model, we run a

simulation of the KS equation with coefficients ãk(t) and the same initialization as in the slave

model, i.e., ã−1(0) = ã1(0) = 0.5 and ãk(0) = 0 for |k| ≠ 1. Then we record the coefficient values

at time T = 100 and use them as an initial condition for the master system, i.e., āk(0) = ãk(T ).

This procedure yields very different initial values of the master and slave Fourier coefficients and

it also removes any transient regimes in the simulation of the master model.

Figure 1a shows the signal uK(t,x) generated by the master model for t ∈ [0,100] and x ∈

[0,120), while Figure 1b displays the field vK(t,x) that results from the integration of the slave

model. We observe the space-time patterns typical of the KS equation and the quick synchro-

nization of the slave system. Indeed, Figure 1c displays the synchronization error E (t,x) =

uK(t,x)− vK(t,x) and we see that, even if the initial conditions of the master and slave models

differ very significantly (observe the large errors at time t = 0), E (t,x) becomes negligible within

a short time interval.

Figure 2 enables a more accurate assessment of the synchronization error and its convergence.

In particular, Figure 2a shows the normalized mean square error (MSE)

Ē 2(t) :=
∫ X

0 E 2(t,x)dx∫ X
0 u2

K(t,x)dx
, (15)

versus time t. We observe how the normalized MSE decreases exponentially fast (notice the

logarithmic scale of the vertical axis) and Ē 2(t)< 10−10 already before t = 20.

Figure 2b shows again the normalized MSE Ē 2(t) versus time for different choices of the

coupling coefficient D. In physical terms, the normalized error in (15) is the power of the error

signal relative to the power of the master signal. We observe how the coupling strength affects

the synchronization rate but not the steady-state (normalized) error, which is below 10−30 for

D = 1,5,10 and still converging at time t = 100 for D = 0.5. We also see how the coupling

constant D = 0.1 is too small to lead to synchronization.

Finally, we assess the normalized MSE and the synchronization rate when the observations

are noisy. To be specific, we run a set of simulations where the observations fed to the slave

model are of the form uK(t,x j)+w j(t), and the noise terms w j(t) are independent white Gaussian

processes with mean 0 and power spectral density Sw(iω)≈ 0.15. We observe that, in the presence

12



0 20 40 60 80 100

10
-30

10
-20

10
-10

10
0

(a) (b) (c)

Figure 2: (a) Exponentially-fast convergence Ē 2(t)→ 0 of the normalized MSE. Noiseless data

and D = 1. (b) Convergence of the normalized MSE Ē 2(t)→ 0 for different choices of the

coupling constant D > 0 and noiseless data. (c) Convergence of the normalized MSE for different

choices of D > 0 and noisy observations. Identical parameters (α,β ,γ) = (1.15,−0.05,0.98) in

both the master and slave models.

of noise, the slave model still synchronizes more quickly as we increase the coupling coefficient

D. However, the steady-state normalized MSE is higher for D ∈ {5,10} when compared to D ∈

{0.5,1}. From this simulation, the best choice of coupling parameter is D = 1, which yields a

steady-state error Ē 2(t)≈ 10−4 already for t > 7.

III. PARAMETER ESTIMATION

Let us assume hereafter that the parameters θ = [α,β ,γ]⊤ of the master model are unknown

and we wish to estimate them from the observations u(t) = [u∗(t,x0), . . . ,u∗(t,xJ−1)]
H described

in Section II B and the corresponding Fourier coefficients â(t) in Eq. (4), which are collected for

t ∈ [0,T ].

The synchronization property of the KS slave model described in Section II can be used to

estimate θ. To be specific, let θ̂ =
[
α̂, β̂ , γ̂

]⊤
be the parameters of the slave model. We have

shown that, when θ̂ = θ, the slave system synchronizes and the error E (t,x) vanishes. However,

the synchronization error can be written as the Fourier series in Eq. (14), where the coefficients

ek(t) = âk(t)− bk(t) depend on θ̂ through bk(t). Following [26, 27], we argue that if the slave

parameters θ̂ are adapted over time in order to make |ek(t)| → 0, then the slave model attains

identical synchronization, which can only be expected when θ̂ → θ.

In Section III A we extend the slave model to account for the observation-driven adaptation of
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the parameters θ̂(t) over time. Then, in Section III B, we present and discuss a set of numerical

results that illustrate the validity of the method and its robustness when the observed data are noisy

or the truncation order K is underestimated.

A. Slave model

We extend the slave model (12) by letting the parameters in θ become dynamical variables.

Specifically, the ODE governing the dynamics of the Fourier coefficients of the slave system is

ḃ=Ψ(θ̂,ω0)b−
1
2

iω0η(b)+D (â⊤−b) , (16)

where

θ̂(t) =


α̂(t)

β̂ (t)

γ̂(t)

 and â⊤(t) =


â0(t)

...

âK(t)


is a truncated version of â(t) in Eq. (6) that contains the last K +1 entries of the original vector.

Recall that âk(t) = āk(t) only when we assume the master model is truncated to M = K modes,

otherwise (if there is no truncation or M ̸= K) âk(t) ̸= āk(t) in general.

We let the time evolution of the parameters θ̂(t) be driven by the mean power of the syn-

chronization error E (t,x), denoted E 2(t) = 1
X
∫ X

0 E 2(t,x)dx. Since E (t,x) has the Fourier series

representation in Eq. (14), Parseval’s relation yields

E 2(t) =
K

∑
k=−K

|ek(t)|2 =
K

∑
k=−K

|âk(t)−bk(t)|2

which, since âk(t) = â∗−k(t) and bk(t) = b∗−k(t), can be rewritten as

E 2(t) = |â0(t)−b0(t)|2 +2
K

∑
k=1

|âk(t)−bk(t)|2.

The complexity of the slave model can be reduced if we adopt a slightly different synchronization

error function, namely,

C (t) :=
K

∑
k=0

|ek(t)|2 = ∥e(t)∥2 = ∥â⊤(t)−b(t)∥2, (17)

where e(t) = â⊤(t)− b(t). The difference between E 2(t) and C (t) is a scale factor and the

contribution of the 0-th Fourier mode, namely,

C (t) =
1
2
(
E 2(t)+ |â0(t)−b0(t)|2

)
.
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Most importantly, C (t) = E 2(t) = 0 if, and only if, âk(t) = bk(t) for all k ∈ {−K, . . . ,K}. Hence,

we can adopt the cost function C (t) to quantify the synchronization error and complete the deriva-

tion of the slave model.

Let ∇θ̂C =
[

∂C
∂ α̂

, ∂C
∂ β̂

, ∂C
∂ γ̂

]⊤
denote the gradient of the synchronization error function with re-

spect to the parameter vector θ̂. In order to progressively reduce the power of the synchronization

error, we let the slave parameters evolve in the direction opposite to the gradient of C , namely,

˙̂θ =−∇θ̂C . (18)

Unfortunately, there is no closed-form expression for ∇θ̂C and, hence, it is not possible to directly

use Eq. (18). In order to construct a practical slave system, we first approximate the error function

C (t) in terms of the parameters θ̂(t). This can be done if we linearize b(t) using a Taylor expansion

around b(t −h), where h > 0 is some small time step. From Eq. (12), it is straightforward to see

that the linearization yields

b(t) = b(t −h)+hḃ(t −h)+O(h2)

≈ b(t −h)+h
(
MH

h θ̂− 1
2

iω0η (b(t −h))+D (â(t −h)−b(t −h))
)
, (19)

where Mh = [m0 · · ·mK] is a 3× (K +1) complex matrix whose k-th column is

mk = b∗k(t −h)


ω2

0 k2

−iω3
0 k3

−ω4
0 k4

 , (20)

hence, comparing with Eq. (12), MH
h θ̂ =Ψ(θ̂,ω0)b(t −h).

Substituting the approximation (19) in (17) yields, after some lengthy but straightforward cal-

culations, an approximate gradient of the form

∇θ̂C (t) ≈ −hMh
[
â⊤(t)−b(t −h)−hḃ(t −h)

]
= −hMh

[
â⊤(t)−b(t −h)−h

(
MH

h θ̂− 1
2

iω0η (b(t −h))

+hD (â⊤(t −h)−b(t −h))
)]

. (21)

Finally, we combine approximation (21), for the gradient of the error, and (12), for the Fourier

coefficients b(t), to construct the slave model

˙̂θ = −µhMh
[
â⊤−bh −hḃh

]
, (22)

ḃ = Ψ(θ̂,ω0)b−
1
2

iω0η(b)+D (â⊤−b) , (23)
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where bh = b(t − h), ḃh = ḃ(t − h), µ > 0 is an adaptation rate parameter that can be chosen to

speed up or slow down the dynamics of θ̂(t). Tuning µ and D allows for a trade-off between the

time needed by the slave system to synchronize and the accuracy it achieves.

B. Numerical results

In this section we study, numerically, the ability of the slave model (22)-(23) to attain synchro-

nization with the master system (2), and yield accurate estimates θ̂(t), when the master parameters

θ = [α,β ,γ]⊤ are unknown.

1. Simulation setup

The simulation setup is similar to the computer experiments in Section II D. Figure 3 shows

the results of a simulation run with M = 64 Fourier modes in the master system and K = 64 modes

in the slave model (note that K modes implies 2K + 1 coefficients, b−K(t), . . . ,bK(t), however

bk(t) = b∗−k(t)). The length of the time interval is T = 100, the spatial period is X = 120 and

the parameter values in the master system are α = 1.15, β = −0.05 and γ = 0.98, which yield

chaotic dynamics. Observations are collected at positions x j =
j
2 for j = 0,1, . . . ,2X − 1, hence

J = 2X = 240 > 2K +1 = 129. The ODEs (2) and (22)-(23) are numerically integrated using an

Euler scheme with (a sufficiently small) time step h= 0.005 (but higher-order schemes can be used

as well). The Fourier coefficients of the master and slave models are initialized in the same way

as in Section II D, which yields a large error at time t = 0 (see Figure 3c). The initial parameter

values at the slave system are θ̂(0) = [0,0,0]⊤. The coupling matrix in (23) is D= DI with D = 1

and the adaptation rate is µ = 200.

2. Synchronization and parameter estimation

Figure 3a displays the field uK(t,x), t ∈ [0,T ], x ∈ [0,X ], generated by the master model, while

Figure 3b displays the signal vK(t,x) generated by the slave model. Figure 3c shows that the syn-

chronization error E (t,x) = uK(t,x)− vK(t,x) vanishes quickly despite the significantly different

initializations of the two models.

For the same simulation run as in Figure 3, Figure 4a shows that the normalized MSE, Ē 2(t)
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(a) uM(t,x) (b) vK(t,x)

(c) E (t,x) = uK(t,x)− vK(t,x)

Figure 3: (a) Real signal uK(t,x) generated by the master model, with M = K = 64

(2K +1 = 129 Fourier coefficients), T = 100 and X = 120. (b) Real signal vK(t,x) generated by

the slave model with the same values of K, T and X , coupling constant D = 1, initial parameter

values θ̂(0) = [0,0,0]⊤ and parameter adaptation rate µ = 200. (c) Synchronization error. We see

how the large error at time t = 0 due to the different initializations of the two systems vanishes

quickly.

as given in Eq. (15), decreases exponentially fast with time t. Recall that Ē 2(t) is the normalized

synchronization error between the master and slave systems. Figure 4b displays the parameter

estimation errors |α − α̂(t)|2, |β − β̂ (t)|2 and |γ − γ̂(t)|2 and shows that θ̂(t)→ θ exponentially

fast as well. Note that, while estimation is very accurate, the errors are still decreasing after

T = 100 time units.
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(a) Normalized error Ē 2(t).
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(b) Parameter estimation error

Figure 4: (a) Exponentially-fast convergence Ē 2(t)→ 0 of the normalized synchronization error

with coupling constant D = 1 and adaptation rate µ = 200. The initial parameter values in the

slave model are θ̂(0) = [0,0,0]⊤. The master parameters are θ = [1.15,−0.05,0.98]⊤. (b)

Squared estimation error for each of the unknown parameters in θ = [α,β ,γ]⊤.

3. Coupling strength and adaptation rate

The slave model can be ‘tuned’ by selecting different values of the coupling coefficient D and

the adaptation rate µ . This is illustrated in Figure 5. Specifically, Figure 5a shows the normalized

MSE, Ē 2(t), for several values of the coupling coefficient D when the adaptation rate is kept fixed

at µ = 200. We see that a weak coupling (D = 0.1) does not guarantee synchronization or leads to

slow convergence of the error (D = 0.2). Best results are obtained with D = 0.5 or D = 1, while

further increasing the coupling strength results in slower convergence (unlike the results in Section

II D with known parameters).

Next, we fix the value of the coupling coefficient to D = 0.5 in order to study the effect of

varying the adaptation rate µ . Figure 5b shows the evolution of Ē 2(t) for several values of µ . We

observe that the smaller values (µ = 50, 100) yield a slow decrease of the MSE. Increasing the

adaptation rate to µ = 200 significantly improves the convergence speed, but further increments

(µ = 30, 400, 800) do not result either in better accuracy or faster convergence.

18



(a) Normalized error Ē 2(t) with µ = 200. (b) Normalized error Ē 2(t) with D = 0.5.

(c) Ē 2(t) with µ = 200 and noisy data. (d) Ē 2(t) with D = 0.5 and noisy data.

Figure 5: (a) Normalized synchronization error Ē 2(t) for different values of the coupling

strength (D) with adaptation rate µ = 200. The initial parameter values in the slave model are

θ̂(0) = [0,0,0]⊤. (b) Ē 2(t) for different values of the adaptation rate (µ) with coupling strength

D = 0.5. (c) Ē 2(t) for different values of the coupling strength (D) with adaptation rate µ = 200

and noisy data. (d) Ē 2(t) for different values of the adaptation rate (µ) with coupling strength

D = 0.5 and noisy data. The average SNR in the observations of plots (c) and (d) is 12 dB.

4. Noisy observations

For the remaining computer experiments we assume that the observed data from the master

system are contaminated with Gaussian noise.

First, we have repeated the simulations of Figures 5a and 5b with noisy data. Specifically,

we assume that the observations received at the slave model are of the form uK(t,x j) +w j(t),

j = 0, . . . ,J−1, where the noise terms w j(t) are independent white Gaussian stochastic processes
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with power spectral density Sw(iω) ≈ 0.17, which corresponds to a signal-to-noise ratio (SNR)

of 12 dB. Figure 5c displays the normalized synchronization error Ē 2(t) for several values of

the coupling strength D when the adaptation rate is kept fixed at µ = 200. We see that small

coupling (D = 0.1,0.2) does not lead to synchronization; D = 0.5,1 yield similar results, with fast

convergence and an error floor (due to the observation noise) below 10−4. Increasing the coupling

strength further (D = 2,5) still yields synchronization, but the error is higher. Figure 5d shows the

normalized error Ē 2(t) when D = 0.5 is fixed and the adaptation rate parameter µ takes values

between 50 and 800. In this case, we observe that a small rate (µ = 50) yields slow convergence

of the error, although synchronization is attained after approximately 70 time units. For µ ≥ 50,

the performance is similar for all values. Slightly faster convergence to the synchronized state is

obtained for µ = 200,300,400, but the error floor is very similar for µ = 100,800 as well.

5. Number of Fourier modes

Figure 6 shows the results of a set of computer experiments designed to study the effect of

underestimating the number of coefficients K needed in the slave model. To this end, we generate

the signal in the master system uM(t,x) using, again, M = 64 Fourier modes and then run slave

models with order K = 32,34, . . . ,66. The coupling strength and the adaptation rate in all the

slave models are D = 0.5 and µ = 200, respectively. For all the simulations in this figure we have

assumed that the observations are perturbed with white Gaussian noise with power spectral density

Sw(iω)≈ 0.17 (average signal-to-noise ratio 12 dB). The results are averaged over 100 simulation

runs, where the noise in the observations is generated independently for each run (while all other

simulation parameters are kept the same).

Figure 6a shows the synchronization error versus the order K of the slave model. The error

is an average over the interval
[4

5T,T
]

of the normalized MSE Ē 2(t), i.e., Ē 2 := 5
T
∫ T

4T
5

Ē 2(t)dt.

We observe how the synchronization error decreases consistently from K = 32 up to K ≈ 54 and

then stays approximately flat. This indicates that, even if the master model has Fourier modes

up to order M = 64, K ≈ 54 modes are sufficient to design a slave model that attains identical

synchronization and yields accurate parameter estimates –this is coherent with early results on the

existence and computation of inertial manifolds for the KS equation [42]. In particular, Figure

6b shows the evolution of the error Ē 2(t) versus time for K = 32,38,54,64. We observe that the

synchronization error is nearly the same for K = 54 and K = 64, and two orders of magnitude
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(a) Averaged normalized error for

M = 64 and K = 32, . . . ,66.

Noisy data.
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(b) Ē 2(t) vs. time for M = 64 and

K = 32,38,54,64. Noisy data.
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(c) Parameter estimation error

with M = 64 and K = 64. Noisy

data.
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(d) Parameter estimation error

with M = 64 and K = 54. Noisy

data.

0 20 40 60 80 100
10

-6

10
-4

10
-2

10
0

(e) Parameter estimation error

with M = 64 and K = 32. Noisy

data.

Figure 6: (a) Average over the interval t ∈
[4T

5 ,T
]

of the normalized MSE, 5
T
∫ T

4
5 T Ē 2(t)dt, for

K = 32, . . . ,64 in the slave model. The master model is implemented with M = 64. The coupling

strength is D = 0.5 and the adaptation rate is µ = 200. The initial parameter values in the slave

model are θ̂(0) = [0,0,0]⊤ and the master parameters are θ = [1.15,−0.05,0.98]⊤. The

observations are contaminated with Gaussian noise (the average SNR is 12 dB). The error is

almost equally small for all K ≥ 54. (b) Ē 2(t) for K = 32,38,54,64 for the same set of

simulations. (c) Normalized quadratic parameter estimation error for the three model parameters,

θ = [α,β ,γ]⊤, when K = 64. (d) Normalized quadratic parameter estimation error when K = 54.

(e) Normalized quadratic parameter estimation error when K = 32.

smaller than the error for K = 32. We point out, nevertheless, that Ē 2(t) is normalized hence, even

for K = 32, the power of the actual error is just ≈ 1% of the power of the master signal uM(t,x).

Figures 6c, 6d and 6e show the normalized squared estimation error for the parameters in
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θ = [α,β ,γ]⊤ when K = 64 (Fig. 6c), K = 54 (Fig. 6d) and K = 32 (Fig. 6e), respectively. Again,

we see that the estimation error is almost the same with K = 64 and K = 54, while it is significantly

higher for K = 32. Nevertheless, we again point out that these are normalized errors and, even for

K = 32, they are around or below 1% for most of the simulation interval.

6. Comparison with other methods

Most methods for parameter estimation in the KS equation are offline [16–19, 21, 43]. They

are designed for a different setup (possibly with scarce observations) and have a much higher

computational cost than the online scheme introduced in Section III A. Comparisons should be

carried out with other online methods.

The most similar scheme is the one by Pachev et al. [30]. The computational cost of both

Pachev et al.’s method and the proposed scheme is dominated by the computation of the convo-

lution b̃k = ∑
K
ℓ=−K bℓbℓ−k (see Eq. (7)), which has complexity O(K logK). However, Pachev et

al.’s method requires the computation of time derivatives of the master signal (i.e., either ut(t) or

ât(t)), which are hard to compute in the presence of observational noise. Equations (22) and (23)

involve â alone (and not its derivative ât) which makes the proposed method directly applicable

(and robust, as shown in Sections III B 4 and III B 5) with noisy observations.

Within the class of statistical methods, a comparison can be carried out with the unscented

Bucy-Kalman filter (UBKF) [44]. This is an online method that can be used to approximate the

conditional mean and covariance matrix of the (M+4)×1 extended state vector s(t) =

 θ

ā(t)


at any time t, given the observations u(τ), 0 < τ ≤ t. The UBKF relies on a quadrature or cubature

scheme to approximate the nonlinearity of the KS equation. While other possibilities exist [45, 46],

we have employed a spherical-radial cubature rule of degree 3 [45] which uses L = 2(M + 4)

reference points. These L points are deterministically computed and they have to be propagated

across the KS equation (in the same vein as one would do with a Monte Carlo method) for each

step of the numerical integration scheme applied to the system of ODEs in (9).

The UBKF is one of the simplest statistical methods that can be applied to the parameter es-

timation problem for the KS equation, and yet its computational cost is much higher than the

synchronization-based technique of Section III A or the method by Pachev et al. [30]. To be

specific, both the UBKF and the proposed method have O(T ) complexity (they are both online),
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however the number of computations at each step of the Euler scheme is O(K logK) for the pro-

posed method versus O(K2 logK) for the UBKF (assuming M = K Fourier modes in both cases).

Also, the processing of the a J×1 observation vector u(t) takes O(J) operations for the proposed

method, versus O(J3) for the UBKF.

We have compared numerically the performance of the synchronization-based method given

by Eqs. (22)-(23) with the UBKF algorithm within the same setup of Section III B 4. The UBKF

is implemented as described above, with M = 64 and L = 2(M + 4) = 268 reference points. We

assume K = M = 64 in the slave model for the synchronization-based method.

Some results of the comparison are displayed in Figure 7. Specifically, Figure 7a shows the nor-

malized synchronization error Ē 2(t) attained by the proposed method and the UBKF. We observe

that the UBKF converges more quickly, however the steady-state error of the proposed technique

is one order of magnitude smaller. Both curves have been averaged over 20 independent simula-

tion runs. With our code (running with Matlab R2023b on a MacBook Pro laptop with 64GB of

memory and Apple M2 Max processor), the average run time of the synchronization-based method

is ≈ 3 s for T = 100 and h = 0.005, versus ≈ 300 s for the UBKF in the same setup (this can be

reduced by parallelization, though).

For the same set of simulations, Figures 7b, 7c and 7d show the normalized parameter estima-

tion error for α , β and γ , respectively. Again, we see that convergence is faster for the UBKF but

the synchronization-based method is more accurate, with errors at least two orders of magnitude

smaller for all three parameters.

Remark 5 We have compared the signal and parameter estimates directly in Figure 7. It should

be noted that the UBKF also yields a covariance matrix for these estimates.

7. Dynamical regimes

All the simulations presented so far correspond to the same set of parameter values θ =

[1.15,−0.05,0.98], which yield a chaotic regime for Eq. (1). Figure 8 shows some illustrative

results for different parameter sets, leading to different regimes of the KS equation.

As shown in [15], for fixed α = γ = 1, the dynamics of the KS equation shift from chaotic

to periodic as the parameter β is increased. Figures 8a, 8b and 8c display the space-time plot of
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(a) Ē 2(t) vs. time for the UBKF and
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(b) Normalized parameter estimation error

vs. time. Parameter α
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(c) Normalized parameter estimation error

vs. time. Parameter β
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(d) Normalized parameter estimation error

vs. time. Parameter γ

Figure 7: (a) Normalized MSE Ē 2(t) versus time for the UBKF with 2(K +4) sigma-points and

the proposed synchronization-based method with M = K = 64 Fourier modes. (b, c, d)

Normalized parameter estimation errors versus. Observations are noisy, with average

signal-to-noise ratio 12 dB. The coupling strength and adaptation rate are D = 0.5 and µ = 200,

respectively. The true parameters are θ = [1.15,−0.05,0.98], the initial values in the UBKF are

θ̂(0) = [0.05,0.05,0.05]⊤ and in the slave model are θ̂(0) = [0,0,0]⊤. The results are averaged

over 20 independent simulations.

the field u(t,x) for T = 100 and X = 120 when β = 0, β = 0.2 and β = 0.8, respectively. We

have run the synchronization-based method with M = K = 64 for each of these three scenarios

and we present the average normalized synchronization error Ē 2(t) (Figures 8d, 8e and 8f) and

the evolution of the parameter estimates (Figures 8g, 8h and 8i). We observe that convergence and

accuracy are similar in all three cases (just slightly faster for β = 0.8).
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(a) Master signal with β = 0. (b) Master signal with β = 0.2. (c) Master signal with β = 0.8.
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(d) Synchronization error with

β = 0.
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(e) Synchronization error with

β = 0.2.
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(f) Synchronization error with

β = 0.8.

(g) Parameter errors with β = 0. (h) Parameter errors with β = 0.2. (i) Parameter errors with β = 0.8.

Figure 8: (a, b, c) Master signal with α = γ = 1 and β = 0, β = 0.2 and β = 0.8, respectively.

(d, e, f) Normalized synchronization MSE Ē 2(t) versus time. (g, h, i) Parameter estimates versus

time. The master and slave models are implmented with M = K = 64 Fourier modes. The

coupling and adaptation rate parameters in the slave model are D = 0.5 and µ = 200,

respectively. Observations are noisy, with average SNR= 12 dB.

8. Synchronization-based control

Synchronization techniques can often be used for the implementation of control schemes [47]

and the KS model has received specific attention from the control theory community [48, 49]. For
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(a) Reference signal (observations). (b) Slave model.

Figure 9: Control experiment. (a) Reference signal passed as observations to the slave model.

(b) Slave model signal uK(x, t) with K = 64. The coupling strength and adaptation rate are

D = 0.5 and µ = 200, respectively. The initial parameter values are θ̂(0) = [0,0,0]⊤.

the proposed method, one can think of the slave model (22)-(23) as a controlled system, where

u(t,x) is an input signal (i.e., not necessarily generated by a KS equation), θ = [α,β ,γ]⊤ is the

control parameter and the aim is to make the slave signal vK(t,x) follow the reference input u(t,x).

We have carried out a simple computer simulation to test whether the slave model (22)-(23)

can be forced to follow an arbitrary input u(x, t). This is just an illustrative experiment; a proper

assessment of the proposed scheme in a control setup would require a detailed study.

The reference signal is depicted in Figure 9a. It is initialised at u(0,x) = 0 and then increases

smoothly to reach u(20,x) = 3 for all x ∈ [0,120); then u(t,x) = 3 for all t ≥ 20. The parameter

θ is initialised as θ̂ = [0,0,0]⊤ like in the previous experiments. Also, the coupling coefficient is

D = 0.5 and the adaptation rate is µ = 200. We set K = 64 Fourier modes in the slave system.

Figure 9b shows the signal vK(t,x) of the slave model implemented with Eqs. (22)-(23). We

observe how it reproduces the input signal accurately after a brief convergence period due to

the mismatch in the initialization. Further study of the proposed scheme in more elaborate (and

realistic) control problems is left for future work.
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IV. CONCLUSIONS

We have investigated the synchronization properties and the estimation of the constant param-

eters of a generalized Kuramoto-Sivashinsky (KS) equation in 1-dimensional space. We have

assumed the ability to collect observations over time from a master system with possibly unknown

parameters and then we have tackled the design of a slave model driven by the observations. We

have proved that, when the parameters of the slave model are fixed and identical to the master pa-

rameters, the slave system attains local identical synchronization. This is ensured by Proposition

1, which is a relatively simple result yet, to our best knowledge, not available in the previous liter-

ature on the KS equation. When the master parameters are unknown, the parameters of the slave

system are time-varying and driven by a (suitably designed) ODE that depends on the observations

and the Fourier coefficients of the slave model. We have conducted a detailed numerical study and

shown that synchronization and accurate parameter estimation can be achieved, for different dy-

namical regimes (chaotic or periodic), even when the observations are noisy and the number of

significant Fourier modes of the master system is underestimated.

The proposed scheme has turned out numerically robust to initialization errors (both in the

signal and the parameters) in our simulations and it is designed to be implemented online and to

estimate several parameters concurrently. Most statistical methods that have been aplied to the

KS model [16–19] are offline (i.e., observations are processed iteratively in batches, rather than

sequentially as they are collected) and they are computationally much more demanding. We have

also compared the proposed scheme with the unscented Bucy-Kalman filter [44] (a popular on-

line statistical estimation method for nonlinear systems) and found that the synchronization-based

technique is more accurate and, even in this case, computationally lighter. However, the synchro-

nization scheme requires continuous observation of the master system over a spatial grid (while

most statistical schemes can work with discrete data sets) and does not provide a quantification

of the expected error as Bayesian methods do. Compared to the scheme in [30], the proposed

methodology can be robustly applied with noisy observations and is easier to implement. This is

because it only demands the numerical integration of a relatively simple set of ODEs, while the

method in [30] requires the construction of an orthonormal basis and the solution of a system of

linear equations at each integration step.

Future work includes a stability analysis of the slave model with time-varying parameters,

the combination of the proposed scheme with ensemble-based methods for data assimilation, the
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extension of the methodology to other nonlinear PDEs or the design of control schemes. A sim-

ple, preliminary example of a controlled KS model forced to follow an ad hoc input signal has

been presented in Section III B 8. Relevant nonlinear PDEs with a structure similar to Kuramoto-

Sivashinsky’s include, e.g., the Kawahara [6], Benney-Lin [50, 51] or Nikolaevsky [52] equations.

These PDEs are similar enough to the KS model that the proposed methodology can be applied

along the same lines described in this paper. Additional research will be needed to extend the

stability analysis (possibly to a class of PDEs including these specific equations) and assess the

numerical performance of the resulting schemes.

ACKNOWLEDGMENTS

This work has been partially supported by the Office of Naval Research (award N00014-22-

1-2647) and Spain’s Agencia Estatal de Investigación (ref. PID2021-125159NB-I00 TYCHE)

funded by MCIN/AEI/10.13039/501100011033 and by “ERDF A way of making Europe".

DATA AVAILABILITY

The data that support the findings of this study are available within the article and its supple-

mentary material.

[1] Y. Kuramoto and T. Tsuzuki. Persistent propagation of concentration waves in dissipative media far

from thermal equilibrium. Progress of Theoretical Physics, 55(2):356–369, 1976.

[2] Y. Kuramoto. Diffusion-induced chaos in reaction systems. Progress of Theoretical Physics Supple-

ment, 64:346–367, 1978.

[3] D. M. Michelson and G. I. Sivashinsky. Nonlinear analysis of hydrodynamic instability in laminar

flames—II. numerical experiments. Acta Astronautica, 4(11-12):1207–1221, 1977.

[4] G. I. Sivashinsky. On flame propagation under conditions of stoichiometry. SIAM Journal on Applied

Mathematics, 39(1):67–82, 1980.

[5] Z. Kadry. Bifurcation of traveling waves in a liquid film with broken time-reversal symmetry. Physics

Letters A, 477:128895, 2023.

28



[6] J. Topper and T. Kawahara. Approximate equations for long nonlinear waves on a viscous fluid.

Journal of the Physical society of Japan, 44(2):663–666, 1978.

[7] T. Tatsumi. Irregularity, regularity and singularity of turbulence. In Turbulence and Chaotic Phenom-

ena in Fluids, pages 1–10, January 1984.

[8] R. Cuerno and A.-L. Barabási. Dynamic scaling of ion-sputtered surfaces. Physical Review Letters,

74(23):4746, 1995.

[9] N. A. Kudryashov. Exact solutions of the generalized Kuramoto-Sivashinsky equation. Physics Letters

A, 147(5-6):287–291, 1990.

[10] R. W. Wittenberg and P. Holmes. Scale and space localization in the Kuramoto–Sivashinsky equation.

Chaos: An Interdisciplinary Journal of Nonlinear Science, 9(2):452–465, 1999.

[11] C. Li and Z. Yang. Symmetry-breaking bifurcation in O(2)xO(2)-symmetric nonlinear large problems

and its application to the Kuramoto–Sivashinsky equation in two spatial dimensions. Chaos, Solitons

& Fractals, 22(2):451–468, 2004.

[12] C. D. Brummitt and J. C. Sprott. A search for the simplest chaotic partial differential equation. Physics

Letters A, 373(31):2717–2721, 2009.
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