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Abstract
Background: Ovarian cancer is the most lethal of all gynecological cancers. 
Cancer Antigen 125 (CA125) is the best-performing ovarian cancer biomarker 
which however is still not effective as a screening test in the general population. 
Recent literature reports additional biomarkers with the potential to improve on 
CA125 for early detection when using longitudinal multimarker models.
Methods: Our data comprised 180 controls and 44 cases with serum samples 
sourced from the multimodal arm of UK Collaborative Trial of Ovarian Cancer 
Screening (UKCTOCS). Our models were based on Bayesian change-point detec-
tion and recurrent neural networks.
Results: We obtained a significantly higher performance for CA125–HE4 model 
using both methodologies (AUC 0.971, sensitivity 96.7% and AUC 0.987, sensitiv-
ity 96.7%) with respect to CA125 (AUC 0.949, sensitivity 90.8% and AUC 0.953, 
sensitivity 92.1%) for Bayesian change-point model (BCP) and recurrent neural 
networks (RNN) approaches, respectively. One year before diagnosis, the CA125–
HE4 model also ranked as the best, whereas at 2 years before diagnosis no multi-
marker model outperformed CA125.
Conclusions: Our study identified and tested different combination of biomark-
ers using longitudinal multivariable models that outperformed CA125 alone. We 
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1   |   INTRODUCTION

Ovarian cancer is the most lethal of all gynecological can-
cers. When detected at early stage, the survival is much 
more encouraging (5-year survival of >93% for Stage I 
disease) than when diagnosed at an advanced stage (5-
year survival of 13% for Stage IV).1 Despite the exten-
sive efforts to improve treatment over the last 20 years, 
although there have been modest improvements in 
survival, these have not had a significant impact. The 
major efforts in detecting ovarian and tubal cancer have 
spanned decades. Screening trials using Cancer Antigen 
125 (CA125) interpreted using a cutoff have not shown 
any mortality benefit.2–4 Algorithm-based approaches to 
screening in the UK trial have demonstrated that longi-
tudinal CA125 can lead to earlier detection (stage shift 
with multimodal screening) with no impact on mortal-
ity from the disease.5 More recent data however suggest 
that there may be longer survival in women diagnosed 
with the most lethal subtype of ovarian cancer, the high-
grade serous cancers (HGSC) in the screened (multi-
modal group) compared to the control group. Since its 
identification in 1981, CA125 has been used in clinical 
practice and investigated in screening trials. Clinical de-
cisions have been made based on the patients' risk of 
having a change point in the serial CA125 with respect 
to their baseline. A statistical method to determine in 
a probabilistic way such a risk was developed (Risk of 
Ovarian Cancer Algorithm, ROCA).6,7 It has not been 
until more recently (despite many international efforts) 
that HE4 had been identified as the second-best marker 
in screening after CA125 (73% vs. 86% for CA125).8–12 
The efforts have since focused on exploring the value 
of a combination of CA125, HE4, and other promising 
markers in combination. Furthermore, p53 autoanti-
bodies have been shown to detect ovarian/tubal cancers 
in women with ovarian /tubal cancers which do not ex-
press CA125 (16% and many months prior to diagnosis, 
lead time of 22 months).13 The interpretation of multiple 
markers in longitudinal samples is challenging unless 
sophisticated mathematical modeling is applied. We 
have previously shown that a method of mean trends 

(MMT) algorithm has a comparable performance to the 
ROCA which was used in the UK trial (UK Collaborative 
Trial of Ovarian Cancer, UKCTOCS).14 Here, we extend 
the observation made in14–16 and describe a novel ap-
proach to interpretation of multiple markers in samples 
preceding diagnosis to assess if any of these can improve 
on sensitivity of the ROCA or offer potential advantage 
on lead time to detection of ovarian/tubal cancer.

2   |   METHODS

2.1  |  Change-point detection algorithm

2.1.1  |  Joint multivariable fully 
Bayesian model

Biomarker levels Yijk are modeled using a hierarchical 
Bayesian model (Figure  S1). Here, subject-specific vari-
ables are indexed by i = 1, 2, … ,n0,n0 + 1, … ,N, where 
n0 is the number of controls and the remaining subjects 
account as cases. A specific biomarker is indexed by 
k = 1, 2, … ,K . Each patient i has a set of screening visits 
tij from zero up to time of last measurement di (in years), 
where j = 1, 2, … ,Ti.

Following the assumptions introduced in7 to model the 
cancer progression based on fully Bayesian screening, the 
longitudinal observations of biomarkers vary based on the 
nature of the patient. For control patients, the biomarker 
levels are expected to randomly fluctuate around a con-
stant mean �ik. That is expressed as Yijk = �ik + �ijk , with 
�ijk ∼ N

(
0, �2

k

)
. For cases, we define a binary indicator 

Iik to distinguish between two different model assump-
tions in the evolution of biomarkers. If Iik = 0, then we 
assume that the marker level does not increase after the 
onset of cancer and follows the same behavior modeled 
for controls. If Iik = 1, the marker levels vary around a 
mean �ik until an unobserved change-point time, de-
fined by � ik. From this change point, we expect a positive 
slope � ik of the biomarker levels up to diagnosis. That is 
Yijk = �ik + � ik

(
tij−� ik

)+
+ �ijk where (. )+ is the positive 

part of the expression.

showed the potential of multivariable models and candidate biomarkers to in-
crease the detection rate of ovarian cancer.

K E Y W O R D S

CA125, change-point detection, longitudinal biomarkers, ovarian cancer, recurrent neural 
networks
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Let S =
{
�ik, Ii, ���

(
� ik

)
, � ik

}
 be the set of subject-

specific parameters. Thus, the probability density 
function of the observations conditional on the set of 
parameters  is

where Y denotes the set of values Yijk, t the set of screening 
times tij for each patient, and � is the standard normal prob-
ability density function.

A key feature of the Bayesian hierarchical model 
that we adopt in this paper is the statistical depen-
dence among the levels of different biomarkers, fol-
lowing the methodology proposed by.17 This element 
is now compared to earlier work in.7,15,16 Dependence 
is explicitly introduced for the binary indicators 
Ii =

{
Iik
}
k=1,…,K, which are assumed to form a Markov 

random field (MRF). Their joint probability mass func-
tion (pmf) has the form

where R is an upper triangular matrix weighted by a 
coupling coefficient �I. The parameter �I controls the 
sparsity of the model, given that not all biomarkers may 
increase during the onset of disease. From Expression 
(2), it follows that the probability of a change point in 
the level of the biomarker k for patient i given all the 
other markers is

where F
�
Iik
�
= �I + �I

∑
k≠k�

Iik�. According to Equation (3), 

a change point in one biomarker, for example Iik = 1, im-
plies an increase of the probability of having a change 
point in the remaining biomarkers whenever 𝜂I > 0. If we 
set �I = 0 , then the biomarkers are independent (decou-
pled), and the probability of a change point for each single 
biomarker is reduced to a Bernoulli distribution with a 
mean parameter of 1∕

(
1 + exp

(
− �I

))
.

The mean level for the i-th patient and k-th biomarker 

is assumed Gaussian, �ik ∼ N
(
��k, �

2
�k

)
, where ��k is itself 

Gaussian,

The variance �2
�k

 an inverse gamma distribution,

The hyperparameters 
(
�0k , �

2
0k
, a�k, b�k

)
 in (4) and (5) 

are assumed deterministic. The binary indicators Ii fol-
low a Markov random field distribution, Equation  (2), 

which we denote as Ii ∼MRF(�), where � =
(
�I , �I

)
. 

Following,4,7,16 approximately 15% of the patients with 
ovarian cancer do not show an increment in CA125 
levels. In the absence of coupling, we assumed that the 
logistic transformation of �I follows a Beta prior distri-
bution with a mean of 0.85 and a standard deviation of 
0.05. This accounts for the proportion of cases we expect 
to exhibit a change point. In this work, we assume that 
all the biomarkers under consideration follow the same 
rate. Similarly, we assumed a Beta prior distribution for 
the parameter �I, as in.17

Individual random effects for the rate log(� ik) are as-
sumed to follow an independent normal distribution 
log(� ik) ∼ N

(
��k, �

2
�k

)
 where

The individual change point � ik is modeled as a trun-
cated normal distribution as in,7

where the mean is centered at ��k = 2 years and the variance 
is �2

�k
= 0.75. The distribution is truncated at 

[
di − �∗, di

]
, re-

flecting the preclinical duration, which is assumed to be of 
�∗ = 5 years.

Finally, the conditional variance of the k-th biomarker 
level, �2

k
 is assumed to follow an inverse gamma prior dis-

tribution IG (a, b) as in.15,16

From the description above, we define by 

 =
{
��k,��k,�I , �I , �

2
�k
, �2

�k
, �2

k

}
 as the set of parameters 

specific to each biomarker k. For a given set of observa-
tions Y = 

{
Yijk

}
, the likelihood of the parameters  and  

can be readily obtained from Equation (1). Thus, the like-
lihood function L(,) is Equation (1) for a given set of 
observations Y, that is

(1)P(Y| ; t) =
n0∏

i=1

K∏

k=1

Ti∏

j=1

�

(
Yijk − �ik

�k

)
×

N∏

i=n0+1

K∏

k=1

Ti∏

j=1

�

(
Yijk−�ik

�k

)1−Iik

�

(
Yijk−�ik−� ik

(
tij−� ik

)+

�k

)Iik

(2)P
(
Ii
)
∝ exp

{
�I

∑K

k=1
Iik + �I

(
IT
i
RIi

)}

(3)P
{
Iik | Iik�: k ≠ k�

}
=

exp
{
IikF

(
Iik
)}

1 + exp
{
F
(
Iik
)}

(4)��k ∼ N
(
�0k , �

2
0k

)

(5)�2
�k

∼ IG
(
a�k, b�k

)

(6)exp
(
�I

)
∕
(
1 + exp

(
�I

))
∼ Beta

(
p1, p2

)

(7)�I ∼ Beta
(
p3, p4

)

(8)μ�k ∼ N
(
�1k , �

2
1k

)

(9)�2
�k

∼ IG
(
a�k, b�k

)

(10)� ik ∼ TN[di−�∗,di]
(
di − ��k, �

2
�k

)

 20457634, 2024, 7, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/cam

4.7163 by U
niversidad R

ey Juan C
arlos C

/T
ulipan S/N

 E
dificio, W

iley O
nline L

ibrary on [10/04/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



4 of 14  |      ABREGO et al.

If we let P0(,) denote the a priori probability of the 
model parameters, as described through Equations (2–9), 
the a posteriori probability distribution of  and  given 
the data Y has the form

This posterior distribution contains all the statistical 
information relevant for the model. Below, we discuss 
methods for the numerical approximation of PY(,). 
The hyperparameter values are chosen following clinical 
considerations discussed in7,15,16 (Table S1).

2.1.2  |  Procedure

The posterior distribution of all the unknown parameters 
can be approximated using a Markov chain Monte Carlo 
(MCMC) algorithm, following the procedure proposed 
and described in full detail in.17 Here, we highlight the 
main considerations for the iteration process. First, the 
choice between the types of sampling is based on whether 
the full conditional distributions can be easily calculated 
or not. For the biomarker-specific parameters, the poste-
rior distribution for the subset of parameters {
�2
k
,��k, �

2
�k
,��k, �

2
�k

}
 can be obtained using Gibbs sam-

pling at each step of the iteration. In addition, {�I , �I} are 
determined from Metropolis–Hasting sampling.

For the subject-specific parameters, �ik, we use a Gibbs 
sampler. To get draws from the full conditionals of Iik, � ik, 
and � ik, we use a reversible-jump step.18 This comes from 
the construction of the change-point parameter: Iik pro-
vides either �ik for Iik = 0 (for i = 1, 2, … ,N) or {�ik, � ik, � ik
} for Iik = 1 (for i = n0 + 1, …, N).

Initialization
For each parameter in , we draw an initial sample from 
its a priori distribution (similarly, for each patient and 
each parameter in ). We initialize the MCMC iteration 
by sampling from the priors of the model parameters 
(Table  S1). Then, we estimate the posterior accordingly 
using MCMC as described above in this subsection.

Iteration
In this paper, we generate two independent chains, each 
with different initial values, to assess the convergence to 
the same stationary distribution for each unknown pa-
rameter using trace plots. We also ensured convergence 

using the Gelman–Rubin statistic. For each chain and 
unknown parameter, we simulate 40,000 samples with a 
burn-in period fixed at 5000 samples. The remaining sam-
ples from the two chains are combined to generate 70,000 
samples in total. These were used for the calculation of 
the average of the joint probabilities to get an estimate of 
P
((
Yi1k , … ,Yijk

)
| oi

)
 for each patient at each screening 

time and biomarker k. Here, oi = {0, 1} indicates whether 
the patient i is a control or has ovarian cancer.

Screening
The screening methodology in a N ′ patient from a testing 
cohort is based on the computation of the posterior prob-
ability of ovarian cancer oN ′, P

(
oN � = 1|YN�

)
. The variable 

YN′ denotes the longitudinal time series of different bio-
markers for the patient up to time tij, that is, the sequence 
YN� =

{
YN�(j�,k): j

� = 1, 2, … , j; k = 1, 2, … ,K
}
.

where P
(
oN ′

)
 is the prior prevalence estimated from pop-

ulation data (Annual Incidence of Ovarian Cancer in the 
United Kingdom by 5-year age group, 2016–201819), and 
P
(
YN′ | oN ′

)
 is estimated from the posterior predictive dis-

tribution for the N ′ patient at each screening time using 
the training data of N patients. Algorithm implementa-
tion was developed in RStudio, using the supporting codes 
provided by.17

2.2  |  Recurrent neural networks

Each subject, either a patient with ovarian cancer or a con-
trol, has a sequence of different measurements of biomark-
ers (CA125, HE4, and glycodelin) taken at different ages. 
For the i-th patient, the biomarker level k = 1, 2, … ,K 
is expressed by the sequence Yi1k ,Yi2k , … ,YiTik. These 
measurements are collected at ages ti1, ti2, … , tiTi, for all k.

We propose to use recurrent neural networks (RNNs) 
for the prediction of ovarian cancer using longitudinal ob-
servations (Figure S2), in line with our previous study.15 
We used the long short-term memory (LSTM) architec-
ture,20–23 which is a special form of RNNs that can both 
learn long-term dependencies and control the flow of in-
formation to be passed from one time step to the next by 
means of gate units.24 The LSTM approach offers a sig-
nificant advantage in addressing the vanishing gradient 

(11)L(,) =

n0∏

i=1

K∏

k=1

Ti∏

j=1

�

(
Yijk − �ik

�k

)
×

N∏

i=n0+1

K∏

k=1

Ti∏

j=1

�

(
Yijk−�ik

�k

)1−Iik

�

(
Yijk−�ik−� ik

(
tij−� ik

)+

�k

)Iik

(12)PY(,) ∝ L(,)P0(,)

(13)P
�
oN � = 1�YN�

�
=

P
�
YN� � oN � = 1

�
P
�
oN � = 1

�

∑
i∈{0,1}P

�
YN� � oN � = i

�
P
�
oN � = i

�
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problem, which is common in traditional RNNs, making 
it generally more stable during training. It may suffer from 
computational complexity and potential overfitting, espe-
cially when dealing with small datasets. The latter, how-
ever, was mitigated by employing cross-validation and 
dropout, a regularization technique.

More precisely, the LSTM equations can be written as 
follows,20,24

where cijk and hijk denote the cell state and hidden state for 
patient i, time step j, and biomarker k, respectively; 

⨀
 de-

notes point-wise multiplication. The cell state and hidden 
state at a fixed time step are given by vectors of size 1 ×H, 
where H is the number of hidden neurons.

The cell state of the LSTM at each time step is con-
trolled by input and forgetting mechanisms using the 
equations shown below. That is, the forget gate unit f ijk 
modulates the effect of the cell state of the previous step 
cij−1k. Similarly, the external input gate iijk weights the 
contribution of the candidate cell via c̃ijk. Finally, the 
memory information in the hidden state is controlled by 
the output gate oijk.

The so-added gates c̃ijk, iijk, f ijk, and oijk are defined by 
the following equations.

where �(x) = 1∕(1 + exp( − x)) denotes the sigmoid func-
tion. The terms Wc, Wf , Wi, and Wo denote the weight ma-
trices, with dimension 1 ×H; the terms Uc, Uf , Ui, and Uo 
denote the kernel matrices of size H ×H; vectors bc, bf , bi, 
and bo denote the bias of size 1 ×H. The terms W ,U, and b 
are learned during training.

Thus, for each time step j, we obtain a temporal se-
quence of hidden states (hi1k, hi2k, …, hiTik) correspond-
ing to the i-th subject and biomarker k. Here, the state 
of the network at the last step is denoted hiTik, which 
corresponds to the last sample of the patient under 
consideration.

Next, we can concatenate the last hidden state asso-
ciated to the output of each LSTM cell from the K dif-
ferent biomarkers. We also include the last hidden state 

associated to the LSTM processing the screening age tij as 
a longitudinal feature.25 That is,

where hi is the last hidden state for i-th patient, resulting 
from the concatenation of the last hidden state of each 
one of the K biomarkers under consideration, and an ad-
ditional one associated with the age of the patient hiTi0.

To define (20), we can consider multiple combinations 
of biomarkers to analyze how the joint interaction of them 
impacts the model classification performance. In this 
paper, whichever is the case, we always include the age of 
the patient in our model as a feature. The resulting vector 
is of size 1×(H1 +H2 + ⋯ +HK +H0), where each Hl de-
notes the number of hidden neurons used for each LSTM 
associated with each one of the features, that is, biomark-
ers k = 1, 2, … ,K and age, respectively.

The final output of the proposed model is

where h̃i denotes the last hidden state after dropout, W e is a 
weight vector of size (H1 +H2 + ⋯ +HK +H0) × 1 and be 
is a scalar bias. We optimize the weight matrices and biases 
using the cross-entropy loss.26

where N is the number of patients, oi is the true label of sub-
ject i (0 for controls and 1 for cases), and ôi is the estimated 
probability of risk of ovarian cancer.

The RNNs must be adequately trained before they 
can be used for the classification of unknown subjects. 
For the training phase, we used batch gradient descent 
with dynamic learning rates updated through the Adam 
optimizer.24,27 The hyperparameter tuning number is 
defined by the number of hidden neurons and dropout 
rate. Meanwhile, the learning rate and number of epochs 
are set fixed as meta-parameters (Table  S2). The weight 
matrix for the recurrent state is initialized by a random 
orthogonal matrix, while for the inputs we use a weight 
matrix initialized using the Glorot's scheme.28,29 The bias 
of each transformation is initialized at zero.

As part of the preprocessing step, the features are 
standardized during training by obtaining the mean and 
variance for each one of them. The same scaling trans-
formation used during training is then applied for vali-
dation. Finally, the input data for the LSTM network 
were masked and padded to handle variable sequence 
lengths.30–36 Deep-learning algorithms were imple-
mented in Python 3.8.8 using TensorFlow version 2.11.0 
and Keras version 2.11.0.

(14)cijk = f ijk
⨀

cij−1k + iijk
⨀

c̃ijk

(15)hijk = oijk
⨀

tanh
(
cijk

)

(16)c̃ijk = tanh
(
hij−1kUc + YijkWc + bc

)

(17)iijk = �
(
hij−1kU i + YijkWi + bi

)

(18)f ijk = �
(
hij−1kUf + YijkWf + bf

)

(19)oijk = �
(
hij−1kUo + YijkWo + bo

)

(20)hi =
[
hiTi1,hiTi2, … ,hiTiK ,hiTi0

]

(21)ôi = σ
(
W eh̃i + be

)

(22)L
(
oi, ôi

)
=
1

N

∑N

i=1
−
(
oilog

(
ôi
)
+
(
1 − oi

)
log

(
1 − ôi

))
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2.3  |  Simulation, model 
selection, and evaluation

The detection scheme for each patient at each screening 
time is based on the soft classification of ovarian can-
cer using multiple correlated longitudinal biomarkers 
(CA125, HE4, and glycodelin). Our methodology is based 
on fully Bayesian screening based on change-point mod-
els (BCP) and LSTM-based models (RNNs).

As a preprocessing step for both methodologies, the 
biomarkers are transformed into the form Y = log(Z + 4) , 
where Z is a particular biomarker.7,15,37

To evaluate the screening performance in both ap-
proaches, we use stratified 5-fold cross-validation with 
two repetitions (outer loop). This approach is particularly 
helpful in reducing the bias in performance evaluation. In 
this way, each fold divides the data into one set of training 
data and testing data preserving the proportion between 
cases and controls. Our main evaluation metrics included 
area under the ROC curve (AUC) and sensitivity (at 90% 
specificity). Significance was determined using the per-
mutation test for mean of paired differences between two 
models.

For the Bayesian method, we estimate the posterior 
distribution of the parameters at each fold using N  pa-
tients in the training data. In turn, P

(
YN � | oN � = 0

)
 and 

P
(
YN � | oN � = 1

)
 are calculated from the posterior pre-

dictive distribution through these biomarker levels for 
the patient N ′ > N  in the testing data. The probability 
of having ovarian cancer is then calculated using (13). 
As mentioned before, convergence of the MCMC chains 
was determined using the Gelman–Rubin statistic for 
each of the posterior parameters (extracted from train-
ing data).

When considering deep-learning-based models, for 
each of the 10 iterations obtained from the outer loop we 
perform hyperparameter tuning on hidden neurons and 
dropout rate for model selection. The inner loop consists 
of a 10-fold cross-validation (3 repetitions). Once the op-
timal set of hyperparameters is selected, we estimate the 
probability of having ovarian cancer on the data held-out 
from training for each patient (and each longitudinal ob-
servation). We repeat this step for every outer fold. Flow 
chart describing the design of the study is presented in 
Figure S3.

2.4  |  Lead-time analysis

Patients developing cancer show detectable preclinical 
elevations of biomarkers. The literature reports that pa-
tients with ovarian cancer show abnormal rise in these 
biomarkers approximately 3 years before diagnosis, with 

detectable elevations becoming apparent in the last year 
before diagnosis. We assess the potential value of using 
models based on multiple biomarkers in detecting can-
cer at earlier stages than it would be if diagnosed clini-
cally.12,14,38,39 In the results section, we determine the 
model-based lead time of each one of the proposed screen-
ing tests. This is defined as the interval from being cor-
rectly classified as case by the diagnostic test to the actual 
clinical diagnosis. To discriminate patients, we detect the 
earliest observation per patient considered as abnormal 
using a threshold at 90% specificity.40 We then calculate 
the interval from this screening time point up to the time 
of diagnosis. This procedure is repeated over multiple 
outer folds in the cross-validation procedure, from which 
we get different statistics for each of the models under 
consideration.

3   |   RESULTS

3.1  |  Data

The data consist of 224 patients with serum samples 
sourced from the multimodal arm of UK Collaborative 
Trial of Ovarian Cancer Screening (UKCTOCS, number 
ISRCTN22488978; NCT0005803241). This includes 180 
controls (healthy subjects) and 44 cases (diagnosed pa-
tients). The eligible patients attended for screening and 
had an annual serum CA125 level measured as a baseline 
and transvaginal ultrasound in women as a second-line 
test. Additional biomarker assays human epididymis 4 
(HE4) and glycodelin (PAEP) were performed within a 
subset of the serial samples from the general population 
of the UKCTOCS trial.

The screening age range of cases is [52.0, 77.4] years 
with an average of 65.3 years. The dataset includes the 
biomarkers history per patient for up to 5 years. Out of 
the 44 cases, 12 cases are screened for 1 year prior to clin-
ical diagnosis, 12 cases for 2 years, and 20 cases for up to 
3–5 years. In addition, from this set of cases 10 have 2 sam-
ples, another additional 10 have 3 samples, and 24 cases 
have 5 samples. For controls, the screening age is within 
the range of [50.3, 78.8] years with an average age of 
63.6 years. Each patient has four to five observations (for 2 
and 178 controls, respectively).

Within the cohort of cases, 35 patients present primary 
invasive epithelial ovarian cancer (average age of 64.4 years 
within a range of [52.0, 77.4] years), 6 cases of malignant 
neoplasm of peritoneum (average 68.5 years within [62.5, 
76.3] years), and 3 cases of primary invasive fallopian tube 
cancer (average 68.2 years within [64.4, 70.8] years).

The available information indicates that of the 44 
cases, 16 are in the early stage (I−II) and 28 late stages 
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(III−IV). The morphology of cancers was predominantly 
serous (n = 27 cases). Other types include papillary (n = 2), 
endometrioid (n = 3), clear cell (n = 2), carcinosarcoma 
(n = 3), carcinoma (n = 2), neoplasm malignant (n = 1), 
and adenocarcinoma (n = 4).

In addition to CA125, human epididymis 4 (HE4) 
and glycodelin (PAEP) were selected based on previous 
studies.12,14–16 All serum samples were assayed by ELISA 
(enzyme-linked immunosorbent assay). Previous reports 
discarded possible confounding effects of sample process-
ing using correlation between the concentration of any of 
the samples and time between sample collection and spin.14

Longitudinal observations of biomarkers in case pa-
tients prior to clinical diagnosis are displayed in Figure 1. 
Loess curves were fit to reflect the mean levels over time. 
It is observed that for case patients the biomarker levels 
start to slowly rise between 1 and 2 years prior to diagno-
sis. This is particularly noticeable for CA125 and HE4, 
while for glycodelin the rise is to a limited extent. This rise 

becomes more pronounced within 1 year before diagnosis, 
in which all the biomarkers show recognizable elevations. 
In addition, from a qualitative perspective, the rate of in-
crease within 1 year appears to be led by CA125 followed 
by glycodelin and then HE4.

3.2  |  Multivariable longitudinal models

Next, we evaluate the performance of different models in 
the detection of cases. The simulation studies consider 
multiple scenarios, including three joint multivariable 
screening tests that combine CA125 levels with other 
biomarkers (HE4 and glycodelin), as well as three single 
biomarker tests. More specifically, we have considered the 
following scenarios:

•	 m(1,2,3): CA125-HE4-glycodelin
•	 m(1,2): CA125-HE4

F I G U R E  1   (A–C) Box plots of protein biomarker levels (Y1: CA125, Y2: HE4, and Y3: glycodelin) in controls and cases. For each 
panel, the cases are grouped in time ranges: year, between 1 and 2 or more than 2 years before diagnosis. (D–E) Biomarker levels in cases 
for CA125, HE4, and glycodelin for cases and controls, respectively. Loess curves fit has been added to depict the trend prior to clinical 
diagnosis. As observed, the biomarkers for case patients exhibit a significant increase within the final year. The biomarker levels have been 
log-transformed in all the plots.

2

4

6

le
ve

ls

2

4

6

8

Time to last measurement (years)

le
ve

ls

2

4

6

8

le
ve

ls

2

4

6

8

Time to diagnosis (years)

le
ve

ls

Y1
Y2
Y3

2.5

5.0

7.5

Control < 1 1−2 2 <

5

Control < 1 1−2 2 <

0 1 2 3 4 0 1 2 3 4 5

Control < 1 1−2 2 <

le
ve

ls

Y1 Y2 Y3

controls cases

(C)(B)(A)

(D) (E)

 20457634, 2024, 7, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/cam

4.7163 by U
niversidad R

ey Juan C
arlos C

/T
ulipan S/N

 E
dificio, W

iley O
nline L

ibrary on [10/04/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



8 of 14  |      ABREGO et al.

•	 m(1,3): CA125-glycodelin
•	 u(1): CA125
•	 u(2): HE4
•	 u(3): glycodelin

Notation m(i,j,k) (or m(i,j)) indicates a joint multivari-
able test that relies on the biomarkers i, j, and k; while 
u(i) refers to a test that uses the i-th biomarker alone. The 

biomarkers are numbered as CA125 (1), HE4 (2), and 
glycodelin (3). We use two classification methodologies 
based on Bayesian change-point and recurrent neural net-
work models.

The risk of ovarian cancer is estimated for each pa-
tient's longitudinal observation starting from two visits up 
to all the screening period. That is, for each screening time 
point t∗

i
 starting from the second visit, the model makes 

F I G U R E  2   Cross-validated ROC curves with 95% confidence intervals and AUC using models based on a (A, C) joint multivariable and 
(B, D) Univariate approach. Figures (A, B) correspond to Bayesian change point and (C, D) To recurrent neural networks.
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a prediction based on the patients' previous observations 
ti < t∗

i
. Unless it is stated, we report the performance met-

rics using all the screening period, which implies that we 
estimate the risk of ovarian cancer in the last patient's 
screening time point.

Figure  2 shows the receiver operating character-
istic (ROC) curve indicating the area under the curve 
(AUC) statistic. This provides a summary of the clas-
sification performance in each case. These results are 
calculated by averaging the sensitivity at a given level 
of specificity for each one of the outer folds obtained by 
cross-validation.

The ROC curves suggest an improvement in using ad-
ditional biomarkers over single biomarkers as the sensi-
tivity of joint multivariable tests lie above the univariate 
ones using BCP and RNNs models. Furthermore, the sen-
sitivity of joint multivariable models shows confidence 
intervals slightly reduced with respect to using single 
biomarkers.

From Table  1, we observe that m(1,2) (CA125 and 
HE4) performs substantially better among the joint multi-
variable models. Using BCP, AUC is of 0.971 (96.7% sensi-
tivity). Meanwhile with RNNs, AUC equal to 0.987 (with 
96.7% sensitivity). In the univariate case, u(1) (CA125) 
outperforms over all the other single biomarkers in terms 
of the sensitivity score. Using BCP, it scores 90.8% sensi-
tivity (AUC, 0.949), while for RNNs it is 92.1% sensitivity 
(AUC, 0.953).

The combination of CA125 with HE4 provides im-
provement of the AUC score and sensitivity over the 
univariate tests using the proposed methodologies. To 
test the significance of such improvement, we used the 

permutation test for mean of paired differences with 
respect to CA125 for these two metrics using BCP and 
RNNs. For the AUC, we get the one-sided p = 0.043 and 
p = 0.002, respectively. Meanwhile, for the sensitivity, we 
obtain 0.031 and 0.062.

The second best-performing scheme is m(1,2,3) 
(CA125, HE4, glycodelin). In a similar way, the permuta-
tion test for the AUC provides p = 0.234 and 0.002, while 
for the sensitivity p = 0.016 and 0.125, using BCP and 
RNNs, respectively.

In Table 2a, using case patients only, we build a contin-
gency table, to compare the best two diagnostic tests (joint 
multivariable and univariate, respectively) based on data 
from all the outer folds. The tests used a threshold set at 
90% specificity. As observed, the joint multivariable model 
m(1,2) (CA125 and HE4) attains higher sensitivity than 
the reference standard, CA125. This holds for both RNNs 
and BCP methodologies. Applying a McNemar test is un-
feasible in this case as the power is dependent on discor-
dant pair sample size, which in our case is rather small. 
However, the detection rate in addition to the results 
shown above suggests that the combination of CA125 
and HE4 has potential to improve current tests based on 
CA125 alone.

Next, we study the ability of our algorithms to detect 
the ovarian cancer at earlier stages.12,14 In Figure  3, we 
show the summary statistics of the AUC and sensitivity 
(90% specificity) estimated by screening the last time point 
available per patient using the complete longitudinal his-
tory, 1 and 2 years prior to clinical diagnosis. We observe 
that both metrics decrease as we screen patients with bio-
marker levels taken at earlier times.

Model Sensitivity (95% CI) p-value AUC (95% CI) p-value

BCP

m(1,2,3) 0.978 0.949, 1.0 0.016 0.966 0.941, 0.991 0.234

m(1,2) 0.967 0.934, 1.0 0.031 0.971 0.946, 0.996 0.043

m(1,3) 0.954 0.905, 1.0 0.062 0.957 0.924, 0.990 0.187

u(1) 0.908 0.853, 0.963 0.949 0.908, 0.990

u(2) 0.851 0.761, 0.941 0.875 0.949 0.920, 0.978 0.527

u(3) 0.821 0.741, 0.901 0.934 0.930 0.905, 0.955 0.883

RNNs

m(1,2,3) 0.954 0.917, 0.991 0.125 0.978 0.962, 0.994 0.002

m(1,2) 0.967 0.934, 1.0 0.062 0.987 0.979, 0.995 0.002

m(1,3) 0.942 0.903, 0.981 0.313 0.973 0.951, 0.995 0.006

u(1) 0.921 0.864, 0.978 0.953 0.928, 0.978

u(2) 0.853 0.773, 0.933 0.938 0.955 0.935, 0.975 0.455

u(3) 0.843 0.769, 0.917 0.984 0.941 0.917, 0.965 0.872

Note: One-sided p-values are determined from permutation test on the difference of mean AUC (or 
sensitivity) between diagnostic tests with respect to our baseline (CA125). Bold values indicate p < 0.05 
considered as statistically significant.

T A B L E  1   Model performance for the 
detection of ovarian cancer diagnosed 
within 1 year: estimates of sensitivity 
(90% specificity) and AUC, and their 
95% confidence intervals (CI) comparing 
different models (joint multivariable and 
univariate) based on cross-validation 
procedure.
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10 of 14  |      ABREGO et al.

Before 1 year of diagnosis, CA125–HE4 ranks as the 
best joint multivariable model. Using BCP, AUC scores 
0.782 (with 47.0% sensitivity), whereas for RNNs, AUC 
scores 0.8 (47.3% sensitivity). In the univariate case, 
CA125 has AUC equal to 0.769 (54.9% sensitivity) using 
BCP, and AUC of 0.799 (42.6% sensitivity) for RNNs. Two 
years before diagnosis, CA125 alone provided higher sen-
sitivity than any other model. Using BCP, we get 52.7% 
sensitivity and AUC equal to 0.714.

The estimated mean lead time based on joint multivari-
able tests spanned from 1.6 to 1.9 years, while median lead 
time from 1.4 to 1.8 years prior to diagnosis in comparison 
with the estimated range based on CA125 alone, Table 3. 
No multivariable algorithm significantly outperformed 
CA125 using both BCP and RNNs.

In line with the results above, there is a strong in-
dication that the combination of CA125 and HE4 in-
creases the classification performance over CA125 alone. 
This is based on AUC and sensitivity at 90% specificity. 
Furthermore, we also find that this combination outper-
forms over CA125 and all other alternatives based on the 
ratio between correctly diagnosed cases and missed ones 
by the algorithm, Table 2b. Finally, its mean lead time is 
close to 2 years.

Overall, our results emphasize once again the benefit 
of using HE4 as a complementary biomarker that deserves 
further evaluation for the improvement of early detection 
of ovarian cancer compared with CA125 alone.

4   |   DISCUSSION

The present study addresses two distinct issues—method-
ological, related to the integration of multiple longitudinal 
biomarkers into a single model, and practical, concerning 
the enhancement of performance rates in ovarian cancer 
detection through longitudinal data analysis.

We compared two longitudinal algorithms allowing 
the integration of more than one biomarker—a Bayesian 
change-point model and a LSTM architecture of the recur-
rent neural networks approach. Our findings show that 
the combination of longitudinal CA125 and HE4 levels 
outperforms the CA125-only model with both the change-
point model and the LSTM method, highlighting the com-
plementary nature of HE4. The multimarker model did 
not improve the lead time but provided higher area under 
the ROC curve (AUC) and sensitivity at a fixed specificity, 
potentially improving early cancer detection. Importantly, 
this work illustrates the advantage of the methodology for 
the simultaneous analysis of multiple longitudinal bio-
markers that may prove useful in any scenario where such 
biomarkers emerge, particularly in early cancer detection.

Previous research in ovarian cancer has mainly concen-
trated on multiple biomarkers at a single time point or on 
longitudinal CA125, the best-performing individual bio-
marker.8,37,40 However, the UKCTOCS trial demonstrated 
that monitoring CA125 alone does not provide significant 
mortality benefits.5 Consequently, there is an urgent need 
to explore additional potential biomarkers that could im-
prove detection rates. Our previous work focused on the 
analysis of longitudinal HE4, CA72-4, and anti-TP53.12 
The findings suggested that these biomarkers offer lim-
ited additional value to longitudinal CA125. However, the 
study was limited to using only the MMT approach thus 
emphasizing the significance of the present work.

The primary limitation of our study is the small sam-
ple size, which we attempted to address through the 
nested cross-validation approach. Both cancer cases 
and controls were randomly selected from the complete 
dataset. Since the UKCTOCS was a randomized trial, 
this selection process should mitigate potential con-
founding factors and biases. Another limitation is that 
only two approaches have been tested in this study, and 
the biomarker panel comprised only three proteins. We 
focused on currently available approaches for analyzing 
time-series biomarker data in the cancer setting, utiliz-
ing the available dataset. While we incorporated some of 
the most prominent biomarkers, it is important to note 
that future studies may achieve improved performance 
with a larger panel of biomarkers and potentially new 
statistical and AI methodologies. The primary strength 
of our work is the use of the unique dataset obtained 
from the UKCTOCS trial.

T A B L E  2   (A) Results obtained from contingency tables at 
90% specificity level. The tests are either based on recurrent 
neural networks (RNNs) or Bayesian change-point models (BCP). 
Estimations are based on the cross-validation procedure. (B) 
Number of correctly diagnosed and missed cases.

BCP m(1,2) RNNs m(1,2)

Diagnosed Missed Diagnosed Missed

(A)

u(1) Diagnosed 80 0 81 0

u(1) Missed 5 3 4 3

BCP RNNs

Diagnosed Missed Diagnosed Missed

(B)

m(1,2,3) 86 2 84 4

m(1,2) 85 3 85 3

m(1,3) 84 4 83 5

u(1) 80 8 81 7

u(2) 75 13 75 13

u(3) 72 16 74 14

Note: For the calculation, we detect the earliest observation per patient 
considered as abnormal using a threshold at 90% specificity. Values 
correspond to the total number over all outer folds.
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      |  11 of 14ABREGO et al.

F I G U R E  3   Each box plot displays 
estimates of (A, C) AUC and (B, D) 
sensitivity (90% specificity) comparing 
changes at different models (joint 
multivariable m(1,2,3), m(1,2), and 
m(1,3), and univariate u(1), u(2), and 
u(3)) and time periods (left to right: all 
screening period, 1 and 2 years before 
diagnosis). Each plot results from the 
cross-validation procedure. Figures (A, B) 
correspond to Bayesian change point and 
(C, D) to recurrent neural networks.
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In conclusion, our investigation provides evidence of 
enhanced performance using a combination of longitudi-
nal biomarkers compared with the best individual longitu-
dinal CA125. To the best of our knowledge, this is the first 
investigation in which statistical and artificial intelligence 
(AI) approaches have been employed and compared for 
the analysis of multiple longitudinal biomarkers, not only 
in the context of ovarian cancer but also in other health-
care settings. The findings from the current work could 
be applied to facilitate early detection, risk stratification, 
and the prevention and treatment of various diseases. The 
enhanced early detection capabilities of the CA125–HE4 
multimarker model hold the potential to significantly 
improve patient outcomes by enabling timely diagnosis, 
assisting healthcare providers in more accurate clinical 
decision-making, and informing policymakers in shap-
ing effective strategies for ovarian cancer screening and 
management.

These findings now warrant blinded validation in a 
larger longitudinal sample set to assess the potential for 
early detection in ovarian cancer screening.
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T A B L E  3   Summary statistics of model-based (joint multivariable and univariate) lead time for the detection of ovarian cancer at 90% 
specificity. Estimations are based on cross-validation procedure.

Model Mean lead time (95% CI) Median lead time (95% CI) Min lead time (95% CI) Max lead time (95% CI)

BCP

m(1,2,3) 1.939 1.723,2.155 1.783 1.489, 2.077 0.508 0.367, 0.649 3.967 3.538, 4.396

m(1,2) 1.912 1.687,2.137 1.629 1.386, 1.872 0.567 0.402, 0.732 3.883 3.379, 4.387

m(1,3) 1.882 1.649,2.115 1.608 1.390, 1.826 0.542 0.313, 0.771 3.892 3.429, 4.355

u(1) 1.917 1.633, 2.201 1.704 1.426, 1.982 0.625 0.392, 0.858 3.467 2.942, 3.992

u(2) 1.575 1.410, 1.740 1.387 1.269, 1.505 0.350 0.203, 0.497 3.158 2.623, 3.693

u(3) 1.685 1.524, 1.846 1.512 1.351,1.673 0.458 0.270, 0.646 3.533 2.886, 4.180

RNNs

m(1,2,3) 1.597 1.283, 1.911 1.392 1.045, 1.739 0.433 0.286, 0.580 3.617 2.882, 4.352

m(1,2) 1.768 1.558, 1.978 1.504 1.290, 1.718 0.517 0.345, 0.689 4.050 3.529, 4.571

m(1,3) 1.604 1.288, 1.920 1.375 1.054, 1.696 0.483 0.281, 0.685 3.492 2.835, 4.149

u(1) 1.877 1.440, 2.314 1.579 1.197, 1.961 0.758 0.446, 1.070 3.700 2.983, 4.417

u(2) 1.672 1.315, 2.029 1.517 1.207, 1.827 0.367 0.202, 0.532 3.525 2.714, 4.336

u(3) 2.016 1.673, 2.359 1.687 1.305, 2.069 0.725 0.425, 1.025 4.017 3.323, 4.711
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