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In this paper we investigate Monte Carlo methods for the approximation of the posterior probability distributions in stochastic
kinetic models (SKMs). SKMs are multivariate Markov jump processes that model the interactions among species in biological
systems according to a set of usually unknown parameters. The tracking of the species populations together with the estimation
of the interaction parameters is a Bayesian inference problem for which Markov chain Monte Carlo (MCMC) methods have
been a typical computational tool. Specifically, the particle MCMC (pMCMC) method has been shown to be effective, while
computationally demandingmethod applicable to this problem. Recently, it has been shown that an alternative approach toBayesian
computation, namely, the class of adaptive importance samplers, may be more efficient than classical MCMC-like schemes, at least
for certain applications. For example, the nonlinear populationMonte Carlo (NPMC) algorithm has yielded promising results with
a low dimensional SKM (the classical predator-prey model). In this paper we explore the application of both pMCMC and NPMC
to analyze complex autoregulatory feedback networks modelled by SKMs.We demonstrate numerically how the populations of the
relevant species in the network can be tracked and their interaction rates estimated, even in scenarios with partial observations.
NPMC schemes attain an appealing trade-off between accuracy and computational cost that canmake them advantageous inmany
practical applications.

1. Introduction

Stochastic kinetic models (SKMs) are multivariate systems
that model interactions among species in ecological, biolog-
ical, and chemical problems, according to a set of unknown
rate parameters [1]. The aim of this paper is to study com-
putational methods for the approximation of the posterior
distribution of the rate parameters and the populations of all
species, provided a set of discrete, noisy observations is avail-
able.This inference problem has been traditionally addressed
in a Bayesian framework using Markov chain Monte Carlo

(MCMC) schemes [1–4]. In [5], a particle MCMC (pMCMC)
method [6] has been applied to Lotka-Volterra and prokary-
otic autoregulatory models. The pMCMC technique relies
on a sequential Monte Carlo (SMC) approximation of the
posterior distribution of the populations to compute the
Metropolis-Hastings (MH) acceptance ratio.

However, MCMC methods in general and pMCMC in
particular suffer from a number of problems. The conver-
gence of the Markov chain is hard to assess and the final set
of samples presents correlations which can greatly reduce its
efficiency. Besides, MCMC methods do not (easily) allow for
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parallel implementation and turn out to be computationally
intensive, even for relatively simple models. A classical
technique to reduce the complexity of the existing MCMC
methods when applied to SKMs is the so-called diffusion
approximation of the underlying stochastic jump process
[7]. However, the diffusion approximation breaks down in
low-concentration scenarios [5]. Other techniques, including
linear noise approximations [8–11] and Gaussian-process
estimators of the likelihood [12], have also been proposed
in the past few years to reduce the computational cost. The
parameters of the MCMC proposal are also hard to choose
and they determine the performance of the algorithm.

An appealing alternative toMCMCmethods is the class of
the population Monte Carlo (PMC) algorithms [13]. PMC is
an adaptive importance sampling (IS) scheme [14] that yields
a discrete approximation of a target probability distribution.
The PMC algorithm has important advantages with respect
to MCMC techniques. It provides independent samples and
asymptotically unbiased estimates at all iterations, which
avoids the need of a convergence period. Additionally, PMC
may be easily parallelized.

On the other hand, the main weakness of IS and PMC
is their low efficiency in high dimensional problems, due
to the well-known degeneracy problem [15]. The recently
proposed nonlinear PMC (NPMC) scheme [16, 17] mitigates
this difficulty by computing nonlinear transformations of
the importance weights (IWs), in order to smooth their
variations and avoid degeneracy. In [17] a rigorous proof of
convergence of the nonlinear importance sampling scheme
as the number ofMonte Carlo samples increases is presented.
Similarly to the pMCMCmethod in [5], theNPMCalgorithm
resorts to an SMCapproximation of the posterior distribution
of the populations to compute the IWs.

In this paper we apply the NPMC method to the estima-
tion of both the parameters and the unobserved populations
in a complex SKMmodelling an autoregulatory feedback net-
work with several species and noisy observations. We present
numerical results to compare the performance of the state-of-
the-art pMCMC and the proposed NPMC in two scenarios
of different dimension and with two different observation
models. We show that the NPMC method outperforms the
pMCMCmethod for the same computational cost.

The rest of the paper is organized as follows. In Section 2
we present an introduction to the basics of SKMs and
the usual solutions to this Bayesian inference problem. In
Sections 3 and 4 we describe the pMCMC and NPMC
methods, respectively, when applied to the approximation of
posterior distributions in SKMs. In Section 5 we numerically
compare the performance of pMCMC and NPMC schemes
when applied to an autoregulatory feedback network, an SKM
that can be interpreted as a generalization of the paradigmatic
Lotka-Volterra model. Finally, Section 6 is devoted to the
conclusions.

2. Bayesian Inference for Stochastic
Kinetic Models

2.1. Stochastic Kinetic Models. A SKM is a multivariate con-
tinuous-time jump processmodelling the interactions among

different species or molecules in ecological, biological, and
chemical systems [1].

Consider an ecological interaction network that describes
the time evolution of the population of ! species "1, . . . , "!
related by means of # rate equations $1, . . . , $"$1 : %11"1 + %12"2 + . . . + %1!"!#1&→ (11"1 + (12"2 + . . . + (1!"!,$2 : %21"1 + %22"2 + . . . + %2!"!#2&→ (21"1 + (22"2 + . . . + (2!"!,... ...$" : %"1"1 + %"2"2 + . . . + %"!"!#!&→ ("1"1 + ("2"2 + . . . + ("!"!,

(1)

where )$ > 0, * = 1, . . . ,# are the random constant rate
parameters and %$V and ($V, * = 1, . . . ,#, V = 1, . . . ,!,
denote the coefficients of the population of the V-th species,
before and after the *-th interaction, respectively. We will
refer to %$V and ($V as reactant and product coefficients,
respectively, by analogy with terminology commonly used in
biochemical reactions. A matrix P of size # × ! contains
the reactant coefficients %$V and, similarly, Q contains the
product coefficients ($V. The stoichiometry matrix of size!×# is defined as S = (Q −P)⊤.The vector c = [)1, . . . , )"]⊤
contains the rate parameters.

Let "V(-), V = 1, . . . ,!, denote the nonnegative, inte-
ger population of species "V at time -, and let x(-) =["1(-), . . . , "!(-)]⊤ denote the state of the system at this time
instant. Let x& = ["1,&, . . . , "!,&]⊤ denote the state of the
system at discrete time instants - = .Δ, . = 1, . . . ,0, i.e.,"V,& = "V(.Δ) where Δ denotes a time-discretization period.
We denote by x the !0 × 1 vector containing the population
of all species at 0 consecutive discrete time instants, i.e.,
x = [x⊤1 , . . . , x⊤']⊤.

The *-th rate equation describes an interaction that takes
place stochastically according to its instantaneous rate or
hazard functionℎ$ (-) = )$ !∏

V=1 ("V (-)%$V ) , * = 1, . . . ,#, (2)

where the product of binomial coefficients represents the
number of combinations in which the *-th interaction can
occur, as a function of the population of the reactant species
with population "V, V = 1, . . . ,!. We additionally define the
vector h(-) = [ℎ1(-), . . . , ℎ"(-)]⊤. The waiting time to the
next interaction is exponentially distributed with parameterℎ0(-) = ∑"$=1 ℎ$(-), and the probability of each type of
interaction is given by ℎ$(-)/ℎ0(-), * = 1, . . . ,#.

See, e.g., [1] for a detailed description and discussion of
the class of SKMs.

2.2. Bayesian Inference for SKMs. We consider the log-trans-
formed rate parameters ! = [61, . . . , 6"]⊤, where 6$ = log()$),



Complexity 3* = 1, . . . ,#, with prior pdf%(!).The prior pdf (for simplicity
of notation, in this section we use % to denote the pdfs
in the model. We write conditional pdfs as %(y | x), and
joint densities as %(!) = %(61, . . . , 6"). This is an argument-
wise notation, hence %(61) denotes the distribution of 61,
possibly different from %(62)) of the initial population vector
x0 is denoted by %(x0). We assume that a linear combination
of the populations of a subset of species is observed at discrete
time instants corrupted by Gaussian noise, i.e.,

y& = Mx& + w&, . = 1, . . . ,0, (3)

where M is the observation matrix with dimensions 7 × !
and w& ∼ N((w&; 0,Λ) is a multivariate Gaussian noise
component with zero mean and covariance matrix Λ. We
denote the complete observation vector with dimension DN× 1 as y = [y⊤1 , . . . , y⊤']⊤.

The dynamical behavior of an arbitrary SKM may be
described in terms of the following set of equations (that
describe a state-space model with unknown parameters):! ∼ % (!) (parameters prior) ,

x0 ∼ % (x0) (populations prior) ,
x& ∼ % (x& | x&−1, !) (transition equation) ,
y& ∼ % (y& | x&) (observation equation) , (4)

where %(x& | x&−1, !) and %(y& | x&) denote the transition pdf
and the likelihood function, respectively. The Gillespie algo-
rithm [18] (see Appendix A for a detailed description) allows
to perform exact forward simulations of arbitrary SKMs,
drawing samples from the transition densities %(x& | x&−1, !),. = 1, . . . ,0, given a set of log-rate parameters ! and an initial
population x0. While the assumption Gaussian observational
noise may not be adequate for some applications of SKMs,
it has been employed by other authors in the past [5, 11]
and, in particular, it has been used for computer experiments
involving the prokaryotic autoregulation model [5] that we
study numerically in Section 5.

In this paper, we aim at obtaining a Monte Carlo approx-
imation of the full joint posterior distribution of the log-rate
parameters ! and the populations x, with density% (!, x | y) ∝ % (y | x) % (x | x0, !) % (x0) % (!) , (5)

given the prior distributions %(!) and %(x0), the transition
pdf %(x | x0, !) = ∏'&=1%(x& | x&−1, !), and the likelihood
function %(y | x) = ∏'&=1%(y& | x&) constructed from (3).
We note that this state-space model can represent the SKM
reaction equations of Section 2.1, yet it is abstract enough
to make it applicable to other, relatively similar, models.
For example, the assumption of mass action kinetics is not
explicitly needed for this representation; hence other reaction
rates could be incorporated into the state-space model (and
the inference algorithms to be derived from it).

We are also interested in computing approximations of
the posterior marginals of the rate parameters %(! | y) =∫%(!, x | y)>x and the species populations %(x | y) =

∫%(!, x | y)>! as well as their moments (e.g., the posterior
mean), which are of the form?*(!|y) [A (!)] = ∫A (!)% (! | y) >!,?*(x|y) [A (x)] = ∫A (x)% (x | y) >x, respectively, (6)

where A is a real, integrable function.
Bayesian inference based on exact stochastic simulations

from %(x& | x&−1, !) generated via the Gillespie algorithm
often becomes practically intractable even for models of
modest complexity [7]. Thus, it is very common to resort
to a continuous approximation of the underlying stochastic
process, which is known as the diffusion approximation [1].
This approximation is known to be poor in low-concentration
scenarios and thus should be avoided for models involving
species with a very low population. Alternatively, in [3]
the authors propose a solution based on a moment closure
approximation of the stochastic process. Other techniques for
the approximate modelling of the underlying jump process
that have become relatively popular in the past few years
include Gaussian processes [12] and the linear noise approx-
imation [8–10].

This inference problem has been traditionally addressed
using MCMC methods, and IS based schemes have been
avoided due to their inefficiency in high dimensional spaces
[1]. In [2] various MCMC algorithms are evaluated in data-
poor scenarios. In [5] a likelihood-free pMCMC scheme [6]
is applied to this problem. This method is, to the best of our
knowledge, the most powerful, yet computationally expen-
sive, method provided so far for this kind of applications.

In [16] a NPMC scheme is proposed for the approxima-
tion of the marginal posterior pdf %(! | y).The performance
of the NPMC method is tested in a simple SKM known as
predator-prey model [20], providing excellent results with a
low computational cost.

In this paper we compare the performances of the
pMCMC and the NPMC methods in the approximation of
the full joint posterior pdf %(!, x | y) in (5), which allows
performing Bayesian inference for the rate parameters ! and
the full sample path x, including unobserved components.

3. Particle MCMC for SKM’s

The particle marginal Metropolis-Hastings (PMMH) algo-
rithm is a pMCMC method originally proposed in [6] for
Monte Carlo sampling from the full posterior distribution%(!, x | y). The PMMH scheme suggests a proposal
mechanism of the form ((!⋆ | !)%̂,(x⋆ | y, !⋆). To be
specific, a new candidate in the parameter space, !⋆, is drawn
from an arbitrary proposal distribution ((!⋆ | !), while the
new candidate in the variable space, x⋆, is generated using
an approximation of the posterior marginal %(x⋆ | y, !⋆)
constructed by means of an SMC algorithm (i.e., a particle
filter) with E particles and denoted %̂,(x⋆ | y, !⋆). The
probability of accepting the proposed pair (!⋆, x⋆) is

min{1, %̂, (y | !⋆) % (!⋆)%̂, (y | !) % (!) × ( (! | !⋆)( (!⋆ | !)} , (7)
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Initialization (H = 0):
1. Sample !(0) ∼ %(!) and
2. run a SMC scheme targeting %(x | y, !(0)). Draw x(0) ∼ %̂,(x | y, !(0)) from the SMC approximation and let %̂,(y | !(0))

denote the marginal likelihood estimate.
Iteration (H = 1, . . . , I):

1. Sample !⋆ ∼ ((!⋆ | !(-−1)) and
2. run a SMC scheme targeting %(x | y, !⋆). Draw x⋆ ∼ %̂,(x | y, !⋆), let %̂,(y | !⋆) denote the marginal likelihood estimate,

and
3. with probability

min{1, %̂,(y | !⋆)%(!⋆)%̂,(y | !(-−1))%(!(-−1)) × ((!(-−1) | !⋆)((!⋆ | !(-−1))}
accept the move setting !(-) = !⋆, x(-) = x⋆ and %̂,(y | !(-)) = %̂,(y | !⋆). Otherwise store the current values !(-) = !(-−1),
x(-) = x(-−1) and %̂,(y | !(-)) = %̂,(y | !(-−1)).

Algorithm 1: Particle MCMC algorithm targeting %(!, x | y) [6].
where %̂,(y | !⋆) is an unbiased approximation of the
marginal likelihood of !⋆ (i.e.,%(y | !⋆)), computed, again, by
way of a particle filter with E particles.The PMMH algorithm
is reproduced in Algorithm 1, and the SMC approximations
of %(y | !∗) and %(x∗ | y, !∗) are described in Appendix B.
Full details can be found in [6]. Note that the forward
simulation of the stochastic process in the particle filter may
be performed exactly with the Gillespie algorithm or using a
diffusion approximation.

In [5] the proposal is selected as a Gaussian random walk((!⋆ | !) = N"(!⋆; !, J2I), ignoring the correlation structure
of the target distribution. The variance J2 has to be tuned
and partly determines the performance of the algorithm
(see [21] for some practical advice on the choice of this
parameter). Low values of J result in a poor exploration
of the space of !, while high J values yield low acceptance
rates. In both situations the resulting chain presents highly
correlated samples and slow mixing properties. To reduce
the correlation among samples it is common to thin the
obtained chain, keeping a subset of equally spaced samples
and discarding the rest. After removing the initial burn-
in samples and thinning the output, we obtain a Markov
chain {!(-), x(-)}/-=1 withK correlated samples. Then, we may
construct a sample approximation of the marginal posterior
distributions of the parameters ! and the populations x, as

%̂/ (>! | y) = 1K /∑-=1M!(") (>!) ,%̂/ (>x | y) = 1K /∑-=1Mx(") (>x) , (8)

respectively, where M!(") and Mx(") denote the unit deltameasure
centered at !(-) and x(-), respectively.The approximation of the
full joint posterior has the form

%̂/ (>!, >x | y) = 1K /∑-=1M(!(") ,x(")) (>!,>x) . (9)

4. Nonlinear PMC for SKM’s

The PMCmethod [13] is an iterative IS scheme that generates
a sequence of proposal pdf ’s (ℓ(⋅), ℓ = 1, . . . , P, that
approximate a target pdf Q along the iterations. The NPMC
scheme is proposed in [16] and it introduces nonlinearly
transformed IWs (TIWs) in order to mitigate the numerical
problems caused by degeneracy in the proposal update
scheme.

4.1. NPMC Targeting %(! | y). We first consider as a target
density the marginal posterior pdf of the parameters ! given
the observation vector y, i.e., Q(!) = %(! | y). As in [16], we
construct the proposal pdf (ℓ(!), ℓ = 2, . . . , P, as a Gaussian
approximation of the target pdf obtained at the previous
iteration ℓ − 1, whose mean and covariance parameters are
selected to match the moments of the previous sample set.
TheNPMCalgorithm is displayed inAlgorithm 2 . Details and
some simple convergence results can be found in [16]. See [17]
for a rigorous analysis.

Similar to the pMCMC algorithm, in the NPMC imple-
mentation the densities %(x | y, !) and %(y | !) required
in steps 2 and 3 are replaced by their SMC approximations,
which are given in Appendix B. The NPMC method may
also use either exact or approximate samples of the stochastic
process, depending on the computational capabilities.

For the clipping procedure performed in step 4 we
consider, at each iteration ℓ, a permutation H1, . . . , H/ of the
indices in {1, . . . ,K} such that R(-1 )∗ℓ ≥ . . . ≥ R(-#)∗ℓ and
choose a clipping parameterK1 < K. We select a threshold
value T/ℓ = R(-#$ )∗ℓ and clip the largest IWs, R(-%)∗ℓ ≥ T/ℓ ,* = 1, . . . ,K1 − 1.This transformation leads toK1 flat TIWs
in the region of interest of !, allowing for a robust update of
the proposal. The performance of the algorithm shows little
sensitivity to the selection of the clipping parameterK1 [16].
For simplicity, step 5 performs multinomial resampling.

At each iteration of the NPMC algorithm we may con-
struct a discrete approximation of the posterior probability
distribution described by the pdf %(! | y), based on the set of
samples and TIWs, as
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Iteration (ℓ = 1, . . . ,P):
1. Draw a set ofK samples {!(-)ℓ }/-=1 from the proposal density (ℓ(!):

(i) at iteration ℓ = 1, let (1(!) = %(!).
(ii) at iterations ℓ = 2, . . . ,P the proposal (ℓ(!) is the Gaussian approximation of %(! | y) obtained at iteration ℓ − 1.

2. For H = 1, . . . ,K, run a SMC scheme with E particles targeting %(x | y, !(-)ℓ ) and compute the marginal likelihood
estimate %̂,ℓ(y | !(-)ℓ ).

3. For H = 1, . . . ,K, compute the unnormalized IWsR(-)∗ℓ ∝ %̂,ℓ(y | !(-)ℓ )%(!(-)ℓ )(ℓ(!(-)ℓ ) .
4. For H = 1, . . . ,K, compute normalized TIWs, R(-)ℓ , by clipping the original IWs asR(-)∗ℓ = min (R(-)∗ℓ ,T/$ℓ ) , R(-)ℓ = R(-)∗ℓ∑/2=1 R(2)∗ℓ ,

where the threshold valueT/$ℓ denotes theK1-th highest unnormalized IW R(-)∗ℓ , with 1 <K1 <K.
5. Resample to obtain an unweighted set {!̃(-)ℓ }/-=1: for H, W = 1, . . . ,K, let !̃(-)ℓ = !(2)ℓ with probability R(2)ℓ .
6. Construct a Gaussian approximation (ℓ+1(!) = N(!; #ℓ,Σℓ) of the posterior %(! | y), where the mean vector and

covariance matrix are computed as#ℓ = 1K /∑-=1!̃(-)ℓ and Σℓ = 1K /∑-=1(!̃(-)ℓ − #ℓ)(!̃(-)ℓ − #ℓ)⊤ . (∗)
Algorithm 2: Nonlinear PMC targeting Q(!) = %(! | y).

%̂/ℓ (>! | y) = /∑-=1R(-)ℓ M!(")ℓ (>!) . (10)

The choice of a Gaussian approximation of the proposal(ℓ+1(!) in step 6 is arbitrary. We have adopted it here
for simplicity. Other families of pdfs can be used without
modifying the rest of the algorithm.

4.2. NPMC Targeting %(!, x | y). The NPMC method pro-
posed in [16] may be readily applied to the approximation of
the full joint posterior %(!, x | y), in an manner equivalent to
the pMCMC algorithm. We consider a sampling mechanism
of the form ((!)%̂,(x | y, !), where samples !(-) are again
generated from the latest proposal ((!) and x(-) are drawn
from the SMC approximation %̂,(x | y, !(-)) obtained via
particle filtering (the iteration index has been omitted for
simplicity).Then, the standard, unnormalized IW associated
with the pair (!(-), x(-)) is computed as

R(-)∗ = %̂, (!(-), x(-) | y)( (!(-)) %̂, (x(-) | y, !(-))
∝ %̂, (x(-), y | !(-)) % (!(-))( (!(-)) %̂, (x(-) | y, !(-))
∝ %̂, (y | !(-)) % (!(-))( (!(-))

(11)

and is independent of x. This reveals that, when samples
x(-)ℓ are drawn from %̂,(>x | y, !), the algorithm yields a
discrete approximation of the posterior distribution of the
unobserved populations x constructed as

%̂/ℓ (>x | y) = /∑-=1R(-)ℓ Mx(")ℓ (>x) . (12)

Even though the proposed NPMC and the pMCMC
require very similar computations for each pair of samples
of {!, x} and thus have an equivalent computational cost, the
NPMC has a set of important advantages with respect to
its MCMC counterpart. PMC methods provide independent
sets of samples at all iterations and do not require a burn-
in period. On the other hand, the nonlinearity applied
in the NPMC mitigates weight degeneracy, which is the
main problem arising in conventional IS based methods,
dramatically increasing its efficiency in high dimensional
problems. As a consequence, we claim that the total number
of samples, KP (and thus, the computational complexity),
required by the NPMC can be significantly lower than that
of pMCMC, I. Additionally, contrary to pMCMC, which
requires a careful choice of the proposal tuning parameter,
the proposed method does not require the accurate fitting of
any parameters.

The NPMC method processes a set ofK i.i.d. samples at
each iteration, requiring a low number of iterations (around
10 for the type of problems addressed here) for convergence
to the target distribution. The bulk of the computational cost
of NPMC, as well as of pMCMC, is the SMC approximation
of the likelihood function. In the pMCMC algorithm the
samples !(-) are processed sequentially (one after the other),
and this process cannot be parallelized. On the contrary, at
each iteration ℓ of the NPMCmethod, the process of drawingK samples!(-)ℓ and computing the associated IWsR(-)∗ℓ can be
performed independently for each sample H. Thus, steps 1, 2,
and 3 can be easily parallelized, reducing the total execution
time up to that of a single sample !(-)ℓ . On the other hand,
steps 4, 5, and 6 require the complete set of samples and
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weights {!(-)ℓ ,R(-)∗ℓ }/-=1 andmust be performed in a centralized
manner. However, these computations have a negligible cost
in comparison with a single likelihood approximation. Thus,
the parallelization of the NPMC method can allow for a
reduction in execution time up to a factor ≈ 1/K. Note
that we refer here to the parallelization of the PMC method
and not of the SMC filter used to approximate the likelihood
function.

An extensive numerical comparison of pMCMC versus
NPMC for a complex SKM that can be interpreted as a
generalization of the paradigmatic Lotka-Volterra model is
presented in Section 5.

5. Example: An Autoregulatory
Feedback Network

In this section, we compare the performance of the pMCMC
and the NPMC methods when applied to the problem of
approximating the posterior distributions of the log-rate
parameters %(! | y) and the populations %(x | y) in
a complex SKM given some observed data y. This model
is significantly more involved than the standard predator-
prey system. It has been introduced in [7] and further
analyzed in [1, 5] for biochemical processes. In particular,
it has also been considered as a model for representing the
mechanisms for autoregulation in prokaryotes. The model
is minimal in terms of the level of details included and
offers a simplistic view of the mechanisms involved in gene
autoregulation. However, it contains many of the interesting
features of general autoregulatory feedback networks and
it does provide sufficient detail to capture the network
dynamics.

5.1. Prokaryotic Autoregulatory Model. The prokaryotic au-
toregulatory model is a SKM that involves ! = 5 chemical
species and # = 8 reaction equations, $1, . . . , $", given by [7]$1 : "('3 + "42 #1&→ "('3⋅42 ,$2 : "('3⋅42 #2&→ "('3 + "42 ,$3 : "('3 #3&→ "('3 + "6'3,$4 : "6'3 #4&→ "6'3 + "4,$5 : 2"4 #5&→ "42 ,$6 : "42 #6&→ 2"4,$7 : "6'3 #7&→ 0,$8 : "4 #8&→ 0.

(13)

We construct the !-dimensional vector containing the
population of all species at time instant - as x(-) = ["6'3(-),"4(-),"42 (-), "('3⋅42 (-),"('3(-)]⊤. Thus, we obtain a stoi-
chiometry matrix of the form

S = ((
(

0 0 1 0 0 0 −1 00 0 0 1 −2 2 0 −1−1 1 0 0 1 −1 0 01 −1 0 0 0 0 0 0−1 1 0 0 0 0 0 0
))
)

(14)

and the hazard vector is given by

h (-) = [)1"('3"42 , )2"('3⋅42 , )3"('3, )4"6'3, )5
⋅ "4 ("4 − 1)2 , )6"42 , )7"6'3, )8"4]⊤ , (15)

where the time dependance of the population of each species
is omitted for notational simplicity.

This model involves a conservation law given by the
relation "('3⋅42 + "('3 = d, where d is the number of
copies of this gene in the genome. We could use this relation
to remove "('3⋅42 from themodel, replacing any occurrences
of the latter in the hazard function with d − "('3, but in
this paper we abide by the notation in equation (15). Further
details of this model can be found in [1].

5.2. Simulation Setup. We have selected most of the sim-
ulation parameters following [5]. The true vector of rate
parameters which we aim to estimate has been set to

c = [0.1, 0.7, 0.35, 0.2, 0.1, 0.9, 0.3, 0.1]⊤ , (16)

which yields log-transformed rate parameters! = − [2.30, 0.36, 1.05, 1.61, 2.30, 0.10, 1.20, 2.30]⊤ . (17)

The initial populations and the conservation constant have
been set to x0 = ["1(0), . . . , "!(0)]⊤ = [8, 8, 8, 5, 5]⊤ and d =10, respectively. In all the simulations in this paper we have
performed exact sampling from the stochastic model with the
Gillespie algorithm to obtain the likelihood approximation
via particle filtering. The number of particles for the SMC
approximation %̂,(x | !, y) has been set to E = 100 for all the
simulations (both the pMCMC and the NPMC algorithms
converge (as I &→ ∞ and K &→∞, respectively) even for
fixed E [6, 17]. We have tested numerically that for E > 100
performance hardly improves, while running times obviously
become larger).

Independent uniform priorsU(6$;−7, 2) have been taken
for each 6$ = log()$). Opposite to [5], the initial popula-
tions x0 are assumed unknown for the inference algorithm,
which employs independent Poisson priors %("V(0)) =
P("V(0);fV), with the fV parameters set to the true initial
populations, that is, fV = "V(0), V = 1, . . . ,!. Following [5],
the conservation constant d is assumed to be known in the
simulations.

We consider two different observation scenarios. In the
complete observation (CO) scenario we assume that all
species "V, V = 1, . . . ,!, are observed at regular time
intervals of length Δ = 1 and corrupted by Gaussian
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noise with variance g2 = 4 (assumed to be known). Thus,
the observation matrix is of the form M = I! and the
observations are given by

y& = x& + w&, . = 1, . . . ,0. (18)

In the CO case the complete vector of observations y =[y⊤1 , . . . , y⊤']⊤ has dimension !0 × 1.
In the partial observation scenario (PO) only a linear

combination of the proteins "4 + 2"42 is observed, also
contaminated by Gaussian noise, i.e., the observation matrix
is given byM = [0, 1, 2, 0, 0] (with dimension 1 × !) and the
observations are generated ash& = "2,& + 2"3,& + R&, where R& ∼N1 (R&; 0,g2) . (19)

In the PO case, a vector of scalar observationswith dimension0 × 1 is constructed as y = [h1, . . . ,h']⊤.
We remark that the assumption of the observation noise

terms (either w& or R&) displaying a Gaussian distribution
is not needed to apply neither the pMCMC method nor
the NPMC algorithm. Both techniques can be applied as
long as the joint likelihood %(y& | x&, !) of the state and
the parameters can be evaluated, numerically and point-wise
(either exactly or approximately; see [22]). In particular, it is
possible to plug a Gaussian-process estimate of the likelihood
[12] into the NPMC algorithm while running the rest of the
algorithm in the same way as described in Section 4 (and still
rely on the theoretical guarantees introduced in [22]).

5.3. Performance Evaluation. To evaluate the performance of
the pMCMC and the NPMCmethods we compute, in all the
simulation runs, the mean square error (MSE) attained by
the sample set that approximates the marginal posterior of !,
generated by both schemes.

For the pMCMC method, we compute the MSE of
each parameter 6$ based on the K-size final output (after
removing the burn-in period and thinning), asKi?$ = 1K /∑-=1 (6(-)$ − 6$)2 , * ∈ {1, . . . ,#} . (20)

For the NPMCmethod, we compute the MSE associated
with each parameter 6$, * = 1, . . . ,#, based on the
unweighted sample set at the ℓ-th iteration {!̃(-)ℓ }/-=1, ℓ =1, . . . ,P, asKi?ℓ,$ = 1K /∑-=1 (6̃(-)ℓ,$ − 6$)2 = (kℓ,$ − 6$)2 + g2ℓ,$, (21)

where kℓ,$ is the *-th component of the mean vector #ℓ and
the variance term g2ℓ,$ is the (*, *) component of matrix Σℓ.

We have chosen the MSE as a figure of merit because the
observations are generated synthetically and, therefore, we
have access to ground truth values for the rate parameters that
can be used to compute MSEs. A direct comparison in terms
of the posterior distributions (e.g., using the Kullback-Leibler
divergence or the total variation distance) is not possible

because the posterior distribution of ! conditional on the
observations y is intractable.

However, the MSE cannot be computed in real problems,
where the true parameters 6$ are unknown. To monitor
the stability and the efficiency of the two sampling schemes
based on the generated sample alone, we resort to the so-
called normalized effective sample size (NESS), which is often
defined differently for MCMC and IS schemes [23].

In the MCMC literature, the NESS gives the relative
size of an i.i.d. (independent and identically distributed)
sample with the same variance as the current sample and thus
indicates the loss in efficiency due to the use of a Markov
chain [23]. For pMCMCwe compute the NESS from the final
chain (after removing the burn-in period and thinning) asK&788 = 11 + 2∑∞2=1 l̂ (W) , (22)

where l̂(W) = corr(!(0), !(2)) is the average autocorrelation
function (ACF) at lag W. For the computation of the NESS,
we truncate W when l̂(W) < 0.1.

For IS methods, the NESS may be interpreted as the
relative size of a sample generated from the target distribution
with the same variance as the current sample. Evenwhenhigh
values of the NESS do not guarantee a low approximation
error, the NESS is often used as an indicator of the numerical
stability of the algorithm [24]. It cannot be evaluated exactly
but we may compute an approximation of the NESS at each
iteration of the NPMC scheme based on the set of TIWs
as K&788ℓ = 1K∑/-=1 (R(-)ℓ )2 , ℓ = 1, . . . , P. (23)

In the next subsection we present, together with other
numerical results, some comparisons involving the NESS for
the PMCMC and PMC methods. The comparison should be
taken with some caution because, although the interpretation
of the NESS is the same for both techniques, the estimators
have a different form and they are derived in a different
way. Nevertheless, we believe that the NESS is a good
numerical indicator of degeneracy for the two schemes,
because it directly reflects poor mixing (high correlation)
of the Markov chain and concentration of the weight in
importance samplers, and we plot it with that purpose. See
[25] for more details on the NESS and related statistics.

5.4. Simulation Results. We consider two simulation scenar-
ios in which a different number of parameters is estimated.

5.4.1. Estimation of a Single Rate Parameter 61. In this section
we present numerical results regarding the approximation of
the posterior distribution %(61, x | !\1, y) of a single rate
parameter 61 = log )1 and the populations x, when the rest
of parameters !\1 = [62, . . . , 6"]⊤, are assumed known.

We compare the pMCMC and the NPMC methods in
this simple scenario in order to show that the two algorithms
perform almost equivalently in low dimensional problems.
This is in a clear contrast with the results presented in
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Figure 1: Performance of the pMCMC (left) and the NPMC (right) methods for the estimation of a unique rate parameter 61: MSE (in
logarithmic scale) obtained from the final output versus the NESS for each simulation run in the CO and the PO scenario. The big circles
(CO) and squares (PO) represent simulation runs with a final mean MSE close to the global average.

Section 5.4.2, which show that the NPMC method can be
more efficient in higher dimensional settings.

We have performed m = 100 independent simulation
runs of the pMCMC and the NPMC schemes in the CO
and the PO scenarios, with independent population and
observation vectors in each simulation % = 1, . . . ,m. Both
in the CO and the PO cases, the same true population
trajectories x(*) were used, but the observations in the CO
scenario, y(*):;, and in the PO scenario, y(*)4;, differ.The number
of observation times has been set to0 = 100 and exactly the
same data has been used for NPMC and pMCMC.

Following [5], as a proposal pdf ((!⋆ | !) in the pMCMC
scheme we consider a Gaussian random walk update with
variance J2. We have performed simulations with different J
values and the best results were obtained with J2 = 1, which
are presented here. A total number of I = 104 iterations have
been run in each simulation. A final sample of sizeK = 103
has been obtained from each Markov chain by discarding a
burn-in period of 103 samples and thinning the output by a
factor of 9.

In the NPMC scheme, the number of iterations has been
set to P = 10, the number of samples per iteration is K =103 and the clipping parameter isK1 = 100. In this way, the
computational effort of the twomethods is approximately the
same, as they both generate I = KP = 104 samples in the
space of !.

In Figure 1 the final MSE obtained by the pMCMC
(left) and the NPMC (right) algorithms for each simulation
run is depicted versus the final NESS, in the CO and the
PO scenarios. Note that the NESS is computed differently
for pMCMC and NPMC. It can be observed that both
algorithms perform similarly in this case, with an equivalent
computational cost. Both algorithms attain on average lower
MSE values in the CO scenario, as expected. However, the

NESS also takes lower values in theCOcase, which indicates a
worsemixing of theMarkov chains in the pMCMC algorithm
and also higher degeneracy in the NPMC algorithm.

In Figure 2 the evolution of the NESS (left) and the
MSE (right) along the iterations of the NPMC algorithm is
represented, for the CO and the PO scenarios. It can be
observed that both measures attain a steady value by the 5-th
iteration, both in the CO and the PO case, which suggests that
actually less iterations are sufficient for this problem. Again,
we observe that in the CO scenario both the NESS and the
MSE reach lower values.

Figure 3 (left) plots the average ACF of the final pMCMC
sample, after removing the burn-in period and thinning the
Markov chain by a factor of 9. Particularly high correlations
are present in the CO case, leading to a poor NESS. Related
to the ACF, the average sample acceptance probability in the
pMCMC scheme in the PO scenario is 0.091, while in the CO
scenario it is only 0.0034, which means that 910 samples are
accepted out of I = 104 in the CO case and only 34 in the CO
case.

In Figure 3 (right) the final pdf estimates %̂(61 | !\1, y)
of the average simulation runs represented as big circles and
crosses in Figure 1 are represented in the CO and the PO
scenario, for the pMCMC and the NPMC schemes. For the
pMCMCmethod we have built a Gaussian approximation of
the posterior density %(61 | !\1, y) based on the final MCMC
sample {6(-)1 }/-=1. For the NPMC method, this approximation
corresponds to the proposal pdf for the next iteration P + 1,
i.e., %̂(61 | !\1, y) = (<+1(61) = N(61; k<,1,g2<,1), where the
mean and variance terms k<,1 and g2<,1 are computed as in(∗). It can be observed in Figure 3 (right) that very similar
results are obtained by both algorithms in this scenario. The
final MSE values obtained by the pMCMC and the NPMC
methods, averaged over m = 100 simulation runs, are shown
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Figure 3: Left. Average ACF based on the final sample of sizeK = 103 of the pMCMC scheme in the CO and the PO scenarios, averaged
over m = 100 simulation runs. Right. Marginal posterior pdf estimates %̂(61, | !\1, y) of an average simulation run, for pMCMC and NPMC
in the CO and PO scenarios.The true value 61 is also shown.
Table 1: Final mean and standard deviation (std) values of the MSE
for 61 in the CO and PO scenarios, for pMCMC and NPMC. The
prior values are included for comparison.

mean MSE std MSE
Prior 6.789 0

PO pMCMC 0.215 0.171
NPMC 0.195 0.170

CO pMCMC 0.027 0.026
NPMC 0.022 0.016

in Table 1, together with the MSE corresponding to the prior
distribution.

Figure 4 depicts the posterior mean of the populations,
x̂ = ?*̂(x|y)[x], obtained with pMCMC (left) as x̂ =(1/K)∑/-=1 x(-) and with NPMC (right) as x̂ = ∑/-=1R(-)< x(-)<
in the PO scenario. The results correspond to the partic-
ular simulation runs (different for pMCMC and NPMC)
identified with big squares in Figure 1 and whose posterior
approximations, %̂(61 | !\1, y), are shown in Figure 3 (right).
It can be observed that, in the PO scenario, the trend of
the population of all the species is reasonably identified,
even though only a linear combination of the proteins is
observed. In theCO scenario the populations of all species are
accurately estimated and are not shown for conciseness. Note
that the populations of all species are very low, which suggests
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Figure 4: Posterior mean, x̂ = ?*̂(x|y)[x], of the populations obtained in a single simulation run of pMCMC (left) and NPMC (right) in the
PO scenario (only a linear combination of the proteins is observed, corrupted by noise).

that the diffusion approximation may perform poorly in this
scenario.

The results presented in this section reveal a very similar
performance of the two methods in this simple scenario,
which suggests that the parameters of pMCMC have been
properly tuned. Also in terms of computational complexity
pMCMC and NPMC perform very similarly. The execution
time per 103 samples (one NPMC iteration and 103 pMCMC
iterations) for the pMCMC scheme is 312 seconds, while for
NPMC it is 325 seconds, both in the CO and in the PO
cases, on a 3-GHz Intel Core 2 Duo CPU, with 4 GB of
RAM. The stochastic forward simulation of the prokaryotic
model with the Gillespie algorithm has been implemented
in C, and the rest of the code in Matlab R2014b. Out of
the execution time per iteration of the NPMC method, only
0.06 second correspond to batch steps 4, 5, and 6, and the
rest of operations can be easily parallelized, as previously
discussed.

However, the pMCMCmethod does not allow for an easy
parallelization, provides a set of highly correlated samples
(especially in the CO scenario) and requires the setting
of the proposal variance J2, the burn-in and the thinning
parameters, which may not be straightforward, and deter-
mines the performance of the algorithm. On the contrary,
the NPMC scheme provides uncorrelated sets of samples at
each iteration and does not require the precise fitting of any
parameters. Additionally, the computer simulations suggest
that the convergence of the NPMCalgorithmmay be assessed
observing the evolution of the NESS, which usually reaches a
steady value simultaneously with the MSE.

5.4.2. Estimation of All the Parameters 6$, * = 1, . . . ,#.
In this section we present simulation results to evaluate the
performance of the pMCMC and the NPMC schemes in
the approximation of the posterior distribution of the rate
parameters and the populations of all species, %(!, x | y),

assuming that all the rate parameters are unknown, again in
the CO and the PO scenarios.

In this case, 0 = 200 observation times are assumed for
all the simulations. Again, m = 100 independent simulation
runs of each algorithm have been performed. The NPMC
scheme has been run for P = 15 iterations, with K = 103
samples per iteration and clipping parameterK1 = 100.The
pMCMC scheme has been run with I = 15 × 103 iterations
in each simulation run, a burn-in period of 103 iterations,
and thinning the output by a factor of 14. With this setup
the computational effort is approximately the same in the two
schemes.The variance of the randomwalk proposal has again
been set to J2 = 1, since this value seems to yield the best
performance.

In Figure 5 the MSE (in logarithmic scale), averaged over
the parameters 6$, attained by the pMCMC (left) and the
NPMC (right) algorithms, is represented versus the NESS, in
the CO and PO scenarios. Simulation runs which attained
a final MSE close to the global average value are indicated
with big circles (CO) and squares (PO) on both plots. It can
be observed that the pMCMC method performs similarly
in both scenarios, in terms of MSE and NESS, yielding
poor results in both cases. On the contrary, the NPMC
method provides significantly better MSE results in the CO
scenario, where a larger amount of information is available.
The NPMCmethod does not present degradation due to the
high degeneracy occurring in the CO scenario.

Figure 6 depicts the evolution along the iterations of
the NESS (left) and the MSE (right) averaged over m =100 independent simulation runs for the NPMC algorithm.
Both indices converge to a steady value in a low number
of iterations also in this complex scenario. As expected, a
significantly higher final MSE is attained in the extremely
data-poor PO scenario.

In Figure 7 (left) the averageACF attained by the pMCMC
in theCOand the POcases is represented. Even after thinning
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Figure 6: Evolution along the NPMC iterations of the average NESS (left) and MSE (right) in the CO and the PO scenario.

the output, the sample correlation is extremely high in both
scenarios, which leads to a very low NESS. The acceptance
rate is also very low and very long chains are required to
obtain reasonable results. In the PO scenario ≈ 44 samples
are accepted on average in a simulation run of I = 15 × 103
samples (acceptance rate 0.0029). In the CO case, only ≈ 23
samples are accepted on average (rate 0.0015).

Figure 7 (right) depicts the final Markov chain provided
by the pMCMC method (after removing the burn-in period
and thinning the output) in the average simulation run
represented with a big square in Figure 5 (left). It can be
observed that the mixing of the chain is very poor, with
a total number of accepted samples of 46 (close to the

average). Many other simulations, in both the PO and the CO
scenarios, provide even lower number of accepted samples
and thus very inconsistent results.

Figure 8 depicts the final Gaussian approximations of
the marginal posteriors %(6$ | y), * = 1, . . . , 8, obtained
by the pMCMC and the NPMC methods, in the CO and
PO scenarios, for the average simulation runs represented as
big circles and squares in Figure 5. We can observe that the
NPMCmethod provides a significantly better approximation
of the log-rate parameters in the CO scenario, where a larger
amount of data is available, which is also clear from Figure 5
(right). However, the pMCMC on average performs similarly
in both scenarios, due to the low efficiency of the pMCMC
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Figure 8: Marginal posterior pdf approximations of each parameter %̂(6$ | y), * = 1, . . . ,#, attained in an average simulation run by the
pMCMC and the NPMC, in the CO and in the PO case.

sampling scheme when the dimension of the problem (either# or0) increases.
In Table 2 the MSE of each parameter 6$ averaged

over m = 100 independent simulation runs is shown, as
obtained with the pMCMC and the NPMC schemes, for

the CO and the PO experiments. In the CO case, NPMC
provides homogeneous results for all parameters. On the
contrary, in the PO case, some of the parameters (specially65 and 66) are significantly poorly estimated, presenting a
final MSE close to the initial value (which corresponds to the
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Table 2: Final MSE for the parameters 6$, * = 1, . . . ,# in the CO and PO experiments, averaged over the simulation runs. The last two
columns correspond to the mean and standard deviation (std) values of the global MSE (averaged over the parameters).The prior values are
included for comparison. 61 62 63 64 65 66 67 68 mean MSE std MSE
Prior 6.789 11.344 8.853 7.543 6.789 12.484 8.430 6.789 8.628 0

PO pMCMC 3.412 3.319 5.543 3.200 7.059 8.929 6.799 4.371 5.329 2.926
NPMC 1.246 1.011 2.214 1.490 4.073 7.015 2.311 1.856 2.652 1.020

CO pMCMC 2.899 2.958 1.676 1.572 1.604 1.547 1.573 1.468 1.912 1.476
NPMC 0.305 0.302 0.162 0.167 0.280 0.280 0.156 0.168 0.228 0.091
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Figure 9: Posterior mean x̂ = ?*(x|y)[x] of the populations of all species obtained in the average simulation run of the pMCMC (left) and the
NPMC (right) schemes, in the PO scenario.

prior knowledge).The pMCMCschemepresents significantly
higherMSE values thanNPMC in both observation scenarios
and for all parameters 6$.

Figure 9 depicts the population posterior mean x̂ =?*(x|y)[x] corresponding to the average simulation runs of
the pMCMC and the NPMC methods in the PO scenario,
represented as big squares in Figure 5. Again, the NPMC
method provides more accurate estimates of the unobserved
populations than the pMCMC method, especially for "6'A.
In the CO scenario both methods provide good approxima-
tions of the populations of all species.

6. Conclusion

We have investigated the use of Monte Carlo-based Bayesian
computation methods for approximating posterior distri-
butions of the parameters and the species populations in
stochastic kinetic models. Specifically, we have applied both
particle Markov chain Monte Carlo (pMCMC) and non-
linear population Monte Carlo (NPMC) methods, which
rely on different sampling and approximation schemes. Both
pMCMC and NPMC methods resort to a sequential Monte
Carlo approximation of the posterior populations to estimate
the unknown interaction parameters. However, the pMCMC

constructs a Markov chain of correlated parameter samples
while the NPMC algorithm is based on an importance sam-
pling scheme with nonlinearly transformed weights to avoid
degeneracy and the numerical problems typically arising
in importance samplers when applied to high dimensional
problems.

We have compared the performance of the two schemes
for a challenging autoregulatory feedback network with 5
species and 8 unknown interaction rate parameters. Both
methods have been applied without resorting to approxi-
mations of the underlying jump process (e.g., the diffusion
approximation). We have shown how the NPMC algorithm
outperforms the pMCMC method and requires only a mod-
erate computational cost. Besides, the proposedmethod has a
set of important features, common to all PMC schemes, as the
sample independence, ease of parallelization, and compared
to MCMC schemes, there is no need for convergence (burn-
in) periods.

Let us note that there is room for improvement of
both algorithms in practical applications. To be specific, the
pMCMC scheme we have assessed is constructed around
a random walk Metropolis algorithm, but other MCMC
schemes can be adopted; hence it is possible to further
optimize its performance. The same is true for the NPMC
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Initialization Set - = 0, $ = 0; select the interval length n and an initial population vector x(0).
Iterative steps:

1. Compute the instantaneous rates ℎ$(-) and ℎ0(-) = ∑"$=1 ℎ$(-).The probability of reaction * is %$(-) = ℎ$(-)/ℎ0(-).
2. Generate two random numbers o1, o2 ∼ U[0, 1].
3. Compute the waiting time to the next reaction as p(-) = (1/ℎ0(-)) ln(1/o1).
4. Select the reaction type according to o2 and the probability of each reaction %$(-).
5. Update the time index - = - + p(-), and the reaction index $ = $ + 1.
6. Adjust the populations of the species x(-) according to the reaction occurred.
7. If - < n go to step 1.

Algorithm 3: Gillespie algorithm [18].

Initialization (. = 0): Draw a collection of E samples {x(2)0 },2=1 ∼ %(x0).
Recursive step (. = 1, . . . ,0):

1. Draw {x(2)& },2=1 ∼ %(x& | x(2)&−1, !) using the Gillespie algorithm (or a diffusion approximation).
2. Construct x(2)1:& = [x(2)1:&−1⊤, x(2)& ⊤]⊤.
3. Compute normalized IWs q(2)∗& = %(y& | x(2)& ), q(2)& = q(2)∗& /∑,>=1 q(>)∗& , W = 1, . . . , E.
4. Resample E times with replacement from {x(2)1:&},2=1 according to the weights {q(2)& },2=1 to yield {x̃(2)1:&},2=1 .

Algorithm 4: Standard particle filter [19].

method, however. In this case, the step to optimize in practice
is the choice of the importance function. In our comparison
we have used multivariate Gaussian proposals (because they
are straightforward to fit) but other, more efficient proposals
can indeed be used within the proposed framework. Also
note that a computationally simpler approach to inference in
some SKMs is the use of sequential Monte Carlo approximate
Bayesian computation (SMC-ABC) techniques [26, 27]. In
the SMC-ABC framework the state-space model (for x&) is
only used for forward simulation. There is no attempt to
approximate the likelihood of !, which is replaced by some
simple summary statistic. SMC-ABC methods are attractive
when computational cost is a major concern, but they can
be expected to deliver an inferior performance (as they
do not fully exploit the probabilistic model, when it is
available).

Appendix

A. Gillespie Algorithm

The Gillespie algorithm [18], which is displayed in Algo-
rithm 3, allows generating exact forward simulations of
arbitrary SKMs, by drawing samples from the transition
density %(x& | x&−1, c), . = 1, . . . ,0, given a set of rate
parameters c and an initial population x0.The algorithm can
be run up to a number of reactions or for a given time intervaln.
B. Sequential Monte Carlo Approximation of%(x | !,y) and %(y | !)
In this appendix we provide details on the approximation of
the posterior %(x | !, y) and the likelihood %(y | !). For a

given vector of log-rate parameters !, the standard particle
filter (see, e.g., [19]) displayed in Algorithm 4 is run.

An approximation of the posterior %(x | !, y)>x may be
constructed from the final set of samples x(2)1:' = x(2) and
weights q(2)' as the discrete random measure%̂, (>x | !, y) = ,∑2=1q(2)' Mx(') (>x) . (B.1)

The likelihood %(y | !) can be approximated in turn as%̂, (y | !) = '∏&=1 1E ,∑2=1% (y& | x(2)& ) . (B.2)

In order to obtain a sample from the approximation%̂,(>x | !, y) in the pMCMC or the NPMC schemes, we just
draw a sample out of the set {x(2)},2=1 according to their IWsq(2)' .
Data Availability

All used data are synthetic. The code is freely available upon
request.
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