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Abstract

Synchronization of coupled oscillators is by now a very well studied subject. A large number of

analytical and computational tools are available for the treatment of experimental results. This

article focuses on a method recently proposed to construct a phase model from ex-

perimental data. The advantage of this method is that it extracts phase model in a

non-invasive manner without any prior knowledge of the experimental system. The

aim of the present research is to apply this methodology to a network of electronic

genetic oscillators. These electronic circuits mimic the dynamics of a synthetic genetic oscilla-

tor, called “repressilator,” which is capable of synthesizing autonomous biological rhythms. The

obtained phase model is shown to be capable of recovering the route leading to synchronization

of genetic oscillators. The predicted onset point of synchronization agrees quite well with the

experiment. This encourages further application of the present method to synthetic biological

systems.

PACS numbers:
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I. INTRODUCTION

The synchronization of coupled oscillators has received much attention in the past few

years within the context of nonlinear dynamics. Since oscillators are ubiquitous around us,

this explains the large volume of literature dedicated to this subject. Among the long list

of examples it is worth citing coupled systems, which spontaneously synchronize such as

neurons [Elson et al., 1998], menstrual synchrony among women [McClintock, 1971], and

genetic clocks [Yamaguchi et al., 2003]. Synchronization plays an important role also in

biological rhythms such as the circadian clock located at the suprachiasmatic nucleus (SCN)

of the hypothalamous in mammals. The SCN is composed of ∼ 10,000 neurons, each of

which is a self-sustained oscillator with a varied frequency. Through the mutual coupling,

the SCN neurons are synchronized to form the circadian rhythm. It is therefore indispensable

to study the biological rhythm under the framework of coupled oscillators.

In the study of coupled oscillators, one of the most standard modeling approaches is the

phase equational modeling, which can be applied to weakly coupled limit cycle oscillators

[Kuramoto, 1984]. Because of its very simple mathematical expression, the phase modeling

technique has been applied to a variety of systems including the biological rhythms [Winfree,

1980; Galan et al., 2005; Kori & Mikhailov, 2004]. However, an important problem of

constructing the phase models from experimental biological data still remains open. Hence,

the present article aims at constructing a phase model from an experimental system that

mimics the dynamics of a genetic oscillator. This genetic oscillator, called the “repressilator”,

has been conceived and built in laboratory from scratch [Elowitz & Leibler, 2000]. The

experiment shows a periodic evolution of a protein level in bacteria genetically manipulated.

The underlying dynamics of this oscillator can be described by a very simple mathematical

model based on ordinary differential equations. This equation can be simulated in many

ways and we have proposed an analog simulation with electronic circuits [Wagemakers et

al., 2006]. Furthermore, we have demonstrated that the synchronization could be achieved

within a set of oscillators with a global coupling between the units. This synchrony, which

has been described theoretically [Garca–Ojalvo et al., 2004], has not yet been observed in

a synthetic biological system. Hence, our electronic genetic network provides an important

initial step towards analysis of real biological systems.

The method of constructing the phase model is based on an approach [Tokuda et al.,
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2007], recently developed to extract phase models from multivariate time series. This ap-

proach has an important practical advantage that no prior knowledge of the underlying

dynamics is required. Compared with the conventional techniques [Kuramoto, 1984; Sak-

aguchi et al., 1987; Kiss et al., 2005; Galan et al., 2005; Miyazaki et al., 2006], which are

rather invasive in the sense that a perturbation is applied to an isolated oscillator or two

coupled oscillators should be extracted from a population of oscillators, the present approach

utilizes only a set of time series recorded from all the units. This non-invasive property can

be a great advantage especially for the application to biological systems. First, natural fre-

quencies of the units as well as interaction function between the units are estimated by the

multiple-shooting technique. Then, the estimated phase model can be simulated for a dif-

ferent coupling value to study the dependence of synchronization on the coupling strength.

One of the highlights of the estimation technique is its ability to reconstruct the route to

synchronization from only a single time series of the experimental setup in a weak coupling

configuration. This single data set is shown to be sufficient to predict the onset point of full

synchronization in the experimental system.

II. THE REPRESSILATOR MODEL

The original repressilator model is founded on a synthetic biology experiment first pub-

lished in [Elowitz & Leibler, 2000]. The authors constructed an oscillator with different

genes, which are present in the bacteria E. Coli and made them to interact artificially. It is

composed of three different genes which produce proteins capable of interacting with other

genes inhibiting their protein synthesis, and whose product affects each other by repressing

its production. The structure of the repressilator is the following: The gene 1 produces a

protein that silences the gene 2, the gene 2 represses the gene 3 and the gene 3 inhibits the

gene 1. This closed chain of repressions and inhibitions is called the repressilator. It has

been demonstrated experimentally that sustained oscillations do exist for the repressilator.

The dynamics of this system can be expressed by a simple mathematical model of coupled

ordinary differential equations. In the following set of equations, each dynamical variable pi

3



represents the concentration of a protein produced by one of the genes:

dp1

dt
= −γp1p1 +

α1

1 + (p3/K0)n
(1)

dp2

dt
= −γp2p2 +

α2

1 + (p1/K0)n
(2)

dp3

dt
= −γp3p3 +

α3

1 + (p2/K0)n
. (3)

The parameter γpi holds for the protein mean life, the parameter αi is the protein production

rate and K0 and n are related to the strength of the repression of the specific protein. This

repressilator model can be simulated with a very simple analog electronic circuit [Wagemak-

ers et al., 2006]. The circuits reflect the most important aspect of the dynamics, which is the

mutual repression of each gene. The basic circuit is composed of three MOSFET transistors

which actuates as controllable switches as it can be seen in the Fig. 1 (a) . In absence of

tension on the gate of the transistor i, the voltage Vi increases until it reaches a threshold
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FIG. 1: (a) Basic circuit of the repressilator with a MOSFET transistor and discrete linear com-

ponents. (b) Typical time series of the three voltages V1, V2 and V3.
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and shuts down the tension Vi+1. It reproduces the circular inhibition of the repressilator

perfectly as it can be seen in the time series of the Fig. 1 (b).

The protein concentration of each bacteria oscillates individually with its own phase and

frequency without any kind of observable global behavior. To explore the effects of the

synchronization on a colony of repressilators, several units have been coupled with a simple

resistor to a common point in the configuration shown in the Fig. 2. The synchronization of

the different units is possible to achieve with the variation of the coupling of the resistance

Rc. The level of coupling needed to synchronize the system will be detailed in the section

III.

In order to obtain the prediction with the numerical method, we need to describe with

some detail a model of the circuit of the Fig. 1. First, it is convenient to analyze the behavior

of a single cell to understand the complete model. The basic unit of the circuit representing

the dynamics of the repressilator can be viewed in the Fig. 1 in the dashed box. The core of

the model is a MOSFET circuit which behaves as a switch controlled by the gate voltage.

Based on the MOSFET enhancement n-channel model, we have the following expression for

the drain current id:

FIG. 2: Schematics of the coupled system, the variable V1 is connected to a common point through

a resistor Rc.
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id(Vi, Vi−1) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0 for Vi−1 < Vth

K(2Vi(Vi−1 − Vth) − V 2
i ) for 0 < Vi < Vi−1 − Vth

K(Vi−1 − Vth)
2 for 0 < Vi−1 − Vth < Vi,

(4)

with K and Vth two parameters depending on the considered MOSFET model. Other models

can also be used for the drain current. A simpler model can be approximated in the form

of a continuous function:

id(Vi, Vi−1) = K(Vi−1 − Vth)
2

(
Vi

Vi + Vi−1 − Vth

) (
(Vi−1/Vth)

n

1 + (Vi−1/Vth)n

)
.

The equation that rules the dynamics of one basic cell can be written as:

Ci
dVi

dt
=

(Vcc − Vi)

Ri

− id(Vi, Vi−1), (5)

which is the sum of the currents in the transistor Ci. However, to simplify the analysis a

simpler model can be obtained after some assumptions. The set of equations is reduced to:

R2C2
dV2

dt
= −V2 + Vccf(V1) + α, (6)

R3C3
dV3

dt
= −V3 + Vccf(V2) + α, (7)

R1C1
dV1

dt
= −V1 + Vccf(V3) + α, (8)

with f(x) = 1
1+(x/Vth)n . This expression is similar to the model of the repressilator in the

Eqs. (1-3).

The coupling between the units is achieved through a common resistor to all the circuits

as shown in Fig. 2. The voltage V1 of each circuit is connected to a common point through

a resistor Rc. We obtain in this way a global coupling of the system. In order to obtain

the equation of the coupled circuit, we have to consider first the voltage Vg of the common

point were all the resistors Rc are connected. The current flowing from this point to one of

the voltage V1 of the repressilator n is:

in =
(Vg − V n

1 )

RC

, (9)

with V n
1 the voltage V1 of the circuit n. On the other hand, we have the sum of all the

currents at this point:
N∑

n=1

in = 0, (10)
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which leads to:
N∑

n=1

(Vg − V n
1 ) = 0. (11)

We deduce that Vg is the mean of all the voltages:

Vg =
1

N

N∑
n=1

V n
1 . (12)

It is now straightforward to deduce the set of ODE’s of the coupled system:

R2C2
dV2

dt
= −V2 + Vccf(V1) + α, (13)

R3C3
dV3

dt
= −V3 + Vccf(V2) + α, (14)

R1C1
dV1

dt
= −V1 + Vccf(V3) + α + R1

1

Rc

1

N

N∑
n=0

(V n
1 − V1). (15)

The parameters used in the experiments are:

• R1 = R2 = R3 = 1kΩ with a variability of 10%

• C1 = C2 = C3 = 1μF with a variability of 10%

• Vcc = 3V

• Vth = 2.3V with a variability of 10%

III. PROBLEM AND METHOD

The coupled system described in the previous section can be synchronized depending on

the coupling value Rc. In this section we expose the method that will give us the coupling

value necessary to obtain this synchronization.

Consider a system of N weakly coupled nearly identical limit cycle oscillators:

ẋi = Fi(xi) +
C

N

N∑
j �=i

G(xi, xj), (16)

where xi and Fi (i = 1, 2, · · ·, N) represent state variables and the dynamics of the i-th

oscillator, C and G represent the coupling constant and the interaction function between

the ith and jth oscillators. Our assumption is that in an isolated condition (C = 0), i.e.,

uncoupled oscillators, each oscillator Fi gives rise to a stable limit cycle with similar natural
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frequencies ωi. Then the phase reduction theory [Kuramoto, 1984] states that for weak

uniform coupling C, the network dynamics can be reduced to the phase equations:

θ̇i = ωi +
C

N

N∑
j=1

H(θj − θi) (17)

(θi: phase of i-th oscillator; H : interaction function). As a reminder, we assume that a

simultaneous measurement of all oscillators is made as {xi(nΔt) : n = 1, · · ·, M}N
i=1 (Δt:

sampling time).

Our goal is to infer the phase equations from the measurement data under the conditions

that:

1. the underlying dynamics (16) are unknown,

2. the coupling constant C associated with the measured data is taken from a non-

synchronous regime, and

3. the coupling type is known to be uniform and an all-to-all connection.

The estimation does not require an a priori knowledge of the specific value of the coupling

constant (without loss of generality it can be taken to be unity).

Our approach to the problem can be described as follows [Tokuda et al., 2007]:

1. Determine the phases θi(t) from the data xi(t). Among various definitions of phases

[Pikovsky et al., 2001], a simple formula is chosen, where the phase θ is increased by

2π at every local maximum of x(t), and between the local maxima the phase grows

proportionally in time.

2. Fit the phases {θi(t)} to the phase equations:

θ̇i = ωi +
C

N

N∑
j=1

H̃(θj − θi), (18)

where the interaction function H̃, which is in general nonlinear and periodic with

respect to 2π, is approximated by a Fourier expansion up to order of D as H̃(Δθ) =∑D
j=1 ajsinjΔθ + bj(cosjΔθ − 1).

The unknown parameters p = {ωi, aj, bj} are estimated by the multiple-shooting

method [Baake et al., 1992]. We denote the time evolution of the phase equations
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(18) with respect to the initial condition θ(0) by θ(t) = φt(θ(0), p). Then, at each

sampling time t = iΔt, the phase equation must satisfy the boundary conditions:

θ((n + 1)Δt) = φΔt(θ(nΔt),p). With respect to the unknown parameters p, we solve

these nonlinear equations by the generalized Newton method, and we integrate the

evolution function φt numerically. For the computation of the gradients ∂φ/∂p, which

are needed for the Newton method, variational equations of the phase equations (18)

are also solved numerically.

A necessary condition to solve the nonlinear equations is that the number of the

unknown parameters is less than the number of the equations, corresponding in this

case to N + 2D < N(M − 1). This always holds in the case of enough data M .

3. To avoid over-fitting, a cross-validation technique is used to determine the optimum

number of higher harmonics in the interaction function, D [Stone, 1974]. We divide

the multivariate data into two parts. For the first half of the data, the parameter

values p are estimated, then we apply the estimated parameters to the latter half data

and measure the error E =
∑

n |θ((n + 1)Δt) − φΔt(θ(nΔt),p)|2. The order number

D giving rise to the minimum error is considered to be the optimum.

IV. COUPLED REPRESSILATOR MODEL

We apply the technique described in the previous section to the genetic oscillator, which

models the repressilator. The voltage V1 of each oscillator is connected to a common point

through a resistor Rc. We obtain this way a global coupling of the system, which is described

by the Eqs. (13-15) with a multiplicative coefficient:

R2C2
dV2

dt
= −αiV2 + αiVccf(V1), (19)

R3C3
dV3

dt
= −αiV3 + αiVccf(V2), (20)

R1C1
dV1

dt
= −αiV1 + αiVccf(V3) + R1

1

Rc

1

N

N∑
n=0

(V n
1 − V1). (21)

Each unit gives rise to a limit cycle oscillation under the chosen parameter configuration

without coupling C = 0. To consider inhomogeneity in the network, parameter values αi

are varied among the cells, and the multivariate data are recorded as {Vi,2(t)}N
i=1.
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Here, we examine the case of N = 16. Inhomogeneous parameter values were set as

αi = 1 + 0.005·(i − 8.5) (i = 1, 2, · · ·, 16). The data {Vi,2(t)}16
i=1 were collected with the

coupling strength C = 0.01, which gives rise to a non-synchronized dynamics. The sampling

interval was set to be Δt = 0.08 for the extraction of the phase {θi(t)}. Then, by applying

the multiple-shooting method the data have been down sampled to Δt = 1000·0.08 and the

total of 2000 data points have been collected for the parameter estimation. (As an initial

condition, unknown parameter values are all set to be zero, i.e., ωi = 0, aj = bj = 0.)

The convergence property of the multiple-shooting was excellent; a single Newton procedure

gives a good estimate.

Figs. 3 (a) and (b) show the estimated interaction function and the natural frequencies of

the uncoupled oscillators with the Fourier order of D = 4, which was optimized by the cross-

validation test. The estimated natural frequencies are distributed on a diagonal line with

the original frequencies computed from each of the repressilators. Moreover, the estimated

interaction function H̃(Δθ) is in a very good agreement with that estimated by applying

the perturbation method [Kuramoto, 1984; Sakaguchi et al., 1987] to a single repressilator

model.

The estimated phase model (18) can be used for predicting the synchronization structure.

Fig. 3 (c) shows the dependence of the order parameter Φ on the coupling strength, where

Φ was computed according to ReiΦ = 1
N

∑N
j=1e

iφj (φj: phase of j-th cell). The phase model

gives an excellent prediction of the order vs. coupling strength curve. The Kuramoto transi-

tion point [Kuramoto, 1984] (onset of synchronization) observed in the original repressilator

model (19-21) is predicted by the phase model, even though only a single data point is used

for the parameter estimation.

We remark that this precision of predictability is expected as far as the cou-

pling strength is weak enough. Under such a weak coupling, the phase reduction

theory guarantees that the phase dynamics is invariant [Kuramoto, 1984]. This

is essential for predicting the onset of synchronization from a weaker coupling

regime. In contrast, if the synchronization takes place only at a very strong

coupling, the phase dynamics gets distorted. In that case, it becomes more dif-

ficult to predict the synchronization. In that sense, there is a certain limitation

of predicting the onset of synchronization.

It is important to note that the estimation results depend on the modeling condition.
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(a) (b)

(c)

FIG. 3: Results of modelling the simulated data at K = 0.01. (a) Interaction function H̃(Δθ)

estimated by the perturbation method (solid line) and by the present method (dotted line). (b)

Natural frequencies of the original system against its estimation. (c) Synchronization diagram

of the original system (solid line) and estimation (dotted line). Circle point corresponds to the

coupling strength used for the modelling.

Figs. 4 (a)-(c) show the dependence of the estimation error on the data length M , observa-

tional noise, and percentage of the number of the observed repressilators. The estimation

error was measured as a deviation of the estimated interaction function H̃s(Δθ) from the

one H̃p(Δθ) estimated by the perturbation method, i.e., E =
∫ 2π

0
‖H̃s(Δθ) − H̃p(Δθ)‖dΔθ.

As the observational noise, independent zero-mean Gaussian noise ξ∈N(0, γ2) was added to

each of the multivariate data {Vi,2(t)}16
i=1, where the noise level is given by 100γ/σ [%]
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(a) (b)

(c)

FIG. 4: (a) Dependence of the estimation error on the data number. (b) Dependence of the esti-

mation error on the observational noise. (c) Dependence of the estimation error on the percentage

of the number of observed repressilators.

(σ: standard deviation of the signal V ). The percentage of the number of the observed

oscillators is given by 100N/16 [%], where only a subset of N measurements {Vi,2(t)}N
i=1 was

used among the 16 measurements {Vi,2(t)}16
i=1.

As shown in Fig. 4 (a), the data length of M = 100 is required for a precise estimation of

the interaction function. Since the sample interval of this study was set to be rel-

atively long (Δt = 1000·0.08), the total number of the oscillation cycles included

within this data (M = 100) was about 1600. Sometimes, this amount of oscil-

lation cycles can not be recorded from the experiment. According to another
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simulation using much shorter sampling interval (Δt = 40·0.08), the data length

of M = 120 was found to be enough for a precise estimation, where the number

of the oscillation cycles within this data was about 80. This amount of cycles

can be expected for normal experimental data.

Fig. 4 (b) shows the influence of the observational in the case that the data length is fixed

to M = 80. The estimation is found to be robust up to the observational noise of 10 %,

which is practical for a real experimental situation. Although the estimation result is rather

sensitive to the percentage of the observed cells, it still provides a good estimate even if 5

% of the cells is not observed.

V. APPLICATION TO ELECTRONIC CIRCUIT DATA

Our technique has been finally applied to experimental data measured from electronic

genetic networks with 16 coupled units [Wagemakers et al., 2006]. In this section we contrast

the result obtained with the numerical algorithm and the experiments.

In order to compare the numerical algorithm with the experiment, the interaction function

H̃ of the coupled system must be estimated. This function can be estimated with the help

of the phase response curve.

The phase response curve represents the phase displacement of the oscillator when a

perturbation is applied during the cycle [Winfree, 1980]. To elaborate this curve, small

perturbations are applied at different times of the cycle. In our case these perturbations

are short electric pulses. The phase displacement is compared with the phase previous to

the shock. The phase shift is represented in function of the phase of the cycle. Fig. 5 (a)

represents the experimental phase response curve along with the waveform of the oscillator.

The interaction function H̃ for weak coupling can be estimated from the experimental

phase response curve [Kuramoto, 1984]. The measured interaction function of the circuit is

represented in the Fig. 5 (b). The interaction function is also computed from a time series of

the experiments in a weak coupling regime. Despite some differences between the numerical

algorithm and the experiment in the Fig. 5 (b) the results are consistent. Figure 5 (b) shows

the estimated natural frequencies of the oscillators. The Fourier order was optimized by

the cross-validation test as D = 3. The last figure represent the estimated synchronization

diagram compared to the experimental measurements. Note that the computed diagram
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(a) (b)

(c) (d)

FIG. 5: (a) Phase response curve of a single circuit along with the waveform of the oscillation.

(b) Interaction function H̃(Δθ) of the experimental system (solid line) and its estimate (dotted

line). (c) Natural frequencies of the experimental system against its estimate. (d) Synchronization

diagram of experimental system (solid line) and estimate (dotted line). Circle point corresponds

to the coupling strength used for the modelling. In the inset graphic the time series of the circuit

for the weak coupling configuration is shown for the coupling Rc = 13kΩ.

has been obtained from a single time series of the weak coupled system. The time series is

circled in red on the Fig. 5 (d). The transition to synchrony is very well represented in this

graphic. The results validates the assumption that the system can be estimated by a set of

coupled phase oscillators when the coupling between units is weak.

14



VI. CONCLUSIONS

A phase model has been estimated from an experimental data of electronic genetic net-

work. The estimation technique required only a single set of multivariate data recorded

simultaneously from all units of the genetic oscillators. The estimation accuracy has been

checked by comparing the estimated interaction function with the one obtained by the per-

turbation method. The estimated phase model was further utilized to study the dependence

of the synchronized state of genetic oscillators on the coupling strength. The phase model

was shown to be capable of recovering the route from non-synchronization to synchronization

with an accurate onset point, which agrees quite well with the experiment.

The next challenge of the present approach is to apply it to experimental data from

synthetic biological system such as coupled synthetic genetic oscillators. Experimental re-

alization of the coupling among such synthetic oscillators is awaited. To deal with bio-

logical data, the dynamical noise should be an important issue, since biological

systems are inherently noisy. We believe that the present approach might be

robust against a moderate amount of dynamical noise as shown by its applica-

tion to the electronic data, which includes a certain amount of dynamical noise.

However, in the case that a strong level of dynamical noise exists, the phase

dynamics should take the form of stochastic differential equations. To deal with

such stochastic dynamics, the parameter estimation technique should be modi-

fied such as using the an averaging method [Siegert et al., 1998]. Such approach

to deal with the dynamical noise will be considered in our future work.
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