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Abstract

In this paper a spatio-temporal analysis of wind power resource in the Iberian Peninsula is
presented. The study uses the Second-Order Data-Coupled Clustering (SODCC) algorithm
over reanalysis data in the for the period 1979 – 2014. Several characteristics of the method
are detailed, such as the data-coupled clustering approach of SODCC, that ensures the non-
singularity of the signal subspace within each cluster. The performance of the proposed
approach and specific results obtained have been discussed in a case study in the Iberian
Peninsula. In these results it is possible to identify different spatio-temporal patterns of the
wind data statistics depending on the initialization year. Moreover, this work also shows that
there is a close relationship between these spatio-temporal patterns with the wind energy
production of the area under study, so the proposed analysis can be extended to wind farms
efficiency production at the time scales considered.

Keywords: Wind resource, Wind energy production, Spatio-temporal analysis, SODCC
clustering

1. Introduction

In the last years, the growing of global wind power generation has been spectacular,
with total investments over 100 billion dollars, and over 432GW of total installed power
by the end of 2015 [1]. Wind power, together with alternative renewable energy sources,
offers important benefits compared to fossil fuels, including a drastic reduction of emissions,
environmental impact and climate change. On the other hand, wind intermittent nature is a
major issue to achieve an effective integration of wind energy within existing power grids [2].
In close connection with its intermittent nature, wind resource assessment is a major issue
for wind energy development, in different aspects such as wind farms prospection, analysis
of current production in existing facilities, or as a tool for future projection of wind energy
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production. This production heavily depends on weather and atmospheric conditions, which
introduces an important spatio-temporal variability in the available wind resource [3].

The research on spatio-temporal analysis and structure of wind variability has been
intense in the last years. In [4] the temporal changes in wind speed (10m) and direction
has been analyzed in the North Sea. Different runs of several regional climate models are
used to obtain conclusions on short-term correlations and also long-period fluctuations. In
[5] the spatio-temporal variation of offshore wind resources is studied, based on remote
sensing data from instruments onboard satellites. Wind field data from different satellites
in the period 2000-2008 are used to carry out this characterization and study of the offshore
wind resource potential in China. In [6] temporal and spatial variability of wind resource
in the USA is analyzed. That paper uses the climate forecast system reanalysis to carry
out this spatio-temporal analysis of wind speed data from 1979 to 2011. Different variation
patterns of wind in the USA associated with climate indices such as the North Atlantic
Oscillation (NAO) or El Niño South Oscillation (ENSO) are described. In [7] a study of
the wind potential in Malaysia (at nationwide scale) is carried out. More specifically, that
paper analyzes spatio-temporal variations of wind potential and spatial wind power density
in Malaysia, by means of applying different models to spatially reconstruct the wind speed,
and analyze its evolution within the time. In [8] an analysis on how the optimal siting of
wind farms based on a pre-assessment of the spatio-temporal variability of wind resources
could reduce fluctuations in the delivered output, improving this way the quality of the
supply in the future. An analysis in Spain reveals the importance of taking into account
this spatio-temporal evolution of wind resource in the location of wind farms. In [9] real-
world historical wind data are used to analyze spatio-temporal correlation among several
wind farms, and how this correlation has an impact on a competitive pool market, when
inter-temporal constraints of dispatchable generating units are considered in the market
model. In [10] an analysis of long-term wind speed evolution in Australia is carried out.
In this case, a large number of wind observations and also reanalysis products are analyzed
to compute such long-term wind speed trends. Spatio-temporal properties of wind speed
have been also exploited to obtain a better wind speed prediction, such as in [11], where
the Wavelet Transform is used for the decomposition of the wind speed data into more
stationary components, and then a spatio-temporal model on each subseries is applied, for
incorporating both temporal and spatial information.

Different clustering techniques have also been applied to wind resource analysis and
prediction. In [12] use the furthest neighbour hierarchical clustering method to group the
temporal instants of wind speed data in a unique meteorological station in Mexico. In [13] the
k-means clustering technique is used to perform short term-prediction of the wind power
at low wind speed using 10s data. From the multiple simulated scenarios, with different
parameter combinations, their results show that for the customized cluster parameters the
prediction accuracy can be improved. In [14] the k-means clustering technique is also used
to evaluate and to forecast of the energy deliverable by different renewable sources. The
main difference is that both wind speed and solar irradiance are considered as input data
in association to the energy capability of a wind generator and a photovoltaic plant. In [15]
an assessment of the renewable energy potential in Romania using the k-means algorithm is
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carried out. In this case, the clustering approach is applied to different variables related to
the renewable energy potential in the country, such as installed capacity, level voltage, type
of renewable technology and geographical location of the resource. Representative pattern
areas of renewable energy sources are then obtained with the clustering method, which can
be used to improve planning and development of the electric networks in Romania. [16]
investigates the wind speed forecasting using a spectral clustering method, decomposing
the wind speed data by means of the Wavelet Transform. With this method, the prediction
accuracy for simultaneously time instants is increased. In [17] different clustering techniques
are applied to obtain patterns of the wake effects in wind farms. Specifically, FCM (Fuzzy
c-means), K-mean, and K-medoids were used as the clustering algorithms, and a Principal
Component Analysis technique was previously applied as a pre-processing step to the wake
data. Ten different wake effect clusters affecting the wind farm production were observed
according to results obtained in that paper. [18] proposes to apply a cluster analysis to
the numerical weather prediction information, in such a way that similar days in terms
of wind power receives a similar prediction treatment. The prediction results show that
correct cluster analysis method is a useful tool in day-ahead wind power prediction. The
main drawback of these papers is that their analysis is limited to either the temporal or
spatial scales.

This paper deals with a problem of spatio-temporal evaluation of wind speed, in connec-
tion with wind energy production and resource. Specifically, a novel data-coupled clustering
technique is used to carry out this spatio-temporal analysis, over the ERA-Interim [19] re-
analysis data in the Iberian Peninsula. The proposed method is based on the Second-Order
Data-Coupled Clustering (SODCC) algorithm, that clusters the nodes of a given network
using the statistics the measured data. In this work, the network elements are the output
nodes of the ERA-Interim reanalysis in the area of interest. The application of the proposed
method to wind speed reanalysis data in the Iberian Peninsula is justified, since Spain and
Portugal are two of the major wind energy producers/consumers in the World [1]. The
obtained results show two different types of behaviour of the wind resource in the area of
interest, leading to different types of wind energy production patterns.

The rest of this paper is organized as follows: Section 2 describes the spatio-temporal
analysis method based on the SODCC algorithm and its implementation; Section 3 describes
the experiments made using wind data, presents our results and validate the analysis method;
Section 4 discusses and interprets the obtained results. Finally, Section 5 concludes the
article.

2. Methods

As mentioned, the main goal of this work is the presentation of an advanced signal
processing method for wind speed data analysis, with promising applications for the study
of wind farms efficiency. The different steps included in this data analysis method can be
summarized as follows:

• Model the environment under study according to a given system model.
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• Cluster the network using the SODCC algorithm with multiple temporal initializations.

• Calculate the cluster size probabilities, in order to study the temporal evolution of the
statistics of the data. At this point, it is possible to identify distinctive patterns be-
tween different SODCC initializations by using the Kullback-Leibler divergence (KLD)
metric.

• Calculate the node to cluster size probabilities, in order to spatial extent of the statis-
tics of the data.

The following sub-sections detail this data analysis method and the required algorithms
and mathematical tools.

2.1. System model

Consider a set of points located in a geographical region and a given physical variable
measured over the time for each location. Each point is modeled as a node forming part of
a network, modeled by the graph G = (V,E), with |V | = N vertexes/nodes and |E| = C
edges/connections.

Each of the N node measures a new data point every Fs time instants obtaining a total of
M measurements per node. Let X = [x1, . . . ,xM ], with xm ∈ RN , be the dataset measured
by the entire network. The covariance matrix of X can be estimated as Σ = XX>/M ,
where (·)> indicates the transpose operation.

2.2. SODCC: a data-coupled clustering algorithm

The SODCC algorithm is a data-coupled clustering algorithm that organizes the nodes
of a network in terms of the second-order statistics of the measured data. SODCC was
proposed for Wireless Sensor Network (WSN) clustering, but it is also suitable for the
considered system model and for climate data analysis [20, 21].

In short, SODCC operates as follows: each non-final (or non-stable) cluster fusions to
another cluster until a stopping criterion is reached. SODCC decides based on the relation
between the dimension of signal subspace of the data (d̂) and the cluster size (Ni). With this
approach, it ensures the non-singularity of the signal subspace of the data measured by each
final cluster, meaning that d̂ < Ni and Σ is well-posed. In other words, SODCC determines
that a cluster is final if it is possible to solve the principal components that explain most of
the variance in the data (e.g. 90%).

The operation of the SODCC algorithm is divided in two stages: 1) random initial-
ization of the first Cluster Heads (CHs) and formation of the first clusters, and 2) fusion
between existing clusters set by the decision criterion. In this work, the dimension of the
signal subspace d̂ for the data in each cluster is calculated by means of the Fast Subspace
Decomposition (FSD) [22].

Previous work have shown the relation between the decision criterion of SODCC and the
final cluster sizes [20]. This is also illustrated in Figure 1. Given the final cluster configu-
ration, it is expected that small clusters will appear in areas where the cross-correlation of
the data among those nodes is high, as only data from few nodes are needed to extract the
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Figure 1: The cluster configuration given by SODCC can be understood in terms of the explained variance.
The data variance from nodes in small clusters (purple) can be explained with almost all of the (few) present
principal components. As clusters enlarge, more principal components are needed to explain the variance
of the measurements (green and orange). In this figure, the graphs schematize the eigenvalues λi sorted in

terms of their power σ2 for each of the three clusters represented; the d̂ eigenvalues that explain the 90% of
the variance in each case are highlighted.

largest principal components that explain their variance. On the other hand, large clusters
will appear in areas where the cross-correlation of the data among nodes is low. Therefore,
SODCC ensures that closely correlated data series are clustered together and that the cluster
configuration is linked to the measured field. A more detailed explanation of this clustering
algorithm can be found in [20].

2.3. Wind speed data analysis with SODCC

This signal processing method to analyze climatological data using the SODCC algo-
rithm starts considering a network modeled by a given graph G, starting to measure the
physical variable in the time origin t0. By applying SODCC to this setting repeatedly and
independently, multiple final clustering configurations are obtained; and by performing sta-
tistical analysis, the underlying spatial structure of the physical variable is revealed. The
conclusions from this analysis are obtained by studying the spatial extent and localization of
the clusters and their most probable sizes. For example, areas where clusters of a given size
appear with a high probability reveal the spatial extent (or scale) of the data correlation
showing where the statistics of the measured data are similar.

The temporal structure of the measured data can be analyzed considering multiple time
instants tI where SODCC starts to cluster the network, i.e.

tI ∈ {tj|j = 0, 1, 2, . . . } (1)

The definition of tI depends on the final goal of each study and on the considered sampling
frequency Fs. For example, for a monthly-scale study, the first time stamp in each month is a
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suitable element of tI , and Fs should be high enough to allow SODCC to operate using only
the data points of interest (e.g. measured during that month). For this setting, differences
in the results obtained for the different tj are due to temporal evolution of the statistical
structure of the data.

Regarding the case study considered in this work, the main goal for the temporal analysis
of the wind speed data using SODCC is the identification of atypical periods, that can be
interesting from climatological point of view. Regarding the spatial evolution, the proposed
approach is able to estimate different wind energy production patterns in the area of study.
The joint spatio-temporal analysis proposed leads to a robust method for wind resource
analysis at different scales (e.g. synoptic), useful to evaluate and compare production in
different wind farms in terms of resource evolution in time and space.

2.4. Cluster size probability

One of the first results that can be analyzed from the cluster configurations obtained for
each tI is the cluster size probability Pcluster(tj). Each Pcluster(tj) is obtained as following:
(i) for all clusters obtained in the independent simulations performed for tj is calculated the
cluster size; (ii) the cluster sizes are assembled in a histogram with bin centers being all
possible values; (iii) the histogram is normalized to unitary area, in order to approximate
the probability function. Recall that the wind speed data analysis is performed using dif-
ferent independent starting points tj ∈ tI , resulting in |tI | different cluster size probabilities
Pcluster(tj).

The usage of the different Pcluster(tj) allows both temporal and spatial analysis of the
statistics of the data. The temporal evolution can be ascertained by determining differences
among the different Pcluster(tj). Significant differences between Pcluster(tj) and Pcluster(tk) are
due to significant changes in the statistics of the measured data. Then, they may reveal
both change patterns that last long periods of time or isolated tk where the statistics of the
measured data are different compared to the previous and posterior tk ∈ tI \ tj. There are
multiple options to assess differences between probability distributions, being the KLD one
of the most common metrics used in information theory. The KLD will be detailed in the
next section.

The different Pcluster(tj) also gives information about the spatial extent of the data corre-
lations. It is to be expected that multiple cluster sizes will appear for each simulation due to
the cluster aggregation strategy of SODCC [21]. The probability of appearance associated
to each cluster size will show if the data exhibit either small or large scale spatial extent
(e.g. higher probability of large clusters show lead to areas data exhibits correlations at
large spatial scales), with no location information.

2.5. KLD : difference between probability distributions

Comparison between different probability distribution can be awkward if there are only
little differences between them. The KLD DKL(P ||Q), also called relative entropy, is a met-
ric commonly used in information theory to assess differences between probability distribu-
tions [23]. Specifically, it accounts for the information lost if a given probability distribution
P is used to approximate a different probability distribution Q. Although often termed
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as “distance”, it is not a literal distance metric as it does not always fulfill the symmetry
property, i.e. DKL(P ||Q) 6= DKL(Q||P ). However, this last property has no consequences
in the present work, since the objective is to detect differences and not distance between
Pcluster(tj) and Pcluster(tk), {tj, tk} ∈ tI .

The KLD between two cluster size probability distributions Pcluster(tj) and Pcluster(tk) is
defined as

DKL(tj, tk) =
Nmax∑

Ni=Nmin

Pcluster(tk|Ni)log
Pcluster(tk|Ni)

Pcluster(tj|Ni)
(2)

By calculating this metric for all possible combination {tj, tk}, it is possible to quantitatively
compare each cluster size probability distribution with the ones obtained from independent
simulations with different starting point.

2.6. Node to cluster size probability

In order to further analyze the spatial extent of the data statistics it is necessary to
calculate the node to cluster size probability Pstation(tj, Ni), namely the probability of each
node to belong to a cluster of size Ni for a given tj.

The main benefit of Pstation(tj, Ni) is that the representation of each node’s probability
over a map using color gradient reveals the location of nodes with similar spatial correlation
extent. By analyzing different cluster sizes, different statistical behaviours can be identified
at different spatial scales. Moreover, the analysis of these results over multiple tj gives a
better insight over over the temporal evolution of the data statistics, as location is also
included.

Although this result is very useful for spatial analysis, its main drawback is the large
number of possible Pstation(tj, Ni) and that the selection of specific Ni for visualization can
be an arduous problem.

3. Experiments and Results

3.1. Dataset

In the experiments carried out, wind speed at 10 m data obtained from the ERA–Interim
dataset [19] is considered. The analysis area is bounded by parallels 35◦N and 44◦N and
by meridians 10◦W and 6◦E, demarcating the Iberian Peninsula and the Balearic Islands.
The grid is set to 0.5◦ × 0.5◦, making a total of N = 627 nodes in the network, placed in
a regular grid as shown in Figure 2. Given this node locations, the distance resolution is
approximately 56km.

Wind speed data for January is considered, in representation for the most windy season
in the area of interest [24, 25], from 1979 to 2014, both inclusive. This work only considers
analysis data with maximum temporal resolution, i.e. 6 hours.
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Figure 2: Location of the N = 627 reanalysis nodes of the network (blue dots) used in the present work.

3.2. Experiments

In this work, both spatial and temporal correlation of the wind speed data are studied.
More precisely, the data of each particular year (between 1979 and 2014) is independently
analyzed, giving a total of 36 elements for tI :

tI ∈ {first time instant of j | j = 1979, . . . , 2014} (3)

For each tj ∈ tI , 5000 independent simulations are performed, applying the SODCC
algorithm to the wind speed dataset of the N = 627 nodes. Such experiments allow the
analysis of the clustering distribution probabilities with independence of the initialization of
the clustering algorithm. As previously mentioned, the output of each independent SODCC
realization is the set of clusters, formed by nearby nodes, where the signal and the noise
subspace are separable and it is possible to solve the principal components that explain a
minimum of 90% of the variance.

As results, information about the statistical distribution of the cluster sizes is obtained,
which is useful to detect major changes in the temporal evolution of the data statistics.
The study also focuses on the probability of a given node to belong to a cluster of a given
size, which will allow refining the final conclusions regarding both the temporal and spatial
changes of the data statistics.

Given the regular grid of the nodes (see Figure 2), it is expected heavy edge effects in
the border of the studied area. Hence, the conclusions of this work will be only based on
results from the area bounded by parallels 36◦N and 43◦N and by meridians 9◦W and 5◦E.

3.3. Results

3.3.1. Basic cluster statistics

The first results presented in this work are basic statistics over the clusters obtained. On
average, there are 265e3 clusters for each tj, spanning sizes between Nmin = 3 and Nmax = 53,
confirming the sufficient statistical representativeness of the results.

The average cluster size, plotted in Figure 3, shows high dispersion for each tj simulation.
Although the average cluster size gives some information about the non-stationarity of the

8



A
ve

ra
ge

cl
u
st

er
si

ze

1980 1985 1990 1995 2000 2005 2010 201511

11,5

12

12,5

tj

Figure 3: Average cluster size obtained for each tj ∈ tI .

wind speed data, it is only a superficial analysis. Previous works shown that the expected
cluster size distribution follows a multimodal asymmetric shape [20], where central tendency
statistics encapsulate little information.

As it can be seen in the following section, the multimodality of the cluster size distribution
gives rise to a high variance (second moment statistics) for the average cluster size as soon
as the main modes experience even small changes. However, it is possible to identify years
with low average cluster size (below 12) as the ones with smaller surface scale in the spatial
correlation. It will be shown that the years with lower average cluster size exhibit localized
spatial features compared to those with higher average cluster size.

3.3.2. Cluster size probability

In order to assess the temporal evolution of the wind speed data correlations, the cluster
size probability distribution for each tj is considered, namely Pcluster(tj). Figure 4 shows a
sub-set of the obtained distributions. These plots show multi-modal asymmetric distribu-
tions where two power-law functions with different origin determine the frequency of each
cluster size [20]. These power-law functions emerge because the final cluster configuration
of SODCC is based on cluster fusions, a process that follows the ansatz of dynamic scaling
for aggregation of clusters [26].

The usage of plots like the ones represented in Figure 4 reveals limited information,
mainly due to the arduous task to visually compare all of the histograms. Thus, Figure 5
shows all the obtained distributions in a more compact form, using a 3D-bar representation
and color gradient for the bar height. The orientation of the figure is chosen to better
visualize the most representative differences over the time, such as different slope of the
second power-law function.

From Figure 5 it is possible to perceive a quasi-periodic behaviour between the results
obtained from different starting points tj. Figure 6 shows the 3D-bar using a frontal view,
where the top of the probability bars representing equal cluster sizes are connected by
lines. This figure highlights two key cluster sizes Ni = 7 and Ni = 16, that show the
dichotomy between small size and large size clusters (e.g. if the SODCC clustering based
on the measured data leads to many small clusters, there are less large clusters). The
quasi-periodic behaviour is better perceived with this representation, particularly for larger
cluster sizes. The selection of these key cluster sizes is to aid the visualization, but this
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Figure 4: Cluster size distribution resulting from the SODCC clustering of the wind speed data from the
N = 627 nodes for tj = 1985 and Tj = 1986.

dual behaviour is apparent for any pair of small and large cluster sizes; see for example the
similar trend obtained Ni ≥ 16.

From the analysis of previous figures, the quasi-periodicity observed reveals the existence
of two different patterns in the results, depending on the starting point of the simulation.
Then, it is possible to discern between the two cases tj ∈ t∗I and tj ∈ t∗I \ tI , being

t∗I ∈ {1986, 1988, 1994, 1996, 2001, 2003, 2008, 2010, 2014} (4)

In order to confirm this quasi-periodic behaviour, the differences between the cluster
size distributions have been accurately quantified by using the KLD metric. Figure 7 shows
DKL(tj, tk) calculated for tk ∈ tI and with a clear separation between the two detected
patterns, meaning tj ∈ t∗I and tj ∈ t∗I \ tI . This dissociation is useful as DKL(tj ∈ t∗I , tk)
results in significantly higher values with particular trends that can blur the analysis. This
representation accentuates the differences between the distributions with different starting
points tj, and all the cases where tj ∈ t∗I can be easily spotted as their Kullback-Leibler
divergence is significantly higher. The exception is tj = 2008 and its particular behaviour
will be discussed in Section 4.

3.3.3. Node to cluster size probability

In the previous section it has been shown that there are two different patterns for the
cluster size probability functions, due to the different cluster statistics. Following, it is
shown how this differences are linked to the spatial and temporal correlations of the wind
speed data. For this purpose, the node to cluster size probability Pstation(tj, Ni), has been
calculated, namely the probability of a given node to be associated with a cluster of a certain
size Ni for the starting point of the simulation tj.

Figures 8, 9 and 10 represent over a map Pstation(tj, 7), Pstation(tj, 8) and Pstation(tj, 16),
respectively. These three cluster sizes are selected for the representation of Pstation(tj, Ni) as
they are the ones that illustrate the dichotomy between small size and large size clusters, and
so they facilitate a better analysis of the extent of the spatial correlations. In each subfigure,
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Figure 5: Compact representation of the cluster size distributions resulting from the SODCC clustering of
the wind speed data for the N = 627 nodes and for all values of tj ∈ tI (see Eq. (3)), represented as a
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Figure 6: Frontal view of Figure 5. Each line of this figure connects the top of the probability bars for
equal cluster sizes. The dichotomy between small and large clusters and their quasi-periodic behaviour is
highlighted by the two key cluster sizes Ni = 7 and Ni = 16.
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Figure 8: Node to cluster size probability for Ni = 7 and multiple values of tj , i.e. Pstation(tj , 7).
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Figure 9: Node to cluster size probability for Ni = 8 and multiple values of tj , i.e. Pstation(tj , 8).
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Figure 10: Node to cluster size probability for Ni = 16 and multiple values of tj , i.e. Pstation(tj , 16).
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Figure 11: Location and identification of the 25 nodes of the network (red dots) used for the data correlation
calculations.

the node location is marked in a map and, for each node, the value of Pstation(tj, Ni) is
represented using a color gradient. Note that all figures use the same range for the colorbar,
meaning that the same color represent the same probability value.

From these figures it is also straightforward to observe the two patterns identified in
our previous results. For example, for tj ∈ t∗I it is possible to clearly identified areas with
higher probability than the nodes belong to clusters of sizes Ni = 7 and Ni = 8. Sharing
similar value for Pstation(tj, Ni) indicate that the wind speed data measured by those nodes
has similar statistics and, therefore, similar temporal and spatial correlation. Moreover, it
is expected that nodes belonging to smaller clusters, their probability to belong to larger
clusters is lower, and this behaviour is also confirmed in Figures 8, 9 and 10.

Finally, the most important issue that can be observed in these figures is the following.
The clusters obtained for each of the two sets of initialization points (tj ∈ t∗I and tj ∈ tI \ t∗I)
share much more than similar cluster size probability, obtained without location information.
These clusters are formed in the same areas, strengthening the link between the tj belonging
to each of the two sets and confirming the quasi-periodical behaviour already observed in
previous results.

3.3.4. Data correlation

In order to validate the previous results and hence the wind speed data analysis method
proposed in this work, the correlation between wind speed data measured is now calculated.
In this case the 25 sensor nodes plotted in Figure 11 are considered, selected such as they
form a regular grid covering all the relevant regions and away from the borders of our analysis
area. From this analysis it is expected that nodes located in regions previously identified
to share similar statistics will also have higher correlation, compared to nodes located in
regions with different node to cluster size probability.

Figure 12 represents the values of the modulus of the correlation between all possible
pairs of nodes for multiple values of tj, using color gradient and considering a threshold of
0.8. Note that the same selection of tj is considered, as in Figures 8, 9 and 10. From this
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Figure 12: Modulus of the correlation between pairs of nodes represented in Figure 11.
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Figure 13: Modulus of the correlation between pairs of nodes represented in Figure 11, shown over a map.
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figure the existence two different correlation patterns is confirmed, depending on whether
tj ∈ t∗I or tj ∈ tI \ t∗I , with significant data correlation between a greater amount of nodes
for the case tj ∈ t∗I .

Figure 13 shows the modulus of the correlation between the 25 nodes over a map for
multiple values of tj, using color gradient and considering a threshold of 0.8. From this
representation it can be observed that the areas that exhibit higher data correlation are
similar to the ones that result in similar values of Pstation(tj, Ni) and with higher values of
Pstation(tj, 7) and Pstation(tj, 8). This fact confirms that the clusters obtained from SODCC
are formed depending on the second order statistics of the measured data and, moreover,
clusters with smaller size appear in areas with higher data correlation.

Data analysis based on linear correlations has been used in order to validate the analysis
method presented in this work that is based on the SODCC algorithm. The analysis based
on linear correlations it is able to show some of the multiple relations present in the data
statistics, but has a limited use. On the other hand, the main benefit of using the anal-
ysis method presented in this work is that relations between the data can be analyzed at
different temporal and spatial scales, for example determined by the value of Ni when the
Pstation(tj, Ni).

4. Discussion

This section presents the discussion of the results obtained from the temporal evolution
of both the cluster size probabilities Pcluster(tj) and the node to cluster size probabilities
Pstation(tj, Ni).

The main feature of the SODCC algorithm is the search for similarity of second order
statistics. Then, the explained variance of the spatial features are accounted for in the
peaks of the Pcluster(tj) distribution. In [20] it was shown that the cluster size distribution
can written as:

Pcluster(tj; τ) = κ× τ−w
(
g(Ni, d̂min) + g(Ni, d̂max)

)
(5)

where w is the decay exponent due to the power-law behaviour of the aggregation process,
and

g(x, x0) = θ(x− x0)(x− x0)−τ (6)

θ(x0) is the Heaviside step-function and

κ =
τ − 1

(N − d̂min)1−τ + (N − d̂max)1−τ − 2
(7)

is a distribution normalization constant. The d̂min and d̂max refer, respectively, to the smallest
and largest number of principal components (or signal eigenvalues) found in the set of
achieved clusters. Thus, a two-peaked distribution with a sharp exponential decay after each
of the peaks as the cluster size increases can be expected. What Eq. (5) intuitively shows
is the identification of both small and large patches of nearby spatial locations (respectively
small and large clusters) that are tightly related (in terms of variance of wind speed). Those
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are the two peaks of the distribution (see Figure 4). After those peaks (in-between and after
the largest one), spatial areas that occur with the same exponentially decreasing probability.
Thus, the peaks of the cluster size distribution identify the smallest and largest areas where
the explained variance can be ascertained in terms of a fewer number of eigenvalues than
evaluated sites.

Due to the fact that the exponential decay of the Pcluster(tj) after the largest peak has
a characteristic constant τ (that does not depend on the characteristics of the data but
on the dynamics of the self-organization of clusters), any variation on the position of the
largest peak will be reflected in noticeable variations in the exponential decay. As it can
be seen in the 3D stacked representation of Pcluster(tj) in Figure 5, an oscillating pattern
on the side of the “mountain range” can be identified. The pattern is made more apparent
in a 2D projection of iso-levels of Pcluster(tj) (iso-cluster size levels) in time (see Figure 6).
A surge in the probability of occurrence for clusters of size Ni = 8 for a given year, is
followed by a sharp decay of occurrence in the largest clusters and vice versa. The pattern is
shown to evolve smoothly with time. As the Pcluster(tj) for different tj have been calculated
independently, the smooth evolution of Pcluster(tj) in time must be due to the wind speed
data in the different years. The results for the evolution in time for clusters of size Ni = 8
show peaks in years 1986, 1988, 1994, 1996, 2001, 2003, 2008, 2010 and 2014, which are the
elements of the set T ∗I .

In order to quantify the differences in Pcluster(tj) for different tj, the KLD (Eq. (2)) is
used and the results are presented in Figure 7. The two families of patterns identified are
the following: Figure 7(a) represents the KLD distance from Pcluster(tj) in years with low
probability of forming clusters of size 7 and 8; In Figure 7(b) the KLD uses the “peaked”
years mentioned above (t∗I). It can be clearly seen that two distinct patterns emerge, thus
supporting the hypothesis that two spatio-temporal behaviors of spatial similarity in wind
speed can be identified in the Iberian Peninsula through time. As the spatial node to cluster
size probability is plotted for a subset of both normal and anomalous years (t∗I) for cluster
sizes Ni = 7 and 8 (see Figures 8 and 9) an emergence of local patterns in the NW of
the Iberian Peninsula and the Balearic Islands is apparent (green patches) for peaked years
(1986, 1996, 2001 and 2014). These spatial patterns show evidence of a tight correlation
in the wind speed (i.e. explained variance of the wind speed). Figure 10 shows the
“complementary” figure to the previous one, i.e., where small clusters (Ni = 7 and 8) are
bound to be appear, large clusters (Ni = 16) do not appear and vice versa.

However, there is an apparent exception to the behaviour described above, which is year
tj = 2008. By the apparent behaviour at the cluster size at Ni = 8 of such year (Figure
9), it shares the same characteristics as years 1986, 1996, 2001 and 2014. These similarities
are also observed in the traditional correlation analysis shown in Figures 12 and 13. But at
the shorter scale of Ni = 7 (Figure 8), the differences between 2008 and the aforementioned
set are more than apparent. This difference would indicate that atmospheric dynamics with
a shorter time (and length) scale are taking place for all the years included the set of the
anomalous years t∗I , except for tj = 2008 when these dynamics take place at an intermediate
level. This would indicate that 2008 is a transitional year between anomalous and normal.
This fact is also captured by the lower amplitude of the KLD statistic of year 2008 (Figure
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7).
The power of the present method is apparent for the results that can be obtained at

limited computational complexity. Its computational complexity is dependent on the average
cluster sizes that emerge and not on the number of total sites evaluated [20]:

〈Ni〉 ∼
2

τ − 1
+

2N2−τ

2− τ (8)

where the notation 〈·〉 indicates the expectation operation. The value of 〈Ni〉 in the present
work is 13 thus, the computational complexity of the method is proportional to 132.

As a comparison a similar spatio-temporal analysis is performed, e.g. a cross-correlation
analysis with a subset of sites (25 out of 627) in the Iberian Peninsula (shown in Figure 11).
The results of the modulus of the cross-correlation matrix for a minimum threshold of 0.8 for
the same set of normal and anomalous years are presented in Figure 12. There it is possible
to see that only a few of the node pairs posses a cross-correlation value above the threshold.
Moreover, Figure 13 shows the projection of a colored line connecting those nodes (with the
color representing the cross correlation value) over their corresponding positions in space, a
similar pattern as the one shown in Figures 8 and 9, but with much less resolution and a
computational complexity of 252.

The relevance of the presented result to the wind power generation community are patent.
Wind speed is generally regarded and modelled as a Weibull distribution [27, 28]:

f(v;A, k) =
k

A

( v
A

)k−1
e−( v

A)
k

(9)

where A is the scale parameter of the distribution and k is its shape parameter.
The present method focuses on the clustering of sites with a explained variance of minimal

complexity, thus it tends to group into the same cluster sites with similar second order
statistics of wind speed. The n-th order statistic of a Weibull distributed variable can be
calculated as:

〈vn〉 =

∫ ∞
0

vnf(v;A, k)dv = AnΓ
(n
k

+ 1
)

(10)

The average power generated by a wind turbine can be calculated as

〈P 〉 =
1

2
ρ

∫ ∞
0

v3f(v;A, k)dv =
1

2
ρA3Γ

(
3

k
+ 1

)
(11)

It is possible to calculate the ratio of the third-to-second order statistic of the wind speed
as

〈v3〉
〈v2〉 = A

Γ
(
3
k

+ 1
)

Γ
(
2
k

+ 1
) (12)

For typical values of shape parameter k of the distribution of wind speed, it is possible
to show that the previous ratio is very slowly varying with k, such that

1 >
1

3A

〈v3〉
〈v2〉 >

√
π

4
, for 1 < k < 2 (13)
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Thus, for the regions of interest, it is possible to rewrite Eq. (11) as

〈P 〉 ≈ 1

2
ρkA3Γ

(
2

k
+ 1

)
=

1

2
ρkA

〈
v2
〉

(14)

Therefore, this work shows that, when the SODCC clusters regions of similar variance
of wind speed, it approximately clusters regions of similar power output from wind turbines
also. This makes the present method of particular interest for wind energy applications and
forecasting at very limited computational cost and increased resolution.

5. Conclusions

This paper presents a spatio-temporal analysis method of the wind resource, focused
in the Iberian Peninsula. This work also presents a detailed description of the proposed
method, that is based on the SODCC algorithm which clusters a network in terms of the
measured data statistics. Extensive experiments have been also performed, by applying
the SODCC algorithm to reanalysis data in the area of interest for the period 1979 - 2014.
Based on the obtained results, two different spatio-temporal patterns of the data statistics
depending on the initialization year have been identified. A reasonable hypothesis is that
these two patterns are forcefully related to the main driver of wind speed in the Iberian
Peninsula in the winter. This is quantified by the difference between atmospheric pressures
in Lisbon and Rejkiavik, namely, the North Atlantic Oscillation (NAO). In future works, the
relation between the KLD in the Iberian Peninsula and the NAO sequences will be studied.

The relation that has been established in the previous section between the average power
of the wind turbine and the variance of the wind speed allows further insight into differences
in energy production in shorter time and length scales. As smaller cluster sizes imply faster
atmospheric dynamics, it is possible to deduce that small clusters exhibit higher variance
in wind speed. This, in turn, would suggest that in zones that belong to small, persistent
in time, clusters the power generated by wind turbines should be higher. At the present
resolution of 0.5◦ it is not practical to identify such zones for wind farm positioning as each
point is separated more than 50 km. However, in future works this methodology will be
used to identify such zones. As it stands, the proposed method has a great potential for the
spatio-temporal analysis of offshore wind farms, in which the spatial scales are much more
relevant than in the onshore case.
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