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In this work we expand the possibilities of a known class of chaos-

based coded modulation (CCM) systems to address the problem of

high-power amplifier (HPA) nonlinearity. The hypothesis is that the

CCM nonlinear nature can be exploited to counteract its effects on the

system perfomance, avoiding the need of a predistorter. We propose an

optimization method for the design of the CCM to prove this hypothesis.

The results show that, for a given back-off level, a nonlinear mapping

function for the chaos-based encoder and decoder can be designed to

compensate the HPA effect on the error rate.

Introduction: Chaos-based communication methods have been

witnessing a growing interest. Although they may not be clearly

advantageous in strictly linear channels, their inherent nonlinear nature

may make them well fitted to nonlinear channels [1]. One great concern

in mobile devices design has to do with the need to increase battery

life, and this normally requires optimizing the power usage of the RF

stage. This leads to set the RF amplifier near its saturation point, where

the response is highly nonlinear. In single carrier scenarios, the related

undesirable effects are usually compensated by predistortion.

In the present work, we take advantage of the structure of a family of

chaos-based coded modulated (CCM) communication schemes that make

use of their symbolic dynamics to encode and decode the information.

These systems are based on chaotic piecewise linear maps (PWLM)

and are equivalent to finite-state machines. They may change their

output samples probability density function (pdf) by using a nonlinear

conjugation function [2]. The hypothesis is that, by appropriately

managing and optimizing this conjugation function, we may counteract

the undesirable effects of the RF high-power amplifier (HPA) on the bit

error probability (BEP), avoiding the need of a predistorter.

System setup: The chaotic encoder is based on the already proposed

model for PWLM CCM blocks [3]. The basic CCM encoding block

produces chaos-coded samples zn ∈ [0, 1]

zn = f (zn−1, bn) + bn · 2−Q, (1)

where f (·, ·) is the chaotic (multimap) PWLM function, the second part

is the small perturbation allowing for the introduction of the information

bit bn in the symbolic dynamics of the system for a quantization factor of

Q bits, and n is the time index. For details, please see [3].

A conjugation function, denoted as h (z) : [0, 1]→ [0, 1], is used to

change the pdf of the chaotic samples [2]. This conjugation function has

to be strictly non-decreasing, with h (0) = 0, h (1) = 1. Its output is then

normalized to have zero-mean, as

xn =2 · h (zn)− 1 = 2 · sn − 1. (2)

The chaos encoded sequence xn is fed to an HPA, based on the Saleh

model [4], and goes through an additive white Gaussian noise (AWGN)

channel. At the input of the decoder, we have

rn = yn + nn =A · gNL (xn) + nn, (3)

where gNL (·) represents the AM/AM distortion function of the Saleh

model, A is a scaling factor to keep signal-to-noise ratio unchanged

for comparison purposes, and nn is a sample of the zero-mean AWGN

process, with variance σ2
n. The BEP will be measured against the Eb/N0

factor, that, under the standard assumption of appropriate pulse shaping

and matched filter reception, may be calculated as Eb/N0 =P/
(

2σ2
n

)

,

where P =E
[

x2
n

]

is the power of the chaos encoded sequence. The

AM/AM distortion function takes the form

gNL (xn) =
α · B · xn

1 + β · |B · xn|2
, (4)

where α=2.1587, β = 1.1517 are standard values, and B is an input

back-off factor controlling the amount of HPA nonlinearity.

The received sequence rn is then decoded according to a maximum

a posteriori (MAP) algorithm that takes advantage of the finite-state

machine equivalence of the system [2]. The nonlinear mapping h (·)
will be optimized to compensate the effect of gNL (.) on the error

performance, while keeping the CCM basic structure of (1) unchanged.

Bound calculation: The objective function of the optimization would

ideally be the BEP, but it is not possible to provide a closed-form formula

for it. Therefore, it will be approximated by means of a bound, that may

be calculated on the basis of the pairwise error probability (PEP) [3]

P
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′
∣

∣
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for a specific encoded sequence represented by vector x, and incorrectly

chosen sequence x
′ 6= x. Both sequences are linked in the trellis through

a binary error loop e of length L (e). The quantity d2eq is an equivalent

Euclidean distance term calculated as

deq =

∑m+L(e)−1
l=m

|yn − x′
n|

2 −
∑m+L(e)−1

l=m
|yn − xn|2

√

∑m+L(e)−1
l=m

|xn − x′
n|

2

, (6)

for the error loop of length L (e) under consideration, and for the actual x

encoded sequence, diverging from x
′ at time index m. The details about

the derivation of this PEP can be seen in [3]. Its adaptation to the present

context is straightforward, by correctly identifying the incumbent binary

error loops in the encoder trellis. This PEP assumes maximum likelihood

(ML) decoding, but it provides a good approximation for the bit error rate

(BER) under MAP decoding for sufficiently high Eb/N0.

If we consider, for a specific CCM, a set of most probable error loops

Be, the BEP can be estimated through the bound

Pb ≈ P̂b
∆

=
∑

e∈Be

∑

x

ω (e)

2Q+L(e)
· P

(

x→ x
′
∣

∣

x, e), (7)

where the second summation is extended over all the possible encoded

sequences x of length L (e), and where ω (ei) is the associated binary

weight. The possible encoded sequences of length L (e), taking into

account all the starting states for the trellis, amount to 2Q+L(e). Please

note that no simplification can be performed assuming the uniform error

property of other related trellis encoded modulation (TCM) schemes,

because of the nonlinear character of the system.

For the CCM systems considered, as the channel impairments have no

memory, the error loops that will appear for high Eb/N0 are exactly the

same as under AWGN. The most probable error loops, and the affected

by lowest d2eq distances, will thus be the shortest ones, so that we limit

the calculation of (7) to the error loops of length L (e) close to Q [3].

Optimization: In order to design the CCM system, we propose the

optimization of the conjugation function h (·) with the objective of

improving the system BEP, including the nonlinear effects of the HPA.

We approximate the BEP by means of the bound P̂b (7), which depends

on the conjugation function through (2)–(6). In order to provide a

numerical approximation of h (·), we sample its domain [0, 1] with M
equidistant samples. The final conjugation function may be thus obtained

by interpolation techniques. The samples are zi = i/M, i= 0, . . . ,M ,

matched to the function samples si = h
(

zi
)

. We use this notation to

distinguish these variables from the related temporal sequences zn and

sn. Due to the nature of the conjugation function, the discretized values

si and zi must meet the constraints described in the system setup. The

formulation of the optimization problem is given by

min
si

{P̂b}

s.t. 0< zi < 1,
0< si < 1,
si < si+1,

(8)

where i= 1, · · · ,M − 1. This problem is a classical minimization of a

nonlinear objetive function with linear constraints. We use the Interior

Point Algorithm implemented in MATLAB Optimization Toolbox,

described in [5] and [6]. The optimization converges always to the same

solution, even when using different starting points. For practical reasons,

we use a linear function as seed. Note that the optimization is performed

for the system design, so the processing time is not a problem.

Results and discussion: The bounds and BER results will be compared

with an uncompensated standard system of similar characteristics
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and equal spectral efficiency, a 4-PAM setup with a Viterbi soft-

decoded R= 1/2 non-systematic convolutional code (CC), with octal

polynolmials 133 and 171. The optimization, bound calculation and BER

simulation of the chaos-based system are performed for Q= 5, while the

mapping of chaos-based samples through h (·) is performed using linear

interpolation. In the bound calculation, the error loops considered are

just those with lengths ranging from Q to 2 ·Q. In all the cases, trellis

termination is enforced, and the data block takes length 10000 bits.

The number of samples considered in the optimization procedure is

M = 101, but values above 50 yield the same solution. The optimization

is performed for Eb/N0 =10dB, that is a suitable working region. For

clarity’s sake and without loss of generality, we have just chosen two

instances of CCM systems: the one based on the Bernoulli shift map

(BSM), and the one based on the multimap version of the tent map

(mTM) [3]. The BSM represents a kind of CCM that provides no coding

gain in AWGN, while the mTM one does. The HPA back-off factor

considered is the input back-off.
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Fig. 1. h (·) for BSM and mTM with HPA in nonlinear regime.

We show some results for the optimized h (·) in Fig. 1. We have

explored a variety of cases with other back-off factors, and the principles

shown remain: h (·) is made of a number of alternating linear sections

with low and high slopes. The reason for this is that such kind of

conjugation function produces an output data pdf with high concentration

around the output values corresponding to the low slope sections (near 0,

1/2 and 1 for the BSM case shown in Fig. 1, for example). Under the

presence of the HPA nonlinearity, this creates an improved balance on

the spectra of d2eq/ (2P ) values in (6). Note how this contrasts with the

results in [2], where, in the linear AWGN channel, no gain was to be got

just by forcing the data pdf to have maxima around 0 and 1.
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Fig. 2 Solid lines: BER for optimized BSM. Dash-dotted lines: BER for 4-

PAM+CC. Dashed line: bound for optimized BSM with back-off 3dB. Dotted

line: BER of BSM with back-off 3dB without conjungation function.

In Figs. 2 and 3 we have depicted the results. On the one hand, we

may verify a good agreement between the BER and the corresponding

bound. In the mTM case, the bound is less tight due to its more irregular

nature, as compared to the BSM. Nonetheless, the optimization of the

conjugation function based on (7) shows to be successful enough: note

how, for the highly nonlinear cases (3 and 5dB back-off), there is a steady

gain when using the optimized conjugation function with respect to the

case of not using it. Moreover, the uncompensated classical counterpart

loses around 2dB Eb/N0 at a BER of 10−5 when going from 40dB to

5dB back-off, or 4dB when going from 25dB to 3dB back-off. In the

same situations, the chaos-based systems lose less than 1dB Eb/N0. This

alleviates the need for a predistorter in the CCM case, in contrast to the

classical counterpart.
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Fig. 3 Solid lines: BER for optimized mTM. Dash-dotted lines: BER for 4-

PAM+CC. Dashed line: bound for optimized mTM with back-off 5dB. Dotted

line: BER of mTM with back-off 5dB without conjungation function.

Conclusion: We have proposed a method to minimize the impact of

HPA nonlinearity on the bit error rate of chaos-based coded modulation

systems, without the need of a predistorter. The bound used as objective

function has shown to be accurate for the cases tested, and the BER

obtained with the optimized conjugation function outperforms a similar

uncompensated classical alternative, that clearly requires predistorsion.

Apart from the RF HPA context, it is to be noted that all this

framework can be of interest in any communication system requiring

amplitude modulation and containing devices with nonlinear responses,

for example, in the new visible light communications systems, where the

light emitting diode (LED) has a nonlinear transfer function.
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