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We give a new, surprisingly simple approach to the derivation of Bäcklund 
transformations. Motivated by the use of integrating factors to solve linear ordinary 
differential equations, for the nonlinear case this new technique leads to differential 
relations between equations. Although our interest here is in Painlevé equations, 
our approach is applicable to nonlinear equations more widely. As a completely new 
result we obtain a matrix version of a classical mapping between solutions of special 
cases of the second Painlevé equation. This involves the derivation of a new matrix 
second Painlevé equation, for which we also present a Lax pair. In addition, we give a 
matrix version of the Schwarzian second Painlevé equation, again a completely new 
result. In this way we also discover a new definition of matrix Schwarzian derivative.

© 2024 The Author. Published by Elsevier Inc. This is an open access article 
under the CC BY license (http://creativecommons .org /licenses /by /4 .0/).

1. Introduction

It is a classical result [3] that solutions of the second Painlevé equation (PII),

uxx − 2u3 − xu− α = 0, (1.1)

for parameter value α = 1/2, can be obtained as u = −wx

w , where w is a solution of

wxx + 1
2xw + Cw3 = 0. (1.2)

This equation, when the constant C �= 0, corresponds to a rescaled version of PII for parameter value α = 0. 
In this way an auto-Bäcklund transformation (auto-BT) is obtained from PII for α = 0 to PII for α = 1/2. 
By Bäcklund transformation (BT) we refer to a mapping between solutions of ordinary differential equations 
(ODEs), called an auto-BT when the ODEs are the same. Our aim in this paper is to understand how the 
above result may be derived. We show that this can be done using a remarkably simple integration-based 
technique. This stems from the fact that PII can be written using a certain differential operator, which then 
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permits a process similar to the use of an integrating factor for linear ODEs to be used, but without any 
resulting reduction of order. This then allows a mapping between ODEs of the same order to be established. 
Our interest here is in Painlevé equations, but the simplicity of our new approach means that it will be 
much more widely applicable.

In the case of PII , the differential operator mentioned above is (minus) the adjoint of the Fréchet derivative 
of the Miura map relating the Korteweg-de Vries (KdV) equation and the modified KdV (mKdV) equation. 
A similar observation holds for the other examples considered in this paper, and is a consequence of their 
relationship to completely integrable partial differential equations admitting Hamiltonian Miura maps. For 
such examples, this relationship may be understood as fundamental to our approach. However, in the general 
case, the differential operator of which we make use need not have such a Miura map as its origin.

In Section 2 we show how the above auto-BT for PII may be derived, along with the Schwarzian PII

equation and a special integral. As a further example, we apply our technique in Section 3 to the fourth 
Painlevé equation (PIV ), for which it yields a special case of a known auto-BT, as well as a Schwarzian 
PIV equation. In Section 4 we use our approach to derive an analogue of the mapping given above for 
the case of a matrix PII equation. This requires the introduction of a new matrix PII equation, which we 
show to be integrable by presenting a Lax pair. In Section 4 we also obtain the first known matrix version 
of the Schwarzian PII equation. A summary and consideration of future perspectives is given in the final 
Conclusions and Discussion section.

2. Our new approach: the second Painlevé equation

Let us begin by observing that PII (1.1) can be written

(∂x + 2u)K +
(

1
2 − α

)
= 0, K = ux − u2 − 1

2x. (2.1)

A comparison with linear ODEs suggests that the use of an “integrating factor” e
∫

2u dx might be useful. 
The operator (∂x + 2u) in (2.1) is minus the adjoint of the Fréchet derivative of the KdV-mKdV Miura 
map ω = ux − u2, and writing PII using this operator can be traced back to the formulation in [8] of its 
well-known derivation from these PDEs. The use of this integrating factor may alternatively be effected 
using a function z defined by zxx = 2uzx (so zx = e

∫
2u dx): since ∂xzx = zx∂x + zxx = zx(∂x + 2u), we see 

that the result of multiplying PII (2.1) by zx and integrating is

zxK +
(

1
2 − α

)
z = C, K = ux − u2 − 1

2x, (2.2)

for some arbitrary constant C. Note that this process does not, of course, result in any reduction of order, 
as that would be impossible for PII . In equation (2.2), i.e.,

zx

(
ux − u2 − 1

2x
)

+
(

1
2 − α

)
z = C, (2.3)

the change of variables u = −wx/w, and then taking, without loss of generality, zx = 1/w2, yields, for 
α = 1/2,

1
w2

(
−wxx

w
− 1

2x
)

= C, or wxx + 1
2xw + Cw3 = 0. (2.4)

For C �= 0 we thus recover the mapping u = −wx/w, as discussed in the Introduction, from solutions of PII

for α = 0 to solutions of PII for α = 1/2. Indeed, from the above equations we obtain the pair of relations 
[3]
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wx + uw = 0, ux − u2 − 1
2x = Cw2, (2.5)

which provide an auto-BT between (1.1) for α = 1/2 and (2.4).
We now make some further remarks. First we note that if in equation (2.3) we assume α �= 1/2 then we 

may set C = 0. Substituting u = zxx/(2zx) then yields Schwarzian PII [15], valid in fact also for α = 1/2,

zx

[
1
2{z;x}

]
− 1

2xzx +
(

1
2 − α

)
z = 0, (2.6)

where {z; x} = (zxx/zx)x − 1
2 (zxx/zx)2 is the Schwarzian derivative of z. Secondly, we observe that for 

α = 1/2 and C = 0 equation (2.3) also gives the special integral ux−u2− 1
2x = 0 of PII for this value of the 

parameter α. If we take into account also the case α = 1/2 and C �= 0 discussed above, which provides us 
with the mapping from solutions of PII for α = 0 to solutions of PII for α = 1/2, we see that equation (2.3)
encapsulates three well-known results for PII : this particular auto-BT, a special integral, and Schwarzian 
PII . Whilst it is known that, making use of the relation zxx/(2zx) = u, PII is a differential consequence of 
Schwarzian PII (2.6) [9,15], as far as we are aware, the derivation of (2.3) — as written here in terms of u
and z — from PII through the use of the auxiliary variable z satisfying zxx = 2uzx and integration, is new. 
These results are an example of:

Proposition 2.1. Consider an ODE of the form

(∂x + M)K + κL = 0, (2.7)

where K, L, M depend on x, u and its derivatives, and κ is a constant parameter. Let the function z satisfy 
the relation zxx = Mzx. Then solutions of (2.7) may be obtained from solutions of

zxK + κρ = C, where ρx = zxL and C is an arbitrary constant. (2.8)

Proof. Since ∂xzx = zx∂x + zxx = zx(∂x + M), multiplying (2.7) by zx and integrating gives (2.8). �
Remark 2.1. We may assume κC = 0 since, when κ �= 0, we may set C = 0 using a shift on ρ (where ρ = z

if L = 1). For κ = C = 0, we see that solutions of K = 0 give (trivially) solutions of (2.7) for parameter 
κ = 0.

Remark 2.2. The above proposition may be applied to individual equations in a system of several equations.

3. A further example: the fourth Painlevé equation

The fourth Painlevé equation (PIV ) can be written in the form
(

1 p

2 φ + 2p− ∂x

)(
φp + p2 + px
φ + 2p + 2x

)
+

(
e

f

)
=

(
0
0

)
, (3.1)

where e and f are two arbitrary constants. This then yields the system of equations

px + 2φp + 3p2 + 2xp + e = 0, (3.2)

φx − 6φp− 6p2 − φ2 − 2x(φ + 2p) + 2 − f = 0, (3.3)

and elimination of φ gives
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pxx = 1
2
p2
x

p
+ 3

2p
3 + 4xp2 + 2

(
x2 − 1

2(2f − 3e− 2)
)
p− 1

2
e2

p
, (3.4)

which is just PIV ,

yxx = 1
2
y2
x

y
+ 3

2y
3 + 4xy2 + 2(x2 − α)p− 1

2
β2

p
, (3.5)

with the identification α = 1
2 (2f − 3e − 2) and β = e.

In (3.1), the left-most matrix is the adjoint of the Fréchet derivative of the dispersive water wave (DWW) 
Miura map (u, v)T = (φ + 2p, φp + p2 + px)T [10]. The appearance of this operator here is due to writing 
PIV as derived from a modified DWW system [4]. The system (3.1) can be simplified to read

px + 2φp + 3p2 + 2xp + e = 0, (3.6)

(∂x − φ)(φ + 2p + 2x) + (2e− f) = 0. (3.7)

It is to equation (3.7), following Remark 2.2, that we now apply the technique developed in Section 2.
Let us write equation (3.7) as

(∂x − φ)K + (2e− f) = 0, K = φ + 2p + 2x. (3.8)

According to Proposition 2.1, multiplying by zx, where zxx = −φzx, and integrating, yields

zxK + (2e− f)z = C, K = φ + 2p + 2x, (3.9)

where we set κ = 2e − f , so L = 1 and ρ = z, i.e.,

zx(φ + 2p + 2x) + (2e− f)z = C. (3.10)

Setting φ = qx/q and solving without loss of generality for zx as zx = 1/q, we obtain, for the choice f = 2e,

1
q

(
qx
q

+ 2p + 2x
)

= C. (3.11)

This equation, together with (3.6), i.e.,

px + 2
(
qx
q

)
p + 3p2 + 2xp + e = 0, (3.12)

forms a system of equations in the variables p and q. Solving (3.11) for p and substituting in (3.12) then 
gives

qxx = 1
2
q2
x

q
+ 3

2C
2q3 − 4Cxq2 + 2

(
x2 + (e− 1)

)
q. (3.13)

For C �= 0 we may always set C = −1, thus obtaining

qxx = 1
2
q2
x

q
+ 3

2q
3 + 4xq2 + 2

(
x2 − (1 − e)

)
q. (3.14)

This last equation is PIV (3.5) for parameter values α = 1 − e and β = 0.
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Equation (3.11) then gives the auto-BT

p = −1
2

(
qx + q2 + 2xq

q

)
(3.15)

from (3.14) to (3.4) with f = 2e, i.e., mapping from PIV parameter values αq = 1 − e and βq = 0
to αp = 1

2 (e − 2) and βp = e, where we use subscripts p and q to denote the respective parameters α
and β corresponding to PIV in standard form (3.5) with y = p and y = q. We thus have the relations 
αp = −1

2 (αq + 1) and βp = 1 − αq. This mapping and changes in parameter values correspond to those of 
the PIV auto-BT [11]

p = −1
2

(
qx + q2 + 2xq + βq

q

)
, αp = −1

4(2 + 2αq − 3βq), βp = 1
2(2 − 2αq − βq), (3.16)

in the particular case βq = 0. Our technique has thus led to the recovery of a particular PIV auto-BT. Let 
us also note that (3.11) with C = −1 and (3.12) yield the inverse auto-BT

q = 1
2

(
px − p2 − 2xp + e

p

)
, (3.17)

which provides a mapping from solutions p of the case f = 2e of (3.4) to solutions q of (3.14). Again this is 
a particular case of a result given in [11].

We now make two final remarks. Firstly, as noted in Remark 2.1, if in (3.10) we assume f �= 2e then we 
may set C = 0. In the resulting equation we then set φ = −zxx/zx to obtain

p = 1
2
zxx
zx

− 1
2(2e− f)

(
z

zx

)
− x, (3.18)

and substitution of φ and p in terms of z in (3.6) then yields the Schwarzian PIV equation, valid also for 
f = 2e,

{z;x} + 3
2(2e− f)2

(
z

zx

)2

+ 4x(2e− f)
(

z

zx

)
+ 2x2 + f − 2 = 0. (3.19)

For PIV in standard form (3.5) (with, as before, p = y, e = β and f = (2α+3β +2)/2), this equation reads

{z;x} + 3
8(β − 2α− 2)2

(
z

zx

)2

+ 2x(β − 2α− 2)
(

z

zx

)
+ 2x2 + 1

2(2α + 3β − 2) = 0. (3.20)

We have been unable to find the Schwarzian PIV equation (3.20) in the literature. It is readily shown, 
making use of the relation

zxx
zx

= 2y + 2x + 1
2(β − 2α− 2)

(
z

zx

)
(3.21)

(i.e., (3.18) with p replaced by y), that PIV (3.5) is a differential consequence of Schwarzian PIV (3.20).
Our second remark is that from equation (3.10) with f = 2e and C = 0 we obtain φ +2p +2x = 0, which, 

substituting for φ from (3.6), then also gives the special integral px − p2 − 2xp + e = 0 of (3.4) for f = 2e. 
This corresponds to the well-known special integral yx − y2 − 2xy + 2(α + 1) = 0 of PIV in standard form, 
i.e., (3.5), for parameter relation β = 2(α + 1). The above results for PIV are analogous to those for PII in 
Section 2.
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4. A matrix second Painlevé equation

To obtain a matrix analogue of Proposition 2.1, we need to consider both left and right “integrating 
factors”:

Proposition 4.1. Consider a matrix ODE of the form

(∂x + LM + RN )K + κL = 0, (4.1)

where the square matrices K, L, M , N depend on x, the square matrix function u and its derivatives, κ
is a constant scalar parameter, and the left and right multiplication operators LM and RN are defined by 
LM (K) = MK and RN (K) = KN . Let the square matrix functions z and y satisfy the relations zxx = zxM

and yxx = Nyx. Then solutions of (4.1) may be obtained from solutions of1

zxKyy + κρ = C, where ρx = zxLyx and C is an arbitrary constant square matrix. (4.2)

Proof. Since ∂xLzxRyx
= LzxRyx

∂x + Lzxx
Ryx

+ LzxRyxx
= LzxRyx

(∂x + LM + RN ), multiplying (4.1) on 
the left by zx, on the right by yx, and integrating gives (4.2). �
Remark 4.1. For yx = I, so N = 0, (4.1) and (4.2) reduce to (∂x + LM )K + κL = 0 and zxK + κρ = C

where ρx = zxL; and for zx = I, so M = 0, to (∂x + RN )K + κL = 0 and Kyx + κρ = C where ρx = Lyx.

Remark 4.2. We may assume κC = 0 since, when κ �= 0, we may set C = 0 using a matrix shift on ρ (where 
ρ = z if Lyx = I, and ρ = y if zxL = I). For κ = 0 and C = 0, and zx and yx nonsingular, we get K = 0, 
and so obtain that solutions of K = 0 give (trivially) solutions of (4.1) for parameter κ = 0.

Remark 4.3. Proposition 4.1 may be applied to individual equations in a system of several matrix equations.

Our interest in this section is in a matrix PII equation, with matrix coefficients, i.e.,

uxx − 2u3 + uE + Eu− xu− αI, (4.3)

as first derived in [7] (the case E = 0 was considered in [1,12]). Here u is a square matrix function of x, E is 
an arbitrary constant square matrix and α is an arbitrary scalar parameter. In the scalar reduction we may 
take E = 0, and thus recover PII in standard form (1.1). Similarly to the scalar case, we may write (4.3) as

(∂x + Au)K +
(

1
2 − α

)
I = 0, K = ux − u2 + E − 1

2xI, (4.4)

where Au = Lu +Ru. The formulation (4.4) of matrix PII may be obtained as a result of its derivation from 
matrix KdV and mKdV equations [7], with the operator (∂x +Au) being (minus) the adjoint of the Fréchet 
derivative of the Miura map ω = ux − u2 between these matrix PDEs (see also [5,6]). From Proposition 4.1
we then see that, multiplying (4.4) on the left by zx and on the right by yx, where zxx = zxu and yxx = uyx, 
and then integrating, we obtain

zx

(
ux − u2 + E − 1

2xI
)
yx +

(
1
2 − α

)
ρ = C, (4.5)

1 For K = u, M = M(x), N = N(x), L = L(x), i.e., the linear matrix equation ux +Mu +uN +κL = 0, the relationship between 
its solutions and those of equations (equivalent to) sx = sM and tx = Nt is well-known (here we set zx = s, yx = t).
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where ρx = zxyx. We now set u = −wxw
−1 and take, without loss of generality, zx = w−1, which for 

α = 1/2 then leads to w−1 (−wxxw
−1 + E − 1

2xI
)
yx = C. The substitution yx = Aw−1 then yields the 

system

wxx − Ew + 1
2xw + wCwA−1w = 0, Ax = Aw−1wx − wxw

−1A. (4.6)

For C �= 0 this system represents a new parameter-free matrix PII equation. We have thus obtained the 
result that solutions of this parameter-free matrix PII give solutions of matrix PII (4.3) for parameter value 
α = 1/2 via the mapping u = −wxw

−1. Under the scalar reduction, where we set E = 0, we may take 
the now scalar function A = 1 and thus recover (with C now a nonzero scalar constant) the result for 
PII described in the Introduction and rederived in Section 2. Corresponding to (2.5) we obtain the matrix 
system

wx + uw = 0 and ux − u2 + E − 1
2xI = wCwA−1, Ax = Aw−1wx − wxw

−1A, (4.7)

these relations providing a BT between (4.3) for α = 1/2 and the system (4.6).
We note that for nonsingular C, we may simplify the above result as follows. For nonsingular constant 

square matrices P and Q, and constant square matrix F , we set

w = PWQ, u = PUP−1, E = PFP−1, A = PBQ. (4.8)

Choosing Q = P−1C−1, the system (4.6) then becomes

Wxx − FW + 1
2xW + W 2B−1W = 0, Bx = BW−1Wx −WxW

−1B, (4.9)

and we find that solutions of this system are mapped via U = −WxW
−1 to solutions of

Uxx − 2U3 + UF + FU − xU − 1
2I = 0. (4.10)

In addition, the relations (4.7) are transformed to

Wx + UW = 0 and Ux − U2 + F − 1
2xI = W 2B−1, Bx = BW−1Wx −WxW

−1B, (4.11)

which then provide a BT between (4.10) and the system (4.9). That is, we obtain the same results as before 
(i.e., in variables u, w, A) but with C = I. We may also choose the matrix F , which is similar to the given 
matrix E, to be of a required form, e.g., to be in Jordan canonical form, or upper-triangular, or symmetric.

The system (4.6) can be obtained as the compatibility condition Fλ − Gx + [F, G] = 0 of the Lax pair

Ψx = FΨ, Ψλ = GΨ, (4.12)

where

F =
(

λI −wxw
−1

−wxw
−1 −λI

)
, G =

(
g11 g12
g21 −g11

)
(4.13)

and
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g11 = −4λ2I + 2(wxw
−1)2 − 2E + xI, (4.14)

g12 = 4λwxw
−1 − 2(wxw

−1)2 + 2E − xI − 2wCwA−1 − 1
2λI, (4.15)

g21 = 4λwxw
−1 + 2(wxw

−1)2 − 2E + xI + 2wCwA−1 − 1
2λI. (4.16)

We thus conclude that the system (4.6) is integrable, and so does indeed represent a new parameter-free 
matrix PII equation. (This Lax pair may be obtained by suitable modification of that given in [1] for (4.3)
with E = 0.)

Let us now return to equation (4.5). For α = 1/2 we now take u = −σ−1σx and, without loss of generality, 
yx = σ−1. Setting zx = σ−1D, we are then led to the system

σxx − σE + 1
2xσ + σD−1σCσ = 0, Dx = σxσ

−1D −Dσ−1σx. (4.17)

Solutions of this system thus give solutions of matrix PII (4.3) for parameter value α = 1/2 via the mapping 
u = −σ−1σx. With σT = w, CT = K, DT = A, uT = v and ET = F , this then implies that solutions of the 
system

wxx − Fw + 1
2xw + wKwA−1w = 0, Ax = Aw−1wx − wxw

−1A (4.18)

give rise to solutions of the matrix PII equation

vxx − 2v3 + vF + Fv − xv − 1
2I = 0 (4.19)

via the mapping v = −wxw
−1. Making the alternative choice u = −σ−1σx in equation (4.5) with α = 1/2

thus leads to results equivalent to those already obtained by making the choice u = −wxw
−1.

We return once again to equation (4.5) in order to make two final remarks. First of all, as noted in 
Remark 4.2, if we assume α �= 1/2 then we may set C = 0. From the relations zxx = zxu, yxx = uyx and 
ρx = zxyx we then obtain the following expressions for ρxx:

ρxx = 2zxuyx, ρxx = 2zxxyx, ρxx = 2zxyxx. (4.20)

Thus, for nonsingular zx and yx, we have three equivalent expressions for u:

u = 1
2z

−1
x ρxxy

−1
x = z−1

x zxx = yxxy
−1
x . (4.21)

Defining

S(ρ) =
(
z−1
x ρxxy

−1
x

)
x
− 1

2
(
z−1
x ρxxy

−1
x

)2 = z−1
x

(
ρxxx − 3

2ρxxρ
−1
x ρxx

)
y−1
x , (4.22)

we see that the result of substituting for u in (4.5) with C = 0 by any of the expressions (4.21) is equivalent 
to

zx

[
1
2S(ρ) + E − 1

2xI
]
yx +

(
1
2 − α

)
ρ = 0, (4.23)

this being valid also for α = 1/2, or
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1
2z

−1
x

(
ρxxx − 3

2ρxxρ
−1
x ρxx

)
y−1
x + E − 1

2xI +
(

1
2 − α

)
z−1
x ρy−1

x = 0. (4.24)

We claim that (4.24) constitutes a matrix extension of Schwarzian PII (2.6). Identifying 1
2z

−1
x ρxxy

−1
x =

u, matrix PII is, by construction, a differential consequence of (4.24): we note in particular that (∂x +
Au)(z−1

x ρy−1
x ) = I. In the scalar reduction, where we set E = 0, S(ρ) = {ρ; x} and we obtain 1

2{ρ; x} −
1
2x +

( 1
2 − α

)
ρ/ρx = 0, i.e., (2.6) written in terms of ρ. Our second final remark is that for α = 1/2 and 

C = 0, (4.5) also gives the special integral ux − u2 + E − 1
2xI = 0 of matrix PII (4.3) for this value of the 

parameter [7] (see also [5,6]).

5. Conclusions and discussion

We have presented a new approach to deriving BTs and auto-BTs for ODEs. Whilst our interest here has 
been focused on Painlevé equations, this technique is, in fact, much more widely applicable. In addition to 
a consideration of the second and fourth Painlevé equations, we have also applied our approach to a matrix 
second Painlevé equation. We have thus obtained a matrix analogue of the classical result relating solutions 
of the second Painlevé equation for parameter values α = 0 and α = 1/2. In obtaining this result, we have 
also derived a new matrix version of the second Painlevé equation, for which we have presented a Lax pair. 
In addition, we have derived the first known matrix analogue of the Schwarzian second Painlevé equation.

A particularly interesting consequence of our matrix results is the introduction of a new definition of 
matrix Schwarzian derivative, as follows. Given a square matrix function ρ of x such that ρx is nonsingular, 
we define its Schwarzian derivative S(ρ) as

S(ρ) =
(
s−1ρxxt

−1)
x
− 1

2
(
s−1ρxxt

−1)2 , (5.1)

where s and t are any two nonsingular square matrix functions of x such that st = ρx, sxt = stx. (Here 
s and t respectively replace zx and yx as used in Section 4.) We may also write S(ρ) =

(
s−1ρxxρ

−1
x s

)
x
−

1
2
(
s−1ρxxρ

−1
x s

)2 and sx = 1
2ρxxρ

−1
x s, or S(ρ) =

(
tρ−1

x ρxxt
−1)

x
− 1

2
(
tρ−1

x ρxxt
−1)2 and tx = 1

2 tρ
−1
x ρxx. 

The formulation (5.1) is simpler than the Lagrange Schwarzian derivative discussed in [13], with fewer 
assumptions being made on ρ, and provides an alternative also to that given in [2]. The properties of this 
new matrix Schwarzian derivative are discussed in [14], where we also consider its use in defining matrix 
Schwarzian ODE and PDE hierarchies.
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