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A B S T R A C T

This work presents a Temporal Convolution Network (TCN) model for half-hourly, three-hourly and daily-time
step to predict electricity demand (𝐺) with associated uncertainties for sites in Southeast Queensland Australia.
In addition to multi-step predictions, the TCN model is applied for probabilistic predictions of 𝐺 where the
aleatoric and epistemic uncertainties are quantified using maximum likelihood and Monte Carlo Dropout
methodologies. The benchmarks of TCN model include an attention-based, bi-directional, gated recurrent
unit, seq2seq, encoder–decoder, recurrent neural networks and natural gradient boosting models. The testing
results show that the proposed TCN model attains the lowest relative root mean square error of 5.336-7.547%
compared with significantly larger errors for all benchmark models. In respect to the 95% confidence interval
using the Diebold–Mariano test statistic and key performance metrics, the proposed TCN model is better
than benchmark models, capturing a lower value of total uncertainty, as well as the aleatoric and epistemic
uncertainty. The root mean square error and total uncertainty registered for all of the forecast horizons
shows that the benchmark models registered relatively larger errors arising from the epistemic uncertainty
in predicted electricity demand. The results obtained for TCN, measured by the quality of prediction intervals
representing an interval with upper and lower bound errors, registered a greater reliability factor as this model
was likely to produce prediction interval that were higher than benchmark models at all prediction intervals.
These results demonstrate the effectiveness of TCN approach in electricity demand modelling, and therefore
advocates its usefulness in now-casting and forecasting systems.
1. Introduction

Sustainable economic development requires robust methods for
electricity demand side planning and management systems. For
decision-makers, electricity demand models offer unique perspectives
to manage the future usage of energy and including the best options
for increasing the mix of green and cleaner energy resources into day-
to-day electricity consumption [1]. In times of an imbalanced demand
or supply of electricity, fossil fuel generation can be prioritized to
resolve an energy crisis. However, fossil fuel generation produces CO2
emissions at an un-affordable rate, and may therefore affect the global
power markets. As the Sustainable Development Goal (SDG-7) requires
every person has access to affordable energy resources [2], countries
must plan well-designed electricity demand monitoring systems to
ensure a reliable supply of energy.
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Increasing rates of electricity consumption can produce huge in-
crease in electricity use in comparison with the other energy sources
[3]. Existing storage technologies do not currently provide efficient
storage of electricity at relatively large scales. Therefore, an electricity
demand (𝐺) prediction model are useful in the economic growth and
sustainability of energy supply and management [4]. Climate change,
on the other hand, based on future climate projections and increasing
temperatures can place unprecedented demand on electricity use [5].
Underestimating or overestimating the future 𝐺 may therefore result
in numerous undesirable effects including financial burden, increased
electricity price or shortage of electricity [6]. Even subtle changes in
the accuracy of 𝐺 prediction may significantly impact the operating
costs and affect the already competitive electricity market. Despite
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Abbreviations

ACE Average Coverage Error
AI Artificial Intelligence
ANFIS Adaptive Neuro Fuzzy Inference System.
ANN Artificial Neural Network.
APB Absolute Percentage Bias.
ARIL Average Relative Interval Length.
ARIMA Autoregressive Integrated Moving Average.

ARMA Auto-Regressive Moving Average.
ATTLSTM Attention LSTM.
AU Aleatoric Uncertainty.
BHPO Bayesian Hyperparameter Optimization Al-

gorithm.
BILSTM Bidirectional LSTM.
BM Bayesian Models.
CLSTMED Encoder–Decoder LSTM.
CNN Convolutional Neural Network.
CNNGRU CNN Combined with GRU Method.
DBM Deep Boltzmann Machine.
DBN Deep Belief Networks.
DL Deep Learning.
DLSTM Deep LSTM.
DM Test Diebold–Mariano.
DNN Deep Neural Network.
DRNN Deep Recurrent Neural Network.
DT Decision Trees.
ELM Extreme Learning Machine.
EM Ensemble Methods.
ES Exponential Smoothing.
EU Epistemic Uncertainty.
FLI Fuzzy Logic Inference.
G Electricity Demand.
GBM Gradient Boosting.
GM Grey Models.
GPI Global Performance Indicator.
GRU Gated Recurrent Unit.
KGE Kling–Gupta Efficiency.
LM Legates and McCabe’s Index.
LSTM Long Short-Term Memory.
LSTMCNN LSTM Combined with CNN.
MAPE Mean Absolute Percentage Error.
MCDO Monte-Carlo Dropout.
MLP Multi-Layer Perceptron Model.
MNLL Mean Negative Log-Likelihood.
MSE Mean Squared Error.
NGBOOST Natural Gradient Boosting.
NLL Negative Log-Likelihood.
NN Neural Networks.
NS Nash–Sutcliffe Index.
PACF Partial Auto-Correlation Function.
PI Prediction Interval.
PICP Prediction Interval Coverage Probability.
PINAW Normalized Mean Prediction Interval

Width.

the fact that there are no definitive criteria for classification of range
f 𝐺 predictions, prediction methods are grouped roughly into three
ategories: short term (from approximately 30 min to six hour ahead),
2 
PINC PI Nominal Confidence.
RBM Restricted Boltzmann Machine.
RMAE Relative MAE.
RMSE Root Mean Squared Error.
RNN Recurrent Neural Networks.
RRMSE Relative RMSE.
SDG Sustainable Development Goal.
seq2seq Sequence to Sequence.
SVM Support Vector Machine.
TCN Temporal Convolutional Network.
TPU Total Predictive Uncertainty = EU + AU.
TS Time-Series.
WI Willmott’s Index.
WS Winkler Score.
XGB Xtreme Gradient Boosting.

mid-term (lead up to daily prediction horizons), and long-term (weekly,
monthly or annual). This paper therefore aims to develop novel elec-
ricity demand forecasting models for the short-term (half-hourly, or
-hourly) and the long-term (daily) time-steps.

For the purpose of analysis, characterization and prediction of
𝐺, statistical and computational intelligence models have been em-
loyed [7]. Conventional methods of predicting 𝐺 are adopting stochas-

tic time series and regression approaches. A common time-series (TS)
model using Autoregressive Integrated Moving Average (ARIMA)
method is capable of producing good results for linear prediction
problems [8–11]. The TS-based models use trend analysis to predict
the future electricity demand as shown by Amjady et al. [12] where an
ARIMA model for forecasting loads based on different times of the year
was proposed. There have been numerous studies that use historical
demand, weather or other variables as exploratory variables, including
Juberias et al.’s study of [13] that proposed an hourly load model using

RIMA and regression analyses or multivariate regressions by [14,15]
to predict the 𝐺. The use Exponential Smoothing (ES) method [16,17]
was also used successfully for 𝐺 prediction. In particular, the ES
methodology aims to consider the electricity demand time series as
being locally stationary with a slowly moving average. Therefore,
authors in [18] build an ES-based model to simulate the electricity
demand time series where the prediction results indicates that their

odel did exceptionally well measured by a Root Mean Squared Error
𝑅𝑀 𝑆 𝐸) and Mean Absolute Percentage Error (𝑀 𝐴𝑃 𝐸) for shorter and
edium prediction horizons. Similarly, Grey Models (GM) [19] have

been widely adopted for 𝐺 prediction as they are able to capture the
characteristics of uncertain systems even when the data are relatively
sparse [20–24].

A number of statistical models, such as ARIMA, are limited to linear
distribution assumptions. As a result, the model’s efficacy depends
eavily on data required to calibrate model parameters and the like-
ihood of avoiding model over fitting [1]. In fact, an ARIMA model
equires stationary characteristics in order to void poor predictive
ccuracy. In spite of GM models not requiring statistical assumptions,
he accuracy could be dependent on the degree of dispersion of raw

TS datasets [25]. In addition, there are often different strengths and
weaknesses to each predictive models so no single approach is superior
for all types of 𝐺 prediction problems.

To address challenges of traditional models, artificial intelligence
(AI) methods, inspired by human brain, capable of solving nonlinear
roblems, have been found to be more efficient. Some of the key

AI methods include Neural Networks (NN) [26], Recurrent Neural
Networks (RNN) [27], Ensemble methods (EM) [28], Support Vector
Machine (SVM) [29], Gradient Boosting (GBM) [30], Bayesian Mod-
els(BM) [31], Decision Trees (DT) [32], Fuzzy Logic Inference (FLI) [33,
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34], and Multi-layer Perceptron [35,36] (MLP) implemented for large
cale 𝐺 prediction problems. However, in their primitive forms, ANN,
NN, SVM, GBM, EM, BM, DT and MLP models are shallow models
ith a single hidden layer or simplistic architecture [37], which leads

o a lesser capability to predict complex datasets such as 𝐺.
The study of Ekonomou et al. [38] developed a Multi-Layer Percep-

ron (MLP) model to predict 𝐺 incorporating four factors: climate, Gross
omestic Product, historical electricity demand and power capacities,

howing that the MLP model can produce promising results relative
o a linear regression or SVM model. To predict the United States-
ased industrial energy demand, Kialashaki et al. [39] developed ANN
nd Multi-Linear Regression (MLR) models to show an ANN as more
ccurate. Gajowniczek et al. [40] implemented an SVM, ANN, random

forest, ARIMA and step-wise regression for short-term 𝐺 prediction at
24 time-steps. The prediction capability was higher for ANN compared
with other models. Abraham et al. [41] implemented Fuzzy Neural
Network for 𝐺 prediction in Victoria Australia; showing its superior
apability relative to ANN and ARIMA models. The authors in [42] used
daptive Neuro Fuzzy Inference System (ANFIS) for 𝐺 prediction in a
rovince in Canada to show ANFIS as more accurate.

Despite most AI-based methods showing good ability to incorporate
he best predictive features from 𝐺 time series, their limitations include:

(a) not being able to handle multiple time series [43], (b) the inability
to find reliable time dependence information between short-term and
long-term scenarios 𝐺 [43], (c) prone to over-fitting [44], (d) lack of
generalizability [45], (e) complexities in handling big data, and (f) slow
convergence of model parameters [46]. These issues continue to inspire
researchers to shift to the more promising Deep Learning (DL) methods
or 𝐺 prediction problems.

Comparatively to simplistic AI models, deep learning models can
extract features automatically without having much knowledge of
the data’s background details [47,48]. Unlike shallow models, that
transform input data only a few times, DL transforms inputs multi-
ple times before producing an output and therefore are capable of
learning extremely complicated patterns without manual input. Wan
et al. [49] built a DeepNet method for short-term electricity load mod-
elling whereas a Convolutional Neural Network (CNN) model was used
by [50] to extract features from historical patterns used later to predict
𝐺. A Deep RNN (i.e., DRNN) model was implemented by Shi et al. [51]
o predict short-term electricity load at regional aggregated/household

level concluding that the DRNN model outperformed the shallow neural
networks.

A Long Short-term Memory (LSTM) model was developed by Torres
et al. [52] and Kong et al. [53] to predict 𝐺 over short-term and

edium-term time horizons. Muralitharan et al. [54] implemented
 NN-based genetic algorithm and neural NN-based particle swarm
ptimization to produce better results than a CNN model. Other ap-
roaches such as Autoencoders (AE) [55,56], LSTM [57–60], Gated

Recurrent unit (GRU) [61], Restricted Boltzmann Machine (RBM) [62],
Deep Belief Network (DBN) [63], BiDirectional-LSTM (Bi-LSTM) [64–
66] and Deep Boltzmann Machine (DBM) [67] have all been recognized
as promising DL methods that are frequently used in 𝐺 prediction
roblems [68].

In prior studies, researchers proposed point-based models for 𝐺
stimation. In order to capture uncertainties in future load fluctuations,
oint-based prediction is insufficient since it has a unique value at a
iven time step. Therefore, as a probabilistic extension to DL meth-
ds, this study adopts TCN used previously in many other prediction
roblems e.g., [69–71]. The TCN method, as a variation of CNN for
equence-to-sequence modelling, combines the merits of an RNN and a
NN model. Therefore, the two distinguishing characteristics of a TCN
odel leading to its implementation in this research paper are [69–71]:

• The convolutions in proposed model architecture are of the causal
form so this can avoid ‘‘leakage’’ of information from past to
future 𝐺.
3 
• In the TCN architecture, mapping of any sequence can be done to
an equivalent length’s output sequence. It therefore possesses a
long effective history size with capability to search for predictive
information relatively far in history of data prior to making 𝐺
predictions.

As the proposed TCN model in this study incorporates very deep
etworks along with residual layers and dilated convolutions, it can
apture far-sight information, which has several advantages over other
L algorithms.

• Parallel Processing: In conventional methods, predictions for
later time-step wait for their predecessor to be fully complete but
in the proposed TCN model, convolutions are done in parallel as
identical filters are used in all layers. Hence, in training and eval-
uation phases, a long input sequence found in 𝐺 data is analysed
as a whole rather than in a sequence to sequence manner.

• Flexible Receptive Field Size: TCN models have better control
over memory size, since they can adjust the size of their receptive
field by using various methods such as stacking more dilated
causal convolutional layers or increasing the filter size.

• Stable Gradients: A TCN architecture, on the other hand, back-
propagates relatively distinctly from the sequence’s temporal di-
rection, thereby avoiding the exploding and vanishing gradient
problems.

• Low Memory Requirement: Real-time monitoring systems rely
on 𝐺 data that are relatively long or continuous. Due to this,
traditional methods (such as LSTMs and GRUs) can consume a
significant amount of memory when storing partial results in
multiple cell gates. In a TCN-based model, there are shared filters
across layers, so the path of backpropagation depends on the path
of the network. Consequently, a TCN model offers a major advan-
tage over gated methods (e.g. RNNs), which require a memory
several fold larger.

• Variable Length Inputs: The proposed TCN model takes in in-
puts of arbitrary lengths by sliding 1-D convolutional kernels,
providing the ability to incorporate multiple length inputs for 𝐺
forecasting at multiple time-steps.

Although TCN provides significant motivation over other DL models,
t does come with some constraints such as: (i) potential issue of

data storage in evaluation phase where it must take in raw sequences
up to the effective history length that could require more memory
n model evaluation phase, or (ii) a potential for model’s parameter

changes in case of its transfer to a different application domain where
little memory is needed compared to a domain requiring much longer
memory.

This paper makes important contributions by capitalizing on earlier
works [69–71] to develop a robust predictive model for electricity
demand and uncertainty estimation:

1. A TCN-based model is developed and compared against a num-
ber of DL algorithms applied for the prediction of 𝐺 based on
statistically significant lag combination historical data.

2. The proposed TCN model is evaluated is using actual operational
electricity demand data for three different locations in Southeast
Queensland, Australia.

3. The proposed TCN model is improved for its capability to predict
electricity demand by incorporating Monte Carlo dropouts and
maximum likelihood techniques that are adopted to quantify the
aleatoric and epistemic uncertainties.

4. An assessment of the 𝐺 predictive model is made against state-
of-the-art DL models.

2. Conceptual frameworks

Here, the TCN model (as well as variant DL models based on CNN,
RNN, LSTM etc used as benchmark approaches) are discussed to justify
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Fig. 1. Dilated causal convolution example; filter size 𝑘 = 2; dilation rate 𝑑 = [1, 2, 4, 8].
the adoption of this method for multi-step 𝐺 prediction. Details of
other models e.g., DNN and Natural Gradient Boosting (NGBOOST)
probabilistic regression are available in [72–74].

2.1. The temporal convolutional network model

The TCN model, a special case of CNN [75,76], has an efficient
performance compared to its counterparts models due to (a) use of
causal dilated convolutions, (b) simpler architecture that avoids gating
mechanism, (c) an architecture with stable gradients, (d) computational
efficiency given input sequence is processed once (not sequentially as
with RNNs) and that current predictions do not wait for results from a
previous time step [77].

For ensuring each subsequent layer to equal to its predecessor, the
model employs a 1-D CNN architecture with no padding between hid-
den layers and input layers. By applying causal convolution only once
to current and previous values of 𝐺, no information leaks from the past
into the future value. Simple causal convolutions have linear history
sizes compared to networks [78]. Real-time electricity use monitoring
systems may require a large filter to process a long sequence of 𝐺
inputs. Because of this constraint, dilated causal convolutions are used
to skip values in order to enlarge the receptive field exponentially [79].

In Fig. 1, we depict a dilated causal convolution. For a sequenced
x ∈ R𝑛, filter 𝑓 ∶ {0, 1,… 𝑘 − 1}, we state the dilated convolution 𝐹 on
𝑠 sequence as:

𝐹 (𝑠) =
(

x∗ 𝑑𝑓
)

(𝑠) =
𝑘−1
∑

𝑖=0
𝑓 (𝑖) ⋅ 𝑥𝑠−𝑑⋅𝑖 (1)

Here, 𝑘 is the filter size, 𝑑 is the dilation factor, ∗ is the convolution
operator and the subscript 𝑠 − 𝑑 , 𝑖 refers the direction of the past.

With increasing depth of network, the dilation factor will exponen-
tially increase following 𝑑 = 2𝑙 where 𝑙 is the network level. At the
top layer (𝑑 = 1) (corresponding to regular convolutions), 𝑑 increases
exponentially and reaches 4 at the top layer (𝑑 = 4). As a result of
pyramidal structure and aggregation, the TCN model’s receptive field
is effectively increased without affecting the input coverage as long
memories can be achieved. As the TCN network deepens or is enlarged,
the receptive field becomes increasingly dependent on network depth
and dilation factor. The stabilization also becomes especially critical
with this process so in general, the deep network layers lead to produce
undesirable effects e.g., gradient disappearance and over-fitting [80].
To overcome this, residual learning frameworks [81] have shown to
enhance and simplify the network training.

A generic residual module was used instead of convolutional layers
with examples of residual TCN and connections, as shown in Fig. 2.(a)
4 
and .(b). There are two layers of dilated causal convolutions and ReLU
in the residual block (Fig. 2.(a)). The convolutional filters are each
subjected to the batch approach for this normalization [82]. Finally, a
layer performing the dropout is added after every dilated convolutions
following the strategy in earlier works [83].

A 1D CNN model is recommended for handling uni-dimensional
data (e.g., 𝐺, wind speed, solar radiation) as they require simple
calculations in forward and reverse propagation stages. [84]. Its per-
formance, however, is influenced by several hyperparameters (hidden
neurons, filter size, pooling methods) in the training phase. Here, the
1-dimensional input is fed in network and its output layer composed of
desired neurons [85] as schematized in Fig. 3.

2.2. The benchmark models

To comprehensively evaluate the proposed TCN model, this study
has also developed several variants of an RNN model which are used
to overcome the issues of vanishing gradients in conventional models.
Two noteworthy examples are an LSTM and a GRU model-based DL
model [88]. The proposed TCN model for 𝐺 forecasting is tested against
the LSTM model as a benchmark model. The work of [89] introduced a
conventional LSTM networks with memory cells or forget gates to cap-
ture long-term dependencies with distinct hidden states ℎ𝑡 and 𝑐𝑡 that
store both long-term and short-term information [90]. By changing the
hidden layers, the key variants of LSTM model include: bidirectional
LSTM (i.e., BILSTM) [91], Attention LSTM (i.e., ATTLSTM) [92] and
Deep LSTM (i.e., DLSTM) proposed to address drawbacks of conven-
tional LSTM models.

2.2.1. BILSTM
The proposed TCN model is also benchmarked using BILSTM, a

variant of an LSTM model that uses two LSTM models for past and
future information to be used in 𝐺 prediction [93]. Fig. 2.(c) shows
the two LSTM models with a hidden vector ℎ⃗𝑡 in forward direction
and hidden vector ⃖⃖ℎ𝑡 in backward direction. By combining outputs of
forward input and reverse input sequence, the 𝑦𝑡, denoted as the final
output, takes the form:

ℎ⃗𝑡 = 𝐿𝑆 𝑇 𝑀
(

𝑥𝑡, ℎ⃗𝑡−1
)

(2)

⃖⃖ℎ𝑡 = 𝐿𝑆 𝑇 𝑀
(

𝑥𝑡, ⃖⃖ℎ𝑡−1
)

(3)

𝑦𝑡 = 𝑓
(

𝑊ℎ⃗𝑦ℎ⃗𝑡 +𝑊⃖⃖ℎ𝑦⃖⃖ℎ𝑡 + 𝑏𝑦
)

(4)



S. Ghimire et al. Renewable and Sustainable Energy Reviews 209 (2025) 115097 
Fig. 2. (a) General schematic of a residual block of the TCN model. A convolution of 1 × 1 is applied for residual input and output that have unique dimensions, (b) Residual
connection.
Fig. 3. Schematic of a three-layered 1-D CNN model [86] utilized in developing the TCN model for short-term and long-term electricity demand modelling.
2.2.2. ATTLSTM
To benchmark the efficacy of the TCN model we adopted ATTLSTM,

a variant of the LSTM model. The ATTLSTM model employs attention
mechanism similar to human selective visual attentions [94] that pre-
dominate key elements from input sequence to affect the output data.
Therefore, the ATTLSTM model can learn critical information from
input sequences [95]. By mimicking a human brain, it gains a deeper
understanding of the inputs, implemented as follows:

𝑉 𝑎𝑡𝑞 = at t en [𝑉 𝑒𝑐𝑞
]

(5)

𝜉𝑞 = sof t max
[

𝑉 𝑎𝑡𝑞
]

=
exp

(

𝑉 𝑎𝑡𝑞
)

∑𝑄 ( )
(6)
𝑞=1 exp 𝑉 𝑎𝑡𝑞

5 
𝜒 = 𝜉𝑇 𝑉 𝑒𝑐 (7)

As a first step, the at t en[⋅] is a learning function to determine each
element in vector 𝑉 𝑒𝑐 denoted by 𝑉 𝑎𝑡, and 𝑞 represents the index
value. To obtain the attention weight vector 𝜉, 𝑉 𝑎𝑡 is normalized using
sof t max [⋅], where 𝑄 is the length of 𝑉 𝑎𝑡. For attention vector 𝜒 , 𝑉 𝑒𝑐 is
multiplied by 𝜉. For more information on an ATTLSTM model, readers
can consult [96].

2.2.3. CLSTMED, CNNGRU and LSTMCNN hybrid models
Three competing models to evaluate TCN model for 𝐺 and un-

certainty predictions are: (i) CNN combined with seq2seq LSTM to
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Fig. 4. (a) RNN, (b) LSTM, (c) seq2seq LSTM (i.e., LSTMED model), (d) Bidirectional LSTM (i.e., BILSTM) model. The symbols/terms are as per [87].
generate CLSTMED or encoder–decoder LSTM [97], (ii) CNN combined
with GRU to construct CNNGRU [98], (iii) LSTM combined with CNN
to generate LSTMCNN [99–101].

Fig. 4 shows a seq2seq network with encoder/decoder system. The
encoder pulls out features from data [73]. As an input, variable-length
sequenced data 𝑥 = (𝑥1, 𝑥2,… , 𝑥𝑛) is encoded into a fixed-length vector
𝐶. Through the combination of input data at a current time, the decoder
calculates the next time sequence 𝑌 by decoding the state vector 𝐶.
When input data are read, ℎ is also updated. As vector 𝐶 contains
information from the sequence 𝑋, it can be viewed as a summary of
all the information extracted from that sequence.

2.3. Uncertainty analysis of predicted electricity demand

As a major task in this study, we adopted improved the TCN model’s
capability to analyse the aleatoric uncertainty (AU) and the epistemic
uncertainty (EU) that are required to construct a robust electricity
demand monitoring and management system. Notably, the modelling of
𝐺 so far focused on point-based predictions without much consideration
to the quantification of predicted uncertainty.

Therefore, to explain these uncertainties in the TCN model, we
consider 𝑌 = 𝑓 (𝑥) + 𝜖 where statistically, 𝑓 (⋅) is the predicted point
estimate of a learned model known as the EU part. Notably, the origin
of EU is the model variance 𝜎2𝑚; 𝜖 or the irreducible noise known as
the AU part of the uncertainty. Regardless of how the 𝐺 data were
generated and measured, the AU-based component in a predictive
almost always exist as this type of uncertainty is intrinsically linked
to the variance in the modelled data.

Fig. 5 shows briefly the nature of AU and EU in typical regression
models. Note that in accordance with this, the total predictive uncer-
tainty (TPU) is therefore comprised of (i) EU, (ii) AU expressed, and is
expressed 𝑇 𝑃 𝑈 = 𝐸 𝑈 + 𝐴𝑈 .

In Fig. 5.(a), it is apparent that because of the presence of noisy
data such as that indicated in yellow circle, there is non-deterministic
relationship between the model inputs (or predictor variables) and the
model output (or the target), and thus, the value of AU is considerably
high. Additionally, from Fig. 5.(b) we also note that since there are no
data indicated as red circles, it seems to be rather difficult to determine
the model parameters and the structure, so a high value of EU is
possible. Thus, quantifying the predictive uncertainties in 𝐺 data can
reveal the amount of noise in observed data and the effectiveness of
the TCN model.

For uncertainty analysis, one popular technique is Monte-Carlo
Dropout (MCDO) method to quantify EU [102,103]. More generally,
6 
Fig. 5. (a) Noisy data in yellow circle causes aleatoric uncertainty, (b) Lack of data
causes epistemic uncertainty in this regression problem. Uncertainty intervals are
indicated by the black areas in the sky.

the dropout prevents over-fitting as it progressively disables (i.e., drop-
ping out) the units while the training of model takes place. This can be
considered as applying random noise [104,105].

In principle, MCDO refers to the use of random units during forward
pass dropped from networks while prediction occurs with a trained
network. Repeating this multiple times, many different TCN model
outcomes are generated so that the prediction distribution can repre-
sent the degree of uncertainty in the underlying model and the MCDO
can approximate to a deep Gaussian Process approach [106]. For full
mathematical derivation of the MCDO used in modelling of uncertainty,
authors may refer to [107].

Consider an example of a neural network model with 𝐿 layers
where 𝑊𝑙, 𝑏𝑙 and 𝐾𝑙 is the weight matrices, bias vectors, dimensions
of 𝑙th layer. We indicate the output and target class of 𝑖th input 𝑥𝑖(𝑖 =
1,… , 𝑁) using ⌢𝑦 𝑖 and 𝑦𝑖. The objective function 𝐿2 regularization is:

𝐿𝑑 𝑟𝑜𝑝𝑜𝑢𝑡 = 1
𝑁
∑

𝐸
(

𝑦𝑖, �̂�𝑖
)

+ 𝜆
𝐿
∑

(‖
‖

𝑊𝑖
‖

‖

2
2 + ‖

‖

𝑏𝑖‖‖
2
2) (8)
𝑁 𝑖=1 𝑙=1
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For each input and its respective layer, except for the output layer,
the binary variables are sampled with a probability of 𝑝𝑖. A unit 𝑖 is
ropped if it is 0 for an input data value. To update the parameters,
he backward pass uses the same values.

As a primary goal for the 𝐺 prediction problem, we quantified the
AU by estimating 𝑝(𝑦|𝑥) through a probability density function defined
by the Gaussian curve. We aimed to approximate the conditional
robability distribution 𝑝(𝑦|𝑥, 𝜃) of the target 𝑦 given an observed input
alue 𝑥 [108]. Therefore, the parameters 𝜃 of a DL network 𝑓𝜃 was

fitted in such a way that it produced a prediction �̂� = 𝑓𝜃(𝑥).
The mean squared error (𝑀 𝑆 𝐸) was minimized between the true

and predicted 𝐺 with the network typically trained for a single point
estimation. It is useful to ascertain that the optimization of MSE refers
setting right parameters of the conditional distribution. In our case,
this was estimated by a Gaussian function 𝑝(𝑦|𝑥) =  (�̂�(𝑥), 𝜎2). Here,
the mean �̂�(𝑥) varies with the input 𝑥 and has a constant noise term
𝜎2 [109]. Our approach relaxes the constraint of constant noise by
estimating it from the input. Instead of a point-estimate �̂�, we consider
[�̂� , ̂𝜎2] = 𝑓𝜃(𝑥) whereby true conditional distribution can be estimated.
In doing so, we applied a Gaussian function 𝑝(𝑦|𝑥) =  (�̂�(𝑥), ̂𝜎2(𝑥))
by using mean/variance that formed the functions of 𝑥 (or the input
variable). We achieved this using a maximum likelihood (ML) approach
(see [110]).

Our next step is to use the negative log-likelihood (NLL) function,
which is a normal distribution that acts as a loss function in our
problem by ignoring the constants such as [111,112]:

𝑁 𝐿𝐿 = 1
𝑁

𝑁
∑

𝑖=1

(

�̂�(𝑥𝑖) − 𝑦𝑖
)2

2�̂�2(𝑥𝑖)
+ 1

2
log �̂�2(𝑥𝑖). (9)

Note that if there are multiple samples, the mean negative log-
likelihood is calculated by averaging over the log-likelihoods (MNLL).

𝑀 𝑁 𝐿𝐿 = 1
𝑁

𝑁
∑

𝑖=1
𝑁 𝐿𝐿(𝑥𝑖, 𝑦𝑖) (10)

The numerator of NLL (Equation. (9)) encourages mean prediction
̂(𝑥) to approach the observed data whereas denominator ̂𝜎2(𝑥) is
levated when the deviation from the mean (𝑦 − �̂�(𝑥))2 is large. By
ounterbalancing the variance, the first term prevents it from growing
ndefinitely. As a result of this strategy, the aleatory uncertainty of the

data generation process is captured.

3. Procedure

This section describes the pre-processing steps for gathering electric-
ty demand data for Southeast Queensland, Australia, the development
f the TCN model, and finally, the deterministic, statistical, and proba-

bilistic metrics that were used to evaluate the model comprehensively.

3.1. Description of electricity demand datasets

Energex Limited, the largest government-owned electricity company
in Australia, provided 𝐺 data for this study. Energex operates un-
der provisions of Government Owned Corporations Act 1993. Energex
wns, operates, and maintains electricity distribution networks that
erve Brisbane, Gold Coast, Sunshine Coast, Logan, Ipswich, Redland,
nd the Moreton Bay region in Southeast Queensland. The company
lso distributes electricity to 3.5 million residential and business cus-
omers (https://www.energex.com.au). Each day, 𝐺 in megawatts is

recorded half-hourly and by using this database, maintenance planners
are able to estimate actual demand every half-hour.

In developing the TCN model, 30 min, three hours, and daily
prediction intervals at Acacia Ridge, Alexandra Headland, and Zillmere
were used from 01/07/2011 to 30/06/2021 (see Fig. 6). Energex half-
our intervals were converted to 3-hourly intervals by summing six
alues per interval, and 24-hour interval data were similarly converted.
 a

7 
The boxplots (Fig. 7.(a)-7.(c)) illustrate the distribution of electric-
ity demand (𝐺,MW) across three different locations – Acacia Ridge,
Zillmere, and Alexandra Headland – over three time intervals: half-
hourly, 3-hourly, and daily. At Acacia Ridge, 𝐺 remains relatively low,
with a narrow interquartile range (IQR), indicating limited variability.
Outliers appear sporadically, especially in the half-hourly data, suggest-
ing occasional spikes in 𝐺. As the time interval shifts to 3-hourly and
daily, both the median and variability increase slightly, but the overall
distribution remains relatively stable compared to the other locations.
illmere shows higher 𝐺 than Acacia Ridge, with a wider IQR and more
ronounced variability, particularly in the 3-hourly and daily data. The
requency of outliers increases across all time intervals, reflecting more
luctuations in 𝐺, especially in longer time frames. Alexandra Headland
onsistently exhibits the highest levels of 𝐺 and the greatest variability.
n the half-hourly data, the median 𝐺 is much higher than at the
ther locations, with a broader range and numerous outliers, suggesting
requent power surges. This trend continues and intensifies in the 3-
ourly and daily intervals, where Alexandra Headland demonstrates
ignificantly larger fluctuations. The daily data shows an especially
ide range of values, with a large number of outliers, indicating highly
ariable and often extreme 𝐺 levels. In summary, Alexandra Headland
onsistently experiences the highest and most variable 𝐺 across all
ime intervals, followed by Zillmere, which also displays considerable
ariability. Acacia Ridge, in contrast, exhibits lower 𝐺 and smaller
luctuations. This analysis suggests that Alexandra Headland is the
ost dynamic location in terms of power output, with larger and more

requent fluctuations compared to the other two sites.
Fig. 8 presents the distribution of 𝐺 across different time frames

for Acacia Ridge sub-station, with green boxplots showing the vari-
ability and the blue line representing the mean values. In the hourly
distribution, 𝐺 is lowest during the early hours of the day, gradually
rising and peaking between 8 AM and 8 PM, with the highest demand
observed around noon. Demand variability is greater during the day,
with more outliers in the evening, while nighttime demand is lower and
more stable. In the daily distribution, demand increases from Sunday
through Wednesday, with Wednesday showing the highest median
demand, before declining towards the weekend, where Saturday has the
lowest demand. Finally, in the monthly distribution, electricity demand
fluctuates throughout the year, with peaks during the winter months
(June to August) and a slight decrease in spring (November). Variability
remains consistently high across all months, though certain months
show more pronounced outliers, indicating sporadic spikes in demand.

3.2. Development of the temporal convolutional network and benchmark
models

This section describes the predictive model development, selection
of electricity demand time series data, pre-processing, normalization
and partitioning of training and validation sets and the TCN (and
benchmark) model developments and hyperparameters tuning steps.

3.2.1. Input selection
To determine the optimal lagged combinations of 𝐺 data required

to build the predictive model, partial auto-correlation function (PACF )
f G is used [113]. Fig. 9 shows PACF for half-hourly, 3-hourly and

daily prediction horizon. Evidently, the PACF of training set collapses
at 10, 10 and 9 for half-hourly, 3-hourly and daily data, respectively,
for Acacia Ridge study site.

Therefore, for Acacia Ridge location the time lag of input (i.e., 𝐺)
ariable was chosen to be (𝑡 - 10) for the half-hourly and daily elec-
ricity demand predictions whereas for 3-hourly period, the time lag
erived from historical electricity demand data was selected to be (𝑡
 9). In other words, we should comfortably be able to choose the
en time-based historical 𝐺 data points before the current time as the
nput variables for the TCN (and comparative) models to predict G at

 current time period. To validate the PACF criteria, we also used an

https://www.energex.com.au
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Fig. 6. Geographic map of study area in southeast Queensland, Australia where 𝐺 prediction model was developed.
Fig. 7. Box-plot of G, 𝑀 𝑊 distribution. (a) half-hourly, (b) 3-hourly, (c) daily at three study locations over 1/07/2011–30/06/2021.
ELM model based on electricity demand time series to select historically
lagged combinations of input variables.

For the Acacia Ridge study site, Fig. 10 plots the performance of
ELM model. Here, the transfer function was Sigmoid and 50 neurons
were used with varying lagged data (1-40). Notably, the most suitable
lagged combinations of input variables occur at 10, 9 and 12 for
half-hourly, 3-hourly, and daily 𝐺 data, respectively. Similarly, for
other study site the optimal lag were 10-12-8 (Zillmere) and 12-10-
10 (Alexandra Headland) for half-hourly, 3-hourly and daily G data,
respectively. For TCN and benchmark models, the inputs and outputs
(for 10 lag) are:

𝑖𝑛𝑝𝑢𝑡 =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑥5, 𝑥6, 𝑥7, 𝑥8, 𝑥9, 𝑥10
𝑥2, 𝑥3, 𝑥4, 𝑥5, 𝑥6, 𝑥7, 𝑥8, 𝑥9, 𝑥10

⋮
𝑥𝑡−1, 𝑥𝑡−2,… , 𝑥𝑡−9, 𝑥𝑡−10

⎫

⎪

⎪

⎬

⎪

⎪

⎭

, 𝑡 ≥ 10 (11)

( )𝑇
𝑜𝑢𝑡𝑝𝑢𝑡 = 𝑥11 𝑥12 ⋯ 𝑥𝑡 , 𝑡 ≥ 10 (12)

8 
3.2.2. Preprocessing of electricity demand dataset
Data were segregated into train/validate/test sets to develop the

model. For half-hourly and 3-hourly 𝐺 prediction, six years (training)
and two years (testing) were used whereas for the daily prediction,
8 years (training) and two years (testing) were considered, see Table 1.
In respect to validation of model, we used one fifth of training data to
search for best hyperparameters. Furthermore, to increase the optimiza-
tion speed of model networks [114], the input features are normalized.
In this normalization process the data were subtracted by its mean and
then divided by its standard deviation, which can be represented as:

𝑥𝑠𝑐 𝑎𝑙 𝑒𝑑 = 𝑥 − �̂�
𝜎

(13)

where 𝑥 is the original value, �̂� is the mean and 𝜎 is the standard
deviation.

3.2.3. Model development and hyperparameter tuning
To develop the proposed TCN and benchmark models for 𝐺 pre-

diction at half-hourly, three-hourly and daily-step step horizons, Intel
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Fig. 8. Box-plot of G, 𝑀 𝑊 distribution for Acacia Ridge, Queensland. (a) hour of the day, (b) days of the week, (c) monthly during the period 1/07/2011–30/06/2021.
Fig. 9. Statistically significant lags of historical (𝐺) data for three study stations.
Table 1
Training, validation and testing data for half hourly, 3-hourly and daily 𝐺 𝐻 prediction.

Dataset Training Validation Testing

Period Data point Interval Percentage of train data Period Data point Interval Percentage

Half-hourly Prediction 01-Jul-2011 to 30-Jun-2017 105 212 30 min 20% 01-Jul-2017 to 30-Jun-2021 70 122 30 min 40%

3-hourly Prediction 01-Jul-2011 to 30-Jun-2017 17 526 3-h 20% 01-Jul-2017 to 30-Jun-2021 5843 3-h 25%

Daily Prediction 01-Jul-2011 to 30-Jun-2019 2915 1-day 20% 01-Jul-2019 to 30-Jun-2021 722 1-day 20%
i7 computer (3.3 GHz speed/32 GB memory) was used. In experimen-
tations carried out, all of the predictive model codes were written in
Python 3.7.5 (Keras and TensorFlow 2.0) libraries [115]. In this study,
a univariate model was developed where the electricity demand was the
only input variable (see Sections 3.2.1 and 3.2.2). The methodology is
provided in Fig. 11.(a).

In detail, the model development phase is described as follows:
9 
• Data preprocessing (normalization and data segregation) was fol-
lowed by direct training of the predictive model using lagged G
training data. Input data dimensions were then reshaped (without
changing the values) to match the predictive model parameters.

• The training data is subdivided as multiple sets of sub-samples.
• A residual block with convolution layer was combined to create

a new network structure to memorize the temporal feature of G
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Fig. 10. For (a) half-hourly, (b) 3-hourly, and (c) daily electricity prediction, the selection of the optimal lag period based on 𝑅𝑀 𝑆 𝐸 (MW), 𝑅𝑅𝑀 𝑆 𝐸 (%) and 𝑟. (Site name:-
Acacia Ridge).
Fig. 11. (a) The schematic of 𝐺 prediction model. (b) Hyperparameter optimization.
variable and further fit in and predict the non-linearity effects
expected in the input 𝐺 data series.
10 
• Adaptive moment estimation (i.e., the Adam algorithm) [116]
was used for network weight adjustments progressively during
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feature analysis (learning rate fix to 0.001; exponential decay ≈
0.9 as the first moment and 0.999 as the second moment) and
rectified linear unit (ReLU) [117] for activation.

• Over-fitting was prevented by using dropout rate, as per earlier
works, [118] was set to be at the end of the dilated convolutions
in the proposed TCN-based model, and after each layers in the
other deep learning models used for comparison.

• During the predictive model training phase, an Early Stopping
(ES) strategy was used to reduce over-fitting problems and the
training time [119]. This ES algorithm also aimed to monitor the
accuracy on the validation dataset and therefore interrupted the
training phase if this metric did not improve after a set number
of epochs being relatively (but not too) large.

• To speed up the performance and enable model convergence we
adopted Keras ReduceLROnPlateau, which was a learning rate
scheduler as a monitoring system. This reduced the learning rate
in case no reduction in the loss on validation data occurred. We
used a threshold of 15 epoch, a decrease factor of 10−1 and delta
= 10−4 in accordance with [120].

In Tables 2a–2b shows details of hyperparameters of the proposed
CN as well as the comparative models using Bayesian hyperparameter
ptimization algorithm (BHPO) [121,122]. By using historical data, the

BHPO evaluated the performance of hyperparameter sets (Fig. 11.(b))
in such a way that a new set of hyper-parameters were selected and
he process was repeated continuously until the global optimal hyper-
arameter was identified [123]. It should be noted that in previous
tudies, the BHPO method has been established as a superior ap-
roach relative to the HPO algorithms like the conventional Grid search
ethod [124]. In contrast to the grid search method, the BHPO method
educes optimal hyperparameters by just using few iterations [125],

and therefore was selected in this research.
In order to quantify the EU, we applied the Monte Carlo (MC)

dropout (MCDO) method. In principle, the MCDO method was able to
pecifically make predictions with low uncertainty using a set dropout
rocedure. When the dropout was enabled during the testing period,
he model can deliver the predictions’ uncertainty by propagating the

weight uncertainty into the output uncertainty. In this study, each of
our model was tested on an independent (test) data repeatedly for 1000
times with the dropout being enabled sufficiently to quantify the EU
alues for 𝐺 prediction.

Similarly, to fully capture EU for predicted 𝐺, we used the NLLas
 loss function. Notably, a traditional deep learning network can op-
imize the weights to minimize mean squared error (MSE) in training
hase but only outputs a single value (𝜇(𝑥)) but does not capture the
redictive uncertainty. The NLL in these developed predictive models
herefore replaced the mean squared error(MSE) metric and therefore
as able to produce two outputs: the mean (�̂�) prediction and the
ariance (�̂�2) of the 𝐺 prediction. The variance (�̂�2) was later utilized
o create the prediction intervals and derive the probabilistic metrics
f 𝐺 forecasts produced using the proposed TCN and comparative
ounterpart models.

3.2.4. TCN model detail structure
TCN model is meticulously designed to capture temporal patterns

n time series forecasting through its architecture and training process.
The model utilizes multiple stacked TCN layers, leveraging dilated
onvolutions to effectively capture both short-term and long-term de-
endencies within the input data. This design choice allows the network
o learn complex temporal patterns across various scales, which is

crucial for accurate forecasting. The parameters such as the number
f filters, kernel size, and dilation rates are deduced using the Bayesian
yperparameter optimization algorithm. Adaptive moment estimation
Adam) algorithm was utilized for model training, Adam algorithm

adjusts the learning rate dynamically to minimize the loss function.
In terms of convergence, the model incorporates an EarlyStopping

allback that halts training if the validation loss does not improve
11 
after 50 epochs, thereby preventing overfitting and conserving com-
utational resources. Additionally, the ReduceLROnPlateau callback
educes the learning rate by a factor of 0.1 if no improvement in vali-
ation loss is observed after 15 epochs, allowing the model to converge
ore smoothly. The choice between probabilistic and deterministic out-
uts further tailors the model’s predictions. When 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙 𝑖𝑠𝑡𝑖𝑐 = 𝑇 𝑟𝑢𝑒,
he model outputs both the mean and variance, which is beneficial
or uncertainty quantification, providing confidence intervals around
redictions. Conversely, 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙 𝑖𝑠𝑡𝑖𝑐 = 𝐹 𝑎𝑙 𝑠𝑒 yields direct forecasts,
uitable for scenarios requiring deterministic predictions.

Regarding parameter settings, the model features 2 hidden layers
f TCN blocks, facilitating the learning of complex features. However,
his depth necessitates a balance to avoid overfitting, particularly if
he dataset is small or noisy. The look-back window of 10 time steps
half-hourly) dictates that the model uses the past 10 time steps to

make future predictions. Choosing the appropriate look-back window
is critical, as it influences the model’s ability to capture significant
patterns without introducing excessive noise.

During training, the model processes the training data through
forward and backward passes, where convolutional filters extract tem-
poral features, and the Adam optimizer updates weights based on
the loss (mean Squared Error) gradient. The learning rate adjustment
mechanism ensures that the model fine-tunes its weights carefully as
it approaches convergence. Overall, the TCN model is designed to effi-
ciently handle sequential data, with its use of dilated convolutions and
skip connections enhancing its ability to capture both local and long-
term patterns. The implemented callbacks support stable and efficient
raining, making the model highly suitable for time series forecasting
asks.

Fig. 12 shows two plots from the training of a TCN model for
𝐺 predictions at ‘‘Acacia Ridge’’. The left plot depicts the training
nd validation loss over epochs, where both losses decrease and sta-
ilize, indicating effective learning (model convergence). The right
lot illustrates the reduction of the learning rate over time, which
s progressively lowered to fine-tune the model. These plots provide
nsights into the model’s training and optimization process.

3.3. Performance metrics

To assess the proposed TCN model’s performance quantitatively, de-
terministic, statistical as well as probabilistic model evaluation metrics
computed with simulated 𝐺 in the independent testing phase are now
introduced.

3.3.1. Deterministic metrics
TCN and benchmark models were evaluated using the following

deterministic metrics, as per earlier studies [73,126,127]:

𝑟 =
∑𝑛

𝑖=1(𝐺
𝑎 − ⟨𝐺𝑎

⟩)(𝐺𝑝 − ⟨𝐺𝑝
⟩)

√

∑𝑛
𝑖=1(𝐺𝑎 − ⟨𝐺𝑎

⟩)2
√

∑𝑛
𝑖=1(𝐺𝑝 − ⟨𝐺𝑝

⟩)2
(14)

where 𝑟 is the correlation coefficient between 𝐺𝑎 and 𝐺𝑝 that represent
actual and predicted electricity demand and ⟨𝐺𝑎

⟩ and ⟨𝐺𝑝
⟩ represent

actual and predicted mean electricity demand and 𝑁 is the test points.

𝑅𝑀 𝑆 𝐸(𝑀 𝑊 ) =
√

√

√

√
1
𝑁

𝑁
∑

𝑖=1
(𝐺𝑝 − 𝐺𝑎)2 (15)

𝑀 𝐴𝐸(𝑀 𝑊 ) = 1
𝑁

𝑁
∑

𝑖=1
|𝐺𝑝 − 𝐺𝑎

| (16)

where MAE is the mean absolute error and RMSE is the root mean
square error to evaluate the model using errors computed for predicted
and actual electricity demand.

𝑅𝑅𝑀 𝑆 𝐸(%) =

√

1
𝑁

∑𝑁
𝑖=1(𝐺𝑝 − 𝐺𝑎)2

⋅ 100 (17)

⟨𝐺𝑎

⟩
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Table 2a
TCN model vs. LSTM, BILSTM, CNNGRU and LSTMCNN models for half-hourly 𝐺 prediction. ReLU = Rectified Linear Units; Adam =
adaptive moment estimation.

Predictive Models Model Hyperparameters Hyperparameter Selection Acacia Ridge Alexandra Headland Zillmere

Filters1 [50, 80, 100, 200] 100 200 80
Filters2 [40, 50, 60, 70, 80] 50 40 100

Dilation rate [1, 2, 4, 6]
Padding [‘causal’]

Activation [‘ReLU’]
Epochs [1000]
Solver [‘adam’]

TCN - proposed model

Batch Size [50]

LSTM units1 [100, 200, 300, 400, 500] 300 100 400
LSTM units2 [20, 30, 40, 50, 60, 70] 20 70 20
LSTM units3 [10, 20, 30, 40, 50] 50 30 10
Activation [‘ReLU’]

Epochs [1000]
Solver [‘adam’]

LSTM

Batch Size [50]

BILSTM units1 [100, 200, 300, 400, 500] 100 300 100
BILSTM units2 [20, 30, 40, 50, 60, 70] 40 70 60
BILSTM units3 [10, 20, 30, 40, 50, 100] 100 50 100

Activation [‘ReLU’]
Epochs [1000]
Solver [‘adam’]

BILSTM

Batch Size [50]

CNN Filter 1 [100, 200, 300, 400, 500] 400 400 100
CNN Filter 2 [20, 30, 40, 50, 60, 70] 50 20 70
GRU units 1 [100, 200, 300, 400, 500] 200 200 100
GRU units 2 [20, 30, 40, 50, 60, 70] 70 60 50
Activation [‘ReLU’]

Epochs [1000]
Solver [‘adam’]

CNNGRU

Batch Size [50]

LSTM units1 [100, 200, 300, 400, 500] 100 200 100
LSTM units2 [20, 30, 40, 50, 60, 70] 50 40 70
CNN Filter 1 [100, 200, 300, 400, 500] 100 300 100
CNN Filter 2 [20, 30, 40, 50, 60, 70] 50 40 30

Activation [‘ReLU’]
Epochs [1000]
Solver [‘adam’]

LSTMCNN

Batch Size [50]
𝐺

d
c
i

𝑅𝑀 𝐴𝐸(%) = 1
𝑁

𝑁
∑

𝑖=1

|𝐺𝑎 − 𝐺𝑝
|

𝐺𝑝 ⋅ 100 (18)

where RRMSE represents relative root mean square error and RMAE
epresents the root mean absolute error. In Eqs. (18)–(17), the model

is evaluated using percentage errors, enabling a direct comparison of
ur model with a model tested elsewhere with different datasets.

𝑊 𝐼 = 1 −
∑𝑁

𝑖=1 (𝐺
𝑎 − 𝐺𝑝)2

∑𝑁
𝑖=1 (|𝐺𝑝 − ⟨𝐺𝑎

⟩| + | (𝐺𝑜 − ⟨𝐺𝑝
⟩|))2

(19)

𝐿𝑀 = 1 −
∑𝑁

𝑖=1 |𝐺
𝑝 − 𝐺𝑎

|

∑𝑁
𝑖=1 |𝐺𝑎 − ⟨𝐺𝑎

⟩|

(20)

𝑁 𝑆 = 1 −
∑𝑁

𝑖=1 (𝐺
𝑎 − 𝐺𝑝)2

∑𝑁
𝑖=1 (𝐺𝑎 − ⟨𝐺𝑎

⟩)2
(21)

where WI is the Willmott’s index, NS is the Nash–Sutcliffe equation and
M is the Legates and McCabe’s index. In Eqs. (19), (20) and (21), a
ormalized and unit-less form of model evaluation is used as a universal

measure of comparing the model in different datasets and geographical
scenarios.

We adopted Global Performance Indicator (GPI) following the study
f [128] which aimed to unify six different metrics.

𝐺 𝑃 𝐼 =
6
∑

𝑗=1
𝛼𝑗 (𝑔𝑗 − 𝑦𝑖𝑗 ) (22)

where 𝑔𝑗 is the median scaled value of 𝑗th metric, 𝑦𝑖,𝑗 takes a scaled
value of 𝑗th metric for 𝑖 model, 𝛼 = −1 for 𝑗 = 4 (𝑟2) and equalled
𝑡ℎ 𝑗 w

12 
1 for the remaining statistical metrics. A relatively large value of the
 𝑃 𝐼 would indicate the best predictive model.

In this study, we also adopted Kling–Gupta Efficiency following the
recommendations of (𝐾 𝐺 𝐸) [129] and the Absolute Percentage Bias
(𝐴𝑃 𝐵; %) following [130] where a coefficient of variation (𝐶 𝑉 ) is used.

𝐾 𝐺 𝐸 = 1 −
√

(𝑟 − 1)2 +
(

⟨𝐺𝑝
⟩

⟨𝐺𝑎
⟩

− 1
)2

+
(𝐶 𝑉𝑝
𝐶 𝑉𝑎

)2

(23)

APB(%) =
|

|

|

|

|

∑𝑛
𝑖=1 (𝐺

𝑎 − 𝐺𝑝)
∑𝑛

𝑖=1 𝐺𝑎

|

|

|

|

|

⋅ 100 (24)

where 𝑟 was the correlation coefficient and 𝐶 𝑉 was the coefficient of
variation.

In order to evaluate the performance of the TCN model statistically,
we used the Diebold–Mariano (DM) test, in which a model generating
the DM statistic of >0 would be superior [131–133].

3.3.2. Probabilistic metrics
A set of specific evaluation indicators for the quality of Prediction

Interval (𝑃 𝐼) was applied in this problem of electricity demand predic-
tion. The value of 𝑃 𝐼 represents an interval consisting of an upper and a
lower bound covering a prescribed probability 100(1 −𝛼) [134]. The pre-
iction interval nominal confidence PINC includes 𝛼 that represents the
onfidence interval so from the perspective of reliability and sharpness,
t is essential to evaluate PI quality holistically. As a result, quality 𝑃 𝐼s
ill be highly reliable and sharp [135]. To determine the reliability of
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Table 2b
The architecture of ATTLSTM, CLSTMED, DNN, RNN and NGBOOST models used to benchmark the proposed TCN model.

Predictive Models Model Hyperparameters Hyperparameter Selection Acacia Ridge Alexandra Headland Zillmere

LSTM units1 [200, 150, 100, 50] 150 50 100
LSTM units2 [100, 50, 40, 30] 100 100 30
LSTM units3 [100, 50, 40, 30] 50 100 40
Activation [‘relu’]

Epochs [1000]
Solver [‘adam’]

ATTLSTM

Batch Size [50]

LSTM units1 [200, 150, 100, 50] 150 100 150
LSTM units2 [100, 50, 40, 30] 100 100 30
CNN Filter 1 [100, 50, 40, 30] 30 50 100
CNN Filter 2 [100, 50, 40, 30] 40 30 50

Activation [‘relu’]
Epochs [1000]
Solver [‘adam’]

CLSTMED

Batch Size [50]

Hidden Neuron 1 [200, 150, 100, 50] 150 200 50
Hidden Neuron 2 [100, 50, 40, 30] 100 40 100
Hidden Neuron 3 [100, 50, 40, 30] 40 30 100

Activation [‘relu’]
Epochs [1000]
Solver [‘adam’]

DNN

Batch Size [50]

RNN units1 [200, 150, 100, 50] 50 200 150
RNN units2 [100, 50, 40, 30] 100 50 30

Kernel_initializer glorot_uniform’
Dropout [0.1, 0.2, 0.3] 0.1 0.1 0.2

Activation [‘relu’]
Epochs [1000]
Solver [‘adam’]

RNN

Batch Size [50]

tree learner Decision Tree’
criterion [‘friedman_mse’]

min_samples_split [1, 2, 5, 10, 15] 2 5 5NGBOOST

max_depth [10, 20, 30, 40, 50] 20 10 40
W

W

T
d
d
A
C
b

m

𝑃 𝐼s, we refer to the prediction interval coverage probability PICP that
indicates which targets fall within the 𝑃 𝐼s:

𝑃 𝐼 𝐶 𝑃 = 1
𝑁

𝑁
∑

𝑖=1
𝑐𝑖 (25)

where 𝑖𝑓 𝐿 (

𝐺𝑖
)

< 𝐺𝑖 < 𝑈 (𝐺 𝑖) → 𝑐𝑖 = 1; 𝑒𝑙 𝑠𝑒 → 𝑐𝑖 = 0. 𝑈 (𝐺𝑖) and 𝐿(𝐺𝑖)
represent respectively the upper and lower bounds of electricity de-
mand PIs corresponding to the 𝑖th sample and N is the number of test
data.

Studies have shown, however, that PICP does not provide sufficient
nformation about 𝑃 𝐼 reliability [136]. Thus, the average coverage
rror (ACE) utilized to quantify reliability is:
𝐴𝐶 𝐸 = 𝑃 𝐼 𝐶 𝑃 − 𝑃 𝐼 𝑁 𝐶 (26)

It is noteworthy that when the 𝐴𝐶 𝐸 value of a 𝑃 𝐼 is near zero, it is
onsidered to be more reliable and of higher quality [137].

Furthermore, even when theirPICP values are satisfactory, wide PIs
re still meaningless as long as the sharpness is low and therefore they
ive little information about the variation of the target. Therefore, as a
easure of sharpness, the normalized mean prediction interval width
PINAW) [138] is commonly used and can be defined as follows:

𝑃 𝐼 𝑁 𝐴𝑊 = 1
𝑁 ∗ 𝑅

( 𝑁
∑

𝑖=1

(

𝑈
(

𝐺𝑖
)

− 𝐿
(

𝐺𝑖
))

)

(27)

where R = range of the target. In addition to the PINAW metrics
this study also utilizes the e average relative interval length (ARIL) as
other sharpness measurement metrics. A smaller ARIL value indicates a
narrower band of predicted uncertainty. Therefore, the lower the value,
the lower the model uncertainty [139]. The ARIL can be defined as:

𝐴𝑅𝐼 𝐿 = 1
𝑁
∑

(

𝑈
(

𝐺𝑖
)

− 𝐿
(

𝐺𝑖
))

(28)

𝑁 𝑖=1 𝐺𝑜𝑏𝑠

,𝑖
m
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where 𝐺𝑜𝑏𝑠
,𝑖 is the 𝑖th observed value (here, actual electricity demand G

at the 𝑖th time step).
In addition, we evaluated the quality and sharpness of the PIs using

inkler score (WS) [140], defined as:

𝑊 𝑆 =

⎧

⎪

⎨

⎪

⎩

𝛥𝑖 𝐿
(

𝐺𝑖
)

≤ 𝑦𝑖 ≤ 𝑈
(

𝐺𝑖
)

𝛥𝑖 + 2 (𝐿 (

𝐺𝑖
)

− 𝑦𝑖
)

∕𝛼 𝑦𝑖 < 𝐿 (

𝐺𝑖
)

𝛥𝑖 + 2 (𝑦𝑖 − 𝑈
(

𝐺𝑖
))

∕𝛼 𝑦𝑡 > 𝑈 (

𝐺𝑖
)

(29)

where 𝛥𝑖 = 𝑈 (𝐺𝑖) − 𝐿(𝐺𝑖) is the PI width at the 𝑖th time step. A lower
S is preferred when constructing PIs.

4. Results

Here, we evaluate the results obtained from the proposed TCN-
based model, as well as standalone DLs (BILSTM, DNN, LSTM, RNN), as
well as hybrid DLs (ATTLSTM, CLSTMED, CNNGRU, and LSTMCNN).

hese model evaluations are carried out after predicting the electricity
emand (𝐺) at three forecast horizons of half-hourly, three-hourly and
aily time-steps cross-validated for three diverse sites (Acacia Ridge,
lexandra Head and Zillmere) in South-east Queensland, Australia.
onsidering all performance metrics, the TCN model is significantly
etter than the other methods.

Using conventional metrics such as r, RMSE, andMAE, we show in
Table 3 how the proposed TCN compares with comparative models. In
predicting 𝐺 values, the proposed TCN model registered the highest

agnitude of r at all three study sites. Interestingly, the Acacia Ridge
study site recorded the same magnitude of 𝑟 ≈ 0.965 for TCN as well
as the RNN model for half-hourly step. As a result, the TCN model also
achieved the lowest error values at all three sites and for all three time
intervals.

This suggests that TCN is superior to standalone DL and hybrid DL
odels yielding high r/low RMSE/MAE. The CLSTMED, compared with
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Fig. 12. TCN model convergence and the learning rate reduction plot for Acacia Ridge sub-station during training, where an epoch refers to one complete pass through the entire
training dataset. During each epoch, the model processes every training sample and adjusts its internal parameters (weights and biases) to minimize the loss Mean Squared Error
function.
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l
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TCN, yielded 𝑟 ≈ 0.962, 𝑅𝑀 𝑆 𝐸 ≈ 0.515, 𝑀 𝐴𝐸 ≈ 0.387, whereas the
LSTMCNN model generated 𝑟 ≈ 0.939, 𝑅𝑀 𝑆 𝐸 ≈ 3.852, 𝑀 𝐴𝐸 ≈ 2.817
and the LSTM model resulted in 𝑟 ≈ 0.893, 𝑅𝑀 𝑆 𝐸 ≈ 34.197, 𝑀 𝐴𝐸 ≈
21.309 for the half-hourly, three-hourly and daily 𝐺 prediction steps,
respectively for Acacia Ridge study site.

Based on Table 3, the TCN-based model registered highest r and
owest RMSE and MAE. However, DL hybrid models like CLSTMED,
STMCNN and NGBOOST, as well as probabilistic-based natural gradi-
nt boosting models, have also been shown to be good predictions of

values for all of the tested time intervals at all of the study sites.
evertheless, based on the r, RMSE, andMAE values alone, it may not
rovide the whole picture of its efficacy in predicting the electricity
emand values, and therefore, we have also utilized the other model
valuation criteria.
 A

14 
We assessed the efficacy of TCN model based on WI, NS and LM
(Table 4) that ideally takes a value of unity for a perfect model. Com-
ared with the TCN-based model, the magnitude of WI,NS and LM were
ower for all of the DL, as well as the hybrid models at all prediction
ime intervals. In other words, the TCN’s prediction accuracy is consid-
rably higher. In order to evaluate predictive model’s performance over
eographically diverse study sites, key relative percentage measures
uch as the RRMSE (%) and the RMAE (%) are shown in Table 5.

Consistent with WI, NS and LM, the lowest value of RRMSE and
RMAE was achieved for the TCN model with 𝑅𝑅𝑀 𝑆 𝐸 ≈ 5.336%/
𝑅𝑀 𝐴𝐸 ≈ 4.275%, 𝑅𝑅𝑀 𝑆 𝐸 ≈ 6.684%/ 𝑅𝑀 𝐴𝐸 ≈ 5.502% and
𝑅𝑅𝑀 𝑆 𝐸 ≈ 7.547%/ 𝑅𝑀 𝐴𝐸 ≈ 5.243% at half hourly, three hourly
nd daily prediction, respectively for Acacia Ridge study site. A sim-
lar trend was consistently demonstrated by this objective model at
lexandra Head and Zillmere study sites.
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Table 3
Using Eqs. (14)–(16), we evaluate TCN vs. benchmark models via deterministic metrics: 𝑟, 𝑅𝑀 𝑆 𝐸, and 𝑀 𝐴𝐸. Boldface indicates the best model according to performance metrics

Predictive Models Prediction Time-Step Acacia Ridge Alexandra Head Zillmere

𝑟 𝑅𝑀 𝑆 𝐸 (MW) 𝑀 𝐴𝐸 (MW) 𝑟 𝑅𝑀 𝑆 𝐸 (MW) 𝑀 𝐴𝐸 (MW) 𝑟 𝑅𝑀 𝑆 𝐸 (MW) 𝑀 𝐴𝐸 (MW)

TCN
Half-hourly 0.965 0.494 0.369 0.952 1.800 1.388 0.952 0.943 0.588
3-hourly 0.942 3.736 2.766 0.940 11.672 8.363 0.890 8.541 5.856
Daily 0.899 33.204 21.035 0.893 80.531 59.420 0.745 52.331 39.593

ATTLSTM
Half-hourly 0.945 0.618 0.479 0.899 3.057 2.077 0.917 1.232 0.855
3-hourly 0.919 4.427 3.184 0.925 13.071 9.908 0.888 8.647 5.931
Daily 0.825 43.780 29.271 0.866 90.483 69.923 0.722 54.431 42.036

BILSTM
Half-hourly 0.941 0.641 0.500 0.905 2.524 1.991 0.922 1.256 0.911
3-hourly 0.931 4.090 2.942 0.922 13.309 10.273 0.885 8.745 6.168
Daily 0.845 42.328 24.473 0.811 107.335 85.123 0.715 55.258 40.833

CLSTMED
Half-hourly 0.962 0.515 0.387 0.900 2.597 2.029 0.940 1.104 0.781
3-hourly 0.935 3.979 2.896 0.934 12.235 9.011 0.887 8.655 6.149
Daily 0.874 37.192 23.807 0.880 85.505 65.226 0.734 53.425 40.203

CNNGRU
Half-hourly 0.946 0.617 0.476 0.903 2.552 1.991 0.919 1.281 0.920
3-hourly 0.933 4.037 2.906 0.916 13.779 10.297 0.844 10.189 7.150
Daily 0.828 43.329 29.199 0.867 90.147 71.224 0.729 53.972 40.531

DNN
Half-hourly 0.936 0.670 0.522 0.913 2.423 1.935 0.920 1.272 0.932
3-hourly 0.834 6.341 4.532 0.918 13.686 10.066 0.869 9.323 6.519
Daily 0.794 48.813 30.173 0.688 137.862 108.908 0.690 57.679 42.575

LSTMCNN
Half-hourly 0.950 0.590 0.457 0.899 2.598 2.061 0.933 1.165 0.835
3-hourly 0.939 3.852 2.817 0.927 12.906 9.718 0.888 8.626 6.103
Daily 0.858 39.408 25.025 0.868 89.633 69.277 0.731 53.749 40.518

LSTM
Half-hourly 0.950 0.495 0.371 0.938 2.032 1.612 0.948 1.028 0.716
3-hourly 0.934 3.997 2.899 0.914 14.008 10.519 0.885 8.757 6.288
Daily 0.893 34.197 21.309 0.893 80.548 59.354 0.743 52.539 39.551

NGBOOST
Half-hourly 0.958 0.540 0.391 0.938 2.047 1.680 0.950 1.004 0.726
3-hourly 0.914 4.571 3.545 0.823 20.051 12.864 0.821 10.896 8.078
Daily 0.873 37.259 24.115 0.871 88.748 67.297 0.731 53.695 40.255

RNN
Half-hourly 0.965 0.498 0.374 0.935 2.446 1.642 0.885 1.455 1.048
3-hourly 0.920 4.392 3.152 0.928 12.819 9.405 0.868 9.376 6.621
Daily 0.889 34.782 22.277 0.886 83.486 61.858 0.739 52.926 40.103
h
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According to Table 3, 4 and 5, both the dimensional and non-
dimensional metrics corroborate the suitability of the proposed TCN
model for 𝐺 prediction. Additionally, to validate the proposed meth-
ods’ predictive skill for 𝐺 prediction, the 𝐴𝑃 𝐵 and the 𝐾 𝐺 𝐸 metrics
were also used. These results, as per Table 6, advocate TCN model as
consistently outperforming DL models with varying magnitudes, both
tandalone and hybrid, such that the 𝐾 𝐺 𝐸 was higher and the 𝐴𝑃 𝐵

was lower for all prediction time intervals at all sites. Accordingly, the
proposed TCN model provides a high level of accuracy in 𝐺 prediction
tasks.

To assess the capability of the standalone DL as well as the hybrid
models for 𝐺 prediction in a test period, further analyses of the absolute
prediction error (|𝑃 𝐸|) was conducted. Note that |𝑃 𝐸| = |𝑝𝑟𝑒𝑑 𝑖𝑐 𝑡𝑒𝑑 −
𝑐 𝑡𝑢𝑎𝑙G| so ideally, the |𝑃 𝐸| should be 0 for the best model. Also, on

an overall basis, this metric is likely to have a higher frequency of |𝑃 𝐸|

values that are closer to 0.
For the Alexandra Headland study site, Fig. 13 plots the frequency

distribution of |𝑃 𝐸| computed in a number of error brackets.
In general, for the half-hourly 𝐺 prediction interval, 20%–26% of

|𝑃 𝐸| for all models lie in less than 0.05𝑀 𝑊 error bar except for the
case of ATTLSTM, BILSTM, NGBOOST and RNN where they are 18%,
18%, 17% and 19%, respectively. Importantly, the TCN model has |𝑃 𝐸|

(26%) in the first bin (|𝑃 𝐸| < 0.05𝑀 𝑊 ) whereas the hybrid LSTMCNN
as 23%, the CLSTMED and CNNGRU have 21% and the standalone DNN
and LSTM models have 20%. Similarly for the three-hourly and daily

prediction intervals, we saw about 38% and 39% of |𝑃 𝐸| values
registered for the case of the proposed TCN model in less than 6.0𝑀 𝑊
nd 40.0𝑀 𝑊 , respectively. These results validate the TCN model for

prediction at short- (half-hourly, 3-hourly) and long-term (daily)
eriods.

We now examine 𝐺 𝑃 𝐼 as a rank metric where any model with high-
est 𝐺 𝑃 𝐼 is the most accurate. As per Fig. 14, the TCN-based model has
 p

15 
the best performance with 𝐺 𝑃 𝐼 ≈ 1.592, ≈ 1.388, ≈ 0.666 for the half-
ourly, three-hourly and the daily prediction horizons for Alexandra
eadland. Likewise, for Acacia ridge study site, 𝐺 𝑃 𝐼 ≈ 3.1308 (half-
ourly), ≈ 1.104 (three-hourly, ≈ 0.8837 (daily), and for the Zillmere
tudy site, it was 𝐺 𝑃 𝐼 ≈ 7.6623,≈ 1.7132,≈ 0.1866, respectively. These
esults show the TCN as best model with a high 𝐺 𝑃 𝐼 value compared

to standalone/hybrid DL models.
To accord with Section 3.3.1, we conducted one-sided DM tests to

determine statistically the model performance. Table 7 shows results
ased on the DM test. The objective model performs better than the

comparative model when it has a positive DM value, and the lower the
DM value, the better it performs. In accordance with Table 7, the DM
statistic value is always positive for the case of the TCN model tested
t all time intervals. Also, this would demonstrate that the TCN model

predicted the 𝐺 value significantly better than the other models.
As per Section 3.3.2 we now quantify the uncertainties inherent in

𝐺 data (i.e., aleatoric, 𝐴𝑈) by utilizing a maximum likelihood method.
The accuracy of any DL model could also dependent on actual amount
of data available, thus creating epistemic uncertainty (𝐸 𝑈) which in
this study are captured by a Monte Carlo Dropout (MCDO) method.
Fig. 15 shows the relationship between the uncertainties and absolute
value of prediction error (|𝑃 𝐸|) for a DL as well as hybrid models
emulated in the testing phase for Alexandra Headlands study site.

Evidently, Fig. 15 shows that the total uncertainty as well as the
values of 𝐴𝑈 and 𝐸 𝑈 are very low for the TCN model compared
with the other comparative models used in this 𝐺 prediction problem.
Additionally, we investigate the relation between Root Mean Square
Error (𝑅𝑀 𝑆 𝐸 , 𝑀 𝑊 ) and corresponding predicted total uncertainty
(𝑇 𝑈) (sum of 𝐴𝑈 and 𝐸 𝑈) in Fig. 16) presented for three time intervals.

otably, the results show that the BILSTM, CNNGRU, LSTMCNN and
he NGBOOST models have registered large total uncertainties in 𝐺
rediction.
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Table 4
Evaluation of TCN vs. benchmark models using 𝑊 𝐼 , 𝑁 𝑆, and 𝐿𝑀 . The best model based on performance metrics is boldfaced.

Prediction Models Prediction Time-Steps Acacia Ridge Alexandra Head Zillmere

𝑊 𝐼 𝐿𝑀 𝑁 𝑆 𝑊 𝐼 𝐿𝑀 𝑁 𝑆 𝑊 𝐼 𝐿𝑀 𝑁 𝑆

TCN
Half-hourly 0.991 0.832 0.965 0.988 0.793 0.949 0.988 0.830 0.950
3- hourly 0.985 0.786 0.942 0.984 0.775 0.933 0.970 0.702 0.873
Daily 0.973 0.755 0.888 0.972 0.714 0.888 0.924 0.454 0.670

ATTLSTM
Half-hourly 0.986 0.783 0.945 0.972 0.719 0.882 0.979 0.757 0.919
3- hourly 0.979 0.748 0.914 0.980 0.729 0.913 0.970 0.704 0.874
Daily 0.951 0.647 0.795 0.960 0.615 0.817 0.900 0.290 0.447

BILSTM
Half-hourly 0.985 0.769 0.938 0.975 0.699 0.895 0.979 0.745 0.913
3- hourly 0.982 0.768 0.928 0.978 0.716 0.907 0.969 0.691 0.874
Daily 0.959 0.730 0.835 0.940 0.492 0.698 0.914 0.429 0.621

CLSTMED
Half-hourly 0.990 0.825 0.962 0.974 0.691 0.891 0.984 0.788 0.937
3- hourly 0.983 0.771 0.932 0.982 0.761 0.927 0.970 0.692 0.875
Daily 0.967 0.734 0.867 0.966 0.656 0.848 0.921 0.449 0.661

CNNGRU
Half-hourly 0.986 0.785 0.946 0.975 0.704 0.897 0.978 0.741 0.908
3- hourly 0.983 0.774 0.931 0.978 0.724 0.907 0.954 0.630 0.794
Daily 0.945 0.590 0.723 0.961 0.611 0.821 0.919 0.441 0.650

DNN
Half-hourly 0.983 0.755 0.931 0.976 0.696 0.900 0.979 0.745 0.916
3- hourly 0.951 0.596 0.783 0.978 0.731 0.906 0.965 0.675 0.854
Daily 0.940 0.629 0.738 0.886 0.204 0.281 0.895 0.372 0.483

LSTMCNN
Half-hourly 0.987 0.787 0.948 0.973 0.685 0.891 0.983 0.774 0.932
3- hourly 0.984 0.782 0.938 0.980 0.736 0.916 0.970 0.693 0.874
Daily 0.963 0.724 0.854 0.963 0.629 0.839 0.913 0.412 0.591

LSTM
Half-hourly 0.991 0.831 0.965 0.984 0.753 0.933 0.987 0.806 0.947
3- hourly 0.983 0.773 0.931 0.976 0.710 0.896 0.969 0.684 0.870
Daily 0.972 0.761 0.888 0.971 0.701 0.878 0.922 0.452 0.655

NGBOOST
Half-hourly 0.989 0.812 0.953 0.982 0.716 0.917 0.987 0.792 0.943
3- hourly 0.976 0.702 0.897 0.957 0.686 0.845 0.939 0.493 0.672
Daily 0.966 0.720 0.858 0.963 0.649 0.833 0.920 0.447 0.658

RNN
Half-hourly 0.991 0.827 0.964 0.983 0.779 0.926 0.969 0.695 0.877
3- hourly 0.979 0.752 0.917 0.981 0.758 0.923 0.963 0.653 0.840
Daily 0.971 0.749 0.883 0.969 0.692 0.869 0.924 0.462 0.680
Table 5
Comparing the TCN with benchmark models using 𝑅𝑅𝑀 𝑆 𝐸 and 𝑅𝑀 𝐴𝐸 (%) with best model indicated in boldface.

Prediction Models Prediction Time-Steps Acacia Ridge Alexandra Head Zillmere

𝑅𝑅𝑀 𝑆 𝐸 𝑅𝑀 𝐴𝐸 𝑅𝑅𝑀 𝑆 𝐸 𝑅𝑀 𝐴𝐸 𝑅𝑅𝑀 𝑆 𝐸 𝑅𝑀 𝐴𝐸

TCN
Half-hourly 5.336 4.275 6.676 5.236 6.485 4.273
3-hourly 6.684 5.502 7.291 5.314 9.900 7.038
Daily 7.547 5.243 6.320 4.720 7.517 5.569

ATTLSTM
Half-hourly 6.658 5.628 10.099 8.115 8.428 6.284
3-hourly 7.959 6.312 8.034 6.415 9.948 7.167
Daily 10.062 7.373 7.011 5.614 7.782 5.927

BILSTM
Half-hourly 6.873 5.909 9.237 7.431 8.682 6.588
3-hourly 7.377 5.841 8.255 6.776 10.052 7.690
Daily 10.261 6.559 8.172 6.849 8.090 5.860

CLSTMED
Half-hourly 5.582 4.510 9.442 7.461 7.604 5.608
3-hourly 7.171 5.743 7.640 5.829 9.837 7.305
Daily 8.303 5.792 6.668 5.172 7.643 5.627

CNNGRU
Half-hourly 6.647 5.499 9.227 7.283 8.862 6.540
3-hourly 7.257 6.007 8.559 6.724 11.635 8.416
Daily 9.738 7.261 6.936 5.674 7.741 5.685

DNN
Half-hourly 7.237 6.067 8.869 7.306 8.742 6.682
3-hourly 11.606 9.151 8.523 6.405 10.694 7.812
Daily 11.705 8.282 10.318 8.629 8.332 5.981

LSTMCNN
Half-hourly 6.404 5.327 9.616 7.632 8.020 6.040
3-hourly 6.904 6.910 8.048 6.332 9.888 7.309
Daily 8.873 6.202 6.971 5.585 7.721 5.681

LSTM
Half-hourly 5.373 4.329 7.456 6.199 7.046 5.157
3-hourly 7.229 5.772 8.688 6.797 10.046 7.521
Daily 7.680 5.287 6.330 4.722 7.552 5.562

NGBOOST
Half-hourly 5.830 4.688 7.447 6.907 6.899 5.231
3-hourly 8.207 7.101 12.648 224.312 12.517 9.394
Daily 8.493 6.161 6.875 5.303 7.671 5.627

RNN
Half-hourly 5.407 4.350 8.052 5.588 9.913 7.396
3-hourly 7.920 6.356 7.940 5.913 10.878 8.166
Daily 7.805 5.460 6.590 4.898 7.566 5.609
16 
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Table 6
Comparing the TCN with benchmark models based on relative APB (%) and KGE values, as per Eqs. (23) and (24). The best model as measured
by performance metrics is boldfaced.

Prediction Models Prediction Time-Steps Acacia Ridge Alexandra Head Zillmere

𝐴𝑃 𝐵 𝐾 𝐺 𝐸 𝐴𝑃 𝐵 𝐾 𝐺 𝐸 𝐴𝑃 𝐵 𝐾 𝐺 𝐸

TCN
Half-hourly 3.988 0.982 5.148 0.960 4.045 0.971
3- hourly 4.949 0.969 5.225 0.934 6.788 0.904
Daily 4.781 0.924 4.664 0.940 5.687 0.806

ATTLSTM
Half-hourly 5.160 0.971 6.862 0.904 5.853 0.958
3-hourly 5.724 0.948 6.090 0.912 6.824 0.917
Daily 6.728 0.878 5.418 0.822 6.010 0.568

BILSTM
Half-hourly 5.356 0.957 7.288 0.926 6.296 0.934
3-hourly 5.307 0.959 6.372 0.900 7.090 0.926
Daily 5.933 0.915 6.481 0.726 5.978 0.788

CLSTMED
Half-hourly 4.195 0.981 7.376 0.929 5.382 0.964
3-hourly 5.219 0.960 5.627 0.936 6.989 0.921
Daily 5.315 0.931 5.086 0.860 5.751 0.807

CNNGRU
Half-hourly 5.134 0.972 7.200 0.934 6.365 0.922
3-hourly 5.223 0.964 6.397 0.928 8.164 0.832
Daily 6.562 0.718 5.480 0.831 5.813 0.801

DNN
Half-hourly 5.639 0.951 7.084 0.914 6.403 0.954
3- hourly 8.295 0.834 6.269 0.921 7.478 0.911
Daily 7.235 0.833 8.151 0.473 6.150 0.665

LSTMCNN
Half-hourly 4.959 0.965 7.627 0.934 5.751 0.965
3-hourly 5.049 0.967 6.060 0.917 6.996 0.915
Daily 5.635 0.927 5.387 0.877 5.820 0.727

LSTM
Half-hourly 4.030 0.982 5.915 0.938 4.910 0.971
3-hourly 5.243 0.962 6.524 0.895 7.213 0.914
Daily 4.786 0.941 4.665 0.910 5.685 0.790

NGBOOST
Half-hourly 4.214 0.937 6.113 0.839 4.994 0.924
3-hourly 6.364 0.899 8.114 0.898 9.281 0.637
Daily 5.497 0.914 5.214 0.850 5.751 0.808

RNN
Half-hourly 4.061 0.980 5.405 0.926 7.135 0.932
3-hourly 5.685 0.955 5.825 0.949 7.681 0.878
Daily 4.999 0.936 4.883 0.910 5.733 0.825
Table 7
Statistical evaluation of TCN model using the DM test statistics [131–133]. (a) Half-hourly time interval, (b) 3-hourly time interval, (c) daily interval.
Positive results mean the rows outperform the columns; negative results mean the columns outperform the rows. The best model is boldfaced.

Predictive Model TCN ATTLSTM BILSTM CLSTMED CNNGRU DNN LSTMCNN LSTM NGBOOST RNN

TCN 44.2945 48.7922 50.5816 50.7311 48.2189 39.9685 26.263 13.2494 49.2256
ATTLSTM −15.3183 −5.8697 −12.771 −19.3286 −2.3568 −52.1467 −35.6315 −15.8704
BILSTM 18.7494 4.9653 −18.757 4.8775 −48.8626 −25.3021 −10.1799

CLSTMED −6.8644 −40.1081 0.0982 −49.4376 −26.8039 −36.763
CNNGRU −15.3963 2.5347 −55.6926 −30.8764 −9.6505

DNN 15.1249 −37.6455 −18.1757 44.1264
LSTMCNN −26.9283 −18.0497 −10.0644

LSTM 1.1029 41.8902
NGBOOST 20.9187

Predictive Model TCN ATTLSTM BILSTM CLSTMED CNNGRU DNN LSTMCNN LSTM NGBOOST RNN

TCN 9.8657 15.6362 7.0274 10.8369 10.9877 10.4793 13.4972 10.0439 9.1939
ATTLSTM 2.4529 −7.0587 4.9548 2.8887 −1.2271 4.8235 9.3164 −1.934
BILSTM −11.8781 2.9575 2.4113 −5.0138 5.0699 8.8253 −4.7182

CLSTMED 8.8174 7.5933 6.1837 9.781 9.6861 5.5906
CNNGRU −0.329 −4.3733 0.9401 8.9788 −5.3881

DNN −7.2157 9.1168 7.7455 −6.5546
LSTMCNN 11.4364 8.8694 −1.0993

LSTM 7.5866 −9.2594
NGBOOST −9.0346

Predictive Model TCN ATTLSTM BILSTM CLSTMED CNNGRU DNN LSTMCNN LSTM NGBOOST RNN

TCN 2.306 1.9937 4.639 3.5506 3.8091 2.3832 3.7991 4.5595 3.4825
ATTLSTM −1.0582 2.8873 1.8327 0.4815 0.0246 2.3359 4.1636 2.918
BILSTM 3.7438 2.5287 1.6849 1.7008 2.9463 4.4622 3.2619

CLSTMED −1.4373 −2.7888 −3.3068 −1.5113 4.2398 2.551
CNNGRU −1.5848 −1.3986 0.6958 4.0839 2.6307

DNN −0.241 2.1957 4.2164 2.9434
LSTMCNN 2.5048 4.6303 3.4161

LSTM 4.3489 3.0493
NGBOOST −4.5573
17 
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Fig. 13. Cumulative frequency of absolute prediction error(|𝑃 𝐸|) for Alexandra Headland study site. Each error bracket is represented by a bar that indicates the percentage of
errors accumulated. Please refer to Table 2 for the names of the models.
This large uncertainty appears to be a result of epistemic uncer-
tainty, as illustrated in Fig. 15, indicating that the model cannot capture
𝐺 time series patterns during its training phase. With this improvement,
we can predict 𝐺 more accurately than existing machine learning and
deep learning models. In the highly competitive current electricity
market, even small changes in accuracy of 𝐺 predictions affect ta
company’s operating costs and risk strategies, making the proposed
18 
method a valuable addition to the proposed method, which is very
useful for companies in the electricity market.

Furthermore, we have adopted the evaluation metrics for the pro-
posed model, the PICP, the PINAW, the WS, the ARIL, and the ACE
evaluation metrics (see Section 3.3.2) as well as the prediction interval
(𝑃 𝐼) based on 95% confidence and 𝛼 = 0.05 significance level. Table 8
provides the prediction results using probabilistic metrics
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Fig. 13. (continued).
Fig. 14. Global performance indicator (𝐺 𝑃 𝐼) for TCN vs. benchmark models. (a) Acacia Ridge, (b) Zillmere, and (c) Alexandra Headland. See Table 2 for model names.
In accordance with interpret Table 8, the lowest 𝑃 𝐼 𝑁 𝐴𝑊 and the
highest 𝑃 𝐼 𝐶 𝑃 computed at the nominated confidence interval of 95%
is expected for the best predictive model. Evidently, for all of the
proposed study sites, the 𝑃 𝐼 𝐶 𝑃 values were considerably greater at
19 
the 95% interval which indicates that all of the standalone and hybrid
models were significantly capable of capturing the observed 𝐺 values.
A primary reason for this could be attributable to the 𝐺 time series
dataset that were relatively stable. Furthermore, the width of the 𝑃 𝐼
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Fig. 15. Scatter-plot showing the relationship between aleatoric (𝐴𝑈) and epistemic (𝐸 𝑈) uncertainties including prediction error (|𝑃 𝐸|) distribution for short-term periods (a)
Half-hourly and (b) 3-hourly as well as long-term period (c) daily electricity demand prediction intervals. (test site: Alexandra Headland).
(PINAW ) is greater if the PICP exceeds the preset PINC. Both the PICP
and the PINAW metrics behave in a somewhat contrariwise way. This
is because, as the generated 𝑃 𝐼 width is increased, the 𝑃 𝐼 𝐶 𝑃 values
would also increase.

Thus, the simulation results provided in Table 8 reaffirmed the
finding that some predictive models actually had a higher coverage
20 
probability, albeit at a wider interval range. At the Acacia Ridge study
site, we note that the DNN model tested at half hourly 𝐺 prediction
produced 𝑃 𝐼 𝐶 𝑃 ≈ 1.0 with 𝑃 𝐼 𝑁 𝐴𝑊 ≈ 0.951, and a likewise result was
obtained at the Alexandra Headland for LSTM model tested at three-
hourly 𝐺 prediction resulting in 𝑃 𝐼 𝐶 𝑃 ≈ 0.999 with 𝑃 𝐼 𝑁 𝐴𝑊 ≈ 0.343.
For Zillmere study site, RNN for 𝐺 prediction produced 𝑃 𝐼 𝐶 𝑃 ≈ 0.825
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Fig. 15. (continued).
Table 8
Probabilistic metrics of TCN using relative PICP and PINAW values, as per Eqs. (25) and (27). It is expected that the most accurate model
(boldface) will record the lowest PINAW and the highest 𝑃 𝐼 𝐶 𝑃 value.

Predictive Models Prediction Time-Step Acacia Ridge Alexandra Head Zillmere

PICP PINAW PICP PINAW PICP PINAW

Half-hourly 0.990 0.937 0.996 0.250 0.971 0.031
3- hourly 0.963 0.185 0.985 0.243 0.898 0.160TCN
Daily 0.924 4.781 0.940 4.664 0.806 5.687

Half-hourly 0.986 0.971 0.989 0.336 0.961 0.040
3- hourly 0.964 0.227 0.988 0.300 0.944 0.208ATTLSTM
Daily 0.878 6.728 0.822 5.418 0.568 6.010

Half-hourly 0.970 0.957 0.997 0.330 0.925 0.158
3- hourly 0.958 0.196 0.989 0.284 0.940 0.205BILSTM
Daily 0.915 5.933 0.726 6.481 0.788 5.978

Half-hourly 0.996 0.981 0.998 0.346 0.929 0.127
3- hourly 0.959 0.192 0.991 0.292 0.934 0.194CLSTMED
Daily 0.931 5.315 0.860 5.086 0.807 5.751

Half-hourly 0.992 0.972 0.995 0.320 0.940 0.170
3- hourly 0.959 0.193 0.974 0.254 0.918 0.209CNNGRU
Daily 0.718 6.562 0.831 5.480 0.801 5.813

Half-hourly 1.000 0.951 1.000 0.396 0.952 0.161
3- hourly 0.982 0.379 0.984 0.295 0.956 0.236DNN
Daily 0.833 7.235 0.473 8.151 0.665 6.150

Half-hourly 0.997 0.965 0.995 0.278 0.914 0.141
3- hourly 0.957 0.195 0.995 0.410 0.937 0.194LSTMCNN
Daily 0.927 5.635 0.877 5.387 0.727 5.820

Half-hourly 0.995 0.982 0.999 0.343 0.943 0.121
3- hourly 0.960 0.195 0.995 0.390 0.954 0.219LSTM
Daily 0.941 4.786 0.910 4.665 0.790 5.685

Half-hourly 0.970 0.917 at a 0.401 1.000 0.296
3- hourly 0.996 0.316 0.935 0.258 0.988 0.335NGBOOST
Daily 0.914 5.497 0.850 5.214 0.808 5.751

Half-hourly 0.992 0.980 0.999 0.323 0.972 0.052
3- hourly 0.972 0.236 0.988 0.288 0.930 0.205RNN
Daily 0.936 4.999 0.910 4.883 0.825 5.733
with 𝑃 𝐼 𝑁 𝐴𝑊 ≈ 5.733. Nonetheless, in comparison with the other
standalone as well as hybrid models, the newly proposed TCN model
produced the narrowest PI values for all of the study sites tested at all
three time intervals. It can be deduced that TCN model is more likely
to produce the 𝑃 𝐼s that have a higher accuracy relative to the other
models.
21 
In a somewhat different manner compared to PICP and PINAW,
the WS,ARIL and ACE metrics can simultaneously consider the PIs
sharpness value, width of the uncertainty bounds and the deviations
between the PICP and the PINC, respectively. According to the result
obtained for the ARIL metrics shown in Table 9, the proposed TCN
model is apparently superior over the other standalone as well as hybrid
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Fig. 16. Scatter-chart showing the relationship between total uncertainty (𝑇 𝑈) (sum of 𝐴𝑈 and 𝐸 𝑈) and (𝑅𝑀 𝑆 𝐸 , 𝑀 𝑊 ). (a) Half-hourly, and (b) 3-hourly as well as long-term
(c) daily electricity demand prediction (test site name: Acacia Ridge).
models. This conclusion also can be obtained by analysing the results
of WS metrics. Additionally, the ACE value of the proposed model
remained similar in its magnitude relative to other comparative models.
In summary, considering all of the evaluation metrics (i.e., those arising
from the probabilistic as well as deterministic measures of predicted
22 
and observed 𝐺), the proposed TCN model has outperformed the base-
line models tested for half-hourly, three-hourly and daily prediction at
all of the three study sites. Fig. 17 depicts the 𝑃 𝐼s generated by the
models for Zillmere, which supports this finding.
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Fig. 16. (continued).
Table 9
Probabilistic evaluation of TCN using relative 𝑊 𝑆, 𝐴𝑅𝐼 𝐿 and 𝐴𝐶 𝐸 values, as per Eqs. (26)–(29). A better performing prediction interval,
shown in boldface, is expected to have a lower Winkler score value. A higher reliability of prediction intervals is achieved for any model with
an 𝐴𝐶 𝐸 closer to zero.

Prediction Models Prediction Time-Steps Acacia Ridge Alexandra Head Zillmere

𝑊 𝑆 𝐴𝑅𝐼 𝐿 𝐴𝐶 𝐸 𝑊 𝑆 𝐴𝑅𝐼 𝐿 𝐴𝐶 𝐸 𝑊 𝑆 𝐴𝑅𝐼 𝐿 𝐴𝐶 𝐸

TCN
Half-hourly 12.787 0.500 0.096 3.075 0.380 0.090 4.678 0.300 0.071
3-hourly 18.704 0.336 0.063 69.504 0.465 0.085 38.931 0.343 −0.002
Daily 178.375 0.360 0.063 352.545 0.187 −0.030 223.697 0.272 0.045

ATTLSTM
Half-hourly 22.246 0.781 0.099 5.097 0.541 0.086 5.798 0.370 0.061
3-hourly 22.970 0.419 0.064 84.815 0.588 0.088 43.207 0.448 0.044
Daily 227.485 0.521 0.063 396.948 0.286 0.049 263.255 0.365 0.079

BILSTM
Half-hourly 16.788 0.662 0.097 5.567 0.670 0.100 6.544 0.369 0.025
3-hourly 20.254 0.358 0.058 80.284 0.538 0.089 42.203 0.444 0.040
Daily 242.023 0.537 0.070 449.409 0.313 0.016 272.655 0.373 0.081

CLSTMED
Half-hourly 17.595 0.705 0.098 3.453 0.420 0.096 5.567 0.307 0.029
3-hourly 19.596 0.357 0.059 82.103 0.556 0.091 41.164 0.418 0.034
Daily 184.489 0.392 0.068 370.982 0.263 0.051 298.725 0.408 0.076

CNNGRU
Half-hourly 16.319 0.646 0.095 3.983 0.443 0.092 6.744 0.399 0.040
3-hourly 20.036 0.355 0.059 74.326 0.501 0.074 46.215 0.441 0.018
Daily 266.362 0.637 0.079 533.138 0.442 0.082 232.242 0.286 0.040

DNN
Half-hourly 20.066 0.840 0.100 6.056 0.745 0.100 6.371 0.404 0.052
3-hourly 36.131 0.721 0.082 84.146 0.558 0.084 46.923 0.511 0.056
Daily 292.565 0.675 0.068 575.198 0.480 0.092 236.248 0.282 0.040

LSTMCNN
Half-hourly 14.201 0.575 0.095 3.878 0.460 0.097 6.196 0.325 0.014
3-hourly 18.966 0.341 0.057 113.901 0.816 0.095 40.956 0.417 0.037
Daily 207.602 0.449 0.063 459.971 0.206 0.098 231.591 0.285 0.047

LSTM
Half-hourly 17.391 0.718 0.099 3.287 0.409 0.095 5.160 0.306 0.043
3- hourly 19.890 0.360 0.060 108.315 0.755 0.095 43.305 0.471 0.054
Daily 182.497 0.379 0.066 358.239 0.211 0.000 227.679 0.276 0.045

NGBOOST
Half-hourly 20.331 0.866 0.100 6.386 0.785 0.100 10.176 0.784 0.100
3-hourly 29.130 0.597 0.096 91.640 0.512 0.035 59.041 0.722 0.088
Daily 188.069 0.400 0.061 394.887 0.267 0.035 230.673 0.280 0.040

RNN
Half-hourly 19.915 0.710 0.099 3.063 0.355 0.092 7.306 0.495 0.072
3-hourly 23.712 0.437 0.072 81.711 0.553 0.088 43.652 0.441 0.030
Daily 177.968 0.369 0.071 375.268 0.279 0.076 230.128 0.285 0.049
23 
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Fig. 17. The scatter chart illustrates the relationship between total uncertainty (comparison showing upper bounds, lower bounds for 95% prediction interval of TCN vs. comparative
models for short-term (a) half-hourly and(b) three-hourly and long-term (c) daily electricity demand prediction (testing site name: - Zillmere).
5. Conclusions and future outlook

5.1. Conclusions

For reliability and sustainability of the electricity supply system, risk
analysis and projections of consumer electricity use, energy providers
24 
need accurate and reliable forecasts of electricity demand and the
associated uncertainties. In order to address this challenge, this study
developed a Temporal Convolutional Neural Network (TCN) model to
predict electricity demand in multiple steps (half-hourly, 3-hourly, and
daily). In addition, the proposed TCN model was benchmarked against
deep learning models (and their variants) using real-world datasets. For
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short- and long-term periods of electricity demand prediction intervals,
e studied the distribution of uncertainty generated by the TCN model,

ncluding aleatoric and epistemic errors. As part of this study, we
also examined the average coverage errors of 𝐺 predictions using the
proposed TCN model, along with the relative coverage probability of
rediction intervals and normalized mean widths and average rela-

tive interval lengths, as well as Winkler scores to gauge prediction
interval quality and sharpness. Based on the contributions made, the
proposed TCN model was found to successfully predict electricity de-
mand and associated uncertainties and therefore could be employed in
decision-making for electricity demand forecasting.

In making the above contributions to knowledge, this study has
nalysed electricity demand data captured in Southeast Queensland
etween 2011 and 2020. As the first step, data consolidation and
reprocessing tasks were performed on historical 𝐺 dataset followed
y an optimal time-lag (Partial Auto-correlation) determination of 𝐺
ata series for the modelling tasks that served as the input time step.
e selected the time lag (𝑡 − 𝑛) where the current and 𝑛-antecedent

i.e. historical) electricity demand had the highest correlation and
owest error selected through an Extreme Learning Machine (ELM) ap-
roach. In contrast to prior studies, the proposed TCN model employed
ausal convolutions and dilation methods, and therefore, was effective
ith sequential datasets that was time-related and whose receptive

ields were large. Accordingly, we compared TCN with the best time-
eries deep learning models from CNNGRU, CNNADM, DNN, LSTM,
GBOOST, RNN, and encoder–decoder CNNLSTM. The proposed TCN
odel outperformed the other DL models at multiple time-steps based

n the independent test dataset.
Our study involved the analysis of all 𝐺 predictions generated by

ll models aimed at demonstrating how DL is applicable for electricity
emand predictions for insight into decision-making process through
he uncertainty analysis. Accordingly, the proposed DL models for
alf-hourly, three-hourly and daily predictions were evaluated using
xtensive uncertainty measurements. For all forecast horizons, the TCN

model superseded the hybrid model performance as well as the stan-
dalone models, to show its ability to as a decision-making tool in
electricity modelling area.

5.2. Future research

This study does have some limitations that could be investigated
further despite the superior performance of the TCN model. Firstly, the
study has utilized the historical behaviour of electricity use datasets
as a predictor variable through optimal lagged combinations to build
a predictive model. Predicting electricity demand requires a detailed
understanding of weather effects, especially air temperatures and sea-
sonality of electricity use e.g, [141] which was not considered in
training the proposed TCN model.

As temperature and humidity influence electricity demand, espe-
ially in warmer periods that increase the heated air temperatures, the

effects of weather must be considered in re-training the proposed TCN
model and the Monte Carlo dropout and maximum likelihood used in
his study is adoptable in quantifying aleatoric uncertainty, which is

the inherent randomness found in modelling data not explained by any
ther definite way, or epistemic uncertainty that occurs in a model
ound due to a lack of training data. Secondly, the daily and weekly
ork patterns (e.g., working days, holidays, inter-holidays, holiday

easons) can moderate the average electricity use profile, and affect
oth the demand and electricity price e.g, [142]. Lastly, a strong
orrelation between spot price of electricity and demand could exist
n national electricity markets as well as the intermittent supply of re-
ewable electricity into the grid. Therefore, the inclusion of electricity
rice as a predictor of demand and assessing the impact of renewable
lectricity into the grid could possibly provide greater insights into the

efficacy of the proposed model for predicting demand more accurately.

ourthly, if different variables such as weather data, electricity price, or
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renewable electricity influx into the grid are considered, the application
of explainable artificial intelligence methods where global and local
explanations in terms of the impact of each new predictor variable on
model response needs to be considered to provide greater confidence
into the TCN model outputs for key decision-making.

This study has provided major contributions to time series predic-
ions by comparing a variety of DL models (stacked, encoder–decoder

architecture) and CNN models. In future, decision-makers can therefore
easily comprehend and implement the proposed methods and associ-
ated uncertainty evaluation measures developed in this work as end-
to-end learning methods were presented without combined/hybridized
network architectures current found in the literature. The benefits of
the TCN model also arise from its potential use in the prediction of elec-
tricity demand in other regions or countries not tested in this pioneer
work to adopt as a decision-making tool in electricity forecasting areas.
Finally, future researchers could apply TCN model in other emerging
areas of interest, e.g., solar energy prediction, wind energy, rainfall pat-
tern analysis, water quality, agriculture and energy consumption. Using
accurate modelling methods, policy departments can manage climate
projection scenarios and resolve renewable energy-related problems.
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