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Abstract

State-of-the-art SLAM methods are designed to work only with the type of camera employed to create the map, and little
attention has been paid to the reusability of the maps created. In other words, the maps generated by current methods
can only be reused with the same camera employed to create them. This paper presents a novel SLAM approach that
allows maps generated with one camera to be used by other cameras with different resolutions and optics. Our system
allows, for instance, creating highly detailed maps processed off-line with high-end computers, to be reused later by
low-powered devices (e.g. a drone or robot) using a different camera. The first map, called base map, can be reused with
other cameras and dynamically adapted by creating an augmented map. The principal idea of our method is a bottom-up
pyramidal representation of the images that allows us to match keypoints between different camera types seamlessly.
The experiments conducted validate our proposal, showing that it outperforms the state-of-the-art approaches, namely
ORBSLAM, OpenVSLAM and UcoSLAM.
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1. Introduction

Simultaneous Location and Mapping (SLAM) has ex-
perienced important advances in the last years in fields
such as robotics and computer vision [1, 2, 3, 4]. Ap-
plications that require localisation, such as autonomous
vehicles [5, 6], augmented reality [7] and robotic-assisted
surgery [8, 9], amongst others, take advantage of current
SLAM methods.

Most SLAM methods represent natural features as key-
points that can robustly detect and establish correspon-
dences between images. An appropriate representation of
the keypoints is essential, considering that the informa-
tion captured by the camera suffers alterations over time.
However, no current SLAM method (up to our knowledge)
is explicitly designed to reuse the map generated using a15

camera with a different camera (of different optics and
resolution). This is an important deterrent of the cur-
rent SLAM systems from being adopted in real-life appli-
cations.

We envision visual SLAM should be used as follows.
Imagine we want to provide visual localization capabilities
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for a particular environment (e.g., an industrial facility,
University campus, etc.) to a plethora of heterogeneous
autonomous systems (AS) (e.g., autonomous robots, cars,
or drones). In general, the computing capabilities of em-
bedded AS are somewhat limited, thus being difficult for
them to run in real-time SLAM algorithms. In addition,
letting each AS independently create its own map has some
risks: a) the SLAM method may fail, creating a wrong
map, and thus the AS would get lost; and, b) the maps 30

independently generated by different AS may not match
or have a common reference system. This is especially evi-
dent in monocular SLAM, where the scale of the generated
maps is unpredictable.

A possible approach to solve the problem is creating a
base map of the environment using a high-resolution cam-
era (see Figure 1). The base map can be processed offline
from multiple recordings, ensuring that it is consistent, has
no errors, and is properly scaled. Then, a copy of the base
map could be loaded on each AS. The AS’s map would
be dynamically updated as the tracking circumstances de-
mand it. For instance, if the AS navigates in an area
already registered on the map, the changes would be min-
imal. However, the base map would be augmented when
the AS moves in unexplored areas. To that end, we need 45

a method able to reuse the base map with any camera
installed in the AS.

A straightforward approach for reusing maps would con-
sist of adapting the AS camera images to be like the
one employed to create the map. This approach, which
has not been explored in the literature (to our knowl-
edge), has a drawback: if the map is created with a high-
resolution camera and, then, we want to reuse it with an-
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Figure 1: Left image shows the base map generated with a high-resolution 4K camera. Right image shows how the base map is reused with
another camera of different resolution and optics, augmented with new information (red points). The image shows how the new camera
can relocalize itself in a previously explored environment by using old map points, while also incorporating new points to capture potential
environmental variations (such as shadows, objects, etc.), resulting in a more robust tracking system.

other lower resolution camera, we need to upsample the
latter to match the former. Then, we artificially increase
the computing time required to reuse the map and thus
disincentivize the use of high resolutions cameras to cre-
ate the map.

This work proposes ReSLAM, a novel keypoint-based
monocular SLAM approach designed to create maps with60

cameras of different resolutions and optics that can be
reused without the limitations previously explained. The
key to achieve such a goal is an internal bottom-up pyra-
midal representation of the camera images, where key-
points at the same level represent regions with similar
physical dimensions. Consequently, they can be seamlessly
compared, independently of the camera they were created
with. In addition, the proposed method allows adapting
the computational time by adapting the total number of
levels in the pyramid. The fewer pyramid levels employed,
the faster the system will run.

The proposed method has been evaluated on new
datasets created ad-hoc for this work, since none of the
standard SLAM datasets employed in the related litera-
ture has been recorded with multiple heterogeneous cam-75

eras. A total of six new datasets have been created in dif-
ferent areas of our University Campus, using cameras with
different optics and resolutions. The results show that our
proposal outperforms the state-of-the-art SLAM methods
ORBSLAM [10, 11], OpenVSLAM [4] and UcoSLAM [2]
in both speed and accuracy. In addition, the code and

datasets are set public for other researchers to use them 3.
The main contributions of this work can be summarized

as follows:

1. Development of a keypoint-based monocular SLAM
approach that allows the creation and reuse of maps
using heterogeneous cameras.

2. Introduction of a novel bottom-up pyramidal repre-
sentation that allows matching keypoints between dif-
ferent camera types seamlessly. 90

3. Creation of new datasets designed for this research,
featuring recordings from multiple heterogeneous
cameras.

The rest of the paper is structured as follows. Section
2 reviews the most related works to this one, while Sec-
tion 3 provides an overview of the method, introducing
its key elements and its mathematical formulation. Sec-
tion 4 explains our proposal and Section 5 shows the results
obtained. Finally, Section 6 draws some conclusions and
future works.

2. Related works

Harris and Pike’s work [12] is one of the first methods
for reconstructing scenes from a single camera. Despite
the promising results in the creation of 3D maps from long

3https://www.uco.es/investiga/grupos/ava/portfolio/
reslam
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video sequences, the first works lacked methods to estab-105

lish loop closures and drift corrections, which was partially
solved in the work of Davison et. al. [13] and Eade and
Drummond [14, 15]. While in the previous methods, track-
ing and mapping are directly linked, the PTAM system
[16] separates both tasks into parallel processes, achieving
high performance in real-time applications in small envi-
ronments. Later, Mur-Artal et al. presented ORB-SLAM
[1], a feature-based monocular SLAM, which uses ORB
features [17] for tracking and relocation. Later, the work
is extended with ORB-SLAM2 [10], which allows working
with stereo and RGB-D cameras, and finally integrates
inertial information in ORB-SLAM3 [11]. In line with
the previous work, OpenVSLAM [4] is presented a SLAM
framework that has been designed to be usable and scal-
able for applications based on modeling and mapping.120

The significance of the localization process within the
broader context of SLAM systems cannot be overstated.
Localization plays a crucial role in estimating the camera’s
pose within the environment, typically achieved by match-
ing visual features between consecutive frames or against
an existing map. This information is indispensable for ac-
curate environment mapping and ensuring the consistency
of generated maps. Recent advancements in deep learning
have shown promising results in enhancing localization ac-
curacy [18].

In the realm of visual localization for SLAM systems,
various approaches have been proposed. Feature-based
methods, such as SIFT (Scale-Invariant Feature Trans-
form) [19] and ORB (Oriented FAST and Rotated BRIEF)
[17], have gained wide usage for detecting and matching135

visual features between frames. These methods rely on
techniques like keypoint extraction and matching to es-
timate the camera’s pose. Notably, the work [20] intro-
duces a Features Combined Binary Descriptor based on
Voted Ring-Sampling Pattern (BDVRP), which encodes
both intensity and gradient of interest points. Addition-
ally, [21] proposes an unsupervised deep learning method
for binary descriptor learning. However, traditional key-
point descriptors face challenges in localization for large-
scale environments. To address this, [22] suggests learning
semantic-aware local features to improve the robustness of
local feature matching. Alternatively, [23] employs depth-
maps as a solution.

On the other hand, the camera pose estimation is not
in the actual scale when working with monocular cameras.150

To solve this, SPM-SLAM [24] proposes the use of fiducial
markers [25] to solve the localization problem. Fiducial
markers are artificial elements placed in the environment
that are stable over time, unlike keypoints. Later, the
same authors propose UcoSLAM [2], a method capable of
combining both keypoints and fiducial markers.

Unlike the systems mentioned above, considered as in-
direct methods because the localization and optimization
process is based on features, methods like LSD-SLAM [26],
DSO [27], and LDSO [3] use direct approaches in which
the SLAM process is guided by the intensity information

of image pixels. These methods require calibration of the
photogrammetric properties of the camera, which makes
them difficult to use in most of the existing datasets.

Within the SLAM systems, those based on monocular 165

[1, 27, 26] and stereo [28, 10, 2] cameras, are the most com-
mon ones. However, over the last few years, new applica-
tions have appeared that seek the fusion of information
provided by different sensors during navigation [29, 30].
Recent methods based on the use of multiple cameras allow
extending monocular SLAM using synchronized cameras
[31] which assume synchronized shutters for all of them,
or through a set of asynchronous observations [32]. The
work of Ragab and Wong [33] presents a SLAM system
composed of multiple back-to-back cameras, where each
camera separately implements an extended Kalman filter
(EKF) that are finally combined to obtain a final optimiza-
tion. Kaess and Dellaert’s work [34], where the cameras
are placed in a ring, pursues the same objective.

While SLAM systems create a map of the environment 180

that is optimized over time, most systems do not allow
the map to be reused. In the work of Linen et al. [35] a
first offline stage is proposed where the construction of a
3D map of the environment is carried out using Structure
from Motion (SfM), which is later used in a second stage
using inertial SLAM localization. The reuse of the map
is also treated in the works [36, 11] where the system can
locate itself on a pre-built map from both visual and in-
ertial information. However, both for the creation of the
map and for relocalization, the same sensor is used.

A technical aspect to highlight about systems that reuse
maps is that this can be stored and loaded later in the
system. This feature has been recently incorporated into
SLAM systems such as OpenVSLAM [4] and UcoSLAM
[2], which allow reusable and extensible maps of the envi- 195

ronment. However, in both systems, only the same camera
can be used for the creation of the map and its subsequent
reuse.

In this work, we present ReSLAM, a new method to per-
form monocular SLAM, allowing combining information
from heterogeneous cameras for simultaneous localization
and mapping. Our system allows creating high-resolution
maps with one camera and later use them with a different
camera. At the same time, it allows new map points to be
incorporated into the map, extending its initial informa-
tion.

3. Method overview

This section provides an overview of the proposed SLAM
method, introducing its key elements and the notation em-
ployed in the paper. 210

As already indicated, our proposal is a keypoint-based
SLAMmethod working with monocular cameras, although
it can be extended to work with stereo and RGB-D cam-
eras. As with most state-of-the-art SLAM systems, a map
of the environment is created from a sequence of frames
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captured with a moving camera. The map contains 3D
points corresponding to environment regions seen as key-
points from multiple viewpoints in a set of selected frames
called keyframes. The keyframes are selected whenever
it is required to expand the map to new regions that are
being visited. Periodically, the map is optimized to re-
move useless map points and improve the 3D accuracy of
the map points. The generated map degrades its accuracy
with the distance travelled (drifting problem). In order to
reduce its impact, the system analyzes whether the cam-225

era revisits a zone of the map (relocalization) and applies a
loop closure optimization to remove the drifting error. The
system also must be able to solve the so-called kidnapped
robot problem, which happens when the system, for some
reason, loses track of its position in the map. Our method
employs a bag-of-words (BoW) database of the keyframes
that is used for loop-closure detection and relocalization
[37].

The steps described above are common to most mod-
ern SLAM methods and are employed in ours as well. The
key innovation of our approach is that our map can be gen-
erated using any pin-hole camera, thanks to the way we
represent the camera frames (using a bottom-up pyrami-
dal structure) and how keypoints are matched across them.
Our formulation can generate the map seamlessly, adapt-240

ing to cameras of different resolutions and optics. The
rest of the section introduces the key elements required
for SLAM and the notation employed in this paper.

3.1. Frames
A camera frame f is represented by the tuple:

f = {θ, I, I,K} (1)

where θ ∈ SE(3) is the pose in the map where the image I
was shot and I = {{Ij}, j ∈ {0, ..., η}} is a pyramid of im-
ages obtained by subsampling I. Let us denote I(δ), I(λ)
and I(s) the image focal length, optical center and size,
respectively, and Ij(δ), Ij(λ) and Ij(s) as the correspond-
ing parameters of each pyramid image. We assume that
the camera has no distortion or that it has been removed.
Finally, K represents the set of keypoints of the frame.
Please notice that we will use superindices to refer to the
elements of a tuple, e.g., θf denotes the pose of frame f .

Our pyramid is uniformly built starting from the small-255

est image I0 in such a way that its focal length I0(δ) is
equal to a constant value δmin. The rest of the pyramid
levels are created using a constant scale factor τ ≥ 1 until
the maximum level η is reached, see Figure 2. Then, the
parameters of each pyramid level can be calculated as:

Ij(q) = I(q) · δmin · (τ)j

I(δ)
, q ∈ {δ, λ, s}, j ≥ 0, (2)

and the maximum level of the pyramid:

η =
⌊ log( I(δ)δmin

)

log(τ)

⌋
. (3)

Figure 2: Pyramid building. The image and camera parameters are
scaled from a predefined minimum focal length δmin, and using a
scale factor τ .

The way our pyramid is built is one of the keys that
makes our method able to work with different types of
cameras. Other SLAM approaches use a pyramid of im-
ages that is anchored to the focal length of the camera that
created the map, making it difficult to use other types of
cameras with different focal lengths. Our pyramid, how-
ever, can adapt to cameras of different optics and resolu-
tions by setting a fixed set of focal lengths starting from
the smallest one δmin. Cameras with large focal lengths 270

will produce more pyramid levels than cameras with small
focal lengths.

The critical aspect is that a keypoint at a given level
represents a region of the space proportional to the focal
length of that level. By analyzing the classic pin-hole cam-
era model, it is easy to derive that, for instance, for a focal
length of 1000 pix, a circle of 1 m seen at 10 m of distance
will project as a circle of radius 100 pix in the image, in-
dependently of the actual image resolution. Consequently,
we organize keypoints into pyramid levels of fixed focal
lengths to easily compare across cameras independently of
their actual optics and resolution.

3.2. Keypoints
Each image of the pyramid I is processed to detect the

set of keypoints K. The total number of keypoints selected
|K| is defined as a function of τ0, which represents the
number of keypoints selected in the lowest pyramid level
I0:

|K| =
η∑
j=0

nj , (4)

where nj is the number of selected keypoints of each pyra-
mid level j, defined as:

nj = bτ0 · (τ)jc. (5)

A keypoint k is represented as the tuple

k = {l, p, d}, (6)

where l ∈ {0, ..., η} is the pyramid level where the keypoint
was detected and p ∈ R2 represents its image coordinates 285
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in Il. Finally, d = {(d1, ...., du) | dj ∈ {0, 1},∀j} is the
keypoint descriptor. We are assuming binary descriptors
(such as ORB [17]), since they normally present a good
balance between speed and repeatability.

3.3. Map definition
Our goal is to create a map of the environment (while

navigating it) that can be reused and updated with other
cameras. To do so, we define the system map Ω:

Ω = {O,F ,G,B}, (7)

as a set of structures required to represent the environ-
ment. The set O contains the map points while F is the
subset of selected frames (keyframes) used for keypoint
triangulation. The graph G keeps the interconnections be-
tween the keyframes, where the edge weights represent the
number of map points visible in both keyframes. Finally,
B is a visual place recognition database, represented as a
BoW used for relocalization purposes and to detect loop
closures [37].

A map point o ∈ O represents a three-dimensional re-
gion of the environment and is mathematically represented
as the tuple:

o = {x,w, d̂, v, β}, (8)

where x ∈ R3 represents its three-dimensional coordinates300

in the global reference system, w ∈ [0, 1] is a weight indi-
cating how reliable the point is based on how many times
it is observed, d̂ is its keypoint descriptor and v is the vec-
tor normal to the map point. The parameter v is used to
determine whether the map point is visible from a given
viewpoint. Finally, the parameter β ∈ {0, 1} indicates
whether the keypoint was added to the map during the
map building phase (base map) (β = 0), or later (β = 1),
possibly using a different camera.

The position x is obtained by triangulating its observa-
tions (i.e., keypoints) in multiple keyframes. Let us denote
K(o) = {(kfj , d

kfj )} as the set of keypoints that the map
point o is derived from. Then, the descriptor d̂ of the map
point o is defined as the most representative descriptor of
K(o) as:

d̂ = argmin
(kfi ,d

kfi )∈K(o)

∑
(kfj ,d

kfj )∈K(o)

dist(dkfi , dkfj ). (9)

In essence, d̂ is similar to the centroid, i.e., the descriptor
from K(o) that minimizes the Hamming distance dist to
all the other descriptors in K(o).

4. Proposed method

This section provides an explanation of the main steps
involved in the creation of the base map and its later use315

with a different camera (augmented map).
We distinguish between an initial phase in which the

base map is created using one camera (sections 4.2-4.5)

Figure 3: Workflow of the proposed method. The modules used only
for the creation of the base map are shown in blue, while the modules
for the augmentation of the base map with another camera are in
red. In green the modules used for both approaches.

and then a second phase in which the base map is reused
by possibly a different camera obtaining what we call the
augmented map (section 4.6). We consider the base map
to be a stable and robust map that is carefully created to
serve as the base for multiple AS to navigate, see Figure 3.

4.1. Map Initialization

The process starts with an empty model Ω, i.e., O =
{∅}, F = {∅}, G = {∅} and B = {∅}. The map initial-
ization consists in obtaining an initial pair of keyframes
from the frame sequence {f0, . . . , fn} such that the rela-
tive pose between them can be obtained. In this work,
we apply the same approach as in [2] and [10]. We first 330

select f0 and f1 and find keypoint matches between them
using their descriptors. Although the proposed method
is capable of using different types of descriptors (binary
or real), ORB is used by default, mainly due to its high
performance, although it could be replaced by any other.
Then, we calculate the essential and homography matrices
and analyze which one explains the scene better. While
the homography matrix is exclusively applicable to pla-
nar scenes, the essential matrix becomes necessary when
the scene is non-planar. To determine the appropriate ma-
trix for a given scenario, the selected method initiates only
when it detects sufficient parallax between the frames, and
it ensures a robust solution through the application of a
set of heuristics [38, 10].

If the number of correctly triangulated matches is at 345

least 50, then f0 and f1 are inserted in F as the first
keyframes. The triangulated matches are added as the
first map points to O, the graph is G initialized, and
the keypoint descriptors of the frames are added to the
BoW database B. Additionally, we assume that the first
keyframe f0 is the center of the map reference system,
thus, all map points are referred to it. Also, the pose of
the second keyframe θf1 w.r.t the first frame is known from
its homography or essential matrix.

However, if the pose is not good enough, we test again
with the frames f0 and f2, and so on, until a good solution
is found. After a few frames, we replace the role of f0 with
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another frame of the sequence and repeat the previous
operations.

4.2. Localization360

Once the map is initialized, we analyze the subsequent
frames of the sequence in order to obtain their poses w.r.t.
the initial keyframe (i.e., the map reference system). This
is known as the localization problem. To solve it, first we
must match map points on the current frame and then
calculate the pose by minimizing the reprojection error.
In order to speed up the process, the algorithm uses a
reference keyframe f̂ ∈ F , which is the keyframe with the
highest number of map points matched with the previous
frame.

The process starts with the input frame fi that needs to
be processed in order to obtain its pose θfi . We have the
reference keyframe f̂i−1 and the previous pose θfi−1 . The
first goal is to find matches between the map points and
the current frame keypoints that we denote as:375

Γfi = {(fi, k, o)}. (10)

The tuple (fi, k, o) indicates that the map point o ∈ O
projects onto the keypoint k of frame fi. Please notice that
we assign a single keypoint match for each map point. In
order to find these matches, we proceed as follows. First,
we select the map points that are likely to be observed
on the current frame (i.e., the map points that we know
project on the reference keyframe) and the keyframes con-
nected to it (using the connection graph G). We filter out
map points by analyzing their visibility with the normal
vector ov.

Second, the selected map points are projected onto the
frame plane using the pose estimation θfi−1 . For each pro-
jected map point, we calculate the pyramid level where it
should appear (based on its distance to the frame), and
select, in a radius r around the projection, the keypoint k390

that minimizes the descriptor distance to the map point
descriptor od̂. Please consider that a map point represents
a circular patch in real space, and its size is determined
by the pyramid level at which it is initially detected (the
lower the level, the bigger the patch). Thus, based on
the distance from the map point to the keyframe, we can
estimate the pyramid levels at which it should appear.

As a result of the previous process, we obtain the set of
matches Γfi employed to estimate the current frame θfi
by minimizing the reprojection error of the map points
over the matched keypoints. The reprojection of xo on a
keyframe f differs slightly from its matched keypoint, and
this error can be calculated as:

E(f, o, k) = Ψ(θf , If (δ), xo)− pk, (11)

where Ψ represents the map point projection, as a function
of the frame pose θf , and the image parameter If (δ).

The pose of the frame can then be obtained by minimiz-
ing the sum of the reprojection errors:

θfi = argmin
θ

∑
(fi,k,o)∈Γfi

Hα(E(fi, o, k) · φo · E(fi, o, k)T ),

(12)
where Hα is the Hubber loss function (employed to reduce
the influence of outliers), and φo, is the information matrix
that modulates the importance of each error. We shall
define it as:

φo = woτ l
k

πβ
o

M, (13)

whereM is the 2×2 identity matrix, which is multiplied by
a set of weights. First, wo models the temporal importance
of the map point so that points that are observed recur-
rently are given a higher relevance. Second, τ l

k

models
the spatial reliability, which decreases for keypoints found
in lower levels of the pyramid. And third, πβ

o

defines the 405

importance of a point as a function of the type of camera
it is seen from. The parameter π ∈ (0, 1] gives more im-
portance to map points inserted in the base map (current
phase) than to those inserted later. In our experience, this
parameter is important because it forces the system to rely
on the base map when using other cameras. In particu-
lar, it prevents creating alternative maps while navigating
known areas, preventing the system from drifting away
from the base map.

Once the pose θfi is estimated, we analyze if the num-
ber of inliers of the optimization is above the threshold τr.
If so, we assume a correct tracking and select as reference
keyframe f̂i the keyframe of the map with the highest num-
ber of map point matches in the frame fi. If the number
of inliers drops below τr, the pose is considered unreliable, 420

and the algorithm enters in lost mode and will require re-
localization in the following frames (see section 4.5).

4.3. Keyframe insertion
Over time, the map needs to be populated with new

keyframes in order to account for new areas being ex-
plored. When a new keyframe is added to the map, new
map points are created and the rest of the map sets are
updated as well.

A frame fi with valid pose (from the previous step) is
added to the map if the number of map points matched
is below a constant percentage τk of the total number of
map points matched in the reference keyframe f̂i. If the
frame is added, the graph G is updated indicating the new
node and its connections, and also the BoW database B is
updated with the new keyframe. Then, the existing map 435

point observationsK(o) are updated, i.e., some map points
have new observations. And finally, new map points are
added to the map considering the new keyframe.

To add a new keypoint, the following principles are fol-
lowed. For each keypoint k ∈ fi, we search correspon-
dences in the neighbor keyframes (according to G). Since
the keyframe poses are known, matches can be accurately
found applying epipolar restrictions. We only consider

6



possible keypoint matches in the pyramid levels above and
below kl. Matches are triangulated and new map points
are added to the map. New map points are considered
unstable, and thus, their weight wo will be low (see Equa-
tion 13). A map point becomes reliable when it is seen at
least two times in the next three inserted keyframes [1].
As the number of times a map point is seen amongst the450

keyframes, its weight is increased.
Please notice that our method is designed to operate

with heterogeneous cameras. In order to account for that
information, new points in this stage are assigned with
the values βo = 0, indicating that they belong to the base
map.

Finally, in order to prevent the map from becoming
overpopulated with unnecessary map points, we perform
a culling process that removes map points that have not
been matched a minimum number of times after its inser-
tion into the map. Also, we remove redundant keyframes,
i.e., those with keypoints that match map points already
matched in other keyframes at higher levels of the pyramid
[2, 10].

4.4. Map optimization465

When a keyframe is inserted in the map, the system per-
forms an optimization to jointly refine the keyframe poses
and map points by minimizing the map reprojection errors,
i.e., a bundle adjustment process. The optimization may
be local (i.e., include only the neighbor keyframes to the
one just inserted) or global (consider all keyframes). Since
global optimization is a very time-consuming process, it
is reserved for special cases that really require it, namely
loop closures [39]. A loop closure occurs when the system
revisits a region of the map. Because of the incremental
drift that happens in SLAM systems, it is required a spe-
cial process to detect this event and to establish matches
between map points in order to merge them. When a loop
closure is detected (using the BoW set B) a global map
optimization is required.480

In a global optimization, the poses of all the keyframes
F , |F| = n, and the coordinates of all the map points
O, |O| = m, are refined

((θ̂f1 , x̂o1), ., (θ̂fn , x̂om)) = argmin
(θf ,xo)

∑
fi∈F

∑
(fi,k,o)∈Γfi

Hα(E(i)),

(14)
by minimizing the reprojection errors

E(i) = E(fi, o, k) · φo · E(fi, o, k)T ,

in a similar way to Equation 12. Since this optimization
is a slow process (especially as the map grows), it is run
by a thread running in parallel.

The local map optimization process is the same as the
one described in Equation 14, but using only the keyframes
connected to the one just inserted.

4.5. Relocalisation
Relocalisation is the process of finding the pose of a

frame f without having prior information. This is required
when either the system is in a lost state (because the lo-
calisation failed) or when a new camera is used for the
first time on the base map. In both cases, the system uses 495

the input frame f to find a set of similar keyframes in the
database B. For each keyframe, the associated map points
are searched on the frame f and a PnP algorithm (using
RANSAC) is applied to find the most likely pose. If the
total number of inliers is above 80%, then pose obtained
can be considered reliable and the system can enter in a
tracking state.

4.6. Map augmentation
The base map generated with our method can be reused

by other cameras with different resolutions and optics.
The base map is then augmented with keyframes of the
new camera and map points created by mixing observa-
tions from the base map and the recently added keyframes.
From the practical and theoretical point of view, reusing
the map simply consists in processing frames f with the 510

new camera and following the workflow explained above.
The augmented map allows adapting to the new camera
characteristics while being anchored in the base map as
much as possible to avoid drifting from it. The new map
points added in the augmented map will be assigned with
a lower relevance in the optimization process by setting
βo = 1 (see Equation 13). Nevertheless, the system can
create new paths in unexplored areas of the environment
using the new camera.

The key to camera compatibility is the image pyramid of
fixed focal lengths built in a bottom-up fashion. If one real-
izes that an image keypoint represents a region of the space
with a specific physical dimension, it becomes clear that
in our pyramid model, keypoints from different cameras at
the same level represent regions with the same dimensions 525

and thus are directly comparable, unlike previous SLAM
approaches. Therefore, our method can seamlessly work
with images of different cameras.

Let us consider an example where the base map is gen-
erated using a high resolution 4K camera (camA) with
3.6 mm lens where the focal length, obtained by calibra-
tion, is I(δ) = 3594 pix. Using the base focal I0(δ) =
δmin = 200 and the scale factor τ = 1.2, we obtain a total
of 16 pyramid levels (i.e., η = 15). Then, let us imagine
we want to reuse the base map using a low-resolution 1MP
camera (camB) with 2.8 mm lens for which I(δ) = 900 pix.
Then, an image pyramid consisting of 9 levels is built for
the frames of this camera, i.e., η = 8. When using the
low-resolution camera with the base map, the last seven
levels of the pyramid are not employed, it will only use the 540

lowest levels of the pyramid, see Figure 4.
In the previous case, we have considered that the base

map is created with a high-resolution camera and the aug-
mented map with a low-resolution one. Although our sys-
tem can be used the other way around, in our opinion, this
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Pyramid
levels (j)

Focal lengths
Ij(δ)

Image resolutions
Ij(s)

camA Ij(s)
camB

0 200 214× 120 284× 160
1 240 256× 144 341× 192
2 288 308× 173 410× 230
3 345 369× 208 492× 276
4 414 443× 249 590× 332
5 497 532× 299 708× 398
6 597 638× 359 849× 478
7 716 766× 431 1019× 573
8 859 919× 517 1223× 688
9 1031 1103× 620 −
10 1238 1323× 744 −
11 1486 1588× 893 −
12 1783 1905× 1072 −
13 2139 2286× 1286 −
14 2567 2744× 1543 −
15 3081 3292× 1852 −

Figure 4: Examples of pyramids created with two different cameras.
Starting from a minimum focal length of δmin = 200, and considering
a scale factor of τ = 1.2, the image pyramids are obtained. Note
that the number of levels of the pyramid j, will be determined by
the original focal length of the camera, i.e., the larger the image, the
more levels the pyramid has.

is the most useful case: the map is generated offline from
the recording of a good camera and then used in real-time
with a lower-end computer and camera (e.g., a drone or
robot). It must be noticed that the computing effort re-
quired to run the system is directly proportional to the
number of pyramid levels.

5. Experiments and results

This section presents the experiments carried out to val-
idate the proposed method ReSLAM. The source code and
the datasets employed in this paper are public for research555

purposes and evaluation4.
Our method is the only one (up to our knowledge) capa-

ble of mixing cameras of different resolutions and optics on
the same map, and no public dataset has been found for a
proper evaluation. As a consequence, we introduce in this
paper six new evaluation datasets, which are described in
section 5.1.

4https://www.uco.es/investiga/grupos/ava/portfolio/
reslam

Table 1: Set of parameters of our method and the values employed
for experimentation.

Parameter V alue Description

δmin 200 Minimum focal length (section 3.1).
τ 1.2 Scale factor (section 3.1).
τ0 140 Number of features in I0 (Eq. 5).
π 0.5 Weight of new points (Eq. 13).
τr 30 Threshold for valid pose (section 4.2).
τk 0.8 Threshold for adding a new keyframe (section 4.3).

All the experiments have been carried out with an In-
tel(R) Xeon(R) CPU E5-2630 v4 @ 2.20GHz, with 46GB
of RAM, using Ubuntu 20.04.2. In addition, the proposed
method has several parameters that have been introduced
in the previous sections. Table 1 shows the values em-
ployed in the experiments. Please, note that the mini-
mum focal length parameter (δmin) is the focal length of
the smallest image in the pyramid. The image pyramid is 570

constructed for each input image in the SLAM system and
is used for keypoint detection, section 3.1.

To ensure a sufficient number of image pyramid lev-
els, we have set the minimum focal length to 200. This
guarantees that the sensor with the smallest focal length
(δ = 639) has a minimum of 7 pyramid levels, and the
sensor with the largest focal length (δ = 2276) has a max-
imum of 14 levels.

Our method is compared with three state-of-the-art
SLAM methods, namely ORB-SLAM [10, 11], OpenVS-
LAM [4] and UcoSLAM[2]. Note that despite the fact that
UcoSlam can work using both fiducial markers and key-
points (or a combination of both) only keypoints have been
used in our experimentation. On the other hand, although
these methods are not specifically designed to reuse a map 585

with different cameras, we have applied the naive approach
suggested in section 1, which consists in adapting the new
images to match the ones employed to create the map. We
will explain this in more detail later.

In any case, comparing two SLAM methods is not a triv-
ial task since we need to evaluate two different measures.
On the one hand, we must compare the error in the tra-
jectories of the methods, and on the other hand, the total
number of frames actually tracked. To properly compare
two methods considering both aspects we are employing
the methodology proposed in [2].

The rest of this section is structured as follows. Section
5.1 presents the six new datasets created for this work.
Section 5.2 explains the methodology employed to test our
method and compare it with the other methods that do 600

not support map reuse. Section 5.3 explains the evalua-
tion measures employed. Finally, Section 5.4 shows the
results obtained by the different methods, and Section 5.5
analyses their processing speeds.

5.1. Datasets
Six different datasets have been created for this work

(Dataset-00 to Dataset-05), each one of them correspond-
ing to both indoor and outdoor different areas of our
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Figure 5: Overview of the trajectories covered in the datasets created. a) Dataset-00, b) Dataset-01, c) Dataset-02, d) Dataset-03, e)
Dataset-04, f) Dataset-05.

Table 2: Resolution and focal length of the cameras employed in
Dataset-00, Dataset-01, and Dataset-02

Resolution Focal length Model
Camera 0 3840× 2160 2276 ELP USB4K02AF-KL100
Camera 1 1920× 1080 1458 Logitech HD PRO C920
Camera 2 1920× 1080 1800 Iphone SE (1st gen.)
Camera 3 1280× 720 639 Intel RealSense D345

campus. Figure 5 shows images of the datasets. The
datasets cover the following total distances (shown as blue
dotted lines in Figure 5): Dataset-00=79.4m, Dataset-
01=203.4m, Dataset-02=478.6m, Dataset-03=397.1m,
Dataset-04=392.2m and Dataset-05=9.42m. The first
three datasets have been recorded using four different cam-
eras with the specifications shown in Table 2. Each se-615

quence was recorded independently from the other by a
person walking with the camera in his/her hands. Dataset-
03 and Dataset-04 have been recorded using a different
set of cameras (Table 3), all mounted on a car. In that
case, the four cameras were recording simultaneously. Fi-
nally, for Dataset-05 three different cameras have been
used (Table 4), recording the walls of a room as it is walked
through. In all cases, the sequences were recorded at 30
fps. In total, our datasets consist of twenty different out-
door video sequences (Dataset-00 to Dataset-04), four for
each camera and dataset; and six indoor video sequences
(Dataset-05), two sequences for each camera. Each se-
quence begins and ends at the same place in order to be
able to perform loop closure.

For each outdoor dataset, a set of control points evenly630

distributed along each path has been established in or-
der to scale and align the method’s estimated trajectories
to the ground truth. On the other hand, for the indoor

Table 3: Resolution and focal length of the sensors employed for
Dataset-03 y Dataset-04

Resolution Focal length Model
Camera 4 1920× 1080 2228 ELP USB4K02AF-KL100
Camera 5 1920× 1080 1472 Logitech HD PRO C920
Camera 6 960× 540 976 Iphone SE (1st gen.)
Camera 7 1280× 720 754 ELP USB4K02AF-KL100

Table 4: Resolution and focal length of the sensors employed for
Dataset-05

Resolution Focal length Model
Camera 8 1280× 720 737 ELP USB4K02AF-KL100
Camera 9 1920× 1080 1517 ELP USB48MPO1-KAF70
Camera 10 1600× 896 1178 Logitech HD PRO C920

dataset, we employed an Optitrack motion capture system
to obtain precise ground truth camera pose.

5.2. Evaluation methodology

Our goal is to validate the performance of the proposed
method a) when the base map is created, and b) when
the base map is augmented with a different camera (cross-
evaluation). To do so, we have employed the following
methodology for each dataset. Each video sequence has
been processed obtaining the corresponding base map.
Then, for each base map, we cross-evaluate the SLAM
system using the rest of the video sequences.

Given that the trajectories obtained lack scale, to evalu- 645

ate the error between different trajectories, it is necessary
to translate and scale each trajectory to the ground truth
reference system. For this, the established control points
and the poses of the camera have been used in known posi-
tions of the trajectory, making use of Horn’s method [40].
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Then, the Absolute Trajectory Error (ATE) is computed
as the RMSE between the positions of the camera in each
frame and the ground truth trajectory. However, the ATE
can only be computed in those frames where the system
provides a valid estimation, i.e., it does not get lost. So, to
account for that issue, we also compute for each sequence
the percentage of frames the system is able to track, and
we call this measure frames successfully tracked (FST) as
an additional measure of reliability.

While our SLAM method has been specifically designed660

to use different cameras, this is not the case for ORB-
SLAM [10, 11], OpenVSLAM[4] and UcoSLAM[2]. Never-
theless, it is possible to cross-evaluate the video sequences
by first creating the map with one camera and then us-
ing a second camera by adapting its images to have the
same focal length and dimensions as the first one. For
example, imagine that we create the map using a 4K cam-
era (3840 × 2160pix,I(δ) = 3594), and we want to reuse
it with a 1MP camera (1280 × 720pix,I(δ) = 900). If we
upsample the 1MP image to 5111 × 2875pix, the result-
ing image will have I(δ) = 3594. We can then crop the
upsampled image to be 3840 × 2160pix by discarding the
external pixels. Then, the new image can be provided to
the SLAM method for cross-evaluation against the first
camera. The opposite operation can be also done, using675

the 1MP camera to create the map and then the 4K cam-
era to cross-evaluate. In this case, the 4K needs to be
downsampled to 961× 540pix and we will need to add an
external border of black pixels to make it 1280 × 720pix.
As one can imagine, this is a suboptimal solution, espe-
cially for the case when one needs to upsample, because
it will artificially increase the computing time making it
inappropriate for low-end computers.

5.3. Evaluation measures
As already indicated, comparing two methods by ana-

lyzing only their ATE is not a valid approach. In some
cases, a SLAM method fails to track and enters in a lost
state. The ATE of the affected frames can not be measured
and thus can not be compared. Imagine the extreme case
of a SLAM method that is only able to track the first ten690

frames of a very long video sequence. The ATE computed
over these frames is very low because it is at the start
of the sequence, and drift is minimal. However, another
SLAM method able to track the whole sequence decently
will most probably have a higher ATE over the whole set
of frames. To avoid these problems, Munoz et.al. propose
in [2] an evaluation measure that considers both the ATE
and the FST to compare two SLAM methods. Below, we
provide an overview of it.

Given two methods m and n, we shall denote Enm the
ATE of method m given the method n, which refers to the
ATE of the method m in the frames tracked by both meth-
ods. Likewise, we define Emn as the ATE of the method
n given the method m. Also, let us denote Tm and Tn as
the total number of frames in which the methods m and705

n provide valid tracking results, respectively.

Based on the explanation provided, we define the mea-
sure Ssp(m,n) ∈ [0, 1] for a video sequence s. The measure
is calculated according to the following set of rules:

• Ssp(m,n) = 1 if Emn is significantly smaller than Enm
and Tm is significantly larger than Tn.

• Ssp(m,n) = 0.5 if Emn is significantly smaller than Enm,
but the difference between Tm and Tn is not signifi-
cant.

• Ssp(m,n) = 0.5 if the difference between Enm and Emn
is not significant, but Tm is significantly larger than
Tn.

• Ssp(m,n) = 0 otherwise.

These rules can be mathematically formalized as:

Ssp(m,n) =


1 (Enm − Emn ) > p · Emn ∧ (Tm − Tn) > p · Tm
0.5 (Enm − Emn ) > p · Emn ∧ |Tm − Tn| ≤ p ·max(Tm, Tn)
0.5 |Enm − Emn | ≤ p ·min(Enm, E

m
n ) ∧ (Tm − Tn) > p · Tm

0 otherwise
(15)

The measure analyzes if Enm is greater than Emn , and if the 720

difference is larger than the threshold p · min(Enm, E
m
n ).

The threshold avoids infinitesimal differences to be con-
sidered relevant and is controlled by the confidence value
p ∈ (0, 1]. The measure Ssp(m,n) is 1 if method m per-
forms better than method n in all the frames of the se-
quence s, and vice versa if it tends to 0.

Finally, given a set of video sequences S = {s},

Sp(m,n) =

∑
s∈S S

s
p(m,n)− Ssp(n,m)

|S|
(16)

evaluates which method performs better over the se-
quences. The measure Sp(m,n) ∈ [−1, 1] is 1 if m is better
than n in all video sequences, and it tends to −1 in the
opposite case.

The measure Sp(m,n) is a fair value indicating which
method is better over several datasets and will be em-
ployed in this work.

5.4. Evaluation of Methods
This section shows the results obtained for the meth- 735

ods evaluated, namely ReSLAM, ORB-SLAM2, OpenVS-
lam, and UcoSLAM. The results of ORB-SLAM3 [11] have
not been presented in this paper because it has not been
able to obtain decent cross-evaluation results in any of the
datasets. We believe that is because of its implementation,
which does not allow the use of other cameras, even when
applying the naive adapting strategy.

Since the measure Sp(m,n) is built on top of the ATE
and FST ones, we first present their values for each
dataset. Table 6 show the average ATE and FST of each
method during the map creation of the maps for each
dataset. These values represent how good each method
is in creating the base maps. As it can be observed, our
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Table 5: Results of Sp(m,n) for each pair of methods compared methods m and n, using different values of the confidence measure p.
Sp(m,n) > 0 means method m is better than method n.

p Method m Method n Dataset-00 Dataset-01 Dataset-02 Dataset-03 Dataset-04 Dataset-05 All Datasets

0.01

ReSLAM ORB-SLAM2 0.41 0.50 0.10 0.14 0.04 0.26 0.24
ReSLAM OpenVSLAM 0.58 0.79 0.67 0.25 0.42 0.42 0.52
ReSLAM UcoSLAM 0.04 0.13 0.04 0.00 0.29 0.08 0.10

ORB-SLAM2 OpenVSLAM 0.41 0.21 0.43 0.09 0.50 0.46 0.35
UcoSLAM ORB-SLAM2 0.23 0.42 −0.05 0.32 −0.33 0.11 0.12
UcoSLAM OpenVSLAM 0.67 0.63 0.56 0.25 0.21 0.60 0.49

0.05

ReSLAM ORB-SLAM2 0.41 0.50 0.10 0.05 0.08 0.30 0.24
ReSLAM OpenVSLAM 0.54 0.71 0.61 0.17 0.38 0.39 0.47
ReSLAM UcoSLAM 0.04 0.08 −0.04 0.00 0.25 0.12 0.08

ORB-SLAM2 OpenVSLAM 0.36 0.13 0.36 0.05 0.46 0.39 0.29
UcoSLAM ORB-SLAM2 0.27 0.42 −0.05 0.14 −0.29 0.11 0.10
UcoSLAM OpenVSLAM 0.58 0.54 0.50 0.13 0.21 0.54 0.42

0.1

ReSLAM ORB-SLAM2 0.41 0.50 0.10 0.05 0.13 0.22 0.24
ReSLAM OpenVSLAM 0.58 0.63 0.56 0.13 0.29 0.35 0.42
ReSLAM UcoSLAM 0.00 0.08 −0.08 0.04 0.25 0.12 0.07

ORB-SLAM2 OpenVSLAM 0.36 0.13 0.29 0.05 0.38 0.28 0.25
UcoSLAM ORB-SLAM2 0.27 0.46 0.00 0.09 −0.25 0.06 0.11
UcoSLAM OpenVSLAM 0.58 0.50 0.50 0.08 0.13 0.46 0.38

0.25

ReSLAM ORB-SLAM2 0.27 0.50 0.15 0.09 0.08 0.11 0.20
ReSLAM OpenVSLAM 0.58 0.63 0.61 0.08 0.25 0.27 0.40
ReSLAM UcoSLAM 0.04 0.17 0.04 0.08 0.21 0.00 0.09

ORB-SLAM2 OpenVSLAM 0.41 0.17 0.29 0.05 0.38 0.26 0.26
UcoSLAM ORB-SLAM2 0.23 0.42 0.05 0.09 −0.17 0.04 0.11
UcoSLAM OpenVSLAM 0.54 0.54 0.50 0.00 0.13 0.31 0.34

Table 6: Average Average Absolute Trajectory Error (ATE) and Per-
centage of Frames Successfully tracked (FST) of the methods evalu-
ated in the creation of the base map across the six datasets.

ReSLAM ORB-SLAM2 OpenVSLAM UcoSLAM
ATE FST ATE FST ATE FST ATE FST

Dataset-00 0.23 99.83 0.41 97.51 0.43 99.96 0.49 100.00
Dataset-01 0.50 99.87 0.44 60.43 0.27 79.26 0.52 100.00
Dataset-02 0.93 99.30 6.97 94.35 1.65 94.13 1.09 99.89
Dataset-03 1.51 99.61 6.30 86.36 4.78 99.71 2.83 99.97
Dataset-04 1.35 95.09 9.31 93.46 2.93 98.22 11.55 96.31
Dataset-05 0.15 99.81 0.32 96.23 0.09 97.13 0.07 99.97

Avrg. 0.78 98.92 3.96 88.06 1.69 94.73 2.75 99.36

Table 7: Average Average Absolute Trajectory Error (ATE) and Per-
centage of Frames Successfully tracked (FST) of the methods evalu-
ated using cross-evaluation across the six datasets.

ReSLAM ORB-SLAM2 OpenVSLAM UcoSLAM
ATE FST ATE FST ATE FST ATE FST

Dataset-00 0.29 99.83 0.86 88.43 0.38 58.89 0.27 99.76
Dataset-01 0.44 99.87 8.54 81.19 1.88 57.65 0.70 96.39
Dataset-02 0.85 90.90 2.31 70.05 9.53 53.64 1.66 99.35
Dataset-03 1.34 99.81 10.16 89.30 4.25 96.82 5.17 99.87
Dataset-04 1.89 99.61 2.43 99.97 6.80 91.37 13.61 98.57
Dataset-05 0.08 95.49 0.14 97.86 0.36 88.20 0.14 99.42

Avrg. 0.82 97.58 4.07 87.80 3.87 74.43 3.59 98.89

method obtains the lowest ATE in all the datasets, except
for Dataset-01 and Dataset-05, where it obtains a value750

very similar to UcoSLAM. In terms of FST, all methods
behave similarly except for ORBSLAM2, which shows the
worst performance. Table 7 show the average ATE and
FST in cross-evaluation, i.e., using the base map with a
different camera. As it can be observed, our method ob-
tains the best ATE results in all cases, with the excep-
tion of Dataset-01, where it obtains a value very similar to
UcoSLAM. While for Dataset-00, Dataset-01 and Dataset-
05, the differences are not very high, they are more evi-
dent in the other datasets. Regarding the FST, the pro-

Figure 6: Examples of augmented maps created with our system.
(a) Dataset-00, (b) Dataset-01, (c) Dataset-02, (d) Dataset-03, (e)
Dataset-04, (f) Dataset-05.

posed method ranks higher in Dataset-00 y Dataset-01.
For the other datasets, the FST values obtained are close
to the best result, except Dataset02 and Dataset-05, where
UcoSLAM obtains better results but at the expense of ob-
taining a higher ATE. 765

Figure 6 shows some of the augmented maps generated
by our method in the six datasets. The dots represent the
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three-dimensional points of the map and the blue elements
are the keyframes of the base map. The red element rep-
resents the keyframes of the augmented map when using a
different camera for cross-evaluation. As it can be visually
observed, the reconstruction matches the real environment
with low errors.

Table 5 shows the values Sp(m,n) comparing all meth-
ods using the cross-evaluation data for different confidence
values. A positive value indicates that the method m out-
performs method n. As can be observed, it can be said
that our method, ReSLAM, is better than the rest of the
methods in all datasets. The exception is Dataset-02 where
UcoSLAM obtains slightly better results. UcoSLAM is the780

second-best method.

5.5. Processing speed

Table 8: Average processing speed (fps) of each method in creating
the map and cross-evaluation using a different camera. The best
cases are marked in bold.

ReSLAM ORB-SLAM2 OpenVSLAM UcoSLAM
Map CE Map CE Map CE Map CE

Dataset-00 9.56 9.13 2.43 1.22 6.03 2.89 9.89 3.99
Dataset-01 16.98 17.94 4.33 2.71 7.75 3.77 14.66 6.59
Dataset-02 16.51 18.97 1.40 0.95 7.00 4.28 12.56 5.80
Dataset-03 19.69 24.09 2.70 1.65 3.20 3.78 8.85 4.19
Dataset-04 12.25 18.84 2.29 1.28 4.65 2.76 6.76 3.83
Dataset-05 20.61 22.12 7.66 4.26 12.46 8.67 21.01 18.79

This Section analyzes the processing speeds of our
method and compares it with the naive approach. Table 8
shows the processing speed (expressed in frames per sec-
ond) of the different methods tested. Column Map refers
to the average fps of a method in creating the base map
for a particular dataset, while column CE shows the av-
erage fps required for cross-evaluation. As can be seen,
the proposed method is highly optimized and obtains the
highest speed in almost all cases for creating the base map,
ORB-SLAM2 being the slowest one.

However, it is in cross-validation where our method re-
ally makes an important difference w.r.t. the naive ap-
proach. Because of its design, our method can use a795

different camera without degrading its performance. In
our method, using a camera of lower resolution for cross-
validating generally results in an increase of the processing
speed since the amount of data to be processed is reduced.
However, for the other methods, we have to artificially up-
sample the input image to match the one that created the
map.

Table 9 shows the detailed performance of the different
methods for each one of the cameras employed in cross-
evaluation. In the table, one can better analyze the differ-
ence between our method and the rest. The table shows
for each camera, the average cross-evaluation fps of our
method and the rest of the methods.

It can be seen that our method is at least two times
faster than the rest of the methods. While for the other810

methods, using lower resolution cameras does not increase

Table 9: Average processing speed (fps) of each camera when used
in cross-evaluation. The best cases are marked in bold.

Camera (resolution) ReSLAM ORB-SLAM2 OpenVSLAM UcoSLAM
cam6 (960× 540) 21.79 1.85 3.50 3.74
cam8 (1280× 720) 27.80 6.23 12.26 26.02
cam7 (1280× 720) 20.80 0.99 3.39 2.91
cam3 (1280× 720) 20.89 2.40 3.09 8.40
cam10 (1600× 896) 20.15 3.81 8.04 17.11
cam5 (1920× 1080) 22.95 1.20 2.89 3.76
cam4 (1920× 1080) 20.33 1.81 3.31 5.63
cam9 (1920× 1080) 18.41 2.69 5.72 13.25
cam2 (1920× 1080) 18.21 2.11 4.47 4.43
cam1 (1920× 1080) 14.16 0.56 3.67 4.26
cam0 (3840× 2160) 10.52 1.18 2.72 4.29

Avrg(fps) 19.64 2.26 4.82 8.53

the performance, our method is specifically designed to do
so without losing accuracy. As previously explained, our
proposal is better suited for low-end systems that need to
navigate an environment using a pre-created base map.

6. Conclusions and future work

Keypoint-based SLAM systems are a powerful tool for
robot navigation. However, they have some drawbacks.
First, keypoints change over time and are difficult to detect
in low-texture scenarios. Second, when using monocular
systems, it is not possible to determine the scale. Third, in
general, maps generated with a camera can not be reused
with a different camera.

This work has proposed a novel keypoint-based SLAM
method for reusing maps created by heterogeneous cam- 825

eras. Our method, coined ReSLAM, allows creating a map
of the environment with a camera that is later reused with
another camera of different optics and resolutions. This
is the first approach in the literature (up to our knowl-
edge) that addresses that problem. Our proposal’s key
consists of a bottom-up pyramidal representation of the
images that seamlessly match keypoints across different
cameras.

ReSLAM has the additional advantage of adapting to
the camera resolution, reducing the computing require-
ments accordingly. This makes our method especially ap-
propriate in scenarios where a base map is created off-line
with a high-resolution camera and then reused by a lower-
end device.

Since no public datasets have been created (to our 840

knowledge) to evaluate SLAM with heterogeneous cam-
eras, this work has created six new datasets for evaluation
purposes. Four different cameras have been employed to
record the same trajectory in our university campus area
in each dataset.

Our experiments show that our method outperforms
state-of-the-art methods in terms of accuracy and speed.
Both the datasets and the code are publicly available.

In future work, we will consider creating the base map
using a parallel approach. Currently, the base map is cre-
ated from a single video sequence. However, the video se-
quence could be split into multiple chunks and processed in
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parallel and afterward, merge the pieces of the map gener-
ated. We also consider extending our code to operate with
other sensors such as fisheye, LiDAR, and stereo cameras.855

Finally, we also consider the use of fiducial markers to al-
low estimating the real scale with monocular cameras, like
UcoSLAM.

Lastly, we believe that the robustness of the base maps
can be further enhanced by incorporating fiducial markers
throughout the environment. This approach would en-
able the estimation of scale and facilitate the reuse of the
base maps in changing environmental conditions, such as
the presence of shadows or objects. Investigating the use
of fiducial markers as part of our future work will con-
tribute to improving the adaptability and reliability of our
method.
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