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Abstract

We return to our study of the extended second Painlevé hierarchy presented in a previous paper. For this 
hierarchy we give a new local auto-BT. We also give an extensive discussion of the iterative construction 
of solutions and special integrals using auto-BTs. Furthermore, we show that Lax pairs can be provided 
for special integrals. Even though this will, in fact, be the case quite generally, it seems that Lax pairs for 
special integrals have not been given previously. Amongst the equations for which we present Lax pairs are 
examples due to Cosgrove and, in classical Painlevé classification results, Chazy.
© 2024 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY license 
(http://creativecommons .org /licenses /by /4 .0/).
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1. Introduction

As is well-known, interest in the Painlevé equations was reignited by the discovery in [1] of 
a link between these equations and completely integrable partial differential equations (PDEs). 
However, even though the second Painlevé hierarchy, derived by similarity reduction using the 
Korteweg-de Vries (KdV) and modified Korteweg-de Vries (mKdV) hierarchies, followed soon 
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after [1–3], with results on auto-Bäcklund transformations (auto-BTs) for all members of this 
hierarchy also being derived in [2], nearly another two decades were to pass before interest in 
such Painlevé hierarchies was to really take off.

The second Painlevé hierarchy is a sequence of ordinary differential equations (ODEs), one 
of each even order 2, 4, 6, . . ., the first member being the second Painlevé equation (PII ),

vxx = 2v3 + xv + α, (1.1)

where α is an arbitrary parameter, and where — as throughout this paper — we use subscripts, 
not only for PDEs but also for ODEs, to denote derivatives. This equation has the two auto-BTs,

v = y + α − α̃

2yx − 2y2 − x
, α = −α̃ + 1, (1.2)

v = −y, α = −α̃, (1.3)

which provide mappings from a solution y of PII for parameter value α̃, i.e., a solution of

yxx = 2y3 + xy + α̃, (1.4)

to a solution v of PII for parameter value α, i.e., of (1.1). It was these results on auto-BTs that 
Airault [2] extended to every member of the PII hierarchy. This hierarchy may be written

ψ[v]R̃n−1[v]vx + 2h1xv − αn = 0, n = 1,2, . . . , (1.5)

where ψ[v] = ∂x − 4v∂−1
x v, R̃[v] = ∂xψ[v] = ∂x

(
∂x − 4v∂−1

x v
)

is the recursion operator of 
the mKdV hierarchy, h1 is a nonzero constant and αn is an arbitrary constant. Without loss 
of generality we may take h1 = −1/2, in which case (1.5) for n = 1 and α1 = α gives the 
second Painlevé equation (1.1). We usually refer to the hierarchy (1.5) employed by Airault as 
the standard PII hierarchy. When additional terms corresponding to lower order mKdV flows 
are also included in the equations of the PII hierarchy, i.e., when it has the form

ψ[v]
n∑

k=1

ckR̃k−1[v]vx + c0v + 2h1xv − αn = 0, n = 1,2, . . . , (1.6)

where all ck , k = 0, 1, . . . , n, are constant (and h1 is a nonzero constant and αn is an arbitrary 
constant), we refer to it as the generalized PII hierarchy; see [3] and [4]. The hierarchy under 
consideration in the current paper, which was first introduced in [5], is a still further extension of 
Airault’s PII hierarchy.

As remarked above, even though the paper [1] led to a huge amount of interest in the Painlevé 
equations, the question of Painlevé hierarchies seems not to have generated much interest un-
til the rediscovery in [6] of the standard second Painlevé hierarchy, along with a standard first 
Painlevé (PI ) hierarchy, i.e., a hierarchy having as first member an ODE equivalent to the first 
Painlevé equation ytt = 6y2 + t . In fact, both of these results can also be found in [7] (but with 
the PII hierarchy having zero additive constant). However, this last paper does not seem to have 
had much impact — outside string theory — on those interested in the Painlevé equations.
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In [8], an alternative form of the auto-BTs of the PII hierarchy was given. Also, the results 
in [9] on the relationship between nonisospectral scattering problems and linear problems for 
Painlevé equations were used and extended in [10], in order to derive Painlevé hierarchies and 
simultaneously their underlying linear problems, or Lax pairs. To date, a great number of papers 
have been published on Painlevé hierarchies, of different types, i.e., not only purely differential 
but also discrete and differential-delay. The interest in deriving auto-BTs for Painlevé hierarchies 
can be seen from the fact that, even in the case of the (standard/generalized) second Painlevé 
hierarchy, auto-BTs as formulated by Airault have since been rederived in [11–14]. Similarly, the 
interest in deriving Lax pairs for Painlevé hierarchies can be seen, again citing here results only 
for the second Painlevé hierarchy itself, from their derivation/rederivation in [3,7] and [11,15,16].

The authors of the current paper have continued in their use of nonisospectral scattering prob-
lems in order to derive Painlevé hierarchies, as they believe that it has a number of advantages 
over other approaches. The first of these advantages is the simplicity with which it allows the 
derivation of Lax pairs for ODEs obtained as reductions. Since the Lax pairs for modified hi-
erarchies (nonisospectral or otherwise) can be obtained from those of the original (unmodified) 
hierarchies using standard, long-established techniques, then Lax pairs for ODE reductions of 
nonisospectral modified hierarchies are also readily obtained; for examples we refer, for instance, 
to [5]. A second advantage is the simplicity with which certain ODE reductions are obtained, 
when compared to other methods. Whilst the derivation of a scaling similarity reduction of a 
PDE hierarchy can be quite straightforward, that of other similarity reductions may not be. In-
deed, the question of whether a (non-scaling) similarity reduction for the first member of an 
isospectral PDE hierarchy can be extended to all members of that hierarchy may not be so trivial. 
For example, the question of how to derive a first Painlevé hierarchy by extending the accelerat-
ing wave reduction of the KdV equation to every member of the KdV hierarchy only seems to 
have been resolved in [17]; the derivation given in [6] made use of the so-called “singular man-
ifold equations” of the KdV hierarchy, a step that would not be so easy to repeat for other PDE 
hierarchies. Much easier is the derivation of a PI hierarchy using the non-isospectral approach 
[10] (see also [5], where it appears, as a special case, as equation (3.19)), or, indeed, the closely 
related approach employed in [7]. For further remarks on the relationship between the use of 
nonisospectral scattering problems and similarity reductions in the derivation of Painlevé hier-
archies, we refer to [18]. A more substantial discussion of the various techniques used to derive 
Painlevé hierarchies and their properties, including “integration via modification” [19,20] and a 
method of obtaining (both continuous and discrete) auto-BTs [21], can be found in the recent 
review [22]; see this review also for a description of results for matrix examples, e.g., [23–28], a 
topic of much current interest.

Recently, we have also explored a still further advantage to the use of nonisospectral scatter-
ing problems in order to obtain Painlevé hierarchies. For example, in the KdV case, we might 
consider the extended KdV hierarchy

ut =
n∑

k=0

ckRk[u]ux +
p∑

k=0

hkRk[u]1, (1.7)

where R[u] = ∂2
x + 4u + 2ux∂

−1
x is the recursion operator of the KdV hierarchy and where 

all ck = ck(t) and hk = hk(t) are functions of t . This nonisospectral hierarchy can be found 
in [29]; the addition of terms of the form Rk[u]1 to the KdV hierarchy (as well as for 2 + 1
generalizations thereof) was also considered in [10]. Whilst corresponding ODE reductions, and 
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their Lax pairs, were indeed considered in [10], emphasis was given to the case where Rk[u]1 is 
local and so ODEs containing terms of this form with k ≥ 2 were not studied in detail. However, 
in [5], we showed that (1.7) can be used to derive the new hierarchy

ψ[v]
( n∑

k=1

ckR̃k−1[v]vx + 2
p∑

k=2

hkR̃k−2[v](xv)x

)
+ c0v + 2h1xv − αn = 0,

n = 1,2, . . . , (1.8)

where now all ck , k = 0, 1, . . . , n, and all hk , k = 1, 2, . . . , p, are assumed constant, and where 
αn is an arbitrary constant; in the non-autonomous case where at least one of h1, h2, . . . , hp is 
nonzero, we defined (1.8) to be an extended PII hierarchy. This may be considered to be a natural 
extension of the generalized (and standard) second Painlevé hierarchies, which may be obtained 
by setting h2 = h3 = · · · = hp = 0 and assuming h1 �= 0. It can be written locally using suitable 
auxiliary dependent variables. Details of its derivation and some of its properties, as given in [5], 
are recalled in Section 2. We note that preliminary results for the particular case n = 2 and p = 2
of (1.8) were also presented in [30].

In other early papers of the current authors on Painlevé hierarchies, terms corresponding to 
Rk[u]1 as discussed above were also considered; see, e.g., [31]. That is, the structure used in the 
derivation of (1.8) is quite general, and can be used within the context of other hierarchies; one 
example of a new extended Painlevé hierarchy, along with properties such as auto-BTs and basic 
special integrals, can be found in [32]. Further examples will be presented shortly. We expect the 
study of such extended Painlevé hierarchies to be of relevance, both for the information that may 
be obtained as to which classes of ODE might be of interest for Painlevé classification, as well 
as for its possible usefulness in allowing ODEs isolated in a particular classification process — 
or by any other techniques — to be identified. This dual motivation will also hold in the cases of 
discrete and differential-delay examples.

In the present paper, we return to our study of the extended second Painlevé hierarchy. In 
Section 2 we give a brief summary of basic facts related to this hierarchy: its relationship to 
corresponding extensions of the KdV and mKdV hierarchies; basic special integrals; Lax pairs; 
and auto-BTs. In Section 3 we consider its auto-BTs anew, giving a new local form of the auto-
BT g corresponding to the discrete symmetry (v, αn) → (−v, −αn) of (1.8), and in addition 
give extensive results on the iteration of solutions using auto-BTs. In Section 4 we consider 
special integrals of our extended second Painlevé hierarchy. We first of all consider iteration 
using auto-BTs to generate sequences of special integrals beginning with a basic special integral. 
We then discuss the question of Lax pairs for special integrals. We believe that Lax pairs for 
the special integrals of Painlevé hierarchies, or, indeed, Painlevé equations, have not been given 
previously. In Section 5, we consider as an example the extended sixth order second Painlevé 
equation and a basic special integral thereof, corresponding to the case n = 3 and p = 3 of (1.8), 
as well as results for extended lower-order second Painlevé equations obtained by setting c3 = 0
and also c3 = c2 = 0. Amongst the examples discussed are equations obtained using Painlevé 
classification by Chazy and Cosgrove, which appear as basic special integrals in the case c3 = 0, 
corresponding to the choices h3 = h2 = 0, and h3 = 0 but h2 �= 0, respectively. For each of 
these previously known equations, with the equation due to Chazy being known for well over a 
hundred years, as well as for other examples, we can now give Lax pairs. Section 6 is used for 
conclusions and a brief discussion of our results.
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2. Preliminaries: the extended second Painlevé hierarchy

In this section we recall some basic facts and results with regard to the extended second 
Painlevé (PII ) hierarchy derived in [5]. In addition to its relation to the extended Korteweg-de 
Vries (KdV) and extended modified Korteweg-de Vries (mKdV) hierarchies, we also discuss 
here basic special integrals, Lax pairs and auto-Bäcklund transformations. We begin with a de-
scription of the extended KdV and mKdV hierarchies, these being nonisospectral generalizations 
of the KdV and mKdV hierarchies. We recall the KdV and mKdV recursion operators and Hamil-
tonian structures, and of course the Miura map, as well as Lax pairs for the given nonisospectral 
extensions. We refer to [33–40], and in addition to [29,9,10] and [5] for the results presented in 
this section. In subsequent sections we will give new results for the extended PII hierarchy.

2.1. Extended KdV hierarchy

Let us recall some basic details of the structure of the extended KdV hierarchy (1.7) [29,10,5], 
i.e.,

ut =
n∑

k=0

ckRk[u]ux +
p∑

k=0

hkRk[u]1, (2.1)

or

ut =
n∑

k=0

ckRk[u]ux +
p∑

k=2

hkRk[u]1 + h1(4u + 2xux) + h0, (2.2)

which was used in [5] as the starting point for the construction of our extended PII hierarchy. 
The members of this hierarchy consist of a sum of standard KdV flows and nonisospectral terms, 
the respective coefficients of which, i.e., ck = ck(t) and hk = hk(t), are functions of t ; here 
for simplicity of notation we use t as the time variable for all the flows of the hierarchy. As is 
well-known, the KdV recursion operator

R[u] = ∂2
x + 4u + 2ux∂

−1
x (2.3)

is the quotient R[u] = B1[u]B−1
0 [u] of the two KdV Hamiltonian operators

B1[u] = ∂3
x + 4u∂x + 2ux and B0[u] = ∂x. (2.4)

The bi-Hamiltonian structure of the standard KdV hierarchy ut = Rn[u]ux is expressed via the 
identities

Rn[u]ux = B0[u]Mn+1[u] = B1[u]Mn[u], n = 0,1,2, . . . , (2.5)

wherein the quantities Mn[u] (defined by M0[u] = 1/2 and by the Lenard recursion relation 
given by the last equality in equation (2.5)), i.e., the sequence
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M0[u] = 1

2
, M1[u] = u, M2[u] = uxx + 3u2,

M3[u] = uxxxx + 10uuxx + 5u2
x + 10u3, . . . (2.6)

are the variational derivatives of a corresponding sequence of Hamiltonian densities (Mn[u] =
δHn) given by

H0 = 1

2
u, H1 = 1

2
u2, H2 = u3 − 1

2
u2

x, H3 = 5

2
u4 − 5uu2

x + 1

2
u2

xx, . . . (2.7)

We note that for the purposes of the present paper we do not need the expressions for the Hamil-
tonian densities.

Defining also, as in [5], the series of quantities wk , k = 0, 1, 2 . . ., via

B0[u]wk+1 = B1[u]wk, w0 = x, (2.8)

so that

B1[u]wk−1 = Rk[u]1, k = 1,2,3 . . . , (2.9)

we see that we may also write equation (2.1) as

ut =
n∑

k=0

ckRk[u]ux +
p∑

k=2

hkB1[u]wk−1 + h1B1[u]x + h0. (2.10)

This then leads to a local form of (2.1), expressed as a system in the variables u and w =
(w1, . . . , wp−1):

ut = B1[u]K[u,w] + h0 (2.11)

and

w1,x = B1[u]x
w2,x = B1[u]w1

...

wp−1,x = B1[u]wp−2

⎫⎪⎪⎪⎬⎪⎪⎪⎭ (2.12)

where

K[u,w] =
n∑

k=0

ckMk[u] +
p∑

k=2

hkwk−1 + h1x. (2.13)

The extended KdV hierarchy has the nonisospectral Lax pair

�xx = (λ − u)�, (2.14)

�t = 2P�x − Px�, (2.15)
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where λ = λ(t) satisfies

λt =
p∑

k=0

hk(4λ)k, (2.16)

and

P =
n∑

k=0

ckPk +
p∑

k=1

hkP̃k (2.17)

with

Pk =
k∑

i=0

(4λ)iMk−i[u], k = 0,1,2, . . . , and

P̃k =
k−1∑
i=0

(4λ)iwk−1−i , k = 1,2,3 . . . . (2.18)

The Lax pair (2.14), (2.15) is equivalent to the system(
�1
�2

)
x

= F
(

�1
�2

)
,

(
�1
�2

)
t

= G
(

�1
�2

)
, (2.19)

where �1 = �, �2 = �x ,

F =
(

0 1
λ − u 0

)
, (2.20)

and

G =
( −Px 2P

2λP − Pxx − 2Pu Px

)
. (2.21)

2.2. Extended mKdV hierarchy

The KdV hierarchy is related to the mKdV hierarchy via the Miura map

u = M[v] = vx − v2, (2.22)

under which the Hamiltonian operator B1[u] factorizes as

B1[u] = M ′[v]B[v](M ′[v])†,

u=M[v]
(2.23)

where
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M ′[v] = ∂x − 2v (2.24)

is the Fréchet derivative of M[v],

(M ′[v])† = −∂x − 2v (2.25)

is the adjoint of this Fréchet derivative, and

B[v] = −∂x (2.26)

is the Hamiltonian operator of the mKdV hierarchy.
The Miura map (2.22), beginning with (2.1) for the choice h0 = 0, then yields the extended 

mKdV hierarchy

vt =
n∑

k=0

ckR̃k[v]vx + 2
p∑

k=1

hkR̃k−1[v](xv)x, (2.27)

or

vt =
n∑

k=0

ckR̃k[v]vx + 2
p∑

k=2

hkR̃k−1[v](xv)x + 2h1(xv)x, (2.28)

where the mKdV recursion operator R̃[v] is given by

R̃[v] = ∂x(∂x + 2v)∂−1
x (∂x − 2v). (2.29)

Similarly to the extended KdV hierarchy, the members of this hierarchy consist of a sum of 
standard mKdV flows and nonisospectral terms, again with respective coefficient functions ck =
ck(t) and hk = hk(t). A local form of this extended mKdV hierarchy, written as a system in v
and w = (w1, . . . , wp−1), is given by:

vt = B[v](M ′[v])†K[M[v],w] (2.30)

and

w1,x = B1[M[v]]x
w2,x = B1[M[v]]w1

...

wp−1,x = B1[M[v]]wp−2

⎫⎪⎪⎪⎬⎪⎪⎪⎭ (2.31)

where K[u, w] is as given in (2.13).
A matrix Lax pair for the extended mKdV hierarchy is obtained via factorization of the 

Schrödinger operator in (2.14) under u = vx − v2,

(∂x − v)(∂x + v)� = λ�. (2.32)
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Setting �1 = � and �2 = (∂x + v)�1 we obtain the system(
�1
�2

)
x

= F
(

�1
�2

)
,

(
�1
�2

)
t

= G
(

�1
�2

)
, (2.33)

where

F =
( −v 1

λ v

)
(2.34)

and

G =
( −Px − 2Pv 2P

2λP − (Px + 2Pv)x +B[v](M ′[v])†K[M[v],w] Px + 2Pv

)
. (2.35)

An equivalent Lax pair for the extended mKdV hierarchy may be obtained via the transformation(
�1
�2

)
=

(
1 −1
μ μ

)(
	1
	2

)
, (2.36)

where λ = μ2, which then yields the spatial part(
	1
	2

)
x

=
(

μ v

v −μ

)(
	1
	2

)
, (2.37)

with the temporal part being easily written down.
Finally, we note that, if we assume cn �= 0 in the extended KdV/mKdV hierarchies, then we 

may set cn = 1 (by redefining t). However, in order to simplify the presentation of examples, we 
prefer not to make this choice.

2.3. The extended second Painlevé hierarchy

The extended PII hierarchy was defined in [5] as the integrated stationary extended mKdV 
hierarchy,

Qn,p[v,αn] ≡ ψ[v]
( n∑

k=1

ckR̃k−1[v]vx + 2
p∑

k=2

hkR̃k−2[v](xv)x

)
+ c0v + 2h1xv − αn = 0,

n = 1,2, . . . , (2.38)

wherein all ck , k = 0, 1, . . . , n, and all hk , k = 1, 2, . . . , p, are now constant, and where αn is an 
arbitrary constant of integration, in the nonautonomous case where at least one of h1, h2, . . . , hp

is nonzero; here

ψ[v] = (∂x + 2v)∂−1
x (∂x − 2v) = ∂x − 4v∂−1

x v, (2.39)

so (see (2.29))
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R̃[v] = ∂xψ[v]. (2.40)

This is the hierarchy (1.8). Equation (2.38) can also be written as a local system in v and w =
(w1, . . . , wp−1):

(∂x + 2v)K[M[v],w] − (h1 + αn) = 0 (2.41)

w1,x = B1[M[v]]x
w2,x = B1[M[v]]w1

...

wp−1,x = B1[M[v]]wp−2

⎫⎪⎪⎪⎬⎪⎪⎪⎭ (2.42)

where K[u, w] is as given in (2.13). In the special case where h2 = h3 = · · · = hp = 0 and h1 �= 0
the resulting scalar equation is just the generalized PII hierarchy [3,4],

ψ[v]
n∑

k=1

ckR̃k−1[v]vx + c0v + 2h1xv − αn = 0, n = 1,2, . . . , (2.43)

which in turn gives the standard PII hierarchy [1–3] when c0 = c1 = · · · = cn−1 = 0.

2.4. Extended PII hierarchy: basic special integrals

We recall the basic special integrals of the extended second Painlevé hierarchy, as defined in 
[5].

Remark 2.4.1. [5] The basic special integrals of the extended PII hierarchy are as given by the 
system

K[M[v],w] =
n∑

k=0

ckMk[M[v]] +
p∑

k=2

hkwk−1 + h1x = 0 (2.44)

w1,x = B1[M[v]]x
w2,x = B1[M[v]]w1

...

wp−1,x = B1[M[v]]wp−2

⎫⎪⎪⎪⎬⎪⎪⎪⎭ (2.45)

It is clear that solutions of this system give solutions of (2.41), (2.42) for parameter value αn =
−h1.

Remark 2.4.2. [5] The system (2.44), (2.45) is equivalent to

K[u,w] =
n∑

ckMk[u] +
p∑

hkwk−1 + h1x = 0, (2.46)

k=0 k=2
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w1,x = B1[u]x
w2,x = B1[u]w1

...

wp−1,x = B1[u]wp−2

⎫⎪⎪⎪⎬⎪⎪⎪⎭ (2.47)

u = vx − v2, (2.48)

Equation (2.48) can be linearized via v = −ψx/ψ onto

ψxx + uψ = 0. (2.49)

Thus, given a solution u, w of (2.46), (2.47) we can obtain a solution v, w of (2.44), (2.45) by 
taking v = −ψx/ψ where ψ satisfies the linear equation (2.49).

Remark 2.4.3. For the special case of the standard second Painlevé hierarchy, i.e., h2 = h3 =
· · · = hp = 0 and h1 �= 0, and also c0 = c1 = · · · = cn−1 = 0, it was observed in [6] that solutions 
for parameter value αn = −h1 may be obtained from the first Painlevé hierarchy coupled to the 
Miura map. For our extended second Painlevé hierarchy, however, such a simple decoupling of 
the basic special integral is no longer possible.

2.5. Extended PII hierarchy: Lax pairs

Let us recall the (two equivalent) Lax pairs given in [5] for our extended PII hierarchy.

Theorem 2.5.1. [5] A Lax pair for the hierarchy (2.41), (2.42) is given by

(
�1
�2

)
x

= F
(

�1
�2

)
,

(
p∑

k=1

hk(4λ)k

)(
�1
�2

)
λ

= G̃
(

�1
�2

)
, (2.50)

where F is given by (2.34),

G̃ = G +
( [(∂x + 2v)K[M[v],w] − (h1 + αn)] 0

0 −[(∂x + 2v)K[M[v],w] − (h1 + αn)]
)

(2.51)
with G given by (2.35), and where all ck , k = 0, 1, . . . , n, and all hk , k = 1, 2, . . . , p, are assumed 
constant. The compatibility condition of this Lax pair reads

S(n,p) ≡
(

p∑
k=1

hk(4λ)k

)
Fλ − G̃x + [F, G̃] = 0. (2.52)

Theorem 2.5.2. [5] The hierarchy (2.41), (2.42) also has an equivalent Lax pair with x-part(
	1
	2

)
x

=
(

μ v

v −μ

)(
	1
	2

)
(2.53)

where λ = μ2 (obtained via the transformation (2.36) given in Section 2.2).
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2.6. Extended PII hierarchy: auto-Bäcklund transformations

Let us also recall some of the results on auto-BTs given in [5].

Theorem 2.6.1. [5] (auto-BT f) Consider a copy of the system (2.41), (2.42) written in terms of 
variables y and z = (z1, . . . , zp−1), and with parameter α̃n, i.e.,

(∂x + 2y)K[M[y], z] − (h1 + α̃n) = 0 (2.54)

z1,x = B1[M[y]]x
z2,x = B1[M[y]]z1

...

zp−1,x = B1[M[y]]zp−2

⎫⎪⎪⎪⎬⎪⎪⎪⎭ (2.55)

Then solutions y, z of this system are mapped by the auto-BT

v = y + αn − α̃n

2K[M[y], z] , (2.56)

wk = zk, k = 1, . . . , p − 1, (2.57)

αn = −α̃n − 2h1, (2.58)

onto solutions v, w of the system (2.41), (2.42). This is our auto-BT f , and it is an involution.

Theorem 2.6.2. [5] (auto-BT g) Consider a copy of equation (2.38) written in terms of the vari-
able y, and with parameter α̃n, i.e.,

Qn,p[y, α̃n] = ψ[y]
( n∑

k=1

ckR̃k−1[y]yx + 2
p∑

k=2

hkR̃k−2[y](xy)x

)
+ c0y + 2h1xy − α̃n = 0,

n = 1,2, . . . . (2.59)

Then solutions y of (2.59) are mapped onto solutions v of (2.38) by the auto-BT

v = −y, αn = −α̃n. (2.60)

This is our auto-BT g for equation (2.38), and it is an involution.

3. A new local auto-Bäcklund transformation and iteration

We now give new results for the extended PII hierarchy (2.41), (2.42). In Section 3.1 we give 
a new local form (i.e., written in terms of the variables v, w of the local system (2.41), (2.42)) 
of the auto-BT g for equation (2.38) given in Theorem 2.6.2. Unlike the local form given in [5], 
this is not defined by means of an alternative Miura map, but instead is given as a direct mapping 
between two different copies of the same hierarchy (2.41), (2.42). In Section 3.2 we give new 
results on the iteration of the auto-BTs of the hierarchy (2.41), (2.42). The results presented in 
Sections 3.1 and 3.2 will prove useful for our later discussion of special integrals.
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3.1. A new local auto-Bäcklund transformation

Theorem 3.1.1. (new local form of auto-BT g) A local form of the auto-BT g, providing a 
mapping from solutions y, z of the system (2.54), (2.55) to solutions v, w of the system (2.41), 
(2.42) is given by

v = −y, αn = −α̃n, (3.1)

together with

wj = zj − 2∂x(∂x + 2y)zj−1, j = 1,2, . . . , p − 1 (3.2)

(where z0 = x, and so for j = 1 this last equation reads w1 = z1 − 4(xy)x ).

Proof. First of all we note that, since B1[M[y]] = (∂x − 2y)∂x(∂x + 2y) (see the factorization 
(2.23)), then

B1[M[−y]] = (∂x + 2y)∂x(∂x − 2y). (3.3)

In addition, from the definition of B1[u] in (2.4) we see that

B1[M[−y]] = B1[M[y] − 2yx] = B1[M[y]] − 8yx∂x − 4yxx. (3.4)

Thus, under this auto-BT,

w1,x −B1[M[v]]x = (z1 − 4(xy)x)x −B1[M[−y]]x
= z1,x − 4(xy)xx − (

B1[M[y]] − 8yx∂x − 4yxx

)
x

= z1,x −B1[M[y]]x, (3.5)

and, for j ≥ 2 (with z0 = x),

wj,x −B1[M[v]]wj−1

= (
zj − 2∂x(∂x + 2y)zj−1

)
x

−B1[M[−y]](zj−1 − 2∂x(∂x + 2y)zj−2
)

= zj,x − 2(∂x + 2y)∂xzj−1,x − (8yx∂x + 4yxx)zj−1

−(
B1[M[y]] − 8yx∂x − 4yxx

)
zj−1 + 2B1[M[−y]]∂x(∂x + 2y)zj−2

= zj,x − 2(∂x + 2y)∂xzj−1,x −B1[M[y]]zj−1

+2(∂x + 2y)∂x(∂x − 2y)∂x(∂x + 2y)zj−2

= zj,x −B1[M[y]]zj−1 − 2(∂x + 2y)∂x

(
zj−1,x −B1[M[y]]zj−2

)
. (3.6)
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We now turn to equation (2.41). First we show by induction that (∂x −2y)Mk[M[−y]] = −(∂x +
2y)Mk[M[y]] for k = 0, 1, . . .1 This is easily seen to hold for k = 0, since M0[u] = 1/2 and left-
and right-hand sides of the claimed identity both give −y. Then, assuming now that this identity 
holds for k = j , the Lenard recursion relation given by the last equality in equation (2.5), along 
with the factorization (2.23), gives

Mj+1[M[y]] = ∂−1
x (∂x − 2y)∂x(∂x + 2y)Mj [M[y]] (3.7)

and so

(∂x − 2y)Mj+1[M[−y]] = (∂x − 2y)∂−1
x (∂x + 2y)∂x(∂x − 2y)Mj [M[−y]]

= −(∂x − 2y)∂−1
x (∂x + 2y)∂x(∂x + 2y)Mj [M[y]]

= −(∂x + 2y)∂−1
x (∂x − 2y)∂x(∂x + 2y)Mj [M[y]], (3.8)

since (∂x − 2y)∂−1
x (∂x + 2y) = (∂x + 2y)∂−1

x (∂x − 2y) (this corresponds to the invariance of 
ψ[y] under y → −y, see equation (2.39)). This last equation is just

(∂x − 2y)Mj+1[M[−y]] = −(∂x + 2y)Mj+1[M[y]], (3.9)

and so we see that the identity holds for k = j + 1. Thus it holds for k = 0, 1, . . ., as claimed.
From the above we see that, under this auto-BT,

(∂x + 2v)K[M[v],w] − (h1 + αn)

= (∂x + 2v)

(
n∑

k=0

ckMk[M[v]] +
p∑

k=2

hkwk−1 + h1x

)
− (h1 + αn)

= (∂x − 2y)

n∑
k=0

ckMk[M[−y]]

+(∂x − 2y)

(
p∑

k=2

hk

(
zk−1 − 2∂x(∂x + 2y)zk−2

) + h1x

)
− (h1 − α̃n)

= −(∂x + 2y)

n∑
k=0

ckMk[M[y]]

+(∂x − 2y)

( p∑
k=2

hkzk−1 + h1x

)
− 2

p∑
k=2

hk(∂x − 2y)∂x(∂x + 2y)zk−2

−(h1 − α̃n)

= −(∂x + 2y)

n∑
k=0

ckMk[M[y]]

1 We could alternatively appeal to the same invariance of the mKdV hierarchy, or the corresponding part of equation 
(2.59).
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+(∂x − 2y)

( p∑
k=2

hkzk−1 + h1x

)
− 2

p∑
k=2

hkB1[M[y]]zk−2 − (h1 − α̃n)

= −(∂x + 2y)

(
n∑

k=0

ckMk[M[y]] +
p∑

k=2

hkzk−1 + h1x

)

+2
p∑

k=2

hk

(
zk−1,x −B1[M[y]]zk−2

) + (h1 + α̃n)

= −
(

(∂x + 2y)K[M[y], z] − (h1 + α̃n)

)

+2
p∑

k=2

hk

(
zk−1,x −B1[M[y]]zk−2

)
. (3.10)

From the above results we see that, under the local form of the auto-BT g, if equations (2.54)
and (2.55) are satisfied, then so are equations (2.41) and (2.42). �

Theorem 3.1.2. The auto-BT given in Theorem 3.1.1 is an involution.

Proof. In order to see this, let us consider a second iteration of the local form of the auto-BT g
from the system (2.41), (2.42) to a solution of the same system written in terms of variables v̂
and ŵ = (ŵ1, . . . , ̂wp−1), and with parameter ̂αn. We then obtain

v̂ = −v = y and α̂n = −αn = α̃n. (3.11)

In addition,

ŵ1 = w1 − 4(xv)x = z1 − 4(xy)x + 4(xy)x = z1, (3.12)

and, for j ≥ 2 (with z0 = x),

ŵj = wj − 2∂x(∂x + 2v)wj−1

= zj − 2∂x(∂x + 2y)zj−1 − 2∂x(∂x − 2y)
(
zj−1 − 2∂x(∂x + 2y)zj−2

)
= zj − 4∂x

(
zj−1,x − (∂x − 2y)∂x(∂x + 2y)zj−2

)
= zj − 4∂x

(
zj−1,x −B1[M[y]]zj−2

)
= zj , (3.13)

since the starting point for our iteration is a solution y, z = (z1, . . . , zp−1) of the system (2.54), 
(2.55). �
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3.2. Iteration of auto-Bäcklund transformations

Remark 3.2.1. (Group of auto-BTs) The group of auto-BTs of our extended second Painlevé 
hierarchy has generators f and g subject to the relations f 2 = 1 and g2 = 1, i.e., it has the 
presentation

G = 〈f,g ; f 2 = g2 = 1〉, (3.14)

and is isomorphic, as in the case of the second Painlevé equation, to the affine Weyl group of 
type A(1)

1 .

Remark 3.2.2. (Composition of auto-BTs) In order to discuss the iteration of the auto-BTs f
and g, let us consider the two composite auto-BTs r = gf and s = fg, which we again express as 
mappings from solutions y, z of the system (2.54), (2.55) to solutions v, w of the system (2.41), 
(2.42):

r = gf : v = −y + αn + α̃n

2K[M[y], z] , (3.15)

wk = zk − 2∂x

(
∂x + 2y − αn + α̃n

K[M[y], z]
)

zk−1, k = 1, . . . , p − 1, (3.16)

αn = α̃n + 2h1, (3.17)

and

s = fg : v = −y + αn + α̃n

2K[M[−y],Z] , Z = (z1, . . . , zp−1) − 2∂x (∂x + 2y) (z0, . . . , zp−2),

(3.18)

wk = zk − 2∂x (∂x + 2y) zk−1, k = 1, . . . , p − 1, (3.19)

αn = α̃n − 2h1 (3.20)

(where z0 = x). These transformations are inverse to each other: rs = (gf )(fg) = gf 2g = g2 =
1. From the defining relations of the group G, it can then be seen that any composition of f and 
g can be written in one of the following forms:

f ε(gf )q = f εrq, ε ∈ {0,1}, q ∈ {0,1,2 . . .}; (3.21)

gε(fg)q = gεsq, ε ∈ {0,1}, q ∈ {0,1,2 . . .} (3.22)

(each of which gives the identity transformation when ε = q = 0).

The following will be of relevance when discussing (starting points for) the iteration of solu-
tions:
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Remark 3.2.3. The extended second Painlevé hierarchy (2.41), (2.42) has the solution v = 0 and 
w constant for parameter value αn = 0. This hierarchy also has solutions defined by the basic 
special integral (2.44), (2.45) for parameter value αn = −h1. Note that in order for v = 0 and w
constant to be a solution of (2.44), (2.45) we must have h1 = 0 (so then αn = 0) and also that the 
constraint 1

2c0 + ∑p
k=2 hkwk−1 = 0 holds.

Let us now assume h1 �= 0, in which case we may take h1 = −1/2. We consider the iteration of 
solutions of (2.54), (2.55) beginning with seed solutions for initial parameter values α̃n = β = 0
and α̃n = β = 1

2 . The motivation for this lies in Remark 3.2.3 and the usual choices of initial 
parameter values for the iteration of solutions of the non-extended second Painlevé hierarchy, 
and in particular of the second Painlevé equation itself.

Remark 3.2.4. Take h1 = −1/2. Then: the first composition (3.21) maps a solution of (2.54), 
(2.55) for initial parameter value α̃n = β to a solution of (2.54), (2.55) for parameter value either 
α̃n = β − q (if ε = 0) or α̃n = −β + q + 1 (if ε = 1); the second composition (3.22) maps a 
solution of (2.54), (2.55) for initial parameter value α̃n = β to a solution of (2.54), (2.55) for 
parameter value either α̃n = β + q (if ε = 0) or α̃n = −β − q (if ε = 1).

Lemma 3.2.5. Take h1 = −1/2 and consider the iteration of solutions of (2.54), (2.55) beginning 
with a seed solution y0, z0 for initial parameter value α̃n = β = 0. The composition (3.21) with 
ε = 1 and q = t − 1 ≥ 0 yields solutions y1 = f rt−1y0, z1 = f rt−1z0 of (2.54), (2.55) for 
integer parameter value α̃n = t ≥ 1, and the composition (3.22) with ε = 0 and q = t ≥ 1 yields 
solutions y2 = sty0, z2 = stz0 of (2.54), (2.55) for integer parameter value α̃n = t ≥ 1. Similarly, 
the composition (3.21) with ε = 0 and q = t ≥ 0 yields solutions y3 = rty0, z3 = rtz0 of (2.54), 
(2.55) for integer parameter value α̃n = −t ≤ 0, and the composition (3.22) with ε = 1 and 
q = t ≥ 0 yields solutions y4 = gsty0, z4 = gstz0 of (2.54), (2.55) for integer parameter value 
α̃n = −t ≤ 0. The solutions y1, z1 and y2, z2 obtained for each positive integer parameter value 
α̃n = t ≥ 1, and the solutions y3, z3 and y4, z4 obtained for each non-positive integer parameter 
value α̃n = −t ≤ 0, satisfy:

(a) y1 = y2 and z1 = z2 iff y0 = 0 and z0 is constant;
(b) y3 = y4 and z3 = z4 iff y0 = 0 and z0 is constant.

Proof. We begin by noting that
y1 = y2 and z1 = z2 iff f rt−1y0 = sty0 and f rt−1z0 = stz0 iff y0 = gy0 and z0 = gz0,

and
y3 = y4 and z3 = z4 iff rt y0 = gsty0 and rtz0 = gstz0 iff y0 = gy0 and z0 = gz0.

Further,
solutions y0, z0 = (z1,0, z2,0, . . . , zp−1,0) of (2.54), (2.55) for parameter α̃n = 0 satisfy y0 =

gy0 and z0 = gz0
iff y0 = −y0 and zj,0 = zj,0 −2∂x(∂x +2y0)zj−1,0, j = 1, 2, . . . , p−1 (where it is understood 

that z0,0 = z0 = x)
iff y0 = 0 and ∂2

x zj−1,0 = 0, j = 1, 2, . . . , p − 1 (note that here j = 1 just corresponds to 
∂2
x z0 = ∂2

x (x) = 0)
iff y0 = 0 and ∂xzj,0 = 0, j = 1, 2, . . . , p − 1 (making use of (2.54), (2.55) with y = 0, 

M[y] = 0 and α̃n = 0). �

We thus obtain:
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Theorem 3.2.6. Take h1 = −1/2. Then, given a seed solution y0, z0 for initial parameter value 
α̃n = β = 0, combinations of the auto-BTs f and g yield, for each integer parameter value α̃n, 
either: exactly one solution of (2.54), (2.55), when y0 = 0 and z0 is constant; or two distinct 
solutions of (2.54), (2.55), otherwise.

Corollary 3.2.7. Take h1 = −1/2. Then, beginning with the seed solution y0 = 0 and z0 constant 
for initial parameter value α̃n = β = 0, iteration of the auto-BTs f and g yields one rational 
solution of the extended PII hierarchy (2.54), (2.55) for each integer parameter value α̃n.

Remark 3.2.8. For the non-extended second Painlevé equation itself, this Corollary is a well-
known result. We do not address here the question of whether there are any other rational 
solutions of the extended PII hierarchy in the case h1 �= 0; for the non-extended second Painlevé 
equation, it is known there are not [41].

Lemma 3.2.9. Take h1 = −1/2 and consider the iteration of solutions of (2.54), (2.55), begin-
ning with a seed solution y0, z0 for initial parameter value α̃n = β = 1

2 . The composition (3.21)
with ε = 1 and q = t ≥ 0 yields solutions y1 = f rty0, z1 = f rtz0 of (2.54), (2.55) for half-odd-
integer parameter value α̃n = t + 1

2 , and the composition (3.22) with ε = 0 and q = t ≥ 0 yields 
solutions y2 = sty0, z2 = stz0 of (2.54), (2.55) for half-odd-integer parameter value α̃n = t + 1

2 . 
Similarly, the composition (3.21) with ε = 0 and q = t + 1 ≥ 1 yields solutions y3 = rt+1y0, 
z3 = rt+1z0 of (2.54), (2.55) for half-odd-integer parameter value α̃n = −t − 1

2 , and the compo-
sition (3.22) with ε = 1 and q = t ≥ 0 yields solutions y4 = gsty0, z4 = gstz0 of (2.54), (2.55)
for half-odd-integer parameter value α̃n = −t − 1

2 . The solutions y1, z1 and y2, z2 obtained for 
each positive half-odd-integer parameter value α̃n = t + 1

2 , t ≥ 0, and the solutions y3, z3 and 
y4, z4 obtained for each negative half-odd-integer parameter value α̃n = −t − 1

2 , t ≥ 0, satisfy:
(a) y1 = y2 and z1 = z2;
(b) y3 = y4 and z3 = z4.

Proof. We begin by noting that
y1 = y2 and z1 = z2 iff f rty0 = sty0 and f rtz0 = stz0 iff fy0 = y0 and f z0 = z0,

and
y3 = y4 and z3 = z4 iff rt+1y0 = gsty0 and rt+1z0 = gstz0 iff fy0 = y0 and f z0 = z0.

The condition fy0 = y0 is satisfied since if, in the auto-BT f , we have α̃n = 1
2 , then αn = −α̃ −

2h1 = − 1
2 +1 = 1

2 and so v = y (and we may define v = y even in the case K[M[y], z] = 0). The 
condition f z0 = z0 is satisfied since, in the auto-BT f , we have wk = zk , k = 1, 2, . . . , p−1. �

We thus obtain:

Theorem 3.2.10. Take h1 = −1/2. Then, given a seed solution y0, z0 for initial parameter value 
α̃n = β = 1

2 (where in the case K[M[y0], z0] = 0 we may define fy0 = y0), combinations of the 
auto-BTs f and g yield, for each half-odd-integer parameter value α̃n, exactly one solution of 
(2.54), (2.55).

Remark 3.2.11. Take h1 = −1/2. In the previous theorem, the case where the seed solution y0, 
z0 satisfies K[M[y0], z0] = 0 corresponds to choosing this seed solution y0, z0 to be a solution 
of the basic special integral
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K[M[y], z] = 0 and zj,x = B1[M[y]]zj−1, j = 1,2, . . . , p − 1 (3.23)

(where z0 = x) for initial parameter value α̃n = β = 1
2 . (For the non-extended second Painlevé 

equation itself, the sequence of solutions thus obtained are just the well-known Airy function 
solutions of this equation.)

We now turn to the case h1 = 0; we must then have p ≥ 2 and at least one of h2, h3, . . . , hp

nonzero. In this case h1 = 0, each of the auto-BTs f and g maps from a solution of (2.54), (2.55)
for parameter value α̃n to a solution for parameter value αn = −α̃n. We have the following result:

Lemma 3.2.12. Take h1 = 0. Then, given a seed solution y0, z0 of (2.54), (2.55) for parameter 
value α̃n:

(a) in order for the results of applying the auto-BTs f and g to coincide, we must have α̃n = 0;
(b) in the case α̃n = 0, the results of applying the auto-BTs f and g coincide iff y0 = 0 and z0

is constant.

Proof. (a) We take h1 = 0. Assume α̃n �= 0. Then K[M[y0], z0] �= 0, and fy0 = gy0 implies 
y0 = α̃

2K[M[y0],z0] �= 0; substituting y = y0, z = z0 and K[M[y0], z0] = α̃
2y0

into equation (2.54)

yields ∂x

(
α̃

2y0

)
= 0, and so y0 = C for some nonzero constant C. But then f z1,0 = gz1,0 gives 

z1,0 = z1,0 −2∂x(∂x +2C)(x) [it is here that we assume that for k ≥ 2 at least one hk �= 0], which 
implies C = 0. This contradiction means that we must have α̃n = 0.
(b) We take h1 = 0 and α̃n = 0. Then fy0 = y0 since if, in the auto-BT f , we have α̃n = 0, then 
αn = 0 and so v = y (and we may define v = y even in the case K[M[y], z] = 0). The proof 
that (fy0 =) y0 = gy0 and (f z0 =) z0 = gz0 iff y0 = 0 and ∂xzj,0 = 0, j = 1, 2, . . . , p − 1, is as 
given as in the proof of Lemma 3.2.5, but now with h1 = 0. �

Taking into account the proof of the above Lemma, we obtain:

Theorem 3.2.13. Take h1 = 0. Let y0, z0 be a seed solution of (2.54), (2.55) for parameter 
value α̃n = 0. Then the action of f on this seed solution corresponds to that of the identity 
transformation (by definition if K[M[y0], z0] = 0). The action of g on this seed solution provides, 
for parameter value α̃n = 0, either: exactly one solution of (2.54), (2.55), when y0 = 0 and z0
is constant; or two distinct solutions of (2.54), (2.55), otherwise. (In this case where h1 = 0 and 
α̃n = 0, if K[M[y0], z0] = 0 and also y0 = 0 and z0 is constant, then we must have that the 
constraint 1

2c0 + ∑p

k=2 hkzk−1,0 = 0 holds; see Remark 3.2.3.)

4. Special integrals

4.1. Iteration of special integrals

Solutions v, w of the basic special integral (2.44), (2.45) provide solutions of the extended 
second Painlevé hierarchy (2.41), (2.42) for parameter value αn = −h1. In addition to generating 
sequences of solutions from a known solution, the auto-BTs f and g may also be used to generate 
sequences of special integrals from a given basic special integral. It is to this iterative generation 
of special integrals to which we now turn. As in Section 3.2, we consider first of all the case 
h1 �= 0, where we may take h1 = −1/2, and secondly the case h1 = 0.
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Set h1 = −1/2. We begin with the basic special integral (2.44), (2.45), which gives rise to 
solutions v, w of (2.41), (2.42) for parameter value αn = 1/2. We now substitute for v, w in this 
special integral, using the auto-BT r given by (3.15)—(3.17), in terms of a solution y, z of (2.54), 
(2.55) for parameter value α̃n = 3/2, i.e., we set

v = −y + 1

K[M[y], z] ; wk = zk − 2∂x

(
∂x + 2y − 2

K[M[y], z]
)

zk−1, k = 1, . . . , p − 1,

(4.1)
and then work in the resulting expressions modulo equations (2.54), (2.55) with h1 = −1/2 and 
α̃n = 3/2. In this way we obtain a special integral of our extended second Painlevé hierarchy for 
parameter value α̃n = 3/2.

We may repeat this procedure, and use the auto-BT r to substitute for y, z in the special 
integral we have obtained for parameter value α̃n = 3/2 in terms of a solution ŷ, ̂z of (2.54), 
(2.55) for corresponding parameter value ̂αn = 5/2,

y = −ŷ + 2

K[M [̂y], ẑ] ; zk = ẑk − 2∂x

(
∂x + 2ŷ − 4

K[M [̂y], ẑ]
)

ẑk−1, k = 1, . . . , p − 1,

(4.2)
now working in the resulting expressions modulo equations (2.54), (2.55) in variables ̂y, ̂z with 
h1 = −1/2 and parameter α̂n = 5/2. We thus obtain a special integral of our extended second 
Painlevé hierarchy for parameter value ̂αn = 5/2.

Repeating this process gives a sequence of special integrals of the extended second 
Painlevé hierarchy (2.41), (2.42), one for each positive half-odd-integer parameter value αn =
1/2, 3/2, 5/2, . . .. In this sequence of special integrals, substituting using the auto-BT g in terms 
of a solution for parameter value of opposite sign then yields a special integral for each negative 
half-odd-integer parameter value αn = −1/2, −3/2, −5/2, . . ..

Taking into account the results of Secion 3.2, we see that one and only one special integral is 
obtained for each half-odd-integer parameter value:

Theorem 4.1.1. Take h1 = −1/2. Then, starting with the basic special integral (2.44), (2.45)
of the extended second Painlevé hierarchy (2.41), (2.42) for parameter value αn = 1/2, combi-
nations of the auto-BTs f and g provide exactly one special integral of (2.41), (2.42) for each 
half-odd-integer parameter value αn.

Proof. From the results of Section 3.2, we see that we may express the solution v, w of the basic 
special integral (2.44), (2.45) for parameter value αn = 1/2 in terms of solutions y1, z1 and y2, z2

of (2.54), (2.55) for half-odd integer parameter values α̃n = t + 1/2, t ≥ 0, via the substitutions 
v = stfy1, w = stf z1 and v = rty2, w = rtz2. However, since v = f v and w = f w, we see that 
v = f v = f rty2 = stfy2 and w = f w = f rtz2 = stf z2, i.e., the substitutions in terms of y1, z1

and y2, z2 are the same. Similarly, we may express the solution v, w of the basic special integral 
(2.44), (2.45) for parameter value αn = 1/2 in terms of solutions y3, z3 and y4, z4 of (2.54), (2.55)
for half-odd integer parameter values α̃n = −t − 1/2, t ≥ 0, via the substitutions v = st+1y3, 
w = st+1z3 and v = rtgy4, w = rtgz4. Again using the fact that v = f v and w = f w, we see 
that v = f v = f rtgy4 = st+1y4 and w = f w = f rtgz4 = st+1z4, i.e., the substitutions in terms 
of y3, z3 and y4, z4 are also the same. �
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We now consider the case h1 = 0: we must then have p ≥ 2 and at least one of h2, h3, . . . , hp

nonzero. The basic special integral (2.44), (2.45) then gives rise to solutions v, w of (2.41), (2.42)
for parameter value αn = 0. Taking into account once again the results of Section 3.2, we obtain 
the following result:

Theorem 4.1.2. Take h1 = 0. Then, starting with the basic special integral (2.44), (2.45) of the 
extended second Painlevé hierarchy (2.41), (2.42) for parameter value αn = 0, the auto-BT f
does not provide a new special integral for parameter value αn = 0, whereas the auto-BT g does 
do so. Any further use of the auto-BT g leads only to an oscillation between these two special 
integrals for parameter value αn = 0.

Proof. From the results of Section 3.2, we see that if we express the solution v, w of the basic 
special integral (2.44), (2.45) for parameter value αn = 0 in terms of a solutions y, z (2.54), 
(2.55), also for parameter value α̃n = 0, via the substitution v = fy, w = f z, then since v = f v

and w = f w we must have v = y and w = z. On the other hand, if we express the solution v, w
of the basic special integral (2.44), (2.45) for parameter value αn = 0 in terms of solutions y1, 
z1 and y2, z2 of (2.54), (2.55), both also for parameter value α̃n = 0, first via the substitution 
v = gy1, w = gz1 and subsequently y1 = gy2, z1 = gz2, it follows that v = y2 and w = z2. �

4.2. Lax pairs for special integrals

We now give Lax pairs for the special integrals of our extended second Painlevé hierarchy. 
Given these results, it is clear that this step will also be possible for the special integrals of other 
Painlevé equations and hierarchies, including discrete and differential-delay examples. We are 
unaware of Lax pairs for special integrals having been given previously.

We give here a direct derivation of Lax pairs for the basic special integrals of the extended 
second Painlevé hierarchy from the Lax pairs of the extended mKdV hierarchy. This is more 
straightforward than using a two-step process whereby first of all we reduce to the Lax pairs of 
the extended second Painlevé hierarchy given in Section 2.5, and then to Lax pairs for the special 
integrals (although the final result is, of course, the same). In Theorems 4.2.1 and 4.2.3 given 
below, we may set h1 = −1/2 (if h1 �= 0), thus obtaining Lax pairs for a basic special integral for 
parameter value αn = 1/2, or h1 = 0, giving Lax pairs for a basic special integral for parameter 
value αn = 0. The difference between these two cases is that, as explained in Section 4.1, in 
the former we may use the auto-BTs f and g to generate a doubly-infinite sequence of special 
integrals, whereas in the latter we may not.

Theorem 4.2.1. A Lax pair for the basic special integral (2.44), (2.45) is given by

(
�1
�2

)
x

= F
(

�1
�2

)
,

(
p∑

k=1

hk(4λ)k−1

)(
�1
�2

)
λ

= H
(

�1
�2

)
, (4.3)

where F is given by (2.34),

H = 1
[

G +
(

(∂x + 2v)K[M[v],w] −2K[M[v],w]
2λK[M[v],w] −(∂ + 2v)K[M[v],w]

)]
(4.4)
4λ x
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with G given by (2.35), and where all ck , k = 0, 1, . . . , n, and all hk , k = 1, 2, . . . , p, are assumed 
constant. The compatibility condition of this Lax pair reads

T (n,p) ≡
(

p∑
k=1

hk(4λ)k−1

)
Fλ − Hx + [F,H] = 0. (4.5)

Proof. The only point which may not be entirely clear when passing from the mKdV Lax pair to 
the Lax pair for the basic special integral is how to use the equation K[M[v], w] = 0 to eliminate 
derivatives of v of order 2n − 1 and higher (we note K[M[v], w] = cnv(2n−1)x + · · · ) from the 
matrix G given by (2.35). We observe that we may write the quantity P occurring in the matrix 
G as

P = P̂ + K[M[v],w], where P̂ =
n∑

k=1

ck

k∑
i=1

(4λ)iMk−i[M[v]] +
p∑

k=2

hk

k−1∑
i=1

(4λ)iwk−1−i

(4.6)
is such that P̂ = 4λcnMn−1[M[v]] + · · · = 4λcnv(2n−3)x + · · · . Considering the entries of the 
matrix

G =
(

g11 g12
g21 −g11

)
(4.7)

defined by (2.35), we thus see that

g11 = −(∂x + 2v)P = −(∂x + 2v)P̂ − (∂x + 2v)K[M[v],w] (4.8)

g12 = 2P = 2P̂ + 2K[M[v],w] (4.9)

g21 = 2λP − ∂x(∂x + 2v)P + ∂x(∂x + 2v)K[M[v],w]
= 2λP̂ + 2λK[M[v],w] − ∂x(∂x + 2v)P̂

= 2λP̂ + 2λ

(
cnv(2n−1)x + · · ·

)
− ∂x(∂x + 2v)

(
4λcnv(2n−3)x + · · ·

)
= −2λcnv(2n−1)x + · · · (4.10)

It then follows that the expression (4.4) for H is as required in order to use the equation 
K[M[v], w] = 0 to eliminate derivatives of v of order 2n − 1 and higher from G (and where, in 
addition, we divide by 4λ since P̂ has an overall factor of λ as do, as we see from (4.8)—(4.10), 
the entries of G after eliminating these derivatives). �

Remark 4.2.2. This represents an extension of the results of [9], where Lax pairs for Painlevé 
equations are obtained from those of PDEs having nonisospectral scattering problems via station-
ary reduction (see [10] for other reductions). Here a Lax pair is obtained for a lower order ODE 
system, the basic special integral, consistent with (i.e., defining solutions of), but not equivalent 
to, the stationary extended mKdV hierarchy.

Theorem 4.2.3. The basic special integral (2.44), (2.45) also has an equivalent Lax pair with 
x-part
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(
	1
	2

)
x

=
(

μ v

v −μ

)(
	1
	2

)
(4.11)

where λ = μ2 (obtained via the transformation (2.36) given in Section 2.2).

Remark 4.2.4. Given that the basic special integral (2.44), (2.45) depends on v only via the 
combination of terms vx − v2, and so can be written as (2.46)—(2.48), we might seek to relate 
the Lax pair given in Theorem 4.2.1 to a Lax pair for the system (2.46), (2.47) since, if such a 
Lax pair could be found, the substitution u = M[v] = vx − v2 would lead to its compatibility 
condition being the basic special integral (2.44), (2.45). A Lax pair for the system (2.46), (2.47)
was in fact presented in Theorem 3.2.1 of [5] (see also [10] for a related derivative equation), and 
is given, after making appropriate changes in notation, by(

�1
�2

)
x

= F
(

�1
�2

)
,

(
p∑

k=1

hk(4λ)k−1

)(
�1
�2

)
λ

= G̃
(

�1
�2

)
, (4.12)

where F is as given by (2.20) and

G̃ =
( −P̃x 2P̃

2λP̃ − P̃xx − 2P̃ u + K[u,w] P̃x

)
(4.13)

with

P̃ =
n∑

k=1

ck

k∑
i=1

(4λ)i−1Mk−i[u] +
p∑

k=2

hk

k−1∑
i=1

(4λ)i−1wk−1−i . (4.14)

Setting u = M[v] = vx − v2 in (4.12)—(4.14) (which, as observed above, then gives the basic 
special integral (2.44), (2.45) as the compatibility condition of (4.12)), and making the gauge 
transformation (

�1
�2

)
=

(
1 0

−v 1

)(
�1
�2

)
, (4.15)

then yields — where it is useful to note that, after substituting u = M[v], P̃ = 1
4λ

P̂ — the Lax 
pair given in Theorem 4.2.1 for the basic special integral (2.44), (2.45). Thus we obtain the 
sought-after result. In some sense, (4.12) — which has as compatibility condition the system 
(2.46), (2.47) in u and w — may then also be considered to be a Lax pair for the basic special 
integral (2.44), (2.45). We recall that, given a solution of (2.46), (2.47), the solution v of (2.48)
can then be found as v = −ψx/ψ where ψ is the solution of (2.49).

Remark 4.2.5. We could also provide Lax pairs for the iterated special integrals (of which there 
are, for h1 = −1/2, one for each parameter value αn = ±1/2, ±3/2, ±5/2, . . ., and, for h1 = 0, 
two for parameter value αn = 0) but, since these special integrals are all Bäcklund-equivalent 
to the basic special integrals (2.44), (2.45) (for h1 = −1/2, for αn = 1/2, and for h1 = 0, for 
αn = 0), giving such Lax pairs is not, in fact, necessary. (This is fortunate since, even with the 
use of symbolic manipulation programmes, the Lax pairs for the iterated special integrals for 
parameter values αn = ±3/2, ±5/2, ±7/2, . . . are difficult to handle.)
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Remark 4.2.6. We have assumed in this paper that at least one of h1, h2, . . . hp be nonzero, since 
our interest is in obtaining results for a genuine analogue of the second Painlevé hierarchy. We 
note, however, that we may also use Theorems 4.2.1 and 4.2.3 to give Lax pairs for the system 
(2.44), (2.45) in the autonomous case h1 = h2 = · · ·hp = 0 (this system is thus obtained, for 
example, from the condition Hx = [F, H]). We then have αn = 0 and the only iteration is via g, 
leading to an oscillation between two special integrals. These two equivalent special integrals, of 
the integrated stationary mKdV hierarchy for zero integration constant, then also define subsets 
of solutions of the stationary mKdV hierarchy, of order 2n + 1; we believe that these special 
integrals of order 2n − 1 together with their Lax pairs represent new results even for this hi-
erarchy. We recall that such linear problems may be used to obtain constants of motion of the 
corresponding equations.

5. Examples of special integrals: n = 3 and p = 3

In order to illustrate our results on Lax pairs for (basic) special integrals, we consider the case 
n = 3 and p = 3. In light of Remark 4.2.6, in this section we allow also the autonomous case 
where all hk = 0, k = 1, 2, . . . , p. We then have

K[u,w] = c3M3[u] + c2M2[u] + c1M1[u] + c0M0[u] + h3w2 + h2w1 + h1x, (5.1)

where w = (w1, w2) and the quantities Mk[u], k = 0, 1, 2, 3, are as given in (2.6). The extended 
sixth order second Painlevé equation, i.e.,

(∂x + 2v)K[M[v],w] − (h1 + α) = 0 (5.2)

w1,x = B1[M[v]]x
w2,x = B1[M[v]]w1

}
(5.3)

where M[v] = vx − v2, and where we now denote the parameter by α rather than α3, may be 
written explicitly as

c3(vxxxxxx − 14v2vxxxx − 56vvxvxxx − 42vv2
xx

−70v2
xvxx + 70v4vxx + 140v3v2

x − 20v7) + c2(vxxxx

−10v2vxx − 10vv2
x + 6v5) + c1(vxx − 2v3) + c0v

+(∂x + 2v)(h3w2 + h2w1) + 2h1xv − α = 0 (5.4)

w1,x = 4(vx − v2) + 2x(vxx − 2vvx)

w2,x = w1,xxx + 4(vx − v2)w1,x + 2(vxx − 2vvx)w1

}
(5.5)

Equations (2.44), (2.45) for n = 3 and p = 3 then give the corresponding extended fifth order 
basic special integral

c3(vxxxxx − 2vvxxxx + 2vxvxxx − 10v2vxxx − v2
xx

−40vvxvxx + 20v3vxx − 10v3
x + 10v2v2

x + 30v4vx

−10v6) + c2(vxxx − 2vvxx + v2
x − 6v2vx + 3v4)
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+c1(vx − v2) + 1

2
c0 + h3w2 + h2w1 + h1x = 0 (5.6)

w1,x = 4(vx − v2) + 2x(vxx − 2vvx)

w2,x = w1,xxx + 4(vx − v2)w1,x + 2(vxx − 2vvx)w1

}
(5.7)

of the system (5.4), (5.5) for parameter value α = −h1. This basic special integral has the Lax 
pair, as given by Theorem 4.2.1,(

�1
�2

)
x

= F
(

�1
�2

)
,

(
16λ2h3 + 4λh2 + h1

)(
�1
�2

)
λ

= H
(

�1
�2

)
, (5.8)

where

F =
( −v 1

λ v

)
and H =

(
h11 h12
h21 −h11

)
(5.9)

with

h11 = −16λ2c3v − 4λ[c3(vxx − 2v3) + c2v + h3(2xv + 1)]
−[c3(vxxxx − 10v2vxx − 10vv2

x + 6v5)

+c2(vxx − 2v3) + c1v + h3(w1,x + 2vw1) + h2(2xv + 1)], (5.10)

h12 = 16λ2c3 + 4λ[2c3(vx − v2) + c2 + 2h3x]
+[2c3(vxxx − 2vvxx + v2

x − 6v2vx + 3v4)

+2c2(vx − v2) + c1 + 2h3w1 + 2h2x], (5.11)

h21 = 16λ3c3 − 4λ2[2c3(vx + v2) − c2 − 2h3x]
+λ[2c3(−vxxx − 2vvxx + v2

x + 6v2vx + 3v4)

−2c2(vx + v2) + c1 + 2h3(w1 − 4xvx − 4v) + 2h2x]
−[c3(2vvxxxx − 2vxvxxx + v2

xx − 20v3vxx

−10v2v2
x + 10v6) − c2(v

2
x − 2vvxx + 3v4) + c1v

2

−(c0/2) − h3(w2 − w1,xx − 2w1vx − 2vw1,x)

−h2(w1 − 2xvx − 2v) − h1x]. (5.12)

The compatibility condition (4.5) of this Lax pair, i.e.,

T (3,3) ≡
(

16λ2h3 + 4λh2 + h1

)
Fλ − Hx + [F,H] = 0, (5.13)

and likewise the compatibility condition of the equivalent Lax pair as given by Theorem 4.2.3, is 
the system (5.6), (5.7). For the various subcases of (5.6), (5.7) considered below, we may then, 
in fact, give either of the çcorresponding reduced Lax pairs.
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Let us assume c3 �= 0. In the case h2 = h3 = 0 equation (5.6) gives a fifth order polynomial 
ODE2; for this equation, for h1 �= 0 but also for the autonomous case h1 = 0, we have thus given 
a Lax pair. For h3 = 0 and h2 �= 0, elimination of w1 from the system consisting of (5.6) with 
h3 = 0 and the first equation of (5.7) yields a sixth order polynomial ODE in v, for which we have 
also given a Lax pair. For the case h3 �= 0, elimination of w1 and w2 from the system (5.6), (5.7)
gives rise to a seventh order non-polynomial ODE in v, for which once again we have given a 
Lax pair. (For the basic special integral (2.44), (2.45), in the general case, details of the process of 
elimination of the variables w1, w2, . . . , wp−1 in order to obtain an ODE in v can be found in [5].)

We note that setting c3 = 0 (and also assuming c2 �= 0) gives the extended third order basic 
special integral

c2(vxxx − 2vvxx + v2
x − 6v2vx + 3v4) + c1(vx − v2)

+ 1

2
c0 + h3w2 + h2w1 + h1x = 0 (5.14)

w1,x = 4(vx − v2) + 2x(vxx − 2vvx)

w2,x = w1,xxx + 4(vx − v2)w1,x + 2(vxx − 2vvx)w1

}
(5.15)

of the corresponding extended fourth order second Painlevé equation for parameter value α =
−h1. Remarks similar to those made above can also be made here. For h3 = 0 and h2 �= 0, 
elimination of w1 yields the following fourth order polynomial ODE in v:

c2(vxxx − 2vvxx + v2
x − 6v2vx + 3v4)x + c1(vx − v2)x

+ h2[4(vx − v2) + 2x(vxx − 2vvx)] + h1 = 0. (5.16)

As observed in [5], this turns out to be Cosgrove’s equation F-XI for N = 3, which was obtained 
using Painlevé classification in [42] (see equations (6.67), (6.68) and (6.87) therein). So for this 
equation of Cosgrove we now have a Lax pair as given by equation (5.8) with h3 = 0, and F and 
H as given by (5.9), but now where

h11 = −4λc2v − [c2(vxx − 2v3) + c1v + h2(2xv + 1)], (5.17)

h12 = 4λc2 + [2c2(vx − v2) + c1 + 2h2x], (5.18)

h21 = 4λ2c2 − λ[2c2(vx + v2) − c1 − 2h2x]
−[c2(vxx − 2v3)x + c1vx + 2h2(xv)x]. (5.19)

The compatibility condition (4λh2 + h1)Fλ − Hx +[F, H] = 0 of this Lax pair, and likewise the 
compatibility condition of the equivalent Lax pair as given by Theorem 4.2.3, yields equation 
(5.16). For h3 �= 0, elimination of w1 and w2 gives a fifth order non-polynomial ODE in v; for 
this equation we have thus also given a Lax pair.

Let us now consider the case h3 = h2 = 0, for which the above special integral reduces to the 
equation

2 That is, the highest order derivative of v may be expressed as a polynomial in v and lower-order derivatives thereof.
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c2(vxxx − 2vvxx + v2
x − 6v2vx + 3v4) + c1(vx − v2) + 1

2
c0 + h1x = 0 (5.20)

(given with h1 = −1/2 in the special case c1 = c0 = 0 in [12] as a special integral of the cor-
responding standard fourth order second Painlevé equation). Equation (5.20) is equivalent (see, 
e.g., [5]) to an ODE found by Chazy [43] in a classification of third order equations with the 
Painlevé property (Chazy class XI with k = 3). We see here that it has a Lax pair as given by 
equation (5.8) with h3 = h2 = 0, and F and H as given by (5.9), with h11, h12 and h21 obtained 
from the corresponding special case of (5.10)—(5.12) as

h11 = −4λc2v − [c2(vxx − 2v3) + c1v], (5.21)

h12 = 4λc2 + [2c2(vx − v2) + c1], (5.22)

h21 = 4λ2c2 − λ[2c2(vx + v2) − c1]
+[c2(v

2
x − 2vvxx + 3v4) − c1v

2 + (c0/2) + h1x]. (5.23)

We believe that a Lax pair for this equation of Chazy has not been given previously. For h1 �= 0, 
and also h1 = 0, the condition h1Fλ − Hx + [F, H] = 0 yields (5.20), as will the corresponding 
condition given by Theorem 4.2.3. In the case h1 = 0, the linear problem provides the constant 
of motion c2(v

2
xx − 4vvxvxx + 2v3

x − 2v2v2
x + 6v4vx − 2v6) + c1(vx − v2)2 + c0(vx − v2), which 

we recognise as c2(u
2
x + 2u3) + c1u

2 + c0u with u = vx − v2; see later.
For the case c3 = c2 = 0 (and c1 �= 0) of (5.6), (5.7), i.e., the extended first order basic special 

integral

c1(vx − v2) + 1

2
c0 + h3w2 + h2w1 + h1x = 0 (5.24)

w1,x = 4(vx − v2) + 2x(vxx − 2vvx)

w2,x = w1,xxx + 4(vx − v2)w1,x + 2(vxx − 2vvx)w1

}
(5.25)

of the extended second Painlevé equation for parameter value α = −h1, we can again give Lax 
pairs for any choice of hk , k = 1, 2, 3. We note that for h3 = 0, solutions of the resulting ODEs, 
which include the well-known Airy case for h2 = 0 and h1 �= 0, are discussed in [5]; for these 
ODEs we have thus now given Lax pairs. For h3 �= 0, elimination of w1 and w2 from the system 
(5.24), (5.25) yields a fifth order non-polynomial ODE in v, for which we have thus also given a 
Lax pair.

Finally, returning to the basic special integral (5.6), (5.7), we recall that this may be written

K[u,w] = 0, w1,x = B1[u]x, w2,x = B1[u]w1, u = vx − v2, (5.26)

or, explicitly, as

c3(uxxxx + 10uuxx + 5u2
x + 10u3) + c2(uxx + 3u2)

+c1u + 1

2
c0 + h3w2 + h2w1 + h1x = 0, (5.27)

w1,x = 4u + 2xux

w = w + 4uw + 2u w

}
(5.28)
2,x 1,xxx 1,x x 1

158



P.R. Gordoa and A. Pickering Journal of Differential Equations 417 (2025) 132–163
u = vx − v2. (5.29)

The system (5.27), (5.28) has the Lax pair (4.12) as given in Remark 4.2.4, with F given by 
(2.20) and G̃ by (4.13), where

P̃ = c3(8λ2 + 4λu + (uxx + 3u2)) + c2(u + 2λ) + 1

2
c1 + h3(4λx + w1) + h2x, (5.30)

i.e.,

G̃ =
(

g̃11 g̃12
g̃21 −g̃11

)
(5.31)

with

g̃11 = −4λ[c3ux + h3] − [c3(uxxx + 6uux) + c2ux + h3w1,x + h2], (5.32)

g̃12 = 16λ2c3 + 4λ[2c3u + c2 + 2h3x]
+2[c3(uxx + 3u2) + c2u + (c1/2) + h3w1 + h2x], (5.33)

g̃21 = 16λ3c3 − 4λ2(2c3u − c2 − 2h3x)

−2λ[c3(uxx + u2) + c2u − (c1/2) + h3(4xu − w1) − h2x]
+[c3(2uuxx − u2

x + 4u3) + c2u
2 + (c0/2)

+h3(w2 − w1,xx − 2uw1) + h2(w1 − 2xu) + h1x]. (5.34)

As noted in Remark 4.2.4, substituting u = vx − v2 into this Lax pair for (5.27), (5.28) allows it 
to be mapped onto the Lax pair (5.8)—(5.12) for the basic special integral (5.6), (5.7). In some 
sense, we may thus regard the above Lax pair for the system (5.27), (5.28) in u, w1, and w2
also as a Lax pair for the basic special integral (5.6), (5.7). Within this context, let us recall, 
moreover, that given a solution u, w1, w2 of (5.27), (5.28), the solution v of (5.29) can then be 
found as v = −ψx/ψ where ψ is the solution of ψxx + uψ = 0. Finally, note that for h3 = h2 =
h1 = 0, (5.27) is a well-known completely integrable Hamiltonian system [44]; for the further 
special case c3 = 0 (and c2 �= 0), the linear problem provides the trivial constant of motion (the 
Hamiltonian) c2(u

2
x +2u3) +c1u

2 +c0u, the same as for the autonomous case h1 = 0 of Chazy’s 
equation (5.20).

6. Conclusions and discussion

In this paper we have continued our study of the extended second Painlevé hierarchy intro-
duced in [5]. We have obtained new results with respect to its auto-BTs and special integrals, in 
particular:

• a new local form of the auto-BT g;
• an iterative construction of solutions and special integrals using auto-BTs;
• Lax pairs for special integrals.
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Let us recall once again the interest in deriving auto-BTs and Lax pairs for the case of the non-
extended second Painlevé hierarchy, and the use of the former in constructing solutions and 
special integrals, as evidenced by the work in [2,3,7] and [11–16].

The above results will prove fundamental for our planned future studies of the properties and 
solutions of our extended second Painlevé hierarchy. However, here we would like to comment 
on the third of the above items, for which here our extended second Painlevé hierarchy serves 
more as an example of a general process: that of providing Lax pairs for special integrals. It 
is clear that this will also be possible for the special integrals of other Painlevé equations and 
hierarchies, including discrete and differential-delay examples. We are unaware of Lax pairs for 
special integrals having been given previously in the literature.

We recall, as remarked in the Introduction and also in [5], that our motivation for studying the 
extended second Painlevé hierarchy (and other extended Painlevé hierarchies) lies in the infor-
mation that it could give with regard to which classes of ODE might be of interest for Painlevé 
classification, as well as in its possible usefulness in the identification of ODEs obtained from 
such a classification or any other process. These two motives are valid also for the special inte-
grals of this hierarchy. By providing Lax pairs for special integrals, we give further information 
about any equations — i.e., equations found by (future or past) Painlevé classification, or by any 
other techniques — to which they correspond. For example, our results have allowed us to give 
Lax pairs for equations originally found by Cosgrove and Chazy, the latter being an equation 
known for well over a century. It is also interesting to note that Cosgrove’s equation F-XI for 
N = 3 arises within the context of the systems studied in this paper as a genuinely extended 
example, since it occurs in the case h2 �= 0.

The case of the above-mentioned equation of Cosgrove serves to illustrate how useful the 
explicit form of Lax pairs is in the relationship between our extended hierarchy and Painlevé 
classification problems. Bearing in mind our discussion of gauge transformations, or more sim-
ply by observation, we find that in the case h1 = 0 its Lax pair can be made to yield that of the 
second Painlevé equation: the restriction c2(vxx − 2v3) + c1v + 2h2xv − γ = 0 is consistent, 
and (5.17)—(5.19) then yield h11 = −4λc2v −h2 −γ , h12 = 4λc2 +[2c2(vx − v2) + c1 + 2h2x]
and h21 = 4λ2c2 − λ[2c2(vx + v2) − c1 − 2h2x], with compatibility condition 4λh2Fλ − Hx +
[F, H] = 0 giving precisely this second Painlevé equation with arbitrary parameter γ . (Note also 
that the corresponding direct mapping of solutions v of the second Painlevé equation to solutions 
v of Cosgrove’s equation with h1 = 0 has not been given previously.) Similar results can be 
expected at higher orders. The use of the explicit form of Lax pairs to derive such connections 
between equations of our extended hierarchy and equations obtained from Painlevé classification 
problems (and generalizations thereof, as well as equations obtained by other means) — along 
also with the corresponding mappings between solutions — is a topic we aim to explore in future 
papers.

Our results on auto-BTs and the iterative construction of solutions also leads naturally to 
questions to be explored in future studies, where the results obtained here will play an important 
role. For example, we have shown that, in the case h1 �= 0, the iteration of auto-BTs may be 
used to construct a rational solution of our extended hierarchy for each integer value of the 
parameter αn. Once we have a means of deriving these rational solutions, their properties may 
then be explored. It is known, for example, that the rational solutions of the usual second Painlevé 
hierarchy can be expressed in terms of a family of monic polynomials [45–47]; it would be 
interesting to see if analogues of these results can be obtained for our extended hierarchy. If that 
is so, then properties such as the locations of their zeros may be studied, again similarly to the 
non-extended case [45].
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An interesting question that arises from the results presented in this paper is that of how we 
might know that a basic special integral can be expressed using a (perhaps higher order/extended) 
Painlevé equation, which is in turn connected to the question of the relationships between the Lax 
pairs of special integrals and those of such Painlevé equations. This is, in fact, quite a novel ques-
tion, as it arises within the context of higher order Painlevé equations/hierarchies, but not for the 
original six Painlevé equations themselves. For the examples considered here, this question is 
related to the existence of the Miura map for related over-arching PDE hierarchies and so, in this 
sense, points to an advantage of the approach adopted by the current authors to the derivation 
of Painlevé hierarchies and their properties. Our use of nonisospectral PDE hierarchies and their 
modifications leads naturally, under reduction to ODEs, not only to Lax pairs but also to ex-
pressions for special integrals in terms of (Miura maps and) related Painlevé hierarchies and, as 
we have seen here, Lax pairs for these systems (i.e., special integrals and related Painlevé hierar-
chies), and transformations between these Lax pairs, will then also follow. Similar comments can 
be made in the discrete and differential-delay cases. Examples for future study may be found in 
our previous papers; see also the discussion in [48]. We will return to these and other examples, 
as well as to further extended Painlevé hierarchies and related questions, in forthcoming papers.
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