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Abstract 29 

Widespread tree mortality caused by forest decline in recent decades has raised concern 30 

among forest managers about how to assess forest fuels in these conditions. To 31 

investigate this question, we developed and tested an objective, consistent approach to 32 

the characterization of canopy fuel metrics - such as fuel load (FL), live fuel moisture 33 

content (LFMC), and live-dead ratio (LDR) - by integrating airborne laser scanning 34 

(ALS) and hyperspectral data to produce more-accurate estimates at the stand level. 35 

Regression models were developed for Pinus sylvestris and P. nigra stands 36 

representative of pine plantations in southern Spain, using field data acquired for 37 

different spatial fuel types and distributions as well as high resolution airborne 38 

hyperspectral data (AHS) and ALS datasets. Strong relationships were found between 39 

ALS and FL using a density of 2 points m-2 (R2=0.64) and between LFMC and 40 

Temperature/NDVI index at a spatial resolution of 5 m (R2=0.91). The red edge 41 

normalized index provided the highest separability (Jeffries-Matusita distance=1.83) 42 

between types of LDR. The plot-aggregate ALS and AHS metrics performed better at 43 

spatial resolutions of 5 m and 2 points m-2 than at other scales. Cartography of the 44 

estimations of FL, LFMC, and LDR made using the empirical models from the ALS 45 

and AHS data showed a mean FL value of 65.87 Mg ha-1, an average LFMC content of 46 

57.51%, and 30.75% of the surface classified as dead fuel (≥60% defoliation). The 47 

results suggest that our remote sensing approach could improve the estimation of 48 

canopy fuels characteristics at higher spatial resolutions as well as estimations of fuel 49 

cartography, to assist the planning and management of fuel reduction treatments.  50 

Key words: Canopy fuel metrics, natural fuels, Mediterranean pine forests, 51 

hyperspectral data, ALS data. 52 
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1. Introduction 54 

Fire is an important component of Mediterranean forest ecosystems, which has been 55 

conditioned by an increase in fuel loads during recent decades, increasing the risk of 56 

catastrophic fire (Pausas, 2004). The description of each fuel type is important when 57 

studying fire behavior (Taylor et al., 1997). Numerous studies have been conducted to 58 

determine the best way to quantify the characteristics of physical fuels of different 59 

types, based on their physiological and structural characteristics. The description of 60 

each fuel is a complex issue due to the large number of variables to be analyzed (Keane, 61 

2013). The fuel types classifications used most commonly are based on mathematical 62 

models estimated from categorized and tabulated variables. 63 

Considering the vegetation composition and characteristics, forest fuels can be grouped 64 

into different models according to a set of parameters describing the fire behavior 65 

(Merrill and Alexander, 1987; Arroyo et al., 2008). Different types of forest fuels 66 

incorporate a set of characteristics related to species composition and respond 67 

differently to fire. Thus, fuel models are described by fuel load by category (live and 68 

dead), particle size class, surface area to volume ratio by component and size class, heat 69 

content by category, fuel bed depth, and dead fuel moisture (Andrews and Queen, 70 

2001). Several fire models were proposed based on the first Rothermel models (1972), 71 

which were developed using the National Fire Danger Rating System (NFDRS) 72 

(Deeming et al., 1977). Those models used a limited number of categories due to their 73 

adaptability to most forest environments. The Northern Forest Fire Laboratory (NFFL) 74 

of the U.S. Forest Service has developed 13 fuel models (Burgan and Rothermel, 1984) 75 

and the Canadian forest fire behavior prediction (FBP) system uses 14 inputs based on 76 

five groups of information: type of fuel, weather, topography, foliar moisture, and type 77 

and duration of prediction. Studies that have evaluated fuel models have typically 78 
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compared fuel loads of non-perturbed vegetation, limiting the ability to detect complex 79 

fuel interactions (Harvey et al., 2014). However, tree mortality caused by forest decline 80 

processes alters the fuel structure (i.e., the quantity, quality, and distribution of 81 

biomass), affecting fire severity and fire behavior (Hoffman et al., 2015).  82 

In typical circumstances - where forest managers need to assess fire behavior on a large 83 

scale - the cost, time, and technical challenges involved in the collection of field data 84 

and assignation of fuel models to achieve complete coverage of a forest are prohibitive. 85 

This is particularly true in areas with steep topography or limited access. Research has 86 

shown that remote sensing techniques can be used to estimate fuel characteristics and 87 

models (Chuvieco et al., 2002; Schlerf et al., 2005; Peterson et al., 2008; Kokaly et al., 88 

2009; Wang et al., 2013) according to the ratio between fresh and dry leaf mass (Jia et 89 

al., 2006) and the fuel moisture content (ratio between water and dry leaf mass) 90 

(Chuvieco et al., 2002; Köetz et al., 2004). There has been increasing emphasis on the 91 

use of higher-resolution multispectral (Riaño et al., 2002; Van Wagtendonk and Root, 92 

2003) or hyperspectral imagery (Jia et al., 2006) to estimate various fuel characteristics. 93 

Hyperspectral remote sensing can also be applied, to detect green and dry biomass, 94 

water content, and the plant area index of burned and unburned vegetation (Riaño et al., 95 

2004), using different indices such as the Normalized Difference Vegetation Index 96 

(NDVI), Photochemical Reflectance Index (PRI), and Water Band Index (WBI). 97 

However, optical data of passive sensors have limitations for fuel assessment. They are 98 

not able to provide quantitative information about fuel biomass and structure (Jia et al., 99 

2006). Airborne laser scanning (ALS) presents advantages in this context as it is 100 

capable of describing the vertical structure of a forest stand and has been used 101 

successfully to map detailed forest parameters. Recently, ALS technology, in 102 

combination with optical images, has been developed as an important source of 103 



5 
 

information for the estimation of forest variables as fuel models characteristics (Riaño et 104 

al., 2004; Naesset and Gobakken, 2008; García et al., 2011; Alonso-Benito et al., 2016). 105 

The use of ALS technology has many advantages given its accuracy and the ability to 106 

extrapolate structural data to a large area; as well, the combination of multispectral 107 

images and ALS data yields a complementary combination of structural and 108 

physiological data of the forest stands. More recent ALS studies (often combined with 109 

optical imagery) have focused on the extraction of fuel metrics across forest landscapes 110 

(Jakubowksi et al., 2013). Despite this progress, there are few examples demonstrating 111 

the efficacy of using ALS integrated with hyperspectral data to extract canopy fuel 112 

information from dense conifer stands across forest landscapes. 113 

In this paper, we quantify three critical canopy fuel characteristics relevant for forest 114 

fuels issue in Pinus sylvestris L. and P. nigra Arnold., affected by mortality processes, 115 

combining hyperspectral images with ALS data. The specific objectives were: i) to 116 

determine the fuel load using ALS data, ii) to determine the live fuel moisture content 117 

and live-dead ratio using indices from hyperspectral remotely sensed data, and iii) to 118 

quantify the effect of the image spatial resolution (2, 5, 30, and 250-m scales, 119 

resolutions present in different satellite sensors currently available) and ALS point 120 

density on these parameters. This methodology may help to estimate forest fuels 121 

characteristics in areas affected by recent tree mortality processes in pine forest 122 

plantations in the Mediterranean Basin. 123 

2. Materials and methods 124 

2.1. Study area. 125 

The study area is located in Sierra de los Filabres (Almeria province, South-eastern 126 

Spain, Lat 37°13'27"N, Lon 2°32'54"W; Figure S1, Supplementary Material). The 127 

elevation of the study area ranges from 1540 to 2000 m.a.s.l., and annual rainfall ranges 128 
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between 300 and 400 mm. The Mediterranean climate is semi-arid with an annual 129 

average temperature of 11 ºC, reaching a maximum of 32 ºC during the summer and a 130 

minimum of -8 ºC in winter. The vegetation is composed of a 40-year-old pine stand of 131 

Pinus sylvestris with stands of P. nigra in surrounding areas. The forests include sparse 132 

evergreen shrubs (Adenocarpus decorticans Boiss and Cistus laurifolius L.). The 133 

predominant fuel models in the study area, according to Rothermel, are conifer stands 134 

(type 8) with smaller areas of scattered shrubs with conifers (type 5) (Consejeria Medio 135 

Ambiente, 2003).  136 

2.2. Field data 137 

Field data characterizing a range of forest parameters were collected in 18 square plots 138 

(30 x 30 m, 900 m2) covering the study area. The plot locations were randomly 139 

distributed to ensure adequate sampling of the dominant fuel type (8) in Mediterranean 140 

pine forests (P. sylvestris and P. nigra). The field data were collected in July 2008 and a 141 

total of 1,368 trees were measured. All trees with diameter at breast height (DBH) 142 

greater than 10 cm were tagged with a unique numerical ID, and the number of stems 143 

per hectare (N, trees ha-1), dbh (cm), basal area (G, m2 ha-1), dominant height ( , m), 144 

and canopy cover (CC) were measured using a Vertex III hypsometer (Haglöf, 145 

Germany) and tree calipers (Mantax 950 mm, Haglöf, Germany) (Table S1 146 

Supplementary Material). Topographic variables (elevation, slope, and aspect) were 147 

obtained from a digital elevation model of a 5 by 5-m grid 148 

(http://www.juntadeandalucia.es/medioambiente/site/rediam/). This resolution was 149 

assumed to be sufficient to capture the spatial variability of the surface topography. 150 

Using the information collected from the field plots, the oven-dry mass of the available 151 

canopy fuel load (FL, Scott and Reinhardt, 2001) for each plot was calculated for the 152 

main species (P. sylvestris). These calculations were based on the species-specific 153 
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allometric equations reported in Ruiz-Peinado et al. (2011), including the biomass of 154 

thick branches (diameter greater than 7 cm), medium branches (diameter between 2 and 155 

7 cm), and thin branches (diameter smaller than 2 cm, together with the needles) (see 156 

Navarro Cerrillo et al., 2017 for further information).  157 

The live fuel moisture content (LFMC) was estimated from a subset of five trees per 158 

plot and five branches per tree. These data were collected at the time of the AHS 159 

imagery acquisition (between 8:00 and 12:00, GMT). The fresh mass was directly 160 

determined in the field after collection. Then, samples were dried in a convection oven 161 

(Estufa ORL, SR-0110, InstruLab, Spain) for 24 h at a temperature of 80°C. The LFMC 162 

was calculated as:  163 

 164 

 165 

 166 

Where  is the green biomass and  is the dry biomass of the sample. 167 

To estimate the relative contents of live and dead fuel, henceforth named the live-dead 168 

ratio (LDR), visual ratings were made for 240 trees. Trees were considered alive or dead 169 

on the basis of the percentage defoliation, with 60% as the threshold (120 trees per 170 

class). A tree with defoliation greater than 60% was considered as dead; conversely, a 171 

tree with less than 60% defoliation was treated as alive. This threshold was selected as a 172 

significant needle loss that compromised the survival of the tree. Forest defoliation was 173 

evaluated using the approach proposed by the ICP-Forests (Eichhorn et al., 2010), 174 

which consists of a visual evaluation of the crown with regard to leaf loss and color 175 

(Nakajima et al., 2011). To avoid subjectivity in the visual evaluation of defoliation all 176 

measurements were performed by the same person. 177 

2.3. ALS and hyperspectral airborne image processing 178 
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The ALS data were acquired by an Optech Airborne Laser Terrain Mapper (ALTM, 179 

small-footprint, high-density, multiple returns) sensor operated at a laser wavelength of 180 

1064 nm, from a flight altitude of 1500 m in August 2008. The beam divergence was 181 

0.3 mrad, the pulsing frequency 33 kHz, the scan frequency 50 Hz, and the maximum 182 

scan angle 10  (Table S2, Supplementary Material). The first and last return pulses 183 

were registered. The whole study area was flown over in 18 strips and each strip was 184 

flown over three times, which gave an average measurement density of about 4 pulses 185 

m-2. 186 

The spectral images acquisition was carried out by Instituto Nacional de Técnica 187 

Aeroespacial (INTA) in July 2008, at 8:00 GMT and 12:00 GMT. The Airborne 188 

Hyperspectral Scanner (AHS, 80 Airborne Hyperspectral Scanner, SenSyTech under R 189 

& D,  https://www.uv.es/leo/sen2flex/ahs.htm) recorded 38 spectral bands in the 0.43-190 

12.5 μm spectral range (Table S3, Supplementary Material). The flight was performed 191 

in five passes covering the study area from east to west, acquiring imagery with a 90º 192 

field of view (FOV) and 2.5 mrad IFOV, with a spatial resolution of 2 m. Due to sensor 193 

limitations, bidirectional effects were not considered. At-sensor radiance processing and 194 

atmospheric correction were performed at the INTA facilities. Atmospheric correction 195 

was undertaken with ATCOR4 based on the MODTRAN radiative transfer model (Berk 196 

et al., 2000), using the aerosol optical depth at 550 nm collected with a Micro-Tops II 197 

sun photometer (Solar Light, Philadelphia, PA, USA).  198 

2.4. Forest Fuel characteristics 199 

Figure 1 shows the workflow followed for the mapping of the forest fuel characteristics 200 

and provides a simple overview of what is described in detail within the next sections. 201 

The ALS and high resolution hyperspectral imagery were processed independently to 202 

produce the metrics and indices of each data type, which were used as the independent 203 
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variables in models to obtain the three canopy fuel characteristics: FL, LFMC, and 204 

LDR.  205 

2.5. Estimation of canopy fuel load using ALS data 206 

FUSION software (forsys.cfr.washington.edu/fusion/) was used to filter and classify the 207 

ALS data (McGaughey, 2009), using a triangular irregular network (TIN; Kraus and 208 

Pfeifer, 1998) and generating a Digital Terrain Model (DTM). The absolute heights of 209 

ALS return were normalized to heights above ground by subtracting the DTM and each 210 

plot was clipped out from the data set (30 x 30 m, 900 m2), from the center point, to 211 

match the field data. ALS-based height metrics were obtained for the 18 field plots: 212 

minimum, maximum, mean, median, standard deviation, variance, coefficient of 213 

variation, interquartile distance, skewness, kurtosis, ADD (average absolute deviation), 214 

L-Moments (1-4), and percentile values (P5 to P95 in five-unit intervals and P99) (Næsset 215 

and Bjerknes, 2001, Table S4, Supplementary Material).  216 

Predictive models were built using the fuel load attributes and metrics obtained from the 217 

ALS data within each field plot. The predictor variables were selected by a 218 

forward/backward stepwise selection model. Comparison of the selected models was 219 

based on the coefficient of determination (R2) and the root mean square error (RMSE). 220 

2.6. Estimation of live moisture content 221 

The Normalized Difference Vegetation Index )R + (R / )R - (R =NDVI 670800670800
, Red 222 

Edge Index )R + (R / )R - (R =RE 710750710750
, temperature (T, ºC), and NDVI ratio 223 

(T/NDVI) were derived from the AHS images using the ArcGIS (ESRI, Redlands, CA) 224 

and ENVI (ITT, Boulder, CO) software packages. These values were then averaged per 225 

plot and used for analysis. Linear regression models to estimate the LFMC were 226 

developed using AHS-imagery-derived indices (NDVI, RE, and T/NDVI). As in the 227 

previous analysis, the predictor variables were selected by a forward/backward stepwise 228 
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selection model and selection of models was based on comparison of the same statistics: 229 

R2 and RMSE (Yuan and Lin, 2006).  230 

2.7. Estimation of live-dead ratio 231 

To estimate the LDR, the same indices (NDVI, RE, T, and T/NDVI) extracted from the 232 

AHS images for the tree canopy were used, together with defoliation data from the field 233 

work. Afterwards, the LDR forest fuel classes were grouped into two groups - living 234 

trees, with <60% crown dead, and dead trees with ≥60% of crown dead- using the 235 

Jeffries-Matusita distance (Chang, 2003). The Jeffries-Matusita distance provides 236 

numbers between 0 and 2, where 0-1 corresponds to very poor separability, 1-1.5 237 

corresponds to poor separability, and 1.5-2 corresponds to high separability. All 238 

statistical analyses were performed using R, version 3.4.0 (R Development Core Team, 239 

2012). 240 

2.8. Spatial scale and ALS point density sensitivity analysis to quantify fuel 241 

characteristics  242 

In order to fully understand the differences observed between forest fuel characteristics, 243 

a scaling-based approach was performed. The models obtained at a scale of 2 m (AHS 244 

scale) were subsequently compared, considering different spatial resolutions. Thus, the 245 

resolutions simulating of different satellite sensors currently available were assessed 246 

(e.g. 5 m - SPOT, 30 m – Landsat, and 250 m - MODIS). The effect of the gradient was 247 

applied to the various sources of information in raster format, such as the digital model 248 

of vegetation and the red edge and NDVI indices. Regarding FL, four different point 249 

densities were achieved, based on a random selection of ALS pulses in a grid cell of 1 250 

m2, and were used in the scale sensitivity process: 2, 1.5, 1, and 0.5 pulses m-2 (density). 251 

Point reduction was performed by the algorithm ThinData, available in the libraries of 252 

FUSION. 253 
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2.9. Cartography of fuel characteristics 254 

The models with the highest R2 and lowest RMSE were selected to map the FL and 255 

LFMC. The LDR was mapped using the cluster classification results. Initially, the study 256 

area was divided into cells of 900 m2, the same size as the plots, in which the value of 257 

each explanatory variable was calculated. Then, we applied the predictive models to 258 

estimate the fuel characteristics in each cell, to generate the cartography of fuel 259 

characteristics. 260 

3. Results 261 

3.1. Fuel load and fuel moisture content quantification 262 

The empirical models used to estimate the fuel load (FL) and live fuel moisture content 263 

(LFMC), using ALS-based metrics and multispectral indices, are summarized in Table 264 

1. Following the independent variable data selection, the models using the height 265 

variable (P99, H_P99) were the most successful. The FL models based on regression 266 

methods provided R2 values that ranged from 0.57 to 0.64 (Table 1), with an RMSE 267 

below 13 Mg ha-1. The scatterplots for the best ALS-based prediction of FL and LFMC 268 

and the observed values are contained in Figures 2 and 3. The best model for FL was 269 

obtained using an ALS density of 2 points m-2 (R2=0.640, p<0.01; RMSE=13.71 Mg ha-270 

1) (Figure 2). The best model for LFMC was obtained using the T/NDVI index at 5-m 271 

spatial resolution (R2=0.919, p<0.01; RMSE=0.827) (Figure 3). The models showed 272 

low values of bias in all cases, with consistency of the prediction models. 273 

3.2. Live-dead ratio quantification 274 

The results of the Jeffries-Matusita distance for LDR are shown in Figure 4. It can be 275 

seen that the RE index provided the highest separability (1.83) between the two types of 276 

LDR, rather than NDVI (0.05) or T/NDVI (0.3).  277 

3.3. Multi-scale aggregation effects 278 
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Figure 4 shows the fuel quantification for the study area, considering different spatial 279 

resolutions. The plot-aggregate ALS and AHS metrics performed better at spatial 280 

resolutions of 5 m (Table 1) and 2 points m-2 than at other scales (Figures 2 and 3). 281 

However, at lower ALS densities this difference was not statistically significant (R2 > 282 

0.57), indicating that reduced-density ALS metrics yielded accuracies similar to those of 283 

higher densities.  284 

For the FL, a mean value of 73.96 Mg ha-1 (±34.28 Mg ha-1) was obtained using an 285 

ALS-based density of 0.5 points m-2. A decrease in the ALS data resolution produced a 286 

decrease in the FL, yielding a mean value of 69.64 Mg ha-1 (±29.65 Mg ha-1) for 1 point 287 

m-2, 69.24 Mg ha-1 (±29.36 Mg ha-1) for 1.5 points m-2, and 65.87 Mg ha-1 (±25.90 Mg 288 

ha-1) for 2 points m-2.  289 

The LFMC showed similar mean values for the four resolutions, a mean value of 290 

moisture of 57.51±2.64% being obtained using a resolution of 2 m. An aggregation 291 

resolution produced similar mean moisture contents (%): 57.51±12.89 for a resolution 292 

of 5 m, 57.17±3.17 for a resolution of 30 m, and 56.93±4.31 for a resolution of 250 m.  293 

Regarding the LDR determined using the RE index, 30.75% of the surface was 294 

classified as dead fuel (>60% defoliation) for a spatial resolution of 2 m. A decrease in 295 

the spatial resolution of the images resulted in an equivalent percentage of surface 296 

covered by dead trees, with a mean value of LDR of 29.38% for a resolution of 5 m and 297 

21.32% for a resolution of 30 m. However, the 250-m resolution (8.78%) produced a 298 

considerable decrease in the LDR surface.  299 

3.4. Cartography of fuel characteristics 300 

Figure 5 shows the cartography of the estimations of FL, LFMC, and LDR made using 301 

the empirical models from the ALS and AHS data (Table 1) and the cluster 302 

classification of the study area. We obtained a mean FL value of 65.87 Mg ha-1 (±25.90 303 
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Mg ha-1) for 2 points m-2, ranging from 286 Mg ha-1 to 0 Mg ha-1. As for the FL 304 

distribution, 37% of the surface had an FL of 0-60 Mg ha-1, 52.14% an FL of 60-120 305 

Mg ha-1, 10.03% a value between 120 and 180 Mg ha-1, and only 0.83% had an FL >180 306 

Mg ha-1. The average LFMC content was 57.51% (±12.89%), ranging between 90% and 307 

0%. Finally, 30.75% of the surface was classified as dead fuel (≥60% defoliation) for 308 

the 2-m spatial resolution.  309 

4. Discussion 310 

Several studies have demonstrated the importance of fuel characterization in the study 311 

of fire behavior (Sandberg et al., 2001; Chuvieco et al., 2009). In this study, we quantify 312 

the fuel characteristics of Pinus plantations affected by mortality processes, based on 313 

the combination of hyperspectral and ALS data. This approach focused on the main 314 

parameters that contribute to forest fire behavior and severity: the fuel load (FL), live 315 

fuel moisture content (LFMC), and live-dead fuel ratio (LDR). We have used ALS data, 316 

hyperspectral images of high spatial resolution, and a statistical approach based on 317 

multiple regression models and cluster classification to predict these parameters. Our 318 

results confirm the findings reported elsewhere (Alonso-Benito et al., 2016; Su et al., 319 

2016), showing strong relationships between ALS and spectral data and fuel 320 

characteristics.  321 

Over the years, fuels have been grouped into different categories, to attempt to explain 322 

the behavior of forest fires (Burke and Rothermel, 1984; Sullivan, 2009). These fuel 323 

types allow us to simplify and summarize the features of the forest fuels involved in the 324 

ignition process, as well as to describe the fire behavior (Sullivan, 2009). Numerous 325 

classification models have been developed around the world and each model has been 326 

parametrized using local site data, making it difficult to apply these classifications 327 

outside the locations where they were created. Also, fuel models present serious 328 
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limitations due to the cost and time required for data acquisition in the field. However, 329 

several studies have shown the usefulness of remote sensors in the estimation of fuel 330 

characteristics (Erdody and Moskal, 2010; García et al., 2011). The use of sensors with 331 

better spatial and spectral resolutions gives models of greater accuracy, which result in a 332 

better approximation of the estimated values to the real values of the variables studied 333 

(Su et al., 2016). 334 

In recent years, ALS sensors have been used, mainly for the determination of fuel 335 

heights, a critical factor for the discrimination of forest fuel characteristics, but also in 336 

the estimation of FL (Andersen et al., 2005; Hermosilla et al., 2014). In this sense, our 337 

results have established an empirical relationship between ALS metrics and FL. 338 

According to the model generated, the use of a single variable (H_P99) is able to 339 

generate accurate information on the total FL in fairly homogeneous forests composed 340 

mainly of Pinus sylvestris and P. nigra plantations. This result is in agreement with 341 

previously published work (Andersen et al., 2005). The use of ALS technology has 342 

many advantages, given its accuracy and ability to extrapolate to the whole area of 343 

study; as well, the combination with hyperspectral images to provide structural and 344 

physiological data of the forest stands (Erdody and Moskal, 2010). The methodological 345 

approach proposed on this study could be applied more generally to other pine 346 

plantations in the Mediterranean area, given the similar spatial structure and fuels 347 

behavior (Mitsopoulos and Dimitrakopoulos, 2014).  348 

A linear relationship between field values of LFMC and T/NDVI ratio has been defined 349 

(T/NDVI; R2=0.91, 5-m spatial resolution). The advantage of using this index is that it 350 

avoids the use of sensors with specific bands for the determination of vegetation 351 

moisture (spectral data lengths between 1000 and 3000 nm), as is the case of InGaAs 352 

sensors. The use of such sensors is rather limited today, mainly because of the small 353 
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number of satellites that incorporate these sensors, as well as the technical problems 354 

associated with their use in airborne systems - mainly due to their high weight and the 355 

problems associated with calibration (Toth and Jóźków, 2016).  356 

The red edge index (RE) classification provides an empirical basis for the estimation of 357 

LDR, derived from the good relationship between the red edge band and the state of 358 

vigor (mortality) of the vegetation at the leaf and canopy scales (Zarco-Tejada et al., 359 

2002; Im and Jensen, 2008). Considering the classification of LDR values, it was 360 

difficult to classify the percentages of live and dead tree crowns, and to estimate them in 361 

large areas. This requires a simplification of the LDR classes, which in this work have 362 

been reduced to two (<60% and ≥60%); this presupposes that some samples are close to 363 

the thresholds of classification and therefore are hard to categorize for the observer. 364 

Additionally, since the distribution of mortality levels among trees and crowns was 365 

uneven in the study area and AHS images only indicate the forest surface spectral 366 

characteristics, our results may be limited. This is particularly problematic for the 367 

detection of change in areas where the dominant trees are unaffected, which can result 368 

in a significant change in forest surface spectral reflectance (Liu et al., 2006). In spite of 369 

these limitations, the LDR classification results obtained in our study are comparable to 370 

the results reported for the same area using pigments as a damage estimation variable 371 

(Navarro-Cerrillo et al., 2014). 372 

To examine the influence of different scales on the detection of fuel types , a scaling-373 

based comparison of the AHS models was applied, considering different spatial 374 

resolutions (5 m - SPOT, 30 m – Landsat, and 250 m – MODIS; Figure 5). Moreover, 375 

different point cloud densities of ALS flight may also influence the values of the 376 

estimated fuel characteristics. In this sense, our results show that the estimated variables 377 

can be modeled with good precision for the estimated biomass variables of P. nigra and 378 
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P. sylvestris forests using medium and low-resolution ALS pulse density (2 points m-2), 379 

as observed also in previous studies (Kramer et al., 2014). However, at lower ALS 380 

densities this difference was not statistically significant, indicating that reduced-ALS-381 

density metrics yielded accuracies similar to those of higher densities. The LFMC 382 

showed similar mean values for the four resolutions; although, a reduction of the model 383 

precision with resolutions lower than 5 m was observed, possibly influenced by the 384 

effect of the soil which may indicate that the model does not work at low resolutions. 385 

Regarding the LDR, 30.75% of the surface was classified as dead fuel (>60% 386 

defoliation) for the 2-m spatial resolution; for resolutions lower than 2 m the LDR 387 

values decreased rapidly.  388 

Finally, the ability to map fuel characteristics (FL, LFMC, and LDR) in pine plantations 389 

has been assessed (Hermosilla et al., 2014). This showed that accurate mapping of fuel 390 

characteristics can be obtained using a limited number of field measurements. The 391 

integration of physiological information from the forest stands, provided by 392 

hyperspectral images, complements the structural information provided by the ALS 393 

data. Recently, the cost of ALS data acquisition has decreased (Tilley et al., 2004) - it 394 

can be obtained for free in some countries (e.g. in Spain, 0.5-1.0 points m-2) - and is 395 

comparable to or even less expensive than the cost of large-scale field data collection 396 

(Jakubowski et al., 2013). Likewise, the cost of medium-spatial-resolution images (e.g. 397 

RapidEye, Sentinel 2A, World-View) has fallen significantly and the accessibility to 398 

them has been simplified (Johansen et al., 2010). As a consequence, considering the 399 

improvement achieved by using ALS-derived products and remote sensing data to 400 

detect fuel parameters and for mapping, it may be a better alternative for forest 401 

managers.  402 
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For future studies we also recommend a closer look at the use of spaceborne 403 

applications of LiDAR (e.g. Geoscience Laser Altimeter System-GLAS on the Ice 404 

Cloud and Land Elevation Satellite-ICESat) for forest fuels studies with an emphasis on 405 

characterizing forest canopy parameters (Tian et al., 2017), including the combinations 406 

of airborne and spaceborne data (Su et al., 2017). 407 

5. Conclusions 408 

Nowadays, there are a large number of satellites that are continuously monitoring 409 

forests as well as producing images of different spectral, spatial, and temporal 410 

resolution, with different acquisition costs (SPOT, Landsat, ChrisProba, Hyperion, etc.). 411 

Also, extensive ALS data are provided at the national scale (e.g. the PNOA Project, in 412 

Spain) and allow the combination of the two types of data. In this study, we developed 413 

and tested a group of models to illustrate the use of AHS and ALS data to predict and 414 

extend our knowledge of forest fuels characteristics (fuel load, live fuel moisture 415 

content, and live-dead ratio) in a Pinus sylvestris and P. nigra plantation in Southern 416 

Spain and, as a consequence, mapping different forest fuel characteristics. The proposed 417 

relationships have worked reasonably well in homogeneous pine forests in terms of the 418 

similarity of the predicted values to the measured values of the variables tested, and we 419 

believe that they would do so also in other environments with similar conditions and 420 

fuel types.  421 
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