
Tracking Fiducial Markers with Discriminative Correlation

Filters

Francisco J. Romero-Ramirez1, Rafael Muñoz-Salinas1,2,*, and

Rafael Medina-Carnicer1,2

1Departamento de Informática y Análisis Numérico, Edificio Einstein. Campus de

Rabanales, Universidad de Córdoba, 14071, Córdoba, Spain, Tlfn:(+34)957212289
2Instituto Maimónides de Investigación en Biomedicina (IMIBIC). Avenida

Menéndez Pidal s/n, 14004, Córdoba, Spain, Tlfn:(+34)957213861

Abstract

In the last few years, squared fiducial markers have become a popular and efficient tool to 10

solve monocular localization and tracking problems at a very low cost. Nevertheless, marker

detection is affected by noise and blur: small camera movements may cause image blurriness

that prevents marker detection.

The contribution of this paper is two-fold. First, it proposes a novel approach for estimating

the location of markers in images using a set of Discriminative Correlation Filters (DCF).

The proposed method outperforms state-of-the-art methods for marker detection and standard

DCFs in terms of speed, precision, and sensitivity. Our method is robust to blur and scales

very well with image resolution, obtaining more than 200fps in HD images using a single CPU

thread.

As a second contribution, this paper proposes a method for camera localization with marker 20

maps employing a predictive approach to detect visible markers with high precision, speed, and

robustness to blurriness. The method has been compared to the state-of-the-art SLAMmethods

obtaining, better accuracy, sensitivity, and speed. The proposed approach is publicly available

as part of the ArUco library.

Keywords— Discriminative Correlation Filter Squared Fiducial Markers Marker MappingSLAM.

*Corresponding author

Email addresses: fj.romero@uco.es (Francisco J. Romero-Ramirez), rmsalinas@uco.es (Rafael Muñoz-Salinas),

rmedina@uco.es (Rafael Medina-Carnicer)

30

Preprint submitted to Image and Vision Computing

1

1 Introduction

Squared fiducial markers have become a popular and efficient method to solve monocular localization and

tracking problems at a very low cost in indoor environments. In medical applications, they are used for

tracking of surgical equipment [1, 2, 3]. In augmented reality (AR) problems, it is employed to estimate

the camera pose so as to properly render the scene [4, 5]. In autonomous navigation or drone landing, it

provides visual references for navigation and landing [6, 7, 8].

The recent works in squared markers [9, 10] make it is possible to estimate the camera pose in the

environment (with the correct scale) by just analyzing images where some markers are visible. Given a set

of these markers printed on a regular piece of paper and placed randomly in the environment (Fig. 1a), it40

is possible to estimate their three-dimensional location from a set of images or a video sequence showing

them (Fig. 1b). This method allows obtaining motion tracking systems of very low cost, requiring only a

camera.

Nevertheless, one of the limitations of these techniques is that the detection of markers is sensitive to

blurring. Figure 2 shows the appearance of the markers under different blurring levels obtained by moving

the camera at different speeds. Even at low camera speeds, manually recorded videos have blurriness that

prevents detection (see Figure 2b). This effect happens either because the camera, which is not placed on

a gimbal (e.g. in low-cost AR applications or drone landing), or because the marker moves fast (surgical

equipment tracking). The high sensitivity to blurring is a limitation to the spread of that technology in

applications of low cost and low computing power.50

The contribution of this paper is two-fold. First, this work proposes a novel approach for estimating

the location of markers in images, that is both fast and robust to blur, which consists in employing a

set of Discriminative Correlation Filters (DCF). In order to speed up computation, our method employs

a pyramid of images and selects at each frame the one where tracking can be done at maximum speed.

Figure 2 shows the tracking capabilities of the proposed method. As a second contribution, we propose a

novel approach for monocular camera pose estimation using marker maps. The proposed method, given a

marker map, employs the previous trackers and a predictive approach to detect visible markers with high

precision, speed, and robustness to blurriness.

The experiments conducted shows that the proposed marker tracking method is fastest and more robust

to blur than the state-of-the-art marker detection algorithms, and more precise than the best DCFs. In60

addition, our proposal is compared with three state-of-the-art SLAM methods: ORBSlam2 [11], LDSO [12],

and UcoSLAM [13]. Our method outperforms them in terms of speed and precision. The proposed method

is publicly available as part of the ArUco library1.

The remainder of this paper is structured as follows. Sect. 2 provides an overview of the related works,

while Sect. 3 explains the basis of DCF. Our contributions are explained in Sect. 4 and 5, while Sect. 6

presents the experiments conducted and Sect. 7 draws some conclusions.

2 Related works

2.1 Fiducial marker systems

Fiducial marker systems are commonly used in camera pose estimation and tracking processes, due to their

high accuracy, robustness, and speed. Since the appearance of ARToolKit [14], a large number of systems70

based on square markers have emerged [10, 15, 16, 17]. In general, the detection process involves thresholding

1https://www.uco.es/investiga/grupos/ava/node/26

2

https://www.uco.es/investiga/grupos/ava/node/26

Figure 1: Map of markers generated by the works [9, 10]. (a) Image of tracking room where a set

of markers are randomly placed in the walls. (b) Marker map generated with [9]. Blue squares

represents the pose of the markers and green ones the pose of the cameras. (c) Laser reconstruction

of the room to help to understand the three-dimensional configuration of the room.

the scene in which a set of squared regions (candidate markers) are extracted from the background. Later,

the interior of the regions is analyzed, discarding those that cannot be identified. Finally, using the four

corners of at least one marker, it is possible to estimate the position of the camera.

Several works have analyzed the performance of marker detection systems [18] showing that speed,

robustness, and accuracy are essential factors to be taken into account, where ArUco and AprilTag markers

systems take advantage [19, 20, 21].

2.2 Discriminative Correlation Filters

Since the appearance of the work of Bolme et al. [22] with Minimum Output Sum of Squared Error

(MOSSE), discriminative correlations filters (DCF) have increased their popularity, becoming one of the 80

main methods of visual tracking due to its efficiency and robustness.

3

Figure 2: Tracking of a fiducial marker along the a video sequence with the proposed method.

From left to right, the marker is observed with increasing blurring levels. The proposed method is

capable of tracking the marker in figures a-d but not in figure e. The estimated marker location is

drawn as a red rectangle.

Many other researchers have work on improving several aspects of the initial MOSSE proposal. Hen-

riques et al. [23] replaces the use of grayscale filters by using HOG features, Danelljan et al. [24] introduces

learning multi-channel filters with Colornames, Li et al. [25] and Lukežič et al. [26] use the integration

of both HOG and Colornames. Other works employing convolutional features of CNNs [27, 28, 29] have

shown high performance.

DCF usually has limited information about the contour, leading to false positives in some scenarios such

as rapid movement, occlusion, or background noise. Mueller et al. [30] use context information in filter

training to improve the performance of state-of-art algorithms without incurring in high computational

costs. On the other hand, to reduce the boundary effects Danneljan et al. [31] reformulate the learning90

function by considering larger image regions, penalizing filter values outside the bounding box.

Another limitation of DCFs is the assumption that the target has a fixed size and that it is completely

aligned to a rectangular region. However, the shape of the tracked objects and their rotation makes the filter

learn the background, leading to errors in tracking. Danelljan et al. [32] presented a method to estimate

the scale by training a classifier on a pyramidal scale. Also, Lukežič et al. [26] introduce the channel and

spatial reliability concepts. The spatial reliability map adjusts the filter to the object to the object allowing

to adapt the size of the search region and improving the tracking in non-rectangular objects. The channel

reliability reflects the discriminative power of each filter channel.

3 Mathematical Basis of Discriminative Correlation Filters

Correlation filter based tracking applies a continuous adaptive process to find the filter that when applied100

on the desired target produces the maximum response. In its simpler form, the filter is a small image

patch centered around the object to be tracked. However, in order to increase the robustness to appearance

changes, a set of modified images of the target (created using affine transformations) are employed to build

the filter. Once the initial filter is created, the filter is applied on the next image at the same location.

Then, the position with the maximum response within the region is considered the new target location.

Finally, the filter is updated to adapt changes in appearance and the process repeated in the subsequent

frames [22].

Let us denote X = {x1, ..., xn} the set of gray-scale patches of the target observed under different

appearance conditions. It will be used as a training set to create the initial filter h. Also, let us denote

4

G = {g1, ..., gn} the desired response of the filter when applied on the patches, i.e, h(xi) = gi. Although gi 110

can have any shape, it is generally generated as a 2D Gaussian (σ = 2) centered at the center of the patch.

Thus, in practice gi = gj ∀i, j ∈ {1, . . . , n}.
Computing the correlation in the Fourier Domain has demonstrated to be the best way to speed up

computation and obtain a certain degree of robustness to misalignment. Correlation in the frequency

domain turns into element-wise multiplications expressed as:

G = X ⊙H∗ (1)

where G,X and H denotes the Fourier transforms of g ∈ G, x ∈ X and h respectively, ⊙ is the element-wise

multiplication and ∗ the complex conjugate. In consequence, the estimation of the optimal correlation filter

H in the Fourier domain is computed as:

min
H

n∑
i=1

||Xi ⊙H∗ −Gi||2 + λ1||H||2 (2)

where λ1 is a regularisation term. Since Eq. 2 is convex, it has a single global minimum that can be

expressed as: 120

H1 =

∑n
i=1Xi ⊙G∗

i

λ1 +
∑n

i=1Xi ⊙X∗
i

(3)

which expresses how to obtain the correlation filter in the first frame. The regularisation term λ1 prevents

divisions by zero.

In frame t (t > 1), the filter is applied to the previous target location and the location with maximum

response is expected to be current target location. We shall define zt as the image patch centred at the

maximum response location in t, and Zt is its Fourier transform. Then, the filter is updated using a running

average so that

Ht =
ηAt + (1− η)At−1

ηBt + (1− η)Bt−1
(4)

At = Gt ⊙ Z∗
t (5)

Bt = Zt ⊙ Z∗
t (6)

where the parameter η ∈ [0, 1] is the learning rate.

An important aspect to consider is how to detect when the tracking has failed. A method to do so is 130

analyzing the Peak to Sidelobe Ratio (PSR), which is the ratio between the filter value at the point with

maximum response and the average response in the rest of the pixels. It has been observed than values

below 7.0 indicates tracking failure [22].

In general, the area surrounding the tracked object may contain distracting information for tracking

that leads to an erroneous local minimum. An effective approach to alleviate this problem is to include

contextual information in the filter [30]. Instead of considering only the target appearance to build the

filter, patches surrounding the target are also employed as negative examples. Following this approach,

Eq. 2 is updated so that the minimization function takes into account a set of patches surrounding the

target.

If Y = {y1, . . . , ym} is the set of contextual patches (blue patches in Fig. 3a) , then Eq.2 becomes: 140

min
H

n∑
i=1

||Xi ⊙H∗ −Gi||2 + λ1||H||2 + λ2

m∑
j=1

||Yj ⊙H||2 (7)

5

Figure 3: Tracking process with correlative filters. (a) Training process in frame t. The filter is

updated using the central patch of the marker in addition to the 4 patches around it. (b) represents

the process of tracking in the frame t+1, for it uses the filter updated in t, the maximum value of

response indicates the new position of the marker.

where λ2 modulates the relative importance of the context and Yj is the Fourier transform of yj . Using

this approach, the update of the filter in frame t (t > 1) is expressed as:

Ht =
ηAt + (1− η)At−1

(ηBt + (1− η)Bt−1) + λ2 (ηDt + (1− η)Dt−1)
(8)

where

Dt =

m∑
i=1

Yi,t ⊙ Y ∗
i,t (9)

and At, Bt are obtained from Eqs. 5 and 6.

4 Tracking of a Squared Marker

This section introduces our first contribution, a DCF-based tracker that allows the continuous tracking of

a square fiducial marker throughout a video sequence. Since estimating the exact location of the marker

corners is required to estimate its three-dimensional pose, our method must be able to track them. There-

fore, our approach employs a total of five filters: one filter for tracking the marker general appearance,

and four additional filters for tracking the corners. In order to speed up computation while adapting to150

scale changes, a multi-resolution pyramid tracking approach is proposed. Filters of fixed size are employed

(constraining the computation time), but, at each iteration, the scale where the marker dimension best fits

the filter size is employed.

Our process can be summarized in the following steps. In the first frame, we find the pyramid level

where the filters are created with the desired size. In subsequent frames, the filters are first applied in the

neighboring regions of the previous location at the same pyramid level to find the optimal location of the

marker and its corners. Then, to adapt to scale changes of the marker, we must find the scale that produces

the highest response of the filter. Finally, the filters are updated.

Below, we provide a formal description of the proposed method.

4.1 Tracker definition and initialization160

The initial step to track a marker m along a video sequence is to find it in the image. A marker is a squared

matrix in which each element represents a bit (see Fig. 4). The marker is comprised of a black region,

6

Figure 4: Identification of the tracked marker. The computation of the homography on the detected

polygon, allows to take the central value of its identification bits, and analyzed in its four possible

orientations.

which helps to detect it, and the inner region containing the bits that uniquely identify the marker. Let us

define the sequence of bits of a marker as

b(m) = (b1, . . . , bn) | bi ∈ {0, 1}, (10)

which is created row by row starting at the top-left bit of the matrix. The detection of the marker in

the image can be efficiently done using the method proposed in [10]. The method extract contours in the

image, obtain its polygonal approximation, and discard those that are not quadrilateral. Each remaining

polygon p is analyzed to check if it belongs to a valid marker. Its four corners are employed to compute

Homography matrix that determines the central pixel of each bit in the image and its pixel intensities are

thresholded using Otsu’s [33] algorithm obtaining its bit sequence b(p) in its four main rotations (0º, 90º, 170

180º and 270º). If the Hamming distance of both is zero in any of the possible rotations, then we have a

perfect match and the marker is considered as detected (see Fig. 4).

Let us define

c = {ck | ck ∈ R2, k ∈ {1, . . . , 4}}

as the pixel coordinates of the four corners for marker m in image I, C(m) ∈ R2 as the location of the

marker center, and A(m) as the observed marker area.

Our aim is to use patches of length side τs to create the DCFs for marker and corners. To do so, the

patches are obtained from an down-sampled version of the image I where the marker area A(m) is most

similar to τ2s . If we denote

I = (I0, I1, ..., In)

as the pyramid of images (I0 = I) where the image Ij , j > 0 is the original image I down-sampled by the

factor

βj | β ∈ [0, 1],

then, we can define:

L(m) =

0 if
(

τ2
s

A(m)

)
≥ 1⌊

logβ

(
τ2
s

A(m)

)⌋
otherwise

(11)

7

as the pyramid level where the area A(m) of the marker is most similar to the desired patch area τ2s . In

other words, the image IL(m) is where the initial patches of area τ2s will be extracted. Please notice that

⌊·⌋ denotes the floor function.

We shall define P (p, τs) as the function that returns a patch of size τ2s centred at p ∈ R2 in the image

IL(m). Consequently, the patches to generate the DCFs for the marker and its corners are P (C(m), τs), P (c1, τs), P (c2, τs), P (c3, τs)180

and P (c4, τs), respectively.

Let us then define the tracker for marker m at time t as:

Tm
t = {Tm

0,t, . . . , T
m
4,t, l

m
t } (12)

where Tm
i,t represents the Fourier transforms of the DCF for the marker center (Tm

0,t) and its four corners

(Tm
i,t , i ∈ {1, . . . , 4}) (see Eq. 7), while lmt represents the pyramid level employed for correlation at time t.

In the first frame,

lm1 = L(m).

4.2 Tracking and Update

In subsequent frames (t > 1), the filters are applied at the previous location, and the location of maximum

filter response is obtained:

Em
i,t(l

m
t) = argmax

p∈R2

PSR(Tm
i,t , p, l

m
t), (13)

where PSR indicates the response of the filter Tm
i,t centred at pixel p in the image Il

m
t . If the maximum

PSR for the marker tracker Tm
0,t is below the established threshold value, the marker is considered as lost.

A very important aspect to consider is the need for an accurate estimation of the marker corners. The

corner locations estimated by Eq. 13 do not have the required accuracy for pose estimation. First, because

tracking normally is done at a reduced version of the original image. Second, even if the tracker is run190

at the lowest piramid level I0, the result is not accurate enough. The corners locations must be refined

with sub-pixel accuracy. Thus, in order to obtain a precise corner estimation, we employ an iterative corner

upsampling process that produces a precise corner location S(Tm
i,t) in the original image I0. To do so, first, a

corner search with sub-pixel accuracy is performed in the vicinity of the estimated corner locations Em
i,t(l

m
t).

For that purpose, the refinement method implemented in the OpenCV library [34] is been employed. Then,

the corner location is upsampled to the previous pyramid level lmt −1, and the search repeated. The process

stops when the image I0 is reached.

Adapting to scale is another crucial element for a successful tracking. In the first frame, correlation is

done at the pyramid level lm1 where the DCFs were initialized. However, due to scale changes of the marker

(when approaching or moving away from it), the initial pyramid level lm1 may not be the one for which200

the filters obtain its maximum response. Thus, it is necessary to find the best pyramid level for the next

frame. To do so, the response of the filter Tm
0,t at the contiguous pyramid scales is analyzed, and the one

maximizing the marker filter is selected:

lmt+1 = argmax
l∈{lmt +1,lmt ,lmt −1]}

PSR(Tm
0,t, Em

0,t(l), l) (14)

Once the best pyramid level is found, all the filters are updated using the patches extracted from that level.

4.3 Confidence measure

The proposed method can track the marker m under large appearance changes caused by blur (see Fig. 2).

However, in some cases, the blurriness level is so high that the estimated location of the corners is not

8

reliable enough for three-dimensional pose estimation.

We propose a confidence measure wm ∈ [0, 1] that indicates how reliable is the estimation provided by

our tracker. As it will become evident in the next section, this measure will allow favoring some markers 210

over others when doing localization from multiple makers. Values near to 1 indicate high confidence in the

detection while values near to zero indicate low confidence.

The measure is composed of two terms. First, the normalized Hamming H distance between the marker

bit sequence b(m) and the bit sequence b(p) observed for the polygon p formed by the four marker corners

estimated by our tracker:
H(b(m), b(p))

|b(m)| .

But then, this value is modulated by the response of the corner trackers∑4
i=1 PSRi

4
,

where

PSRi =

{
1 PSR(Tm

i,t , Em
i,t(l), l) > χ

0 otherwise
(15)

indicates if the tracking of a corner was successful or not.

Thus, the confidence measure is expressed as:

wm = 1−

(
H(b(m), b(p))

|b(m)|

∑4
i=1 PSRi

4

)
. (16)

We have found after several experiments that the combination of both terms provides better results than

any one of them separately.

5 Robust Marker-Map based Pose Estimation

This section explains our second contribution, an extension of the previous methodology aimed at camera

pose estimation with marker maps. A marker map is a set of markers placed in known map locations of 220

the environment that are employed for camera localization in indoor environments. The observation of a

single marker can be enough to obtain the pose of the camera on the map. However, the more markers are

visible, the better the accuracy that can be obtained (see Fig. 6).

Our goal is estimating the camera pose θt ∈ R6 (position and angle) in the map given: (i) a set of

markers M in known map locations, (ii) an image It showing some of them, and (iii) the previous camera

location θt−1.

We shall define the set of markers in our map by

M = {m = {qm1 , . . . , qm4 }}, (17)

where qmi ∈ R3 represents the three-dimensional coordinates of the marker corners in the environment. The

map can be obtained from images of the environment using any of the methods described in [9, 13, 35].

Given an image showing some of the markers, it is possible to estimate the camera pose by analyzing 230

the set of 2D-3D correspondences. Since the 3D location of the corners is known in advance (M), their 2D

image projections can be employed to find the pose between the camera and the global reference system by

minimizing the reprojection of the observed markers as will be explained later in Sect. 5.2.

The rest of this Section explains the proposed method to estimate the camera pose θt given an input

image It, which can be summarized in Alg 1.

9

5.1 Method overview

Our method employs a set of trackers

Tt = {Tm
t },m ∈ M, t ≥ 1,

to estimate the position of the markers in the image, where Tm
t is the type of tracker defined in the previous

Section (Eq. 12). We are proposing a tracking method, and thus, it requires to be initialized. The initial

position θ1 and T1 are obtained from the markers detected with a marker detector [19, 36, 17].

In subsequent frames It, the trackers Tt are applied in order to find the new markers locations. Tracking240

of a marker may fail for several reasons: it fall outside the image view, occlusion, high blur, etc. Thus, we

remove from Tt the trackers Tm
t with a low response (PSR) of the central tracker Tm

0,t. The corners of the

remaining markers are employed to obtain an initial estimation of the camera pose θ̂t (Sect. 5.2).

As the camera moves along the environment, some markers will fall out of the camera view while others

will appear. Since we know both the pose of the camera θ̂t and the three-dimensional location of the

markers M, we can estimate which markers should be visible in the current image and where (Sect. 5.3).

For each expected visible marker, (not in Tt) a quick detection is done on the expected image region where

it should be visible. If correctly detected, a new tracker Tm
t is added to Tt. After all the new markers have

been added, we calculate the final camera pose θt using all the visible markers.

Tracking may fail either because of very fast movement causing a lot of blur (Fig. 2e), or because there250

are no markers are visible in the image. Thus, as final step we analyze if a tracking confidence measure

wTt (explained in Sect. 5.4) is high enough. If not, the tracking should stop until a reliable pose can be

obtained using a regular marker detector [19, 36, 17] to restart tracking.

Algorithm 1: Tracking algorithm overview for image It
Data: M, θt−1, Tt−1, It
Result: θt, Tt, wTt

begin

Tt ←− ApplyF ilters(Tt−1) (Sect 4);

for Tm
t ∈ Tt do

if PSR(Tm
t) < χ then

remove Tm
t from Tt

end

end

Estimate pose θ̂t using Tt (Sect. 5.2);

Look for new visible marker (Sect. 5.3);

for each new maker m do
add Tm

t to Tt
end

Obtain the final pose θt using updated Tt;
Calculate tracking confidence wTt (Sect. 5.4);

end

10

5.2 Camera pose estimation

The estimation of the camera pose given a set of markers detected in the image consists in minimizing the

reprojection error of their corners, considering its confidence wm (Eq. 16):

θt = argmin
θ

∑
m∈M

wmH (emt (θ)) , (18)

where emt (θ) represents the reprojection error of the corners of marker m and H is the Hubber function,

employed to minimize the impact of possible outliers:

H(a) =


1

2
a2 for |a| ≤ α

α(|a| − 1

2
α) otherwise

(19)

The reprojection error of a marker m is defined as:

emt (θ) =

4∑
i=1

||ψ(qmi , θ)− S(Tm
i,t)||2, (20)

where the function ψ(q, θ) ∈ R2 projects the three-dimensional point q in the image given the camera pose 260

θ and S(Tm
i,t) is the precise corner location in the original image I0 (section 4.2).

Equation 18 is a non-linear function that can be efficiently minimized using the Levenberg–Marquardt’s

(LM) algorithm [37].

5.3 Look for visible markers

As the video sequence progresses, and the camera moves, markers will appear and disappear from the scene.

The initialization of these markers is essential to achieve continuous tracking and accurate pose estimation.

Given that the three-dimensional locations of the marker corners in M are known, and an initial camera

pose θ̂t for the It image is available, we can calculate which markers should be visible in the image It image

and where their corner should project.

For each expected marker, we apply a detection process in the region where it should be visible. First, 270

the Otsu’s thresholding algorithm [33] is applied, and contours are extracted using the Suzuki and Abe

algorithm [38]. Using the Douglas and Peucker algorithm [39], the largest a squared polygon p is selected.

Then, the bits b(p) of the polygon are extracted and if they match the predicted marker b(m), using the

Hamming distance, the marker is considered found and a tracker initialized and added to Tt to be employed

for the next image.

5.4 Calculate Tracking Confidence

As previously mentioned, tracking may fail due to the absence of markers, blur, bad lightning conditions,

marker occlusion or any other reason. Therefore, it is important to provide a confidence value indicating

how reliable the estimated pose θt is. It allows determining whether tracking has failed, and in that case,

the system can stop tracking and use a slower but more conservative method for detecting the markers 280

[19, 36, 17].

In this paper, we propose a confidence measure based on the following principle. If a single marker

is spotted very near to the camera, occupying a large region of the image, the estimation of the pose is

reliable. However, if the same marker is detected far from the camera, occupying only a very small region

11

Table 1: Nomenclature and values of the main parameters used by the proposed method.

of the image, the estimation is very unreliable. In the end, the reliability of the estimated pose depends

mainly on the total area of the points employed for computing Eq. 18. If the points are far apart, occupying

a large region of the image, the estimated pose is reliable, and vice versa. So, let us define the confidence

measure wTt as the relative area of the convex hull formed by the marker corners employed in Eq. 18. This

value is one of the points cover all the image, and tends to zero as they are more concentrated in a region.

If the confidence wTt is below a threshold τc, we consider the tracking has failed.290

6 Experiments and results

This section explains the experiments carried out to validate our proposal. The goal of the experiments is

to evaluate the robustness, speed, and accuracy of the proposed method for marker tracking. Experiments

have been divided in two categories. First, the individual marker tracking algorithm (Sect. 4) is tested,

comparing it with state-of-the-art marker detection methods (Sect. 6.1), and correlation filter trackers

(Sect. 6.2). Afterward, our method for camera pose estimation using marker maps (Sect. 5) is compared

with the state-of-the-art SLAM methods in challenging video sequences (Sect. 6.3).

All experiments have been performed using an Intel® processor Core™ i7-7500U CPU @ 2.70GHz ×
4, with 8Gb of Ram, and the Ubuntu 18.04 operating system. Although some of the processing could be

parallelized, only one thread has been used.300

Several parameters that control the behavior of the proposed algorithms we have introduced along the

paper. The values used for these parameters have been experimentally selected and are shown in Table 1.

Finally, we must indicate that the code has been integrated as part of the public library ArUco. We will

refer to the proposed method as TR-ArUco. The code and the videos recorded to conduct the experiments

are publicly available 2.

2https://www.uco.es/investiga/grupos/ava/node/69

12

https://www.uco.es/investiga/grupos/ava/node/69

Table 2: For each method and image resolution: number of frames per second (FPS) and true

positive rate (TPR).

6.1 Comparison with Fiducial Squared Marker Detectors

This section makes a comparison in terms of speed and detection rate of the proposed method TR-ArUco

against the main state-of-the-art marker detection and tracking algorithms: ArUco [19] and AprilTag [17].

Nowadays, both methods are widely used due to their high performance in terms of speed detecting fiducial

markers. 310

Both AprilTag and ArUco detector has different configurable parameters establishing a balance between

speed and detection range. For the AprilTag detector, this parameter is the decimation factor, and for the

ArUco detector, it is the minMarkerSize. To do a fair comparison, parameter values that maximize the

number of detections are chosen. Thus, for AprilTag the decimate factor 2 has been employed, and the

minMarkerSize is set to 0 for ArUco. Additionally, for the ArUco method two versions have been used: the

ArUco NORMAL detection method, which employs an adaptive image threshold, and the ArUco FAST

detection method that uses a global threshold.

A set of video sequences have been recorded showing a squared marker (of size 6× 6 cm) printed on a

piece of paper. Along the sequences, the marker remains static, while the camera moves at different speeds

and distances from the marker. Throughout the sequences, the marker is seen with different sizes, lighting 320

conditions, and degrees of deformations produced by blurring. In total, 10 video sequences, containing

a total of 3326 video frames, of resolution 1920 × 1080, have been recorded using a mobile phone. The

location of the corners can not be estimated in all the images of the sequence (see Fig. 2 (c-e)). However,

we know the marker is visible in all the images. As a consequence, we can analyze the True Positive Ratio

of detections. Besides, we have analyzed the processing speed of the methods. Table 2 shows the results of

the experiment for several resolutions of the video sequences (namely 1080p, 720p and 480p.)

As can be seen, our method obtains the highest TPR in all the tests performed. Also, although the

proposed method is not the fastest one for all resolutions, it becomes the fastest one as the resolution

increases. The speed of our method TR-ArUco is less affected by the image resolution because it employs

filters of fixed size. The proposed pyramid method is the key to obtain high frame rates as the resolution 330

increases. In the end, our method obtains the highest TPR an is an order of magnitude faster than AprilTag,

the second one with highest TPR.

Table 3 shows a summary of the average time consumed by the different steps of the TR-ArUco method.

Notice that steps 1.1− 1.2 are only performed when the marker is not being tracked, i.e. in the first frame

of the video sequence, or when a marker that was being tracked is lost. The steps 2.1− 2.4 are performed

on all frames. As can be seen, the computation times for the resolutions used are similar, with an average

computation time of 4.19 ms. Among the different phases, the selection of the optimal scale is the most

time-consuming one. Also, it is affected by the visible area of the marker, i.e., the larger the marker appears

in the image, the more computation is required.

13

Table 3: Mean computing times (milliseconds) of the different steps of the proposed method for

different resolutions.

6.2 Comparison with Discriminative Correlation Filters340

This Section compares the proposed method with the state-of-the-art Discriminative Correlation Fil-

ters trackers, namely, KCF [40], CSRT [26], MIL [41], TLD [42], MEDIANFLOW[43], MOSSE[22] and

BOOSTING[44]. The implementations provided in the public library OpenCV3 library have been em-

ployed.

The key aspect when detecting a squared fiducial marker is correctly detecting the position of its four

corners in the image. Consequently, this experiment aims at evaluating the capability of the above indicated

DCFs to track the four corners of a marker.

The video sequences employed in the previous experiment have been used for this one. The ground truth

has been obtained using the ArUco library, obtaining the location of the marker corners in these frames

where the marker is detectable. For each one of the selected DCFs trackers, we have applied the following350

methodology. A total of four independent trackers have been employed to track the marker corners. The

trackers are initialized in the first frame to the center of each corner, and then, the trackers are applied

to the subsequent frames. The size of the filters is half the size of the marker (see Fig. 5). Whenever

the tracking error becomes higher than a number of pixels ϵ, the trackers are initialized so as to avoid the

trackers to become completely lost for the rest of the sequence. For our tracker, we proceed in a similar

way, re-initializing the tracker if the error in the estimation of the corners becomes greater than ϵ.

The results obtained for different values of ϵ are shown in Table 4, where each row represents a method.

The columns show the total number of re-initialization required in the sequences evaluated (init), the

average frames per second employed by each method (fps), and the average tracking error (err) which is

expressed in pixels. In this set of experiments, only images of resolution 1080p have been employed.360

As can be observed, the proposed method TR-ArUco outperforms the rest of the methods in the three

parameters evaluated. Our method obtains a stable frame rate, which is an order of magnitude faster than

the rest of the methods (except for MOSSE). The same can be said about the number of re-initializations,

which is much lower than in the rest of the algorithms. Finally, the tracking error of the corners of our

method is the lowest of all. The main conclusion is that the proposed method outperforms the naive

approach (i.e., using individual DCFs) for the given problem.

Figure 2 shows some of the images evaluated in this experiment, overlaying in red the estimations

obtained. Figure 2-(e) shows a case in which our method fails and requires re-initialization. As can be

seen, our method requires re-initialization only in very extreme cases.

3https://opencv.org/

14

https://opencv.org/

Figure 5: Naive approach employed to track a marker consist in using four independent DCFs: one

for each corner.

Table 4: Results obtained by different state-of-the-art DCF trackers. We evaluate the total number

of tracking re-initializations (init), the computation time (fps), and the average tracking error (err).

6.3 Comparison with SLAM methods 370

This section analyzes the TR-ArUco method for camera pose estimation using marker maps (Sec. 5), with

the state-of-art SLAM methods. The following SLAM algorithms have been tested:

• ORBSlam2 [11]: a SLAM method based on keypoints.

• LDSO [12]: a SLAM method based on photoconsistency.

• ArUco MM [35]: a SLAM method based on fiducial squared markers.

• UcoSLAM [13]: a SLAM method using both keypoints and fiducial squared markers.

For evaluation purposes we have employed two different datasets: the publicly available SPM dataset [9],

and a new dataset created for this paper (the DCF dataset 4).

Both datasets have been recorded in our laboratory where a set of fiducial squared markers have been

placed at random locations. The SPM dataset consists of eight video sequences recorded with a PtGrey 380

FLEA3 camera capturing 1920×1080 images at 60Hz. The videos show up to fifty different fiducial markers

of 16.5 cm, distributed in the walls and ceiling of the room. The DCF dataset has nine video sequences

recorded with an ELP camera capturing at 30 Hz frame rate with a resolution of 1920 × 1080 pixels. In

this case, a total of 102 markers of a smaller size (7.9 cm), have been distributed by the walls and ceiling

of the room. The videos of the DCF dataset have been recorded moving the camera fast and with brusque

movements with the aim of achieving different degrees of blurring. In both cases, the ground truth camera

poses are obtained using an Optitrack motion capture system equipped with six cameras (see Fig. 6).

4https://mega.nz/folder/LiRCDYYb#aAOjirkUt54-0CGr3C6-1g

15

https://mega.nz/folder/LiRCDYYb##aAOjirkUt54-0CGr3C6-1g

While the ORBSlam2 and LDSO makes no use of the markers explicitly, the ArUco MM and UcoSLAM

methods use the markers for tracking. However, our method, TR-ArUco, requires the location of the marker

to be know in advance (i.e. the marker map). The map has been created with the UcoSLAM method using390

a long video sequence that covers all markers in the room.

For the SLAM methods, the following methodology has been employed to analyze the video sequences.

The sequence has been first processed to obtain the map and then, using the generated map, it is processed

again to estimate the camera poses at each frame. In this way, the SLAM methods are evaluated after

correcting possible loops in the sequence and obtains better accuracy. In consequence, a fair comparison

with our method, that has a known map of the environment build in a previous phase, can be made.

Table 5 show the results obtained. For each video sequence (row) and method (column), three measures

have been obtained. First, the computing time (FPS). Second, the Absolute Trajectory Error (ATE), which

is the translational RMSE after Sim(3) alignment [45] of the estimated poses with the ground truth. And

third, the percentage of the video sequence frames for which the method provides a pose estimation (%Trck).400

It must be indicated that SLAM systems do not provide estimations in all the frames of a sequence: in

some cases, they get lost due to fast movement or lack of texture.

Two conclusions can be drawn from Table 5. First, the proposed method outperforms the others in

terms of speed and percentage of tracked frames. Second, that the LDSO method performs poorly in most

of the sequences tested.

Table 5: Results obtained for each method in the SMP [9] and DCF datasets. For each sequence,

the frames per second (FPS), absolute trajectory error (ATE), and percentage of tracked frames

(%Trck) are reported.

However, comparing the results of two SLAM methods is not a trivial task. Imagine a method that

only estimates the pose of the camera in the first ten frames while a second method estimates poses in the

whole sequence. Because of the reduced drift in the first frames, the total ATE of the first method will be

smaller than the ATE of the second method (which evaluates the whole sequence). This is why (%Trck) is

also an important aspect to consider.410

The work [13] proposes an evaluation methodology to compare two SLAM methods A and B combining

both the ATE and the %Trck. It defines a measure Sp(A,B) ∈ [−1, 1] that employs a confidence level

p ∈ [0, 1]. When Sp(A,B) is close to 1, it indicates that the A method is better than B, while values close

16

Table 6: Measure Sp(A,B) according to different confidence levels p of the analyzed methods. The

final ranking shows TR-ArUco as the best, while LDSO provides the worst scores.

Figure 6: Map of markers displayed in the laboratory for experimentation. Some scenes of the

environment corresponding to the first video are shown in it.

to −1 indicates that the B method is better than A.

Table 6 shows the values of Sp(A,B) for each pair of methods, using the 17 sequences of the SPM and

DCF datasets, for different confidence values. As can be seen, the proposed method TR − ArUco obtains

best scores than the rest of the methods for different confidence levels. The last row of the Table indicates

how many times a method obtains better results than other methods. In our case, the value 4 means that

proposed method wins to the other four tested methods.

The main conclusion that can be obtained from this experiment is that the proposed method outperforms 420

the state-of-the-art SLAM methods in terms of speed, accuracy and sensitivity, for this particular problem.

7 Conclusions

This paper has proposed methods for tracking squared fiducial markers under challenging conditions. Our

first contribution is a method for tracking squared marker using a set of Discriminative Correlation Filters

which combines a proper scale selection and a corner upsampling strategy. The proposed method outper-

17

forms state-of-the-art methods for marker detection and standard DCFs in terms of speed, precision and

sensitivity. In addition, our method scales very well with image resolution, obtaining more than 200fps in

HD images using a single CPU thread.

Our second contribution is a method for low-cost camera pose estimation using fiducial marker maps.

The proposed method is able to estimate the pose of a camera by tracking the position of the already visible430

markers and predicting the location of the markers appearing in the scene. Our method has been compared

to state-of-the-art SLAM methods obtaining, better accuracy, sensitivity, and speed.

The proposed methods are publicly available for other researchers as part of the ArUco library5, and

the datasets employed in this paper are available to ease the reproduction of the experiments.

Acknowledgments

This project has been funded under projects TIN2019-75279-P and IFI16/00033 (ISCIII) of Spain Ministry

of Economy, Industry and Competitiveness, and FEDER.

References

[1] H. Nakawala, G. Ferrigno, E. D. Momi, Development of an intelligent surgical training system for

thoracentesis, Artificial Intelligence in Medicine 84 (2018) 50 – 63.440

[2] P. Matthies, B. Frisch, J. Vogel, T. Lasser, M. Friebe, N. Navab, Inside-Out Tracking for Flexible

Hand-held Nuclear Tomographic Imaging, in: IEEE Nuclear Science Symposium and Medical Imaging

Conference, San Diego, USA, 2015.

[3] P. K. Kanithi, J. Chatterjee, D. Sheet, Immersive augmented reality system for assisting needle po-

sitioning during ultrasound guided intervention, in: Proceedings of the Tenth Indian Conference on

Computer Vision, Graphics and Image Processing, ICVGIP ’16, ACM, New York, NY, USA, 2016, pp.

65:1–65:8.

[4] E. Marchand, H. Uchiyama, F. Spindler, Pose estimation for augmented reality: A hands-on survey,

IEEE Transactions on Visualization and Computer Graphics 22 (12) (2016) 2633–2651.

[5] H. Duan, Q. Zhang, Visual measurement in simulation environment for vision-based uav autonomous450

aerial refueling, IEEE Transactions on Instrumentation and Measurement 64 (9) (2015) 2468–2480.

[6] A. Marut, K. Wojtowicz, K. Falkowski, Aruco markers pose estimation in uav landing aid system,

in: 2019 IEEE 5th International Workshop on Metrology for AeroSpace (MetroAeroSpace), 2019, pp.

261–266.

[7] M. F. Sani, G. Karimian, Automatic navigation and landing of an indoor ar. drone quadrotor us-

ing aruco marker and inertial sensors, in: 2017 International Conference on Computer and Drone

Applications (IConDA), 2017, pp. 102–107.

[8] R. Polvara, S. Sharma, J. Wan, A. Manning, R. Sutton, Towards autonomous landing on a moving

vessel through fiducial markers, in: 2017 European Conference on Mobile Robots (ECMR), 2017, pp.

1–6.460

[9] R. Muñoz-Salinas, M. J. Maŕın-Jiménez, R. Medina-Carnicer, Spm-slam: Simultaneous localization

and mapping with squared planar markers, Pattern Recognition 86 (2019) 156 – 171.

5https://www.uco.es/investiga/grupos/ava/node/26

18

https://www.uco.es/investiga/grupos/ava/node/26

[10] S. Garrido-Jurado, R. Muñoz Salinas, F. J. Madrid-Cuevas, M. J. Maŕın-Jiménez, Automatic gener-

ation and detection of highly reliable fiducial markers under occlusion, Pattern Recognition 47 (6)

(2014) 2280–2292.

[11] R. Mur-Artal, J. D. Tardós, Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d

cameras, IEEE Transactions on Robotics 33 (5) (2017) 1255–1262.

[12] X. Gao, R. Wang, N. Demmel, D. Cremers, Ldso: Direct sparse odometry with loop closure, in: 2018

IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 2018, pp. 2198–2204.

[13] R. Muñoz-Salinas, R. Medina-Carnicer, Ucoslam: Simultaneous localization and mapping by fusion of 470

keypoints and squared planar markers, Pattern Recognition 101 (2020) 107193.

[14] H. Kato, M. Billinghurst, Marker tracking and hmd calibration for a video-based augmented reality

conferencing system, in: Augmented Reality, 1999. (IWAR ’99) Proceedings. 2nd IEEE and ACM

International Workshop on, 1999, pp. 85–94.

[15] Q. Bonnard, S. Lemaignan, G. Zufferey, A. Mazzei, S. Cuendet, N. Li, A. Özgür, P. Dillenbourg,

Chilitags 2: Robust fiducial markers for augmented reality and robotics. (2013).

URL http://chili.epfl.ch/software

[16] D. Wagner, D. Schmalstieg, ARToolKitPlus for pose tracking on mobile devices, in: Computer Vision

Winter Workshop, 2007, pp. 139–146.

[17] E. Olson, Apriltag: A robust and flexible visual fiducial system, in: Robotics and Automation (ICRA), 480

2011 IEEE International Conference on, 2011, pp. 3400–3407.

[18] A. Sagitov, K. Shabalina, R. Lavrenov, E. Magid, Comparing fiducial marker systems in the presence of

occlusion, in: 2017 International Conference on Mechanical, System and Control Engineering (ICMSC),

2017, pp. 377–382.

[19] F. J. Romero-Ramirez, R. Muñoz-Salinas, R. Medina-Carnicer, Speeded up detection of squared fidu-

cial markers, Image and Vision Computing 76 (2018) 38–47.

[20] F. J. Romero-Ramirez, R. Muñoz-Salinas, R. Medina-Carnicer, Fractal markers: A new approach for

long-range marker pose estimation under occlusion, IEEE Access 7 (2019) 169908–169919.

[21] M. Krogius, A. Haggenmiller, E. Olson, Flexible layouts for fiducial tags, in: 2019 IEEE/RSJ Interna-

tional Conference on Intelligent Robots and Systems (IROS), 2019, pp. 1898–1903. 490

[22] D. S. Bolme, J. R. Beveridge, B. A. Draper, Y. M. Lui, Visual object tracking using adaptive correlation

filters, in: 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition,

2010, pp. 2544–2550.

[23] J. F. Henriques, R. Caseiro, P. Martins, J. Batista, High-speed tracking with kernelized correlation

filters, IEEE Transactions on Pattern Analysis and Machine Intelligence 37 (3) (2015) 583–596.

[24] M. Danelljan, F. S. Khan, M. Felsberg, J. v. d. Weijer, Adaptive color attributes for real-time visual

tracking, in: 2014 IEEE Conference on Computer Vision and Pattern Recognition, 2014, pp. 1090–

1097.

[25] Y. Li, J. Zhu, A Scale Adaptive Kernel Correlation Filter Tracker with Feature Integration, in: Com-

puter Vision - ECCV Workshops, 2014, pp. 254–265. 500

[26] A. Lukežič, T. Voj́ı̌r, L. Čehovin Zajc, J. Matas, M. Kristan, Discriminative correlation filter tracker

with channel and spatial reliability, International Journal of Computer Vision 126 (7) (2018) 671–688.

19

http://chili.epfl.ch/software
http://chili.epfl.ch/software

[27] C. Ma, J. Huang, X. Yang, M. Yang, Hierarchical convolutional features for visual tracking, in: 2015

IEEE International Conference on Computer Vision (ICCV), 2015, pp. 3074–3082.

[28] M. Danelljan, G. Häger, F. S. Khan, M. Felsberg, Convolutional features for correlation filter based

visual tracking, in: 2015 IEEE International Conference on Computer Vision Workshop (ICCVW),

2015, pp. 621–629.

[29] M. Danelljan, A. Robinson, F. Khan, M. Felsberg, Beyond correlation filters: Learning continuous

convolution operators for visual tracking, Springer International Publishing, 2016, pp. 472–488.

[30] M. Mueller, N. Smith, B. Ghanem, Context-aware correlation filter tracking, in: 2017 IEEE Conference510

on Computer Vision and Pattern Recognition (CVPR), 2017, pp. 1387–1395.

[31] M. Danelljan, G. Häger, F. S. Khan, M. Felsberg, Learning spatially regularized correlation filters

for visual tracking, in: 2015 IEEE International Conference on Computer Vision (ICCV), 2015, pp.

4310–4318.

[32] M. Danelljan, G. Häger, F. Khan, M. Felsberg, Accurate scale estimation for robust visual tracking,

in: Proceedings of the British Machine Vision Conference, BMVA Press, 2014, pp. 1–11.

[33] N. Otsu, A threshold selection method from gray-level histograms, IEEE Transactions on Systems,

Man, and Cybernetics 9 (1) (1979) 62–66.

[34] G. Bradski, A. Kaehler, Learning OpenCV: Computer Vision in C++ with the OpenCV Library, 2nd

Edition, O’Reilly Media, Inc., 2013.520

[35] R. Muñoz-Salinas, M. J. Maŕın-Jimenez, E. Yeguas-Bolivar, R. Medina-Carnicer, Mapping and local-

ization from planar markers, Pattern Recognition 73 (2018) 158 – 171.

[36] M. Fiala, Designing highly reliable fiducial markers, IEEE Transactions on Pattern Analysis and

Machine Intelligence 32 (7) (2010) 1317–1324.

[37] K. Madsen, H. B. Nielsen, O. Tingleff, Methods for non-linear least squares problems (2nd ed.) (2004).

[38] Topological structural analysis of digitized binary images by border following, Computer Vision, Graph-

ics, and Image Processing 30 (1) (1985) 32 – 46.

[39] D. H. Douglas, T. K. Peucker, Algorithms for the reduction of the number of points required to

represent a digitized line or its caricature, Cartographica: The International Journal for Geographic

Information and Geovisualization 2 (10) (1973) 112 – 122.530

[40] J. F. Henriques, R. Caseiro, P. Martins, J. Batista, Exploiting the circulant structure of tracking-

by-detection with kernels, in: Computer Vision – ECCV 2012, Springer Berlin Heidelberg, 2012, pp.

702–715.

[41] B. Babenko, M.-H. Yang, S. Belongie, Visual tracking with online multiple instance learning, in: 2009

IEEE Conference on Computer Vision and Pattern Recognition, 2009, pp. 983–990.

[42] Z. Kalal, K. Mikolajczyk, J. Matas, Tracking-learning-detection, IEEE Transactions on Pattern Anal-

ysis and Machine Intelligence 34 (7) (2012) 1409–1422.

[43] Z. Kalal, K. Mikolajczyk, J. Matas, Forward-backward error: Automatic detection of tracking failures,

in: 2010 20th International Conference on Pattern Recognition, 2010, pp. 2756–2759.

[44] H. Grabner, M. Grabner, H. Bischof, Real-time tracking via on-line boosting, Vol. 1, 2006, pp. 47–56.540

[45] J. Engel, T. Schöps, D. Cremers, LSD-SLAM: Large-scale direct monocular SLAM, in: European

Conference on Compututer Visision (ECCV), 2014.

20

	Introduction
	Related works
	Fiducial marker systems
	Discriminative Correlation Filters

	Mathematical Basis of Discriminative Correlation Filters
	Tracking of a Squared Marker
	Tracker definition and initialization
	Tracking and Update
	Confidence measure

	Robust Marker-Map based Pose Estimation
	Method overview
	Camera pose estimation
	Look for visible markers
	Calculate Tracking Confidence

	Experiments and results
	Comparison with Fiducial Squared Marker Detectors
	Comparison with Discriminative Correlation Filters
	Comparison with SLAM methods

	Conclusions

