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1 Introduction

Painlevé’s original programme of classifiying ordinary differential equations (ODEs) with general solution free of
movable branched singularities, i.e., having what today is referred to as the Painlevé property, foresaw dealing
with classes of equations of increasing order. This classification process had as its underlying aim the discovery
of new transcendental functions defined via differential eqautions; at second order this then led, as is well-
known, to the discovery of the six Painlevé equations [1, 2, 3, 4]. However, since such a classification becomes
increasingly difficult as the order of the class of equations studied increases, this programme began to stall
somewhat, with only partial classifications of third and fourth order ODEs being carried out [5, 6, 7, 8, 9, 10].

The discovery of the connection between completely integrable partial differential equations (PDEs) and
ODEs having the Painlevé property [11] led, through consideration of the Korteweg-de Vries (KdV) and modified
KdV (mKdV) hierarchies, to the introduction of a hierarchy of ODEs having as first member the second Painlevé
(PII) equation, i.e., to a PII hierarchy [11, 12]. This hierarchy, which we refer to as the standard PII hierarchy
in contrast to the generalized PII hierarchy where terms derived from lower order mKdV flows are also included
[13, 14], was shown in [12] to admit auto-Bäcklund transformations (auto-BTs) analogous to those known for the
second Painlevé equation itself. This then meant that the way was open, at least in principle, to the derivation
of higher order analogues of the Painlevé equations along with their properties.

However, no further work in this direction seems to have been undertaken until, some twenty years later,
the standard PII hierarchy was rederived and a first Painlevé (PI) hierarchy also derived [15]. A wide variety
of techniques have since been developed to derive Painlevé hierarchies and study their properties, although this
is often more complicated than for the original PII case. Examples include hierarchies of ODEs based on the
first, second and fourth Painlevé equations, with more than one such hierarchy having been found in each of
these cases; see, in addition to the papers cited previously, e.g., [16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26]. Other
examples of Painlevé hierarchies have been found which have ODEs of order higher than two or matrix ODEs as
first members [27, 16, 28, 17, 18, 29, 25, 30, 31]. We note that the derivation of ODEs as members of Painlevé
hierarchies — these being related to hierarchies of completely integrable PDEs — has proved to be of relevance
in the Painlevé classification process; see, e.g., [32, 33, 34, 35].

The work of the current authors (and collaborators) on Painlevé hierarchies has exploited and extended the
connection with nonisospectral scattering problems as described in [36]. In the course of this work, hierarchies
of ODEs which included nonlocal terms were often presented (see, e.g., [16, 18, 19]). However, in the analyses of
(most of) the properties of such hierarchies, only the local cases were considered. We have recently returned to
the study of hierarchies of ODEs including such nonlocal terms, and in particular have obtained a new extended
PII hierarchy: in [37] we derived the hierarchy of ODEs

ψ[v]

( n∑
k=1

ckQ̃k−1[v]vx + 2

p∑
k=2

hkQ̃k−2[v](xv)x

)
+ c0v + 2h1xv − αn = 0, n = 1, 2, . . . , (1.1)

— where all ck, k = 0, 1, . . . , n, and all hk, k = 1, 2, . . . , p, are constant, αn is an arbitrary constant,

ψ[v] = ∂x − 4v∂−1x v and Q̃[v] = ∂xψ[v] = ∂x
(
∂x − 4v∂−1x v

)
(1.2)

is the recursion operator of the mKdV hierarchy — and we defined the non-autonomous case where at least one of
h1, h2, . . . , hp is nonzero to be an extended PII hierarchy. We note that in the case where h2 = h3 = · · · = hp = 0
and h1 6= 0 we recover the generalized PII hierarchy [13, 14], which then also includes of course as a further
special case the standard PII hierarchy [11, 12, 15]. In [37] we used a local form of the hierarchy (1.1) in order
to derive, amongst other results, Bäcklund transformations (BTs) and auto-BTs for our extended PII hierarchy.
We also stated that, since the nonisospectral approach used in [37] is quite general, we expected to be able to
derive extended versions of other continuous, discrete and differential-delay Painlevé hierarchies and equations.
It is here that we begin this task.
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In the present paper we define, and derive properties of, extensions of hierarchies of ODEs to be found in
[27, 16, 28, 17, 29, 25, 30]. These new extensions include nonlocal terms and are related to completely inte-
grable nonisospectral Kaup-Kupershmidt (KK) and Sawada-Kotera (SK) hierarchies, and their nonisospectral
modified (mKK and mSK) hierarchies (these nonisospectral mKK and mSK hierarchies are equivalent, i.e., the
nonisospectral KK and SK hierarchies have a common nonisospectral modified hierarchy, a result well-known
in the isospectral case). We note that examples of hierarchies of ODEs related to nonisospectral versions of the
KK and SK hierarchies and in which such nonlocal terms appear can be found in [16]. In the present paper we
focus much of our interest on a new hierarchy of ODEs related to the afore-mentioned nonisospectral version
of the common modified hierarchy. This new hierarchy of ODEs can be written in two different ways in forms
which may be compared with (1.1). Similarly to (1.1) we have a set of constants h1, h2, . . . , hp, and in the case
where least one of these constants h1, h2, . . . , hp is nonzero we define this hierarchy to be an extended KK-SK
Painlevé hierarchy. The layout of the paper is as follows. In Section 2 we consider nonisospectral KK and SK
hierarchies along with their common nonisospectral modified hierarchy, giving also local forms for all of these
nonisospectral hierarchies. We then derive, also in Section 2, our extended KK-SK Painlevé hierarchy, which
we present in two different ways in forms analogous to (1.1), giving moreover in each case a corresponding local
form. In Section 3 we use these two alternative local forms to derive results on BTs and auto-BTs as well as
other aspects of our extended KK-SK Painlevé hierarchy, and also give results for other (again locally written)
related ODE hierarchies. In Section 4 we discuss the nesting of equations, thus obtaining relations between
systems of different orders but of the same form. Finally, in Section 5, we draw our conclusions.

2 Nonisospectral hierarchies and an extended Painlevé hierarchy

2.1 Nonisospectral hierarchies

In this section we consider nonisospectral KK and SK hierarchies along with their common nonisospectral
modified hierarchy. Basic facts in relation to recursion operators, Hamiltonian structures, Miura maps and
the equivalence of the modified hierarchies in the isospectral case, as well as non-isospectral extensions, can be
found in [38, 39, 40, 41, 42, 43, 44, 45, 16]; it is the ideas and results given in these papers that we use below.

Let us begin with the nonisospectral KK hierarchy

ut =

n∑
k=0

ckT k[u]ux +

q∑
k=0

akT k[u]θ[u]H1[u] +

p∑
k=1

hkT k−1[u]θ[u]x, (2.1)

where
H1[u] = uxx + 4u2, (2.2)

and T [u] = θ[u]K[u] with

θ[u] = ∂3x + u∂x + ∂xu, (2.3)

K[u] = ∂−1x K̂[u]∂−1x = ∂−1x

[
∂5x + 3

(
∂xu∂

2
x + ∂2xu∂x

)
+ 2

(
∂3xu+ u∂3x

)
+ 8

(
∂xu

2 + u2∂x
) ]
∂−1x (2.4)

is the recursion operator of the KK hierarchy, and where all coefficients ck = ck(t), ak = ak(t) and hk = hk(t)
are functions of t. Denoting as usual

H0[u] = 1, so ux = θ[u]H0[u], (2.5)
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we see that by introducing auxiliary variables w = (w1, w2, . . . , wp−1) and z = (z1, z2, . . . , zp−1) we may write
this hierarchy locally as

ut =

n∑
k=0

ckT k[u]θ[u]H0[u] +

q∑
k=0

akT k[u]θ[u]H1[u] +

p∑
k=2

hkθ[u]zk−1 + h1θ[u]x (2.6)

w1,x = θ[u]x

z1,x = K̂[u]w1

w2,x = θ[u]z1
z2,x = K̂[u]w2

...
wp−1,x = θ[u]zp−2
zp−1,x = K̂[u]wp−1


(2.7)

where we have used the identity T k−1[u]θ[u]x = θ[u]zk−1, k = 2, 3, . . . , p. Recalling the recursive definition of
the sequence of variational derivatives of the Hamiltonian densities of the KK hierarchy,

Hn+2[u] = K[u]θ[u]Hn[u], n = 0, 1, 2, . . . , (2.8)

we note that equation (2.6) can also be written

ut = θ[u]L[u, z] (2.9)

where

L[u, z] =

n∑
k=0

ckH2k[u] +

q∑
k=0

akH2k+1[u] +

p∑
k=2

hkzk−1 + h1x. (2.10)

Under the Miura map

u = M [v] = vx −
1

2
v2 (2.11)

the Hamiltonian operator θ[u] factorizes as

θ[u] = M ′[v]B(M ′[v])†,

u=M [v]
(2.12)

where
M ′[v] = ∂x − v (2.13)

is the Fréchet derivative of M [v],
(M ′[v])† = −∂x − v (2.14)

is the adjoint of this Fréchet derivative, and
B = −∂x (2.15)

is the Hamiltonian operator of the mKK hierarchy. The modified version of the nonisospectral hierarchy (2.1)
is then written

vt =

n∑
k=0

ckT̃ k[v]vx +

q∑
k=0

akT̃ k[v]B(M ′[v])†H1[M [v]] +

p∑
k=1

hkT̃ k−1[v]B(M ′[v])†x

=

n∑
k=0

ckT̃ k[v]vx +

q∑
k=0

akT̃ k[v]BH̃1[v] +

p∑
k=1

hkT̃ k−1[v](xv)x (2.16)
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where the recursion operator of the mKK hierarchy is given by

T̃ [v] = B(M ′[v])†K[M [v]]M ′[v]

= ∂x (∂x + v) ∂−1x (∂x − 2v) (∂x − v) ∂x (∂x + v) (∂x + 2v) ∂−1x (∂x − v) , (2.17)

and where we have set

H̃1[v] = (M ′[v])†H1[M [v]] = −(vxxxx + 5vxvxx − 5v2vxx − 5vv2x + v5). (2.18)

This modified nonisospectral hierarchy can also be written locally as the system

vt = B(M ′[v])†L[M [v], z] (2.19)

w1,x = θ[M [v]]x

z1,x = K̂[M [v]]w1

w2,x = θ[M [v]]z1
z2,x = K̂[M [v]]w2

...
wp−1,x = θ[M [v]]zp−2
zp−1,x = K̂[M [v]]wp−1


(2.20)

As is well-known in the isospectral case, this modified nonisospectral hierarchy can also be derived from a
nonisospectral SK hierarchy. We thus begin with the nonisospectral SK hierarchy

Ut =

n∑
k=0

ckRk[U ]θ[U ]G0[U ] +

q∑
k=0

akRk[U ]θ[U ]G1[U ] +

p∑
k=1

hkRk−1[U ]θ[U ]x, (2.21)

where R[U ] = θ[U ]J [U ] with

θ[U ] = ∂3x + U∂x + ∂xU, (2.22)

J [U ] = ∂−1x Ĵ [U ]∂−1x = ∂−1x

[
∂5x +

1

2

(
∂3xU + U∂3x

)
+

1

8

(
∂xU

2 + U2∂x
) ]
∂−1x (2.23)

is the recursion operator of the SK hierarchy,

G0[U ] = 1, so θ[U ]G0[U ] = Ux, and G1[U ] = Uxx +
1

4
U2, (2.24)

and the coefficients ck = ck(t), ak = ak(t) and hk = hk(t) are the same functions of t as appear in (2.1).
Recalling the recursive definition of the sequence of variational derivatives of the Hamiltonian densities of the
SK hierarchy,

Gn+2[U ] = J [U ]θ[U ]Gn[U ], n = 0, 1, 2, . . . , (2.25)

we see that by introducing auxiliary variables W = (W1,W2, . . . ,Wp−1) and Z = (Z1, Z2, . . . , Zp−1) we may
write this nonisospectral SK hierarchy locally as

Ut = θ[U ]N [U,Z] (2.26)

W1,x = θ[U ]x

Z1,x = Ĵ [U ]W1

W2,x = θ[U ]Z1

Z2,x = Ĵ [U ]W2

...
Wp−1,x = θ[U ]Zp−2
Zp−1,x = Ĵ [U ]Wp−1


(2.27)
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where

N [U,Z] =

n∑
k=0

ckG2k[U ] +

q∑
k=0

akG2k+1[U ] +

p∑
k=2

hkZk−1 + h1x, (2.28)

and where we have made use of the identity Rk−1[U ]θ[U ]x = θ[U ]Zk−1, k = 2, 3, . . . , p. Under the same Miura
map as in the KK case but with dependent variables U and V ,

U = M [V ] = Vx −
1

2
V 2, (2.29)

which then leads to the same factorization,

θ[U ] = M ′[V ]B(M ′[V ])†,

U=M [V ]
(2.30)

we obtain the modified version of the nonisospectral hierarchy (2.21) as

Vt =

n∑
k=0

ckR̃k[V ]Vx +

q∑
k=0

akR̃k[V ]BG̃1[V ] +

p∑
k=1

hkR̃k−1[V ](xV )x (2.31)

where the recursion operator of the mSK hierarchy is given by

R̃[V ] = B(M ′[V ])†J [M [V ]]M ′[V ]

= ∂x (∂x + V ) ∂−1x (∂x − V/2) (∂x + V/2) ∂x (∂x − V/2) (∂x + V/2) ∂−1x (∂x − V ) , (2.32)

and where we have set

G̃1[V ] = (M ′[V ])†G1[M [V ]] = −
(
Vxxxx −

5

2
VxVxx −

5

4
V 2Vxx −

5

4
V V 2

x +
1

16
V 5

)
. (2.33)

This modified nonisospectral hierarchy (2.31) can also be written locally as the system

Vt = B(M ′[V ])†N [M [V ],Z] (2.34)

W1,x = θ[M [V ]]x

Z1,x = Ĵ [M [V ]]W1

W2,x = θ[M [V ]]Z1

Z2,x = Ĵ [M [V ]]W2

...
Wp−1,x = θ[M [V ]]Zp−2
Zp−1,x = Ĵ [M [V ]]Wp−1


(2.35)

As in the isospectral case, the modified hierachies (2.16) and (2.31) are related via V = −2v. In order to see
this we note that

−1

2
G̃1[−2v] = H̃1[v], (2.36)

and also that the identity
(∂x + βv) ∂−1x (∂x + γv) = (∂x + γv) ∂−1x (∂x + βv) , (2.37)

which holds for any two constants β and γ, implies that

R̃[−2v] = T̃ [v]. (2.38)
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2.2 A new extended Painlevé hierarchy

The new extended Painlevé hierarchy which will form the focus of the current paper is a hierarchy of ODEs,
subject to a condition given in Definition 2.1 below, which may be obtained — following the ideas in [36] and,
applied to nonlocal examples, in [16] — as the (integrated) stationary flow of (2.16). Defining

ϕ[v] = (∂x + v) ∂−1x (∂x − 2v) (∂x − v) ∂x (∂x + v) (∂x + 2v) ∂−1x (∂x − v) , (2.39)

so that
T̃ [v] = ∂xϕ[v], (2.40)

we see that the integrated stationary flow of (2.16) yields the hierarchy of ODEs

ϕ[v]

( n∑
k=1

ckT̃ k−1[v]vx+

q∑
k=1

akT̃ k−1[v]BH̃1[v]+

p∑
k=2

hkT̃ k−2[v](xv)x

)
+c0v−a0H̃1[v]+h1xv+

1

2
α = 0, (2.41)

where all coefficients ck, ak and hk are now constant, and 1
2α is an arbitrary constant of integration. We may

alternatively obtain this hierarchy of ODEs as the integrated stationary flow of (2.31). Defining

φ[V ] = (∂x + V ) ∂−1x (∂x − V/2) (∂x + V/2) ∂x (∂x − V/2) (∂x + V/2) ∂−1x (∂x − V ) , (2.42)

so that
R̃[V ] = ∂xφ[V ], (2.43)

we see that the hierarchy (2.41), with the identification V = −2v, can also be written as

φ[V ]

( n∑
k=1

ckR̃k−1[V ]Vx +

q∑
k=1

akR̃k−1[V ]BG̃1[V ] +

p∑
k=2

hkR̃k−2[V ](xV )x

)
+ c0V − a0G̃1[V ] + h1xV −α = 0.

(2.44)
In the next section we will present results on BTs and auto-BTs for the members of this hierarchy. First of
all, however, we note the two local formulations of this hierarchy, derived when written in the form (2.41) from
(2.19), (2.20) with L[u, z] given by (2.10), and when written in the form (2.44) from (2.34), (2.35) with N [U,Z]
given by (2.28). These formulations are respectively as the system

(∂x + v)L[M [v], z] +
1

2
α− h1 = 0 (2.45)

w1,x = θ[M [v]]x

z1,x = K̂[M [v]]w1

w2,x = θ[M [v]]z1
z2,x = K̂[M [v]]w2

...
wp−1,x = θ[M [v]]zp−2
zp−1,x = K̂[M [v]]wp−1


(2.46)

where

L[u, z] =

n∑
k=0

ckH2k[u] +

q∑
k=0

akH2k+1[u] +

p∑
k=2

hkzk−1 + h1x, (2.47)

and as the system
(∂x + V )N [M [V ],Z]− α− h1 = 0 (2.48)
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W1,x = θ[M [V ]]x

Z1,x = Ĵ [M [V ]]W1

W2,x = θ[M [V ]]Z1

Z2,x = Ĵ [M [V ]]W2

...
Wp−1,x = θ[M [V ]]Zp−2
Zp−1,x = Ĵ [M [V ]]Wp−1


(2.49)

where

N [U,Z] =

n∑
k=0

ckG2k[U ] +

q∑
k=0

akG2k+1[U ] +

p∑
k=2

hkZk−1 + h1x. (2.50)

Definition 2.1 In the non-autonomous case where at least one of h1, h2, . . . , hp is nonzero we define the
hierarchy (2.41), its equivalent formulation (2.44), and also the respective local versions of these hierarchies
as given by the systems (2.45)—(2.47) and (2.48)—(2.50), as an extended KK-SK Painlevé hierarchy.

Remark 2.2 The above definition is analogous to that of the extended second Painlevé hierarchy given in
[37]. The reason for focusing our discussion on this KK-SK Painlevé hierarchy instead of on the stationary
(constant-coefficient) reduction of the nonisospectral KK hierarchy (2.7), (2.9), (2.10), or on the station-
ary (constant-coefficient) reduction of the nonisospectral SK hierarchy (2.26), (2.27), (2.28), is that these
stationary reductions are in fact equivalent to (2.45)—(2.47) and (2.48)—(2.50) respectively (see Theorems
3.1 and 3.3). In the autonomous case where h1 = h2 = · · · = hp = 0, the equivalent hierarchies (2.41)
and (2.44) are just the integrated stationary flows of the standard (isospectral) common modification of the
KK and SK hierarchies. In the case where h2 = h3 = · · · = hp = 0 and h1 6= 0 the equivalent hierarchies
(2.41) and (2.44) reduce to a hierarchy of ODEs the standard case of which is given in [27, 17, 28, 29, 30]
and the generalised case, which includes terms derived from lower order flows of the corresponding common
modification of the KK and SK hierarchies, in [25] (in its mKK formulation).

3 Bäcklund transformations

In this section we will use in tandem the local formulations (2.45)—(2.47) and (2.48)—(2.50) of our extended
KK-SK Painlevé hierarchy in order to present results on BTs, auto-BTs and other aspects of this new hierarchy.
We also give results for other (again locally-formulated) related ODE hierarchies. The Theorems, Remarks
and Definitions 3.1—3.7 and 3.12—3.16 generalize results, for individual equations or hierarchies, given in (or
immediately deducible from) [27, 16, 17, 28, 29, 25, 30]. In these papers, except for [16, 25], the standard case
was studied. Thus the great majority of the results given here are new not only for our new extended case but
also for the generalized case. Furthermore, except for [25] (for which an SK/mSK version of the results therein
can easily be given), the possibility that results may hold independently of the forms of L[u, z] and N [U,Z] was
not remarked upon: below we note when this is the case. The Theorems and Remarks 3.8—3.11, in contrast,
are particular to our new extended KK-SK Painlevé hierarchy since to be nontrivial we need at least one of
h2, h3, . . . , hp to be nonzero. Finally we remark that whereas some of the results given in this section become
trivial in the autonomous case h1 = h2 = · · · = hp = 0, this is not true of all the results given here.

Theorem 3.1 The BT

(∂x + v)L[u, z] +
1

2
α− h1 = 0 (3.1)
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w1,x = θ[u]x

z1,x = K̂[u]w1

w2,x = θ[u]z1
z2,x = K̂[u]w2

...
wp−1,x = θ[u]zp−2
zp−1,x = K̂[u]wp−1


(3.2)

u−M [v] = u− vx +
1

2
v2 = 0 (3.3)

provides a mapping between the system (2.45), (2.46) in v, w and z and the system

L[u, z](L[u, z])xx −
1

2
[(L[u, z])x]2 + uL[u, z]2 +

1

2

(
h1 −

1

2
α

)2

= 0 (3.4)

w1,x = θ[u]x

z1,x = K̂[u]w1

w2,x = θ[u]z1
z2,x = K̂[u]w2

...
wp−1,x = θ[u]zp−2
zp−1,x = K̂[u]wp−1


(3.5)

in u, w and z. Moreover, the system (3.4), (3.5) provides a first integral for the stationary flow of the system
(2.7), (2.9), i.e.,

θ[u]L[u, z] = 0 (3.6)

coupled with (3.5). We note that this result holds independently of the form of L[u, z], and not just for the
special case (2.47).

Proof. The proof consists of straightforward calculations, which we leave to the reader. 2

Remark 3.2 We see from the above that solutions u, w, z of

L[u, z] = 0 (3.7)

w1,x = θ[u]x

z1,x = K̂[u]w1

w2,x = θ[u]z1
z2,x = K̂[u]w2

...
wp−1,x = θ[u]zp−2
zp−1,x = K̂[u]wp−1


(3.8)

are also solutions of (3.4), (3.5) for α = 2h1. In addition, it is clear that solutions u, w, z of (3.7), (3.8)
are also solutions of (3.5), (3.6). Again, these results hold independently of the form of L[u, z], and not just
as given by (2.47).

9



Theorem 3.3 The BT
(∂x + V )N [U,Z]− α− h1 = 0 (3.9)

W1,x = θ[U ]x

Z1,x = Ĵ [U ]W1

W2,x = θ[U ]Z1

Z2,x = Ĵ [U ]W2

...
Wp−1,x = θ[U ]Zp−2
Zp−1,x = Ĵ [U ]Wp−1


(3.10)

U −M [V ] = U − Vx +
1

2
V 2 = 0 (3.11)

provides a mapping between the system (2.48), (2.49) in V , W and Z and the system

N [U,Z](N [U,Z])xx −
1

2
[(N [U,Z])x]2 + UN [U,Z]2 +

1

2
(h1 + α)

2
= 0 (3.12)

W1,x = θ[U ]x

Z1,x = Ĵ [U ]W1

W2,x = θ[U ]Z1

Z2,x = Ĵ [U ]W2

...
Wp−1,x = θ[U ]Zp−2
Zp−1,x = Ĵ [U ]Wp−1


(3.13)

in U , W and Z. Moreover, the system (3.12), (3.13) provides a first integral for the stationary flow of the
system (2.26), (2.27), i.e.,

θ[U ]N [U,Z] = 0 (3.14)

coupled with (3.13). We note that this result holds independently of the form of N [U,Z], and not just for the
special case (2.50).

Proof. The proof consists of straightforward calculations, which we leave to the reader. 2

Remark 3.4 We see from the above that solutions U , W, Z of

N [U,Z] = 0 (3.15)

W1,x = θ[U ]x

Z1,x = Ĵ [U ]W1

W2,x = θ[U ]Z1

Z2,x = Ĵ [U ]W2

...
Wp−1,x = θ[U ]Zp−2
Zp−1,x = Ĵ [U ]Wp−1


(3.16)

are also solutions of (3.12), (3.13) for α = −h1. In addition, it is clear that solutions U , W, Z of (3.15),
(3.16) are also solutions of (3.13), (3.14). Again, these results hold independently of the form of N [U,Z],
and not just for (2.50).
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Remark 3.5 By considering the Miura map u = M [v] in the stationary case, we easily see that solutions
v, w, z of the system (2.45), (2.46) give solutions u = vx − 1

2v
2, w, z of the system (3.5), (3.6). Similarly,

consideration of the Miura map U = M [V ] in the stationary case tells us that solutions V , W, Z of the
system (2.48), (2.49) yield solutions U = Vx − 1

2V
2, W, Z of the system (3.13), (3.14). This is true

independently of the forms of L[u, z] and N [U,Z], and not just for the special choices (2.47) and (2.50).

Definition 3.6 (Basic special integrals) We define

L[M [v], z] = 0 (3.17)

w1,x = θ[M [v]]x

z1,x = K̂[M [v]]w1

w2,x = θ[M [v]]z1
z2,x = K̂[M [v]]w2

...
wp−1,x = θ[M [v]]zp−2
zp−1,x = K̂[M [v]]wp−1


(3.18)

as a basic special integral of the system (2.45), (2.46) for parameter value α = 2h1. We also define

N [M [V ],Z] = 0 (3.19)

W1,x = θ[M [V ]]x

Z1,x = Ĵ [M [V ]]W1

W2,x = θ[M [V ]]Z1

Z2,x = Ĵ [M [V ]]W2

...
Wp−1,x = θ[M [V ]]Zp−2
Zp−1,x = Ĵ [M [V ]]Wp−1


(3.20)

as a basic special integral of the system (2.48), (2.49) for parameter value α = −h1. These definitions make
sense independently of the form of L[M [v], z] and N [M [V ],Z], and not just for the special cases corresponding
to (2.47) and (2.50), i.e.

L[M [v], z] =

n∑
k=0

ckH2k[M [v]] +

q∑
k=0

akH2k+1[M [v]] +

p∑
k=2

hkzk−1 + h1x (3.21)

and

N [M [V ],Z] =

n∑
k=0

ckG2k[M [V ]] +

q∑
k=0

akG2k+1[M [V ]] +

p∑
k=2

hkZk−1 + h1x (3.22)

respectively.

Remark 3.7 The basic special integral (3.17), (3.18) can be written as the system (3.7), (3.8) coupled to
the Miura map u = M [v] = vx− 1

2v
2, this last being linearizable via v = −2Ψx/Ψ onto Ψxx + 1

2uΨ = 0. The
basic special integral (3.19), (3.20) can be written as the system (3.15), (3.16) coupled to the Miura map
U = M [V ] = Vx − 1

2V
2, this last clearly also being linearizable via V = −2Φx/Φ onto Φxx + 1

2UΦ = 0. We
recall that basic special integrals may provide a starting point for iteration using auto-BTs.
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Theorem 3.8 Consider the system in y, r = (r1, r2, . . . , rp−1) and s = (s1, s2, . . . , sp−1) given by

(∂x + y) L̃[M [y], s] +
1

2
α̃− h1 = 0 (3.23)

r1,x = θ[M [y]]x

s1,x = K̂[M [y]]r1
r2,x = θ[M [y]]s1
s2,x = K̂[M [y]]r2

...
rp−1,x = θ[M [y]]sp−2
sp−1,x = K̂[M [y]]rp−1


(3.24)

where

L̃[u, s] =

n∑
k=0

ckH2k[u] +

q∑
k=0

akH2k+1[u] +

p∑
k=2

hk

( k−1∑
j=1

2djH2(k−j)−1[u] +

k−1∑
j=1

ejH2(k−j)−2[u]

)

+

p∑
k=2

hksk−1 + h1x

=

n∑
k=0

ckH2k[u] +

q∑
k=0

akH2k+1[u] +

p−2∑
k=0

σkH2k[u] +

p−2∑
k=0

ρkH2k+1[u] +

p∑
k=2

hksk−1 + h1x

(3.25)

and (in addition to all coefficients ck, ak and hk) α̃ and all dj and ej are constant, and

σk =

p−1−k∑
j=1

hj+k+1ej , ρk = 2

p−1−k∑
j=1

hj+k+1dj . (3.26)

Then solutions y, r, s of this system are mapped by the BT

v = y, (3.27)

wk = rk +

k−1∑
j=1

2djE2(k−j)−1[M [y]] +

k−1∑
j=1

ejE2(k−j)−2[M [y]] + dkH0[M [y]], k = 1, . . . , p− 1,

(3.28)

zk = sk +

k∑
j=1

2djH2(k−j)+1[M [y]] +

k∑
j=1

ejH2(k−j)[M [y]], k = 1, . . . , p− 1, (3.29)

α = α̃, (3.30)

onto solutions v, w, z of the system (2.45)—(2.47). We note that in (3.28) we have made use of the fact
that the equations of the standard (isospectral) KK hierarchy are conservative in order to introduce Ek[u],
k = 0, 1, 2, . . ., defined via

(Ek[u])x = θ[u]Hk[u], k = 0, 1, 2, . . . (3.31)

(so E0[u] = u, E1[u] = uxxxx + 10uuxx + 15
2 u

2
x + 20

3 u
3, etc.). We also note that

(H0[u])x = 0, (H1[u])x =
1

2
K̂[u]H0[u], (Hk+2[u])x = K̂[u]Ek[u], k = 0, 1, 2, . . . (3.32)
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(for the third of these identities see (2.8)).

Proof. Substitution of (3.27), (3.28) and (3.29) in (2.46), and using the relations

(H0[M [y]])x = 0, (H1[M [y]])x =
1

2
K̂[M [y]]H0[M [y]], (Hk+2[M [y]])x = K̂[M [y]]Ek[M [y]] (3.33)

yields (3.24), whilst substitution of (3.27), (3.29) and (3.30) in (2.45) with L[u, z] given by (2.47) gives (3.23)
with L̃[u, s] given by (3.25). It then follows that the BT (3.27)—(3.30) maps solutions y, r, s of (3.23)—(3.25)
onto solutions v, w, z of (2.45)—(2.47). 2

Theorem 3.9 Consider the system in Y , R = (R1, R2, . . . , Rp−1) and S = (S1, s2, . . . , Sp−1) given by

(∂x + Y ) Ñ [M [Y ],S]− α̃− h1 = 0 (3.34)

R1,x = θ[M [Y ]]x

S1,x = Ĵ [M [Y ]]R1

R2,x = θ[M [Y ]]S1

S2,x = Ĵ [M [Y ]]R2

...
Rp−1,x = θ[M [Y ]]Sp−2
Sp−1,x = Ĵ [M [Y ]]Rp−1


(3.35)

where

Ñ [U,S] =

n∑
k=0

ckG2k[U ] +

q∑
k=0

akG2k+1[U ] +

p∑
k=2

hk

( k−1∑
j=1

1

2
fjG2(k−j)−1[U ] +

k−1∑
j=1

gjG2(k−j)−2[U ]

)

+

p∑
k=2

hkSk−1 + h1x

=

n∑
k=0

ckG2k[U ] +

q∑
k=0

akG2k+1[U ] +

p−2∑
k=0

νkG2k[U ] +

p−2∑
k=0

µkG2k+1[U ] +

p∑
k=2

hkSk−1 + h1x

(3.36)

and (in addition to all coefficients ck, ak and hk) α̃ and all fj and gj are constant, and

νk =

p−1−k∑
j=1

hj+k+1gj , µk =
1

2

p−1−k∑
j=1

hj+k+1fj . (3.37)

Then solutions Y , R, S of this system are mapped by the BT

V = Y, (3.38)

Wk = Rk +

k−1∑
j=1

1

2
fjF2(k−j)−1[M [Y ]] +

k−1∑
j=1

gjF2(k−j)−2[M [Y ]] + fkG0[M [y]], k = 1, . . . , p− 1,

(3.39)

Zk = Sk +

k∑
j=1

1

2
fjG2(k−j)+1[M [Y ]] +

k∑
j=1

gjG2(k−j)[M [Y ]], k = 1, . . . , p− 1, (3.40)

α = α̃, (3.41)
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onto solutions V , W, Z of the system (2.48)—(2.50). We note that in (3.39) we have made use of the fact
that the equations of the standard (isospectral) SK hierarchy are conservative in order to introduce Fk[U ],
k = 0, 1, 2, . . ., defined via

(Fk[U ])x = θ[U ]Gk[U ], k = 0, 1, 2, . . . (3.42)

(so F0[U ] = U , F1[U ] = Uxxxx + 5
2UUxx + 5

12U
3, etc.). We also note that

(G0[U ])x = 0, (G1[U ])x = 2Ĵ [U ]G0[U ], (Gk+2[U ])x = Ĵ [U ]Fk[U ], k = 0, 1, 2, . . . (3.43)

(for the third of these identities see (2.25).

Proof. Substitution of (3.38), (3.39) and (3.40) in (2.49), and using the relations

(G0[M [Y ]])x = 0, (G1[M [Y ]])x = 2Ĵ [M [Y ]]G0[M [Y ]], (Gk+2[M [Y ]])x = Ĵ [M [Y ]]Fk[M [Y ]] (3.44)

yields (3.35), whilst substitution of (3.38), (3.40) and (3.41) in (2.48) with N [U,Z] given by (2.50) gives (3.34)
with Ñ [U,S] given by (3.36). It then follows that the BT (3.38)—(3.41) maps solutions Y , R, S of (3.34)—(3.36)
onto solutions V , W, Z of (2.48)—(2.50). 2

Remark 3.10 The BTs (3.27)—(3.30) and (3.38)—(3.41) are consequences of the structure of the systems
(2.45)—(2.47) and (2.48)—(2.50) respectively. The inverses of these BTs are respectively

y = v, (3.45)

rk = wk −
k−1∑
j=1

2djE2(k−j)−1[M [v]]−
k−1∑
j=1

ejE2(k−j)−2[M [v]]− dkH0[M [v]], k = 1, . . . , p− 1,

(3.46)

sk = zk −
k∑

j=1

2djH2(k−j)+1[M [v]]−
k∑

j=1

ejH2(k−j)[M [v]], k = 1, . . . , p− 1, (3.47)

α̃ = α, (3.48)

and

Y = V, (3.49)

Rk = Wk −
k−1∑
j=1

1

2
fjF2(k−j)−1[M [V ]]−

k−1∑
j=1

gjF2(k−j)−2[M [V ]]− fkG0[M [V ]], k = 1, . . . , p− 1,

(3.50)

Sk = Zk −
k∑

j=1

1

2
fjG2(k−j)+1[M [V ]]−

k∑
j=1

gjG2(k−j)[M [V ]], k = 1, . . . , p− 1, (3.51)

α̃ = α, (3.52)

The special cases of the BTs (3.27)—(3.30) and (3.38)—(3.41) where all dj and ej are zero, or where all fj
and gj are zero, give the identity transformations of the systems (2.45)—(2.47) and (2.48)—(2.50).

Remark 3.11 We define the conditions:

A1 : p− 2 ≤ n and p− 2 ≤ q;
A2a : p− 2 > n, in which case we assume ej = 0, j = 1, 2, . . . , p− n− 2;

A2b : p− 2 > q, in which case we assume dj = 0, j = 1, 2, . . . , p− q − 2.
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We note that condition A2a implies that σk = 0, k = n+ 1, n+ 2, . . . , p− 2, and that condition A2b implies
that ρk = 0, k = q + 1, q + 2, . . . , p − 2. It then follows that the BT (3.27)—(3.30), in either of the two
special cases where (i) condition A1 holds, or (ii) at least one of the conditions A2a or A2b holds, becomes
an auto-BT, since we then have

L̃[u, s] =

n∑
k=0

γkH2k[u] +

q∑
k=0

βkH2k+1[u] +

p∑
k=2

hksk−1 + h1x, γk = ck + σk, βk = ak + ρk (3.53)

(where if p − 2 < n we take σk = 0, k = p − 1, . . . , n , and if p − 2 < q we take ρk = 0, k = p − 1, . . . , q).
This auto-BT involves the changes in parameters ck = γk − σk, k = 0, . . . , n and ak = βk − ρk, k = 0, . . . , q.

Similarly we may define the conditions:

B1 : p− 2 ≤ n and p− 2 ≤ q;
B2a : p− 2 > n, in which case we assume gj = 0, j = 1, 2, . . . , p− n− 2;

B2b : p− 2 > q, in which case we assume fj = 0, j = 1, 2, . . . , p− q − 2.

We note that condition B2a implies that νk = 0, k = n+ 1, n+ 2, . . . , p− 2, and that condition B2b implies
that µk = 0, k = q + 1, q + 2, . . . , p − 2. It then follows that the BT (3.38)—(3.41), in either of the two
special cases where (i) condition B1 holds, or (ii) at least one of the conditions B2a or B2b holds, becomes
an auto-BT, since we then have

Ñ [U,S] =

n∑
k=0

δkG2k[U ] +

q∑
k=0

εkG2k+1[U ] +

p∑
k=2

hkSk−1 + h1x, δk = ck + νk, εk = ak + µk (3.54)

(where if p − 2 < n we take νk = 0, k = p − 1, . . . , n, and if p − 2 < q we take µk = 0, k = p − 1, . . . , q).
This auto-BT involves the changes in parameters ck = δk − νk, k = 0, . . . , n and ak = εk − µk, k = 0, . . . , q.

The inverses of these auto-BTs derived as special cases of (3.27)—(3.30) and (3.38)—(3.41) are as given
in Remark 3.10 along with the changes in parameters γk = ck+σk, k = 0, . . . , n and βk = ak+ρk, k = 0, . . . , q
in the first case, and δk = ck + νk, k = 0, . . . , n and εk = ak + µk, k = 0, . . . , q in the second case.

Theorem 3.12 Solutions y, r, s of the system

(∂x + y)L[M [y], s] +
1

2
α̃− h1 = 0 (3.55)

r1,x = θ[M [y]]x

s1,x = K̂[M [y]]r1
r2,x = θ[M [y]]s1
s2,x = K̂[M [y]]r2

...
rp−1,x = θ[M [y]]sp−2
sp−1,x = K̂[M [y]]rp−1


(3.56)

are mapped onto solutions v, w, z of the system (2.45), (2.46) by the auto-BT

v = y − α− α̃
2L[M [y], s]

, (3.57)

wk = rk, k = 1, . . . , p− 1, (3.58)

zk = sk, k = 1, . . . , p− 1, (3.59)

α = −α̃+ 4h1. (3.60)
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Proof. First of all we note that M [v] = M [y]:

M [v] = vx −
1

2
v2 = yx −

1

2
y2 +

α− α̃
2L[M [y], s]2

(
(∂x + y)L[M [y], s]− 1

4
(α− α̃)

)
= yx −

1

2
y2 +

α− α̃
8L[M [y], s]2

(4h1 − α− α̃)

= yx −
1

2
y2 = M [y]. (3.61)

It then follows that solutions of (3.55) and (3.56) are mapped onto solutions of (2.46). Also,

(∂x + v)L[M [v], z] +
1

2
α− h1 =

(
∂x + y − α− α̃

2L[M [y], s]

)
L[M [y], s] +

1

2
α− h1

= (∂x + y)L[M [y], s] +
1

2
α̃− h1, (3.62)

and so it then follows that solutions of equation (3.55) are mapped onto solutions of (2.45). 2

Theorem 3.13 Solutions Y , R, S of the system

(∂x + Y )N [M [Y ],S]− α̃− h1 = 0 (3.63)

R1,x = θ[M [Y ]]x

S1,x = Ĵ [M [Y ]]R1

R2,x = θ[M [Y ]]S1

S2,x = Ĵ [M [Y ]]R2

...
Rp−1,x = θ[M [Y ]]Sp−2
Sp−1,x = Ĵ [M [Y ]]Rp−1


(3.64)

are mapped onto solutions V , W, Z of the system (2.48), (2.49) by the auto-BT

V = Y +
α− α̃

N [M [Y ],S]
, (3.65)

Wk = Rk, k = 1, . . . , p− 1, (3.66)

Zk = Sk, k = 1, . . . , p− 1, (3.67)

α = −α̃− 2h1. (3.68)

Proof. First of all we note that M [V ] = M [Y ]:

M [V ] = Vx −
1

2
V 2 = Yx −

1

2
Y 2 − α− α̃

N [M [Y ],S]2

(
(∂x + Y )N [M [Y ],S] +

1

2
(α− α̃)

)
= Yx −

1

2
Y 2 − α− α̃

2N [M [Y ],S]2
(2h1 + α+ α̃)

= Yx −
1

2
Y 2 = M [Y ]. (3.69)

It then follows that solutions of (3.63) and (3.64) are mapped onto solutions of (2.49). Also,

(∂x + V )N [M [V ],Z]− α− h1 =

(
∂x + Y +

α− α̃
N [M [Y ],S]

)
N [M [Y ],S]− α− h1

= (∂x + Y )N [M [Y ],S]− α̃− h1, (3.70)

and so it then follows that solutions of equation (3.63) are mapped onto solutions of (2.48). 2
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Remark 3.14 We note that the auto-BTs given in Theorems 3.12 and 3.13 hold independently of the forms
of L[u, z] and N [U,Z], and not just for the special cases (2.47) and (2.50).

Remark 3.15 Since for the auto-BT (3.57)— (3.60) we have M [v] = M [y], w = r and z = s, its inverse
is

y = v − α̃− α
2L[M [v], z]

, (3.71)

rk = wk, k = 1, . . . , p− 1, (3.72)

sk = zk, k = 1, . . . , p− 1, (3.73)

α̃ = −α+ 4h1. (3.74)

Thus we see that the auto-BT (3.57)— (3.60) is an involution. Similarly, the inverse of the auto-BT (3.65)—
(3.68) is

Y = V +
α̃− α

N [M [V ],Z]
, (3.75)

Rk = Wk, k = 1, . . . , p− 1, (3.76)

Sk = Zk, k = 1, . . . , p− 1, (3.77)

α̃ = −α− 2h1, (3.78)

and so we see that the auto-BT (3.65)— (3.68) is also an involution.

Remark 3.16 Let us take L[u, z] as in (2.47) and N [U,Z] as in (2.50), so that (2.45)—(2.47) and (2.48)—
(2.50) correspond under V = −2v to local forms of the same hierarchy, and consider iterating the auto-
BTs given in Theorems 3.12 and 3.13. Beginning with initial parameter value α̂, combining the shifts in
parameter values (3.60) and (3.68) of these auto-BTs yields all parameter values of the form α̂− 6m1h1 and
−2h1− α̂−6m2h1 where m1 and m2 are integers. In the two special cases where either α̂ = −h1−6h1n1 for
some integer n1, or α̂ = 2h1−6h1n2 for some integer n2, the set of iterated parameter values is evenly spaced
(being either all parameter values of the form −h1 − 6M1h1 where M1 is integer, or all parameter values of
the form 2h1 − 6M2h1 where M2 is integer, respectively). We note that the particular cases α̂ = −h1 and
α̂ = 2h1 are the parameter values for which the basic special integrals in Definition 3.6 are defined.

4 Nested equations

In this section we give results on the nesting of equations analogous to those presented in [37] for the extended
PII and related hierarchies. We thus obtain relations between systems of different orders but of the same
form. We note (see Remark 4.11) that it is impossible to obtain lower order nested systems of the standard or
generalized cases of our hierarchies, and in this sense, in the non-autonomous case, our results are particular to
our extended hierarchies.

Theorem 4.1 Let u, w̄ = (w1, w2, . . . , wp−2), z̄ = (z1, z2, . . . , zp−2) be a solution of the system

L̄[u, z̄] ≡
n∑

k=1

ckH2k−2[u] +

q∑
k=1

akH2k−1[u] +

p∑
k=3

hkzk−2 + h2x = 0 (4.1)
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w1,x = θ[u]x

z1,x = K̂[u]w1

w2,x = θ[u]z1
z2,x = K̂[u]w2

...
wp−2,x = θ[u]zp−3
zp−2,x = K̂[u]wp−2


(4.2)

If we introduce functions wp−1 and zp−1 which satisfy the additional equations

wp−1,x = θ[u]zp−2, zp−1,x = K̂[u]wp−1, (4.3)

then we may choose c0 and a0 such that u, w = (w1, w2, . . . , wp−1) and z = (z1, z2, . . . , zp−1) satisfy (3.7),
(3.8) with L[u, z] given by (2.47) in the case where h1 = 0, i.e., we may choose c0 and a0 such that u, w
and z satisfy the system

L0[u, z] =

n∑
k=0

ckH2k[u] +

q∑
k=0

akH2k+1[u] +

p∑
k=2

hkzk−1 = 0 (4.4)

w1,x = θ[u]x

z1,x = K̂[u]w1

w2,x = θ[u]z1
z2,x = K̂[u]w2

...
wp−1,x = θ[u]zp−2
zp−1,x = K̂[u]wp−1


(4.5)

Proof. That u, w and z satisfy (4.5) is immediate. We define

Γ[u,w] ≡
n∑

k=1

ckE2k−2[u] +

q∑
k=1

akE2k−1[u] +
1

2
a0 +

p∑
k=3

hkwk−1 + h2w1, (4.6)

where Ek[u], k = 0, 1, 2, . . ., are as defined in (3.31), and where we recall that (3.32) also holds. Then, since
(4.5) holds, we have

(L0[u, z]− c0)x = ∂x

(
n∑

k=1

ckH2k[u] +

q∑
k=0

akH2k+1[u] +

p∑
k=2

hkzk−1

)

= K̂[u]

(
n∑

k=1

ckE2k−2[u] +

q∑
k=1

akE2k−1[u] +
1

2
a0 +

p∑
k=2

hkwk−1

)
= K̂[u]Γ[u,w] (4.7)

and also (
Γ[u,w]− 1

2
a0

)
x

= ∂x

(
n∑

k=1

ckE2k−2[u] +

q∑
k=1

akE2k−1[u] +

p∑
k=3

hkwk−1 + h2w1

)

= θ[u]

(
n∑

k=1

ckH2k−2[u] +

q∑
k=1

akH2k−1[u] +

p∑
k=3

hkzk−2 + h2x

)
= θ[u]L̄[u, z̄]. (4.8)
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From (4.8) we see that if L̄[u, z̄] = 0, i.e., if (4.1) holds, then we may choose a0 such that Γ[u,w] = 0. For this
choice of a0, we see from (4.7) that we may then choose c0 such that L0[u, z] = 0, i.e., such that (4.4) holds. 2

Definition 4.2 We refer to (4.1), (4.2) as a lower order nested system of (3.7), (3.8) with L[u, z] given by
(2.47). We note that we are assuming that c0, a0 and h1 are parameters whose values we are free to set.

Theorem 4.3 Let v̄, w̄ = (w1, w2, . . . , wp−2), z̄ = (z1, z2, . . . , zp−2) be a solution of the system

(∂x + v̄)L̄[M [v̄], z̄] +
1

2
ᾱ− h2 = 0 (4.9)

w1,x = θ[M [v̄]]x

z1,x = K̂[M [v̄]]w1

w2,x = θ[M [v̄]]z1
z2,x = K̂[M [v̄]]w2

...
wp−2,x = θ[M [v̄]]zp−3
zp−2,x = K̂[M [v̄]]wp−2


(4.10)

where ᾱ is an arbitrary constant and, as in Theorem 4.1,

L̄[u, z̄] =

n∑
k=1

ckH2k−2[u] +

q∑
k=1

akH2k−1[u] +

p∑
k=3

hkzk−2 + h2x. (4.11)

If we introduce functions wp−1 and zp−1 which satisfy the additional equations

wp−1,x = θ[M [v̄]]zp−2, zp−1,x = K̂[M [v̄]]wp−1, (4.12)

and choose v such that M [v] = M [v̄], then we may choose c0 and a0 such that v, w = (w1, w2, . . . , wp−1)
and z = (z1, z2, . . . , zp−1) satisfy, for parameter value α = 0, the system (2.45)—(2.47) in the case where
h1 = 0. That is, we may choose c0 and a0 such that v, w and z satisfy, for parameter value α = 0, the
system

(∂x + v)L0[M [v], z] +
1

2
α = 0 (4.13)

w1,x = θ[M [v]]x

z1,x = K̂[M [v]]w1

w2,x = θ[M [v]]z1
z2,x = K̂[M [v]]w2

...
wp−1,x = θ[M [v]]zp−2
zp−1,x = K̂[M [v]]wp−1


(4.14)

where, as in Theorem 4.1,

L0[u, z] =

n∑
k=0

ckH2k[u] +

q∑
k=0

akH2k+1[u] +

p∑
k=2

hkzk−1. (4.15)
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Proof. Setting u = M [v̄], we obtain immediately that (4.5) holds and also, with Γ[u,w] as defined in (4.6),
that (4.7) and (4.8) hold. Since equation (4.8) gives(

Γ[u,w]− 1

2
a0

)
x

= (∂x − v̄)∂x

[
(∂x + v̄)L̄[M [v̄], z̄] +

1

2
ᾱ− h2

]
(4.16)

for any arbitrary constant ᾱ, it then follows, similarly to the proof of Theorem 4.1, that since (4.9) holds then
we may choose c0 and a0 such that L0[u, z] = 0, i.e., such that (4.4) is satisfied. Thus equations (4.4) and (4.5)
are satisfied: with u = M [v] these equations then define a basic special integral, for parameter value α = 0, of
the system (4.13)—(4.15) (see Definition 3.6). This basic special integral consists of the equation

L0[M [v], z] = 0 (4.17)

along with (4.14). Solutions v, w and z of this basic special integral then give, for parameter value α = 0,
solutions of the system (4.13)—(4.15). (We note that solutions of this basic special integral can be obtained
from solutions u, w, z of (4.4), (4.5) by taking v = −2Ψx/Ψ where Ψxx + 1

2uΨ = 0; see Remark 3.7). 2

Definition 4.4 We refer to (4.9)—(4.11) as a lower order nested system of (2.45)—(2.47). Again we note
that we are assuming that c0, a0 and h1 are parameters whose values we are free to set.

We now turn to the SK/mSK version of the above results, and then make some remarks common to both
the KK/mKK and SK/mSK versions of our results on nested equations.

Theorem 4.5 Let U , W̄ = (W1,W2, . . . ,Wp−2), Z̄ = (Z1, Z2, . . . , Zp−2) be a solution of the system

N̄ [U, Z̄] ≡
n∑

k=1

ckG2k−2[U ] +

q∑
k=1

akG2k−1[U ] +

p∑
k=3

hkZk−2 + h2x = 0 (4.18)

W1,x = θ[U ]x

Z1,x = Ĵ [U ]W1

W2,x = θ[U ]Z1

Z2,x = Ĵ [U ]W2

...
Wp−2,x = θ[U ]Zp−3
Zp−2,x = Ĵ [U ]Wp−2


(4.19)

If we introduce functions Wp−1 and Zp−1 which satisfy the additional equations

Wp−1,x = θ[U ]Zp−2, Zp−1,x = Ĵ [U ]Wp−1, (4.20)

then we may choose c0 and a0 such that U , W = (W1,W2, . . . ,Wp−1) and Z = (Z1, Z2, . . . , Zp−1) satisfy
(3.15), (3.16) with N [U,Z] given by (2.50) in the case where h1 = 0, i.e., we may choose c0 and a0 such
that U , W and Z satisfy the system

N0[U,Z] =

n∑
k=0

ckG2k[U ] +

q∑
k=0

akG2k+1[U ] +

p∑
k=2

hkZk−1 = 0 (4.21)
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W1,x = θ[U ]x

Z1,x = Ĵ [U ]W1

W2,x = θ[U ]Z1

Z2,x = Ĵ [U ]W2

...
Wp−1,x = θ[U ]Zp−2
Zp−1,x = Ĵ [U ]Wp−1


(4.22)

Proof. That U , W and Z satisfy (4.22) is immediate. We define

∆[U,W] ≡
n∑

k=1

ckF2k−2[U ] +

q∑
k=1

akF2k−1[U ] + 2a0 +

p∑
k=3

hkWk−1 + h2W1, (4.23)

where Fk[u], k = 0, 1, 2, . . ., are as defined in (3.42), and where we recall that (3.43) also holds. Then, since
(4.22) holds, we have

(N0[U,Z]− c0)x = ∂x

(
n∑

k=1

ckG2k[U ] +

q∑
k=0

akG2k+1[U ] +

p∑
k=2

hkZk−1

)

= Ĵ [U ]

(
n∑

k=1

ckF2k−2[U ] +

q∑
k=1

akF2k−1[U ] + 2a0 +

p∑
k=2

hkWk−1

)
= Ĵ [U ]∆[U,W] (4.24)

and also

(∆[U,W]− 2a0)x = ∂x

(
n∑

k=1

ckF2k−2[U ] +

q∑
k=1

akF2k−1[U ] +

p∑
k=3

hkWk−1 + h2W1

)

= θ[U ]

(
n∑

k=1

ckG2k−2[U ] +

q∑
k=1

akG2k−1[U ] +

p∑
k=3

hkZk−2 + h2x

)
= θ[U ]N̄ [U, Z̄] (4.25)

From (4.25) we see that if N [U, Z̄] = 0, i.e., if (4.18) holds, then we may choose a0 such that ∆[U,W] = 0. For
this choice of a0, we see from (4.24) that we may then choose c0 such that N0[U,Z] = 0, i.e., such that (4.21)
holds. 2

Definition 4.6 We refer to (4.18), (4.19) as a lower order nested system of (3.15), (3.16) with N [U,Z]
given by (2.50). We note that we are assuming that c0, a0 and h1 are parameters whose values we are free
to set.

Theorem 4.7 Let V̄ , W̄ = (W1,W2, . . . ,Wp−2), Z̄ = (Z1, Z2, . . . , Zp−2) be a solution of the system

(∂x + V̄ )N̄ [M [V̄ ], Z̄]− ᾱ− h2 = 0 (4.26)

W1,x = θ[M [V̄ ]]x

Z1,x = Ĵ [M [V̄ ]]W1

W2,x = θ[M [V̄ ]]Z1

Z2,x = Ĵ [M [V̄ ]]W2

...
Wp−2,x = θ[M [V̄ ]]Zp−3
Zp−2,x = Ĵ [M [V̄ ]]Wp−2


(4.27)
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where ᾱ is an arbitrary constant and, as in Theorem 4.5,

N̄ [U, Z̄] =

n∑
k=1

ckG2k−2[U ] +

q∑
k=1

akG2k−1[U ] +

p∑
k=3

hkZk−2 + h2x. (4.28)

If we introduce functions Wp−1 and Zp−1 which satisfy the additional equations

Wp−1,x = θ[M [V̄ ]]Zp−2, Zp−1,x = Ĵ [M [V̄ ]]Wp−1, (4.29)

and choose V such that M [V ] = M [V̄ ], then we may choose c0 and a0 such that V , W = (W1,W2, . . . ,Wp−1)
and Z = (Z1, Z2, . . . , Zp−1) satisfy, for parameter value α = 0, the system (2.48)—(2.50) in the case where
h1 = 0. That is, we may choose c0 and a0 such that V , W and Z satisfy, for parameter value α = 0, the
system

(∂x + V )N0[M [V ],Z]− α = 0 (4.30)

W1,x = θ[M [V ]]x

Z1,x = Ĵ [M [V ]]W1

W2,x = θ[M [V ]]Z1

Z2,x = Ĵ [M [V ]]W2

...
Wp−1,x = θ[M [V ]]Zp−2
Zp−1,x = Ĵ [M [V ]]Wp−1


(4.31)

where, as in Theorem 4.5,

N0[U,Z] =

n∑
k=0

ckG2k[U ] +

q∑
k=0

akG2k+1[U ] +

p∑
k=2

hkZk−1. (4.32)

Proof. Setting U = M [V̄ ], we obtain immediately that (4.22) holds and also, with ∆[U,W] as defined in (4.23),
that (4.24) and (4.25) hold. Since equation (4.25) gives

(∆[U,W]− 2a0)x = (∂x − V̄ )∂x

[
(∂x + V̄ )N̄ [M [V̄ ], Z̄]− ᾱ− h2

]
(4.33)

for any arbitrary constant ᾱ, it then follows, similarly to the proof of Theorem 4.5, that since (4.26) holds then
we may choose c0 and a0 such that N0[U,Z] = 0, i.e., such that (4.21) is satisfied. Thus equations (4.21) and
(4.22) are satisfied: with U = M [V ] these equations then define a basic special integral, for parameter value
α = 0, of the system (4.30)—(4.32) (see Definition 3.6). This basic special integral consists of the equation

N0[M [V ],Z] = 0 (4.34)

along with (4.31). Solutions V , W and Z of this basic special integral then give, for parameter value α = 0,
solutions of the system (4.30)—(4.32). (We note that solutions of this basic special integral can be obtained
from solutions U , W, Z of (4.21), (4.22) by taking V = −2Φx/Φ where Φxx + 1

2UΦ = 0; see Remark 3.7). 2

Definition 4.8 We refer to (4.26)—(4.28) as a lower order nested system of (2.48)—(2.50). Again we note
that we are assuming that c0, a0 and h1 are parameters whose values we are free to set.

Remark 4.9 We note that in Theorem 4.3, the solutions v and v̄ need not coincide (we only require M [v] =
M [v̄]). Similarly for the solutions V and V̄ in Theorem 4.7.
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Remark 4.10 Each of the Theorems 4.1, 4.3, 4.5 and 4.7 may be applied repeatedly, in order to obtain
successive lower order nested systems. (Second lower order nested systems, for example, would be for h2 = 0
and a choice of c1 and a1.)

Remark 4.11 The results of this section are analogous to our results on the nesting of equations presented
in [37], except that here we require that h1 = 0. This requirement that then means that we cannot obtain
lower order nested systems of the standard or generalized cases of the hierarchies (2.45)—(2.47) and (2.48)—
(2.50), or of the equations which govern their basic special integrals, i.e., (3.7), (3.8), (2.47) and (3.15),
(3.16), (2.50) respectively, since in these cases we have hk = 0, k = 2, 3, . . . , hp, and h1 6= 0. However,
the standard and generalized cases of these hierarchies, and of the equations which govern their basic special
integrals, can be nested systems of higher order (and necessarily extended) systems.

5 Conclusions

In a recent paper [37] we introduced a new extended second Painlevé hierarchy and studied its propeties. The
approach used in [37], based on the use of nonisospectral scattering problems, is widely applicable, and we
therefore expected to be able to derive extended versions of other continuous, discrete and differential-delay
Painlevé hierarchies and equations. Here we have given a second example of an extended Painlevé hierarchy,
namely our extended KK-SK Painlevé hierarchy, and have given results on BTs, auto-BTs and other properties
of this and related ODE hierarchies. We have also discussed the nesting of equations, thus obtaining relations
between systems of different orders but of the same form. In subsequent papers we will use our approach in
order to derive and study further extended Painlevé hierarchies, continuous, discrete and differential-delay.
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