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Abstract

Aviation safety is essential for the healthy growth and sustainability of the global

economy. The implementation of Safety Management Systems to support safe

service delivery has become one of the most important goals within the airline

industry over the last years. However, in most cases the involved organisations

use unsophisticated methods based on risk matrices for the development of such

systems. In this paper, we present models to forecast and assess the conse-

quences of aviation safety occurrences as part of a framework for aviation safety

risk management at state level.
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1. Introduction

Air transport is fundamental for the development of modern societies and

safety is one of its key features: various organisations like the International Civil

Aviation Organization (ICAO), the Federal Aviation Administration (FAA), the

European Aviation Safety Agency (EASA) or EUROCONTROL have aimed5

at making aviation the safest transportation mode since their creation. As a

result, the ICAO binds the 191 signatory states of the Chicago Convention

to develop their national Safety Management Systems (SMS) aimed at properly

managing aviation safety (AS) in their respective countries. Indeed, the viability

of an aviation organisation depends largely on its ability to preserve the public10

perception of its safety. This requires a constant balance between service costs

Preprint submitted to Safety Science May 15, 2018



and safety goals, making risk management essential for sustainability.

Despite a high safety level in aviation worldwide, occurrences continue to

take place. As an example, in our context, we need to consider 88 different types

of occurrences, ranging from bird strikes to runway excursions going through15

engine failures and loss of control. As proposed by ICAO (2013), each of such

occurrences is classified into one of five severity classes: Accident (1); Serious

Incident (2); Major Incident (3); Significant Incident (4); and, finally, Occur-

rence without safety effect (5). Thus, we may talk, for example, about a severity

3 engine failure occurrence.20

In earlier work, Rios Insua et al. (2016a), we have presented a framework

to support AS risk management at state level. It employs decision analysis

(French & Ŕıos Insua, 2000) and includes as stages: (a) providing forecasting

models for the numbers of various types of occurrences; (b) forecasting models

for the occurrence severity classes; (c) forecasting models for the consequences25

of occurrences; (d) the construction of a multiattribute utility model to assess

such consequences; and, finally, (e) using such models to screen riskier occur-

rences and assign resources optimally to mitigate aviation hazards. In particu-

lar, the framework is used by an AS state agency to decide how to allocate their

resources, specifically their inspection capabilities, to improve AS in a coun-30

try taking into account technical and financial constraints. This facilitates the

preparation of the national SMS and overcomes standard AS risk management

practice based on risk matrices (e.g. ICAO (2013), Ayres Jr et al. (2009), FAA

(2007) and McIntyre (2002)), with well known defects, Cox (2008). Netjasov &

Janic (2008) provide a review of other AS approaches, including Bayesian belief35

networks (Ale et al., 2009). However, such approaches tend to be not integrated

within appropriate decision making structures.

In this paper, we present in full detail stages (c) and (d). Besides being key

ingredients for our risk management methodology, the models presented allow

us to forecast and assess consequences of AS occurrences, thus being of inter-40

est not only for aviation authorities, but also for insurance companies, aviation

operators and aircraft companies. Given the above mentioned emphasis on risk

2



matrices in AS, which focus on qualitative global impacts in an ordinal scale

(typically, 1-5), it is no surprise that relatively little work on assessing AS conse-

quences is available. Sobieralski (2013) provides a review of the scarce literature45

on the topic which we complement in Section 3.1 below. Our contributions in-

clude the identification and structure of objectives typically relevant in AS from

a state perspective; the provision of models to forecast and asses such AS con-

sequences; and, finally, a model to globally assess such consequences. We view

all of the above models as templates, in the sense that an organisation could50

use them as starting points to be refined and adapted to their own data and

circumstances.

In what follows, we shall make a distinction about various aircraft types: T1,

general aviation, aerial works, or business aviation, with less than 19 passengers;

T2, regional flights (< 100 seats); T3, continental flights (< 200 seats); T4,55

intercontinental flights (> 200 seats). T2, T3 and T4 refer to aircrafts engaged

in commercial aviation.

2. Aviation safety objectives and multiattribute evaluation

2.1. Objectives

AS occurrences may entail very negative consequences in terms of lives and60

costs. Through risk management, we aim at minimising them. Each organisa-

tion must determine their relevant consequences for risk management purposes.

They will typically vary from private organisations, say an airline, to state

organisations, like a national AS agency. They may also vary for different coun-

tries. We present here the consequences considered relevant in our case, which65

may serve as initial information for other organisations, specially if they are

governmental. Recall that the context of our problem refers to an AS public

agency that aims at introducing a risk management plan outlining a resource

allocation procedure to improve AS in the corresponding country, as part of

developing their national SMS.70
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After a brainstorming process and a literature review, in particular based

on EUROCONTROL (2013), the incumbent organisation (the Spanish Aviation

Safety and Security Agency, AESA) decided to focus on the objectives hierarchy

in Figure 1, which portrays the chosen objectives and subobjectives as well as the

corresponding attributes. Clemen & Reilly (2013) and Keeney (2009) provide75

details on designing hierarchies of objectives.

Optimise AS

Min. Image loss
Number of

accidents

Min. Mate-

rial damage

Min. Destructions
Number of

destructions

Min. Repairs Number of repairs

Min. Opera-

tional impact

Min. Cancellations
Number of

cancellations

Min. Delays Minutes of delay

Min. Health

impact

Min. Injuries

Number of

minor injuries

Number of

severe injuries

Min. Fatalities
Number of

fatalities

Figure 1: Objectives of aviation safety management at state level

We started with a generic objective, optimise AS, which we specified through

four sub-objectives:

• Minimise health impacts, associated with aviation induced deaths and in-
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juries;80

• Minimise the operational impact produced by unsafe aviation operations;

• Minimise material damages caused by safety occurrences; and, finally,

• Minimise country image loss associated with the lack of AS.

The first sub-objective was further decomposed into two referring to min-

imising fatalities and injuries. The attributes chosen to evaluate them were85

natural and correspond, respectively, with the number of fatalities and injuries

in two categories, severe and minor, as defined by EUROCONTROL (2013). In

AS, ICAO (2013) describes a fatality as any person who suffers a fatal injury,

resulting in death within thirty days of the date of an accident. It is the most

feared consequence in AS occurrences. An important example refers to the 58390

dead in 1977 at the Tenerife North Airport (Spain) after the collision of two

aircrafts. Similarly, ICAO (2013) defines an injured as any person who suffers

a non fatal injury as a result of: being in the aircraft; or in direct contact with

any part of it, including parts which have become detached from the aircraft; or

direct exposure to jet blast. A relevant example refers to 64 injuries, including 795

severe ones, in 1988 due to a detachment of the ceiling of the cabin of an airplane

during takeoff, forcing the pilot to make an emergency landing at Kahului.

The second sub-objective was also broken down into two, referring to min-

imising delays and cancellations induced by occurrences. Indeed, one of the

associated negative consequences are the delays in takeoff or landing after the100

expected scheduled time (above 15 minutes, according to the FAA), which may

induce significant costs to individuals and airlines and, in general, the aviation

system in a state. As an example, Cook & Tanner (2011) report that around

750.000 flights in 2009 suffered some kind of delay in the European Union (EU),

with an approximate associated cost of 1.25 Me. We shall estimate the delay105

induced by AS occurrences in minutes. On the other hand, when a flight is

cancelled we must assume costs such as accommodation, transport or catering.

The chosen attribute for this consequence was the number of cancellations due
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to such occurrences.

The third sub-objective referred to minimising material damages induced110

by occurrences. To reflect this, two subobjectives and their attributes were pro-

posed: the number of destroyed aircrafts and the number of aircrafts requiring

repair during the corresponding management period. For certain occurrences,

and depending on their severity, it will be necessary to inspect the damaged parts

and repair the aircraft cell. Moreover, after several accidents, repair might not115

be possible and it would be necessary to replace the aircraft. In terms of AS

risk management, both destructions and repairs entail considerable costs that a

state should take into account and promote their minimisation.

Finally, we did not need to further decompose the fourth sub-objective, min-

imisation of image loss. Image costs would be based on the media coverage that120

occurrences receive. In general, we assume that the more severe the occurrence

is, the higher the image loss will be. This should be taken into account, as we are

focusing on risk management at state level, and image may affect key economic

sectors such as tourism. However, a natural attribute that allows us to evaluate

this consequence was not readily available. One alternative would be to con-125

struct an artificial ordinal scale, say from 1 to 10. Level 1 would be associated

with a situation of minimal image impact (for example, a severity 5 occurrence

with no consequences that would not appear in the media); similarly, level 10

would be associated with a maximum impact accident with total destruction of

the aircraft and numerous fatalities (for example, the Germanwings 2015 case130

that led the world press for several weeks), with a very negative image for a

country. Henceforth, we would associate each of the levels with a qualitative

description of severity with respect to image. However, as described in Brown-

low & Watson (1987), we prefer to adopt a proxy variable that mitigates the

ambiguities in such constructed scale. Thus, we shall use the number of acci-135

dents (occurrences of severity 1) suffered by commercial aircraft transport as a

proxy for country image loss. These are the occurrences which will make it to

the media and, presumably, are highly correlated with negative image impact.

In summary, through an AS risk management plan, the initial aim of the
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organisation would be to minimise over the relevant planning period the number140

nF of fatalities; nH1
and nH2

of minor and severe injuries, respectively; the

minutes tD of delays and the number nC of cancellations induced by occurrences;

the numbers nR of damaged and nHL of destroyed aircrafts; and, finally, the

number s1 of commercial aviation accidents.

2.2. Multiattribute evaluation145

We describe now the preference model agreed with the organisation to as-

sess the consequences of AS plans. Among other things, this will allow us to

forecast the costs associated with AS over the planning period as outlined in

Section 4.8. If these are deemed high, we should look for appropriate risk man-

agement interventions, whose impact would again be evaluated with the aid of150

the proposed preference model. Thus, we need the regulator utility function,

modelling its preferences and risk attitudes. For this, we use the concepts of

measurable multi-attribute value function (Dyer & Sarin, 1979) and relative risk

aversion (Dyer & Sarin, 1982).

2.2.1. A multi-attribute value function155

First, under appropiate and sufficiently general preference independence con-

ditions, González-Ortega et al. (2018), we aggregate the consequences through

a measurable value function

v(nF , nH1 , nH2 , tD, nC , nHL, nR, s
1) =

− cFnF −
2∑
i=1

cHinHi − cDtD − cCnC − cHLnHL − cRnR − cIs1 (1)

where cF is the cost of each fatality; cHi
are the costs of minor (i = 1) and

severe (i = 2) injuries; cD is the cost per minute of delay; cC is the cost of a

cancellation; cHL is the cost of a destroyed aircraft; cR is the cost of a repair;

and, finally, cI is the image cost. The negative signs are due to the fact that

we deal with costs to be minimised, whereas in the decision analytic jargon160

value functions should be maximised. We describe now how did we assess such
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costs. As several of them have a somewhat cotentious nature, we performed

a robustness analysis of their impact over the results of the entailed resource

allocations.

First of all, to estimate the expected cost cF associated with a fatality, we use165

the concept of value of statistical life (VSL) presented, for example, in Viscusi &

Aldy (2003). This entailed thorough discussions with the agency management

given the involved ethical issues, see Ale et al. (2015, 2018) for perspectives on

the topic. In the end, we adopted the reference value for Spain in EUROCON-

TROL (2013), which is 1.65 Me. Other estimations could be used, e.g. Thaler170

& Rosen (1976) or Miller (2000). Similarly, to evaluate the costs associated

with both types of injuries, cH = (cH1
, cH2

), we use the concept of value of a

statistical injury (VSI) through a fraction of the VSL, depending on the severity

of the injury, as reflected in Table 1, adapted from EUROCONTROL (2013).

Table 1: Proportion of injury cost by severity. From EUROCONTROL (2013).

Severity VSL proportion

Minor 0.2625

Severe 0.7625

The costs associated with delays refer only to operational ones. Among other175

things, those may be due with the fact that passengers should be provided with

extra catering at the plane or airport. EUROCONTROL (2013) provides a cost

decomposition of components associated with delays. We consider two types

of costs: (1) Delay with network effect, including the effect of consequential

delay caused either to the aircraft incurring the initial delay or to other air-180

craft; (2) Delay without network effect, otherwise. To approximate the costs per

minute delayed, we adopt the EUROCONTROL perspective that distinguishes

three scenarios (low, base, high). Accordingly, we decided to use the triangular

distributions described in Table 2.
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Table 2: Parameters of the triangular distribution to forecast costs by type of delay.

Kind of delay Cost (e/min)

With network effect cD1
∼ T (26.2, 90.1, 127.8)

Without network effect cD2 ∼ T (14.9, 52.9, 78.6)

Based also on EUROCONTROL (2013), the costs associated with a cancel-185

lation include: service recovery; crew and catering; loss of future value; and,

finally, operational savings. cC designates the cost of cancellation by type of

aircraft with estimated values summarised in Table 3.

Table 3: Average cancelling cost for commercial scheduled flight. EUROCONTROL (2013).

Aircraft type Flight cancelled (e)

T2 3700

T3 17300

T4 81000

To define costs of repair/maintenance, we used a triangular distribution

considering three different scenarios (low, base, high), Galway (2007). If cR1
190

designates the minimum, cR2 the modal and cR3 the maximum costs, the model

will be cR ∼ T (cR1
, cR2

, cR3
). Table 4 provides the cost (in Euros), suggested

in EUROCONTROL (2013), to perform maintenance depending on the type

of aircraft, as well as the estimated cost in case of destruction.

Table 4: Estimated aircraft maintenance and destruction costs.

Aircraft type
Maint. Cost (Euro)

Hull loss Cost (Me)
Low Base High

T1 139 162 310 2

T2 306 671 1149 20

T3 977 1656 2518 80

T4 3119 3553 5533 250

Finally, to estimate the image costs cI , we used a procedure based on expert
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judgement with r AS experts, Dias et al. (2018). We assume that the experts

face a base scenario in which there are A accidents with F fatalities. Then,

we could ask the following question to the experts: If the number of accidents

increase in A1 units, how many fatalities x would you consider so that the

perceived impact is the same as in the previous scenario? Thus, experts must

assign the value x such that they find equally preferred the AS scenarios

(F,A) ∼ (x,A+A1). (2)

To facilitate the task, we used an iterative scheme designed to assess x bounding

it from above and below. Suppose now that the i-th expert provides the answer

(F,A) ∼ (xi, A+A1), i = 1, . . . , r. (3)

Under appropriate preference independence conditions, French & Ŕıos Insua

(2000), and assuming constant results in the other criteria, the values associated

with both consequences should coincide so that cF ·F+ciI ·A = cF ·xi+ciI ·(A+A1)

and

ciI = −cF (xi − F )

A1
, i = 1, . . . , r. (4)

To aggregate the opinion of experts, we could use averages. To verify the consis-195

tency of the assessment, we may repeat the procedure with other attributes. In

our case, after proceeding with two experts, we obtained c1I = 0.41, c2I = 0.97,

which we aggregated through their average, obtaining cI = 0.69.

2.2.2. Risk attitude

The involved organisation declares constant risk aversion with respect to v.

Then, the utility function will be strategically equivalent to

u(v) = − exp(ωv), (5)

with ω > 0 designating the risk aversion coefficient, Keeney & Raiffa (1993). To200

determine ω, we may use the probability equivalent (PE) method as in Farquhar

(1984). Let v∗ and v∗ be the worst and best values attained, respectively; v1,
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an intermediate value between such consequences; and, finally, φ a value such

that the lottery leading to v∗ with probability φ and v∗ with probability (1−φ)

leaves the AS manager indifferent with respect to obtaining v1 for sure. Then,205

u(v1) = φ and we may solve the system

φ = ρ− % exp(ωv1),

1 = ρ− % exp(ωv∗),

0 = ρ− % exp(ωv∗), (6)

ρ, % and ω which allows as to estimate the utility function parameters.

3. Forecasting aviation safety occurrence consequences

3.1. Review

We start by providing a brief review of earlier literature on forecasting models210

available for the AS consequences presented in Figure 1. Such models do not

fully cover our predictive needs, given our segmentation according to occurrence

type and severity and aircraft type, motivating our proposals in Section 3.2.

There are comparatively few studies that cover issues concerning forecasting

aviation fatalities, e.g. Belcastro & Foster (2010), Clancy (1960) or Grabowski215

et al. (2005). Pikaar et al. (2000) and Janssen & Ale (2000) provide methods

to calculate third-party risk around airports based on three main elements: ac-

cident rate model, accident location model and accident consequence model.

Thorpe (2003) provides a compilation of accidents due to bird strikes leading

to fatalities. The annual reports of Boeing (2013) and EASA (2013), and the220

Aviation Safety Network (ASN) data base provide accurate data on fatal acci-

dents.

There are also some works in relation to forecasting injuries in aviation

including Dambier & Hinkelbein (2006), who made a detailed analysis of occur-

rences in Germany in 2004 presenting the results by aircraft type, time period,225

or severity; and O’Hare et al. (2003), who performed a comparative analysis
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of occurrences in New Zealand during 1988-1994, from which they identified

environmental factors causing injuries due to AS occurrences.

In relation with flight delays, Sternberg et al. (2017) present an analysis

of the available literature on flight delay prediction summarizing the most re-230

searched trends in this problem and comparing methods used to build forecast-

ing models. Khanmohammadi et al. (2016) propose a multilevel input layer

artificial neural network model to predict delays of incoming flights at JFK.

Our focus will be on delays induced solely by AS incidents. Ayra et al. (2016)

provide an example in relation with unintended slide deployment.235

Long & Hasan (2009) present a simulation model to estimate flight delays

and cancellations under all operating conditions including inclement weather;

Mukherjee et al. (2006) propose models to estimate average flight delay and can-

cellation probabilities based on percentiles of the distribution of the congestion

level faced at an airport; and Lemke et al. (2009) investigate time series fore-240

casting and forecast combination methods applied to airline cancellation data.

Rupp & Holmes (2006) present a detailed study of causes and factors of can-

cellations, whereas Xiong & Hansen (2013) determine the importance of such

main factors.

Maintenance is extremely important to prevent accidents, delays or can-245

cellations. Also costs can be reduced if a failure occurrence is forecasted and

maintenance planned accordingly. There are some works about maintenance and

repairs in the field of aviation. For example, Ghobbar & Friend (2003) com-

pare different methods to forecasting spare parts demand in aircrafts or Kontrec

et al. (2015) who propose an approach that supports the decision making pro-250

cess in planning and controlling spare parts in aircraft maintenance systems to

minimise downtimes and/or delays. Our emphasis will be on the complemen-

tary problem of how various aviation occurrences may induce maintenance and

repair costs.

Fatal accidents, apart from material losses, generate additional costs for or-255

ganisations, such as negative effects on airline reputation. Chalk (1987) analyses

the effects of various fatal accident concluding that manufacturers of aircraft in-
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volved in major accidents suffered a decrease in their market value of around

4% after one such. Squalli & Saad (2006) assess the impact of consumer percep-

tions about the safety level of airlines on enplanement. Lu et al. (2006) present260

the ten critical events which led to airline accidents after a review of 189 final

accident reports from the National Transportation Safety Board and provide

models to predict the likelihood of such critical events.

3.2. Models to forecast aviation safety occurrence consequences

We present now our models to predict the eight consequences of Figure 1265

associated with AS occurrences. By later aggregating over all of them, we could

predict the consequences associated with an AS plan, say over a year, which is

the planning period adopted to ellaborate and update the SMS. Finally assessing

them with the value and utility functions presented in Section 2.2 would allow

us to assess risk comprehensively.270

In some cases, we shall need to make a distinction about the type of aircraft

involved using the T1-T4 classification above. Furthermore, our models will

typically depend on occurrence severity and type. For each model, we start by

providing several motivating facts and hypothesis.

3.2.1. Fatalities275

According to the ICAO definition, there are only fatalities in class 1 oc-

currences (accidents). Note though that there does not necessarily have to be

fatalities in an accident, neither do all passengers and cabin crew have to die.

Model. We predict the number nF of fatalities in an accident with the model

nF = pF · q ·M, (7)

where pF designates the proportion of fatalities, estimated through model (8)

below; q is the aircraft occupancy degree estimated with model (11); and, finally,280

M is its maximum occupancy. pF will depend on the type of aircraft and

occurrence, whereas q and M will depend just on the aircraft type.
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For pF , we propose a mixture model

pF ∼ τ1I0 + τ2Be(aF , bF ) + τ3I1, (8)

where τ1 designates the proportion of accidents with no fatalities; τ2, that of

accidents with fatalities and survivors; and, finally, τ3, that of accidents with

no survivors, with τ1 + τ2 + τ3 = 1, τi ≥ 0, i = 1, 2, 3. I0 is the degenerate285

distribution at 0 (no occupant dies); Be(aF , bF ) is a beta distribution, with

parameters aF and bF , modelling the proportion of fatalities in accidents when

there are fatalities and survivors; and, finally, I1 is the degenerate distribution

at 1 (all occupants die).

We make inference about the weights τi with a Dirichlet-multinomial model 1.

We assume a prior (τ1, τ2, τ3) ∼ Dir(a1, a2, a3). If in ϑ1 accidents (for the oc-

currence type of interest, with the relevant aircraft type) there were ϑ11 without

fatalities; ϑ12, in which not all occupants died; and, finally, in ϑ13 all died, the

posterior would be

(τ1, τ2, τ3)|data ∼ Dir(a1 + ϑ11, a2 + ϑ12, a3 + ϑ13). (9)

To perform inference about pF , when 0 < pF < 1, we use a Beta-binomial

model. Initially, pF ∼ Be(aF , bF ). If the available data is ((o1, f1), . . . , (og, fg)),

with oi occupants and fi fatalities in the g accidents that led to some fatalities,

the posterior distribution will be

pF |data ∼ Be

(
aF +

g∑
i=1

fi, bF +

g∑
i=1

(oi − fi)

)
. (10)

For the occupancy q, the prior distribution is q ∼ Be(cF , dF ). If we have the oc-

cupancy proportions (pO1, . . . , pOl) in l flights, the posterior distribution would

be

q|data ∼ Be

(
cF +

l∑
i=1

pOi, dF +

l∑
i=1

(1− pOi)

)
. (11)

1For the Dirichlet-multinomial and beta-binomial models appearing, when referring to non

informative priors we shall use uniform ones with parameters equal to 1. Berger et al. (2015)

describe other possibilities.
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3.2.2. Injuries290

Observe first that in an occurrence there does not necessarily have to be

injuries, neither do all passengers and cabin crew have to be injured. Besides, we

expect that the greater the severity of the occurrence, the higher the number of

injuries will be. When forecasting this consequence, we shall segment according

to aircraft type.295

Model. We consider three proportions phi
, i = 1, 2, 3 for the three types of

survivors (i = 1, minor injured; i = 2, severely injured; i = 3, uninjured),

following a model

pH = (ph1
, ph2

, ph3
) ∼ αH · I(0, 0, 1) + (1− αH) · Dir(h1, h2, h3), (12)

where αH designates the proportion of occurrences in which no survivor is in-

jured and I(0, 0, 1) is the degenerate distribution in which there are no wounded

occupants. pH will depend on the type of aircraft and occurrence.

We make inference about the weight αH with a Beta-binomial model. We

assume a prior αH ∼ Be (aH , bH). If in χ occurrences (of the occurrence type

of interest, with the relevant type of aircraft) there were χ1 with no injured

occupants, the posterior distribution is

αH |data ∼ Be (aH + χ1, bH + (χ− χ1)) . (13)

With regard to the proportions of injured occupants, if the available data are

{(n11, n12, n13),. . .,(nk1 , nk2 , nk3)}, where nji represents the number of injured oc-

cupants with severity i ∈ {1, 2, 3} in the j-th occurrence, j ∈ {1, . . . , k}, the

posterior distribution would be

pH |data ∼ Dir

(
h1 +

k∑
i=1

ni1, h2 +

k∑
i=1

ni2, h3 +

k∑
i=1

ni3

)
. (14)

Finally, the number nH = (nh1
, nh2

, nh3
) of injuries for a given occurrence

type is predicted through

nH = pH · q · (1− pF ) ·M, (15)

where pF , q and M are as in Section 3.2.1.
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3.2.3. Delays300

Note first that severity 1 occurrences produce a cancellation, not entailing

delay. For severity 5 occurrences, delays are not considered relevant. We as-

sume, therefore, that significant delays may hold only for severity 2, 3 and 4

occurrences. However, there does not necessarily have to be delays for these

types of occurrences. In addition, delays will be relevant only for T2, T3 and305

T4 aircrafts. Finally, we consider two types of delay (EUROCONTROL, 2013):

with and without network effect. We assume that severity 2 and 3 occurrences

may entail delays with network effect, whereas severity 4 produce delays without

such effect.

Model. The delay tD associated with an AS occurrence is predicted with the

model

tD = pd0I0 + pd1Fd1 + pd2Fd2 ,

pd0 + pd1 + pd2 = 1,

pd0 , pd1 , pd2 ≥ 0, (16)

where pd0 represents the proportion of occurrences with no delay; pd1 , the pro-310

portion of occurrences with delay without network effect; pd2 , the proportion of

occurrences with delay with network effect; I0 is the distribution degenerate at

0 (no delay); and, finally, Fd describes the non-zero delays (distinguishing cases

with or without network effect, respectively designated by d2 and d1).

Starting from a non-informative Dirichlet distribution, the posterior would

be

(pd0 , pd1 , pd2)|data ∼ Dir(1 + x0, 1 + x1, 1 + x2), (17)

where x0 is the number of occurrences without delay; x1, the number of occur-315

rences without network delay and, finally, x2, the number of occurrences with

network delay.

Based on the model in Ayra et al. (2016), we assume that Fd1 ∼ Wei(γ =

0, β1, η1), where Wei(γ, β, η) designates the Weibull distribution with three pa-
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rameters

f(t|γ, β, η) = β
(t− γ)β−1

ηβ
exp

(
−
(
t− γ
η

)β)
, (18)

whereas for delay type Fd2 we consider a mixture

Fd2 ∼ pr ·Wei(γ = 0, β2, η2) + (1− pr) ·Wei(γ, β3, η3), (19)

where γ ∼ U(aD, bD) and pr follows a Beta-binomial model. To make the model

operational, we use the delay distributions associated with the occurrence in

Ayra et al. (2016), reflected in Figure 2.320

(a) Without network effect (Fd1) (b) With network effect (Fd2)

Figure 2: Representation of time delay (in minutes)

The parameters of models (18) and (19) are summarised in Table 5

Table 5: Model parameters to forecast delays

pr γ β1 η1 β2 η2 β3 η3

Be(2.15, 0.72) U(11, 16) 1.7 47.15 1.3 110.58 1.4 98.23

3.2.4. Cancellations

Severity 1 occurrences always lead to cancellations. For severity 2-4 occur-

rences, 2.02% of the cases lead to a flight cancellation, corresponding to the

average proportion of cancellations, according to the US DoT (http://www.325

transtats.bts.gov/HomeDrillChart.asp). For T1 type aircrafts, we will not

consider the case where a cancellation occurs, since it is not relevant. The other

categories are treated jointly.
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Model. To predict cancellations we use a Beta-Bernoulli model

X|pc ∼ Ber(pc),

pc ∼ Be(ac, bc), (20)

where X = 1(0) indicates whether (not) the flight is cancelled and pc is the

probability of cancellation for a certain type of occurrence and severity. Then,

if there are n occurrences under the conditions in which x cancellations occur,

we have

pc|data ∼ Be(ac + x, bc + (n− x)). (21)

Finally, for m occurrences, the number nC of cancellations could be predicted

pointwise with

n̂C = m · ac + x

ac + bc + n
. (22)

3.2.5. Repairs and destructions

Consistent with the ICAO (2013) definition of severity, destructions will330

happen only for severity 1 occurrences. For severity 5, no repair is required.

Furthermore, repairs for severity 1 to 4 occurrences may not necessarily happen.

The degree of repair will depend on the type of aircraft and occurrence.

Model. Firstly, for severity 1 occurrences, aircraft damage is described with a

multinomial model

M(1; pm1
, pm2

, pm3
), (23)

where
∑
j pmj

= 1 and pmj
≥ 0, where subscripts 1, 2 and 3, respectively,

indicate that the aircraft has not been damaged, has been completely destroyed

or requires maintenance. If ((n11, n12, n13),. . .,(nk1 , nk2 , nk3)) are the available data,

where nji represents the number of aircraft with grade destruction i during the

j-th year, j = 1, . . . , k, the posterior would be

pm|data ∼ Dir

1 +

k∑
j=1

nj1, 1 +

k∑
i=1

nj2, 1 +

k∑
i=1

nj3

 , (24)

assuming we start from a uniform Dirichlet prior.
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To perform inference over pm for occurrence classes 2-4, we use a Beta-

binomial model noting that no destructions then happens. A priori, we assume

pm ∼ Be (am, bm). If for severity 2-4 occurrences with the relevant aircraft type

there were n1 occurrences without damage to the aircraft and n3 with damage,

the posterior would be

pm|data ∼ Be (am + n3, bm + n1) . (25)

3.2.6. Image loss335

As mentioned in Section 2.1, we use the number of accidents involving air-

crafts of types T2, T3 or T4 as a proxy to assess image loss.

Model. Let X be the number of occurrences of certain type and p = (p1, p2,

p3, p4, p5) a vector designating the proportion of occurrences for each severity

class with pi ≥ 0,
∑5
i=1 p

i = 1. Let s = (s1, s2, s3, s4, s5) be a vector with the

number of occurrences of each severity class with si ≥ 0 and
∑5
i=1 s

i = X. We

use a multinomial-Dirichlet model

s|p,X ∼M(X; p1, p2, p3, p4, p5),

p ∼ Dir(α1, α2, α3, α4, α5). (26)

Assuming that the data available until the beginning of the k-th period are

((s11, s21, ..., s51),. . .,(s1t−1, s2k−1,...,s5k−1)), where sij represents the number of

occurrences of severity i ∈ {1, 2, 3, 4, 5}, in period j ∈ {1, . . . , k − 1}, then, the

posterior distribution is

p|data ∼ Dir

(
α1 +

k−1∑
i=1

s1i , . . . , α5 +

k−1∑
i=1

s5i

)
. (27)

For the proportion of accidents, we use the distribution

p̂1 ∼ Be

α1 +

k−1∑
i=1

s1i ,

5∑
j=2

(
αj +

k−1∑
i=1

sji

) . (28)

Finally, the number s1 of accidents is predicted through

s1 = p1 ·X, (29)
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where, to estimate X, we would use the class of models outlined in Rios Insua

et al. (2016a).

3.2.7. Forecast aggregation340

The previous models allow us to predict the consequences of an AS occur-

rence depending on the aircraft type and/or severity. By aggregating over differ-

ent types of occurrences and their number over, say, a year, we can predict the

annual consequences associated with AS. This would be performed by simula-

tion leading to the corresponding predictive distributions. We should emphasise345

here that this aggregation must take into account the correlations between dif-

ferent types of occurrences, either due to common causes or because one type

of occurrence is a precursor of another, Rios Insua et al. (2016b). Finally, we

would assess the predictive distributions with the value and utility functions of

Section 2.2 to complete risk assessment.350

4. Case

We illustrate the models proposed in Section 3.2 with examples coming from

a case study. For each attribute, we end up counting the number of models

implemented in that case study.

4.1. Fatalities355

We forecast the number of fatalities caused by a Loss of Control occurrences.

To estimate pF , we used data available from ASN, which records accidents

worldwide since 1919. We web scrapped this information considering only data

since 1968, when substantial improvements in AS occurred (EASA, 2011). We

include only civil aircraft accidents. In addition, we segmented the information360

based on the type of aircraft involved, according to our T1-T4 classification.

ASN contains only information about accidents in which there was at least one

fatality or the aircraft sustained substantial damage including its destruction.

According to ICAO (2015), these represent about 10% of the accidents. This

is taken into account to predict the number of fatalities. Table 6 summarises365
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posterior parameters for the loss of control occurrence depending on aircraft

type, stemming from non-informative priors.

Table 6: Posterior point estimates to forecast fatalities due to loss of control.

τ̂1 τ̂2 τ̂3 p̂F q̂

T1 0.11 0.17 0.72 0.78 0.41

T2 0.07 0.24 0.69 0.83 0.42

T3 0.02 0.18 0.8 0.94 0.47

T4 0.06 0.19 0.75 0.93 0.29

We proceed analogously for the other 87 types of occurrences, thus totaling 352

fatality forecasting models (one for each type of occurrence and aircraft).

4.2. Injuries370

We illustrate the model with the Engine Failure occurrence type. We use

the European Coordination Centre for Aviation Incident Reporting Systems

(ECCAIRS) database, including data from occurrences over the period 2010-

2014. We segment the information according to the type of aircraft involved (T1-

T4). Table 7 summarises the model parameters for this occurrence depending375

on aircraft type, stemming from non-informative priors.

Table 7: Model parameters to forecast injuries due to engine failure.

nh1
nh2

nh3
ˆph1

ˆph2
ˆph3

aH bH αH q̂

T1 41 10 3294 0.013 0.003 0.984 298 32 0.903 0.85

T2 11 2 12599 0.0010 0.0002 0.9988 285 3 0.989 0.70

T3 1 0 98602 0.00002 0.00001 0.99997 938 2 0.998 0.73

T4 0 0 41340 0.00002 0.00002 0.99996 177 1 0.994 0.83

As ECCAIRS does not include data on the number of uninjured occupants, we

estimate it through nh3
= q ·M − (nh1

+ nh2
+ nF ).

Proceeding similarly for the other 87 types of occurrences, we require 352

models for injury forecasting.380
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4.3. Delays

We illustrate the model with the Abrupt Maneuver occurrence. According

to data in ECCAIRS, there were 39 occurrences during 2010-2014 of which: 4

were severity 1; 3, severity 2; 6, severity 3; 21, severity 4; and, finally, 5 of

severity 5. According to model (17), we estimate pd1 and pd2 pointwise through

p̂d1 =
21

30
· 23

37
= 0.44; p̂d2 =

9

30
· 23

37
= 0.19, (30)

where 23
37 represents the proportion of occurrences involving delay, taken as the

average of the Be(14, 23) distribution described in Ayra et al. (2016). The

remaining parameters are in Table 5.

We proceed analogously for the other types of occurrences, totaling 88 delay385

models (one of each type of occurrence).

4.4. Cancellations

We apply the model to the Engine Failure occurrence. Table 8 shows the

predictive expected occurrences (grouped by severities) over a year, using the

predictive models outlined in Rios Insua et al. (2016a).

Table 8: Expected occurrences for engine failure.

Severity

Occurrences 1 2 3 4 5

550.17 14.30 13.20 66.02 192.55 264.1

390

The expected number of cancellations using equation (22), will be nC = 14.30+

0.02 (13.20 + 66.02 + 192.55) = 19.74.

Analogously for the other types of occurrences, we thus build 88 cancellation

models.

4.5. Repairs and destructions395

We forecast the number of repairs due to Runway Excursions. For estima-

tion purposes, we use data available from ASN and CIAIAC (2014) for severity
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1 occurrences; for severity 2-4 occurrences, we use data extracted from ECCA-

IRS. Table 9 summarises posterior parameters for the incumbent occurrence de-

pending on the severity class and aircraft type, stemming from non-informative400

priors.

Table 9: Posterior model parameters to forecast repairs due to runway excursions.

Severity Aircraft type n1 n2 n3 p̂m1 p̂m2 p̂m3

1

T1 37 173 55 0.142 0.649 0.209

T2 48 229 64 0.142 0.669 0.189

T3 30 154 31 0.142 0.711 0.147

T4 14 66 22 0.143 0.638 0.219

2-4 T2-T4 82 - 11 0.88 - 0.12

We proceed analogously for the other occurrences, thus totaling 792 maintenance

and repair models (one for each type of occurrence and aircraft for destructions;

one for each type of occurrence and aircraft for repairs of severity 1; and, finally,

one for each type of occurrence for repairs of severities 2-4).405

4.6. Image loss

Consider forecasting the number of accidents caused by engine failures. Ta-

ble 10 shows the predicted occurrences and proportions of severity classes, where

only T2, T3, T4 aircrafts are considered.

Table 10: Expected occurrences and model parameters to forecast occurrence severity classes

for engine failure.

Severity

X p1 p2 p3 p4 p5

550.17 0.026 0.024 0.12 0.35 0.48

Then, the expected number of predicted accidents due to engine failure is s1 =410

E(X) · E(p1) = 550.17 · 0.026 = 14.30.
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We proceed analogously for the other types of occurrences, thus totaling 88

image loss models.

4.7. Utility function

We specify now the utility function used in our case, based on the multiat-415

tribute evaluation model presented in Section 2.2. A perceived worst situation

v∗ corresponds to one in which, for each consequence, we take the worst observed

value during the period of interest, in our case 2010-2014. As an intermediate

situation v1, we consider the average values in such years. Finally, as best sit-

uation, we adopt the best values over that period. Table 11 summarises the420

values for each consequence in the three scenarios, leading to v∗ = −950.96,

v∗ = −341.06 and v1 = −587.58.

Table 11: Worst, intermediate and best consequences caused by AS occurrences. Expected

cost per unit of consequence

Worst Intermediate Best Unit cost

Fatalities 122 34 6 1.65

Severe Injuries 44 17 3 1.26

Minor Injuries 68 45 25 0.43

Delays 178617 155964 138596 0.00013

Cancellations 156 140 131 0.013

Repairs 1576 1436 1305 0.012

Destroyed aircrafts 11 8 5 54.18

Accidents 36 26 15 0.69

Value −950.96 −587.58 −341.06

A value of 0.2 for φ, in (6), was elicited from AS experts in the incumbent

agency for v1, using the PE method. Solving the system we get ρ̂ = −0.03,

%̂ = −4.66 and ω̂ = 0.005. Figure 3 represents the corresponding utility function.425
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Figure 3: Utility function.

4.8. Forecast aggregation

Figure 4 provides the observed annual data over period 2010-2014 and the

aggregated forecasts for the next year for four of the consequences in the in-

cumbent case, based on the models proposed in Section 3.2 and the occurrence

forecasting models in Rios Insua et al. (2016b). For each consequence we have430

added different symbols in the horizontal axis representing the observed data

over the five years. Thus, for example, in the top left figure, the symbols l or

u represent the number of observed accidents, 35 and 26 respectively, in years

2011 and 2014. The aggregated forecasts reasonably predict the consequences.

25



Figure 4: Annual AS consequence forecasts.

Observe that we could directly forecast the aggregated consequences. How-435

ever, for risk management purposes we actually need the individual models for

various types of occurrences and severities so as to guide interventions. Simi-

lar validation exercises were performed with the forecasts of consequences per

occurrence, using the predictive distributions corresponding to all the models

previously outlined.440

We simulated 1000 times the values for each consequence in equation (1)

providing the forecast distribution for the next year in the incumbent case,

expressed as safety costs (equivalent in million of euros), completing the risk

assessment for AS in the country. We represent it in Figure 5.
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Figure 5: Annual AS cost forecast.

Clearly, given the high severity stakes at risk (the mean forecast is 1318.88, and445

the first and third quartiles are, respectively, 1226.82 and 1402.66) we should

try to manage them, possibly with the methods described in Rios Insua et al.

(2016a).

5. Conclusion

We have presented models to predict and assess the multiple consequences450

of occurrences associated with an AS plan. They are part of a framework for

risk management in AS at state level which allows a government to decide how

to allocate its resources to improve AS levels in a given country. The models

described here are basic ingredients of the AS risk problem management and

its use is key to monitor safety, screen hazards and allocate AS resources, as455

described in Rios Insua et al. (2016a). They are included in the RIMAS software

supporting the implementation of the methodology.

From the perspective of a state associated with ICAO, eight consequences

have been adopted: fatalities, severe and minor injuries, delays, cancellations,

repairs, destructions and, finally, image loss. Other countries might select dif-460

ferent consequences. Non-state actors in the aviation system would typically
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focus on consequences related with the profit and loss account of the organisa-

tion. The performance for such eight consequences can be assessed by choosing

direct attributes, except for image loss. This depends on the awareness raised

by such occurrence and we adopted as proxy the number of accidents involving465

commercial aviation transport.

We have adopted models for the prediction of such consequences for different

types of occurrences, severities and aircrafts. For each of them, we have illus-

trated its use with a case, using data from relevant sources. We have proposed

also a multi-attribute utility function to jointly assess the levels attained in the470

eight attributes. Such model allows a state to assess the safety consequences

associated with an AS plan as a key activity to prepare the SMS.
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