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Abstract—Cell-free massive multiple-input multiple-output
(CF-mMIMO) is a breakthrough technology for beyond-5G
systems, designed to significantly boost the energy and spectral
efficiencies of future mobile networks while ensuring a consistent
quality of service for all users. Additionally, multicasting has
gained considerable attention recently because physical-layer
multicasting offers an efficient method for simultaneously serving
multiple users with identical service demands by sharing radio
resources. Typically, multicast services are delivered either via
unicast transmissions or a single multicast transmission. This
work, however, introduces a novel subgroup-centric multicast
CF-mMIMO framework that divides users into several multicast
subgroups based on the similarities in their spatial channel
characteristics. This approach allows for efficient sharing of the
pilot sequences used for channel estimation and the precoding
filters used for data transmission. The proposed framework
employs two scalable precoding strategies: centralized improved
partial MMSE (IP-MMSE) and distributed conjugate beam-
forming (CB). Numerical results show that for scenarios where
users are uniformly distributed across the service area, unicast
transmissions using centralized IP-MMSE precoding are optimal.
However, in cases where users are spatially clustered, multicast
subgrouping significantly improves the sum spectral efficiency
(SE) of the multicast service compared to both unicast and
single multicast transmission. Notably, in clustered scenarios,
distributed CB precoding outperforms IP-MMSE in terms of
per-user SE, making it the best solution for delivering multicast
content.

Index Terms—Cell-free massive MIMO, multicasting, user
subgrouping, scalability.

I. INTRODUCTION

Cell-free massive multiple-input-multiple-output (CF-
mMIMO) is an emerging technique for beyond-5G systems
owing to its outstanding enhancements in energy efficiency
(EE), spectral efficiency (SE), service quality, and reliability
[1]. In a CF-mMIMO system, a large number of access
points (APs) are distributed across the network and they are
connected to a central processing unit (CPU) via fronthaul
links to exchange the channel state information (CSI) and
the user-specific data. CF-mMIMO exploits the benefits
of massive MIMO (mMIMO) and network MIMO, being
able to provide mobile stations (MSs) with nearly uniform

This work was supported by the grants PID2020-115323RB-C32 (IRENE-
STARMAN), TED2021-131624B-I00 (GERMINAL), TED2021-131975A-
I00 (ANTHEM5G), and PID2022-136887NB-I00 (POLIGRAPH) funded by
MCIN/AEI/10.13039/501100011033 and, as appropriate by the “European
Union NextGenerationEU/PRTR”, and by the European Union under the
Italian National Recovery and Resilience Plan (NRRP) of NextGenerationEU,
partnership on “Telecommunications of the Future” (PE00000001 - program
“RESTART”, Structural Project 6GWINET, Cascade Call SPARKS, CUP
D43C22003080001)

service across the coverage area [2]. The vast majority of
cell-free literature explores the improvements attained in the
SE, EE, and coverage performance in CF-mMIMO unicast
transmissions. Critically, within the vast volume of data traffic
that has been predicted by 2029 [3], a significant portion will
comprise content that can potentially be shared among groups
of users in the network, and therefore, can be leveraged
through broadcast/multicast techniques [4], [5]. Multicast in
mMIMO systems, using both uncorrelated and correlated
Rayleigh fading channels, has been proposed and assessed
to provide an efficient use of resources [6], [7]. Authors
in [8] first assessed the performance of multicasting in a
CF-mMIMO context while proposing a novel downlink (DL)
pilot training scheme. In [9], authors propose a weighted
max-min power optimization algorithm that improves the
performance when increasing the number of AP antennas.

Despite the benefits revealed by these initial studies on CF-
mMIMO multicasting, critical issues remain. While precoding
and power allocation strategies have been extensively studied
in unicast CF-mMIMO scenarios, there is no direct and clear-
cut translation between the most efficient configurations for
unicast transmissions and those for multicast setups. Further-
more, delivering a common data service to a group of MSs
has traditionally been accomplished either through a single
multicast stream or by sending a unicast stream to each MS in
the multicast group. Subgroup-centric multicast, as proposed
in this research work, can be seen as a mechanism to tailor the
transmission of shared content to groups of users experiencing
similar intragroup and widely different intergroup propagation
conditions [7], [10], [11]. Questions regarding the proper
management of intragroup and intergroup pilot contamination,
the design of common channel estimation processes for all
users within the same multicast subgroup, and the impact these
common channel estimates might have on the design of the
common precoder used to convey the DL multicast payload
data to users remain largely unsolved.

Contributions: a novel multicast CF-mMIMO framework is
developed considering spatial channel correlation and explor-
ing the advantages and disadvantages of more sophisticated
precoding techniques depending on the users’ distribution
within the CF-mMIMO-multicast framework. Users belonging
to a multicast group, intended to receive a common service,
must share the same uplink (UL) pilot and DL precoder.
Our study demonstrates the pilot contamination significance
when multicast users experience widely different propagation
conditions. As a countermeasure, our work introduces a novel



subgroup-centric framework where multicast users are divided
into subgroups according to a metric of large-scale propagation
similarity and proposes the use of a subgroup-specific pilot
and precoder. A comprehensive evaluation of two precoding
schemes and power control strategies tailored to the proposed
framework is presented, namely, centralized improved partial
MMSE (IP-MMSE) [12] and distributed conjugate beamform-
ing (CB), with fractional power control strategies inspired
by Demir et al. [13]. Simulation results demonstrate the
benefits of the proposed user subgrouping and power allocation
strategies across various system setups, benchmarking the
subgroup-centric multicasting approach against conventional
multicasting and unicast transmission strategies, considering
both uniform and clustered user distributions.

II. SYSTEM MODEL AND MULTICAST SUBGROUPING
FRAMEWORK

We consider a CF-mMIMO system operating in time divi-
sion duplexing (TDD) [2] that consists of a CPU connected
via ideal fronthaul links to L APs, each one equipped with
N antennas. The APs are deployed over the coverage area to
simultaneously provide, either through multicast or unicast, a
common data service to K single-antenna MSs on the same
time-frequency resources. The set of MSs is denoted by K and
indexed by k ∈ K = {1, . . . ,K}. The set of APs is denoted
by L and indexed by l∈L={1, . . . , L}. Each TDD frame is
divided into uplink (UL) training phase and DL payload data
transmission phase, whose lengths, measured in samples, are
denoted as τp and τd, respectively. The frame length is denoted
by τc=τp+τd and assumed to fit the coherence block.

A. Channel Model

A conventional block fading channel model is considered
wherein the channel is time-invariant and frequency flat within
a time-frequency coherence block, and varies independently
over different coherence blocks (block fading). The channel
response vector hlk ∈ CN between the AP l and the multicast
MS k, in an arbitrary coherence block1, is distributed as hlk ∼
CN (0N ,Rlk), where Rlk ∈ CN×N is the corresponding
positive semi-definite spatial covariance matrix, with average
channel gain given by βlk = tr (Rlk) /N . Assuming that the
APs and the MSs are well separated, the channel vectors of
different AP-MS pairs can be considered to be independently
distributed, i.e., E{hl′k′hH

lk} = 0N×N , ∀l′k′ ̸= lk. Thus,
the channel from MS k to the complete set of APs l ∈ L,
hk = [hT

1k . . .h
T
Lk]

T , is distributed as hk ∼ CN (0LN ,Rk),
where Rk = blkdiag(R1k, . . . ,RLk) ∈ CLN×LN is the
block-diagonal spatial covariance matrix related to MS k.

Channel covariance matrices Rlk,∀ k ∈ K, ∀ l ∈ L,
can be estimated at each AP over a large-scale fading time
scale (i.e., over multiple coherence blocks) and thus can be
safely assumed to be perfectly known at both the APs and the
CPU [14].

B. Subgroup-Centric CF-mMIMO Multicasting

This work proposes delivering a multicast service by sub-
grouping the K multicast MSs into G disjoint subgroups. In

1For the sake of clarity, we omit the index identifying the coherence block.
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Fig. 1. A CF-mMIMO network with multicast user subgrouping (dashed
circles) and AP cooperation clustering (blurred colored shapes).

this case, the SE of each multicast subgroup can be adapted
to the propagation conditions experienced by the MSs in that
particular subgroup, and the multiuser interference reduces to
the inter-multicast subgroup interference. We denote the set of
multicast subgroups by G and the subgroups are indexed by
g ∈ G = {1, . . . , G}. The set of MSs in subgroup g is denoted
by Kg . Letting Kg = |Kg| be the number of MSs in subgroup
g, it holds that K =

∑G
g=1 Kg . It is interesting to note that

in scenarios where the MSs are distributed in spatial clusters,
subgrouping the MSs experiencing propagation channels with
similar large-scale channel characteristics can bring significant
benefits. In this case, MSs in the same multicast subgroup
can share the same pilot sequence, thereby controlling pilot
contamination.

In [15], the authors benefit from the special attributes of
CF-mMIMO channel (distributed transmissions) to propose a
K-means-based partitioning algorithm that employs a metric
based on the propagation gain vectors βk = [β1k . . . βLk]

T to
group MSs to improve the pilot allocation when pilot contam-
ination cannot be avoided. In the present work, the K-means-
based protocol described in [15] is suitably adapted to classify
MSs experiencing similar large-scale channel characteristics
into multicast subgroups that will benefit from sharing the UL
pilot sequence to improve both the channel estimation process
and the design of the precoding vectors used for DL data
transmission, improving the SE results.

Consequently, a multicast subgroup-centric CF-mMIMO is
implemented where the MSs in multicast subgroup g are
served by a subset of APs somehow readapting the concept of
user-centric transmission. We denote the subset of APs serving
subgroup g by Lg ⊆ {1, . . . , L}, where |Lg| = Lg ≤ L. For
later convenience, given a subgroup g, we define the set Sg as
the collection of multicast subgroups served by some (or all) of
the APs serving subgroup g, that is, Sg = {c : Lg ∩ Lc ̸= ∅}.
The set of multicast subgroups served by AP l is denoted
as Dl. Figure 1 illustrates the system model of CF-mMIMO
multicasting with user subgrouping and dynamic cooperation
clustering (DCC) [13].



C. Multicast AP Cooperation Clustering and Pilot Allocation

All MSs in the same subgroup are assigned the same
pilot sequence chosen among τp available mutually orthogonal
pilots (pilot sequence size is equal to τp samples). Note that, as
co-pilot MSs have linearly dependent channel estimates [16],
[17], the APs cannot separate the MSs of the same subgroup in
the spatial domain. As a different pilot sequence is assigned to
each subgroup g, finding the optimal pilot allocation is a com-
binatorial optimization problem with τGp possible assignments
in a setup with G subgroups and τp pilots; thus, the complexity
of evaluating all of them grows exponentially with the number
of subgroups. To address this issue, we apply the DCC and
pilot allocation algorithm proposed by Demir et al. in [13]
but suitably adapting it to use multicast subgroup information
instead of individual MS information. The algorithm will
iteratively assign pilots to the subgroups by always selecting
the one that leads to the least pilot contamination. To that
end, pilots are first assigned to subgroups, and then each AP
is allowed to serve exactly τp subgroups. For every pilot, the
AP serves the subgroup with the strongest common average
channel gain (i.e., 1

Kg

∑
k∈Kg

βlk) among the set of subgroups
that have been assigned that pilot.

As shown in Algorithm 1, the multicast subgroup pilot as-
signment and cooperation clustering creation process consists
of two steps. In the first step, the τp subgroups with indices
from 1 to τp are assigned mutually orthogonal pilots, that is,
every MS k ∈ Kg uses pilot g for g ∈ {1, . . . , τp}. The
remaining subgroups, with indices ranging from τp + 1 to
G, are then assigned pilots one after the other as follows.
Assuming that AP l presents an excellent average large-scale
propagation gain for MSs in subgroup g, it is expected to con-
tribute strongly to the service of subgroup g and consequently,
it is preferable to assign subgroup g to the pilot for which AP l
experiences the least pilot contamination. Hence, for each pilot
t, AP l computes the sum of the channel gains βlk of the MSs
that have already been allocated this pilot, and then identifies
the index of the pilot minimizing the pilot interference as

τ ← argmin
ψ∈{1,...,τp}

∑
c∈G, c ̸=g
ψg=ψ

∑
k∈Kc

βlk.
(1)

Pilot τ is then assigned to subgroup g and the algorithm
continues with the next subgroup.

In the second step of the algorithm, the clusters of APs are
created as soon as all the subgroups have been assigned to
pilots. Each AP goes through each pilot and identifies which
is the subgroup experiencing the largest common average
channel gain among those using that pilot. This subgroup will
be served by this particular AP. In order to prevent that a
subgroup is left unserved, a multicast subgroup g is always
served by at least their own Master AP l, which is selected by
the CPU according to the rule l = argmax

l∈L

1
Kg

∑
k∈Kg

βlk.

D. Uplink Channel Estimation

Let ψg ∈ Cτp×1 be the pilot sequence assigned to subgroup
g, with ∥ψg∥22 = 1. Ideally, pilot sequences should be mutually
orthogonal, nonetheless, in practical scenarios it holds that
G > τp, and a given pilot sequence may be assigned to more

Algorithm 1 Multicast subgroup pilot assignment and coop-
eration clustering

Input: τp, βlk, G,Kg

for g = 1, . . . , τp do
ψg ← g

end for
for g = τp + 1, . . . , G do

l← argmaxl∈L
1

Kg

∑
k∈Kg

βlk

τ ← argmin
ψ∈{1,...,τp}

∑
c∈G, c ̸=g
ψg=ψ

∑
k∈Kc

βlk

ψg ← τ
end for
for l = 1, . . . , L do

for ψ = 1, . . . , τp do
c← argmax

g∈{1,...,G}:ψg=ψ

1
Kg

∑
k∈Kg

βlk

Lc ← Lc ∪ {l}
end for

end for
for g = 1, . . . , G do

if Lg = {∅} then
l← argmax

l∈L

1
Kg

∑
k∈Kg

βlk

Lg ← Lg ∪ {l}
end if

end for
Output: Pilot assignment ψ1, . . . ,ψG and DCCs L1, . . . ,LG

than one subgroup, thus resulting in the pilot contamination
phenomenon. The N × τp UL received pilot signal matrix at
AP l is

Y l =
√

τpPp

G∑
g=1

∑
k∈Kg

hlkψ
T
g +N l, (2)

where Pp is the per pilot-symbol transmit power of every
MS and N l ∈ CN×τp is the additive white Gaussian noise
(AWGN) matrix at AP l with i.i.d. elements distributed as
CN (0, σ2

u). To estimate the channel of MSs in subgroup
g, the AP projects the received UL training signal on the
corresponding complex conjugate of the pilot sequence ψ∗

g

to obtain

yg
l =
√
τpPp

∑
k∈Kg

hlk+
√
τpPp

∑
c̸=g

ψc=ψg

∑
i∈Kc

hli+ nlg, (3)

where nlg =N lψ
∗
g ∼ CN (0, σ2

uIN ).
Since the APs cannot separate co-pilot MSs in the spatial

domain as their channel estimates are correlated, we define
the composite channel of the k ∈ Kg MSs as

hg
l =

√
τpPp

Kg

∑
k∈Kg

hlk, (4)

which is distributed as hg
l ∼ CN (0N ,Rg

l ), where

Rg
l =

τpPp

K2
g

∑
k∈Kg

Rlk. (5)

The minimum mean square error (MMSE) channel estimate
of the composite channel hg

l can be obtained either at the lth



AP or at the central CPU (in cases where the APs are not
equipped with local baseband processors) [17, Sec. 3.2]

ĥ
g

l = Kg R
g
l Γ−1

g yg
l , (6)

where

Γg = τpPp

∑
∀c∈G
ψc=ψg

∑
i∈Kc

Rli+σ
2
uIN . (7)

Note that the composite channel estimate is distributed as
ĥ
g

l ∼ CN (0N ,K2
g R

g
l Γ−1

g Rg
l ) and the composite channel

estimation error as h̃
g

l ∼ CN (0N ,Rg
l −K2

g R
g
l Γ−1

g Rg
l ).

E. Downlink Data Transmission and Spectral Efficiency

Multicast subgrouping performs a multicast transmission
by employing unique pre-processing schemes and precoding
vectors per subgroup. That is, care is taken to pre-process the
common information signal into G uncorrelated signals, each
directed to the corresponding multicast subgroup. The received
DL signal at MS k is

yk=

L∑
l=1

hH
lkxlg +

L∑
l=1

G∑
c=1
c ̸=g

hH
lkxlc + nk, (8)

where nk ∼ CN (0, σ2
d) is the AWGN at MS k and xlg =

Dlgwlgςg , with wlg ∈ CN representing the precoding vector
used by AP l towards multicast subgroup g, ςg denotes the data
symbol intended for MSs in subgroup g, with E{|ςg|2} = 1,
and E{ςgς∗c } = 0, ∀ g ̸= c, and nk ∼ CN (0, σ2

d) is the
AWGN at MS k. The set of diagonal matrices Dlg ∈ CN×N

are used to describe which APs communicate with which
multicast subgroups [18], and are given by Dlg = IN if
l ∈ Lg , or Dlg =0N×N , otherwise. Note that, assuming that
MS k belongs to multicast subgroup g, the first term in (8)
denotes the desired signal, whereas the second term is the
inter-subgroup interference.

As we do not transmit DL pilots, the achievable SE
of MS k ∈ Kg must be obtained assuming that it only
knows the average value of its effective DL channel, that is,∑L

l=1 E
{
hH
lkDlgwlg

}
of MS k ∈ Kg . This is a deterministic

number that, thanks to channel hardening, can be easily
obtained in practice [13, Theorem 6.1], and the corresponding
achievable SE can then be obtained as

SEk = (1− τp/τc) log2 (1 + γk) , (9)

where γk is the effective signal-to-interference-plus-noise ratio
(SINR) given by

γk=

∣∣∣∣ L∑
l=1

E
{
hH
lkDlgwlg

}∣∣∣∣2
G∑

c=1
E

{∣∣∣∣ L∑
l=1

hH
lkDlcwlc

∣∣∣∣2
}
−
∣∣∣∣ L∑
l=1

E
{
hH
lkDlgwlg

}∣∣∣∣2+σ2
d

,

(10)
and the expectations are with respect to the channel realiza-
tions and the channel estimates upon which the precoding
vectors are designed.

This is an achievable SE for MS k in subgroup g and holds
for any precoding strategy and any multicast DCC approach.
Nevertheless, we stress that a subgroup is served by a single
multicast transmission, which determines a shared DL SE
for all the MSs in the subgroup. For the data to be able
to be reliably decoded by all the MSs in the subgroup, the
achievable SE of the multicast subgroup (and thus all MSs in
this subgroup) will be that of the MS experiencing the worst
channel conditions in the subgroup. That is, the effective DL
SE achievable by all the MSs in subgroup g is

SEg = min
k∈Kg

SEk. (11)

F. Downlink Precoding and Power Allocation

We consider two scalable precoding strategies for CF-
mMIMO: a centralized IP-MMSE precoding strategy [12] and
a distributed CB precoder [2]. Both schemes consider that only
the APs in Lg are computing estimates of the channels for MSs
in subgroup g and/or send their pilot signals to the CPU.

1) Centralized IP-MMSE precoding: We define a compos-
ite channel estimate vector per subgroup as ȟ

g
=Dgĥ

g
, where

ĥ
g
=
[
ĥ
g,T

1 . . . ĥ
g,T

L

]T
and Dg = blkdiag(D1g, . . . ,DLg) ∈

CLN×LN . The CPU uses the composite channel estimates to
compute the composite precoding vectors. Since all the MSs
belonging to subgroup g employ the same pilot, the CPU can
easily exploit ȟ

g
to obtain a scaled vector that points out the

direction of the precoding vector. Based on a virtual multicast
UL-DL duality2, the IP-MMSE combiner [12] is given by

w̄g=

√
pg

τpPp
Kg

( ∑
c∈Sg

pcK
2
c

τpPp
ȟ
c(
ȟ
c)H+ZSg

+σ2
uILgN

)−1

ȟ
g
,

where pg denotes the total amount of power that would be
allocated to MSs in subgroup g in a virtual UL payload
transmission phase and

ZSg =
∑
c∈Sg

pc
τpPp

K2
cDgR̃

c
Dg+

∑
d/∈Sg

pd
τpPp

K2
dDgR

dDg,

where R̃
c
= blkdiag(R̃

c

1, . . . , R̃
c

L) ∈ CLN×LN denotes the
error correlation matrix of the composite channel hc andRd =
blkdiag(Rd

1, . . . ,R
d
L) ∈ CLN×LN the covariance matrix of

the composite channels of the interfering groups.
The centralized precoding vector used to multicast data to

MSs in subgroup g can be expressed as

wg =
√
ρg

w̄g√
E{∥w̄g∥2}

, (12)

where ρg ≥ 0 denotes the DL transmit power allocated to
subgroup g. Note that the normalization in (12) guarantees
that E{∥wg∥2} = ρg [13].

We propose an inter-subgroup fractional DL power control
to select the power allocation coefficients proportionally to the

2UL-DL duality on the channels defined by (4) is utilized to design the
virtual combiners.



trace of Rg
l . To satisfy the power constraint at each AP, the

power allocated to subgroup g is obtained as

ρg = Pdl

[ ∑
l∈Lg

tr
(
Rg

l

)]ν
ω−κ
g

max
ℓ∈Lg

∑
c∈Dℓ

[ ∑
l∈Lc

tr
(
Rg

l

)]ν
ω1−κ
c

, (13)

where Pdl is the total amount of power an AP can transmit,
ν ∈ [−1, 1] is the parameter tuning the power allocation in
accordance to different policies, i.e., ν < 0 aims at max-
min fairness (MMF) characteristics. We also define the largest
fraction of ρg that can be used at any of the serving APs as

ωg = max
l∈Lg

E{∥w̄lg∥2}, (14)

which is used as an additional tuning parameter with an
exponent 0 ≤ κ ≤ 1 that reshapes the ratio of power allocation
between different subgroups, where w̄g =

[
w̄1g . . . w̄Lg

]
.

2) Distributed CB precoding: Distributed operation offers
the benefit of deploying new APs without having to upgrade
the computational power of the CPU since each AP contains
a local processor that can perform its associated baseband
processing tasks and locally designs its transmitted signal [13].
The distributed CB precoding is given by

wlg =
√
ρlg

Dlgĥ
g

l√
E{∥Dlgĥ

g

l ∥2}
, (15)

with E{∥Dlgĥ
g

l ∥2} = K2
g tr(DlgR

g
l Γ

−1
g Rg

lDlg). To satisfy
the per-AP power constraint, we consider the following adap-
tive power allocation (APA) policy [19]

ρlg =


Pdl

[
tr
(
Rg

l

)]ν
∑

g∈Dl

[
tr
(
Rg

l

)]ν , if g ∈ Dl

0, otherwise.

(16)

III. NUMERICAL RESULTS

We consider a CF-mMIMO network with L = 100 APs,
each one equipped with N=4 antennas, uniformly distributed
at random within a square coverage area of side 1000 m. To
approximate a coverage area without boundaries, the nominal
area is wrapped-around by 8 identical neighbor replicas. The
path-loss in dB is given by −30.5−36.7log10(d)+ F , where
d is the 3D distance between the MS and the AP and F is
the shadow fading, whose standard deviation is 4 dB, and the
decorrelation distance is 9 m [2]. We consider a coherence
block of τc = 200 samples and a maximum pilot length of
τp=20 samples. The pilot transmit power per MS is Pp=100
mW, while the maximum DL power per AP is Pdl=200 mW.
The virtual UL power per subgroup to build the centralized
IP-MMSE precoder [12] is pg = 100 mW. The DL power
control parameters are set targeting user fairness: ν = −0.5
and κ = 0.5 for centralized IP-MMSE precoding, and ν =
0.5 for distributed CB precoding [13]. The angular standard
deviation in the local scattering model is 15◦. We consider
a noise power spectral density of −174 dBm/Hz, a receiver
noise figure of 7 dB, and an operating bandwidth of 20 MHz

[13]. Each simulation result has been obtained as the average
of 250 different snapshots of randomly deployed MSs and APs
with 500 channel realizations for each snapshot.

Figure 2 illustrates the cumulative distribution function
(CDF) of the sum SE achieved by 100 and 500 independently
and uniformly distributed random multicast MSs within the
coverage area. We evaluate the performance of either unicast,
single multicast or multicast subgrouping transmissions. The
results show that when the multicast MSs are uniformly
distributed, employing unicast transmission, where the channel
estimation and the precoding are reasonably accurate despite
the pilot contamination (i.e., τp = 20 and K = [100, 500]
in Figs. [2a, 2b], respectively), performs significantly better
than any option employing multicast transmission, under both
centralized IP-MMSE and distributed CB precoding. Irre-
spective of the precoder, increasing the number of multicast
subgroups improves the performance, but the highest sum SE
is achieved by unicast transmission. Furthermore, note that
the sum SE achieved using IP-MMSE is significantly higher
than that achieved with CB, thus centralized IP-MMSE with
unicast transmissions will deliver the highest sum SE when
the multicast MSs are uniformly distributed.

To validate the utilization of multicast transmissions, we
deploy scenarios where the multicast MSs are located in
square cluster areas of side 10 m, thus resulting in bunches of
users located very close to one another. This situation can
extremely affect the channel estimation and the precoding
because of the pilot contamination. Figure 3 shows the CDF
of the sum SE of the multicast service when the MSs are
placed in 10 spatial clusters of 50 MSs each. We observe
how the unicast transmissions are severely degraded because
of the strong effect of pilot contamination among MSs placed
in the same spatial cluster (i.e., 50 MSs and τp = 20
orthogonal pilot sequences). We also notice that using a single
multicast transmission does not lead to the best performance,
and creating multicast subgroups outperforms both unicast and
single multicast transmissions. Fig. 3a shows that centralized
IP-MMSE precoding, when transmitting to a large number
of multicast subgroups, results in the highest sum SE. Re-
markably, this strategy tends to approach unicast transmission
while preventing pilot contamination among users located in
the same spatial cluster (i.e., 100 multicast subgroups). IP-
MMSE allows the systems to treat the interference from very
close subgroups, and the only reason to not use unicast is
the strong pilot contamination from nearby users. In contrast,
Fig. 3b reveals that when using CB precoding, splitting the
MSs into 30 subgroups presents the best trade-off between
signal and interference. Indeed, a smaller number of subgroups
deteriorates the desired signal due to less accurate channel
estimates while a larger number of subgroups increases the
interference received from close subgroups.

IV. CONCLUSION

This work proposes a novel framework to assess the per-
formance of scalable multicast techniques in CF-mMIMO net-
works when using different precoders and power allocations. A
subgrouping technique has been introduced whereby multicast
MSs are separated based on their spatial location aiming at
improving the performance of the multicast service. Results
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Fig. 2. CDF of the sum SE. Uniform distribution of multicast MSs. Unicast vs multicast with CB and IP-MMSE precoding. L=100 APs, N=4
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Fig. 3. CDF of the sum SE. Clustered distribution of multicast MSs with 10 spatial clusters of 50 MSs. Unicast vs multicast with CB and IP-MMSE
precoding. L=100 APs, N=4.

have shown that unicast transmissions are preferable when
the multicast MSs are uniformly distributed. On the contrary,
when the multicast MSs tend to form spatial clusters, unicast
transmissions are severely degraded by pilot contamination,
while multicasting is able to sustain considerable higher rates.
Further research will focus on the assessment of heterogeneous
deployments where uniform placement of users is combined
with the existence of hotspots with larger user density.
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