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Abstract 

During the last 20 years, there has been a continuous tendency towards 

raising the level of abstraction at which software is designed and developed. This 

way, assembly languages gave way to structured programming that yielded to 

object-orientation and so on. The last step in this line has been the Model-Driven 

Engineering (MDE) paradigm,that promotes the use of models as primary actors 

in the software development.  

The underlying idea is to capture the system requirements and specification 

in high-level abstraction models that are automatically refined into low-level 

abstraction models. The latter takes into account the details of the targetting 

platforms and could be shown as the plans for the working-code. Indeed, such 

models are directly serialized into the working-code that implements the system. 

This way, automation comes as the other key of MDE: there is a need of tools for 

defining models, connecting them by means of model transformations, serializing 

them into code, etc.  

During the last years, the impact of the MDE paradigm has resulted in the 

advent of a number of methodological proposals for Model-Driven Software 

Development (MDSD). According to the MDE principles, the authors of such 

proposals have developed the corresponding tools that should provide with the 

technical support for them. However, the absence of standards and their closed 

nature have resulted in tools providing with ad-hoc solutions that do not make the 

most of IDM‘s advantages in the form of less costly, rapid software development. 

In this context, this thesis addresses the specification of M2DAT (MIDAS 

MDA Tool), a framework for semi-automatic model-driven development of Web 

Information Systems. To that end, instead of developing the technical support for 

each task comprised in a MDSD proposal, M2DAT integrates the isolated 

functionality provided by a set of existing tools for MDE tasks that will be used as 

building blocks. 

This way, as part of this thesis we will define a conceptual architecture for 

MDSD frameworks. It will be an extensible, modular and dynamic architecture 

that promotes the integration of new capabilities in the form of new modules or 

subsystems and supports introducing desing decisions to drive the embedded 

model transformations. As well, since the proposed environtment follows a 

modular architecture, the development process to follow in order to build and 

integrate new modules will be defined.  
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Likewise, a set of methodological and technological decisions will be 

reasoned and justified to map the conceptual architecture to a technical design. 

Finally, in order to prove the feasibility of the proposal and to show that it 

can be used in practice and how it should be done, a reference implementation will 

be provided. In particular, one of the modules of M2DAT, that supports the 

model-driven development of modern Database schemas will be developed.  

In summary, M2DAT aims at solving some drawbacks detected in existing 

tools for supporting MDSD methodologies, mainly due to their isolated and closed 

nature: in contrast with previous works in the field, M2DAT will be easily 

extensible to ease the task of responding to new advances in the field. Likewise, it 

will be highly interoperable to simplify the use of the functionality provided by 

any other tool with M2DAT‘s models. Finally, special attention will be paid to the 

management of model transformations in M2DAT, since they are the cornerstone 

of any MDSD methodological proposal. 
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Resumen 

Durante los últimos 20 años la tendencía a elevar el nivel de abstracción 

con el que el software se diseña y construye ha venido siendo una constante. Los 

lenguajes de ensamblador dieron paso a la programación estructurada, que a su 

vez cedió el protagonismo a la orientación a objetos y así sucesivamente. El 

útlimo paso en esta dirección ha sido la aparición de la Ingeniería Dirigida por 

Modelos (IDM), cuya principal característica es el papel principal que juegan los 

modelos en el desarrollo de software. 

La idea subyacente es recoger los requisitos y la especificación del sistema 

en modelos con un alto nivel de abstracción, que son automáticamente 

transformados en modelos de bajo nivel. Estos modelos, que consideran ya los 

detalles tecnológicos de la plataforma final y pueden contemplarse como los 

planos del software, son directamente transformados en el código fuente que 

implementa el sistema. De este modo, la automatización es otra de las claves de la 

IDM: se necesitan herramientas para definir modelos, para conectarlos mediante 

transformaciones, para generar código a partir de ellos, etc. 

Durante los últimos años, el impacto de la IDM ha resultado en la aparición 

de numerosas propuestas metodológicas para el Desarrollo de Software Dirigido 

por Modelos (DSDM). De acuerdo a los principios de la IDM, los autores de 

dichas metodologías han desarrollado las herramientas que debían proporcionar el 

correspondiente soporte tecnológico para sus propuestas. Sin embargo, la ausencia 

de estándares y su naturaleza cerrada ha resultado en herramientas aisladas que 

proporcionan soluciones demasiado específicas y que no aprovechan por completo 

las ventajas de la IDM. 

En este contexto, la tesis doctoral que se presenta aborda la especificación 

de M2DAT (MIDAS MDA Tool), un entorno para soportar el desarrollo semi-

automático y dirigido por modelos de Sistemas de Información Web (SIW). Para 

ello, en lugar de desarrollar el soporte para cada una de las tareas que implica 

cualquier proceso de DSDM, M2DAT integra las funcionalidades aisladas que 

propocionan un conjunto de herramientas ya existentes. Es decir, dichas 

herramientas se utilizan como unidad de construcción para obtener un entorno 

integrado que dé soporte al proceso de desarrollo completo. 

Así, como parte de la tesis se definira una arquitectura conceptual para 

entornos de DSDM. Será una arquitectura extensible, modular y dinámica que 

favorecerá la inclusión de nuevas funcionalidades como nuevos módulos o 
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susbsistemas y que soportará la introducción de decisiones de diseño que guién la 

ejecución de las transformaciones de modelos soportadas por la herramienta. 

Igualmente, dado que la herramienta sigue una arquitectura modular, se define el 

proceso de desarrollo a seguir para la construcción e integración de nuevos 

módulos.  

Así mismo, un conjunto de decisiones metodológicas y tecnológicas, 

debidamente razonadas y justificadas, servirán para trasladar la arquitectura 

conceptual propuesta a un diseño técnico. 

Finalmente, con el objetivo de demostrar la viabilidad de la propuesta y 

mostrar que puede llevarse a la práctica y cómo debe hacerse, se proporcionará 

una implementación de referencia. En particular, se desarrollará uno de los 

módulos de M2DAT, que soportará el desarrollo dirigido por modelos de 

esquemas de BD modernas.  

Con todo ello, el objetivo final de M2DAT es solventar y/o paliar algunos 

de los problemas detectados en las herramientas existentes para dar soporte a 

metodologías de DSDM. Así, frente a dichas herramientas, que son de naturaleza 

eminentemente aislada, M2DAT será fácilmente extensible para responder a la 

aparición de nuevos avances en el campo de la IDM; tendrá un alto nivel de 

interoperabilidad, lo que posibilitará utilizar la funcionalidad proporcionada por 

cualquier otra herramienta para trabajar con los modelos elaborados con M2DAT; 

y pondrá especial atención en la gestión de las transformaciones de modelos, dado 

que constituyen el núcleo de cualquier propuesta de DSDM. 
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1. Introduction 
In this thesis, a technical solution for model-driven development of 

Information Systems is proposed. 

The first section of this chapter (section 1.1) introduces the motivations that 

led to the decision of undertaking this work as well as its main contributions. 

Section 1.2 states the main hypothesis and the objectives directly derived from it, 

where as section 1.3 describes the context in which this work has been developed, 

referring mainly to the research projects. Finally, section 1.4 summarizes the 

research method followed and section 1.5 provides with a general overview on the 

the rest of this dissertation. 

1.1 Problem Statement and Approach 

By the end of 2000, a new way of conceiving software development 

resulted in a mare magnum of acronyms (MDE, MDSD, MDD, DSL, MIC, etc.) 

that served to refer to a number of approaches sharing a common basis: to boost 

the role of models and modelling activities at the different steps of the 

development cycle. The main feature of the new paradigm, Model-Driven 

Engineering (MDE, [41]), was focusing on models rather than in computer 

programs. Indeed, MDE is a natural step in the historical tendency of software 

engineering towards raising the abstraction level at which software is designed and 

developed. Assembly languages gave way to structured programming languages 

that yielded to object-orientation and so on.  

Notice that, though models have always been considered in software 

development, they have been traditionally used as simple documentation, and in 

the best case, they have served to generate a reduced skeleton of the final code 

(Rational Rose was the perfect example on this line [173]). From this point of 

view, models were discarded as soon as the corresponding development phase was 

finished, and they were not updated to reflect the changes made in subsequent 

models or in the working code.  

The landscape has changed drastically with the advent of MDE. MDE 

practitioners shift their focus from coding to modelling. There is a swing towards 

defining accurate models that capture all the requirements and specifications about 

the system to build as well as the platform where it will be deployed. To that end, 

high-level models are subsequently refined into low-level models, until their level 

of detail is that of the underlying platform. Finally, the working-code for the 
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whole system (and not only a skeleton) is automatically generated from those 

models. 

However, the only way to get a full return of MDE promises of faster, less 

costly software development, was automating any model-driven software 

development proposal. This way, automation came as one of the keys of MDE 

[21, 134]. As a result, a number of tools for supporting MDE tasks have arisen 

during the last years to automate each task related with MDE. Consequently, since 

MDE is based on the use of models, one can find tools to define and use new 

modelling languages. Because model transformations are the key to bridge those 

models, there exist a number of tools or languages for model transformation. 

Given that models consistency is essential since now they are the driving force in 

the development process, several tools for model checking have appeared, etc. 

Notice that each one of these tools aims at providing with generic support for one 

concrete task among all the different tasks related with a model-driven 

development process, i.e. they focus on a subset of the functionality needed to 

implement a model-driven development proposal. For instance, the most 

commonly adopted model transformation language, ATL [184], fall in this 

category of tools for MDE tasks.  

On the other hand, the impact of MDE has given rise to a number of 

Model-Driven Software Development (MDSD) methodologies. These 

methodologies are based on the definition and use of different modelling 

languages (whether general or special-purpose) to model and capture different 

parts of the system at different levels of abstraction. As a response, a new group of 

tools appeared to support those methodologies: the tools for supporting MDSD 

methodologies are software development environments that provide with toolkits 

to work with the specific set of interrelated models defined in the corresponding 

methodology in order to generate the working-code of a software system. One of 

the most recognised tools falling in this category is ArgoUWE [195], a CASE tool 

that aimed at implementing the UWE methodology [198].  

The efforts that the developers behind those initial MDSD methodologies 

have dedicated to build the technical support to automate them have resulted in a 

number of isolated tools that provide with ad-hoc solutions. Their closed nature 

and the absence of standards when they started to be developed prevented them 

from taking advantage from the advances in the field and the capabilities provided 

by tools for MDE tasks. For instance, in the absence of model transformation 

engines when they were developed, they use to hard-code model transformations 

or constraints checking.  
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As a result, there is a need for building new tools to support MDSD 

methodologies that integrate the functionality provided by the existing tools for 

MDE tasks. In other words, tools for MDE tasks have to be used as building 

blocks in order to develop an integrated environtment that implements a MDSD 

methodology.  

How the building of such environment is to be addressed? First, defining a 

conceptual architecture that abstracts from technical underpinning; next, mapping 

the conceptual architecture to a technical design and finally, providing with a 

reference implementation of such technical design.  

In this sense, it is worth mentioning that nowadays, the strength of the 

MDE paradigm has resulted in a trend towards building this kind of integrated 

environtments to support MDSD methodologies. However, when we first 

addressed the development of this thesis there were no such type of tools. As it 

will be shown in Chapter 2, the trend is quite recent. Indeed, existing tools for 

supporting MDSD methodologies that were developed to run in an isolated way 

are moving to turn theirselves into integrated and extensible tools like the one that 

will be presented in this dissertation. 

Besides, the innovative nature of MDE oblies to put special attention on a 

set of traditional requirements related with the development of software 

engineering tools. Under the light of MDE, extensibility, interoperability and 

customization become even more relevant when building the support for a MDSD 

methodology.  

In fact, a tool supporting a MDSD methodology shall be rather extensible 

in order to response to the advent of new advances in the field. For instance, both 

definitions of dynamic semantics and formal specifications are gaining acceptance 

as a way towards model execution and simulation [319]. Technical support for 

these tasks is still rather immature. However, when it is mature enough, a tool 

supporting a MDSD methodology should be ready to be extended in order to 

support formal specifications of models and attachment of semantics definition. 

Besides, if a desired functionality is already implemented in some other 

tool, it might be preferable integrating its use in the new tool that will support the 

methodology, instead of hard-coding directly such functionality. To that end, the 

new tool has to be able of handling models created with the tool supporting the 

methodology. Therefore, interoperability becomes a crucial feature to be 

supported by tools supporting MDSD methodologies.  

As well, although the objective is at automating the whole development 

process proposed in the methodology, a customizable process that gives the 
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designer the option of introducing design decisions to drive the development 

process at any stage, is also recommended [246]. Hence, we need a way of 

introducing support for design decisions without lessening the level of 

automation. Apart from the design decisions spread over the models handled along 

the process, the only way of introducing design decisions is supporting model-to-

model and model-to-text customizable transformations.  

In this context, the thesis presented addresses the specification of a 

framework for semi-automatic model-driven development of web Information 

Systems. To that end, this thesis will introduce M2DAT (MIDAS MDA Tool), a tool 

for MDSD based on the methodological proposals of MIDAS, a model-driven 

methodology for Web Information Systems (WIS) development. 

As part of this thesis, we will define a conceptual architecture for MDSD 

frameworks. It will be an extensible, modular and dynamic architecture that 

promotes the integration of new capabilities in the form of new modules or 

subsystems and supports introducing desing decisions to drive the embedded 

model transformations. As well, a systematic approach to build those modules will 

be defined.  

Likewise, the conceptual architecture will be mapped to a technical design. 

This task implies a set of decisions about which is the best technology for each 

task and how it should be used. This way, a set of technological decisions will be 

made, like which is the most suitable tool for implementing the new modelling 

languages; the most convenient approach to develop the transformations that have 

to bridge those languages; the most convenient model transformation engine 

among those following the selected approach, etc. To that end, a review of 

existing technology will be made according to a set of criteria defined to fulfil the 

requirements of the planned framework (extensibility, interoperability, 

customizable transformations, etc.). As a result, a selection of technology will be 

obtained. It will identify the component that will provide with support for each 

specific task and the design decisions that will drive the mapping between 

conceptual and technical design. 

Finally, a reference implementation will be provided to prove the 

feasibility of the proposal and show that it can be used in practice [95]. In 

particular, one of the modules of M2DAT will be developed. The module for 

model-driven development of modern database schemas, M2DAT-DB (MIDAS 

MDA Tool for DataBases) will support the development of Object-Relational and 

XML Schemas DBs. The construction of M2DAT-DB will serve to show that 

both, the conceptual and technical design of M2DAT, as well as the design 
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decisions and the development process defined, are suitable for implementing 

MDSD proposals. In fact, M2DAT-DB bundles a wide range of model 

transformation types (vertical, horizontal, PIM2PSM, PSM2PSM, PSM2CODE, 

etc.) as well as the rest of tasks that need to be automated when implementing a 

MDSD methodology (definition of abstract and concrete syntax for DSLs, 

graphical editors, models validators, etc.)  

1.2 Hypothesis and Objectives 

In the following, the main hypotheses in this thesis as well as the objectives 

derived from it are put forward. 

The hypothesis formulated in this dissertation is that ―it is feasible to 

provide with a technical solution for the construction of a framework supporting 

semi-automatic model-driven development of Web Information systems using 

existing tools and components in the context of MDE‖ 

Hence, the main objective of this thesis, directly derived from the 

hypothesis, is: ―to provide with a technical solution to build a framework  for 

semi-automatic model-driven development of Web Information Systems using 

existing tools and components in the context of MDE‖ 

This objective is broke down into a set of partial objectives: 

O1. Analysis and evaluation of existing technologies (tools for MDE tasks) in 

order to identify the most suitable to build a framework for model-driven 

development of WIS. According to the specific tasks that building such a 

farmework entails, we can split this objective as follows: 

O1.1. Analysis and evaluation of (meta)modelling tools. 

O1.2. Analysis and evaluation of existing model-to-model 

transformation engines, stressing support for introducing design 

decisions in the mapping process. 

O1.3. Analysis and evaluation of model-to-text transformation engines 

(also known as code generators). 

O1.4. Analysis and evaluation of tools supporting the rest of specific 

tasks in MDE contexts, such as graphical/textual editors‘ 

development or constraints checkers for models. 

O2. Analysis and evaluation of existing frameworks supporting model-driven 

software development. 
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O2.1. Analysis and evaluation of existing frameworks for model-driven 

development of Web Information Systems. 

O2.2. Analysis and evaluation of existing frameworks for model-driven 

development of modern database schemas (object-relational and 

XML). 

O3. Specification of the conceptual architecture of M2DAT framework. 

O4. Selection of the technologies to be used for M2DAT. 

O5. Specification of the technical design of M2DAT. 

O6. Specification of the development process for each M2DAT module. 

O7. Validation of the technical design of M2DAT. To that end, two main sub-

objectives are identified: 

O7.1. Construction of one of M2DAT‘s modules to achieve a proof of 

concept for the proposal (conceptual architecture and technical 

design). 

O7.2. Development of a set of case studies using M2DAT-DB.  

1.3 Research Context 

All the works of the research group in which the Ph.D. candidate is 

integrated, as well as this thesis itself, spin around a common objective: the 

specification of MIDAS [1, 104, 105, 121, 211, 355, 366], that provides with an 

architecture-centric methodological framework (ACMDA in fact) for model-driven 

development of Web Information Systems, following a Service Oriented 

approach. The current version of MIDAS architecture is shown in Figure 1-1 
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Figure 1-1. MIDAS Architecture overview 

This models architecture is based on the MDA principles [264] and is 

defined upon a multidimensional basis that spreads through several abstraction 

levels and concerns of the system development. For each dimension or 

development concern, the models are considered together with the transformation 

rules between models and the influence of each model on the rest. As mentioned, 

MIDAS architecture can be considered from different dimensions: 

 Vertical dimension. This one comes directly from the proposal of MDA 

defining three abstraction levels: Computation Independent Models (CIM), 

Platform Independent Models (PIM) and Platform Specific Models (PSM). 

This way, MIDAS moves down from the concepts associated to the problem 

domain gathered in the CIM models to the system representation according to 

specific features of the targeted platform by means of PSM models. 
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 Core of the models architecture. Since the architecture plays a guiding role, 

its models make up the core of the development process. Indeed, the 

architecture specifies features affecting not only one aspect of the system but 

all of them.  

 Inner concentric layer. The models in this layer are organized according to 

the main concerns traditionally involved in the development of any 

Information System. This comprises the modelling of the Content, the 

Behaviour and the Interface, such as the hypertext modelling in Web 

applications. 

 External layers. Advances in information technology have given rise to 

considering new aspects when developing information systems, such as the 

Semantics, related with the use of ontologies. These are included in MIDAS 

as orthogonal aspects for which a new set of models is defined. 

 Tool – M2DAT. Finally, in order to implement the MIDAS methodological 

proposal, an extensible and interoperable MDSD framework, so-called 

M2DAT (MIDAS MDA Tool) has to be developed, providing support for 

each model comprised in the models architecture of MIDAS. 

In the scope of MIDAS four Ph.D. theses have been previously developed. 

The most recents being the ones from Dr. César Acuña, which focuses on the 

semantics concern of MIDAS and the one from Dr. Valeria De Castro that focuses 

on the behaviour concern. Besides, apart form the present thesis, there are three 

more in progress. In particular, the thesis of Marcos Lopez is on its final stage. It 

tackles the development of Software Architectures from a Service-Oriented 

perspective and using a Model-Driven approach. The thesis of Veronica Bollati 

focuses on the definition of a common metamodel for model transformation 

languages. Finally, Elisa Herrmann‘s thesis is focused on the improvement of 

code generation mechanisms in the framework of MIDAS 

On its turn, the last point from the description of MIDAS architecture will 

be tackled in this thesis. To that end, the present thesis will address the definition 

and design of the technical solution to automate MIDAS methodology. 

Notice that the development of the technological support for MIDAS will 

make the most of the aspects separation that offers MIDAS architecture. Indeed, 

MIDAS architecture can be shown as a methodological approach composed of 

small methods offering solutions for specific problems or tasks, such as hypertext 

or database development. To that end, each method proposes a set of interrelated 

models. Those methods are combined and integrated to give rise to the final result: 

the information system.  
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Accordingly, M2DAT development will be addressed as a set of isolated 

subsystems providing with similar functionalities for a set of interrelated models. 

Such subsystems or modules will be later integrated by means of model 

transformation and model weaving techniques. Besides, MIDAS‘ modular 

architecture is devised to promote extensibility of the framework by inclusion of 

new concerns. Accordingly, the supporting framework, M2DAT, has to be also 

open to integrate support for the new concerns. Hence, extensibility is a must for 

M2DAT. 

Furthermore, as Figure 1-1 shows, the M2DAT framework will act as the 

binding force that connects the different methods that compose MIDAS. Hence, 

interoperability is also mandatory for M2DAT.  

In the end, the present thesis will serve as building basis for other research 

works focused on covering other aspects of MIDAS architecture. To that end, this 

thesis will perform a study of existing technology to choose the most convenient 

to address each task. As well, the way they have to be integrated to conform a 

technical solution to implement any new method incorporated in MIDAS will be 

specified. For instance, people working on the semantics concern will use the 

technical solution specified in this thesis to develop a set of DSLs for modelling 

the semantics of the information system. To that purpose, they will follow the 

techniques described here and will use the technical components appointed for 

each task. Besides, because of its interoperable nature, M2DAT will provide with 

immediate integration of the models comprised in the new method with those from 

the already implemented methods. 

1.3.1 Research Projects and Stages 

Throughout the development of this thesis, the Ph.D. candidate has done 

two research stages (see Figure 1-2). During the first one, he spent three months in 

the ALARCOS group from the University of Castilla-La Mancha (UCLM), 

working under the supervision of Dr. Francisco Ruiz in the field of CASE tools 

for MDA. The second one was a four-months stage in Nantes, where integrated in 

the ATLAS group, led by Professor Jean Bézivin, the Ph.D. candidate worked 

mainly on the studying ot the ATL language, the use of weaving models to 

introduce design decisions in model transformations and the automation of model 

migration by means of model-driven tecniques. 
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Figure 1-2. Ph.D. Thesis Research Context 

Besides, along this period, the Ph.D. candidate, integrated in the Kybele 

research group from the Rey Juan Carlos University, has worked in a series of 

research projects. In particular, the work undertaken for this dissertation has been 

framed mainly in three interrelated projects: DAWIS, EDAD and GOLD. 

DAWIS [TIC 2002-04050-C02-01], funded by Ministry of Science and 

Technology, was a coordinated project joint with the Technical University of 

Madrid between 2002 and 2005. It was focused on the systematic and semi-

automatic development of Web portals providing integrated access to multiple 

digital libraries. The tasks of the Ph.D. candidate lied on the construction of 

bridges between different storage formats and the use of XML DBs for file 

management. 

The proposals of DAWIS were implemented in, EDAD [07T/0056/2003 1] 

a project co-financed by the Regional Government of Madrid and the European 

Community that evolved during the 2003 and 2004. In the context of this project, 

the Ph.D. candidate worked on the construction of model-driven tools for Web 

Services and XML Schema development. 

Finally, the GOLD project [TIN2005-00010], the main frame of this thesis, 

was also financed by the Ministry of Science and Technology and took place from 

the beginning of 2005 to the end of 2008. The main objective of this project was 

the construction of a platform for Web Information Systems development and its 

application to a system for medical images management. The Ph.D. candidate has 

been responsible for providing with a technical solution extensible and 

interoperable to build such platform. To that purpose, he has been involved in the 

application of model-driven solutions to all the aspects comprised in the design 

and construction of this platform, especially on those related with the development 

of model transformations. Hence, the results of the GOLD project comes mainly 

from the work undertaken in this thesis.  
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The continuation of GOLD is the MODEL-KAOS project, funded by the 

Ministry of Science and Technology [TIN2005-00010]. It aims at adapting the 

proposals of GOLD accordingly to the Service-Oriented paradigm [285]. 

As well, the Ph.D. candidate has been involved in the FOMDAS [URJC-

CM-2006-CET-0387] and M-DOS [URJC-CM-2007-CET-1607] projects, co-

funded by the Rey Juan Carlos University and the Regional Government of 

Madrid. The former was focused on formalizing part of the metamodels and model 

transformations specified in GOLD whereas the latter addressed the adaption of 

GOLD proposals to the Service Oriented paradigm. 

1.4 Research Method 

The different nature of engineering disciplines from that of empiric and 

formal disciplines does not allow the direct application of classical research 

methods to software engineering research. 

The research method followed in this thesis is adapted from the one 

proposed in [223] for research in Software Engineering. It is based on the 

hypothetical-deductive method of Bunge [67] that is composed of several steps 

that, due to its genericity, apply to any kind of research. 

As Figure 1-3 shows, the definition of the research method is a step in the 

method itself. It is needed since each research process has its own features. Hence 

there is no universal method that apply to any research work. 

The most important phase of this method is the relosution and validation 

phase. Hence, next section provides with a wide overview on this matter. 
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Figure 1-3. Research Method 

1.4.1 Resolution and Validation Method 

The resolution and validation method followed in this thesis is somehow 

adapted from the traditional waterfall [300], the Rational Unified Process [177] 

and the. Figure 1-4 shows a simplified overview of the method.  
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Figure 1-4. Resolution and Validation phase on the research method 

In essence, two big iterations can be identified. In turn, these were 

composed of several iterations each one. A brief description of the work carried 

out in each iteration follows. 

1.4.2 First Iteration: MIDAS-CASE development 

During the specification phase of the first iteration, the existing works 

spinning around CASE tools were reviewed along with the MIDAS methodology. 

The aim was at identifying, on the one hand, the needs related with supporting 

MIDAS and on the other hand, to identify if existing tools could fit those needs. 

Such review resulted in the decision of building a new framework to support the 

graphical representation of all the models comprised in MIDAS, the automatic 

mapping between them and the automatic code generation from those models. 

Moreover, the use of an XML DB repository for model management was planned. 

In addition, two desired features were identified in order to support MIDAS open 

nature: the new framework had to be easily extensible and modular . 

The design phase was mainly related with defining the architecture of the 

framework according to the requirements stated during the specification phase. 

Besides, the technical components to be used were identified and the development 
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process to follow in order to build each module was defined. The main output of 

this phase was MIDAS-CASE architecture. It merged the conceptual description 

with the technical decisions. 

To validate the result of the design phase, two prototypes were built during 

the construction phase: MIDAS-CASE4WS and MIDAS-CASE4XS supported 

the modelling of Web Services, respectively XML Schemas, with extended UML 

and the serialization of models into working-code (WSDL and XSD). They 

constitute the proof of concept for MIDAS-CASE architecture. 

Finally, the testing phase consisted in the development of several case 

studies with the prototypes built. Such case studies served to assess on the 

feasibility and utility of the proposal in order to improve both the architecture and 

the development process for building MIDAS-CASE modules. 

Note that each step on the process provides with continuous feedback over 

the previous ones. For instance, the findings gathered during the construction of 

MIDAS-CASE prototypes influenced the design phase in order to refine MIDAS-

CASE architecture. 

1.4.3 Second Iteration: M2DAT development 

After finishing MIDAS-CASE development a new iteration (in turn 

comprised of a number of inner iterations) was undertaken. The objective was to 

incorporate and consider advances in the field of MDE and take the most from the 

lessons learned during the first iteration in order to solve the main drawbacks 

detected in tools supporting methodological proposals for MDSD.  

Hence, the specification phase made an exhaustive review on existing 

support for MDE tasks ((meta)-modelling tools, model transformation engines, 

etc.) as well as the lessons learned from MIDAS-CASE project. A relevant 

conclusion was the convenience of separating the definition of the architecture of 

the framework at a higher abstraction level from its technical description. Thereby, 

the main output of this phase was the definition of the conceptual architecture of 

M2DAT, the new version of the tool to support MIDAS methodology, and the 

technical knowledge needed to address the design phase. 

Lately, in the design phase the conceptual architecture was refined to a 

technical design according to the knowledge collected during the reviews from the 

specification phase. In contrast with MIDAS-CASE architecture, M2DAT was 

built by integrating a number of exiting tools for MDE tasks on top of the Eclipse 

Modelling Framework. Working this way, the result is a highly extensible 
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framework, capable of integrating new capabilities as long as they are delivered. 

Likewise, the development process proposed to address the development of new 

modules according to the technical design of M2DAT was defined. 

Such design guided the construction of the proof of concept, M2DAT-DB, 

during the implementation phase. It served as reference implementation to prove 

and validate the technical design of M2DAT. 

Finally, a battery of case studies developed with M2DAT-DB during the 

testing phase helped on the refinement of the proposal. For instance, the need for 

parametrizable model transformations was detected during the development of 

those case studies. Consequently, the technical design of M2DAT and the 

development process for M2DAT‘s model transformations were modified 

according to the emerging need. 

1.5 Thesis Outline 

Remaining chapters of this thesis are organized as follows: 

 Chapter 2 provides with a complete overview on the state of the art. To that 

end, section 2.1 introduces the previous concepts related with this work. Next, 

three big groups of previous works are reviewed. Existing tools for MDE 

tasks are reviewed in section 2.2. A detailed review on model transformation 

engines is performed in section 2.3 while section 2.4 reviews existing 

frameworks for MDSD of Web Information Systems and modern database 

schemas.  

 Chapter 3 is focused on presenting the result of the first iteration of the 

research method followed, MIDAS-CASE (see section 1.4). To that purpose, 

section 3.2 describes MIDAS-CASE architecture and the process proposed to 

develop MIDAS-CASE modules. Section 3.3 introduces MIDAS-CASE 

prototypes: MIDAS-CASE4WS and MIDAS-CASE4XS. Besides, two case 

studies using each module are presented. Finally, section 3.4 puts forward the 

main conclusions and lessons learned gathered from developing MIDAS-

CASE. 

 Chapter  4 presents the technological proposal acting as the basis of this 

thesis: M2DAT conceptual architecture, design decisions to map it to a 

technical design and development process for new modules. To that purpose, 

section 4.1 brings forward the conceptual architecture of M2DAT, adapted 

from that of MIDAS-CASE. In the remaining of the chapter, it is described 

how the conceptual architecture is refined into a technical design by selecting 
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the approach and technology for each specific task. The result is a framework 

that integrates a number of existing tools for specific MDE tasks using 

Eclipse and the Eclipse Modelling Framework as a meeting ground. To that 

end, each section provides with a discussion on the different methodlogical 

and technical options to address the common tasks related with deploying 

model-driven methodologies and reasons out the ones selected to build 

M2DAT.  

 Chapter 5 addresses the validation of M2DAT specification using M2DAT-

DB, the reference implementation for M2DAT, that serves as proof of 

concept. It serves to introduce the way each specific task is to be implemented 

in M2DAT according to the methodlogical and technological decisions made 

on the previous chapter. Thereby, after providing an overview of M2DAT-DB 

functionality, this chapter deals with the way new DSLs are built on M2DAT 

(both abstract and concrete syntax). Next, a set of common scenarios that 

arose when developing model transformations and the way they are addressed 

in the context of M2DAT is described. Finally, ways of using M2DAT 

capabilities in a user-friendly manner by extending the Eclipse GUI are 

presented. 

 Finally, Chapter 6 concludes by summarizing the main contributions of this 

thesis. To that purpose, it provides an analysis of the results and reviews the 

publications that serve to contrast them both on national and international 

forums. Besides, it raises a number of questions for future research and puts 

forward the directions to follow for further work. 

 In addition, Appendix A provides with a summary of this dissertation in 

Spanish; Appendixes B and C provide with more detailed discussions on 

graph-based and model-to-text transformations. Appendix D presents the 

main Case Study used along this dissertation to show M2DAT-DB‘s 

capabilities. Finally, Appendix E collects the bibliographical and electronic 

references used along this dissertation and Appendix F summarizes the 

acronyms spread over the text.  
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2. State of the Art 
During the last years, the popularity of Model-Driven Engineering (MDE) 

has given rise to the advent of many tools and frameworks providing with all or a 

part of the functionality needed to deploy MDE proposals. This chapter aims at 

providing an overview on them. 

In order to make a comparative, the artefacts to compare should own the 

same nature. Therefore, we have splitted the state of the art on the following 

categories. 

 Tools supporting MDE tasks. Here we give a brief overview on the main 

tools or projects focused on providing support to automate each task related 

with MDE. Thus, this section covers different types of tools, like 

metamodelling environments or frameworks for development of graphical 

editors. Due to its special relevance, we include a dedicated section for the 

Eclipse Modelling Framework (EMF, [66, 161]).  

 Model Transformation languages. Since model, transformation is the 

cornerstone of MDE [52, 318], we provide with a wide study on existing 

model transformation languages. Both model-to-model and model-to-text 

transformation languages fall in this category. 

 Tools for Model-Driven Development of software. This category groups 

together tools supporting model-driven software development for specific 

domains. Given the nature of this thesis, we will focus just on tools 

supporting methodological proposals for Web Information Systems (WIS) 

development and tools supporting model-driven development of (modern, OR 

and XML) database schemas. 

The conclusions obtained from the state of the art are very relevant since 

this thesis is focused on designing and building and MDE framework. In fact, one 

of the main tasks to design M2DAT was selecting the right technology. Thus, the 

reasoning spread over the following sections will be revisited all along this 

document, especially in Chapter 4, where M2DAT technical design is presented. 

Finally, before diving into review of exiting works, we would like to define 

a set of terminology to use along this dissertation. Please, note that we do not 

mean that this is the only one, but one consistent and valid for our purposes.  
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2.1 Previous Concepts 

From the very first days of software engineering, researchers have had 

problems to make an agreement on a common terminology [63]. The problem gets 

worse in front of a fledging topic like Model-Driven Engineering, that is still far 

from being an established engineering discipline [319, 346]. Therefore, the 

following sections give a set of definitions and overviews for some common terms 

related whith Model-Driven Engineering. This is a needed step, since the success 

of the proposal has given rise to many buzzwords like metamodelling, domain 

specific modelling, concrete or abstract syntax and the like. We need a common 

understanding on those terms before diving into the study of existing works in the 

field. 

2.1.1 MD* Acronyms 

Applying Model-Driven techniques to the task of software development is 

becoming a hot topic today. As a result, a lot of initiatives and proposals have 

emerged on this field during the last years. However, the advent of so many 

proposals turned out in a mare magnum of acronyms to refer to the same 

approach. Different authors use different names to refer to (almost) the same 

thing. Thus, we may talk about Model-Driven Software Development [328] 

(MDSD), Model-Driven Development [166] (MDD), Model-Driven Engineering 

[41] (MDE), Model-Based Software Engineering [319] (MBSE) and so on. Along 

this dissertation we will use the term MDE as a common moniker for all of them, 

following the idea gathered in [110]. 

2.1.2 On CASE Tools, Frameworks and Components 

Following Ambler‘s recommendation [15], throughout this dissertation we 

will use the term CASE (computer aided system/software engineering) tool to 

refer to software-based modelling tools. 

In addition, we will refer indistinctively to frameworks and tools and will 

use the term component to refer just to a software module that encapsulates some 

specific functionality integrated into some framework. For instance, the Eclipse 

Modelling Framework (EMF) might be referred as a component of the Eclipse 

framework. As well, each EMF subproject, like the Validation Framework would 

be a component of EMF, and so on. 



State of the Art    51 

 

2.1.3 Models and Metamodels 

There is a vast amount of definitions of what a model is (see [209] for a 

complete review on them). However, one can extract some common features to all 

of them that allow providing with a standard definition: a model is always an 

abstraction of something that exists in reality, i.e. details are left out, and it can be 

used to produce the reality modelled.  

Following this line, a common issue to traditional engineering disciplines 

has been the definition of models as a previous step to the construction of the 

system. Such models act as the plans for the system under development and 

provide a specification that allows describing its structure and behaviour. 

Likewise, modelling has been widely adopted as a common practice in Software 

Engineering. Software models serve to visualize how the software system should 

look, specify its structure and its behaviour, guide its implementation and 

document the design decisions that drive the development process. In this sense, 

Kleppe et al. [193] provides with a commonly accepted definition of software 

model: ―A model is a description of (part of) a system written in a well-defined 

language. A well-defined language is a language with well-defined form (syntax), 

and meaning (semantics), which is suitable for automated interpretation by a 

computer‖. 

As it happens with the plan of a building, the model of a software system 

has to be precise enough to avoid errors when moving from the specification, i.e. 

the plan or the model, to the real system, i.e. the building or the software system. 

Thereby, strong efforts have been put to provide with modelling languages and 

notations that allows the definition of precise models. A key part on the rigorous 

definition of models is the specification of which are the allowed modelling 

elements and how they can be combined to create a new model. This knowledge is 

collected in a metamodel. 

A metamodel is the model of a modelling language [315]. That is, a 

metamodel makes statements about what can be expressed in the valid models of a 

certain modelling language. Since a metamodel is nothing but another model, it 

might be expressed using the same modelling language that it defines. In that case, 

expressions in the metamodel are represented in the same language that describes 

the metamodel. This metamodel is called reflexive metamodel or 

metametamodel. Figure 2-1 depicts the conformance relationships between the 

different types of models. Such conformance relationship means that a model is 

defined according to the rules collected in another model. 
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Figure 2-1. Modelling and Metamodelling 

This way, any terminal model conforms to another model known as 

metamodel that, in turn, conforms to another model. In addition, the latter 

conforms to itself, thus it is called a metametamodel. 

For instance, Figure 2-2 shows a simplified metamodel for modelling 

relational database schemas and a conforming model. 
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Figure 2-2. Simplified Relational Metamodel and Conforming model 
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2.1.4 Concrete Syntax, Abstract Syntax and Semantics 

As we have already sketched, the first step towards the definition of a 

modelling language is the specification of its metamodel. In essence the 

metamodel collects the abstract syntax of the language, that describes the 

vocabulary of concepts provided by the language and how they may be combined 

to create models. On the other hand, the concrete syntax provide a notation that 

facilitates the presentation and construction of models or programs in the 

language.  

There are two main types of concrete syntax typically used by languages: 

textual syntax and visual syntax. That is, a model can be expressed using a textual 

notation (like coding a program) or a graphical notation, the most common being 

diagrams and tree-like representations. In fact, you can define several concrete 

syntax for the same abstract syntax, i.e. the set of concepts collected in a particular 

modelling language might be expressed using several notations. For instance, you 

may opt for a nodes & edges notation to provide with an overview of the model 

and a textual one to provide with a more detailed view. 

Along this dissertation the reader might find a distintinction in this line. 

Some times we will distinguish between a model and a diagram. The former will 

serve to refer to the abstract syntax of the model, while the later will refer to its 

concrete (visual) syntax. 

By contrast, it is not so clear what the semantics of a modelling language 

is. If you have a look at [86] (a milestone in MDE literature) you will find clear 

and precise definitions on abstract and concrete syntax. However, they give a 

fuzzy definition on semantics. Whenever a MDE practitioner has tried to explain 

the term, he has resort to a classical state machine example to argue in favour of 

the need of defining the semantics of a language as a way of specifying how each 

meta-concept behaves when the model is executed. Another fuzzy way of thinking 

in the semantics of a la language is ―that stuff about the (meta)concepts that you 

are not able to capture in the (meta)model‖ [25]. But even the theoreticians behind 

this statement makes a distinction between static and dynamic semantics and 

claim that the former is more or less collected in the abstract syntax while the 

latter is still to be addressed. Curiously, they conclude that the best way to express 

the semantics of a language is using the state machine abstraction.  

In most cases, semantics are not explicitly define and they have to be 

derived from the run-time behaviour [111]. In our opinion, you can only define the 

semantics of an executable language, one that owns some dynamic component. 

For instance, a language to define state machines. 
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In fact, it had been one of the traditional differences between modelling and 

programming languages. Since the latter had to be executable, they needed a 

semantics definition for each (meta)concept. The other traditional difference had 

been associating visual notations with modelling languages and textual notations 

to programming languages. As we will show along this dissertation, these 

assertions are not valid in the current scene. 

2.1.5 Metamodelling Frameworks 

In essence, a metamodelling framework is an environment for the 

definition of models and metamodels [296].  

To that end, it has to supply a precise meta-meta modelling language for 

the production of the abstract syntax of the modelling language, plus the 

mechanism to define its concrete syntax and generate the tooling for the new 

language [2]. That is, from the specification of the modelling language (both the 

abstract and concrete syntaxes), the framework has to be able to generate (or at 

least, provide the way to do it) complete editors for creation of models using the 

new modelling language. As well, it has to support models persistence and 

retrieveing. 

Traditionally, these editors have been graphical editors following the nodes 

& edges style. However, the use of XML as underlying storage format has 

contributed on the rise of tree-like editors. Beside, note that according to previous 

sections, the concrete syntax might be expressed in terms of a textual or a visual 

notation. Hence, the generation of textual editors for modelling languages is also 

acceptable. In fact, it is gaining acceptance nowadays as a way towards easing the 

definition of very precise models. 

2.1.6 Model Transformation 

Even with a meta-model in hand, a graphical modelling tool is little better 

than a fancy drawing tool if we cannot automate the translation of these models 

into code, documentation or analysis. 

Working with multiple, interrelated models requires significant effort to 

accomplish some tasks related with model management, such as refinement, 

consistency checking, refactoring, etc. Many of these activities can be performed 

as automated processes, which take one or more source models as input and 

produce one or more target models as output, following a set of transformation 

rules [356]. We refer to this process as model transformation [320].  
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In the MDE literature we can find several definitions of what model 

transformations are: 

 The MDA Guide [246] gives a definition of model transformation: "Model 

transformation is the process of converting one model to another model of the 

same system".  

 Kleppe et al. defines model transformation as "automatic generation of the 

target model from a source model, which conforms to the transformation 

definition" [193]. 

 Tratt uses the following definition: "A Model Transformation is a program 

which mutates one model into another; in other works, something akin to a 

compiler" [342] 

 Sendall & Kozaczynski define model transformations as ―Automated 

processes which take one or more source models as input and produce one or 

more target models as output, following a set of transformation rules‖ [320]. 

Figure 2-3 provides with an overview of the model transformation process. 
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Figure 2-3. Overview of Model Transformation process  

The root of the process is the metametamodel (MMM). It provides with a 

set of basic abstractions that allow defining new metamodels. Next, the source and 

target metamodels are defined by instantiating the abstractions provided by the 

metametamodel. They are said to conform to the metametamodel. Finally, the 

model transformation engine executes the MMa2MMb model transformation to 
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map a model Ma into another model Mb. To do so, MMa2MMb specifies a set of 

rules that encodes the relationships between the elements from the MMa and 

MMb metamodels. The model transformation is defined at metamodel level, i.e., it 

maps elements from the input and output metamodels. So, it can be used to 

generate an output model from any set of models conforming to the input 

metamodel. In other words, the model transformation program works for any 

model defined according to the input metamodel. 

Note that if we define the set of rules and constraints that drives the 

construction of a model transformation in a metamodel (MtMM), any model 

transformation can be expressed as a model conforming to that metamodel. 

Expressing model transformations as models (so-called transformation models) 

allow manipulating them by means of other transformations. This provides with 

several advantages. For instance, any model transformation can be the input or 

output of another model transformation. We use a specific term to refer to this 

type of model transformations. A Higher Order Transformation (HOT) is a 

special kind of model transformation whose input or/and output is a model 

transformation. In addition, we may compose transformation models like we 

compose any other type of models [51, 373], we can deploy metamodel evolution 

and model co-evolution techniques [84], define chains of model transformations 

[351], reuse exiting model transformations [309], etc. 

In section 2.3, we provide with an overview on current model 

transformation approaches plus a brief overview on existing model transformation 

languages. 

2.1.7 Weaving Models 

Model transformation is essentially intended to define executable 

operations. Hence it is not always adapted to define and to capture various kinds 

of relationships between models elements. However, we often need to establish 

and handle these correspondences between the elements of different domains, each 

one defined by means of a model. The correspondences may be informal, 

incomplete, and preliminary. In many cases they may not be used directly to drive 

an executable operation. Model weaving is the process of representing, computing, 

and using these initial correspondences. This way, a set of correspondences 

between different model elements is represented as a weaving model [35]. 

A Weaving Model is thus a special kind of model used to establish and 

handle the links between models elements. This model stores the links (i.e., the 

relationships) between the elements of the (from now on) woven models. We 
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illustrate this idea in Figure 2-4: Mw is a weaving model that captures the 

relationships between Ma and Mb (the woven models), denoted by the triple [Mw, 

Ma, Mb]. Then, each element of Mw links a set of elements of Ma with a set of 

elements of Mb. For instance, the r2 element of Mw defines a relationship between 

a2 and a3 from Ma, and b1 from Mb. 

Ma

b1

b2

Mb

b1

b2

Weaving Model
Mw

 
Figure 2-4. Model Weaving Overview 

In the context of MDE, weaving models might help to implement 

separation of concerns [286]. Instead of using huge models comprising all the 

aspects of the system, it is more convenient to define a set of more manageable 

models, each one focused on modelling one aspect of the system. Them, the 

connections between those models can be specified using a weaving model. 

In addition, the use of a weaving model to collect the relationships between 

the elements of source and target metamodels may help to develop the 

corresponding model transformation. Furthermore, if we express the relationships 

between the elements of two metamodels as a set of links contained in a weaving 

model, we are capable of using the information provided by that model to generate 

the program (the model transformation) that supports the transformation from one 

to another. For instance, in [356] we proposed a matching process based on 

cumulative weaving to generate automatically model transformations. 

2.1.8 Code Generation 

So far we have looked at software models as the plans of the system under 

development. However, we need a way to translate the model into the code that 

implements the system. This is done by code generators. In essence, the code 

generation process maps the specification of the system, collected in the software 

model, to a set of executables, undestable by execution platforms. 
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In some sense, code generation is similar to programs compilation where a 

tree-walker visits each node in the AST (Abstract Syntax Tree), to build smaller 

components and assemble them into larger components [140]. Likewise, a code 

generator navigates the model while it generates the code that implements each 

concept in the model. 

A well-accepted approach is to collect all the infrastructure into a set of 

base classes and then have the user-viewed class inherit of them [140]. For 

instance, this is the case of the Eclipse Modelling Framework (see section 2.2.6), 

which provides with a complete framework of class libraries based on the model-

view-controller deign pattern [148] for model handling, storing, editing, etc. Then, 

EMF generated code uses this classes directly and you may opt for using the 

default implementation, based on the definition of JAVA Interfaces, or modify it 

as needed by extending such interfaces. 

2.1.9 Domain-Specific Modelling 

Domain-specific languages (DSLs) are languages tailored to a specific 

application domain. They offer substantial gains in expressiveness and ease of use 

compared with general-purpose programming languages in their domain of 

application [241]. Indeed, like high-level programming languages rise abstraction 

higher from assembly language, DSLs rise abstraction another step higher. 

So far, there is no paradigm that allows representing any type of problem in 

such a way that the solution could be automatically generated from the 

specification of the problem. Each domain has a set on inherent features that 

distinguish it from the others and that has to be considered when specifying the 

problem. Hence, there is a need for Domain Specific Modelling (DSM) [187] in 

order to provide with a vocabulary for each domain. This way, the problem could 

be expressed in a complete and reliable manner in order to automatically generate 

ist solution.  

We can identify two different trends in the use of DSLs. On the one hand, 

we can find DSLs that support higher-level abstractions than general-purpose 

modelling languages, and are closer to the problem domain than to the 

implementation domain [299]. Such DSLs allow modelers to perceive themselves 

as working directly with domain concepts. On the other hand, we can make a 

simile between DSLs and programming languages. A DSL might be shown as the 

grammar of the language and a model expressed with such DSL would be a 

program written in the corresponding grammar. From such model, a code 
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generator automatically produces the code that implements the modelled program 

[138]. 

This is our point of view, we argue in favour of DSLs for platform-specific 

modelling, using them in a way similar to programming. That is, we rise one point 

the level of abstraction, good for programmers/developers but not enough for 

business analysts since the result is still too technical. For those non-IT 

stakeholders we provide with a higher abstraction level by means of platform-

independent modelling. Then, we develop model transformations to translate 

their human-understandable designs to technical designs. In addition, since the 

translation or mapping process lend some space to decision-making when moving 

from the human to the IT technical space, we provide with a way to make them in 

the form of annotations. Note that these annotations are to be made by the 

developers, probably assisted by the business analysts, since they do not have to 

be aware of technical concerns. Finally,  

It is worth mentioning that, though there is a trend towards using textual 

syntaxes for Domain Specific Modelling (DSM) [187], the authors were thinking 

mainly in graphical modelling languages when they invent the term. In Steven 

Kelly‘s words [190] ―when we were looking for a name (…) DSL was clearly 

similar, but we needed to distinguish what was different: we were talking about 

graphical modelling languages‖. However, DSM is not just about attaching visual 

syntaxes to programming languages. This is mainly related with external DSLs. 

But you might use a DSL also to rise the abstraction level when coding, or at least, 

to ease the task [138]. 

2.1.10 What Model-Driven Engineering is 

After reviewing the concepts that forms the basis of MDE, here we focus 

on explaining how they combine to constitute a new software development 

paradigm.  

So far, Software Engineering has been tradidionally identified with 

programming tasks, what partially explains why it has been conceived as a minor 

discipline when compared with other engineering disciplines. The rest of 

engineers, like civil, agronomist, mining or aeronautic are responsible for making 

a design of the system prior to its construction. In fact, they are not the ones that 

effectively build the system. They just supervise the development process. A 

similar approach has to be brought to software engineering. To that end, there is a 

need for raising the abstraction level. 
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The Model Driven Engineering (MDE) paradigm [41, 131, 143, 166, 316, 

328, 368] is a new trend in software engineering whose main proposal is to focus 

on models rather than in computer programs. MDE is a natural step in the 

historical tendency of software engineering towards raising the abstraction level at 

which software is designed and developed. Assembly languages gave way to 

structured programming languages that yielded to object-orientation and so on. 

Appart from raising the level of abstraction, MDE aims at increasing the 

level of automation in software development. To that purpose, the idea promoted 

by MDE is using models that specify the software system at different levels of 

abstraction. This way, higher-level models are transformed into lower-level 

models until the model can be made executable using either code generation or 

model interpretation. The increase of automation comes mainly from the fact that 

the step from one model to the following is performed by using executable model 

transformations.  

MDE has been applied in different contexts, resulting in a vast amount of 

model-driven methodologies for software development that covers almost every 

field of software engineering, from Web Engineering to real-time systems, 

database development, etc. All these proposals consist of a development process, a 

set of (meta-)models handled along that process and a set of mappings between 

them. The mappings between models play a very important role since the process 

proposed is always a continuous development process, which according to the 

MDE principles consider the models as the prime actors. As Figure 2-5 shows, 

each step of this common process consists basically on the generation of an output 

model starting from one or more input models over which the mapping rules are 

applied. In the remaining steps of the process, this output model acts as one of the 

input models. Therefore, the process could be summed up as the sequence of 

model transformations that have to be carried out in order to obtain the different 

models defined in the process, until the last one, that is, the working code, is 

generated − notice that the working code is no more than another model, this one 

with the lower abstraction level. 
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Figure 2-5. Simplified overview of MDE 

2.1.11 Model-Driven Architecture 

The principles of MDE emerged as a generalization of the Model Driven 

Architecture (MDA) [143, 157, 193, 238, 239, 246], proposed in 2001 by the 

Object Management Group (OMG). Indeed, Favre [131] states that MDA is a 

specific encarnation of MDE. 

MDA is a framework for software development aligned with MDE, whose 

main characteristics are the definition of models as first class elements for the 

design and implementation of systems, and the definition of mappings between 

those models, which allow such transformations to be automated.  

MDA considers three big groups of models according to its abstraction 

level. System requirements are modelled by Computer Independent Models 

(CIMs). Platform Independent Models (PIMs) allow modelling system 

functionality, without taking into account any specific platform. Finally, 

specifications described in the PIMs are adapted to the specific platforms by 

means of Platform Specific Models (PSMs) from which the code is automatically 

generated. 

Besides, the OMG proposes a set of standards to put MDA to work (some 

of them, like the UML existed before the advent of MDA). In fact, some 

recognised authors argue that MDA is MDE with OMG standards [139].  

In the following, we summarize them since they are probably the main 

contribution of OMG to MDE, apart from the definition of the different 

abstraction levels. 

2.1.11.1 MOF 

The Meta-Object Facility (MOF) [265] serves as the metadata management 

foundation for MDA. MOF provides a standard for specifying metamodels, i.e. a 

meta-metamodel, which is the root of the metamodelling hierarchy shown in 

Figure 2-6. MOF is defined at level M3 and serves to define models at M2 level. 
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Note also that MOF is reflective, thus it is defined in terms of MOF itself. Next, 

the models at M2 are theirselves metamodels for the models defined at M1 that 

still own some level of abstraction regarding the objects layer situated at M0.  

An UML model

QVT

Metamodel

Meta-Metamodel

MOF

Another application of  

the UML model

An application of  

the UML model

CWM

Metamodel

UML

Metamodel

conforms to

 
Figure 2-6. OMG four layered metamodel architecture 

The relevant part of this architecture is the ability to navigate from one 

element (it does not matter if it is a class, an object or whatever) to its 

corresponding metaobject. This is shown in Figure 2-7. At M3 level, the MOF 

specification states that any model conforming to MOF is composed of two types 

of objects: classes and associations. At M2 level, both types of constructions 

might be used to define any desired model conforming to these statements. For 

instance, the UML metamodel is in its turn a MOF conforming model. It states 

that any UML model will contain classes, which in turn contain properties. This is 

stated by the composition association that connect both metaobjects. At M1 level, 

a simple UML model contains one class (Customer) that contains one property 

(name). Finally, the UML model admits infinite instantiations, one particular 

example is shown at level M0. 
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Figure 2-7. Applying the OMG four layered metamodel architecture 

2.1.11.2 UML 

The Unified Modelling Language (UML, [270]) is a widely recognised and 

adopted modelling language. It is a general-purpose language (GPL) specially 

intended for modelling object-oriented software systems. The basic building block 

of UML is a diagram. There are several types of diagrams for specific purposes 

(e.g., time diagrams) and a few for generic use (e.g., class diagrams).  

Besides, it defines a lightweight extension mechanism so-called UML 

profile. A UML profile is a modelling package containing modelling elements 

customized for a specific purpose or domain. It combines stereotypes, tagged 

values, and constraints in order to define a variation of UML for a specific 

purpose. In other words, a UML profile defines new types of modelling elements 

by extending existing ones. For instance, the (simplistic) UML profile for XML 

Schema modelling shown at left-hand side of Figure 2-8 provides with three new 

types of modelling elements: the XML Complex Type and XML Element classes 

and the Complex Content association. Besides, modelling the type of compositor 

used to define the Complex Content of the Complex Type is supported by adding 

a Compositor tagged value. Likewise, the namespace of the Complex Type is 
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modelled with the nameSpace tagged value. The result may be considered as a 

new metamodel at M2 level that can be used to define new models at M1 level, 

like the one shown at left-hand side of Figure 2-8. It models an XML Schema 

containing just a Complex Type (Person_Type) that in turn contains one XML 

Element (NIF).  

nameSpace: String

<< stereotype >>
XML Complex Type

Class

<< metaclass >>

Association

<< metaclass >>

<< stereotype >>
XML Element

<<prof ile>>

XMLSchema

<< XML Complex Type >>
Person_Type

<< XML Element >>
NIF

nameSpace: KYB_MYXSD

<<XML Complex Content>>

MySchema

compositor: CompositorType

<< stereotype >>
XML Complex Content

All
Choice
Sequence

<< enumeration >>
CompositorType

compositor: Sequence

 
Figure 2-8. Defining and using an UML profile. 

2.1.11.3 XMI 

XML Metadata Interchange (XMI, [275]) is an XML-based standard for 

sharing meta-data. It can be used to represent ordinary data as well. That is, XMI 

might be used for both serializing objects in XML documents and to generate 

schemas from models. 

Thereby, XMI includes several artefacts. The most relevant being: 

 A set of rules to generate XML Schemas for MOF based metamodels. 

 A Schema for UML 

 A Schema for MOF 

 A set of rules to generate XML documents from instances of MOF models. 

In fact, since UML is the most popular MOF model, the XMI Schema for 

UML (also known as XMI[UML]) has been the most commonly adopted. Figure 

2-9 shows the relation between UML and XMI. Any MOF model, like the UML 

metamodel, is persisted in a XMI Schema. Likewise, any UML model is persisted 

in an XML document conforming to the above Schema. 
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Figure 2-9. Using XMI 

Unfortunately, nowadays, the XMI documents generated by most tools 

present some differences from the XMI standard and are seldom interchangeable 

[70]. Indeed, although it is widely accepted as storage format, the whole point of 

XMI is interoperability. It is quite rare to find two different tools using the same 

XMI version [188].  

The problem is well-stated by Uhl in [344]: ―(…) XMI can come in handy 

for integration if you are lucky enough to find two compliant tools with matching 

XMI versions and metamodels or, alternatively, if you are XSLT-literate. Of 

course, exchange is limited to the model‘s abstract syntax because Gentleware, the 

one company that participated in the UML diagram interchange standard, remains 

the only supporter‖. 

In the end, the only way of solving the interoperability problem that has 

proved itself to be useful and efficient is the use of model transformations [55, 

113].  

2.1.11.4 OCL 

The Object-Constraint Language (OCL, [268]) is a declarative language to 

define expressions that apply to any MOF conforming model, like the UML 

metamodel, or any UML conforming model. Though it was conceived as a 

constraint definition language, OCL might be considered as a general-purpose 

query language. Indeed, the most of the existing model transformation engines use 

OCL as navigation language or, at least, an OCL-like language. 
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Besides, OCL allows defining invariants, that must hold for the model 

elements and pre- and post-conditions for on actions or operations. Working this 

way, OCL allows adding value to any model.  

For instance, Figure 2-10 shows a simple class diagram capturing a 

(simplistic) mortgage system taken from [374].  

 
Figure 2-10. The mortgage system expressed in a class diagram 

Needles to say, there are some rules that the diagram itself is not capable of 

capturing. These are collected in a set of OCL expressions in  next to its 

description in natural language. 

Table 2-1. OCL Expressions for the mortgage system diagram [374] 

OCL Expression Meaning 

context Mortgage  
inv: security.owner = borrower  

A person may have a mortgage on a house 
only if that house is owned by him- or 
herself; one cannot obtain a mortgage on 
the house of one's neighbor or friend 

context Mortgage  
inv: startDate < endDate 

The start date for any mortgage must be 
before the end date. 

context Person  
inv: Person::allInstances()->isUnique(socSecNr) 

The social security number of all persons 
must be unique. 

2.1.11.5 QVT 

The MOF Query/View/Transformation (QVT, [273]) is the OMG standard 

for model transformations. It allows defining three types of constructions: 



State of the Art    67 

 

 A Query is an expression evaluated over a model that results in a set of 

objects fulfilling the restriction imposed by the query. It results in one or more 

instances of types defined in the source model, or defined by the query 

language. Indeed, OCL is an example of a query language and is actually used 

in QVT. 

 A view is a model which is completely derived from another model (the base 

model). A view cannot be modified separately from the model from which it 

is derived. Changes to the base model cause corresponding changes to the 

view. A query is a restricted kind of view 

 Finally, a transformation generates a target model from a source model. 

Transformations take a model as input and update it or create a new model. In 

fact, a view is a restricted kind of transformation in which the target model 

cannot be modified independently of the source model. If a view is editable, 

the corresponding transformation must be bidirectional in order to reflect the 

changes back to the source model. 

The QVT specification provides with three different languages:  

 The QVT Relations is a declarative transformation language that allows 

defining the relations that must hold between the elements of the source and 

target model. 

 The QVT Core language is a simpler though equally expressive declarative 

language. Indeed, the Relations language might be expressed in terms of the 

Core language but the latter does not provide with automatic traceability 

support. 

 Finally, the QVT Operational-Mapping language is an imperative language 

that may be used to extend the Relations language with imperative 

constructions. 

Due to the relevance of model transformations as thriving force of any 

model-driven development process, QVT exiting implementations will be widely 

covered in section 2.3.3.11. 

2.1.12 Eclipse 

We could look at Eclipse as a framework to build Integrated Development 

Environments (IDEs), i.e. it is an IDE whose architecture was designed to be used 

as underlying infrastructure to develop new IDEs for new languages or models. To 

that end, its infrastructure provides with extension points to plug the new IDEs, 

so-called plug-ins, in the Eclipse IDE. Because of its extensibility and industrial-
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quality user interface, Eclipse has been widely adopted as underlying platform for 

every type of sotware engineering supporting tools. 

This way, Eclipse platform is a kernel so-called Platform Runtime plus a 

set of plug-ins. Apart from such kernel, everything in Eclipse is a plug-in. The 

Platform Runtime is in charge of discovering, loading and executing the different 

available plug-ins at run-time. Once Eclipse is launched, the platform runtime 

offers an integrated IDE composed by the available plug-ins. Thus, Eclipse is a 

kind of puzzle where each plug-in constitutes a piece that is identified and 

assembled with the rest. New functionalities are encoded in new plug-ins that 

connects with the existing ones. 

Though all the plug-ins are treated equivalent, it is worth to pay special 

attention on two of them shown in Figure 2-11: 

Platform Run-Time

Workspace Workbench

My plug-in

 
Figure 2-11. Eclipse Workspace and Workbench plug-ins 

 The user interface rests on the Workbench plug-in. It defines a series of 

extension-points to extend the user interface as needed. For instance, we may 

add new toolbars; create new views (a view defines the layout of the 

workbench) or record notification requests for any event. If you need to build 

an XML editor, you will develop a plug-in that extends the classes that 

implements the Workspace. This way, you might color the text in a special 

way and so on. 

 On the other hand, the Workspace supports the managemet of the resources 

displayed on the IDE, such as projects, folders or individual files. The 

workspace contains a number of projects that has a one-to-one 

correspondence with a folder on the operating file system. Each resource is 
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represented as an object of the workspace. Thus, there are classes to abstract 

them and one can extend and customize those classes in order to get files, 

folders or projects with special features. 

The different Eclipse plug-ins are grouped into Eclipse projects, that 

collects all the (sub-)projects focused on development of tools focused on the 

same topics or purposes. In the following we give a brief overview on the Eclipse 

Modelling Project, that aims at grouping together all the MDE technologies 

developed atop of Eclipse. 

2.1.12.1 The Eclipse Modelling Project 

In general, organizations that adopt standards do not use to follow the 

standard as-is. The preferred way of working is to follow the reference 

implementation. Within the scope of MDE, the OMG standards presented so far 

provide the language definitions needed to achieve the goals of a metamodelling 

framework. However, the OMG does not provide a reference implementation and 

when looking into the details, the language definitions are partially incomplete, 

inaccurate, or ambiguous. 

In absence of such reference implementation, practitioners tend to agree on 

a de facto standard upon which their proposals are built. Eclipse, and more 

specifically, EMF has been playing this role in the context of MDE. The advent of 

the Eclipse modelling Project (EMP) has contributed to bridge the gap between 

different modelling tools by providing a set of frameworks, tools and reference 

implementations for standards that help on the development of support for any 

methodological proposal based on MDE principles.  

The Eclipse Modelling project is logically organized into projects that 

provide the following capabilities: abstract syntax development, concrete syntax 

development, model-to-model transformation, and model-to-text transformation. 

A single project, the Model Development Tools (MDT) project, is dedicated to the 

support of industry-standard models. Another project within the Modelling project 

focuses on research in generative modelling technologies.  

Figure 2-12 gives an overview of the structure of the modelling project and 

its functional areas taken from [161]. As you can see, the Eclipse Modelling 

Framework is at the center. It provides with abstract syntax-development 

capabilities. EMF Query, Validation, and Transformation complement the EMF 

core functionality. Teneo and CDO provides with database persistence of model 

instances. Surrounding the abstract syntax-development components are model-

transformation technologies. They include both model-to-text (Java Emitter 

Templates [JET] and Xpand) and model-to-model (QVT and ATL). However, 
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notice that not all the solution for model-to-model and model-to-text are enclosed 

in the ―official‖ Eclipse projects. VIATRA and MOFScript are examples of this 

fact. Concrete syntax development can be implemented in the form of graphical 

editors or textual editors. To that end, you might use the Graphical Modelling 

Framework (GMF) and the Textual Modelling Framework (TMF) respectively. 

Finally, a series of orbiting projects and components represent models, 

capabilities, and research initiatives available from the Modelling project. 

 
Figure 2-12. The Eclipse Modelling Project  

2.1.12.2 The Eclipse Modelling Framework 

As we just mentioned, all the facilities provided by the EMP are built on 

top of a common basis, the Eclipse Modelling Framework (EMF) [66, 161], that 

provides with the utils needed to define, edit and handle (meta-)models. Indeed, 

the strength of EMF has given rise to a new generation of EMF tools during the 

last years. We will present some of them in forthcoming sections. We will 
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itroduce EMF capabilities and how are they to be used for building M2DAT‘s 

modules along this dissertation. 

After this brief overview of MDE terms, we address the main part of this 

Chapter: the State of the Art on technology to support model-driven development 

of software. 

2.2 Tools supporting MDE tasks 

As stated in the introduction of this chapter, the emergence of MDE has 

resulted in the advent of a wide set of tools for supporting MDE tasks. Some of 

them provides with specific capabilities, mainly modelling and metamodelling 

functionality. Others try to integrate all the needed functionality, adding model 

transformation engines, code generators and the like. This section studies those 

works focusing on exiting metamodelling frameworks and paying a special 

attention on EMF, which has contributed decisively to boost the MDE paradigm 

[52]. Besides, some examples of tools providing with individual capabilities are 

cited. 

These tools are grouped together because, in terms of MDE, they are not 

general-purpose tools, since they focus on supporting a special functionality, such 

as developing textual editors. However, all of them are valid for any DSL. In 

contrast with M2DAT, that is built to deal with the set of DSLs proposed in 

MIDAS methodology, the following tools are not devised to work with a 

particular DSL. They are used to build domain-specific tools. In other words, this 

section aims at reviewing the technology that we might use to build M2DAT. The 

objective is to be ready to face the selection of technology that will drive the 

specification of M2DAT.  

Likewise, it is worth mentioning that we will not reference explicitly 

diagrammers or pure UML tools like magicDraw, Fujaba, IBM Rational, etc. for 

two interrelated reasons: 

 We are not interested in working (just) with UML. In M2DAT, UML will be 

used with platform-independent modelling purposes, but UML models will 

have to be mapped to M2DAT DSL models. The proprietary storage formats 

used by those tools, as well as the classical XMI versioning problems (see 

section 2.1.11.3) advise against the use of these tools in MDE processes 

where different DSLs/metamodels are to be interconnected. 

 In addition, we want M2DAT models to be, not only translated into code, but 

also validated, weaved, edited with different editors, etc. In particular, we 
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want to be able to handle M2DAT models with other existing and 

forthcoming tools. Thus, building M2DAT models with the above-mentioned 

type of tools is completely discouraged. 

Note also that the aim of this thesis is the specification of an open-source 

extensible framework for model-driven development of WIS. Thus, building it in 

top of a commercial tool makes no sense. Therefore, we will limit to mention 

some of the existing commercial tools, but we will not consider them to build 

M2DAT. 

Finally, before presenting each reviewed tool, we sketch the evaluation 

criteria used to asses them. Examples of evaluation criteria can be found on 

existing literature on software engineering [54, 303]. Likewise, there are more 

recent focused on evaluating MDE proposals, like [97], focused on Model 

Transformation, [99] focused on Bidirectional Transformations, or [361] focused 

on Graph Transformations. Here, we have defined one that is structured according 

to our needs to build M2DAT.  

2.2.1 Evaluation Criteria 

We need to have effective criteria to compare existent tools for MDE tasks. 

To that end, we would like to evaluate each tool in relation with the follwing set of 

features (next to each future, we state the possible values): 

 Scope. [Values: Commercial / Academic / Open-source] 

One of the main concerns regarding software engineering tools is whether 

they are commercial or open-source tools. Since we want M2DAT to be an 

open-source tool, there is no sense in using any commercial component to 

build it. This way, the first criteria to discard existing tools for MDE tasks will 

be their scope. In addition, we will mention if it is an academic tool, just to 

provide with some more information.  

 Metamodelling. [Values: YES / NO]. 

The first step towards a new MDE methodological proposal is the definition 

of a new modelling language (whether it is a UML profile or a DSL). 

Therefore, as part of building M2DAT we need tools supporting the definition 

of new metamodels (the metamodel defines the abstract syntax for the new 

language, we will talk later about supporting the concrete syntax). Besides, 

those tools should provide with the tooling to ―instantiate‖ the metamodel, i.e. 

to define terminal models that conform to the new metamodel. Therefore, we 
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need to check which of the reviewed tools offer metamodelling support and 

how does it work in order to choose one for M2DAT.  

 Model-to-Model Transformations. [Values: YES / NO / Limited] 

We have alredy mentioned that model transformations are the cornerstone to 

support MDE proposals. In particular, the holy gray of automation is not 

feasible without model transformation support. Thus, when evaluating 

components to build M2DAT, we need to study whether those components 

include facilities to develop model-to-model transformations.  

 Model-to-Text Transformations. [Values: YES / NO / Limited] 

 This feature complements the previous one. Here we study if the evaluated 

component does provide support for model to text transformations, i.e. code 

generation capabilities. Besides, we will show that there are a number of 

components exclusively focused on model-to-text transformations, like 

AndroMDA or the MDWorkbench.. 

 Validation. [Values: YES / NO / Limited] 

A common issue related with MDE tools is the support of models validation 

[91]. In spite of the proliferation of methodologies and tools for MDSD, we 

have detected that most of them do not include activities and/or features 

related to the analysis of the constructed models built or, if they exist, they are 

rather weak. These activities are especially important in proposals aligned 

with MDE since models are used as the mechanism to carry out the whole 

software development process. Thus, errors at initial stages of development 

will be reproduced in the subsequent generated code [249]. This can be 

avoided by providing support to specify constraints at metamodel level and to 

evaluate then on terminal models. We aim at integrating model validation 

mechanisms in M2DAT. Therefore, we will study whether each reviewed tool 

supports this feature and how it is done.  

 Graphical Editors. [Values: YES / NO / Graphical / Textual] 

This feature might be stated as supporting the definition oa graphical concrete 

syntax for a new modelling languages. A common issue related with MDE 

tools is usability. To enhance usability, the tool has to provide with graphical 

editors to edit terminal models conforming to previously defined metamodels. 

Therefore, we will analyse the support of each tool (if existing) to develop 

graphical editors for terminal models. We will not limit to boxes and arrows 

editors, we also refer to tree-like editors, like the ones from EMF, or any other 

graphical way of defining models. To summarize, here we will study if the 
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tool is able to generate an environment for handling models conforming to a 

given metamodel. 

 Standardized. [Values: YES / NO]. 

Here, we are interested on analysing to which extent the tool is aligned with 

standards. When we talk about standards in MDE contexts, we are mainly 

refererring to OMG standards, like UML, MOF or OCL. For instance, we will 

consider if the metamodelling capabilities are based on MOF [265], the 

model-to-model transformation is based on QVT [273] or the validation 

mechanisms based on OCL [268]. It is worth mentioning that we will consider 

not only standards de jure, like MOF, but also its reference implementations 

(in case they exist). This way, since Ecore [66] is considered the de facto 

standard for metamodelling, we will consider a tool based on Ecore as an 

standardized tool.  

 Extensibility. [Values: YES / NO / Partially]. 

Another key issue for us when designing M2DAT is reaching the highest level 

of extensibility. We aim at integrating in M2DAT any interesting technical 

solution for MDE that arises. To that end, we need to build M2DAT in top of 

components that can be extended. Therefore, we will analyse how easy it 

results to integrate new functionalities into reviewed tools. Notice that a 

number of tools claim to be extendable but when you address the task of 

developing the corresponding extension, you realise that it is a rather 

challenging task. In this sense, the perfect example of extensible framework is 

Eclipse, which was specifically devised to be extended.  

 Interoperability. [Values: YES / NO / Partially]. 

This point is directly related with the previous one. Since we aim at using 

M2DAT as a test bench for any new appearance in the field of MDE 

components for development of MDE tools, we need it to be highly 

interoperable with other tools. So, it has to be built on top of components that 

provides with automatic import/export mechanisms for software artefacts 

developed with other tools. At worst, we need tools for which building 

support for migration of software artefacts can be developed in reasonable 

time and manner. The major advance in terms of interoperability for MDE 

tools in recent years was the advent of EMF. Since it provides with an 

underlying model management framework on top of which MDE tools could 

be developed. The rest of tools developed on top of EMF handle models 

developed with such tools with no additional effort. We could say tha EMF is 

the ―esperanto‖ of MDE tools. Therefore, any tool developed on top of EMF 
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will be judged as highly interoperable. However, running atop of EMF is not 

the only way to achieve interoperability. For instance, purely UML-based 

tools that use XMI should be also interoperable.  

 EMF-based. [Values: YES / NO / TO-DO (it is planned)]. 

The previous point has clarified why we are interested in evaluating the level 

of compliance of any tool for MDE tasks with the EMF framework.  

In the following section, we review the main tools for MDE tasks 

according to the above-described features that compose our evaluation criteria. 

2.2.2 AndroMDA 

AndroMDA [17] is a template-based code generator framework from UML 

models for J2EE, Spring and .NET platforms. The functionality to provide source 

code for a specific platform is collected on a cartridge. A set of cartridges oriented 

to the current development kits, like Axis, jBPM, Struts, JSF, Spring or Hibernate 

is included by default. In addition, you can develop your own cartridge or modify 

an existing one by extending a generic cartridge so-called Meta. 

Current release, AndroMDA 3.3, is an open-source and stand-alone tool. At 

the beginning of 2007, the authors started to work on a new release (AndroMDA4) 

to be integrated into the Eclipse platform. It added metamodelling capabilities, 

plus model transformation support (using the ATL language [387]) and visitor-

based code generation (using the MOFScript language [391]). This is why we 

place AndroMDA in this category instead of plaging it just in the model-to-text 

transformation engines (section 2.3.4). However, AndroMDA4 is on hold and very 

experimental since the developer behind (Matthias Bohlen) shifted his focus to 

other activities. 

To sum up, we may qualify AndroMDA as an open-source framework for 

model-to-text transformations. It does not provide support for metamodelling, 

model-to-model transformations, model validation or model management. On the 

other hand, it is highly extensible since you might develop your own templates. 

Besides, it is rather interoperable since works with UML models, though the XMI 

versioning problem (see 2.1.11.3) might complex real interoperability. Finally, 

EMF compliance is planned, though not supported at the time of writing this 

dissertation. 
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2.2.3 ATOM
3 

ATOM
3 

(A Tool for Multi-formalism and Meta-Modelling, [107]) is a 

framework for the definition of multi-view languages that incorporates 

mechanisms for syntactic and semantic validation, as well as metrics to evaluate 

the quality of a design and trigger re-designs when needed. 

Although it is mostly known as a graph-based model transformation 

framework, it does provide metamodelling support plus validation facilities. 

However, the rules that drive this validation have to be coded as preconditions in 

Python, the underlying language or ATOM
3
. 

We qualify it as not standardized since it does not follow any OMG 

standard. In addition, it owns a low interoperability level since ATOM
3
 models 

does not use any common underlying format. Finally, nothing is said in its 

documentation about the ability of adding/modifying its functionality. 

Theoretical foundations of ATOM
3
 make it a very appealing tool. 

However, it seems not to be ready for production settings yet. Some parts of the 

documentation are outdated and even the basic example caused several exceptions 

and useless warnings. Nevertheless, it is one of the few tools providing with real 

graph-based model transformations. 

Regarding evaluated features, ATOM
3 

is an academic tool that allows 

defining new metamodels using the E/R model [82]. From such metamodel, it 

provides with a basic graphical editor for conforming models. Besides, it supports 

model-to-model but not model-to-text transformation. As mentioned, model 

validation is also supported, though not in a user-friendly manner. It does not 

follow any of the OMG standards and no information is provided about extension 

capabilities. Besides, nothing is said about the ability of importing/exporting 

model to/from other tools. Finally, it is not EMF-compliant. 

2.2.4 DOME 

Domain Modelling Environment (DOME) is an extensible system for 

graphically developing, analyzing and transforming models of systems and 

software [129]. That is, DOME is a metamodelling framework. 

It aims at providing toolsets for newly defined metamodels. To that end, 

you have to define a notation using a meta-tooling model called DOME Tool 

Specification (DTS) that includes a set of predefined constructions, such as model, 

graph, component, port, etc. From that notation, DOME generates the code that 
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implements the desired toolset. DOME provides just basic support for the 

definition of the visual concrete syntax. 

The definition of restrictions is based on the use of a scripting language 

called Alter. Besides, Alter is said to be a way to code model-to-model and model-

to-text transformations in DOME. 

In the beginning, the code generated was SmallTalk, the code in which 

DOME was developed. From 2003, the whole framework is been re-implemented 

in JAVA to support also JAVA generation. Likewise, they plan to add Eclipse-

integration capabilities. 

It is worth mentioning that at the moment of writing this dissertation 

DOME seems to be abandoned. So far, all the references that we have found 

pointing to DOME have turned out to be dangling references 

All things considered, DOME supports metamodelling and edition of 

conforming models, plus (limited) model-to-text transformations and (limited) 

model validation. Nevertheless, coding of complex transformations using the Alter 

language is not feasible and there seems to be no way of connecting DOME with 

existing model transformation engines. Besides, it does not conform to any 

standard and it is not extensible neither interoperable with other tools. 

2.2.5 DSL Tools 

The DSL Tools from Microsoft [90] is a suite for creating, editing, 

visualizing, and using domain-specific models.  

To that end, a graphical editor is used to create a domain model using a set 

of predefined constructions. From such model, a graphical editor for confoming 

models is automatically generated. In addition, it allows defining code generation 

templates that takes as input such terminal models. 

Nevertheless, there is no support for model-to-model transformation 

neither for defining constraints over terminal models. The standardization level is 

is nil since it is completely based on proprietary notations and there is no way of 

extending the platform. 

2.2.6 Eclipse Modelling Framework 

We cannot state that the Eclipse Modelling Framework (EMF, [161]) does 

or does not provide with specific capabilities, like model-to-model transformation 

or code generation.  
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Actually, EMF itself does not provide with these facilities, but as we have 

already shown in section 2.1.12.1, the EMP projects collect all these facilities. 

Indeed, those projects will be presented as isolated components in the following 

sections, since we might use EMF with or without each one of those components 

to build M2DAT.  

All this given, regarding the target features to evaluate, we can state that 

EMF is a metamodelling framework, devised to be extended and providing the 

highest interoperability level. 

In section 2.1.12.2 we will provided with a detailed insight in EMF 

principles since it deserves a special attention due to its widespread adoption as 

underlying model management framework. So far, we have just focused on how 

EMF behaves regarding the features pointed out in section 2.2.1. 

2.2.7 EMFATIC 

Emfatic is a language for defining Ecore models [172]. It uses a compact 

and human-readable syntax similar to Java. The Emfatic plug-ins supplies an 

editor and a parser for the language. They support actions to compile Emfatic 

source code into an Ecore model and allow Ecore models to be decompiled into 

Emfatic source code (injection/extraction). Emfatic itself builds upon Gymnastic 

[153], a framework for jumpstarting text editors for custom Domain Specific 

Languages. 

Emfatic‘s main functionality is injection/extraction of Ecore from/to textual 

specifications. Thus, you can use Emfatic with metamodelling purposes. Instead 

of defining en Ecore model, you may prefer defining your metamodel using the 

Emfatic language. In fact, some authors argue in favour of textual editors for DSL 

against graphical editors [183]. We bet for combining both approaches [368]. 

Regarding evaluated features, Emfatic just provide with metamodelling 

capabilities and generates a textual editor for conforming models. Thus, no 

support for model transformations, model validation of graphical edition of 

models is provided in Emfatic. Besides, we may qualify it as rather standardized 

and interoperable since it is completely based on EMF. 

2.2.8 GME 

The Generic Modelling Environment (GME, [103, 216]) is a mature and 

recognised metamodelling framework that was born before the boom of MDE. 
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GME supports its own metamodelling language to define metamodels 

(Paradigms in GME jargon) so-called MetaGME. It is a subset of UML that 

includes abstractions like Atom (any model element), Model, Connection 

(association), Attribute, etc. Visual syntax is defined by attaching decorator 

objects to the concepts included in the metamodel. From the metamodel and the 

decorators‘ specification, GME generates an editor for conforming models that 

provides with several functionalities, like zooming, undo/redo, etc. Additional 

constraints to be checked over terminal models can be added using its own flavour 

of OCL.  

A very interest feature is the ability to register several versions of the same 

metamodel. In some sense, this mitigates the problem of metamodel evolution and 

model co-evolution [84]. Model transformations can be attached in GME, by they 

have to be developed using C++. 

Since GME is based in MS COM, it can be extended using any language 

that supports COM, primarily C++ and Visual Basic. Model transformations can 

be developed for GME models using the GReAT language [9] that will be 

introduced later. Besides, the GReAT language provides with some limited 

capabilities to translate models to code but we would not say it supports properly 

code generation. 

Finally, it is worth mentioning some works that have focused on bridging 

GME and EMF: 

In [45] the authors use the AMMA (ATLAS Model Management Platform) 

tools to that end. Apart from some development problems, like the loss of 

graphical data from GME models when they are carried to the EMF world, the 

authors point out the complexity of the task. They claim that more advanced MDE 

frameworks were needed for this task.  

Besides, the GEMS project (Generic Eclipse Modelling System [152]) aims 

at bringing the GME metamodelling facilities to EMF in order to support rapid 

development of graphical editors. Please, note that it is still an incubation project.  

GEMS supports the graphical definition of a metamodel and generates a GEF-

based [250] graphical editor for conforming models. Customization of the editor is 

based on a CSS style sheets mechanism. Currently, GEMS support basic 

importation of GME metamodels and models into GEMS, but reverse importation 

is still to be done. 

To summarize, GME is an open-source framework that provides with all 

the needed capabilities to build M2DAT except from code generation. It is 
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extensible, but in a quite challenging manner and its models cannot be exported to 

other tools, though ongoing work is focused on bridging GME and EMF.  

2.2.9 Kermeta 

Kermeta is metaprogramming environment that allows defining the 

structure and behaviour of (meta) models [175, 329]. It is based on an object-

oriented DSL optimized for metamodel engineering and is fully integrated with 

Eclipse, including features such as an interpreter, a debugger, a prototype, an 

editor and various import/export transformations. 

Its initial purpose was to enable metamodellers to give an operational 

semantics to their metamodels but it also works as a model transformation tool as 

we will describe in section 2.3.3.5. 

A metamodel is defined textually in the Kermeta language. From that 

specification, you can generate a Kermeta model and edit it with a typical EMF 

reflexive editor or you can translate it to en Ecore model and use all the graphical 

capabilities of EMF to edit it. Therefore, since Kermeta metamodels are directly 

imported/exported from/to Ecore metamodels, Kermeta can be used as a roundtrip 

textual editor for Ecore models. In addition, you can specify the semantics of the 

model using the Kermeta language, a DSL that directly maps to the behaviour 

model. Moreover, it is possible to transform a Kermeta model, which contains 

semantic information into an Ecore model. The semantic is preserved within Ecore 

annotations. Once you have defined the dynamic semantics of the metamodel 

using Kermeta, you can execute any conforming model. 

This approach is interesting because it contains a model-based 

representation of semantic information. Yet, it is not possible to create a 

customizable textual representation for the model itself. The main reason to 

include Kermeta in this discussion is because it allows to describe the semantics of 

a modelling language following a model-driven approach. 

All this given, we may conclude that Kermeta is to be used to enhance the 

capabilities of EMF as a metamodelling framework by adding semantics to 

defined models. That is, it completes better that replaces EMF. Besides, the 

Kermeta language can be used for model-to-model transformations and to check 

constraints on EMF models, though it does not support model-to-text 

transformations. No editor (apart from those provided by EMF) is provided for 

terminal models. Finally, running atop of EMF lent it a standardized character and 

eases the task of extending and using it from other tools. 
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2.2.10 MetaEdit+ 

MetaEdit+ [243] is an environment for creating and using DSLs. It was 

initially conceived as a research prototype [187, 323] developed by the metaphor 

research group that later became a commercial product.  

It provides a metamodelling language called GOPPRR attending to its 

components: Graphs, Objects, Ports, Properties, Relations and Roles, but no 

graphical editor for it. Therefore, metamodels has to be defined using a forms 

based interface. Although the concrete syntax is not explicitly separated from the 

abstract syntax, the use of different editors for each eases the distinction. For 

instance, a symbols editor allows connecting a symbol with each metamodel 

element. In addition, new symbols can be defined using a drawing panel. Once the 

metamodel has been defined, MetaEdit+ generates a graphical editor for 

conforming models. 

Regarding model validation, additional constraints can be added to the 

metamodel by defining reports in a proprietary language of limited expressiveness. 

The very same language is used for code generation, thus the code generation 

capabilities are also limited. You can extend them invoking external routines 

coded with a GPL, but then you have to translate the metamodel to the GPL. 

To summarize, MetaEdit+ is a robust and contrasted DSL framework. 

Apart from being commercial, its main drawback is that it is an isolated 

framework (DSLs will work just in the MetaEdit+ generated environment) without 

any support for model transformation and questioned code generation capabilities. 

Though some works have been done in both directions [191], they are still too 

incipient. 

2.2.11 MOFLON 

MOFLON is a metamodelling framework that supports also graph-based 

transformations [16] by adapting FUJABA [68] to work with MOF metamodels. 

Its metamodelling language is MOF and model validation is supported by defining 

OCL restrictions over metamodels. For model transformations, triple graph 

grammar rules are translated to JAVA code and QVT-compliance is planned and 

partially achieved. After you define a metamodel, MOFLON generates a JMI 

(Java Metadata Interface, [338]) API to handle conforming models. 

Some tests with MOFLON have shown that, when compared with other 

metamodelling frameworks, it owns a low level of automation. Although it 

generates code from the metamodel specification, it is a set of JAVA disconnected 
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packages. The user has to carry out the integration and configuration tasks in order 

to use the generated code. That is, instantiating a model after defining your 

metamodel is not a trivial task. Since Eclipse integration is planned for the next 

release (April, 2009) we hope it will help to solve this kind of drawbacks. 

All this given, MOFLON provides with metamodelling and terminal 

models editing capabilities. In addition, those models can be transformed but they 

cannot be serialized into code. It owns a standardized nature that rests in the use of 

JMI and partial QVT conformance. However, since the standards chosen are not 

widely adopted nowadays, interoperability can be put into question. A movement 

towards EMF will help on this matter.  

2.2.12 MOMENT 

MOMENT is a formal framework for MOdel manageMENT [60, 61] 

embedded into the Eclipse platform that provides a set of generic operators to deal 

with EMF models. The underlying formalism is the algebraic language Maude 

[87]. MOMENT relies upon a set of generic operators to manipulate models and a 

set of bridges between EMF and Maude. The idea is to translate EMF models to 

algebraic specifications. The model management operators are Maude rewriting 

rules that works over such specifications. The results are translated back to the 

EMF technical space.  

MOMENT does not provides metamodelling capabilities (though you can 

use EMF for this task) neither model-to-text transformation support. It implements 

partially QVT-Relations and supports the definition of OCL restrictions for model 

validation. Since it is an EMF component, we may qualify it as highly 

interoperable and extensible, though no information is available on how to extend 

it. 

It is worthy mentioning that a new version was released when we were 

writing this dissertation (MOMENT2, November 2008) that improves the support 

for model transformations and model validation of MOMENT. As well, it 

enhances MOMENT‘s aligment to standards.  

2.2.13 openArchitectureWare 

openArchitectureWare (oAW, [277, 369]) is a suite of Eclipse-based tools 

focused on code generation. We can look at it as an improved version of 

AndroMDA that takes the most of the advances of MDE, like the model handling 

facilities provided by EMF and the industrial-quality user interface of the Eclipse 
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platform. In fact, all the oAW tools, like the textual editors, are Eclipse plug-ins 

that you can use separately. 

oAW supports parsing of terminal models and supplies a family of 

languages to check and transform models as well as code generation from them. 

Although it is strongly connected with EMF, it can work with other models like 

UML2, XML or simple JavaBeans. Its use is based on the definition of workflows 

to specify generation/transformation executions. Besides, a number of prebuilt 

workflow components can be used for reading and instantiating models, checking 

them for constraint violations, transforming them into other models and then 

finally, for generating code. 

This way, its main components are the Xpand [192] model–to-text and 

Xtend [123] model-to-model transformation languages; the oAW workflow engine 

and the Xtext [122] language for development of textual modelling frameworks, 

i.e. textual concrete syntaxes for DSLs. In addition, the Check language supports 

definition and checking of declarative constraints over a model (similar to OCL). 

To sum up, we will not say that oAW supports metamodelling capabilities, 

since metamodels are actually Ecore models generated from a grammar. Model-to-

model and model-to-text transformations are both supported, as well as model 

validation and terminal models edition (just with a textual editor). As it happens 

with Kermeta, being fully integrated in Eclipse and EMF results in high 

interoperability. Besides, it is extensible by nature.  

2.2.14 TEF 

The Textual Editing Framework (TEF, [311]) is an Eclipse plug-in for 

generating textual editors for DSLs. In turn, TEF generated editors are Eclipse 

plug-ins that provide with the traditional facilities of programming editors: syntax 

highlighting, content assist (code completion), intelligent navigation, or 

visualisation of occurrences. To that end, TEF provides with a language for 

defining textual concrete syntaxes in a set of templates. Each template describes 

the textual representation of a metamodel element. TEF is based on an abstract 

interface for modelling frameworks. This interface is implemented for EMF, but it 

could also easily be implemented for other technologies as well. 

Therefore, a TEF editor is based on a metamodel and allows editing 

terminal models conforming to such metamodel. Thus, it does not support 

metamodelling since the metamodel is an input artefact from which TEF generates 

the textual editor. Besides no model transformation is supported. Althought it is 

built as an Eclipse plug-in, no documentation has been found on how to extend it. 
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Furthermore, since it is thought to complement EMF capabilities, it is fully 

interoperable, since TEF textual editors could be used along with any other EMF 

component. As well, being EMF-compliant make us qualify it as a standardized 

tool. 

2.2.15 Whole Platform 

The Whole Platform [326] is an Eclipse-based Language workbench for 

developing new languages. It provides with a textual metamodelling language. 

From there, you can define programs (terminal models) using the concepts 

included in the defined metamodel. To that end, the platform provides with a 

graphical editor that uses a set of generic notations already bundled (you may 

define new notations).  

Since it is merely devised for metamodelling, it does not support model 

transformations, nor model validation. Note that it is based on Eclipse and GEF, 

but not on EMF. Thus, underlying storage formats are XML and JAVA what 

results on a medium interoperability level. However, it is worth mentioning it 

since seems to be rather powerful for defining new programming languages and 

building a minimum tooling for them. 

2.2.16 XMF-Mosaic 

XMF-Mosaic from Xactium is the last Eclipse-based metamodelling 

framework we mention. Its kernel is a MOF-based language called XCORE [85, 

86] focused on the definition of executable languages.  

In addition, it supplies languages for defining the tooling as well as the 

visual syntax (XTools), the textual syntax (XBNF), transformations (XMap) and 

restrictions (XOCL). The last is also used for semantics definition. 

Its main concern is that it is a commercial tool, though a free evaluation 

version is available. 

2.2.17 Others 

In this section, we briefly introduce those tools or components less relevant 

from the point of view of this review due to its low adoption ratio, non-availbale 

information, late appearance or simply because of they have been already 

deprecated. 



State of the Art    85 

 

 IEME 

The Integrated Eclipse Modelling Environment (IEME, [2, 3]) is a 

modelling environment based on Eclipse that aims at integrating existing Eclipse 

plug-ins to support MDE proposals. Therefore, the architecture of IEME is the 

closer to M2DAT from all previous works. 

However, IEME seems to limit its contribution to define an architecture 

(close to that from M2DAT) of Eclipse plug-ins, but nothing is say on how they 

are integrated and more important, how they are to be used. Regarding technical 

issues, IEME does not support the definition of customizable model 

transformations. Besides, the validation support is limited to graphical models 

whereas as we will state on this thesis, the cornerstone of a MDE process is not 

the visual representation of the model, but the model itself. 

Nevertheless, the main point with IEME is the absence of information apart 

from the referenced publications. Nothing has been found on the Web, nor the 

digital libraries visited (IEEE, ACM, Springer, and Elsevier) about IEME. 

 MDWorkbench 

MDWorkbench is an Eclipse-based IDE for code generation and model 

transformation [324]. It is said also to be a metamodelling framework supporting 

Ecore, UML and KM3 [181] metametamodels. Nevertheless, it is a commercial 

tool the free version is limited to work just with UML models. 

It provides with transformation capabilities by means of a proprietary 

imperative language called MQL (Model Query Language). It owns a JAVA-like 

syntax and supports special operations to work with collections. In addition, ATL 

transformations can be used. Code generation is also supported by means of a 

template-based language called TGL (Text Generation Language). 

Just as a matter of interest, it supports documentation of models in MS-

Word format. 

 MOSKitt 

Modeling Software KIT (MOSKitt) is a free case tool, built on Eclipse and 

running atop of EMF which is being developed by the Valencian Regional 

Ministry of Infraestructure and Transport to support the gvMétrica methodology 

(adapting Métrica III [248] to its specific needs). 

Regarding M2DAT, MOSKitt aims at supporting exactly the same 

capabilities using almost the same technologies (EMF, ATL, AMW, etc.). 

However, we cannot compare it with M2DAT since its first version was released 

in October 2008, when this thesis was almost finishing. Besides, so-far it just 
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offers support for some common models, widely supported in Eclipse, like UML 

class diagrams or Business Process models. 

Nevertheless, the advent of MOSKitt is another proof of the correctness of 

M2DAT proposal. It is a very similar tool that has been planned long after 

M2DAT was designed and that shares quite a lot of its technical design.  

 openMDX 

openMDX [278] is said to be a framework for MDA support. In fact, it 

seems to be just a J2EE code generation framework. It takes UML models 

conforming to MOF 1.4 and generates EJB, .NET or CORBA code. The 

generation process is based on the use of JMI [338]. It is worth noting that 

openMDX skips the PSM. It works directly with PIM models. The platform 

specific knowledge is encoded in the tool itself. 

Therefore, we will not include openMDX in the section of model-to-text 

transformation languages since its primarily goal is broader than generating code 

from a model. In essence, it aims at providing with a complete information system 

from the source models. We might say that it encapsulates both model-to-model 

and model-to-text transformations in just one step since it skips the PSM. 

 PathMate 

PathMate is a commercial tool quite similar to openMDX. This time, code 

generation is limited to Java, C and C++ from UML models. Code generation is 

based on a proprietary template language, so called PathMATE™ Transformation 

Engine notation. However, code templates are customizable. 

 RoclET 

There are also tools dedicated just to provide with validation capabilities 

over terminal models. We bring here just one of them, RoclET [228].  

It is an Eclipse plug-in that allows defining UML models and specifying 

OCL constraints over them. In addition, refactoring of constraint after refactoring 

the UML model is also supported. Nevertheless, it is limited to work with UML 

(1.5) models and, though OCL evaluation is supported, validation of models is 

still too immature. 

Please note that there are similar proposals like OSLO, Octopus, etc. A 

good survey on this can be found at [71]. However, none of them fulfils our 

requirements for M2DAT. Thus, we include RoclET as an example since it is the 

closer to what we were looking for. 
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2.2.18 Summary and Discussion 

In order to provide with an overview on existing proposals, Table 2-3 

summarizes the main features of the works reviewed regarding the evaluation 

criteria described in section 2.2.1. The set of features considered are summarized 

on Table 2-2 

Table 2-2. Evaluated Features on tools for MDE tasks 

FEATURE DESCRIPTION VALUES 

SCOPE Commercial, Open-Source, Academic C/O/A 

METAMODELLING 

(MM) 
Ability to define new metamodels  YES/NO 

MODEL to MODEL 

(M2M) 

Support for Model to Model 

transformations  
YES/NO 

MODEL to TEXT (M2T) 
Support for Model to Text transformations: 

there is, there is not, limited 
YES/NO/LMT 

VALIDATION (VLDTN) Support for models validation  YES/NO/LMT 

GRAPHICAL EDITORS 

(EDTR) 

Generation of graphical editors from the 

metamodel: Textual, Graphical, Not at all 
T/G/NO 

STANDARIZED 

(STDRD) 

UML/MOF-Based or Proprietary 

Languages  
YES/NO 

EXTENSIBILITY 

(EXTNSBL) 

Ease of adding new capabilities and/or 

modifying the already existing. 
YES/NO/PRT 

INTEROPERABILITY 

(INTRPRBL) 

Ease of using functionalities provided by 

other tools. 
YES/NO/PRT 

EMF-BASED (EMF) 
Whether runs on top of Eclipse EMF  

(or is planned) 

YES/NO/TO-

DO 

 



 

 

Table 2-3. Frameworks and tools for MDE tasks 

 SCOPE MM M2M M2T VLDTN EDTR STDRD EXTNSBL INTRPRBL EMF 

AndroMDA (O) NO NO YES NO NO NO YES YES TO-DO 

ATOM3 (O, A) YES YES NO YES (G) NO NO NO NO 

DOME (O) YES NO LMT LMT NO NO NO NO NO 

DSL Tools (C) YES NO YES NO YES NO NO NO NO 

EMP (EMF) (O) YES YES YES YES (G/T) YES YES YES YES 

EMFATIC (O) YES NO NO NO (T) YES YES YES YES 

GME (O, A) YES YES NO YES (G) NO PRT NO TO-DO 

Kermeta (O, A) YES YES NO YES NO YES YES YES YES 

MetaEdit+ GOPRR YES NO YES YES (G) NO NO NO NO 

MOFLON (A) YES YES NO YES NO YES PRT PRT NO 

MOMENT (O, A) NO YES NO YES NO YES YES YES YES 

OpenArchitectureWare (O) NO YES YES YES (T) YES YES YES YES 

TEF (O) NO NO LMT NO (T) YES PRT YES YES 

Whole Platform (O, A) YES NO YES NO (G) NO NO NO NO 

XMF-Mosaic (C) YES YES YES YES YES YES NO PRT NO 
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The first and most important decision to take when developing a tool for 

MDSD is which metamodelling framework is going to be used. In some sense, 

this decision conditionates the rest of technological decisions. 

In this sense, despite of the efficiency and performance of existing tools, 

none of them meets all the requirements for building M2DAT. ATOM
3
 or GME 

lack of code generation capabilities. The DSL Tools or MetaEdit+ do not support 

model-to-model transformations. XMF-Mosaic is a commercial tool, what 

automatically discards it to build M2DAT. MOFLON owns a low interoperability 

and extensibility levels, etc.  

That is, although there exist some all-in-all frameworks that aim at 

providing support for all the tasks related with model-driven development, hose 

frameworks do not fulfil our requirements to develop a new MDE tool. Specially, 

those related with tool interoperability. When using these kinds of frameworks, 

the result uses to be too tightened to the technology used. Hence, we argue in 

favour of combining the functionality provided by tools for specific MDE tasks to 

build your own tool. In other words, the only way of achieving full compliance 

with M2DAT needs is combining a set of tools that fulfil some of those needs in 

order to build a tool fulfilling all of them. Therefore, we opt for using EMF as 

underlying modelling framework. 

EMF itself is an open framework, constantly evolving and integrating new 

projects. Any tool for MDSD built on top of EMF will be able to use the 

functionality provided by those projects. Therefore, using EMF we are ensuring 

that the new tool could integrate support for all the current MDE tasks already 

supported in the context of EMF (like model transformations, model validation, 

graphical editors development, etc.) but also for the new needs that might emerge 

as long as MDE advances keep growing. That is, using EMF we ensure rapid 

inclusion of emerging technology in M2DAT.  

This way, if we need to support a new capability in M2DAT and there is an 

existing component providing it, we will be able to plug-in into M2DAT in an 

easy way. Even if there was no such component, we could develop it ourselves 

using the facilities provided by EMF. The integration with the rest of the tool 

would be effortless due to the extensible nature of the Eclipse platform. 

Another key point is standardization. Although OMG standards have been 

the reference for MDE, a standard is useless without a reference implementation 

and EMF projects are not only the reference, but in some cases the unique 

implementation of some OMG standards or, at least, the most promising projects 

to implement the standard (like it happens with QVT).  
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As a conclusion we can say that there are very good frameworks and 

components for development of MDE tools. GME is a good example. ATOM
3
 is 

another. However, the main drawback of these tools resides on the underlying 

framework. Since they are not based on a common platform, it is very hard to 

connect them with other existing tools or frameworks. In our opinion, isolated 

DSLs that do not shift information up and down the different abstraction levels are 

not helpful. For example, think of a DSL for component designing that you use to 

build your design models (deep down, your PSM). If it is a stand-alone tool, 

without any connection with the tool used to depict your analysis models, you are 

losing MDE promises of faster, less costly software development at a higher level 

of abstraction. In essence, the use of DSL frameworks comes out into a fully 

world of proprietary tools and languages for very specific purposes. This has not 

to be necessarily bad; the main problem is the absence of interoperability between 

them. 

Finally, we would like to mention that when we started to work on this 

thesis EMF was just an emerging proposal. However, nowadays it has become the 

de facto standard for emerging technologies in the MDE field and the most 

succesful technical solutions for MDE are provided by EMF-based tools. Even 

existing frameworks are working on the development of EMF bridges (like the 

GEMS project for GME). Furthermore, the recent advent of new tools following 

the line proposal of M2DAT, like Moskitt (http://www.moskitt.org/) or Blueprint 

ME (http://www.atportunity.com/blueprintme.php) confirm that the bet for 

building an integrated MDE framework atop of EMF was correct. In other words, 

we would like to point out that, though nowadays the use of EMF as basis for 

building MDE tools is acknowledged as a common practice, it was far from being 

an obvious decision when we addressed the development of this thesis. 

Finally, it seems EMF will keep its privilegiated status during the next 

years. In fact, forthcoming solutions to more recent problems are been developed 

in the context of EMF. For instance, one can think on metamodel evolution 

capabilities [84] and bridges between grammarware and modelware [380]. 

Actually, even those frameworks that existed before the advent of EMF, like 

GME, are driving their efforts to bridge the gap with EMF. Therefore, using EMF 

we ensure M2DAT a long-life of constantly improvement (because of the huge 

EMF community) and a lot of synergy with other exiting proposals (since more 

EMF-based tools appear each day).  
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2.3 Model-Transformation Languages 

Although the study of transformation techniques has been a research topic 

for the last 30 years [69, 287], it was mainly focused on program transformations 

(source code). Model transformations had aroused little interest so far, but the 

boom of MDE and the advent of MDA have changed this situation drastically 

since model transformations play a key role in model-driven software 

development. As a consequence, a number of tools or langauges for model 

transformation development have arisen. Neverteheless, just by having a look at 

the different definitions for model transformation given in section 2.1.6, it 

becomes clear that model transformation is still an emerging research field. 

These definitions, although being similar, leave some fuzzy points: the 

concept of what a model transformation is in essence (automated processes, a 

program, a description, an algorithm, a model, etc.); the level of automation that 

should support a model transformation proposal; the cardinality of the input and 

output models, etc. 

If there is not even a complete consensus about what model transformation 

stands for, think on the complexity associated to choose one among the wide 

variety of existing proposals. To add complexity to this task, existing proposals 

could be classified according to a wide set of criteria. For instance, the number of 

input/output models, the approach they follow, the support for a graphical 

notation, the quality and quantity of documentation, the usability level, etc.  

This task needs from a thorough study of the different proposals and, as we 

will show in this document, this was one the initial objectives this work. This 

section is devoted to present the main results on this matter. It is structured as 

follows: section 2.3.1 reviews previous works focused on classifying model 

transformation approaches. Sections 2.3.2.1 and 2.3.4 reviews the existing model-

to-model and model-to-text transformation languages according to our own 

evaluation criteria. Finally, section 2.3.5 summarizes the main conclusions. 

2.3.1 Previous Works on Classifying Model Transformation 

proposals 

Our first step when we addressed the task of developing model 

transformations in the context of M2DAT was to get a complete understanding on 

existing languages. To that end, we started by reviewing all the previous works 

focused on classifying model transformation proposals, though there were not too 

many since model transformation was still emerging as a research topic. Even 
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some of them aimed to present a new proposal, so they just included a 

classification aside but not as the main contribution of the work. This section 

summarizes our conclusions from reviewing those works. 

 In [320] Sendall & Kozaczynski focus on studying the desirable 

characteristics that a model transformation language should have. Besides, 

they include a brief classification of approaches to model transformation 

definition. The most valuable conclusion from this work is that, according to 

the authors, the most recommended approach is some kind of transformation 

language support since the language can be adapted to the special needs of 

model transformation development. These languages, despite the different 

names used by different authors, are typically divided into declaratives, 

imperatives and the hybrid ones, that combine advantages from the both 

previous. At present, this approach is the most recognised: using a DSL for 

model transformation development. 

 The work from Czarnecki & Hensel [97], which they revisited on [98], is 

probably the most referenced classification of model transformation 

approaches. Since the authors had focused their previous works in the study 

and definition of ontologies and feature models, their main contribution is 

defining a taxonomy of model transformations based on a feature model 

[96]. In pur opinion, despite the proposed feature model is complete and 

correct, it is too large and complex. A more simple and concise model would 

help on the election of a model transformation engine. In fact, the 

classification proposed is not even capable of defining a sub-category for each 

different value of the features identified.  

 In [342] Tratt focuses on the maintenance of the traceability between the input 

and output artefacts as the way to reach real interoperability between 

modelling tools. After defining a set of simple steps to follow to develop a 

transformation engine that maintains the traceability information, Tratt 

presents a classification of techniques to define model transformations and 

concludes that the majority of the existing proposals follow a declarative 

approach since results more suitable to support change propagation and 

traceability maintenance. 

 The last work we have considered explicitly to elaborate this state of the art 

can be found on the INRIA (Institut National de Recherche en Informatique et 

en Automatique) Web site [179]. Even though this work is the least formal, it 

results much more intuitive and collects ideas spread all along the previous 

classifications. 
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Since these classifications were made from the point of view of developers 

of model transformation approaches, they are too complex for non-experts in 

model transformation. We have to keep in mind that model transformations will 

be used by developers that have nothing to do with model transformation before. 

There are a vast amount of research groups that proposed model-driven 

methodologies, even before the MDE paradigm appeared. In fact, the traditional 

requisites-analysis-design-implementation-testing life cycle from the unified 

process [173] does not differ too much from the more thriving MDE approach. 

This way, a lot of work is being done in order to adapt works coming from these 

traditional frames to the MDE approach. In this context mappings between models 

that until now were carried out by hand, have to be automated (at least in some 

extent) using the newly model transformation approaches. So, developers behind 

those proposals, such as we ourselves, have to face the task of selecting and using 

one among all the existing model transformation approaches. Next section aims to 

help on this task. 

2.3.2 Model Transformation Approaches 

This section refines the ideas spread the above-mentioned classifications to 

state a clear and simple classification of the main approaches to model 

transformation. Later on, we will use this classification to identify the approach 

adopted by the model transformation languages reviewed. 

 Direct Model Manipulation. It is based in the fact that, any given 

programming language aided by the use of APIs, can be used to define 

transformations between models. The JMI (Java Metadata Interface) 

specification is by far the most common example [338]. Using these APIs a 

new representation of a given model can be generated, what can be 

considered as a model transformation. On the one hand, this approach is quite 

simple, since the provided APIs are defined in general purpose languages like 

JAVA, so there is no previous learning. On the other hand, these languages 

were not intended for direct model manipulation. Therefore, using them to 

define transformations in different contexts or implying models at different 

abstraction levels results too complex.  

 XML-Based. This approach used to be related with the XML technical space 

[208] and the most typical situation is that in which the models are 

represented using the XMI (XML Metadata Interchange) standard and the 

transformations are defined using XSLT (XML extensible Style-sheets 
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Language Transformations). It suffers from the complexity and verbosity that 

entails the use of XSLT [342]. 

 Template-based. The code is embedded in code templates spread between 

programming directives in a similar way to JavaScript. Typical examples of 

this approach are the transformation mechanism found on ArcStyler [20], 

AndroMDA [17] and CodaGen Architect [87]. It is commonly related with 

model-to-text transformations and result too rygid for model-to-model 

transformations. 

 Graph-Based. It combines graph theory [126] with typed graphs − graphs 

with attributed nodes [93]. Graph-based approaches gathers the advantages of 

a solid theoretical basis and the similarity between models and graphs. 

Therefore, some of the most recognised proposals (that will be reviewed 

later), like AGG [70], VIATRA [94] or AToM
3 

[107] have adopted it 

presently. Though they are quite appealing from the formal point of view 

because of their mathematical basis, they do not result convenient for 

complex transformations. Due to its different nature from other approaches, 

Appendix B provides with a more detailed overview on this approach. 

 The Declarative style (AKA Relational) is based on defining the relations 

that must be kept between the input and output artefacts. This way, if the 

defined relations are not satisfied, the appropriate modifications will be made 

over the output artefacts. QVT-Relations is the perfect example of a 

declarative model transformation proposal [273]. As previously mentioned, 

the declarative style eases the mainteinance of traceability links. 

 The Structure Driven approach starts by creating the elements of the output 

model to later add the corresponding attributes and references. Later on, this 

approach has been referred as imperative style in the model transformation 

literature. In contrast with declarative languages, QVT-Operational Mappings 

exemplarizes imperative languages. Using an imperative language results 

much more intuitive since it is similar to GPL. 

 Finally, Hybrids approaches combine the declarative and imperative styles. It 

is worth mentioning that the most recognised proposals follow the hybrid 

approach, advocating that the declarative style should prevail over the 

imperative one. So far, the most recognised languages adopt an hybrid 

approach, where the declarative style prevails.  
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2.3.2.1 Evaluation Criteria 

The review of model transformation languages has been made from the 

point of view of deciding which language will be adopted to develop M2DAT 

transformations. Since there are a number of proposals, we have identified a set of 

features that will help us on classifying them to choose the one that best fits our 

needs. Those features are described in the following, next to the reasons for their 

election: 

 Scope. [Values: Open-Source, Commerical, Academic] 

We want M2DAT to be open-source, thus just open-source model 

transformation engines will be considered. Therefore, we will identify 

whether it is a commercial tool or an open-source one and also whether it 

comes from academics.  

 Approach. [Values: Declarative, Graph-Based, Hybrid, Imperative, 

Template] 

As we have presented in previous sections, model transformation languages 

may adopt a number of approaches: declarative, imperative, hybrid, graph-

based (that are also declarative in essence), XML-based, etc. Indeed, even 

those languages that adopt a hybrid approach, bets for using a preferred 

programming style. Since some constructions are more or less feasible to code 

depending on the approach followed, we will identify the one chosen by each 

reviewed language.  

 Direction. [Values: Unidirectional, Bidirectional] 

Bidirectional transformations are a mechanism for maintaining the 

consistency of two (or more) related sources of information [99]. In MDE 

contexts, they allow to compute and synchronize views of software models. 

They are a need for future improvement of MDE proposals if we want to cope 

with issues like metamodel evolution and model co-evolution or roun-trip 

engineering. Even, the QVT standard bets for a bidirectional transformation 

language. Therefore, we are quite interested in determining if the languages to 

review support bidirectional transformations. 

 Tooling. [Values: Low, Medium, High] 

Since we aim at identyfing the best language to develop M2DAT model 

transformations, usability of the selected language will be a key factor to 

make a decision. In this sense, we are concerned about the quality of the 

toolkit associated with the language (if available). For instance, we would like 



96    Juan M. Vara 

 

to know if it includes an IDE with code completion, syntax highlighting and 

the like. 

 Documentation. [Values: Low, Medium, High] 

Another key factor at the time of selecting the transformation language to use 

is available documentation. Actually, the novelty of those languages results in 

very few (if any) documentation. Since the developers of the language are 

focused on improving and evolving the engine, very little time is dedicated to 

document the language. We have confirmed so far that, when facing new 

technology, the most valuable information is users feedback. Therefore, when 

studying available documentation, we will not focus just on manuals, tutorials, 

how-to documents and the like. We are mainly interested in complete case 

studies of successful applications, newsgroups, wikis and any other 

collaborative environtment that promotes knowledge sharing.  

 QVT/MTL-Compliant. [Values: None, Fully, Partially, Planned] 

Although QVT specification [273] was still to come when we started to work 

on this thesis, the RFP had been already publisehd [274]. We have already 

mentioned that we want to reach the higher level of standards compliance for 

M2DAT without compromising usability. This way, since there exists an 

standard for model transformations we should check how existing model-to-

model transformation languages align with the standard. The same is valid for 

the MOF Model to Text standard [266], regarding model-to-text 

transformation languages.  

 Framework. [Values: name of the framework / ---] 

As we have already mentioned when reviewing frameworks and components 

for development of MDE tools, some of them support their own 

transformation language. Thus, we must identify if each reviewed language is 

tightened to some framewok.  

 EMF-Compliant. [Values: EMF, Non-EMF, Bridge available] 

Finally, if the language is defined to run atop of EMF, we get all the 

advantages derived from EMF in terms of interoperability and extensibility 

that we have already commented. Moreover, since we will use EMF to build 

M2DAT, we look for a language able to cope with EMF models without the 

need for an extra effort.  
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2.3.3 Model-to-Model Transformation Languages 

In the context of MDE, it becomes obvious the need for a way to 

effectively define and apply the model transformations implied in any MDE 

process. Obviously, one can opt for using a GPL like JAVA or C# plus the EMF 

generated API for .Ecore models to code a model transformation. However, this 

would be a very tedious and challenging task whose development and 

maintenance cost does not make up for the benefits provided. 

In response to this need, a vast amount of model transformations engines 

has been delivered during the last years. A set of the most contrasted, covering a 

wide range of the existing approaches to the problem can be found in [50, 64]. 

This way, we can find proposals based on the use of graph grammars [126], like 

[16, 70, 94, 107]; proposals focused on the definition of DSLs for model 

transformation [184, 211, 305]; CASE tool proprietary model transformation 

languages [20, 88]; or model transformation engines that work by translating the 

mapping rules to algebraic specifications expressed in formal languages [60, 222], 

etc. 

In the following, we present some of them. Those that have been most 

commonly adopted and those that, though not so successful, own a special interest 

from the research point of view. For instance, this is the case of the different 

works focused on implementing the QVT standard. They are still quite immature 

yet interesting to be evaluated with a view to future standard compliance of 

M2DAT transformations. 

Finally, note that this section will limit to describe the main features of 

existing languages. Later on, in Chapters 4 and 5 we will provide with more 

detailed descriptions of the selected technologies used to develop model 

transformations in M2DAT (section 4.4). 

The following sections, provide with an overview of each selected model 

transformation language. As well, each section ends by highlighting the way they 

behave regarding the features listed above. 

2.3.3.1 AGG 

The Attributed Graph Grammars (AGG, [70]) system is a visual language 

to define graph-based model transformations. Its main feature is that both the 

source and target models will be labelled graphs owning attributes whose types 

could be primitive or user-defined types.  

AGG may be used (implicitly in "code") as a general-purpose graph 

transformation engine in high-level JAVA applications employing graph 
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transformation methods. Due to its rule-based character, AGG may also be near in 

the field of artificial intelligence. The AGG tool supplies graphical editors for 

graphs and rules plus a textual editor to add JAVA expressions.  

Regarding validation in AGG, one can check the consistency of a particular 

graph by means of graph constraints. Besides, the consistency of a graph 

transformation specification can be checked by defining critical pair analysis to 

find conflicts between rules (that could lead to a non-deterministic result) and 

checking the termination criteria.  

The Tiger (TransformatIon based Generation of modelling EnviRonments) 

project [53] uses AGG to generate GEF-based Eclipse editors from a formal, 

graph-transformation based visual language specification. It focuses on in-place 

transformations (endogenous transformations, in contrast with traditional 

source2target exogenous transformations) used, for instance, in refactoring, 

reconfiguration or runtime models of executable languages (transformations as 

virtual machines). Moreover, it supplies formal analysis e.g., it can check whether 

a transformation terminates and always produces the same output. 

To sum up, AGG is an open-source, graph-based and uni-directional 

transformation language. It provides with a complete IDE to code model 

transformations and the home site offers quite a lot of documentation. However, 

there are no cases of successful application, neither newsgroups nor (active) user 

forums. It does not align with QVT and it is a stand-alone application that could 

be integrated with JAVA applications but with no available bridge to use EMF 

models. 

2.3.3.2 ATLAS Transformation Language 

ATL (ATLAS Transformation Language) [184] is a model transformation 

language framed in Eclipse. It supplies an IDE that incorporates facilities like 

dedicated editors, debuggers, code completion, syntax highlighting, metamodel 

registry, etc. It is based on the OCL specification [268] and it is mainly a 

declarative language, though some imperative constructions are allowed to ease 

the coding of complex transformations.  

ATL is a component of the AMMA (Atlas Model Management 

Architecture) platform [48]. Other components of AMMA are the ATLAS Model 

Weaver (AMW, [114]), the KM3 metamodelling language [40] and the Textual 

Concrete Syntax language (TCS, [183]). 

ATL transformations are always unidirectional. Source models are read-

only, while target models are write-only. During the execution of a transformation 

source models may be navigated, but changes are not allowed, whereas target 
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models cannot be navigated. The last version of ATL compiler (ATL 2006) 

provides with advanced capabilities, like multiples source patterns, rule 

inheritance, and endpoint rules .The language is very stable and mature and it is 

constantly improved. In addition, there is a huge amount of available 

documentation in the form of manuals, usage scenarios and user newsgroups. 

The delay on closing the QVT specification plus the absence of a reference 

implementation has resulted in ATL been widely accepted as standard de-facto for 

model transformation development. Additionally, some works have been made to 

align ATL and QVT [182] and a QVT-Relations implementation based on ATL-

VM [180] is on the way [155]. 

All things considered, ATL is a uni-directional, hybrid transformation 

language (declarative programming style is preferred) developed as an EMF 

component. It provides with a complete IDE and a wide range of documentation 

that covers manuals, newsgroups, metamodels and transformations zoos, etc. 

Although it is not QVT-Compliant, it will be aligned with QVT. 

2.3.3.3 ATOM
3
 

In section 2.2.3, we have already presented ATOM
3
 as a metamodelling 

framework with model transformation capabilities. In fact, it was developed 

focusing on defining a framework for graph-based model transformations.  

ATOM
3
 forces you to define your metamodels using its own 

metametamodelling language. This will limit the expressiveness of your 

metamodels. For instance, ATOM
3
 metametamodel does not support composition 

associations. In general, this type of problems is common to all the languages that 

impose their own metametamodel. Some constructions you are used to employ 

when defining MOF (meta)models are just not supported by them. 

ATOM
3 

supports TGG and NAC (see Appendix B). However, although the 

framework bundles some templates, you should have Python programming skills 

(Python is the source language of ATOM
3
) to define actions or pre- and post-

conditions, which are usually needed when developing complex transformations. 

Likewise, ATOM
3
 transformations are unidirectional and does not support explicit 

scheduling. 

To sum up, we can state that ATOM
3
 is a graph-based, unidirectional 

transformation language. It provides with an IDE to develop model 

transformations and complete manuals on ATOM
3
 site. Nevertheless, very few 

applications are found. It is not aligned with QVT and there is no way os handling 

EMF models with ATOM
3
. 
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2.3.3.4 GReAT 

GReAT (Graph Rewriting and Transformation) [9] is the graph-based 

transformation language of GME (see section 2.2.8). 

GReAT programs are typically executed using a virtual machine, called the 

GR Engine. It interprets the rewriting rules comprised in the GReAT program and 

supports debugging tasks. Once the transformation has been checked (and 

corrected if needed) it can be translated into C++ working-code (remember that 

C++ was the source language of GME). 

Using GReAT, one describes the transformations as a sequence of graph 

rewriting rules that operate on the input models to build the output model. The 

rules specify complex rewriting operations in the form of a matching pattern and a 

pattern to be created as the result of the application of the rule. The rules (1) 

always operate in a context that is a specific sub-graph of the source model, and 

(2) are explicitly sequenced for efficient execution. They are specified with visual 

notation thanks to a graphical editor. Three languages constitute the core of 

GReAT: 

 Pattern specification language. This language is used to express the 

construction that should be matched in the source model. It supports a notion 

of cardinality on each pattern vertex and each edge. 

 Graph transformation language. It is a rewriting language that uses the pattern 

language described above. It collects the source model, destination model and 

temporary objects in a single model that has to conform to a unified 

metamodel. This way, only transformations that do conform to the metamodel 

are allowed. At the end of the transformation, the temporary objects are 

removed and the two models conform exactly to their respective metamodels. 

In addition, one can add guards to control the rule applications by means of 

boolean C++ expressions. 

 Control flow language. It is the language to sequence GReAT rewriting rules. 

It supports a number of features. 

In contrast with AGG or ATOM
3
, GReAT supports explicitly scheduling. 

To that end, a data-flow graph states the order in which mapping rules are 

executed. 

To conclude, GReAT is an open-source graph-based transformation 

language. It supports just unidirectional transformations and provides a complete 

IDE since it is integrated into GME. As well, it provides with a huge amount of 

documentation, including application case studies, forums, etc. It does not 
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conform to QVT, nor plans to be. Finally, no way of using EMF models with 

GReAT is identified.  

2.3.3.5 Kermeta 

Kermeta was already introduced in section 2.2.9 when we presented the 

Kermeta framework. Kermeta language is an executable meta-language not 

specifically intended to model-to-model transformation. It was born as a 

refactoring of MTL [371], another language from the Triskell team 

Kermeta follows the operational approach. It is similar to direct 

manipulation but offers more dedicated support for model transformation. A 

typical solution in this category is to extend the utilized metamodelling formalism 

with facilities for expressing computations. An example would be to extend a 

query language such as OCL with imperative constructs. Likewise, QVT-

Operational Mappings follow the same approach. 

Indeed, Kermeta takes the form of an object oriented imperative language 

(with roots in Eiffel and Java) for (meta)-model manipulation. Additionally to the 

imperative syntax, it provides OCL-like constructs and facilities to work with 

models. Finally, yet importantly, a simple aspect mechanism allows you to 

modularize your code and simplify the design of your transformation.  

Its imperative approach results in a very different code from that of any 

language that follows the declarative paradigm. Instead of rules, Kermeta uses 

operations, which are basically very similar to operations or methods in object-

oriented programming languages, such as Java.  

It should also be noted that, although it supports Ecore as domain language 

(i.e. models expressed in Ecore can be imported to any Kermeta transformation) 

the input and output of metamodel and model data has to be taken care of by the 

programmer. Therefore, every Kermeta program has to load and save data 

explicitly by itself. In other EMF-based languages, the input and output 

metamodels and models can be specified outside the transformation code, using 

Eclipse Run Configurations.  

Kermeta is available as Eclipse plug-in, providing with a debugger, syntax 

highlighting and in-line error detection. Each transformation is implemented by 

three Kermeta files. The first file implements the preconditions, the second file 

implements the operations and last file implements the post-conditions of the 

transformation.  

Like any other imperative language. Kermeta is recommended just for 

relatively complex transformations, where the expressiveness of imperative 

constructions become essential. On the downside, features supported by other 
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transformation languages, like the mentioned load of models, or automatic tracing 

support are completely missing. 

Concluding this section, we can say that Kermeta is an imperative language 

devised for metamodelling purposes that is also used to develop unidirectional 

model transformations. Besides, it owns a huge quantity of documentation though 

the tooling is not as powerful as those from other reviewed works are. Finally, 

although it is not thought to work specifically with EMF models, exiting bridge 

allows using EMF models with Kermeta. 

2.3.3.6 MOFLON-FUJABA 

Section 2.2.11 presented MOFLON as a metamodelling framework with 

model transformation support [247]. In fact, its underlying model transformation 

is based on adapting FUJABA [68] to MOF and JMI code generation.  

In FUJABA, graph rewriting rules are wrote using the SDM (Story Driven 

Modelling, [12]) language. We can look at SDM as a mixture of collaboration and 

activity diagrams. In fact, collaboration diagrams was the abstraction used to 

express graph rewriting rules in first releases of FUJABA. Those SDMs are 

translated into JAVA (JMI) code directly executable over JAVA (JMI) objects. 

Like other tools, you can define rules scheduling in FUJABA by given 

them different priorities in order to resolve conflicts where more than one rule 

applies. This can improve the performance of a transformation engine.  

Although MOFLON has not been widely accepted as a model 

transformation language, it has been commonly recognised as a good tool for 

models simulation.  

To sum up, MOFLON is another graph-based transformation language that 

claims to be bidirectional. The toolkit for developing MOFLON transformations 

could be qualified as medium whereas available documentation is rather poor, 

especially regarding application examples. Finally, MOFLON claims to be QVT-

compliant, since it implements the graphic syntax of QVT-Relations and no way 

of processing EMF models with MOFLON is supported. 

2.3.3.7 MOLA 

MOLA is another graph based transformation language [186]. MOLA 

source and target metamodels are expressed by means of UML class diagrams by 

using its own metamodelling environment, METAclipse. MOLA aims at 

combining graph rewriting rules with the structures of control of traditional 

structured programming languages. Each MOLA sentence is represented by means 



State of the Art    103 

 

of a graph rewriting rule. Those rules are sequenced in the way of an activity 

diagram. That is, rules scheduling is supported in the form of control flow graphs. 

Regarding evaluated features, MOLA is open-source and graph-based. In 

contrast with MOFLON, it does not support bidirectional transformations. The 

toolkit provided, though frugal is efficient. There is available documentation from 

its home site and it does not plan any alignment with QVT languages, nor with 

EMF. 

2.3.3.8 RubyTL 

RubyTL [307, 309] is a model transformation language embedded in Ruby 

[301], what influences its concrete syntax. It is a rule-based hybrid transformation 

language and includes significant features such as the organization of rules in 

phases [309]. Besides, if it is specified at the time of configuring the 

transformation execution, one might modify the source model.  

RubyTL syntax is rather intuitive, though it is not based on OCL. This way, 

a RubyTL rule includes the following clauses: 

 from, where the constructs of the source metaclasses are indicated; 

 to, where the constructs of the target metaclasses are specified; 

 filter, which holds a condition over the source constructs for the 

transformation to be enacted; 

 mapping, which states binding relationships between source and target model 

constructs. A binding is a kind of assignment that indicates what needs to be 

transformed into what, instead of how the transformation must be performed. 

An interesting feature of RubyTL is its transactional behaviour. If some 

errors arise during the execution of the transformation, the target model is not 

created.  

To outline the main features of RubyTL, we can say that it is an open-

source hybrid transformation language (declarative style is preferred) that supports 

also code generation through a DSL plus code templates. It provides an Eclipse-

based IDE, called AGE, that includes a Ruby editor with syntax highlighting, code 

templates and some code completion. Currently, one of its main drawbacks is the 

lack of available documentation and successful use cases showing its application. 

Likewise, it does not plan any QVT alignment. Though it was not developed to 

run on top of EMF, it works efficiently with Ecore models without raising any 

problem when they are imported. 



104    Juan M. Vara 

 

2.3.3.9 Tefkat 

Tefkat [211, 212] is a declarative, logic-based transformation language 

defined in terms of a MOF metamodel. It was initially developed as a response to 

the OMG‘s QVT RFP [274]. It supports single-direction transformation 

specifications from one or more source models to one or more target models. The 

transformation specifications are constructive, meaning that they specify the 

construction of the target model(s). There is currently no support for in-place 

update of models.  

The Tefkat implementation is based on EMF and supports transforming 

native Ecore models as well as those based on MOF2, UML2, and XML Schema. 

It is usable in both standalone form and as an Eclipse plug-in with a source-level 

debugger. 

In contrast with OCL-like syntax adopted by other languages, Tefkat‘s is 

similar to SQL and it results specifically designed for writing scalable 

transformations using high-level domain concepts rather than operating directly on 

the XML syntax. However, the concrete syntax is decoupled from the abstract 

syntax (the transformation model). Thus, Tefkat engine can be adapted to import 

model transformation specifications defined in different languages.  

Tefkat supports templates and pattern definitions to encapsulate and reuse 

common expressions. It has a good support and tutorials. In addition, a Tefkat–

Fujaba‘s TGG bridge was presented in [163]. 

In summary, Tefkat is an open-source language that follows the declarative 

style to support unidirectional transformations. As other EMF-based languages, it 

extends the Eclipse GUI to provide with an efficient IDE. Likewise, it lacks of 

application case studies and complete reference manuals. Finally, being an EMF 

component, it is fully functional to work with EMF models.  

2.3.3.10 VIATRA 

VIATRA [28] is another graph-based language that runs on top of Eclipse 

(not EMF) that uses its own metamodelling language, based on algebraic 

specifications: VPM [359]. It has served as the underlying model transformation 

technology of several ongoing European projects mainly in the field of dependable 

systems. 

Mapping rules in VIATRA are expressed by means of graph rewriting rules 

that capture elementary transformation steps. They are combined using abstract 

state machines (ASM, [164]) to build complex transformations. Those state 

machines provide a set of common control structures with precise semantics 

frequently used in imperative or functional languages. This way, the ASMs act as 
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control structures to reduce non-determinism and improve run-time performance. 

This identifies VIATRA2 as a hybrid language, since the transformation rule 

language is declarative but the rules cannot be executed without an execution 

strategy specified in an imperative manner. 

The language used to implement all these concepts is the VIATRA Textual 

Command Language (VTCL). This language is primarily textual, thus VIATRA 

does not support graphical definition of model transformations presently. 

Although it provides with exporters/importers, we can confirm that they do 

not work as expected with complex metamodels. 

VIATRA2 (the last release) provides support for generic and meta-

transformations [360] that allow type parameters and manipulate transformations 

as ordinary models, respectively. This allows arranging common graph algorithms 

(e.g. transitive closure, graph traversals, etc.) into a reusable library, which is 

called by assigning concrete types to type parameters in the generic rules. 

Furthermore, transformations can be externalized by compiling transformations 

into native Java code, as stand-alone transformation plug-ins. VIATRA2 

transformations may call external Java methods if necessary to integrate external 

tools into a single tool chain. 

As stated, one of the main differences with AGG or ATOM
3
 is the support 

for explicit scheduling by defining abstract state machines to schedule the 

execution of the mapping rules. 

Our main concern with VIATRA is that it is tied to its own metamodelling 

language. Though importers/exporters are provided, we can state that they do not 

work as expected with complex metamodels. 

In addition, though there is available documentation, the syntax is not very 

intuitive. Besides, there is no way of defining auxiliary functions in VIATRA. The 

whole transformation must be coded inside the rules. 

Moreover, when we have tested VIATRA we have encountered serious 

problems at the time of importing the UML-Ecore metamodel and conforming 

models. As well, target models are defined in the VIATRA format that raises 

some problems when imported in EMF. To sum up, though VIATRA provides 

with EMF-bridges, it does not work properly for every scenario. 

2.3.3.11 QVT 

Since the OMG released a standard for model transformations, we believe 

that special attention must be paid on it. After a minor introduction, next 

subsections will give a brief overview on the available implementation at the time 
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of writing this dissertation. However, we would like to mention that, so far, there 

is little or no agreement at all on a reference implementation for QVT. The 

absence of such a reference implementation has definitively acted against QVT 

adoption. Moreover, existing attempts have shown that the standard still presents 

some fuzzy points. 

QVT Overview 

The Query/View/Transformations standard (QVT, [273]) is a family of 

languages for defining transformations. It defines two user-level languages, QVT-

Operational Mappings and QVT-Relations, plus a low-level language that can be 

shown as the byte code of QVT, QVT-Core. Figure 2-13 shows an overview of the 

QVT architecture. 

Besides, the mappings from QVT-Relations to QVT-Core is specified. This 

is a mapping of interest to possible implementers, but with no utility for mere 

users. 

Operational

Mappings

Black Box

Operations

Relations

Core

Relations to
Core

Transformation

extends

extends

extends

extends

 
Figure 2-13. QVT Architecture 

 QVT Core is a relational language (declarative) that supplies the set of basic 

constructions that allow defining source and target patterns and variables 

binding. QVT Core forms the basis for the other two languages and is not 

really meant to be directly used (as far as we understood it). 

 QVT-Relations is another declarative language defined in top of QVT-Core. 

It supports complex expressions and a graphic notation.  

 Finally, QVT-Operational Mappings is an imperative language that extends 

the previous. 

In addition, black-box operations should be supported to allow calling 

external programs during transformation execution.  
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Until the final version of QVT specification was released, there were 

several projects focused on building a model transformation engine that fulfilled 

QVT RFP [274]. With the advent of the final adopted specification, many of them 

were abandoned whereas some new appeared. Though none of them has been able 

to provide with a complete implementation that include the three QVT languages 

so far, there do exist some promising works that are contributing to improve the 

specification.  

In the following subsections, we enumerate the most relevant, 

distinguishing those that implement QVT-Relations from those that implement 

QVT-Operational Mappings. Please, note that we will not focus on studying how 

they behave regarding the features that compose the evaluation criteria, since we 

will not use any of them to develop model transformations in M2DAT because of 

two main reasons: 

 They did not exist or was just incipient when we addressed M2DAT design 

and development. 

 They are still quite immature due to the delay on providing a QVT final 

specification and the fact that it still presents some inconsistencies that 

constantly arise as long as QVT implementers progress. 

In summary, since QVT tool support is still in its infancy [210], the 

following review on QVT implementations aims at identyfing the most promising 

works for future aligment of M2DAT transformations with QVT standard. 

2.3.3.12 QVT-Relations Implementers 

In the following we review the main projects focused on implementing the 

QVT-Relations language. 

mediniQVT 

mediniQVT [174] is a commercial product from ikv++ integrated in 

Eclipse that, up to now, seems the more stable and mature implementation of 

QVT-Relations. It is freely available under Eclipse Public License with non-

commercial purposes. 

mediniQVT includes tools for convenient development of transformations, 

such as an graphical debugger and an editor with code completion. It supports 

bidirectional transformations but suffers from some drawbacks when coding 

model transformations sketched on section 5.3.4.2. Besides, it works atop of EMF. 

Indeed, it is distributed as an Eclipse plug-in. Documentation is poor, almost 

reduced to the QVT-Relations specification itself, plus some notes on how to use 
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the Eclipse GUI. There is a lack of real applications and the newsgroups are not 

very active. 

ModelMorf  

ModelMorf [343] is also a commercial implementation of QVT-Relations 

developed by TRDCC, a subsidiary of TATA Consulting Services. Though it is 

integrated on the Eclipse platform, it does not use EMF. Thus, models and 

metamodels are defined in terms of its own metamodeller.  

Currently, not all features of QVT-Relational are supported in ModelMorf. 

Most notably, there is no support for incremental transformation execution, 

transformation extensibility and graphical syntax. 

ModelMorf offers no development environment or graphical user interface. 

Transformation code may be created using any text editor and executed by calling 

the executable with parameters. Since there is no IDE, errors in the code are only 

detected when the transformation is executed, though useful messages are given in 

case of error. Application conditions are also supported by ModelMorf, via the 

when and where clauses of QVT rules. ModelMorf also builds up intermediate 

structures, for example for saving the tracing information. 

Its main drawback is that, at present, it seems to be an abandoned project 

since the Web site has not been update since the version 3 of its beta was released 

(December 2006) with no clear sign of a forthcoming release. In addition, there is 

very few documentation and we have not been able to get a version of the engine. 

Nevertheless, it is worth mentioning that Sridhar Reddy, that was a major 

influence on ModelMorf, has been also the greatest influence on the QVT-

Relations specification chapters. 

MOMENT-QVT 

The MOMENT-QVT is a prototype integrated in the MOMENT 

framework (see section 2.2.12) that provides with partial implementation of QVT-

Relations based on the term rewriting formalism MAUDE [87]. Since MOMENT 

works with EMF models, MOMENT-QVT allows defining transformation 

between EMF models.  

Besides it provides with a QVT-Relations editor that supports syntax 

coloring, editing facilities and parsing facilities. Once the model transformation is 

defined by using the concrete syntax of the QVT Relations language, it is parsed 

to get a QVT model definition. 



State of the Art    109 

 

MOMENT-QVT provides support for traceability, in the sense that a 

traceability model definition, which records what objects of the target model 

definition have been generated from objects of the source model definition, is 

generated in an automated way during the execution of the transformation. 

Declarative QVT: QVT-Relations in Eclipse M2M 

The Eclipse M2M project (http://www.eclipse.org/m2m/) is a subproject of 

the Eclipse Modelling Project that provides a framework for model to model 

transformation languages. In particular, there are three transformation engines that 

are developed in the scope of this project: ATL (see section 2.3.3.2), Procedural 

QVT (Operational) and Declarative QVT (Relational and Core). 

So, Declarative QVT is an Eclipse M2M subproject that aims at providing 

a implementation of QVT-Relations. In the M2M project proposal it was said that 

―An exemplary implementation will be for the QVT Core language, using EMF as 

implementation of Essential MOF and the OCL implementation from the OCL 

subproject. The main deliverable for this part of the project will be an execution 

engine that supports transformations. The engine will execute the Core language 

in either interpreted or compiled form. Following Core, the M2M project will 

provide an implementation of the QVT Relations language, based on the QVT 

Core execution engine, EMF and OCL. For both languages full language support 

will be delivered.‖  

The QVT-Relations (QVTR) project was initially led by Compuware, who 

passed the baton to Obeo (industrial partner of AtlanMOD , the research group 

behind ATL) on July 2007. 

Actually, the QVT-Relations implementation targets not QVT-Core but the 

ATL Virtual Machine (ATL VM, [180]). The implementation aimed to map QVT-

Relations rules to ATL VM byte code, like QVT-Relations->QVT-Core mappings 

are described in the specification. Then, a transformation will be launchable by 

providing the ATL VM with a compiled version of the transformation, the models 

on which it must run and the metamodels to handle them. The first build of 

Declarative QVT was available in October 2008. Trace models, bidirectional and 

incremental transformations are not supported yet, but planned to be. A new 

version is to be bundled in the forthcoming release of Eclipse, Galileo. 

Another Eclipse project, closely related with Declarative QVT is UMLX, 

led by Ed Willink [379]. Basically, it is a concrete graphical syntax to complement 

the OMG QVT, that was born as a graphical transformation language based on 

UML.  

http://www.eclipse.org/m2m/
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It provides accurate QVT models and validating editors for QVT-Relations 

and QVT-Core. Indeed, the evolution of the QVTR to QVT-Core transformation 

in the QVT specification can be attributed to the usage within ModelMorf and 

validation within UMLX. A text editor for (among others) QVT-Relations is 

available as part of UMLX, as well as .Ecore models for the ASTs of QVT-

Relations and other languages.  

However, it seems that UMLX is in troubles at present. Not long ago, the 

author claimed that his progress on a enhanced QVT-Relations graphical language 

is very slow since there are numerous issues with OCL and QVT that he has to 

work on. 

2.3.3.13 QVT-Operational Mappings Implementers 

Next, we review the main projects focused on implementing the QVT-

Operational Mappings language. 

SmartQVT 

SmartQVT [141] is a open-source JAVA implementation of QVT-

Operational Mappings built on top of EMF. It acts as a compiler in the sense that 

QVT-Code is compiled to Java source code. This is accomplished by a two-stage 

architecture: 

 The QVT Parser converts QVT textual syntax into the corresponding 

representation in terms of the QVT metamodel, i.e. it builds an abstract syntax 

transformation model from the QVT code. 

 The QVT Compiler translates the QVT model to a Java program. It uses EMF 

generated APIs for the source and target metamodels to execute the 

transformation. 

This way, the SmartQVT compiler might be used in connection with other 

tools capable of producing a QVT model conforming to the QVT metamodel 

[273]. Additionally, serialized QVT transformations conforming to the QVT 

metamodel can be loaded and executed at runtime. 

The first versions, based on a Python QVT parser, did not support error 

detection, but recent versions of SmartQVT do. Additionally, syntax highlighting 

is available. However, since SmartQVT compiles QVT code to Java code, no 

QVT-level debugger is available. 

According to the QVT standard, tracing information in SmartQVT can be 

retrieved using one of three different resolving operations: 

 resolveone. Looks for a target object created from a given source object. 
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 invresolve. Reverse resolve, looks for a source object created from a given 

target object. 

 resolveIn. Looks for target objects created from a source object by a unique 

mapping operation. 

Additionally, SmartQVT also supports late resolve, which behaves just like 

described above, with the exception that the resolving operation is performed at 

the end of the transformation. 

Borland Together / QVTO 

Borland Together [59] is an Eclipse-based commercial suite quite aligned 

with OMG standards. It provides with UML and BPMN editors, BPEL4WS 

translation, definition of OCL restrictions and, finally, one of the first 

implementations of QVT-Operational Mappings. 

Moreover, Together supports model-to-text transformations using JET 

templates (we will introduce JET in section 2.3.4.4). 

Procedural QVT: QVT-Operational Mappings in Eclipse M2M 

In addition, Borland is contributing to the Eclipse QVTO M2M project that 

aims at providing with an EMF open-source implementation of QVT-Operational 

Mappings. In particular, a text editor, parser, and interpreter for QVT-Operational 

Mappings has been contributed by Borland to write .qvto files with some cool 

capabilities, like the support for hyperlinks (from usages to declarations). 

Actually, Together uses the QVTO from the M2M project but has some 

commercial add-ons like debugger or code-completion. Although working with 

QVTO you are losing these advantages and using a more instable version, in 

exchange, you get access to new features that are not part of the Together release.  

QVTo from OpenCanarias 

Finally, OpenCanarias, have developed an open virtual-machine 

implementation of QVT-Operational Mappings [306]. To that end, they base on 

ATC [130], a low-level, imperative model transformation language built upon 

Eclipse and EMF. They aimed at supporting QVT, but from an indirect approach 

to avoid the cost of potential changes in the specification.  

The idea is to inject QVTo specifications into QVTo models. Those models 

are transformed into ATC models (that can be showed as a byte code for model 

transformation) that are executed on the ATC virtual machine. This way, other 
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transformation languages will be also executable on ATC-VM. Just as Declarative 

QVT is compiled to ATL byte code (see section 2.3.3.12 above) 

It is worth mentioning that, during the development of OpenCanarias‘ 

QVTo, several discussions on the newsgroups resulted in the solution of several 

bugs in other Eclipse projects, like the OCL one. 

In addition, OpenCanarias‘ team plans to support QVT Core as an 

intermediate step towards QVT-Relations. However, this project will be much 

more challenging since ATC is imperative, in contrast with the declarative nature 

of QVT-Relations. 

2.3.3.14 QVT Implementers Summary 

To summarize, Table 2-4 gathers the main features of existing QVT 

implementers. 

Table 2-4. QVT Implementers 

 SCOPE FRAMWRK ENGINE EMF-Based 

D
ec

la
ra

ti
ve

 

mediniQVT (C) Eclipse JVM EMF 

ModelMorf (C) --- JVM NON-EMF 

MOMENT-QVT (O) Eclipse MAUDE EMF 

Declarative QVT (O) Eclipse ATL-VM EMF 

Im
p

er
at

iv
e SmartQVT (A) Eclipse JVM EMF 

Borland QVTO (C) Together Borland QVT engine EMF 

Procedural QVT (O) Eclipse Borland QVT engine EMF 

OpenCanarias QVTo (C) Eclipse ATC-VM EMF 

Some remarks can be made: 

 The most mature QVT engines at the moment of writing this dissertation 

comes from the industry. Therefore, some time is needed in order to get an 

open-source QVT engine. 

 Most of the implementers run in Eclipse and use the EMF framework as 

model management platform. 

 Finally, it is not clear which is the best option in order to provide with a QVT 

engine: some kind of virtual machine implementation (MOMENT, 

Declarative QVT and OpenCanarias QVTo) or a direct implementation 

(mediniQVT, ModelMorf, SmartQVT) 

To conclude, as we have already mentioned, QVT implementations need 

more time to get realy useful and reliable to be used in real projects. 
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2.3.3.15 Others 

Here we mention briefly some languages that, due to the state of the 

project, its novelty or its low adoption are less relevant but that has some interest, 

either as forerunner of present languages or because they own some interesting 

feature. 

BOTL 

The Bidirectional Object-oriented Transformation Language (BOTL, [62, 

229]) is a tool for object-oriented model transformations. It works with models 

conforming to metamodels defined with a simple sublanguage of MOF. This way, 

a UML-based graphical notation is used for BOTL metamodels and model 

variables.  

Graph-rewriting rules are specified using an UML-like notation. To that 

end, an ArgoUML extension could be used in the past. Since BOTL always 

transforms object models, the source model is a class model that can be mapped to 

UML or MOF meta class. BOTL is not a good option presently, due to the 

available documentation and the state of the project that seems to be abandoned. 

However, it owns a research interest since it supports bidirectional 

transformations, one of the main research fields around MDE in forthcoming years 

[99] 

MTF 

Model Transformation Framework (MTF) [170] is a set of tools developed 

by IBM that allows the implementation of transformations between EMF models. 

To that end, it provides a simple extensible rule language based on relations (text-

based) called the Relation Definition Language (RDL). 

MTF supports dynamic mode restriction [98], i.e. it allows marking any of 

the participating in/out-domains as read-only, restricting them to a particular 

execution of a transformation. Essentially, such restrictions define the execution 

direction. Besides, it supports Java code to select, match, or construct parts of the 

model(s), via extensions and custom constraints, which allow you to extend the 

MTF mapping definition language. Indeed, the RDL owns a JAVA look & feel. 

This work is part of IBM's involvement in the QVT standardization. It was 

developed partly in order to prototype concepts that were to appear in the QVT 

standard. The intention was to implement more of the specification over time. 

We have found a problem in MTF that is recurrent in transformation 

languages that claim to follow the declarative style. In the MTF documentation, 

the announced programming style is declarative. However, since each relation call 
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explicitly the relation to apply to its contained elements, the transformation 

relations are very close to invoked rules. This way the relations are organised to 

follow the structure of the model and the structure of the whole transformation is 

more sensitive to the model structure. Working this way, the writing of 

transformation is less intuitive and more difficult for complex mappings. 

Another weak point is the lack of documentation and examples especially 

on the way to use UML Profiles and to set properties value of stereotypes elements  

Xtend 

Xtend [123] is a DSL for extending metamodels, for example with custom 

properties for a metaclass. It is used for template modularization and also enables 

aspect-oriented templates. As of version 4.1, Xtend can also be used for functional 

style model-to-model transformations. However, only simple and limited 

transformations are possible, in comparison to ATL, Tefkat and other languages 

reviewed so far. 

YATL 

The Yet Another Transformation Language (YATL, [290]) is a 

transformation language developed within the Kent Modelling Framework 

(KMF). It is a hybrid language designed to express model transformations and to 

answer the QVT RFP [274].  

It is described by an abstract syntax (a MOF meta-metamodel) and a 

textual concrete syntax (BNF). A transformation model in YATL is expressed as a 

set of transformation rules. A YATL transformation is unidirectional. The source 

and target models are defined using a MOF editor (e.g., Rational Rose or 

Poseidon) and KMF-Studio is used to generate Java implementations of the source 

and target models. The source model repository is populated using either Java 

hand-written code or GUI generated code provided by the modelling tool 

generated by KMF-Studio. The major part of the development of this tool was 

done before 2005 and it seems to be withdrawn at present. 

2.3.4 Model-to-Text Transformation Languages 

This section focuses on another sub-group of specific-task tools: code 

generators. In fact, code generators are also model transformation engines 

producing models with a very low abstraction level. Another feature of these 

models is that they are textually represented. However, the advent of textual 
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editors for high level models implies that textual representation of models is not 

just proper of low level models. 

In the following, we provide with a brief overview of the most adopted 

proposals focused on generating code from models, though some of them might 

offer support for other MDE tasks. 

All the reviewed engines follow one of the model to code approaches 

identified by Czarnecki et al. in [97]: template based and visitor based. 

Template-based generation is similar to Web dynamic programming, like 

JSP (Java Server Pages, [334]) or ASP (Active Server Pages, [244]) pages. Each 

template contains text blocks and control structures so that the latter combine the 

text blocks with the information gathered forrm the source model/s. 

By contrast, in visitor based approaches the correspondent code is written 

to an output stream while the internal representation of the model is visited. 

2.3.4.1 Acceleo 

Acceleo [1] is an open-source code generator natively integrated in Eclipse. 

It supports template-based code generation for J2EE (Struts/Hibernate), Java, C#, 

Php and Python. Acceleo tooling is quite complete and provides many features for 

templates editing, such as syntax highligthing, meta-model and scripts based 

completion, real time error detection and real time preview. Unfortunately, 

documentation is not so good. 

To implement complex operations, Acceleo supports a kind of black-box 

operations coded in JAVA that can be invoked from inside the templates, so-

called Services. This allows for extensibility while keeping templates clean and 

easy-to-read.  

Acceleo is based on two frameworks for model handling: EMF and MDR 

(NetBeans project), therefore it is fully EMF compliant 

2.3.4.2 Acceleo/MTL 

The Model To Text project (M2T, http://www.eclipse.org/modeling/m2t/) 

is an Eclipse project focused on the generation of textual artifacts from models. In 

the context of this project, the MTL subproject was started at mid of 2008 in 

response to the final version of the OMG standard for model-to-text 

transformations [266]. Its objective was to provide with an implementation of such 

specification. 

Likewise, with the advent of the standard, people from Acceleo made a 

movement towards standard compliance and took the lead on the MTL project. As 

a result, the development of a new version of Acceleo, aligned with the OMG 
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standard, was addressed and the MTL project was renamed to Acceleo. The first 

releases have been liberated in March 2009. 

The development strategy is to stop having two similar projects in two 

different places: Eclipse MTL and Acceleo, and promote just the Eclipse one as 

the next generation of Acceleo. Actually, this is not the case: although they are 

similar, the syntax of the two Acceleo versions is different. The most recent one is 

entirely based on OCL. 

At the moment, perfect stability is provided just in Acceleo original version 

since the Acceleo/MTL project is still under continuous development. 

2.3.4.3 AndroMDA 

We have already presented AndroMDA [17] in section 2.2.2. However, we 

mention it here since its primarily goal is code generation. Actually, its goal was 

to provide with a complete MDE framework but right now, it is just a code 

generator. 

AndroMDA follows the template-based approach, though templates are 

known as cartridges. It bundles a number of cartridges for current development 

kits, like Axis, jBPM, Struts, JSF, Spring or Hibernate. In addition, new cartridges 

might be developed by extending a generic cartridge so-called Meta. 

AndroMDA tooling is just adequate and provided documentation is more 

than enough. Besides, EMF compliance is planned, though not supported at the 

time of writing this dissertation. 

2.3.4.4 Java Emitter Templates 

JET (Java Emitter Templates) [293] is another component of the Eclipse 

M2T project that was developed by IBM. Indeed, it is the technology used for 

code generation in EMF, although a migration to an adapted version of Xpand (see 

section 2.3.4.6) is quite probable. 

Its distinguising mark is its JAVA-like syntax what makes a JET file 

looking as a JSP page. Thereby, JET is especially appealing for JAVA developers. 

In contrast with some of the mentioned languages that use OCL or adapted OCL 

for navigating models, JET uses XPath [382], what results in too complex 

expressions when navigating source models. That is, the main problem of JET is 

that it is too JAVA-oriented. In fact, JET admits any XML file as input. It was not 

devised to work specifically with models. 

2.3.4.5 MOFScript 

MOFScript [262] was one of the first submissions in response to OMF‘s 

RFP for a model-to-text standard [267] developed in the context of the European 
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projects Modelplex and Modelware. It follows a visitor-based approach, is fully 

integrated in Eclipse and uses the EMF model handler. Actually, a MOFScript 

program is basically a parser that navigates the source model while generates an 

output stream that will be the code produced. 

Until recently, it has been the most commonly adopted, mainly because it is 

quite easy to use (the imperative approach result more intuitive to non-experts on 

MDE) and it was one of the first works on this line. Besides, MOFScript tooling 

and the companion documentation have proved to be enough to develop model-to-

text transformations in different contexts.  

2.3.4.6 Xpand 

Xpand [178] is a statically template-based language for model-to-text 

transformation integrated in OpenArchitectureWare (see section 2.2.13) and thus 

in Eclipse. Indeed, it is one of the components of the Eclipse M2T project.  

Xpand itself has basic syntax but uses an underlying expression language 

and Xtend (see section 2.3.3.15) to provide powerful model-to-text (and even 

model-to-model) capabilities. A transformation template is defined for a specific 

metaclass and executed on all the objects of the source model that conforms to 

such class. Besides, transformations can be composed and inherited. The output of 

a transformation template is a concatenation of literal code and properties of the 

model element. 

It also uses EMF as model handler and its syntax is OCL-like, though not 

pure OCL. It is comparable to any modern template engine, for instance Velocity 

or Smarty. An interesting detail about Xpand is that an adpated version of the 

language is used in the GMF generation process. In particular, the GMF project 

has made a movement towards standard-compliance by refactoring its version of 

Xpand by removing the use of Xtend in favour OCL and Procedural QVT (see 

section 2.3.3.13).  

To conclude, it is worth mentioning that Xpand tooling is rather complete 

as well as Xpand documentation. Nevertheless, no aligment with the OMG 

standard is planned. 

2.3.5 Summary & Discussion 

In order to provide with an overview of the existing proposals, Table 2-6 

summarizes the evaluation of selected features for the reviewed works. Besides, 

sections 2.3.5.1 and 2.3.5.2 put forward the main conclusions and ideas gathered 
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from such review. The features evaluated, that were presented in section 2.3.2.1, 

are summarized on Table 2-5.  

Table 2-5. Evaluated features for model transformation languages 

FEATURE DESCRIPTION VALUES 

SCOPE Commercial, Open-Source, Academic C/O/A 

APPROACH 

Adopted approach: declarative, 

imperative, hybrid (prevailing some 

style), graph-based, template-based 

DEC/IMP/ 

HYB(DEC/IMP) 

/GRAPH/TEMPLATE 

DIRECTION Unidirectional / Bidirectional UNI/BI 

TOOLING Capabilities of related IDE:  LOW/MEDIUM/HIGH 

DOCUMENTATION Available documentation LOW/MEDIUM/HIGH 

QVT/MTL-

COMPLIANT 

Aligment degree with the corresponding 

standard (may be future work) 

FULLY/NONE/ 

PART/PLAN 

FRAMEWORK 
Framework in which the language is 

integrated, if there is one  
Framework Name/ --- 

EMF-BASED (EMF) 

It is based on EMF or, ta least there is a 

bridge available (EMF) based / 

(BRIDGE) available / NON-EMF 

EMF/BRIDGE/ 

NON-EMF 

 



 

 

Table 2-6. Model Transformation Languages 

 SCOPE APPRCH DRCTN TOOLING DOC 
QVT / MTL-
Compliant 

FRAMWRK EMF-Based 
 

AGG (O, A) GRAPH UNI HIGH MEDIUM NONE --- NON-EMF 
M

2
M

 

ATL (O, A) HYBDEC UNI HIGH HIGH (PART/PLAN) AMMA EMF 

ATOM3 (O, A) GRAPH UNI HIGH MEDIUM NONE ATOM3 NON-EMF 

BOTL (O, A) GRAPH BID MEDIUM LOW PART --- NON-EMF 

GREAT (O, A) GRAPH UNI HIGH MEDIUM NONE GME NON-EMF 

Kermeta (O, A) IMP UNI HIGH HIGH NONE Kermeta BRIDGE 

mediniQVT (C) DEC BID HIGH LOW FULLY Eclipse EMF 

ModelMorf (C) DEC BID LOW LOW PART --- NON-EMF 

MOFLON (O, A) GRAPH BID MEDIUM LOW PART MOFLON NON-EMF 

MOLA (O, A) GRAPH UNI MEDIUM HIGH NONE MOLA NON-EMF 

MTF (O) DEC BID MEDIUM LOW PART Eclipse EMF 

RubyTL (O, A) HYBDEC UNI HIGH MEDIUM NONE EMF BRIDGE 

TefKat (O, A) HYBDEC UNI HIGH MEDIUM NO Eclipse EMF 

VIATRA (O, A) HYBGRAPH UNI HIGH MEDIUM NO Eclipse BRIDGE 

XTend (O) TEMPLATE UNI MEDIUM HIGH NO oAW EMF 

YATL (O, A) HYBRID UNI LOW LOW NO KMF NON-EMF 

ACCELEO (O) TEMPLATE  HIGH MEDIUM NO Eclipse EMF 

M
2

T 

ACCELEO -MTL (O) TEMPLATE  HIGH LOW FULLY Eclipse EMF 

AndroMDA (O) TEMPLATE  MEDIUM MEDIUM NO AndroMDA PLAN 

JET (O) TEMPLATE  HIGH HIGH NO Eclipse NON-EMF 

MOFScript (O, A) VSTOR-BSD  HIGH HIGH NO Eclipse EMF 

Xpand (O) TEMPLATE  HIGH HIGH NO OAW EMF 
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2.3.5.1 On Model-to-Model Transformation Languages 

After choosing EMF as underlying modelling platform to build M2DAT, 

the selected transformation language has to be able to work with EMF models. In 

some sense, one might think that the bet on EMF reduces the scope of the search. 

However, if you take a look at Table 2-6 you notice that limiting our selves to 

EMF-compliant tools is not a restricting decision at all. In fact, the opposite 

decision would be much more restrictive since the most commonly adopted and 

mature engines are EMF-based tools. 

Taking this into account, the main conclusion obtained from the review is 

the selection of ATL as the (preferred) technology to develop model-to-model 

transformations in M2DAT. Nevertheless, we will test other engines running atop 

of EMF in order to ensure that our decision was correct. In the following we put 

forward some remarks related to these decisions, though we will elaborate more 

on this in Chapter 4. 

During the last years, we have worked extensively in the development of 

model transformations. This background let us state that the most suitable 

approach to address the development of model transformations is to use a DSL 

that follows the declarative style. However, the aid of some imperative 

constructions is needed to keep a readable transformation. In other words, 

although purely declarative programming is enough for any (model 

transformation) task, in some scenarios the imperative alternative brings simplicity 

to the transformation. Therefore, we bet for an hybrid transformation language that 

follows the declarative style. As well, we discard the graph-based approach 

because its usability for complex transformations can be put into question, though 

it is probably more appealing from a purely researcher point of view. Likewise, 

though the fact that graph-based transformations can be represented graphically is 

another advantage, it might be extended to any model transformation approach 

since the final QVT specification defines a graphical notation for model 

transformations.  

As mere users of the transformation language, one of our main concerns 

was to check the available documentation. A common problem we have detected 

is that the toolsmiths and the practitioners of each transformation language are the 

same: only those that have developed the language use it. This results in the lack 

of application scenarios and made us infer that they are not devised to be used by 

non-expert users. Besides, the recurrent use of toy examples (like the well-known 

class to relational [46]) instead of real complex case studies make us wonder about 

the feasibility of using those languages in real projects. In this sense, ATL is the 
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best option since the ATL project site (http://www.eclipse.org/m2m/atl/) provides 

with a complete set of successful applications in projects from different domains. 

Additionally, the ATL newsgroup provides with a constant and valuable feedback 

where the user might find the answers to problems that some other have faced 

before. 

As well, though present QVT compliance is not mandatory for us, plans for 

future alignment are a must. In this sense, ATL seems to be also the most 

appealing. As we have mentioned, a QVT engine running atop of the ATL-VM is 

under development in the Eclipse M2M project. Therefore, ATL and QVT 

alignment will allow us to translate M2DAT model transformations to standard-

compliant transformations without an extra effortwhen such engine is finished. 

Last, but not least, the coupling of ATL with the ATLAS Model Weaver 

[113] will let us develop customizable transformations with almost no extra cost. 

As we will show this ie one of the main contributions of M2DAT regarding how 

model transformations are handled in existing tools supporting model-driven 

development of software. 

All these factors have worked in favour of the selection of ATL as model 

transformation technology for M2DAT. Nevertheless, we will revisit thoroughly 

some of the conclusions sketched here in Chapter 4. 

2.3.5.2 On Model-to-Text transformation Languages 

First of all, we would like to put forward our bet for model-to-text 

transformation as the way towards code generation againts stand-alone parsers. 

We will explain this decission on section 4.6.1 

Once stated that we will use a (EMF-based) model-to-text DSL for code 

generation, we finally decided to use MOFSript. Among the reviewed works, the 

most mature ones when we started to work on this thesis were MOFScript, 

AndroMDA and JET. However, AndroMDA and JET did not not work with EMF 

models, thought it was planned to do so. Actually, AndroMDA will not do it since 

the project‘s leader, Mattias Bohlen, has withdrawn it. Regarding JET, it was not 

devised to work with models. It is more a template-based code generation 

language than a proper model-to-text transformation language. As a result, EMF 

projects, like GMF, are replacing JET as code generation technology in favour of 

an adapted version of XPand. These facts made us decide for MOFScript. 

Besides, MOFScript was the most contrasted since it was one of the first 

submissions in response to the OMG RFP for a Model-to-Text standard [267]. It 

provides with a complete tooling, including syntax highlighting, code completion 

and the like and it is also the most complete regarding documentation. 
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Furthermore, its learning curve is lower since it follows the visitor-based approach 

(imperative style). This way, coding MOFScript transformations results easier 

since it is similar to traditional programming. 

Nevertheless, the template-based approach seem to be gaining acceptance. 

as the OMG‘s MOFM2T standard confirms [391]. This wasy, template-based 

languages that appeared after we decided for MOFScript, like Xpand are 

becoming widely adopted. Therefore, we are currently testing Xpand with the 

model-to-text transformations bundled in the reference implementation of 

M2DAT (M2DAT-DB, see Chapter 5). Notice that this is one of the advantges of 

M2DAT specification. At any time we are able to replace the technology used for 

a specific MDE task for another technology supporting the same task, at very low 

cost. 

2.4 Model-Driven Software Development Tools 

The focus of this section is to evaluate how existing tools support (if they 

do) the functionality provided by M2DAT. By contrast, section 2.2 reviewed 

existing tools for supporting MDE tasks to identify the best option for building 

M2DAT, while section 2.3 was designed to study existing model transformation 

languages in order to select one to be used in M2DAT. That is, previous reviews 

aimed at defining the development framework for M2DAT while the following is 

focused on comparing M2DAT with tools devised for similar objectives. 

In particular, this section focuses on reviewing existing tools that support 

model-driven development of software for two speficic domains: Web Information 

Systems and modern database (DB) schemas (in turn, we will distinguish those 

that support development of XML Schemas and those focused on ORDB 

schemas). We focus on these domains because: 

 M2DAT is a technical solution for model.driven development of Web 

Information Systems. 

 M2DAT-DB, the reference implementation for M2DAT, is a tool for model-

driven development of modern DB schemas. 

2.4.1 Evaluation Criteria 

We need to have effective criteria to compare existent tools for model-

driven development of software. To that end, we focus on identifying a series of 

common features that are interesting from the point of view of MDE, such as 
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visual notation used, handling of model transformations, etc. Next, we describe 

those features. 

 Methodology. [VALUES: name of the methodlogy / ---] 

One of the main inputs in order to evaluate the tool is studying the underlying 

methodology. To that end, regarding tools for model-driven development of 

WIS, since all of them are the result of implementing a given methodology, 

we will provide with a brief overview on the methodology supported by the 

tool. As well, we might assume that the underlying methodology for tools 

supporting model-driven development of relational DB schemas is the 

different works from Batini et al. around the mapping of ER to relational 

models [33]. On the other hand, just some of the tools for model-driven 

development of XML Schemas support a methodology, and just to some 

extent.  

 Paradigm. [VALUES: Object-Oriented, Data-Centered, Structured, Semi-

Structured, Service Oriented]. 

Although we can not state that each tool follows just one software 

development paradigm (apart from the model-driven one), all of them some 

prevails some style over the rest. Here we focus on identyifing which one is 

the preferred in each case. This way, the most of tools for WIS development 

follow the Object-Oriented paradigm, while all the tools for model-driven 

development of XML Schema follow the semi-structured paradigm.  

 Scope/Target. [VALUES: Commercial / Academic / Open-Source] 

Once again, we want to identify if it is a commercial, an open-source or an 

academic tool. Note that the same tool could fall in two categories. 

 Modelling Basis. [VALUES: UML, Ecore, RDF, XML/ E/R] 

This feature has to be evaluated in order to assess how complex it would be to 

align the tool with MDE standards. For instance, here we will focus on 

identifying if the modelling languages supported by the tool are UML 

profiles, MOF-based languages or Ecore-based languages. 

 Modelling Notation. [VALUES: UML-like, Nodes & Edges, Nested Boxes, 

UML Profile, Tree-like] 

This point is directly related with the previous one. While previous point 

refers to the abstract syntax of the modelling languages supported by the tool, 

i.e. the basis of the underlying metamodels, this point refers to the concrete 

syntax. That is, in case model editors are provided, which is the notation used. 

 Validation. [VALUES: None to Excellent] 
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We want to identify if the tool supports model validation in the form of 

restrictions defined at metamodel level and later checked over terminal 

models.  

 Standardization. [VALUES: None to Excellent] 

Here we aim at evaluating the level of compliance to standards. In contrast 

with the studies showed so far, here we consider not only OMG, but also 

standards from other organizations, like RDF [387]. Notice that this feature is 

directly related with the modelling basis of the tool. As we have mentioned, 

using UML, Ecore or MOF as modelling basis implies a higher level of 

standardization.  

 Abstraction layers covered. [VALUES: CIM, PIM, PSM, PDM] 

Some tools provide support for the complete development process, from user 

requirements to final deployment, while other cover just a part of the 

development process. One way to identify the concrete support provided by 

each tool is to state which abstraction levels it covers (CIM, PIM, PSM). 

 Extensibility. [VALUES: None to Excellent] 

This feature evaluates the ease of adding new capabilities or modify the 

existing ones, either ad-hoc or connecting with other tools. The evolving 

nature of MDE implies the need to provide with extension mechanisms in 

order to integrate the implementation of new advances in the existing tool.  

 Usability. [VALUES: None to Excellent] 

We refer to the ease of using the tool. This implies studying if the tool owns a 

user-friendly front-end, the quantity and quality of available documentation, 

not only manuals but also collaborative media, like forums or wikis, etc. For 

instance, we would like to know if self-configuration of model 

transformations is supported or it is the user who has to configure the 

execution of the model transformations that have to be carried out during the 

development process.  

 Interoperability. [VALUES: None to Excellent] 

We are interested in identifying if the models handled by the tools, can be 

exported / imported to / from other tools. 

 Code Generation. [VALUES: None to Excellent] 

This feature evaluates the level of code generation supported. It might be able 

to generate just some skeleton of the working-code, or it might generate a 

fully functional artefact. 
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 Deployment Platforms. [VALUES: J2EE, .NET, DB Logical Model 

targetted] 

Another interesting feature to study is which are the platforms targeted by the 

tool. To put it another way, which are the technological platforms the tool is 

able of generating source code for: J2EE, .NET etc. Notice that, when 

referring to DB Schemas we focus just on the logical model targeted (XML, 

Relational, Object-Relational). 

 Model Transformations (MT). We have already mentioned a number of 

times that model transformations are the key of any MDE proposal since they 

are the only way to automate them to support MDE promises of fast, less 

costly software development. Therefore, we are very interesting in carefully 

reviewing how model transformations are handled in each of the tools under 

study. To that end, we identify a set of model transformation features. 

Obviously, they only apply if the tool do support some kind of model 

transformation, either model-to-model or model-to-text. 

 DSL. [VALUES: None to Excellent] 

Since some of these tools existed before the advent of MDE, the 

mappings between the supported models are hard-coded in the tool. This 

is a bad practice, not only from the point of view of MDE, where it would 

be inadmissible, but also from the point of view of traditional software 

engineering, since it violates the principles of abstraction and 

modularization. Therefore, we aim at identifying to what extent can be 

said that the mappings are coded with an external DSL for model 

transformation.  

 Automation. [VALUES: None to Excellent] 

We are interested in the level of automation of the model transformations 

supported. Some tools just provide with mappings that imply the need of 

manual refinement of target models after transformation execution. 

 Customizable. [VALUES: None to Excellent] 

In our opinion, a completely automatic process from requirement to final 

deployment is not only unfeasible, but also not recommendable. Design 

decisions have to be introduced to drive the development process. In a 

MDE context where the different steps of the development cycle should 

be automated by model transformations, the only way of introducing such 

design decisions is providing with a mechanism to parameterize such 

model transformations. Therefore, we want to identify if the tool support 
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some degree of customization to drive the execution of model 

transformations.  

 Supported Types. [VALUES: CIM2PIM, PIM2PiM, PIM2PSM, 

etc.] 

Another feature that must be studied is the kind of transformations 

supported by the tool. Typically, you find vertical transformations from 

PIM to PSM mappings, but also CIM to PIM and horizontal 

transformations (PIM to PIM and PSM to PSM) should be implemented 

to support. In fact, business process models (defined at CIM level) are 

gaining acceptance each day as a first step in the development process. 

Therefore, we have to provide with tools that support such models and 

the mappings from them to the rest of models that compose the system. 

 Formalization. [VALUES: None to Excellent] 

Finally, we would like to check if the mapping rules implemented by each 

tool have been formally specified in some way, whether using the QVT 

standard or some formal language. Formalizing the mappings before 

implementing them, leads to detection of errors and inconsistencies in the 

early stages of software development and can help to increase the quality of 

the built models as well as the subsequent code generated from them. 

Likewise, the formalization of mappings simplifies its later 

implementation. 

In the following sections, we study how existing tools for model-driven 

development of WIS behave in relation with the features just described. 

2.4.2 Tools for Model-Driven Development of Web Information 

Systems 

This section provides an overview of frameworks supporting proposals for 

model-driven development of Web Information Systems (WIS) development, so-

called Model- Driven Web Engineering (MDWE, [197, 252]). Tools falling in this 

category are the result of implementing methodological proposals for WIS 

development that covered the traditional aspects related with WIS, like 

presentation layout, data persistence, business processes modelling or architecture 

designing. All of them share a common basis: they define a set of models that 

have to be specified along the different steps of the development process. 

The following section follows the same structure of the previous reviews. 

They first give a wide overview of the tool under study. Next, they conclude by 
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summarizing how it behaves regarding the features collected in the evaluation 

criteria. 

2.4.2.1 ArgoUWE (MagicUWE) 

ArgoUWE [195, 196] was the result of extending the open-source 

modelling tool, ArgoUML [297], with capabilities for modelling the content and 

navigation structures of Web applications [206] comprised in the UWE 

methodology (UML-Based Web Engineering, [198]). Later, new functionalities to 

model the business domain and behaviour of Web applications driven by the 

workflow were also added. Besides, support for checking OCL constraints over 

UWE models was also bundled. 

The main problem of ArgoUML (and thus ArgoUWE) was the non-support 

for UML 2.0. However, ArgoUWE is not supported any more, since the authors of 

UWE have shifted the focus to MagicDraw [258], another modelling tool based on 

UML. This way, technological support for UWE is now distributed as a plug-in 

for MagicDraw, so-called MagicUWE [220]. 

Although Argo/MagicUWE has proven to be rather efficient for modelling 

Web applications, its main drawback from the point of view of MDE is the way 

transformations are handled. It provides with a set of predefined transformations 

(from content model to navigation model, from that to the presentation model, 

etc.) that, at best, are embedded in the plug-in code. This way, it is rather hard to 

incorporate on the tool any modification over the methodology. Moreover, 

automatically derived models have to be manually refined by the developer [205]. 

By contrast, this issue will be solved in M2DAT with the use of annotation models 

processed by customizable transformations. 

In addition, UWE models are said to be UML profiled models and thus 

UML-Compliant. Actually, the ATL transformations included in [205] shows that 

UWE models conforms to a common metamodel defined in the KM3 language 

[184]. Thus, UWE models are not UML-Compliant, but MOF-Compliant. 

Extending MagicUWE is allowed, though it has not been conceived to be 

extended. Indeed, there is no documentation on how it has been developed, neither 

on how it could be extended. Moreover, you have to use the extending capabilities 

of MagicDraw, a tool whose main objective, in contrast with Eclipse, was not 

providing with an open-source IDE composed of extensible frameworks. 

Since both ArgoUWE and MagicUWE have been developed on top of 

well-known industrial environments, we could infer that they are user-friendly. 

Moreover, the documentation available at the UWE site (http://uwe.pst.ifi.lmu.de/) 

contributes to MagicUWE usability. 
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By the time of writing this dissertation, MagicUWE did not provide with 

code generation capabilities. UWE authors were developing the support to 

generate code for the Java Server Faces platform from UWE models. Besides, in 

[206], JAVA code generation is tackled but it is still to be integrated in 

MagicUWE.  

UWE uses UML-profiled models, thus they should be easily exported to 

other tools. However, the well-known problems around XMI versioning, etc. put 

this into question. This way, in terms of interoperability, the use of a common 

underlying modelling framework like EMF brings more advantages than the use 

of pure UML models. Besides, UWE models are defined at CIM, PIM and PSM 

levels and the targeted platform (once the code generation is integrated) is JAVA. 

Likewise, the authors are working to integrate Service Orientation on the UWE 

methodology [291]. Thus, Service Orientation capabilities on the UWE tool will 

delay for a while. 

Regarding constraints checking, it is hard to say how they are implemented 

in ArgoUWE. Indeed, according to [184] they are implemented by means of ATL 

queries. Although this approach works fine, it is not the most efficient. The 

checking process returns a Boolean value stating whether the model fulfils all the 

defined constraints or not. It does not distinguish which was the restriction 

violated, neither proposes a tentative or fix to solve the problem. Nevertheless, 

according to [199], constraints are defined with OCL but are hard-coded in 

ArgoUWE using JAVA. 

Something similar happens for model transformations in UWE. Once 

again, all the mappings comprised in [184] are implemented with ATL. 

Nevertheless, in [199] is stated that not only ATL, but also QVT (just for 

specification tasks) and hard-coded JAVA rules are used. As far as we know, the 

real situation is that, though there are ATL transformations between some of UWE 

models (not all of them) they are still to be integrated into MagicUWE. At present, 

they are hard-coded in the tool. Besides, though there are wizards and launchers to 

invoke the execution of the transformations, the output models need manual 

refinement. In addition, the user has no option to drive the mapping process. Any 

customization is done by means of such manual refinement over the output 

models. Regarding the type of the transformations supported. There are PIM2PIM 

and PIM2PSM mappings already integrated. Moreover, CIM2PIM mappings are 

described in [184], but still to be integrated in MagicUWE. To conclude, we 

would like to point out that only those mappings specified with QVT can be 

considered as formalized and, as mentioned before, this is not the case of all the 

mappings comprised in UWE. 
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Finally, although UWE models defined with ArgoUWE could be formally 

validated using Hugo/RT [29], there is no way to validate UWE models from 

MagicUWE nowadays. 

To sum up, we will focus just on evaluating ArgoUWE features. 

ArgoUWE follows the object-oriented paradigm. The modelling basis is UML 

since UWE models are UML profiles. Therefore, the modelling notation is UML-

like. Constraints checking is supported but hard-coded in the tool. We may qualify 

it as rather standardized since it was based on UML. UWE models cover CIM, 

PIM and PSM levels and they are translated into J2EE applications. ArgoUWE 

was not devised as an open framework, thus it owns a low level of extensibility. 

By contrast, you might use the capabilities provided by other tools with 

ArgoUWE models, since they are expressed in XMI (once again, this just a 

theoretical statement since XMI has proven to be rather unsuccessful). Besides, 

being integrated into ArgoUML plus available documentation results in an 

acceptable level of usability. One of the main concerns with the tools is the way 

mode transformations are addressed. Some of them are hard-coded in the tool. 

Some others are specified with QVT but we guess that when it comes to 

implementation, they are also hard-coded in the tool. Finally, some other are 

implemented with ATL. They give some level of automation to the development 

process, but the models generated have to be manually refined. Regarind 

abstraction layers covered, just PIM2PIM and PSM2PSM mappings are covered, 

though CIM2PIM mappings are to be integrated. Recently, some work to support 

Service Orientation has being undertaken. Finally, formal validation of some 

UWE models was supported.  

2.4.2.2 WebRatio 

WebRatio [4] supports WebML [6], a language for expressing the structure 

of Web applications with a high-level description. It offers different models, 

together forming a website, namely, structure, derivation, composition, navigation 

and presentation models. Since the version 5.0, it is released as a set of Eclipse 

plug-ins [5]. Although it was devised in academics, presently it is a commercial 

tool distributed by WebModels, a spin-off created in 2001 from Polytechnics of 

Milan.  

WebML was born as a language for modelling data-intensive Web 

applications [79] based on the E/R model [82]. Earlier versions of the supporting 

tool, WebRatio, supported WebML metamodels defined in the form of DTDs 

(Document Type Definition, [390]). Needless to say, DTD is not the best approach 

for modelling purposes [38] and when compared with MOF as a metamodelling 
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language, there is no space for discussion. Moreover, working this way the 

advantages that MDE bring to Web Engineering, such as a common exchange 

format or powerful model transformations, are lost. Indeed, model 

transformations, in particular code generation to JAVA and JSPs, were coded 

using the XSLT language [389]. We have already mentioned its shortcommings 

when used for complex transformations [342]. Currently, XSLT is aided by ANT 

and Groovy technologies but still seems too archaic to support a MDE approach. 

Recently, a MOF-based metamodel (indeed, Ecore-based) was proposed 

and implemented [310] to overcome these drawbacks. The metamodel was derived 

semi-automatically from the DTD. In addition, some work has been done to 

express WebML metamodels in the form of UML profiles [251]. 

Although WebRatio editors are built on top of GEF [250] and they use a 

UML-like notation, the lack of an underlying common metametamodel hampers 

interoperability with other tools and obviously implies a low level of 

standardization for the whole framework. Code generation, though archaic, is 

quite efficient and the targeting platform is JAVA. WebRatio does not support 

modelling the business domain, since the model that drives the development 

process is the data model (an E/R diagram). Thus, we can infer that the CIM layer, 

at best, is covered in a very limited way. To conclude, WebML has incorporated 

extensions for workflow-driven Web applications and Web Services, we may say 

that it owns (limited) SOA capabilities. 

Finally, although WebML and WebRatio sites provides with 

documentation on how to apply WebML, the use of WebRatio is not so 

documented or, at best, not freely available, since training courses are sold through 

the Web site. 

2.4.2.3 WebTE 

WebTE [234] is an UML tool that supports the XMI standard. From the 

models of the Web application defined in WebSA [235] and OO-H [237], plus a 

UPT transformation model (a language for model transformation [236] based on 

the use of UML specifications serialized to JMI), WebTE generates an integration 

model that is transformed into working code using Velocity templates [18]. 

WebTE does not provide with a graphical interface to define such models. 

In fact, it is just a Web interface to upload the mentioned models and launch the 

transformations. 

Regarding the evaluation criteria, WebTE‘s follows the object-oriented 

paradigm. Its modelling basis is UML while no modelling notation can be 

identified since it does not provide with model editors. Besides, there is no support 
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to check constraints over the models handled. It owns a high level of 

standardization since all the artefacts are expressed in XMI format and covers 

CIM, PIM and PSM levels. There is no way of extending the tool since it is a 

closed environtment and the lack of graphical editors (apart from the Web 

interface to load the models to process) and documentation results in a low level 

of usability whereas the use of XMI provides a high level of interoperability (as 

mentioned a numer of times, this is tru just in theory). Some code is generated for 

J2EE and .NET platforms. It uses a DSL for model transformation (so-called 

UPT) and provides with fully automatic transformations. However, they are just 

CIM2PIM and PIM2PSM mappings and does not support any way of 

customization. Finally, we can say that the mappings are somehow formal since 

they are expressed with a UML profile. It seems the project is in an idle state, thus 

no support for Service Orientation has been incorporated. Finally, there is no 

support for formal validation of WebTE models. 

As part of a fuller discussion on WebTE, we can state some issues related 

with the tool. First and foremost, the lack of model editors is a serious drawback. 

Indeed, it recommends the use of an UML editor since all source and target 

models are provided in XMI format. We have already mentioned the inherent 

problems of XMI.  

In addition, UPT expressiveness might be put into question. We have 

reviewed its metamodel as well as some examples, and we cannot state how it will 

perform with complex models. Besides, those transformations are somehow hard-

coded in the components invoked from the Web interface and the user has no way 

to drive their execution. 

2.4.2.4 OOWS Suite 

The OOWS Suite [347] is the framework that implements the OOWS 

method [136]. The OOWS method is an extension to the OO-Method for Web 

applications development that adds two new models, namely, presentation and 

navigation, to capture the navigational and presentational aspects of Web 

Applications. In turn, the object-oriented software development method (OO-

Method, [289]) is an automatic code generation method that produces the 

equivalent software product from a conceptual specification of the system. 

OOWS is similar to UWE since a navigation model represents the 

navigational aspects of a Web application as views of classes from a class diagram 

(we might see this as a content model). In contrast, a dedicated presentation model 

for further abstraction of the user interface is not available and the presentation 

aspect is integrated with the navigation. 
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In essence, the OOWS suite is a framework for integrating the business 

logic collected in OO-Method models with a Web Interface produced from OOWS 

models. Therefore, the contribution of the OOWS Suite is basically the GMF-

based editors for OOWS models, plus Xpand templates (see section 2.3.4.6) to 

generate the Web interface. Finally, integration between component objects 

(COM+, J2EE, etc) and the generated Web interface (PHP-based) is done by 

means of XML messages. 

OOWS models use a UML-like notation based on custom metamodels. In 

fact, an ad-hoc extension to OMG‘s BPMN is used to model the business process. 

Such business process model is the source of a model transformation that is coded 

in QVT-Operational Mappings. It returns a PIM navigation model that has to be 

manually refined and later transformed into a PSM. Finally, the code generation 

lies over OlivaNOVA, the commercial tool that implements the OO-method [76]. 

However, the navigational model of OOWS is actually defined by 

specifying a set of views over the classes collected in the structural model from 

the OO-Method. To use it in the OOWS framework, a previous XSLT 

transformation has to translate the XML format used by OlivaNOVA to XML-

Ecore format. The imported model should not be modified in OOWS Suite since 

OlivaNOVA relies in it to later generate the business logic. 

Without considering technical details, our main concern with the OOWS 

method is that it emphasizes the use of conceptual models for generating both 

presentation and behavioural aspects. The use of conceptual models for 

presentation aspects can be put into question, but for navigation aspects, it is 

categorically erroneous. Instead, behavioural aspects have to be captured in the 

business process models that should drive the development process. Indeed, the 

authors state that following their approach ―some minor details are still to be fixed 

directly in the final code‖. 

Regarding model transformations, the PSM has been completely omitted. 

Indeed, in [347] the authors state that ―Each transformation engine is composed of 

four elements that define its code generation strategy: (…) An Application Model 

(PSM) for each target platform (Java, .Net, ASP) that represents its technological 

aspects. The application model does not need to be modified by analysts because 

there is a clear relationship between Conceptual Model elements and Application 

Model elements. For this reason, it is hidden inside the transformation engine.‖ (p. 

9). Obviously, hard-coding transformations in supporting tools is not a good MDE 

practice. In addition, asserting that conceptual elements are univoquely mapped to 

deployment components is also too ambitious. 



State of the Art    133 

 

To sum up, the OOWS suite adopts the object-oriented approach and is 

based on two types of DSLs, thus two types of modelling basis are identified: 

Ecore metamodel and ad-hoc metamodels (based on OASIS, a language for 

specification of object-oriented systems [288]). Its editors use a UML-like 

notation and no constraint checking over terminal models is supported. Note that, 

since PIM models are directly translated into code, nor CIM neither PSM levels 

are covered. We might qualify the tool as partially extensible since it is partially 

based on EMF (open-source and highly extensible) and OlivaNOVA (a 

commercial tool not extensible). Usability is disminished by the absence of 

documentation and again it is partially interoperable (EMF versus OlivaNOVA). 

Code generation is supported for J2EE, .NET and COM technological platforms. 

Model transformations are hard-coded in the tool in the case of OlivaNOVA, 

while some XSLT transformations allow combining OlivaNOVA models with 

those from the EMF editors of OOWS suite. They are fully automatic but does not 

lend any space to customization. Since it moves from PIM models to working 

code, just PIM2Code mappings are supported. No Service Oriented functionality 

is planned and no formal validation or specification of models is supported. 

2.4.2.5 HyperDE 

HyperDE (Hypermedia Developing Environment, [260]) is a combination 

of a MVC (Model-View-Controller [148]) framework and a development 

environment for creating semantic Web prototype applications. It is based on the 

Object-Oriented Hypermedia Design Method (OOHDM, [314]), the first method 

that postulated separation of concerns for Web applications, and its successor, the 

Semantic Hypermedia Design Method (SHDM, [217]). 

This way, from OOHDM models plus a user interface specification (views) 

and following the MVC pattern, HyperDE generates the Web application. 

Actually, SHDM models are used, thus the object model is derived from RDF 

descriptions [387] that provides with semantic descriptions of both data and 

metadata.  

HyperDE inherits a distinguishing trait from SHDM: all depicted models 

conform to a common metamodel that collects all the abstractions used along the 

development process. 

It is implemented as a modification of the Ruby on Rails framework [301] 

where the persistence layer (ActiveRecord) has been replaced by another one 

based on a RDF database. All HyperDE functions are accessed via Web interfaces. 

In addition, HyperDE also generates a Ruby-based API to manage both the model 

and SHDM‘s meta-model. 
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In summary, HyperDE does not supply visual editors. The level of 

standardization is quite low according to OMG, since the metamodel is an ad-hoc 

metamodel and no modelling framework is used. In contrast, the use of RDF 

models can be showed as a step towards interoperability. Besides, extending the 

tool is feasible but challenging, though the Web site provides with a huge amount 

of documentation. Like the OOWS suite, it omits the PSM level and goes directly 

from PIM to working-code. Regarding SOA capabilities, we may state that it is 

aligned in some sense with Service Orientation since it is focus on the semantic 

Web. Finally, no model transformation (as understood in the MDE context) is 

bundled in the tool. 

The results of this review confirms that although HyperDE has been 

deployed using DSL techniques, it does not support a proper MDE development 

process. 

2.4.2.6 Others 

In the following we mention some works less relevant, either because they 

are part of abandoned projects or just because they do not align with MDE 

principles.  

W2000 

W2000 [31] is a methodology that extends the HDM methodology 

(Hypertext Design Model, [151]), a hypermedia and data-centric Web design 

approach, but it also adopts some features from UML to support the concept of 

business processes.  

W2000 abstractions are collected in a MOF-based metamodel. Although 

the toolset is said to be integrated in Eclipse, it seems to be a set of disconnected 

components [32]. It includes a GEF-based editor, plus a MOF repository based on 

MDR/Net beans [258]. Some constraints are externally validated over W2000 

models, while the rest were still to be supported. As well, some transformation 

rules were defined with AGG (see section 2.3.3.1) but they were not integrated in 

the tool. 

All this given, we can state that W2000‘s tool support is quite instable and 

immature. Moreover, from reviewed works it seems that the authors abandoned 

the project. We found no available documentation or download site for the tool. 

HERA 

HERA-S [348] is the evolution of HERA [361], a method for developing 

adaptable and customizable Web Applications following a navigational structure 
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that is defined semantically. In turn, HERA-S supports the design of navigation-

oriented Web structures over Semantic Web data. 

The idea is to wrap the data modelled in a domain model with a Web 

interface modelled in a presentation model. To that end, an application model is 

used as intermediate step. Each metamodel is represented in RDFS [388], while 

terminal models are expressed with RDF [387]. In addition, a user/platform 

profile, plus an adaption model, allow personalization of the presentation 

according to user preferences and browsing platform. 

Unfortunately, the implementation of the above process is encoded in a set 

of XSLT transformations, while the edition of each model is supported by MS-

Visio add-ins. While the premises of HERA-S are promising, more mature 

technical support is necessary in order to consider it a real framework for WIS 

development. In addition, we cannot state this is a MDE framework.  

All this given, we do not include HERA in the final discussion neither in 

the summary displayed in Table 2-8. 

2.4.3 Tools for (Model-Driven) Development of (Modern) DB 

Schemas 

In order to provide with a reference implementation for M2DAT, we have 

chosen to implement its content module, M2DAT-DB (MIDAS MDA Tool for 

DataBases). Considered in an isolated way, M2DAT-DB constitutes a complete 

framework for model-driven development of modern database schemas that 

supports the generation of an Object-Relational DataBase (ORDB) schema or an 

XML Schema (XML Schema Definition, XSD) from a conceptual data model. 

To confirm that M2DAT-DB improves existing technology in the field, this 

section aims at reviewing existing tools.  

During the last years, the extended use of XML as preferred format for 

both data storage and exchange has resulted in the advent of a number of XML 

(and XML Schema) editors. In the following, we review the most recognised or 

accepted, plus those that has a special interest from the research point of view. 

In general, all of them share a series of features, the most common being 

the support for different views of the XML Schema, like visual editors based on 

nested boxes and textual editors with syntax highlighting and the like.  

On the other hand, defining the scope of our study, it is important to 

acknowledge that most Database Management Systems (DBMS) support the 

Object-Relational model, both commercial, such as Oracle [282], SQL Server 
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[243] or Informix Dynamic Server [169], and open-source, like PostgreSQL [287], 

MySQL [337], etc. By contrast, there are no frameworks that support modelling of 

pure ORDB schemas. That is why we enclose between brackets the terms ―model-

driven‖ and ―modern‖ in the title of tis section (and the sections related). 

Therefore, in contrast to the review on tools for MDWE, this study will 

limit to give a brief description of the tools that has a similar functionality. To that 

purpose, we will introduce the most recognised tools for development of relational 

DBs to help on the understanding of M2DAT-DB capabilities. In this sense, we 

would like to reference also some works focused on applying the MDA proposal 

to Data Warehouse development, like the ones from Klimavicius et al. [194] or the 

ones from Trujillo et al. [231]. However, they are not really in the scope of this 

thesis. 

2.4.3.1 Altova XML 

Altova XML [14] is one of the first tools for XML Schemas development, 

and probably the most-accepted so far. 

It supplies different editors offering different views of the Schema. Among 

them, we find a visual editor based on nested boxes plus a (-n almost) plain text 

editor that, at the end, is the one preferred by developers. 

The distinguishing trait of Altova with regard to other tools is that, in 

response to the impact of MDE and the boom experimented by software 

modelling, an UML-like editor has been added recently.  

Notice that Altova XML pays no regard to the conceptual model and 

focuses just on the XSD definition. In other words, like most of the reviewed 

tools, Altova XML works just with the XSD model.  

2.4.3.2 Oxygen XML Editor 

Oxygen XML Editor [283] main objective is edition of XML documents. 

However, it also bundles XML Schema editing facilities, similar to those from 

Altova, though a UML-like editor is not supported in this case. 

In addition, it provides with some capabilities for working with relational 

databases, but they are limited to exploring capabilities. Thus, it has not been 

considered as a proper tool for designing DB schemas. 

2.4.3.3 Stylus Studio 2008 

Stylus Studio 2008 [333] is similar to Altova and Oxygen. 

In this case, its distinguishing mark is the addition of mechanisms to 

execute mappings between XML Schemas. Indeed, the tool support the graphical 

definition of the correspondences between two particular XML Schemas. From 
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that, it generates the XSLT or XQuery code that implements the mapping (after an 

intermediate translation to JAVA). 

2.4.3.4 hyperModel 

Regarding XML Schemas development, hyperModel [391] is probably the 

most similar tool to M2DAT-DB. Indeed, it is also integrated in the Eclipse 

platform.  

hyperModel is the tool supporting Carlson‘s proposal for modelling XML 

Schemas with extended UML [77, 78]. However, note that like the 

aforementioned tools, it goes directly to the XML Schema model, without 

considering a conceptual data model. 

While Carlson advocates in favour of modelling the XML schema with 

extended UML, M2DAT-DB supports a higher abstraction level by allowing 

getting the XSD model from a conceptual data model. That is, the development 

process in M2DAT-DB starts from a PIM, that works as the classical domain 

model used in DB development process. Such model makes no reference at all to 

the deployment platform. Therefore, the very same model could be used as 

starting point to generate the DB model for any other logical model, whether it is 

OR, relational or whatever. Indeed, M2DAT-DB uses this model to generate both 

the XSD model or the ORDB model. 

2.4.3.5 Rational Rose Data Modeler 

Rational Rose [173] is a product line that resulted from the evolution of a 

CASE tool whose core functionality was to manage software models of a system 

under development. Originally, it was based on the use UML as modelling 

language. It has been traditionally recognized as the tool implementing the Unified 

Software Development Process [177] and the most adopted by software engineers 

during a number of years. Indeed, a common mistake has been identifying the use 

of UML with applying such process.  

During the last years, its ratio of adoption has decreased with the advent of 

Eclipse and other open-source modelling tools. 

The XSD plug-in of Rational Rose is able to generate an XML Schema file 

from a UML class diagram or inject an XML Schema into a UML class diagram. 

Therefore, no XSD model is supported. It moves directly from the conceptual data 

model to code and viceversa. This way, though it provides with a bidirectional 

UML-XML Schema bridge, it does not consider a proper XML model. 

Furthermore, the mapping process is predefined and hard-coded in the tool. There 

is no option to change or customize it 
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2.4.3.6 Enterprise Architect 

Enterprise Architect [327] is a commercial tool quite similar to Rational 

Rose. It also encourages the use of UML, can be integrated in Eclipse and 

provides with an extractor from UML class diagrams to XML Schema.  

Since it is the most recent of reviewed tools, it seems to be more aligned 

with MDE principles. For instance, it bundles customizable code generation 

templates. Indeed, Enterprise Architect is said to be a MDE framework. 

It provides with automatic transformation from the conceptual data model 

to a stereotyped class model that acts as the XSD model. However, the XSD 

generation is a little bit tricky. Indeed, the code generation template uses the 

conceptual data model to generate the XSD code. If you want to customize the 

generation, then you have to spread XSD stereotypes over your UML classes in 

order to drive the code generation process. That is, you are not using a proper 

XSD model, but polluting your conceptual data model with platform specific 

information. 

Among the reviewed works, Enterprise Achitect is probably the most 

similar to M2DAT-DB (regarding XML Schemas support). However, despite the 

fact that it is a commercial tool, we have to consider the strange way of generating 

the XSD. It is done directly from the conceptual data model, though some UML 

stereotypes might serve to mark the model. By contrast, M2DAT-DB allows 

generating a XSD model from the conceptual model whereas Enterprise Architect 

just lets moving formard form PIM to code or PSM to code. No PIM to PSM is 

supported. In addition, M2DAT-DB allows using a weaving model to annotate the 

conceptual model without polluting it. This way, the conceptual model is still 

valid to be used in other context, like the ORDB schema generation. 

Regarding support for DB schema modelling, it advocates in favour of 

using a UML class diagram to represent the conceptual data model. From such 

model, a template-based transformation generates a logical data model represented 

in extended UML (which can be showed as a PSM). Finally, the logical model is 

serialized into code by means of a model-to-text transformation.  

This way, the functionality provided by Enterprise Architect is the more 

similar to the one from M2DAT-DB among reviewed tools, since it uses UML for 

conceptual modelling plus model transformations specified wth a DSL. In 

addition, it allows adding new ad-hoc transformations.  

2.4.3.7 ERwin 

There are a number of applications, tools or frameworks for Database 

management (ERWin [92], Enterprise Architect [327], Oracle Designer [281], 
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etc.). Although they include capabilities for designing the underlying DB schema, 

their main objective is supplying an IDE for all the tasks related with DB 

administration. Thus, when you want to use them as simple modellers they tend to 

be complex and not very intuitive. This fact matches up with a common drawback 

of existing MDE frameworks: the low usability level [318]. This becomes clear 

when one examines, for instance, the complexity associated to install the Oracle 

Designer repository in order to use the Oracle modelling tool. 

Moreover, since they do not support the OR model, there is no sense in 

providing with a complete review on all of them. Hence, we will focus on ERwin 

to provide with some highlights about these kind of tools. 

A number of those tools consider the possibility of starting from a 

conceptual data model (PIM) represented with the E/R notation [82] as a previous 

step towards a relational model [89] (PSM), following the ideas gathered in [33]. 

However, those are not pure E/R models, but adaptations polluted with logical 

details that ease the (automatic) mapping to the logical model. In this case, it is 

worth mentioning that the transformation is hard-coded in the tool, although some 

options to drive the mapping from the conceptual to the logical model are allowed. 

All of them are commercial tools, what is typically related with good usability 

levels and, in some sense, we might say that they are somehow aligned with 

standards since they use both the (adapted) E/R modelling language and Codd‘s 

relational model. 

2.4.3.8 Others 

We can mention other tools, like Liquid XML Studio, XMLFox or the 

Visual Studio add-in for XML Schemas development: Microsoft XML Schema 

Designer.  

As well, a particularly interesting editor for this dissertation, since it is 

integrated in the Eclipse platform is the Eclipse XML Schema Editor, a visual 

editor quite similar to the already presented. Indeed, it might own a more austere 

look and feel, though it is equally functional. Its interest resides in the fact that, in 

the near future, XML Schema models generated with M2DAT-DB will be editable 

with this editor without the need for any integration task. 

Likewise, regarding ORDB schemas development, there are a number of 

frameworks that encapsulate the object to relational mapping. As a matter of fact, 

object-orientation has been the preferred programming paradigm during the last 

years, while relational databases have been the technology par excellence to 

endow with persistence the data handled by any given application. At present, the 

most popular are the Data Access Objects (DAO) of J2EE [335]. They offer an 
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interface between the application and the DBMS and there are several 

implementations quite popular, like Hibernate [178] or JDBAccess 

(http://jdbaccess.com/). 

2.4.4 Summary & Discussion 

To provide with an overview of the reviewed works, Table 2-8 summarizes 

the main features of reviewed tools for model-driven development of WIS, while 

Table 2-9 does the same for tools focused on database schemas development. To 

that purpose, we use selected features collected in the evaluation criteria described 

in section 2.4.1. They are summarized in Table 2-7.  

Next, the main conclussions gathered from these reviews are presented in 

two different sections. 

Table 2-7. Evaluation criteria for tools supporting Model-Driven Software Development 

BENCHMARK DESCRIPTION VALUES 

METHODOLOGY Underlying Methodology Methodology’s Name 

PARADIGM 

Preferred development 

paradigm: Data-Centered, 

Object-Oriented, Semi-

Structured, Service 

Oriented 

DATA-CENTER / OO / 

SEMI-STR / STRUCT/ 

SOA 

SCOPE/TARGET 
Commercial / Open-Source 

/ Academic 
C / O / A 

MODELLING BASIS Basis for abstract syntax  UML/Ecore/RDF/XML/E/R 

MODELLING 

NOTATION 
Basis for concrete syntax 

UML-Like / E/R / 

Nodes&Edges/ … 

VALIDATION 

Support for constraint 

definition and checking and 

formal validation 

(-) to ()
 (1)

 

STANDARDIZATION 
Level of conformance to 

standards 
(-) to ()

(1)
 

ABSTRACTION 

LAYERS 

Abstraction Layers 

supported 
CIM, PIM, PSM 

EXTENSIBILITY 
Ease of adding new 

capabilities 
(-) to ()

(1)
 

USABILITY 
Ease of using / 

Documentation 
(-) to ()

(1)
 

INTEROPERABILITY 
Ease of import/export-ing 

models 
(-) to ()

(1)
 

CODE GENERATION 
Level of code generation 

supported 
(-) to ()

(1)
 

TECHNOLOGICAL 

PLATFORMS 

Targetted deployment 

platforms 

J2EE/.NET/ ... 

DB Logical Model 

http://jdbaccess.com/
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BENCHMARK DESCRIPTION VALUES 

MT 

DSL 
Mappings implemented 

with a DSL for MT 
(-) to ()

(1)
 

AUTOMATION Level of automation (-) to ()
(1)

 

CUSTOMIZABLE Customizable mappings (-) to ()
(1)

 

SUPPORTED 

TYPES 

Types of transformation 

supported 

CIM2PIM, PIM2PIM, 

PIM2PSM, PSM2PSM, etc. 

FORMALIZATION Formalization of mappings (-) to ()
(1)

 

(1) LEGEND (for weightable fields) 

SYMBOL VALUE 

 NONE 

 POOR 

 FAIR 

 GOOD 

 VERY GOOD 

 EXCELLENT 

 



 

 

Table 2-8. Tools supportinng Model-Driven Development of Web Information Systems 

 ArgoUWE WebRatio WebTE 
OOWS 
Suite 

HyperDE M2DAT 

METHODLOGY UWE Methodology WebML WebSA / OO-H OOWS OOHDM / SHDM MIDAS 

PARADIGM OO DATA-CENTERED OO OO OO SOA 

SCOPE/TARGET (A) (O), (A)  (C) (A) (A) (A, O) 
Open-

Source/Academic 

MODELLING BASIS UML 
(E/R extension) / 

DTD 
UML OASIS / Ecore DSL / RDF Ecore 

MODELLING NOTATION UML-like UML-like Not Supported UML-like UML-like UML-like 

RESTRICTIONS       

STANDARDIZATION 
 

(UML-compliant) 
 

 
(UML-

compliant) 

 
(Ecore-

compliant) 

 
(RDF-Compliant) 

 
(UML / Ecore)-

compliant 

ABSTRACTION LAYERS  
COVERED 

CIM, PIM, PSM PIM, PSM CIM, PIM, PSM PIM PIM 
CIM - PIM –  
PSM - PDM 

EXTENSIBILITY       

USABILITY       

INTEROPERABILITY       

CODE GENERATION       

TECHNOLOGICAL  
PLATFORMS 

J2EE J2EE J2EE, .NET 
J2EE, .NET, 

COM+ 
Ruby on Rails Oracle, .NET, PHP 



 

 

 

 ArgoUWE WebRatio WebTE 
OOWS 
Suite 

HyperDE M2DAT 
M

T 

DSL     NO  EMBEDED  

AUTOMATION       

CUSTOMIZABLES       

SUPPORTED 
TYPES 

CIM2PIM, PIM2PIM, 
PIM2PSM 

PIM2PSM 
CIM2PIM,  
PIM2PSM 

PIM2Code  
CIM2PIM, PIM2PIM,  
PIM2PSM, PSM2PSM 

FORMALIZATION       

 

 



 

 

Table 2-9. Tools supporting (Model-Driven) development of (modern) Database Schemas 

 Altova  
XML 

Oxygen 
XML 

Editor 

Stylus  
Studio 

hyper- 
Model 

Rational  
Rose 

ERwin 
Enterprise  
Architect 

M2DAT-DB 

METHODOLOGY    Carlson’s  Batini’s  Codd’s  MIDAS-DB 

PARADIGM SEMI-STR SEMI-STR SEMI-STR SEMI-STR OO STRUCT OO OO OO 

SCOPE (C) (C) (C) (O) (C) (C) (C) (C) 

MODELLING BASIS XML XML XML XML UML E/R UML UML Ecore 

MODELLING 
NOTATION 

Nodes  
& Edges Nodes & 

Edges 
Nodes  

& Edges 
Nested  
Boxes 

UML  
notation 

E/R UML Pure UML 

UML-Alike 
Relational 

Tables 
UML Profile 

UML-
Alike 

Tree  
Editor 

RESTRICTIONS          

STANDARDIZATION          

ABSTRACTION LAYERS PSM PSM PSM PSM PIM, PSM PIM, PSM PIM, PSM PIM, PSM PIM, PSM, PDM 

EXTENSIBILITY          

USABILITY          

INTEROPERABILITY          

CODE GENERATION   


 


 
 
 

   

TECHNOLOGICAL 
PLATFORMS 

XML XML XML XML XML Relational Relatnl XML OR XML 

M
T 

DSL         

AUTOMATION   

 


 


    

CUSTOMIZABLES          

FORMALIZATION          
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2.4.4.1 On Tools supporting Model-Driven Development of Web 

Information Systems 

This study has focused on how a number of MDE issues are addressed by 

existing tools for WIS development. Concluding this section, we can say that the 

most mature and stable one is WebRatio. However, WebRatio presents serious 

drawbacks when it is confronted with MDE principles. Indeed it does not adhere 

to any OMG standard (or Eclipse implementations, currently de facto standards), 

nor uses model transformations; neither encourages interoperability with other 

frameworks. 

Besides, Argo/MagicUWE seems to be the most MDE-friendly, in the 

sense that it adheres to OMG standards by using extensively UML profiles and 

OCL restrictions plus a DSL for model transformations, though some drawbacks 

have been detected regarding how customization and formalization are handled. 

Nevertheless, the state of Argo/MagicUWE serves to prove the instability 

of the tooling support for MDWE. Indeed, UWE is in the process of migrating its 

whole framework to the Eclipse platform and replacing UML profiles for MOF-

Based DSLs (actually, EMF-based ones, like M2DAT).  

One tentative reason for this landscape might be that those methodologies 

appeared before the advent (or the boom) of MDE. Thus, they opted for adapting 

their proposals to MDE principles. So, they addressed (or planned to do so) the 

building or adaptation of (existing) frameworks to support the new nature of their 

proposals, but the adaptation processes carried out so far are still immature. From 

a MDE point of view, there is still much work to do in order to align those 

frameworks with MDE guidelines. 

For instance, one common drawback, clearly stated by Moreno and 

Vallecillo in [252], is located at how they handle model transformations. Some of 

them just hard-code the rules in the underlying tool while some other use XSLT 

style-sheets. This fact results in a gap between the design of the Web application 

and the final implementation. According to MDA principles, these rules should be 

defined at a more abstract level. Although some proposals have already tackled 

this task (see [199] for UWE, [234] for WebSA and [253] for WEI), these 

improvements have still to be integrated in the corresponding tools. By contrast, 

all the mappings of M2DAT will be implemented using a DSL for model 

transformation.  

Besides, none of the reviewed frameworks offers support for customizable 

or parametrizable transformations, neither for applying formal techniques over the 

models handled by the framework. We plan to address these issues in M2DAT. 
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Indeed, we have already showed how it will be done in previous works. For 

instance, in [357] we used weaving models to support model transformations 

driven by user decisions in a MDWE process.  

Another common problem is interoperability. In this sense, the use of 

weaving models to automate model migration is becoming widely accepted. In 

[356] we showed how to apply this approach in a real industrial environment. 

Such approach is been studied as a way to automate tools interoperability. As 

well, the fact that it will be developed entirely on EMF conferes advanced features 

to M2DAT in terms of interoperability. The studies about existing MDE 

technology that we have presented state that the most of them are built as Eclipse-

EMF components. Thus, M2DAT models could be handled by any of those 

components without the need for building any bridge. 

Among the reviewed tools, just ArgoUWE supports constraint checking 

over terminal models. However, they are hard-coded in the tool. By contrast, 

M2DAT will support checking constraints over terminal models defined in a 

separate way. Working this way, we are able to separate models edition from 

model validation. We can invoke validation just when needed, and we can modify 

the constraints to be checked at any time, without having to worry about the rest of 

the components of the tool. Likewise, the reviewed tools do not offer any support 

for applying formal techniques over the models handled by the framework. In this 

sense, [249] showed how M2DAT models were translated to MAUDE [87] to 

support the definition and formal verification of properties, as well as its 

validation.  

As well, one of the main contributions of M2DAT regarding previous 

works is extensibility. M2DAT will be completely extensible since all the 

components used to build it are open-source components, specially devised to 

accept modifications, improvements and incorporate new functionalities. This 

way, M2DAT will allow for rapid inclussion of emerging technology benefits. An 

immediate consequence is the ability to target new technological platforms. 

Adding support for a new platform will consist in defining a new platform 

model to abstract the targeting platform, weaving such platform model with 

already existing PSMs to obtain new PDMs (Platform Dependant Models, that is, 

models that map the concepts captured in PSMs to the abstractions supported by 

concrete technological platforms) and finally serializing them into code. Although 

this is not immediate, the process and the techniques to do it are well identified, 

thus it is a feasible task, both in time and manner, thanks to its extnesible nature 

and modularized architecture. 
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Last, but not least we would like to make a reference to Service Oriented 

capabilities. In response to the impact of Service Orientation [392] in recent years, 

some methodologies are updating their proposals to adequate them to services 

paradigm. However, so far just UWE has worked on this direction, though their 

initial results are still to be integrated into ArgoUWE (we guess it will be done in 

MagicUWE, the new version of the tool). By contrast, M2DAT follows the SOA 

paradigm from the beginning, since MIDAS is a complete Service Oriented 

methodology. First results on this line have already been presented [106, 353]. 

All this given, this study has highlighted a number of problems in the area 

of MDWE and lends strong support to the idea that M2DAT features will serve to 

fill some gaps detected. Specially, how model transformations are handled in 

existing proposals, poor interoperability and extensibility and their level of 

formalization. Besides, the study has highlightened a growing trend in MDWE 

proposals towards developing their tools as Eclipse plug-ins, or at least, upgrading 

or re-defining them to be ―Eclipse compliant‖, like UWE, WebML and the OOWS 

suite. Since M2DAT will be built atop of EMF from scratch, it will be ahead of 

exiting tools in this sense. 

Finally, the reader should notice that even though MDE is a widely 

accepted approach, MDWE is still relatively new: all the tools listed in this section 

are academic proposals. We can conclude that the most outstanding challenge for 

the developers of MDWE tools is to take their tools from academic to industrial 

environments. 

2.4.4.2 On Tools supporting Model-Driven Development of (Modern) 

Database Schemas 

Acording to Berstein [380], in some cases, object-relational and XML 

technologies are the best choice to build a DB. However, we have confirmed that, 

so far, there is no tool supporting a complete model-driven process for ORDB or 

XML schemas development.  

Regarding ORDBs, this fact is probably due to traditional DB has always 

followed the relational model as is. Thus, the frameworks for DB design have 

limited their selves to such model. In some cases (very few), they opted for 

extending the framework to support the modelling of object-relational 

constructions. However, instead of improvement, the effect was to bring 

additional complexity to the original framework. 

On the other hand, regarding XML Schema development, the main 

problem so far is related with the fact the XML was not considered as a proper DB 

technology until recently. Thus, there is a lack of methodological proposals for 
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XML Schema development following the traditional principles for DB design. 

That is, we found no works considering a conceptual data model and a logical 

(XML) model.  

In fact, just hyperModel, Rational Rose and Enterprise Architect might be 

said to be model-driven tools. However, hyperModel just ignores the PIM, going 

from a UML-sterotyped model to XML code, Rational ignores the PSM, going 

from a class diagram (conceptual model) to the XML code, and Enterprise 

Architect just supportd the movement from PIM to code or PSM to code. No PIM 

to PSM mapping is supported. The rest of works just focus on XML Schema 

editing without any support for a conceptual data model. Obviously they do not 

support the mapping from a conceptual data model to an XSD logical model. 

Even existing tools for traditional DB design, like ERwin, that starts from 

conceptual data models (PIM) represented with adapted E/R notations, do not 

consider pure PIM models since they are polluted with logical details that ease the 

(automatic) mapping to the logical model. 

By constrast, M2DAT-DB starts from a pure conceptual model represented 

by means of a class diagram, that is mapped to the selected logical model, XML or 

OR. The design decisions that drive the mapping process and help on mapping 

conceptual abstractions to technological components, are defined separately in an 

annotation model. This way, M2DAT-DB provides with full separation between 

conceptual and logical models while preserving the ability to generate different 

logical models from the very same conceptual data model. 

Besides, M2DAT-DB is the result of a continuous improvement and 

refinement of a methodological proposal for XSD and ORDB modelling 

developed during the last years. Hence, methods and technologies supported have 

been widely studied and validated before its implementation, one of the main 

concerns of MDE tools nowadays [160]. 

Once again, a common issue to the reviewed tools is the way they handle 

model transformations. Just Enterprise Architect uses a DSL. It is a template based 

language used both for model-to-model and model-to-code transformations. 

However, we can state that the language is only suitable for quite simple and 

direct transformations. The constructions supported are not enough to support 

complex transformations. The rest of tools that support some kind of 

transformation just hard-code it in the tool itself. 

By contrast, M2DAT framework emphasizes the role of model 

transformations in MDE development and this is immediately captured in the 

mappings bundled in M2DAT-DB. All of them are formalized and later coded 
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using DSLs for model transformation. In addition, the user can drive the execution 

of the mapping by using weaving models to annotate the conceptual model before 

launching the transformation. 

To conclude, we would like to point out two very important advantages of 

M2DAT-DB over existing works on DB schema design.  

On the one hand, it supports a pure conceptual data model. In fact, existing 

tools start from a conceptual, in general an E/R model. However, they only 

support an adapted version of E/R ready to be mapped into logical models. For 

instance, they do not support n-ary relationships since they are challenging to be 

mapped to a relational model. By contrast, M2DAT-DB starts from a pure 

conceptual data model. It is the model transformations that deals with the 

problems inherent to the mapping of a conceptual data model to a logical one. 

On the other hand, M2DAT-DB does support a standard data model. That 

is, existing tools focus on the logical model for specific products. In contrast, 

M2DAT-DB offers the possibility of generating the ORDB model conforming to 

the SQL:2003 standard. However, since no implementation conforms to the 

standard 100%, it allows moving from the standard logical model to a logical 

model for Oracle (probably the best DB engine, at least in what has to do with 

support for ORDB constructions). The use of a platform-specific model (logical 

model for SQL:2003) plus a platform-dependent model [322] (Oracle logical 

model) provides with much more flexibility and real interoperability between 

different DB vendors, since the SQL:2003 model acts as a pivot to/from which 

mappings from/to any particular logical model are much more simple. 

All this given, from the point of view of MDE, where it is essential to rely 

on modelling tools as accurate and precise as possible, current technology for 

ORDB and XML schemas modelling is, at best, inadequate. M2DAT-DB aims at 

filling this gap. 
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3. 1
st

 Iteration: MIDAS-CASE 
This thesis provides with a technical solution to build a framework for 

semi-automatic model-driven development of Web Information Systems. One of 

its main features is the use of existing technology in the field of MDE, like EMF, 

ATL, etc. Currently, this way of building frameworks for MDSD is probabbly the 

most adopted and it is gaining acceptance every day. Indeed, the State of the Art 

has shown a number of works following this approach, what serves to confirm that 

our decisions have proved to be right. 

However, when we tackled the specification of a tool for MDSD of WIS, 

this type of decissions was not even considered since such MDE tools or 

components were just starting to emerge. The tendency was to build ad-hoc 

solutions using GPLs. Hence, in order to evaluate the advantages and drawbacks 

of this approach, we addressed the specification and construction of a stand-alone 

CASE tool for MDSD of WIS: MIDAS-CASE. 

This chapter presents MIDAS-CASE specification and the prototypes that 

provides with a reference implementation. Likewise, the lessons learned from 

MIDAS-CASE project are put forward since they will be used in Chapter 4 to 

justify some of the technical decisions collected in M2DAT specification. 

Finally, it is worth mentioning that, though MIDAS-CASE suffers from the 

technical limitations already sketched, its conceptual design is still valid and thus 

partially reflected on M2DAT conceptual architecture. Indeed, the mandatory 

requirement of modularization promotted by MIDAS was the driving force in the 

specification of MIDAS-CASE architecture. Such premise was preserved in 

M2DAT. 

3.1 MIDAS-CASE: a stand-alone CASE tool for MDSD of 

WIS 

There were some objectives to meet when we first faced the task of 

developing a supporting environment for the MIDAS methodology. Basically, we 

had to develop an environment that supports the graphical representation of all the 

models comprised in MIDAS, the automatic mapping between them and the 

automatic code generation from those models. Moreover, we planned to use an 

XML DB repository for XML-based storage of the models. 
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From the very first moment, we considered two requirements that technical 

support for MIDAS had to meet: it had to be both easily scalable and highly 

modular.  

The aim was to be able to support a constant evolution of the tool. Since it 

was thought as a research prototype, new functionalities were to be added day by 

day. Furthermore, those already supported were candidates for continuous 

improvement, refinement. Besides, we aim at supporting the rapid inclusion of 

emerging technologies. 

The result of MIDAS-CASE project wvere mainly: 

 The definition of MIDAS-CASE architecture, which constitutes the basis of 

the actual version of M2DAT architecture. 

 MIDAS-CASE4WS and MIDAS-CASE4XS. Two prototypes of MIDAS-

CASE modules. MIDAS-CASE4WS uses the UML extension for WSDL 

(Web Services Description Language) [383] proposed in [225] to support the 

modelling of Web Services in extended UML and the automatic generation of 

the respective Web Service description in the WSDL standard. On the other 

hand, MIDAS-CASE4XS uses the UML extension introduced in [364] to 

support the modelling of XML Schemas in extended UML. From that model, 

the tool generates the corresponding XML Schema. The former prototype was 

presented in [353] whereas the later was introduced in [354]. 

MIDAS argued in favour of using UML.Specifically, a class diagram is 

used to depict conceptual data models. Thus, we also developed a module for 

UML class diagrams in MIDAS-CASE to ensure the integration with the rest of 

MIDAS-CASE models (UML extended models). To do so, we opted for having 

our own UML editor in MIDAS-CASE. We will not go deep into this editor since 

a pure UML editor is not a real contribution (there are quite a lot of commercial 

products for this task in the market). However, we include some screen captures 

on the appendix, next to the corresponding metamodel for class diagrams. 

3.2 MIDAS-CASE Architecture 

MIDAS-CASE architecture, shown on Figure 3-1, was defined according 

to two orthogonal dimensions.  

On the one hand, it assumed a classical three-tier architecture [119], 

considering the traditional aspects in software development, i.e. the user interface, 

the logic and the persistence or data tiers. 
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On the other hand, MIDAS-CASE architecture was composed of a set of 

modules or subsystems, one for each concern considered in MIDAS for the 

development of the WIS (the hypertext, the content, the semantics, etc.). This way, 

support for new concerns could be added during the life cycle of the project, either 

as a response to new requirements or just to incorporate new advances in the field. 

The result is a scalable and easy-to extend tool. The support for a new model is 

embedded in a new module. 

Figure 3-1 shows the original MIDAS-CASE Architecture including three 

different modules. From left to right, dotted rectangles distinguish the Object-

Relational, the Web services and the Others module. The latter tries to show how 

the rest of subsystems are to be integrated in MIDAS-CASE to extend its initial 

capabilities. 
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Figure 3-1. MIDAS-CASE Architecture 

The whole architecture is guided by a common idea: MIDAS-CASE allows 

the definition of extended UML models that are stored in XML format. To carry 

out this task, the metamodel for each type of model considered in MIDAS is 

specified in an XML Schema. This way, the XML document that persists the 



156    Juan M. Vara 

 

model conforms to the respective XML Schema. If the XML document does not 

conform to the Schema, we conclude that the model is not valid. 

In the following we summarize the main features of each tier from top to 

bottom. 

3.2.1 Presentation 

The presentation tier corresponds to the user interface. It encodes both the 

graphical representation of the model depicted on the working panel, and the 

controls to add, delete or modify any element from the model. In turn, it is 

composed of two layers.  

First, a common unit or module, so-called controller, comprises the 

controls common to any of the different modules of MIDAS-CASE. That is, those 

controls that are shown despite the kind of model depicted in the working panel. 

This module has to load one of the lower UI (User Interface) units. They 

customize the user interface according to the model being edited. In other words, it 

provides with the graphic controls for the elements included in the corresponding 

metamodel. Thus, there is a different UI unit for each module. 

3.2.2 Logic 

Again, the logic tier comprises two different levels: in the upper level there 

is a set of parsers, one for each kind of model. From the information conatined in 

the diagram, they generate two XML documents to store seprately the semantics 

and the syntax of the model. On the other hand, the lower level is a common 

module to support transformations between the different types of models.  

3.2.2.1 Parsers 

All the parsers share the same internal architecture and perform the same 

task. Each one collects the data provided by the corresponding UI unit to generate 

two XML documents. The first one gatthers the semantics of the model depicted 

in the working panel. The other one collects the syntax or layout of the diagram. 

That is, the position and dimensions of the graphical elements included that 

compose the diagram. This distinction serves to separate the relevant from the 

secondary information. 

For instance, in a conceptual data model we are interested in which the 

attributes of a class are, whether o not there is an association between two classes, 

etc. Nevertheless, we are not interested in the size of the rectangle that represents 
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the class, nor the shape of the line representing the association. The XML 

document containing the semantics of the model is the one used for model 

processing (we use this term to refer to all the ways in which a model can be 

processed: validated, transformed, generated into code, interpreted, etc. [368])  

We used a variation of GXL (Graph eXchange Language) to serialize the 

syntax of the model. GXL [167, 381] was a standard XML format for data 

interchange between graph-based tools. Starting from the GXL proposal, defined 

as a DTD, an XML Schema was defined ad-hoc for the special nature of MIDAS-

CASE. Such Schema defines the structure of the XML document used to collect 

the syntax of any MIDAS-CASE model. 

3.2.2.2 Transformation 

We need to connect the different modules that support the development of 

each concern of the WIS. In other words, we need to connect the models depicted 

with each module. To that end, the transformation bus has to implement the 

mappings between those models. However, model transformation was still a 

bedding research field by the time MIDAS-CASE was designed. Hence, we 

adopted a very simplistic approach: we just encode the mapping rules for each 

specific transformation in the tool, i.e. we code them with the GPL used to build 

MIDAS-CASE (JAVA). Later on, we will discuss the problems derived from such 

approach. 

3.2.3 Persistence 

Since XML was gaining acceptance as format for data management and 

storage, the models created with MIDAS-CASE are serialized as XML 

documents. Therefore, after studying the different solutions for XML content 

management [81, 378], we opted for using an XML DB as the underlying 

repository of MIDAS-CASE, specifically, Oracle XML DB [117, 295]. 

Oracle XML DB was the first attempt of Oracle to support native XML 

storage and management. Its basis was a flexible mapping of XML Schemas to 

object-relational database schemas. Then, any XML document stored on the DB is 

shredded among the DB objects that mapped the corresponding XML Schema. We 

exploit this feature in MIDAS-CASE. Each XML Schema used to define the 

syntax and semantics of the models supported by MIDAS-CASE were mapped to 

an Oracle DB schema. This way, as shown in Figure 3-1, the basis of MIDAS-

CASE models repository is an Oracle XML DB. Next section summarizes the 

management process for such repository. 
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3.2.3.1 Using an XML Database as Models Repository 

The first step in the management process of the models repository of 

MIDAS-CASE is the specification of the metamodels of each type of model 

supported by the tool (step (a) in Figure 3-2). In essence, each module supports 

one or more models. Such metamodels are defined by means of an XML Schema.  

Next, the set of XML Schemas are registered on the repository of Oracle 

XML DB (step (b) in Figure 3-2). As a result, a set of DB schemas is created [295, 

347, 354] in the underlying DB. Each schema supports the storage of the models 

conforming to the respective metamodel. Notice that when we talk about models, 

we are referring just to the XML document that collects the semantics of the 

model. Nevertheless, recovering a MIDAS-CASE model also implies retrieving its 

syntax, that is, the rendering information of the diagram that depicts the model. As 

we have described in section 3.2.2.1, the syntax is stored in a separate XML 

document. The structure of those documents is the same for any kind of model. 

Thus, one XML Schema is enough to define it and thus one DB schema is enough 

to store the syntax of any model depicted with MIDAS-CASE, despite of the type 

of the model.  

Finally, the XML DB that supports the MIDAS-CASE repository is 

composed of a set of DB schemas: one for every type of model supported, plus 

one for storing the syntax of any diagram (see Figure 3-1). Whenever a model is 

persisted, the logic tier generates the two XML documents (syntax and semantics) 

and passes it to the persitence tier. Then, the storage unit loads each document into 

the corresponding DB schema, i.e. the XML data is shredded into the 

corresponding OR tables. Likewise, whenever a model has to be retrieved, the two 

XML documents are passed from the persistence to the logic tier. This one uses 

the mutual references in the documents to build a diagram according to the syntax 

and semantics collected on those documents. Later, the UI unit depicts the 

diagram built. 

The underlying XML Database provides with all the advantages inherent to 

DBs for the management of the models respository. For instance, retrieving all the 

models in which a particular class appears; modifying some information about a 

particular element on every model at a time; querying a model or just some 

specific parts of them, etc.  

In addition, Oracle XML DB provides automatic validation of the models 

generated with MIDAS-CASE for free since each metamodel is defined by means 

of a (registered) XML Schema and every model is persisted as an XML document. 
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If the document conforms to the respective Schema, the model is said to be valid 

according to the respective metamodel. 

Regarding the mapping rules, the idea is similar. Once a model is obtained 

by applying the mapping rules over a source model, the target model is validated 

as described above. If the model is valid, we infer that so they were the mapping 

rules. 

XML DB Storage 

Figure 3-2 summarizes the internals of using Oracle XML DB for models 

storage. 
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Figure 3-2. The use of an XML Database as models repository 

First, the metamodel is serialized into an XML Schema (a). Such Schema is 

registered in XML DB (b). As a result, a new DB schema is created containing a 

set of user-defined Data types and typed tables. The registration is equivalente to 

launch a SQL script that creates the mentioned objects. 

From that moment on, whenever the DB receives an XML document (c), it 

checks the XSD Uri of the document against those from the XML Schemas 

already registered. Then the XML data is shredded into the tables corresponding to 

the XML Schema matched. 



160    Juan M. Vara 

 

3.3 MIDAS-CASE Prototypes 

To prove that the architecture of MIDAS-CASE was a valid and feasible 

proposal, we developed a couple of prototypes: MIDAS-CASE4WS and MIDAS-

CASE4XS. Both of them follow the same idea: they implement one of the UML 

profiles of MIDAS and support code generation from a UML stereotyped model. 

The former uses the UML extension for WSDL proposed in [225] to 

support the modelling of Web Services in extended UML. From this model, the 

tool generates the description of the Web Service in the WSDL standard. 

The later implements a refined version of the UML extension for XML 

Schema from [364]. From such UML extended model, the tool generates the 

corresponding XML Schema. 

Both profiles have been defined following the steps described in [147] for 

the definition of UML profiles: first, identifying the elements of interest from the 

domain to model and collecting them into a metamodel; next, extending the UML 

standard to cope with the previous metamodel. 

In the following, we present both prototypes by means of a pair of case 

studies. Previously, we introduce the UML extensions that they implement. 

3.3.1 Modelling Web Services with Extended UML 

As previously mentioned, in order to be able to model Web Services with 

UML, we have to define a Web Services metamodel This task had been solved 

previously by the WSDL standard that states which the components needed to 

precisely describe a Web Service were. Therefore, we went to the specification 

[383] to extract the main constructors identified by WSDL to describe a Web 

Service. The result is the Web Services metamodel presented in the following 

section.  

Once we had defined the metamodel, we need to extend the UML standard 

to cope with the previous metamodel. 

3.3.1.1 WSDL Metamodel 

Figure 3-3 shows the WSDL meta-model represented by an UML class 

diagram. The definitions included on the WSDL standard can be separated into 

two different groups of components, according to the abstraction level of the 

respective concept represented by each class. 
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Figure 3-3. WSDL Metamodel 

 The operations offered by a Web Service are grouped in INTERFACEs. Every 

time an OPERATION is used, the requester interchanges a set of MESSAGEs 

with the service provider. At the same time each message can contain several 

PARTs or parameters, whose type can be a base type XSD [385] (int, float, 

string, etc.), or any one of the types defined in the types section. In the last 

case, the data type can be defined by means of a TYPE or an ELEMENT 

attribute, from one of the SCHEMAs referenced in the WSDL document. 

 A Web Service could be defined with the components already mentioned, 

despite of the platform or the language used for implementing it. The 

BINDING component allows binding the conceptual Web Service definition 

with the implementation in a specific platform. Each implementation will 

offer access points (END POINT) to the whole SERVICE. 

Please, refer to the enclosed CD to find the XML Schema used to specify 

this metamodel. 

3.3.1.2 UML Profile for WSDL 

After defining the metamodel, we have to identify which UML metaclasses 

had to be extended and how to do it. To this end, the following design guidelines 

were defined in [225]: 
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 DEFINITION objects will be represented by means of a stereotyped class 

since it is explicitly defined in the WSDL specification and it constitutes the 

root of the document. All other elements will be nested within. 

 Likewise, MESSAGE, PART, INTERFACE, OPERATION, BINDING, 

ENDPOINT, SERVICE and IMPORT components have been considered 

stereotyped classes since they are essential components, explicitly defined in 

the WSDL specification. 

 TYPES and SCHEMA components will be represented by means of 

stereotyped compositions (<<Type Schema>>). Those elements represent the 

relation between a DEFINITION component and its data type definitions. 

 Each PART component will be related to the MESSAGE component using it 

by means of a composition. 

 The PART-ELEMENT relationship will be represented as a stereotyped 

association. If the PART component is used as a type, the stereotype will be 

<<Part Type>>, else the stereotype will be <<Part Element>>. 

 The relationship between an OPERATION component and the MESSAGEs 

that it uses will be represented as an association stereotyped with <<In>>, 

<<Out>> or <<Fault>>, depending on the type of the message: an input 

message, an output message or a fault message. 

 The MESSAGE, INTERFACE, BINDING, SERVICE and IMPORT 

components will be related with the DEFINITION component by means of a 

composition. 

Finally, WSDL data types are based on the XML Schema Standard. Thus, 

we use the UML extension for XML Schemas modelling proposed in [364]. All 

things considered, the resulting UML profile is graphically depicted on Figure 3-4. 
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Figure 3-4. UML Profile for Web Services Modelling 

The UML extension collects a set of stereotypes, tagged values and 

constraints that enable us to describe a Web Service according to WSDL standard 

and using UML as notation. In the following, we show how we use this extension 

in a case study.  



164    Juan M. Vara 

 

3.3.2 MIDAS-CASE4WS Case Study: a Web Service for 

validating e-mail addresses 

This section shows the application of the profile just introduced to model a 

Web Service for validating e-mail addresses. This is the case study that will be 

used to introduce MIDAS-CASE4WS. 

Figure 3-5 shows the WSDL document for describing the ValidateEmail 

Web Service. 

<?xml version="1.0" encoding="UTF-8"?>

<UMLWSDL2.0testing-Diagram xmlns:xsi=http://www.w3.org/2001/XMLSchema-instance

xsi:noNameSpaceSchemaLocation="http://kybele.escet.urjc.es/UMLWSDL2.02Schema-testing">

<definitions>

<targetNameSpace>http://example.com/ValidateEmail</targetNameSpace>

<nameSpace location="http://schemas.soap.org/wsdl" prefix="default"/>

<nameSpace location="http://www.w3.org/2001/XMLSchema" prefix="xs"/>

<nameSpace location="http://schemas.xmlsoap.org/wsdl/soap" prefix="soap"/>

<type name="ValidateResponse" complexity="complexType"/>

<type name="ValidateAddress" complexity="complexType"/>

<typeSchema>

<targetNameSpace>http://soap.einsteinware.com/Email</targetNameSpace>

<type>ValidateAddress</type>

<type>ValidateResponse</type>

</typeSchema>

<message name="ValidateEmailAddressSoapOut">

<part name="ParametersIn" typeOfPart="udtType">

<udtType>ValidateAddress</udtType>

</part>

</message>

<message name="ValidateEmailAddressSoapIn">

<part name="ParametersOut" typeOfPart="udtType">

<udtType>ValidateResponse</udtType>

</part>

</message>

<interface name="EmailServiceInterface">

<operation name="ValidateEmailAddress">

<input name="ValidateEmailAddressSoapOut"/>

<output name="ValidateEmailAddressSoapIn"/>

</operation>

</interface>

<binding name="EmailServiceBinding" type="EmailServiceInterface">

<soap-binding protocol="http://schemas.xmlsoap.org/soap/http"/>

<operation-binding name="ValidateEmailAddress">

<soap-operation style="encoded“

soapAction="http://soap.einsteinware.com/emailservices.aspx/ValidateEmailAddress"/>

<input>

<soap-body use="encoded" namespace=http://soap.einsteinware.com/emailservices.aspx

encodingStyle="http://schemas.xmlsoap.org/soap/encoding"/>

</input>

<output>

<soap-body use="literal"/>

</output>

</operation-binding>

</binding>

<service name="ValidateEmailService">

<endpoint name="EmailServiceSoap" binding="EmailServiceBinding">

<soap-address location="http://soap.einsteinware.com/emailservices.aspx"/>

</endpoint>

</service>

</definitions>

</UMLWSDL2.0testing-Diagram>

 
Figure 3-5. WSDL description of the ValidateEmail Web Service 
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The Web Service defines one operation, ValidateEmailAddress, owning 

two messages (input and output). The input message, 

ValidateEmailAddressSoapIn defines one part, ParametersIn, whose type is 

defined by the ValidateEmailAddress XML Element. Likewise, the output 

message ValidateEmailAddressSoapOut defines the ParametersOut part whose 

data type is the ValidateEmailResponse XML Element. Both XML Elements are 

located at the Types section since they are included in the WSDL document just 

for data typing purposes.  

The portType EmailServicePortType collects the operations that will be 

performed by the Service. In this case there is only one operation, 

ValidateEmailAddress. The link between this portType and the SOAP protocol is 

described by the EmailServiceBinding Element. The service has only one port 

EmailServiceSoap, which defines the Web Service location through an URL. 

Figure 3-6 shows the ValidateEmail Web Service modeled using the 

mentioned UML extension with MIDAS-CASE4WS.  

 

 
Figure 3-6. Screen Capture from MIDAS-CASE4WS: ValidateEmail Web Service 

represented in extended UML 

The working panel depicts the Web Service model for the above case 

study. The controls bar on the left hand allows adding any one of the elements 
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identified in the presented WSDL metamodel. The upper tools bar provides with 

the usual utilities, such as undo/redo, zoom in/zoom out, etc. 

Back to the model itself, the name attribute of the definition component 

serves to name the class while the TargetNameSpace attribute will be represented 

as a property of the class. 

The set of namespaces used to build the WSDL document are represented 

as tagged values. For the sake of clarity, tagged values are represented as notes 

linked to the corresponding element. The relationship between the 

<<DEFINITION>> class and the data types ValidateEmailAddress and 

ValidateEmailResponse are represented by means of a composition stereotyped as 

<<TypesSchema>>. The TargetNameSpace attribute of the schema is be 

represented as a tagged value. 

Regarding messages, they are connected to their parts by means of 

compositions, while <<Part_Element>> associations serve to connect each part 

with the data type it uses. Therefore, the association between ParametersIn part 

and ValidateEmailAddress element is stereotyped with <<Part_Element>>. And 

so it is the association between ParametersOut part and ValidateEmailResponse. 

Next, the EmailServicePortType uses one operation, 

ValidateEmailAddress. This fact is represented by means of an aggregation 

between them. In turn, the operation defines two messages, 

ValidateEmailAddressSoapIn and ValidateEmailAddressSoapOut. Stereotyped 

associations represent this fact. The stereotype depends on the nature of the 

message (whether it is an <<Input>> or an <<Output>> message). 

Whereas the binding is also included in the model, its connection with the 

SOAP protocol is omitted. The EmailServiceBinding component describes the 

binding to the porttype. Therefore an association is depicted connecting both of 

them. 

Finally, the service and port elements are represented by means of the 

EmailService object that contains the EmailServiceSoap port. A composition is 

used to show this containment relation. 

3.3.2.1 Distinguishing syntax from semantics 

In previous sections, when we have described MIDAS-CASE architecture, 

we have mentioned that two different files were used to store any MIDAS-CASE 

model: one for the semantics and one for the syntax. This idea remains valid in the 

context of MDE (with some modifications as we will show). Hence, we elaborate 

more on this topic in this section. To that end, we use the case study to show the 

decomposition conducted between the syntax and the semantics of the model.  
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We focus on the definition of the operation offered by the Web service, the 

messages it uses, and the parameters or parts of each message. Left hand side of 

Figure 3-7 shows such messages and parts, while right hand side shows part of the 

XML files to store separately the semantics (a) and the syntax (b) of the model. 

a

b

 
Figure 3-7. Excerpt from the Validate E-Mail Web Service model and XML files 

On the one hand, the semantics of the Web Service is collected as a WSDL 

document. So, the data in the XML fragment showed in (a) is merely WSDL 

information. It describes the messages used by the operation provided by the Web 

Service and the parameters used by these messages. 

On the other hand, the XML fragment in (b) contains just the data for the 

appropriate rendering of the drawing elements in the diagram. Therefore, an XML 

element stores the data for the element representing the input message; another 

one does so for the output message, etc. 

3.3.3 Modelling XML Schemas with Extended UML 

As it happens with Web Services, UML has to be extended to represent 

XML Schemas. Therefore, to develop MIDAS-CASE4XS, that aims at supporting 

XML Schema modelling with UML, we started from the UML profile proposed in 

[364, 365]. Following section summarizes the metamodel as well as the 

corresponding UML profile. 

3.3.3.1 XML Schema Metamodel 

Current M2DAT-DB bundles a complete DSL for XML Schemas 

modelling (including the corresponding metamodel). However, when we first 

addressed the task of supporting the modelling of XML Schemas, we sketched the 
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one below. Although it is quite simple and obviously far from being complete, it 

was a good starting point and the origin of the final version that has been obtained 

after several iterations. As a matter of fact, a metamodel is not proven to be valid 

until you really start working with it. This implies not only creating terminal 

models conforming to your metamodel, but also coding model transformations 

and code generation programs that use it, either as source or target metamodel. 

Hence, the strengths and weaknesses of the initial version started to arose when 

we adressed the development of the tooling for the proposal, never before. 
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Figure 3-8. XML Schema metamodel and corresponding UML profile 

In the following section we describe the metamodel next to the UML 

extension. 

3.3.3.2 UML Profile for XML Schema 

Again, for the definition of the UML extension for XML Schema 

modelling, we followed the guidelines proposed in [147].  

First we defined the metamodel (previous subsection), using UML. Then, 

for each relevant element of the metamodel we included a stereotype in the 

profile. Notice that not all of the elements in the metamodel are ―relevant 

elements‖. Some of them can be ignored, or just represented by common UML 

elements. The UML extension is depicted in  below. 
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Figure 3-9. UML extension for XML Schema 

 According to the proposed UML extension, an XML schema is represented by 

means of a UML package stereotyped with <<Schema>>, which will include 

all the components of the XML schema. The name of the schema will be the 

name of the package. 

 The XML ELEMENTS are represented as classes stereotyped with 

<<ELEMENT>>. To name them, the ‗name‘ attribute of the element is used, 

since they are explicitly defined in the XML Schema. The attributes of the 

element will be tagged values of the class. Besides, the order of appearance of 

the element in the including XML Schema is represented prefixing the name 

of the class. 

 The XML ATTRIBUTES are represented by means of UML attributes added 

in the class that represents the containing XML element. The base type of an 

XML attribute will be represented as the data type of the corresponding UML 

attribute. The constraints to be satisfied by the attribute (required, optional) 

and the default or fixed value will be represented as tagged values. 

 A COMPOSITOR composition is a special kind of composition stereotyped 

with the kind of compositor: <<Choice>>, <<Sequence>> or <<All>>. It can 

only be used to join an element (whole) with the elements that compose it 
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(parts). The compositors can be used to represent graphically nameless XML 

complexTypes. 

 Named COMPLEX TYPES were represented as classes with the 

<<complexType>> stereotype. The complexType will be related by means of 

a USES association with the element, complexType or simpleType that uses 

it. If the complexType has no name, it will be represented in an implicit way 

by the compositor used to define the complexType. 

 An XML type with no sub-elements or attributes is a SIMPLE TYPE. 

simpleTypes were considered as classes stereotyped with <<simpleType>>. 

Its name being the same of the containing element, to whom it will be related 

by means of a composition stereotyped with <<simpleType>>. 

 An XML COMPLEXCONTENT element allows redefining a complexType. 

Thus, it was represented as a subclass of the complexType that it defines. 

 A simple content element allows redefining an XML type. Therefore, 

SIMPLECONTENT elements were represented as stereotyped classes related 

by means of an inheritance association to the type (simple or complex type) 

which is redefined by the simpleContent type. 

 A USES association is a special kind of unidirectional association, 

stereotyped as <<uses>>. It joins a named complexType with the element or 

type (simple or complex) that uses it. It can also be used to join two elements 

by means of a ref attribute in one of the elements. An arrow pointing to the 

referenced element represents the direction of the association. 

 A REF element will be represented by means of an attribute stereotyped with 

<<REF>> and represents a link to another element. 

3.3.4 MIDAS-CASE4XS Case Study: a Web Information System 

for medical images management 

To show MIDAS-CASE4XS capabilities we briefly present a case study 

that is part of a real application presented in [364]: a Web Information System for 

medical images management. The system uses XML DB as data repository to 

integrate the management of both the structured (OR) and semi-structured (XML) 

data of the application. 

Figure 3-10 shows the model for the XML Schema represented with 

extended UML that drives the design of the XML part of the DB 
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Figure 3-10. Screen Capture from MIDAS-CASE4WS – XML Schema model for medical 

images management  

Broadly speaking, the information from each medical image is shredded 

into a group of Fichero_Info files. Each Fichero_Info could contain two types of 

data: Analyze (Info_Analyze) or DICOM (Info_DICOM), as stated by the choice 

compositor linked to the Fichero_Info element. Both, Analyze and DICOM are 

formats for medical images storing and interchanging [7, 230].  

Intrun, each Analyze or DICOM element is composed of a set of elements 

whose internal structure differs from one to the other. To define such structures 

two named complex types are used, Elemento_Analyze_Type and 

Elemento_DICOM_Type. Both types are a sequence of XML elements. 

3.3.4.1 Code Generation 

As we have already mentioned, MIDAS-CASE modules provides with 

code generation from extended UML models. In the case of MIDAS-CASE4XS, 

the code generated is the XML document defining the XML Schema.  

Back to the case study, the model shown in Figure 3-10 is automatically 

serialized into the XML Schema shown in Figure 3-11 shows such schema edited 

on XMLSpy [14], an XML editor that supports automatic validation of XML 

Schemas. Likewise, the output from validating the Schema at the official checker 
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from the W3C (http://www.w3.org/2001/03/webdata/xsv) is also shown in the 

picture. 

 
Figure 3-11. Screen Capture from XMLSpy - Validation of the XML Schema generated by 

MIDAS-CASE4XS 

3.3.5 Developing MIDAS-CASE: Technical Issues 

This section aims at summarizing some remarks about the implementation 

of MIDAS-CASE prototypes. Obviously, the three prototypes mentioned 

(MIDAS-CASE4WS, MIDAS-CASE4XS, MIDAS-CASE4UML) were developed 

using the same technologies, all of them spinning around the JAVA language. 

Next, we describe briefly some details about the implementation of each tier of 

MIDAS-CASE architecture. 

http://www.w3.org/2001/03/webdata/xsv


1st Iteration: MIDAS-CASE    173 

 

3.3.5.1 Presentation 

To develop the interface layer we used JGraph [10, 11]. JGraph is an open 

source graph component available for JAVA whose powerful API simplifies the 

tedious task of drawing diagrams. Figure 3-12 shows the JAVA classes 

architecture of MIDAS-CASE UI. 
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Figure 3-12. User Interface Layer Architecture 

As it happens with almost every graphical application, it is based on the 

Model-View-Controller pattern (MVC, [148]). Each new model or diagram in 

MIDAS-CASE is a MyGraph object. This class extends JGraph, the root class of 

JGraph. The MyGraph object is associated with a data model (MyGraphModel) as 

well as a view (MyGraphUI object). 

The data model is composed of a set of nodes and edges, plus ports. Each 

node owning at least one port. This way, two nodes are connected by connecting 

their ports. The data from each node lies in a MidasCell object while its 

presentation lies in a MidasCellView object. In turn, the aggregation of all the 

_View classes constitues the view of the model that is the MyGraphUI class. 

For rendering the data, each MidasCellView is connected to a Renderer and 

an Editor object. The former deals with node appearance, such as dimensions, 
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size, location, colours, shapes, etc. The later allows modifying the data of that 

node. That is, the information included in the corresponding MidasCell objetc. 

Finally, event handling lies on the MyGraphHandler class, that connects 

the data model with its view. 

3.3.5.2 Logic and Persistence 

As explained in sections 3.2.2 and 3.2.3, each model created in MIDAS-

CASE is persisted in two different XML documents (syntax and semantics). In 

some sense, we are separating the data model from its view. So, the conceptual 

architecture of MIDAS-CASE fits perfectly with the technical deployment of the 

tool based on JGraph. 
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Figure 3-13. Application Logic and Persistente layers architecture 

Figure 3-13 summarizes the JAVA classes architecture for the logic and 

persistence tiers. The ActionMenu class is connected to the StoreGraph, 

ImportGraph and UtilXMLDB classes. Whenever the user wants to save a model, 

the ActionMenu class handles the event raised. This one invokes the method of 

one of the other two classes. 

When the user saves a model, the StoreGraph uses its link with the 

MyGraph class to collect all the information about the model. Next, it generates 
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two XML documents: one conforming to the XML Schema for diagram data 

management and the other one conforming to the corresponding XML Schema, 

depending on the type of the model. That is, the XML Schema for persisting 

WSDL models XML Schema models or UML class diagrams. All these Schemas 

can be found on the enclosed CD. 

Later on, an UtilXMLDB object is in charge of saving the XML documents 

in the Oracle XML DB. To do so, this class provides with methods for storing, 

retrieving, deleting and modifying XML documents stored in the DB. 

On the other hand, it is the ImportGraph class, which deals with retrieving 

models. To do so, it creates a new XMLDataParser object that implements a SAX 

(Simple API for XML) parser. The XMLDataManager class handles the events 

raised by the parser as it finds XML tags. Handling these events means adding 

new elements to the model, as well as setting their properties. This information is 

found on the XML document being parsed. 

3.3.6 Adding more Functionality to MIDAS-CASE 

All along this chapter we have emphasized the relevance of extensibility in 

any tool for MDSD. In particular, the modular and open nature of MIDAS to new 

advances in the field implied the need to design MIDAS-CASE as an open 

framework, ready to incorporate new technologies and support new 

fucntionalities. 

Therefore, when we first planned the development of MIDAS-CASE we 

stated that the tool had to be both modular and scalable. The underlying idea was 

to make lighter the workload related with adding more functionality. The modular 

architecture of MIDAS-CASE helps on this task. So, whenever a new type of 

model has to be supported, a new module is developed. To buid the new module, 

we just have to follow the same architecture and development process of the 

previous ones. Hence, we need to identify clearly the different steps to carry out in 

order to complete the development process of the module. 

In the following, we describe the set of steps to carry out such process. 

Note that they are clearly identified, what eases the task of developing a new 

module. Figure 3-14 summarizes these steps. 
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Figure 3-14. MIDAS-CASE Extending process 

 First, the metamodel for the new type of model is defined in an XML Schema. 

Then, the Schema is registered in the underlying XML DB. This way, the 

repository is ready to store models conforming to the new metamodel. 

 Next, we have to customize the user interface to add support for modelling the 

elements included in the new metamodel. To do so, we have to extend the 

MidasCell and MidasView classes (see section 3.3.5.2). 

 To adapt both the logic and the persistence tiers to the new type of model, 

new StoreGraph and XMLDataManager classes are implemented. They 

provide with the parsers to retrieve and store models conforming to the 

recently added metamodel. Anyway, the gap between the classes to 

implement and the existing ones is minimal. The changes consist of a few 

modifications over some methods well-localized. 

 Finally, minor revisions over the common classes (those implementing menus 

and toolbars) will integrate the newly implemented functionality into 

MIDAS-CASE. 

3.4 Lessons Learned 

MIDAS-CASE was a coarse approach to a tool for MDSD of WIS. 

Nevertheless, designing, planning and developing MIDAS-CASE provided with a 

set of lessons learned and good practices. Likewise, some of the ideas that we tried 

to capture in MIDAS-CASE had proven to be valid later. In fact, the most 
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important MDE frameworks or tools are total or partially based on some of those 

ideas. 

Next, we summarize and put forward some of them, next to the main 

conclusions obtained from the MIDAS-CASE project. We follow the same 

structure used to present MIDAS-CASE: we present these ideas in a top-down 

way, from the presentation to the persistence tiers. 

3.4.1 User Interface Development 

One of the main tasks that a tool supporting MDSD has to provide with is 

model editors. In fact, such editors constitute the most of the user interface of this 

type of tools. Therefore, mastering the development of model editors is a must in 

order to develop tools for MDSD. 

In the context of the MIDAS-CASE project we have constated that the use 

of graphical components (like JGraph) to develop user interfaces increases the 

degree of freedom. You are able to do almost anything when coding the user 

interface from scratch since it provides with fine-grained control over the result. 

Taking it to the extremes, we might say that the graphical component provides 

with an API to create and handle (very simple) lines and nodes and it is up to the 

developer how they are combined in order to create the look and feel of the tool. 

On the other hand we consider the frameworks for development of tools for 

MDSD. Some of them include facilities for developing graphical editors for 

models, starting from the corresponding metamodel (see EMF/GMF or MetaEdit). 

However, when using such frameworks you are losing control over the result. 

Developing the editor (at least, the graphical part) is easier, but the kind of things 

your editor will be able to do are limited by the capabilities of the framework. For 

instance, you may not be able to use a specific shape or it may be impossible to 

format the information shown on those elements as needed 

Regarding MIDAS-CASE, the screen captures spread over the previous 

sections prove that such approach works well. The result is quite appealing and the 

editors built are intuitive and elegant.  

Nevertheless, you should consider that coding the user interface was the 

most time-consuming task of MIDAS-CASE development. Given that there 

should be a compromise between the graphical capabilities you want for your tool 

and the effort you dedicate to implement the user interface, the lesson to learn is to 

use one of the above-mentioned facilities whenever you need to develop a models 

editor.  
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3.4.2 XML Schema as (meta)modelling language 

A quick look at the most accepted modelling tools serves to confirm that 

the use of XML Schemas to express metamodels and XML documents to express 

conforming models, have been finally the most adopted way of building models 

repositories. 

Indeed, UML models are persisted using XMI [391], the OMG standard for 

interchanging, manipulating and integrating XML data and objects. Hence, a tool 

implementing XMI creates an XML Schema from the UML model (before XMI 

2.0, a DTD was created instead of the Schema) [386]. From there on, you may 

define terminal models conforming to your model by defining XML documents 

conforming to the above Schema.  

EMF [382] itself follows this approach. Its underlying format for model 

management is also based on XMI. In a simplistic approach, we could argue that 

Ecore metamodels are direct translations of XML Schemas to (XMI) conforming 

Schemas. Likewise, Ecore terminal models are (almost) XML documents 

conforming to the above Schemas. 

Since XML syntax is too verbose and not very easy to use, abstractions 

over the underlying models are provided in the form of graphical editors to 

simplify the task of model editing. However, the idea of using XML as modelling 

language remain valid, though it is done at lower abstraction levels. 

3.4.3 Separating the Abstract Syntax from the Concrete Syntax  

All along the previous sections we have stressed the separation between 

syntax and semantics that we implemented in MIDAS-CASE. In fact, we used 

different files to store the syntax and the semantics of each model. 

At the time of writing this dissertation, when we revisited the MIDAS-

CASE project we realised that the idea of distinguishing syntax from semantics is 

widely adopted by the most relevant MDE tools, though the terminology has 

changed (see section 2.1.4 for clear definitions of each term), maybe because we 

were on the dawning of MDE and some concepts were still a bit unclear. At 

present, abstract syntax is used to refer to what we called semantics in MIDAS-

CASE. Likewise, we used just syntax instead of the actual concrete syntax.  

However, the idea remains valid: we need to separate the relevant 

information from the way we render it. When talking about (graphical) models we 

mean that we distinguish the abstract syntax (the concepts modelled) from the 

concrete syntax (the layout of the visual diagrams used to show them).  
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In fact, this is one of the bases of EMF, where models are stored as .Ecore 

files whereas diagrams are stored as .diagram files. As well, OMG followed this 

approach when they liberated the UML Diagram Interchange (XMI-DI) 

specification [271]. They aimed at easing the task of model exchange between 

different modelling tools. Since XMI was devised just for exchanging the abstract 

syntax of models, the concrete syntax was lost. Thus, when a model was imported 

from other tool, it was not displayed correctly. Indeed, apart from the eternal 

dilemma around XMI versioning drawbacks, nothing was said about diagramming 

information exchange. Definitively, this fact hampered the adoption of XMI and 

thus, OMG conceived the UML Diagram Interchange to cover this gap.  

Nevertheless, CASE tools developers did not pay a slight bit of attention on 

XMI-DI due to its limitations. Basically, it was not rich enough to support 

exchange of the visual presentation of a model. In fact, OMG has created recently 

a working group to facilitate interoperability among software models and model 

standards, i.e. to taddress specifically this issue, the Model Interchange Working 

Group (MIWG) [276]. 

The problem is still a serious drawback on the most accepted industrial 

tools. Just to cite an example, we have tried ERwin to ArgoUML import/export 

(see section 2.4.3.7). Indeed, ERwin is (said to be) able to export models to a wide 

variety of formats.  

When you import any ERwin model you are interchanging just the abstract 

syntax of the model (and not completely), the concrete syntax is ignored. Hence, 

you are not able to display the diagram that represents your model. When you are 

using a big model, this is not a trivial problem. Indeed, the only models that will 

be correctly displayed in this kind of tools will be the proprietary model, i.e. those 

made with the tool itself because they are persisted in just one file that mix-up 

concrete with abstract syntax. 

3.4.4 UML Profiles became DSLs at the Time of Implementation 

Although next chapter will elaborate more on this matter, after building 

MIDAS-CASE prototypes we were on the position of saying that, when it comes 

to implementation, DSLs (again the term was not much used at that time) are a 

better option than UML profiles. Indeed, the most recognised model-driven 

methodological proposals have opted for using DSLs to implement their UML 

profiles (see UWE [205] and the works from Trujillo et al. for instance [231]). 
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3.4.5 Model-Transformation Language 

On of the most important things we learnt developing MIDAS-CASE was 

the relevance and crucial role of model transformations in MDE.  

All the transformations (model-to-model and model-to-code) bundled in 

MIDAS-CASE are encoded in the tool. More specifically, the XML parsers are in 

charge of these tasks. To that purpose, the parser navigates the extended UML 

class diagram whereas it generate an XML output. Such XML file is the target 

model. The code generation follows the same path, aside from the fact that this 

time the XML output stream has to conform to a different Schema: the one that 

defines the XML Schema or the WSDL metamodel. 

This solution worked fine just for a while. As soon as we decided to 

introduce some minor modifications over the metamodels (the XML Schemas), 

we realised that we had to re-implement the parsers. This was a quite tedious and 

repetitive task. Moreover, encoding the mapping rules in the tool hides the logic of 

the application. The user has no idea about the development process that the tool 

is implementing. Even worse, he has no option to modify it in order to adapt to 

new business rules.  

For the MDE vision to become reality, development tools should not only 

offer the possibility of applying predefined model transformations on demand, but 

should also offer a language that allows (advanced) users to define their own 

model transformations and then execute them on demand [320]. 

Finally, the use of general-purpose programming languages for model 

transformations coding is discarded bt the MDE community. As a matter of fact, 

the vast majority of model transformation languages adopt declarative approaches 

versus the traditional imperative approach of standard programming languages. 

For instance, when you code a model transformation, you need to keep track of 

which elements have been already mapped and to which output elements they 

have been mapped. The use of an imperative language to that purpose is an error 

prone task. In addition, it results on too verbose programs, very complex to 

manage [342]. 

In summary, model transformations cannot be sensibly written in a 

standard programming language, Object Oriented (OO) or otherwise. Instead, a 

DSL for model transformation is to be used. 
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3.4.6 Separation of Concerns: Modularization 

The architecture of MIDAS-CASE favoured the modularization of the tool. 

The tool was thought as a set of coexisting modules or subsystems, each one 

providing with specific capabilities: deploying a UML class diagram, modelling a 

Web Service description and so on. The underlying idea was to encapsulate all the 

functionality related with each type of model in one place. That is, one module for 

each type of model. This way, to support a new type of model we add a new 

module whereas adding new capabilities to work with a specific type of model 

means modifying only the corresponding module. 

You may consider this modular architecture as a separation of concerns, a 

traditional practice in Software Engineering [286, 340], to which MDE has also 

adhered from its origins [207]. The idea is very similar to the one we captured in 

MIDAS methodlogy: a layered architecture, with each layer representing one 

concern of the system. 
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4. Solution: M2DAT Architecture and 
Technical Design 

Previous chapter has presented MIDAS-CASE, our first attempt to develop 

a tool supporting MDSD according to MIDAS methodology. However, the advent 

of MDE an its related technologies made us reconsider the design and 

specification of MIDAS-CASE in order to take advantage of the advances in the 

field. We want to move from an isolated stand-alone tool to an integrated 

framework. that bundles the most recognised tools supporting MDE tasks and is 

open to constant evolution. The result is M2DAT. 

This Chapter presents M2DAT‘s conceptual architecture and the decisions 

that drive M2DAT‘s technical design. That is, which are the approaches and 

technologies adopted for support each MDE task in M2DAT and how they are 

used. In addition, in those tasks where several options could be sonsidered, we 

provide with a discussion on them in order to justify the final decision. 

Indeed, MDE is still mainly a research field and it was just an incipient 

idea when we starterd to wotk on this thesis. Hence, building an integrated 

framework for MDSD implies studying the different options before making a 

decision on which is the approach or technology used to support each task. For 

instance, you may use a general-purpose language or a DSL to code model 

transformations. If you choose a DSL, then you may use a declarative language, or 

an imperative one. Besides, there are different languages based on each paradigm. 

Which is the one that best fit your needs?  

In the following sections we will explain also this kind of decisions (both 

methodological and technological). First, we present M2DAT‘s conceptual 

architecture and put forward some remarks on its technical design. Next, we 

present each component of M2DAT‘s technical design. Finally, the last section of 

this chapter summarizes some guidelines on how M2DAT‘s specification is to be 

used in order to develop a new module for M2DAT. 

4.1 M2DAT Overview 

Before diving into M2DAT‘s specification, we would like to provide with a 

brief overview of the tool. We believe that having in mind a general idea will help 

in the understanding of the rest of this chapter. Thus, we first present M2DAT‘s 

conceptual architecture to later introduce M2DAT‘s technical design.  
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4.1.1 M2DAT Conceptual Architecture 

M2DAT architecture, sketched in Figure 4-1 follows roughly the initial 

architecture of MIDAS-CASE (see section 3.2). It keeps a high level of 

modularization and can be described according to two orthogonal dimensions: 
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Figure 4-1. M2DAT Conceptual Architecture 

On the one hand, M2DAT can be thought of as a set of modules, one for 

each model proposed by MIDAS to model the WIS. Each model is defined as a 

DSL (insights on the motivation behind this decission will be given along this 

chapter). So, M2DAT is a kind of workbench to work with those DSLs. To that 

purpose, each tool provides with the functionality needed to handle models 

elaborated with the DSL, like model editors or validators. For instance, Figure 4-1 

shows four different modules: the one for ORDB modelling in Oracle, the one for 

modelling standard-compliant ORDB schemas, the one for XML Schema 

modelling and finally the one for UML modelling. The first three modules 

together constitutes M2DAT-DB, the reference implementation for M2DAT 

presented in this dissertation. In contrast, the last one is provided in the context of 

the EMP project (see section 2.1.12.1), showing the perfect integration of M2DAT 

with existing technologies. 

On the other hand, M2DAT conceptual architecture follows the separation 

of concerns principle [207, 286] by distinguishing the presentation of each model 

from the model itself. We will show how this is semi-automatically provided by 

EMF and thus supported in M2DAT when introducing M2DAT technical design. 

This way, the presentation tier includes the editors (whether they are 
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diagrammers, tree-like or textual editors) to work with each type of model 

supported by M2DAT while the models are handled by the logic tier. 

M2DAT aims to integrate several DSLs. This implies adding support for, at 

least, model transformations to connect the different DSLs and you may consider 

also supply with model weaving capabilities. In addition, the capabilities that a 

DSL workbench should support consist not only in a graphical editor and code 

generation capabilities. The inclusion of support for model checking, model 

execution, etc. might be also considered [241]. We use the term model processing 

to refer to all these tasks, following the idea expressed in [370] to refer to all the 

tasks related with model handling. Indeed, the model-processing tasks constitute 

the logic of any tool for MDSD like M2DAT. Therefore, we call the module 

comprising all these functionalities model processor. For instance, when the user 

requests a model to be validated, it is the model processor which will carry out the 

validation. 

Finally, the persistence tier of M2DAT, in contrast with the one of 

MIDAS-CASE, is a file system that incorporates traditional versioning policies. 

We have discarded the use of an XML Database since, at the moment, it just 

brings complexity to the development of M2DAT while most of the advantages 

derived from using a Database commented in section 3.2.3 are already supported 

(or in the way to be) by MDE technologies [30, 43, 304]. 

In the following we detail how this conceptual architecture is mapped into 

a technical design. 

4.1.2 M2DAT Technical Design 

After defining the conceptual architecture of M2DAT, the next step is to 

select the approaches and technologies to be used in order to obtain a complete 

specification of the tool, i.e. for each MDE task, we have to select the existing tool 

or component supporting such task, that best suit M2DAT‘s needs. To provide 

with a brief overview on this selection of technology, Figure 4-2 shows the main 

components used to deploy one particular module to support a DSL called 

MyModel. Please, note that each component and the decision to use it will be 

described and justified in the following sections. We might say that present 

sections aims at putting forward what comes.  

First of all, Eclipse is the underlying platform over which M2DAT will run. 

In particular, all the technologies that M2DAT integrates, as well as M2DAT 

itself, are built on top of EMF (section 2.1.12.2 gives an overview on Eclipse 

architecture and EMF). Therefore, the core of M2DAT is Eclipse and the set of 
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plug-ins that compose EMF. Later, each component or tool that is integrated into 

M2DAT is another plug-in (or set of plug-ins) running atop of EMF and using the 

models handling facilities that it provides with. Indeed, M2DAT is another set of 

plug-ins running atop of EMF that connects the different components that 

integrates M2DAT. These connections are represented by grey arrows in Figure 

4-2. 
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Figure 4-2. M2DAT Technical Design overview 

The top of Figure 4-2 shows that the separation between the presentation 

of the model and the model itself (concrete VS abstract syntax) that was captured 

in the conceptual architecture is automatically supported by EMF (we will cover 

this matter in more detail in EMF section). To that end, EMF provides with 

generic editors for models plus the infrastructure to use other components, like the 

Generic Modelling Framework (GMF) to build more sophisticated editors.  

By contrast, at the lower level we can see that the abstract syntax of the 

model is used as input or output in any model processing task. The support for 

these tasks is embedded in the model processor: 

 The model transformations are developed using ATL as transformation 

language (see section 2.3.3.2) since it has been identified as the most 

convenient in order to get a reliable and efficient tool for MDSD (we will 

justify this statement in forthcoming sections). However, a secondary 

objective of M2DAT is to test the different MDE technologies. This implies 
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things like replicating the same task, like model transformations, with 

different technologies in order to compare them. This way, some 

transformations have been also coded using QVTo from OpenCanarias (see 

section 2.3.3.13), mediniQVT (section 2.3.3.12) and VIATRA (section 

2.3.3.10).  

 In addition, we have mentioned that one of the main contributions of M2DAT 

is the use of parameterized transformations as a way towards supporting 

the introduction of design decisions without reducing the level of automation. 

To that end, M2DAT leans on the ATLAS Model Weaver (AMW) tool to 

define weaving models that are used as annotation models that drive the 

transformation. In addition, the AMW tool is also used for its original 

purpose, i.e. to define weaving models that allow defining the relationships 

between the elements of two models. In this sense, weaving models will be 

used to establish the correspondences between the models used to model the 

different concerns of the WIS. Those models plus the weaving models that 

link them are later processed by ATL model transformations. 

 Code generation responsabilities fall on the MOFScript language (see 

section 2.3.4.5) so far. However, we are planning to integrate also XPand in 

order to compare it with MOFScript performance. 

 Regarding models validation, the Epsilon Validation Language (EVL) is 

used to define constraints over metamodels that are later checked over 

conforming models. 

Finally, we have already mentioned that the persistence of models leans on 

a traditional version control system. In particular we use another Eclipse plug-in 

so-called Subclipse, in order to handle the different software artifacts created with 

M2DAT. Subclipse is an implementation of the recognised Subversion for the 

Eclipse platform. 

All things considered, M2DAT is a framework that integrates the best tools 

supporting each specific MDE task in order to obtain an efficient tool. Even more 

relevant is the fact that M2DAT is completely open to integrate new tools or 

emerging technologies that, either provides with new functionalities or just 

improve the tools supporting the existing ones. 

We would like to mention that developing a tool like M2DAT, that 

integrates different tools for supporting MDE tasks, means living on an ever-

lasting beta version. Even after making your decision, you should be ready for 

changing. New and better products might come or new releases of the underlying 

technology might appear. It is not our intention to threaten the reader with this 
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discouraging outlook. The design decisions that drive M2DAT specification have 

been taken to be able to cope with constant evolution. 

In the following we present each technological decision that drive 

M2DAT‘s technical design plus the components used to support each MDE task. 

Note also that, in some cases the technological decision is preceded by a 

methodological decision, i.e. before selecting a technology we may have to select 

an approach. For instance, we have to select a model transformation approach 

before choosing a model transformation language. Both type of decisions will be 

reasoned in forthcoming sections.  

To that end, we follow the same structure we have followed in this 

dissertation so far. First, we tackle the decisions on the way to define new 

modelling languages. Next, the ones related with supporting graphical 

management of models. Then, we focus on model transformations, putting a 

special emphasis on model-to-model transformations. The use of annotation 

models follows and finally we conclude with the discussion on the integration of 

automatic model validation. 

4.2 Modelling and Metamodelling 

As clearly stated along this document, the building block in MDE are 

models. Any MDE proposal is based on the definition of new modelling 

languages. To that end, two different approaches may be followed: the traditional 

one, based on the extension of the UML standard in an UML profile, or the more 

trendy at present, based on the definition of a new modelling language (almost) 

from scratch (i.e. a completely new DSL). 

In the following we present both approaches and provide with a discussion 

on them in order to justify the methodological decision taken at the time of 

developing the M2DAT specification: to combine the use of UML models at 

higher abstraction levels with the use of DSLs at lower abstraction levels. 

4.2.1 UML Profiles 

UML provides with its own extension mechanism in order to allow 

extending the language in a controlled way. Those mechanisms allow creating 

new building blocks by means of stereotypes, tagged values and restrictions. This 

way, an UML Profile is a package that contains model elements that have been 

customized for a specific domain or purpose using extension mechanisms, such as 

stereotypes, tagged definitions and constraints [70, 270]. A very common way of 
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applying UML was to first define a UML profile for a particular problem or 

domain and then to use that profile instead of or in addition to general UML. This 

traditional way of working, let us contemplate a UML profile as a way to produce 

a domain-specific language (DSL) [317]. 

In effect, a UML 2.0 stereotype is defined as if it was simply a subclass of 

an existing UML metaclass, with associated attributes (representing tags for 

tagged values), operations, and constraints. Finally, you can also use the UML 2.0 

profiling mechanism to view a complex UML model from multiple, different 

domain-specific perspectives—something not generally possible with DSLs. That 

is, you can selectively ―apply‖ or ―de-apply‖ any profile without affecting the 

underlying UML model in any way. For example, a performance engineer may 

choose to apply a performance modelling interpretation over a model, attaching 

various performance-related measures to the model‘s elements. An automated 

performance analysis tool can then use these to determine a software design‘s 

fundamental performance properties. At the same time and independent of the 

performance modeler, a reliability engineer might overlay a reliability-specific 

view on the same model to determine its overall reliability characteristics. 

The language extension mechanisms were slightly restructured and 

simplified for a more direct way of defining UML-based domain-specific 

languages. These languages have the distinct advantage that they can directly take 

advantage of UML tools and expertise, both of which are abundantly available 

In subsequent revisions of UML, the notion of a profile was defined in 

order to provide more structure and precision to the definition of Stereotypes and 

Tagged values. The UML2.0 infrastructure and superstructure specifications have 

carried this further, by defining it as a specific metamodelling technique. 

Stereotypes are specific metaclasses, tagged values are standard metaattributes, 

and profiles are specific kinds of packages [270]. 

It is worth mentioning that the first MDE methodological proposals based 

adopted UML profiles as modelling language. Since UML was (almost) the 

unique modelling language known, they opted for extending it to support the 

abstractions considered in their proposals. For instance, the most recognised 

proposals for Web Engineering, like UWE [198], MIDAS [226] or OO-H [156] 

were (initially) based on the use of UML profiles. 

4.2.2 DSLs 

In software development, a Domain-Specific Language (DSL) is a 

programming language or specification language dedicated to a particular problem 
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domain, a particular problem representation technique, and/or a particular solution 

technique. The concept isn't new—special-purpose programming languages and 

all kinds of modelling/specification languages have always existed, but the term 

has become more popular due to the rise of domain-specific modelling. 

The opposite is: 

 a general-purpose programming language, such as C or Java, 

 or a general-purpose modelling language such as the UML. 

Therefore, DSLs are languages tailored to a specific application domain. 

They offer substantial gains in expressiveness and ease of use compared with 

general-purpose programming languages (GPLs) like UML in their domain of 

application [227]. In other words, while a DSL is designed to solve a delimited set 

of problems, GPLs are supposed to be useful for much more generic tasks and 

thus they cross multiple application domains. In other words, a GPL aims to 

provide with a way to represent abstractions from any particular domain. A given 

DSL provides means for expressing concepts derived from a well defined and 

well-scoped domain of interest [184]. Furthermore, the rules of the domain can be 

included into the language as constraints, disallowing the specification of illegal or 

incorrect models. Examples of DSLs range from the Structured Query Language 

(SQL) [176] to the SED Linux utility for matching and replacing regular 

expressions.  

As well, it is worth mentioning the traditional difference stated between 

Internal (aka as embebbed) and External DSLs [213]. The former is a DSL built 

of constructs in a surrounding programming language. Therefore, the host 

language restricts and influences the syntax of the DSL. The later is built from the 

ground up, what means that you‘ll need to specify a grammar, develop a parser, 

etc. They seem to be small programming languages. 

The trend is to design and develop and internal DSL when an organization 

that uses a GPL needs a technical API for specific tasks. A well-known example is 

Ruby on Rails [301], a Ruby-based DSL for Web applications development. In 

general, the ability to develop an internal DSL depends on the features of the 

underlying language. Dynamic languages like Smalltalk or Ruby itself results 

more convenient that JAVA or C#. In contrast, when you want to provide help to 

non-software experts or developers in the form of support for design and 

development tasks, you better go for an external DSL.  

Another feature of external DSLs is that, opposite to GPL, they are not 

compiled to executable code. By contrast, they use to be translated to the language 
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used by the underlying framework. This is the case of EMF-DSLs, where the 

underlying language is JAVA.  

Finally, it is worth mentioning that when we refer to DSLs in this 

document we are always referring to external DSLs unless explicitly said. 

In general, Language Workbenches (DSL development frameworks) allow 

you to define a new DSL abstract syntax by means of a metamodel plus a concrete 

syntax, typically visual. Note, however that there are some frameworks dedicated 

to define textual concrete syntaxes for DSLs, like xText [122], TCS [179] or TEF 

(http://www2.informatik.hu-berlin.de/sam/meta-tools/tef/). From those 

specifications, the framework provides with a graphical and/or textual editor and 

automatic storage of models. Later on, and depending on the framework, you may 

add code generation capabilities from those models and even code model 

transformations between your DSL and others. 

As stated in chapter 2, there are several frameworks to work with DSLs, 

like MetaEdit+, GME, or the well-known DSL Tools from Microsoft etc. 

However, during the last years the vast majority of MDE research proposals 

(based on the use of DSLs) has adopted Eclipse and more specifically EMF as its 

preferred DSL framework. Mainly because using a common basis (i.e. a common 

underlying framework) simplifies enormously interoperability issues. The basis of 

DSL definition and construction in EMF is Ecore, a common metametamodel, 

which can be seen as a simplified or industrialized version of MOF, whose 

implementation is based on JAVA. We use to refer to those DSLs as MOF-based 

DSLs. This way, if you define the metamodel of your DSL as a model conforming 

to Ecore, the task of building bridges between your DSL and any other built on the 

EMF framework does not have to be simple, but at least feasible. 

Finally, we would like to mention that there is a growing trend in the 

Microsoft and Eclipse communities to use the term DSL to refer to Graphical 

DSL, but this has not to be the case. We may define a DSL and then we may opt 

for adding a graphical notation or not [140, 190]. 

4.2.3 Discussion 

The dilemma between UML Profiles and DSLs has been in the air since the 

beginning of MDE [375]. In fact, we may see it as part of an older dichotomy: 

agile modelling VS monolithic modelling [47]. The underlying idea could be 

summarized as: Shall we use just one big modelling language (like UML) to 

model the whole system or it is preferable to use a different set of abstractions to 

model each part of the system?  



194    Juan M. Vara 

 

In an organization where UML has been used as modelling language UML, 

and that implies almost any software engineering organization, defining a new 

UML profile might be the quickest approach to build a graphical DSL. If your 

organization has been used an UML tool, the task will be done in relatively short 

time with relatively short effort. However, as an internal DSL is constrained by 

the hosting language, a UML profile is constrained by UML itself. Thus, the 

composition rules you may define for your DSL will have to be an extension from 

those defined by UML. Likewise, all the native UML information will be present 

in the modeller, which is distracting if it is not relevant to the domain [140].  

Although at the beginning there was a huge trend towards extending UML 

as a way to define new DSLs, we can state that some years later UML profiles are 

not taking off. As a matter of fact, quite a lot of methodological proposals based 

on MDE were initially based on UML profiles. However, when researchers started 

to develop the technical support for their proposals, the above-mentioned 

drawbacks become more apparent. As a result, those proposals, originally based 

on the use of UML profiles, moved to the use of DSLs. This is the case of the 

already referred MIDAS or UWE. We can find even works that use UML profiles 

as a formal way of specifying their proposal, but uses MOF-based DSLs to deploy 

them [231]. 

In this sense, the use or UML profiles or MOF-based DSLs has been 

conditioned by the effort needed to develop the tooling support for any MDE 

proposal. Just to show how this fact has influenced research works on any MDE 

field, we now have a look at the situation of Model-Driven Web Engineering 

(MDWE, [200]). 

When talking about CASE tool support it should be noticed that the 

proliferation of technologies and tools for developing ―your own‖ MDE tools is 

facilitating the adoption and implementation of MDA principles and techniques. 

Many software companies and research groups are really considering the 

development of their own CASE tool for supporting their own MDE method 

(following the MDA, Software Factories, Product Lines, Generative Programming 

of whatever other more specific model driven proposal). This way, technology is 

playing a key role in the distinction between UML based and non-UML based 

tools: the facilities provided in the context of the Eclipse Modelling Project (EMP) 

and other DSL frameworks, like the Generic Modelling Environment (GME) or 

the DSL Tools, have shifted the focus from UML-based approaches to MOF-based 

ones. Special attention has to be paid on the EMP. The quantity and quality of the 

MDD facilities provided in the context of this project (a common modelling 

framework like EMF, meta-editors like GMF, transformation engines like ATL or 
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VIATRA, code generators like MOFScript) has given rise to a new generation of 

Eclipse tools. As a consequence, more and more MDWE proposals are developing 

their tools as Eclipse plug-ins, like the OOWS suite [347] and M2DAT itself, or at 

least, upgrading or re-defining them to be ―Eclipse compliant‖, like WebRatio [6] 

or ArgoUWE [205]. 

Another factor in favour of using DSL resides on the storing format. UML 

models are to be persisted using XMI [275], an OMG standard that aimed at 

making reality the never-kept promises of UML advantages in the form of 

interoperability. Unfortunately, XMI for UML has turned out as an additional 

complication because mainly of its versioning problems: each tool uses a different 

XMI version, thus UML models are not exportable-importable. Besides, the 

verbosity of XMI complicates enormously handling UML-XMI artefacts. In 

contrast, when you develop your own DSL you can define your own XML format 

for models storage. 

Even Microsoft, always far away from the OMG standards, is adopting 

such approach: they refer to it as pragmatic modelling and is based on the 

combination of UML and DSLs [321]. 

Finally, the ability of applying or de-applying UML profiles in order to 

have different views of a same model is compensated with the use of different 

DSLs to model the different views of the system plus the use of weaving models 

to weave those views. The result is much more flexible than using an unique 

model to specify the whole system. 

Regarding DSLs, some authors claim that, since those languages are closer 

to the problem domain than to the implementation domain and follows the domain 

abstractions and semantics, they allow modelers to perceive themselves as 

working directly with domain concepts [299]. However, in our opinion a DSL is 

not just valid but the best option to model also the solution domain. In fact, we 

follow a well-known principle, followed by some of the most important Software 

Engineering practitioners [136]: we use UML to model the problem domain (for 

instance Conceptual Data models or Use Case models). UML is recognised as the 

best language to for analyzing and designing the architecture of the enterprise. It is 

more intuitive and thus more convenient to be used when transmitting ideas to the 

business architects and the like. On the contrary, we use DSLs to model the 

solution domain, like the ORDB model, the XML Schema model or the WSDL 

model. When we talk about the solution domain, we are referring to IT/SW issues. 

In this case, we need from more detailed and specialised models if we really aim 

to generate working code. Thus, UML is too generic for these tasks. Moreover, the 
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stakeholders in this case will be software developers, not very prone to the use of 

UML.  

All things considered, our response to the dichotomy between UML-

profiles or (MOF-based) DSLs is not just A or B. We bet for a mix of both 

approaches. We use pure UML at the higher abstraction levels (like Class 

Diagrams or Use Case models) and DSLs at the lower abstraction levels, when 

we are close to the final platform and thus we need models that are more detailed. 

However, we do not discard UML completely at those lower levels, since we try 

to define UML-like DSLs. That is, although the underlying language will be an 

Ecore-based DSL, the concrete (visual) syntax will be that of UML. This way, we 

define our own metamodel for Activity Diagrams, Use Case models, etc. Working 

this way, we take advantage from the main contribution of UML: any Software 

Engineer is capable of recognising a UML model. At the same time, we get rid of 

the main drawback of UML: the size of the specification. For instance, when you 

are defining a Use Case model, where is the sense of having to navigate the whole 

UML specification whenever you want to check whether a particular property 

exists or not? This kind of situations has a dramatically input on performance 

when you are using the models as input for code generation or model 

transformation tasks. Your model parser need to navigate the whole UML 

metamodel, while just a little part is needed for defining the different models for 

the different parts of the system. 

4.2.4 Selecting a Metamodelling Framework: EMF 

Previous section has focused in presenting and justifying a methodological 

decision: the selected approach for modelling languages in M2DAT specification. 

The logical step that follows is to translate such methodological decision into a 

technical decision, i.e. it is time to choose the technology to develop M2DAT‘s 

DSLs. In the following we justify our decision on this matter and our bet for EMF 

as metamodelling framework. 

4.2.4.1 Combining DSLs with UML Modelling 

According to the methodological decision that states that M2DAT has to 

combine UML modelling with the definition of new DSLs, the first requisite of 

the selected technology is to support also UML modelling. Indeed, the 

movement from high abstraction levels to low abstraction levels, i.e. from UML 

models to DSL models, will be carried out by means of model transformations and 

weaving models. Hence, the better the integration between UML and the DSLs 

used, the easier it will be to make this movement downwards. 



Solution: M2DAT Architecture and Technical Design    197 

 

This requisite inhabilitates almost all the metamodelling frameworks 

reviewed in section 2.2. In fact, all of them were focused on the definition of new 

DSLs but provide with no support for UML modelling. Besides, their closed and 

isolated nature hampers the building of bridges to bring UML models to such 

frameworks. By contrast, EMF is a DSL toolkit [161] that supports UML 

modelling since the EMP includes the UML2 sub-project, an EMF-based 

implementation of the UML2 standard [270]. 

This way, the fact that the new DSLs developed in the context of M2DAT 

will be defined over the same metametamodel that UML (at least, a widely 

adopted UML implementation) eases the task of bridging UML models with DSL 

models. 

4.2.4.2 Interoperability 

We have already mentioned that a recurrent problem regarding tool-support 

for MDE is interoperability. The main explanation to this issue lies in another 

recurrent problem in software engineering: the gap between standards and their 

implementations [34, 132]. For instance, we have shown how the advantages that 

XMI was to bring as format for models interchange has never come to reality 

because of the different interpretations of the standard that each manufacturer has 

done at the time of implementing it.  

In order to solve this gap, software developers tend to agree in a common 

implementation close enough to the standard and adopt it as reference 

implementation. In fact, the current trend towards the use of EMF has resulted in a 

wide community of EMF users and developers. The most outstanding research 

organizations in the field of MDE are developing their prototypes using EMF. As 

a result, the use of EMF as metamodelling framework leverages the level of 

interoperability of M2DAT since M2DAT‘s models could be imported/exported 

from/to the most recognised and accepted tools in the field of MDE. 

As a matter of fact, the use of EMF as metamodelling framework eases the 

task of finding the right tool to support the rest of MDE tasks. Since the most 

adopted and mature tools for MDE tasks have been also developed in top of EMF, 

we can use any of them without the need of an extra effort to import/export 

M2DAT‘s models from/to such tools. The state of the art from Chapter 2 showed 

that model transformations are the example par excellence of this statement. 

All this given, we can conclude that the use of EMF is basic for any MDE 

proposal to success in current panorama. In fact, M2DAT architecture is a 

simplified version of MIDAS-CASE architecture, where the facilities provided by 

the underlying framework (EMF) solve for free some problems that were solved in 
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MIDAS-CASE by developing a specific component, like the XML parsers or the 

separation between abstract and concrete syntax of the model. 

4.2.4.3 Extensibility 

M2DAT aims at supporting model-driven development of WIS according 

to MIDAS methodology. MIDAS itself is constantly evolving and incorporating 

techniques to include and support the development of new concerns in the WIS. 

Hence, M2DAT has to be also open to incorporate support for the modelling of 

the new concerns as well as for connecting such models with the models of the 

already suported concerns. Therefore, extensibility was clearly identified as 

another mandatory feature that M2DAT had to meet.  

In this context, EMF and Eclipse comes as the perfect platforms to build an 

extensible framework. Indeed, Eclipse is conceived as an extensible framework 

that provides with the basic infrastructure to be extended and was thought to that 

end. Likewise, EMF itself is also an open framework that is permanently evolving 

and incorporating emerging technologies. 

Hence, we will be able to: 

 Integrate any new functionality developed upon EMF on M2DAT. Just think 

of a new model transformation engine, a better code generation tool or 

whatever. As long as they are developed using EMF, they will be completely 

compatible with M2DAT. 

 Integrate support for new model processing tasks in M2DAT. For instance, 

right now M2DAT does not incorporate any model comparison facility, but it 

will be feasible to integrate it once the tools developed in the framework of 

the EMF Compare project [65] are mature enough. 

 Test new prototypes and approaches as soon as they are liberated. 

 Develop and integrate new modules to support the inclussion of new concerns 

in the development of the WIS. 

After selecting a metamodelling framework, i.e. a toolkit for defining the 

new DSLs that will be bundled in M2DAT, the next step is choosing the 

technology to be used to develop graphical editors for such DSLs. 

4.3 Development of Graphical Editors 

When we define a new DSL we start by defining its abstract syntax with a 

new metamodel. Next we need to define its concrete syntax. This means 

associating a notation to each concept and relationship collected in the metamodel. 
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Traditionally this notation has been identified with a visual shape, though it could 

be just a textual notation. In fact, we find the later more useful when using the 

DSL for code generation purposes as we will explain later. However, we should 

not dismiss the relevance and the utility of visual representations of models, which 

has been typically identified as a one of the technological foundations support for 

MDE [21]. 

In this section, after presenting the two options considered for the 

development of the traditional boxes and arrows model editors (aka diagrammers) 

for new DSLs in M2DAT, we justify the final decisions on this matter.  

Besides, notice that using EMF as DSL toolkit we do not need to worry 

about the support for UML graphcial modelling since the UML2 project already 

mentioned (indeed, it is the UML2 Tools project) already provides support for this 

task. 

4.3.1 JAVA Graph Components 

In general, any GPL provides with some libraries for graphics that allow 

defining user interfaces. For instance, when we developed the MIDAS-CASE 

prototypes presented in the previous section, we used JAVA graphics capabilities 

to build the model‘s editors (see sections 3.2.1 and 3.3.5.1 for a more detailed 

insight on this issue).  

However, coding a user interface from scratch is a very tedious task since 

you have to add the needed code not only to depict any detail of your GUI, but 

also to detect any user interaction and make your GUI react properly. That is, you 

are responsible of event handling in the diagram and reflecting the effect of the 

event in the underlying model. 

To help on these tasks, there are several graph components available for 

JAVA, like JGraph [10, 11], the one we used to develop MIDAS-CASE GUI. 

These components provide with an additional abstraction layer over the JAVA 

Foundation Classes that serve to ease the development of graphical editors. They 

provide with abstractions to add in the GUI panel editors, boxes, arrows, widgets 

for properties edition, etc. Besides, the whole framework is based on the MVC 

pattern [148], thus it provides also with the corresponding event handlers for each 

widget of the GUI. In addition, those graph components provides with the 

traditional capabilities you would expect from a model editor, like zooming, 

folding, undo, drag and drop, etc. 
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Using these facilities we were able to develop MIDAS-CASE‘s model 

editors in a systematic way. 

4.3.2 GMF 

The Graphical Modelling Framework (GMF) [341] provides a generative 

component and runtime infrastructure for developing graphical editors based on 

EMF and GEF (Graphical Editing Framework) [250]. Figure 4-3 shows the 

dependencies between those Eclipse components.  

<component>>

DSL Graphical Editor

<component>>

EMF

<component>>

GMF Runtime
<component>>

GEF

<component>>

Eclipse Platform

<<use>>

<<use>>

<<use>>

<<use>>

<<use>>

 
Figure 4-3. Dependencies between GMF, EMF and GEF 

Any GMF editor depends on the GMF runtime and uses the EMF, GEF and 

Eclipse platform. Before the advent of GMF, an Eclipse model editor was 

developed by binding the EMF model with the GEF view by hand-coding. GMF 

undertakes this task replacing the coding by modelling to provide an easier way to 

develop graphical editors using GEF and an underlying EMF model [161].  

The underlying idea is that a set of models serve to define the concrete 

visual syntax of the DSL and collect the correspondences between the EMF model 

(the abstract syntax) and the graphical elements. From such models, GMF 

generate the code that implements the graphical editor in the form of an Eclipse 

plug-in. The development process is depicted on Figure 4-4, detailing the different 

models that you should define to build a GMF editor. 
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Figure 4-4. GMF Development Process Overview 

 The domain model: this is the Ecore metamodel used to define the abstract 

syntax of the given DSL. It defines the non-graphical information managed by 

the editor.  

 The graphical definition model: this model defines the graphical elements to 

be displayed in the editor. 

 The tooling definition model: it states which are the widgets that compose 

the user interface of the editor. In essence, it defines the tool palette. 

 The mapping model: finally, this model links the previous models together. 

Graphical and tooling elements are linked with their corresponding elements 

form the domain model. In other works, it bridges the abstract syntax of the 

DSL with the concrete (visual) syntax plus the widgets to add each different 

modelling element to the diagram. 

GMF tries to simplify the tasks of defining these models by providing with 

wizards that drive the user on the process to define each one. In addition, a 

tentative mapping model is automatically generated. It is a first attempt to match 

the domain, graphical and tooling model. From that initial mapping, the user has 

the the right to modify the mappings identified as needed. 

Once the above models have been defined, GMF generates a new model, 

so-called the generator model. This model encodes implementation details that 

will drive the generation of the final plug-in that implements the diagrammer. 
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This way, the main features of GMF are reutilization of the graphical 

definition for different domains and applications and automatic generation of the 

diagrammer.  

On the one hand, since the only connection between the domain concepts 

and its graphical representation is the mapping model, we just have to modify the 

mapping model to reuse the graphical abstractions already defined for any other 

domain. On the other hand, GMF applies MDE techniques. The diagrammer is 

automatically generated from a set of models applying model transformations. 

Actually, until recently they were not proper model transformations since JET was 

used to generate the diagrammer code. More recently, Xpand has been adopted to 

support this task. All this given, GMF is a perfect example of MDSD. 

Finally, if you are ok with the default capabilities of a GMF editor, you do 

not need to touch a single line of code since the whole process is automatic. 

However, you still have the right to modify the generated code to obtain a 

different look and feel for your editor or to add/modify the capabilities provided 

by GMF. 

4.3.3 Selecting a Technology to Develop Model Editors 

In the following we expose the main reasons in order to select GMF as the 

technology to use in order to develop diagrammers for a DSL plus our bet for 

EMF tree-like improved editors as default editors for M2DAT‘s DSLs.  

4.3.3.1 Compromise between development effort and result 

In general, JAVA Graph components are much more powerful than GMF 

as a tool for graphical editors development. The former provide with a higher level 

of control and detail over the final result. In contrast, a GMF generated editor can 

only be customized to some extent in reasonable time and manner. In addition, the 

look and feel of a GMF editor does not always fit the user needs. For instance, 

Figure 4-5 shows that anchoring between shape is not very accurate. Notice the 

space left between the connector and the node to anchor. 
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Figure 4-5. GMF anchoring problems 

Although this issue could be addressed by modifying GMF generated code, 

it is a very challenging task. The problem lies in GMF internals. GMF‘s 

developers had to compromise the simplicity of the architecture for the sake of 

genericity. However, the advantages derived from using GMF are still 

compensating this drawback.  

4.3.3.2 Interoperability 

When we argued in favour of using EMF as metamodelling framework (see 

section 4.2.4), we already mentioned the advantages provided by EMF in terms of 

interoperability.  

Being developed atop of EMF, GMF shares its beneits in terms of 

interoperability. Hence, while JAVA Graph components and some other exiting 

metamodelling frameworks, like MetaEdit+ (section 2.2.10) offers more accuracy 

when developing graphical editors development, the underlying modelling 

framework of GMF (EMF) provides with direct interoperability with a wide 

variety of MDE tools.  

To sum up, models elaborated with a GMF diagrammer preserve the 

advantages of EMF in terms iof interoperability. In the case of M2DAT, this fact 

is a winning argument in favour of selecting GMF for model editors development.  

4.3.3.3 On the relative relevance of diagrammers in MDSD 

Finally, we would like to downplay the relevance of diagrammers in 

MDSD. As a matter of fact, though graphical editors are an useful and important 

component in any MDSD tool, we have realised that in some scenarios they are 

not the best tool.  

When we first addressed the development and construction of first 

M2DAT‘s prototypes we thought that diagrammers were an essential piece of the 

tooling to be developed. Indeed, they had been traditionally one of the most 

commonly used and accepted tool for Software Engineering tasks. Actually, 
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diagrammers were essential when models were nothing but additional 

documentation for the projects. Then, those diagrams offered a good overview on 

the domain analysis, the system design, the business process and so on. However, 

in the context of MDSD projects, a model became software itself. Hence, a brief 

overview of the model is not enough. For instance, think of JAVA/C# framework 

providing a capability for simultaneous editing in textual and graphical mode. It is 

assumed that the graphical view provides a limited view on programs [99].  

If we want models to be mapped directly to working code, we need 

extremely detailed models. A graphical editor is not always capable of providing 

with the level of detail demanded to that end. Note also that our approach to 

modelling languages, where DSLs are used at lower abstraction levels while UML 

is used at higher abstraction levels, implies that M2DAT‘s DSLs are close to 

deployment platforms. Hence, the need of accurate editors is a must for M2DAT.  

In this context, during the construction of first M2DAT‘s prototypes we 

found that the simple tree-like editors provided by EMF resulted much more 

convenient to work with DSLs modelling PSMs that are directly translated into 

code. As a result, we have worked in identyfing the mechanisms and techniques to 

improve such basic editors and customize them to the needs of each particular 

DSL. Some of them will be introduced in section 5.2.2 when presenting the 

reference implementation for M2DAT. 

However, we still think that diagrammers are needed in any MDSD tool for 

providing with first sights of any given model. Thus M2DAT‘s specification states 

the toolkit for DSL supported by M2DAT has to bundle a diagrammer for 

conforming models, though the effort dedicated to its development should be 

considered very carefully. In this context, the generative nature of GMF fits 

perfectly with our purposes regarding graphical editors development: GMF 

generates an efficient though not perfect diagrammer in reasonable time and 

manner. 

4.4 Model Transformations: the Kernel of a MDSD process 

Model transformations are the masterpiece to drive any MDSD proposal 

forward given that each step of the development process involves a model 

transformation to create or generate a new model from one or more input models 

[41, 316]. This way, once the DSLs of the proposal have been defined and the 

toolkits to work with them have been developed, the next step is to bridge them by 

means of model transformations [246]. 
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As a matter of fact, without automating the mappings between models, the 

effort needed to manually transform the models become prohibitive and 

organizations will not get a full return on MDE‘s promise of faster, less costly 

software development [134]. 

The state of the art provided a complete study on the exiting solutions and 

approaches to develop model transformations. Hence, this section will focus just 

on explaining theselection of approaches and technology made regarding how 

model transformations are to be developed in M2DAT. To that end, the following 

sections revisit some of the conclusions already sketched in section 2.3. 

Given the relevance of model transformations, we separate this discussion 

on the following points: discussion about the convenience of using a GPL or a 

DSL for developing model transformations; selection of a model-to-model 

transformation approach; selection of a (-n hybrid) model transformation language 

and finally, some comments on the comparison between the seleted language and 

existing implementations of the QVT standard. 

4.4.1 GPLs vs DSLs 

The first decision to make is to choose the generic way of address the 

development of model transformations: we might use a GPL or a DSL for model 

transformation. We opt for using a DSL approach.  

The use of a DSL allows defining model transformations as 

transformations models [49] and thus allows model-driven development of model 

transformations [349]. Working with transformation models provides with several 

advantages: 

 During early stages of the development process, it might be preferable to 

concentrate on the properties of the transformation by collecting them in a 

transformation model, that on how it is implemented. 

 We can handle and produce transformation models using the already 

mentioned Higher Order Transformations (HOT), that is, transformations that 

consume and/or produce transformation models [350]. 

 Besides, we can use refactoring or composition techniques to build new 

transformation models [51, 309]. 

 As any other type of model, transformation models can be validated and 

checked with existing tools [72, 218]. 
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 Finally, if we are able to identify a common metametamodel for model 

transformation languages, we can migrate model transformations expressed in 

a particular language to any of the others transformation languages 

conforming to such metametamodel. 

Likewise, the DSL approach is the recommended way of working by the 

OMG itself. In fact, their proposal for model transformations development, QVT, 

is nothing but a recommendation/normative to follow in order to build a DSL for 

model transformations. 

Finally, the use of a DSL eases the development of model transformations. 

Since the language is focused in providing support for an specific task, it typically 

bundles some facilities that, using a GPL, would have to be implemented by the 

developer. In contrast, a DSL for model transformation is specifically intended to 

define how a set of source models have to be visited to create a set of target 

models. For instance, a relatively simple model transformation coded with a GPL 

has to add increasing amounts of machinery to keep track of which elements have 

already been transformed, while DSLs for model transformation use to include 

built-in support for this task [342]. 

To conclude, our first decision on how to develop model transformations is 

to use a DSL for model transformations. 

4.4.2 Selecting a Model-to-Model Transformation Approach: the 

Hybrid Approach 

Once we have made a bet for using a DSL, we need to state which is the 

preferred approach for developing transformations in M2DAT. In the following, 

we briefly present the reasons to discard some of the approaches identified in 

section 2.3.2 to later provide with a more detailed discussion on the remaining 

approaches. 

4.4.2.1 Discarding less commonly adopted approaches 

First of all, direct model manipulation approaches suffers from the same 

drawbacks already mentioned about GPLs: they were not intended for direct 

model manipulation. Thus, a model transformation expressed following such 

approach results complex and too verbose. 

Next, while XML-based approaches work fine for transforming documents 

expressed with markup languages, they are not usable for model transformations 

where XML is used just as storage format but the resulting XML documents are 

far from being intuitive and easily-to-use. 
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While template-based approaches are widely used for code generation 

(indeed, the OMG‘s MOF2T standard is a template language [266]), they result 

too rigid for model-to-model transformations. For sinatcne, they provide very 

limited capability to compose patterns. 

4.4.2.2 Discarding Graph-Based approaches 

Due to the fact that there exists several model transformation languages 

following the graph-based approach, this section aims at exposing its main 

features and main issues in order to adopt or discard a graph-based approach.  

Graph-based transformations are probably more appealing from a purely 

researcher point of view. Graph grammars are based on a solid mathematical 

theory and therefore they present a number of attractive theoretical properties that 

allows formalizing model transformations. In addition, we can think on (visual) 

models as graphs. A graph has nodes and arcs, while a model have classes and 

associations between those classes; this way the fact that models are well 

represented as graphs is particularly appealing to shorten the distance between 

modellers and model transformation developers, a big problem around model 

transformation. Rule-based transformations with a visual notation may close the 

semantic gap between the user‘s perspective of the model and the implementation 

of transformations [377]. 

However, the level of formalization brought by graph-based 

transformations does not make up for the complexity added to the development of 

transformations. Expressing a model transformation in terms of visual graph-

rewriting rules is too challenging. As a matter of fact, existing languages use to 

need from textual constructions to be able to define the transformation. Even in 

some cases, like VIATRA, the visual representation is not supported, thus one of 

the main advantages of graph-based approaches broke up. 

In addition, it is worth mentioning that their level of adoption is rather low 

when compared with DSLs for model transformation. In general, their use is 

limited to the teams that develop them, that use to publish works showing where 

their language is successfully applied to solve some SE problem. We believe that 

this issue is directly related with the inherent complexity of graph-based 

transformations. This complexity hampers the adoption of a tool developed by 

others, since you have to learn, not only how the mappings between your 

metamodels are defined with graph rewriting rules, but also which type of 

rewriting rules are used in the particular language (each language uses different 

notations), how the rules are sequenced, etc. 
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In contrast, we have experienced that DSLs for model transformations are 

much more similar. Once the mapping rules to code have been clearly identified, 

expressing them with different languages is a feasible challenge (given that they 

follow a similar approach). 

Finally, it is worth mentioning that, although not for transformations, 

graph-based approaches have been widely accepted for the rest of model 

processing tasks, especially for simulation of models with dynamic features. As 

well, they are still valid for specification purposes, though a graph-based 

specification has to be later compiled into operational mechanisms. 

4.4.2.3 Discarding purely Declarative and Imperative approaches 

So far we have already discarded almost every approach for model 

transformation development identified in section 2.3.2. From such list, just 

declarative, imperative and hybrid approaches remain to be considered. This 

section summarizes our main conclusions around these approaches and states 

which is the final decission. To that end, it mainly focuses on comparing 

declarative vs imperative approaches. The former is based on defining the 

relations that must be kept between the input and output artefacts while the latter 

is based on explicit creation of target elements using a procedural style plus 

typical programming constructions. 

Declarative languages own an implicit nature. For instance, the pattern 

matching mechanisms are implicit, thus there is no need to implement them in the 

code of the transformation. By contrast, imperative languages force the developer 

to make everything explicit. Hence, a transformation expressed with a declarative 

language use to be more concise than the equivalent imperative specification. On 

the other hand, conciseness might hamper understanding. Indeed, many issues 

remain hidden to non-experts developers in a declarative transformation since it is 

les explicit than an imperative one. Therefore, the learning curve for declarative 

languages use to be longer. 

A major advantage of a pure declarative approach is that each rule is 

completely independent from the others. That is to say, you do not have to worry 

about how X elements are mapped when defining the rule to map Z elements. This 

way, once you master the technique of declarative programming, using a 

declarative language simplifies enormously the task of coding the transformation.  

Likewise, imperative approaches do not maintain intermediate structures 

(so-called transient links). This might adds complexity to include built-in support 

for traceability management in the transformation languages.  
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In addition, declarative approaches implies syntactic separation between 

source and target constructions. A mapping rule in a declarative language 

consists of clearly distinguished source and target patterns what helps on 

identyfing to which model belongs a referred element in the code. In contrast, in 

an imperative transformation you find elements from both source and target 

models mixed on the code. 

Regarding rules scheduling, there are also a remarkable difference. The 

execution of declarative transformations (with and appropriate transient tracing 

mechanism, as we will explain in section 5.3.4.2) is deterministic. Thus, there is 

no need to worry about this issue. In contrast, imperative style implies that 

scheduling of the rules is explicit and it is a mandatory task for the developer. 

With complex metamodels, this becomes a quite challenging task.  

Finally, imperative approaches hamper (if not prevent from) defining 

updatable transformations to support change propagation. Since they focus just 

on how elements are to be created in the target model, without taking into account 

the relations that must hold between source and target elements. For example, 

multidirectionality or target incrementality is only feasible in the context of a 

declarative language. 

To sum up, the imperative style results appropriate just in simple scenarios 

[97]. When you are mapping a model element following the imperative style, you 

are forced to visit all the nested elements. Back to the classical Class to RDMS 

example [46], when you code the rule for mapping classes, you have to visit all 

the nested elements of the class, that is, its properties, methods and association 

ends, and invoke the mapping rules for them. If the source metamodel is complex 

enough, owning a high degree of nesting, the transformation gets too complicated. 

Besides, declarative style is more convenient to support change propagation and 

traceability maintenance [342]. However, the need for imperative approaches 

should not be diminished. Transformations with a huge structural difference 

between source and target metamodel needs from imperative constructions, since 

they own a higher expressiveness. In other words, imperative languages are 

mainly for quick building of models. Its nature makes them more user-friendly to 

developers used to work with GPLs, whereas declarative languages offer the way 

to tie semantically two models and are more easily maintainable. 

To conclude, since declarative languages eases the task of model 

transformation development but imperative constructions are needed to avoid too 

complex transformations, we bet for a hybrid approach where declarative style 

takes precedence over imperative one. As a matter of fact, the state of the art 
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revealed that this is the approach followed by the languages that are nost widely 

accepted. 

4.4.3 Selecting a Transformation Language: the ATLAS 

Transformation Language 

Previous sections have focused on making a methodological decision: 

which is the approach selected to address the development of model 

transformations. Finally, we decided to use a DSL for model transformation that 

adopts an hybrid approach where declarative style is preferred. Now, it is time to 

make a technological decision: we have choose one among the existing languages 

following the selected approach, like ATL, RubyTL or Tefkat. 

We have chosen ATL because, at present, it is considered as a de-facto 

standard for model transformation since the OMG‘s QVT practical usage is hardly 

called into question due to its complexity and the lack of a complete 

implementation ready for industrial production [57]. Unfortunately, the lack of a 

closed specification until recently has burdened the efforts to implement the 

standard. 

In fact, though the scenario has evolved, it is still immature. The efforts of 

different groups working to provide with a complete QVT implementation have 

revealed different problems, difficulties and ambiguities in the current 

specification [149]. Thus, there is no QVT reference implementation. There do 

exist partial implementations, both of QVT-Relational, like ikv++‘s mediniQVT, 

and of QVT Operational Mappings, like SmartQVT or Eclipse‘s QVTo. However, 

none of them combines both approaches (declarative and imperative), in theory, 

one of the strengths of QVT. Moreover, they are still to be adopted by the MDE 

community. As a matter of fact, one can find research works that claim to use 

QVT for model transformations tasks but it turns out that they use QVT just for 

formalizing the mapping of their proposals, while ATL is effectively used to code 

them (see [199] and [231] for instance). Given that they have already a QVT 

specification, why do they move to ATL at the time of coding? Actually QVT is 

not the preferable option even for those that have already specified their mapping 

rules using QVT. 

Nevertheless, to ensure that standard-compliance was not feasible, we have 

tested the usable languages of the QVT specification (since QVT-Core is more 

like a byte code for QVT-Relations) as part of the work carried out in the 

framework of this thesis. To that purpose, we have developed the very same 

transformation (conceptual data model to OR logical data model) with 
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mediniQVT [174] (that implements QVT-Relations) and the QVT-Operational 

Mappings implementation from OpenCanarias [306]. Both of them lose when 

compared with ATL (see the next section). However, we still believe in standards, 

and specifically in QVT. In fact, it is another reason for using ATL. As mentioned 

before, some work has already been done in the alignment of ATL and QVT. Even 

better, Obeo is on the way to finish a QVT-Relations implementation [155] based 

on the ATL-VM [180] (see section 2.3.3.12). Therefore, we expect that an 

efficient ATL-QVT bridge will be available soon. 

In addition, a deciding factor in favor of ATL is available documentation. 

In this sense, ATL is by far, the best existing model transformation engine. It 

provides with a complete user manual [185]; a set of introductory examples 

covering the basics to know when developing model transformations with ATL 

[13]; a zoo of metamodels defined in several formats [24] (KM3 language, Ecore, 

SQL, XMI, DSL Tools XML specific format, etc.); a battery of scenarios where 

ATL transformations have been successfully applied (in research and industrial 

contexts) and a very active newsgroup that helps on solving any doubt not covered 

in the documentation already mentioned. All these resources are available from 

the ATL site (http://www.eclipse.org/m2m/atl/). 

Another important factor at the time of selecting ATL as model 

transformation technology is its good coupling with the ATLAS Model Weaver 

(AMW) tool. Following sections will show that we use AMW to define annotation 

models that are processed by ATL parameterized transformations. In this sense, 

the coupling between ATL and AMW (in fact, they wer developed by the same 

research group) eases the handling of annotations in the model transformation. 

Finally, we would like to mention that at the beginning of 2004, when we 

first addressed the development of model transformations, it was still emerging as 

a research field. Therefore, our decision was based on a preliminary review of the 

few documentation existing and some initial tests. Later on, ATL has turned out to 

be the preferable model transformation engine by the MDE community, and as we 

have mentioned this has contributed decisively to constant improvement of the 

engine, and what is more important for us, the documentation available. In 

addition, during these years we have worked intensively in the development of 

model transformations using not only ATL but also other model transformation 

languages. The experiences gathered have served to confirm that our initial bet for 

ATL was completely correct. 

http://www.eclipse.org/m2m/atl/
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4.5 Introducing Design Decisions on Model Transformations 

This chapter has already presented a set of methodological and technical 

decisions that allow us to specify a MDSD framework. So far, we have identified 

the selected modelling approach, the metamodelling framework to deploy such 

approach, the technical solution to build graphical editors, the model 

transformation approach to follow in order to bridge the different modelling 

languages and the language to implement such model transformations.Therefore, 

we are able to provide with the technical support to automatize a MDSD proposal 

based on the use of DSLs.  

Nevertheless, while we were building first M2DAT‘s prototypes, we 

realised that a completely automatic process from requirement to final deployment 

is not only unfeasible, but also not recommendable. Design decisions have to be 

introduced to drive the development process when you move from one model to 

the other, especially if you are moving down towards deploying platforms. There 

is a need of stating how abstract concepts are to be mapped to concrete software 

artefacts. In some sense, we need to support the introduction of design decisions in 

the MDSD process. 

In addition, the nature of some models makes it even more difficult to 

automate the whole development process. For instance, business process models 

present considerable differences compared to structural models that raises a 

number of issues concerning model transformation [256, 332]. One has to be 

familiar with the hidden concepts in the metamodels. Resulting ambiguities on the 

metamodel layer have to be solved either by reasoning algorithms or user input. 

We need from non-uniform mappings [153] that behave different depending on 

the paremeters received. 

In the following we discuss the different options to address this type of 

issues according to the complexity and performance of each possible solution. 

Likewise, we put forward the reasons that drive us to use the one that was finally 

selected. 

4.5.1 Selecting an Approach to Drive Model Transformations: 

Annotation Models 

According to the principles of MDE, a development process must provide 

for the highest degree of automation. In fact, once the PIM has been defined, the 

rest of the process should be completely automatic. In this context, the simplest 

solution to the kind of problems mentioned in the introduction of this section is to 
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use a default value for these design decisions when coding the model 

transformation. 

For instance, back to the classical Class to RDMS example [46], you may 

use either one of the following mapping rules for one to one associations: a 

foreign key in the table for one of the classes or a distinct table containing the 

primary key of each of the related classes and any link attributes. Traditional way 

of acting is deciding for one option and encode it in the model transformation, i.e. 

all the associations will be mapped by means of a distinct table. But defining a 

one-size-fits-all model transformation in such contexts is not enough. It may occur 

that, in absence of a design decision stating to do so, some constructions are never 

generated on the target model. 

It would be desirable to be able to select the most convenient option for 

each matched pattern in the source model. Back to the example, given a Class 

diagram we would like to state that the X associaton is to be mapped by means of 

a distinct table while the Y association is to be mapped by means of a foreign key. 

In a MDE context where the different steps of the development cycle should be 

automated by model transformations, the only way of introducing such design 

decisions is providing with a mechanism to parameterize model transformations.  

The need of ways of driving model transformation executions was clearly 

identified from the dawn of MDE and MDA. Indeed, the concept of mark 

introduced in the MDA Guide [246] is direcly related with this matter: ―A mark 

represents a concept in the PSM, and is applied to an element of the PIM, to 

indicate how that element is to be transformed‖ (MDA guide, pp. 22). UML 

profiles have been widely used as marks to drive the execution of model 

transformations. 

Nevertheless, marking the model itself we are polluting the model with 

concepts not relevant for the domain that it represents. In section 2.4.4.2 we 

already mentioned the tendency of current tools for model-driven development of 

DB schemas towards the use of non-pure conceptual data models polluted with 

logical details in order to ease the mapping to a logical model. If the conceptual 

model is just to be used to that end, this behaviour might be acceptable. However, 

if the very same conceptual model has to be mapped to another logical model, the 

conceptual model is not valid: the logical details it contained have to be cleared 

out in order to recover a pure conceptual model.  

Then, given that the information to drive the mapping should not be 

included in the model to map, one acceptable way of expressed it is in the way of 

annotations [239]. In general, models are annotated or decorated to insert 
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information that is not defined in the metamodel. Annotation data usually is not 

conceptually relevant to be part of the metamodel. For example, annotations are 

often meta-information used for pre-processing, testing, logging, versioning, or 

parameterization [114, 154, 219]. 

Besides, MDSD must support incremental and iterative development. This 

means that the mappings between models must be repeatable. So, if a mapping 

requires some additional input apart from the source models, this information or 

annotations must be persistent [344]. In a MDE context, everything should take 

the shape of a model. Therefore, we propose to collect this extra data or 

annotations in another model, so-called annotation model, that is attached to the 

source model following the decorator design pattern [148].  

For instance, suppose we have a source and a target metamodel, a terminal 

model conforming to the former and the corresponding model transformation. 

Then, for each annotation model used to execute the transformation, different 

target models will be generated without any modification in the source model. 

This is the approach followed to develop model transformations in M2DAT. 

The use of annotation models to drive mappings execution leverages the 

degree of automation in the MDSD process embedded in M2DAT. As long as the 

models handled are complex enough (and this use to be the case when working in 

real projects), complete automatization of the development process is not feasible. 

However, using weaving/annotation models we are providing both with a way to 

semi-automate the introduction of design decisions plus a way to persist them. 

since the annotations or design decisions will be collected in the weaving models. 

They can be modified and the target models regenerated to reflect the result of 

these modifications. This contrasts with the approach followed by other 

implemented proposals like UWE, where manual refinement tasks are to be made 

after the transformations of some steps of the development process have been 

executed [205]. 

4.5.2 Selecting a Technology to Create Annotation models: 

AMW 

We have just introduced the selected approach to drive the execution of 

model transformations in M2DAT. Next step is to translate such methological 

decision into a technical decision, i.e. we have to identify a technology to create 

the annotation models used in M2DAT. 

First, we have to consider that the need for defining an annotation model 

for every source model might hamper the modelling task. If the process of 
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defining annotation models is not intuitive and user-friendly, the modelling task 

might result too tedious. To help overcoming this issue, instead of using or 

defining a completely new metamodel to create annotation models, we bet for 

using a weaving model (see section 2.1.7).  

Weaving models are a special kind of model used to establish and handle 

the links between models elements. Hence, a weaving model is intended to be 

attached to some other models by nature. Therefore, it fits better to our purposes: 

each element of the weaving model will express some information about an 

elment from the model we want to annotate (so-called woven model). This way, a 

simple scenario of using a weaving model as annotation model is shown in Figure 

4-6. 

Ma

Weaving/Annotation Model
Mw

a12

a12

a12

 
Figure 4-6. Weaving models as annotation models 

Note that this scenario differs from typical scenarios where two models are 

woven. In this case only one model is woven: the annotated model (Ma). Both a1 

and a2 are elements from Ma. They are annotated by linking them with the r1 and 

r2 annotations. In turn, r1 contains a property (a12) that gives extra information 

about a1 whereas r2 contains two properties (a21 and a22) playing the same role with 

regard to a2. 

To create and handle the weaving models used in M2DAT we use the 

ATLAS Model Weaver (AMW). The AMW workbench provides a set of standard 

facilities for the management of weaving models and metamodels [114]. 

Moreover, it supports an extension mechanism based on a Core Weaving 

Metamodel that contains a set of abstract classes to represent information about 

links between model elements [115]. Typically, the classes from the core Weaving 

Metamodel are extended to define new weaving metamodels for specific contexts. 

One of those extensions allows the definition of annotation models and was 

presented also in [115]. Therefore, we could use the afore-mentioned annotation 



216    Juan M. Vara 

 

metamodel directly or use the extension mechanism supported by AMw to define 

new annotation metamodels for each particular scenary. 

In addition, AMW provides with a GUI that adapts to any weaving 

metamodel extension. The user interface is automatic generated according to the 

metamodel extensions by using effectively the reflective API of EMF. In other 

words, using AMW there is no need to develop a graphical editor for annotation 

models. If the annotation metamodel is based on the Core Weaving metamodel, 

AMW generates automatically an easy-to-use and intuitive editor for conforming 

models. For instance, Figure 4-7 shows a screen capture from AMW.  

 
Figure 4-7. AMW GUI Screen Capture  

The panel on the left-hand side shows a UML class diagram (represented in 

the EMF tree-like editor) while the panel on the right-hand side shows the 

corresponding annotation model. Note that when the user clicks over an element 

from the weaving (annotation) model (the PK_title annotation object), the 

referenced element is automatically shadowed (the title property) and viceversa. 

Note also that this way of displaying a model and the corresponding weaving 

(annotation) model results very intuitive: at one side the reference model and at 

the other side, the references. Likewise, the use of AMW‘s GUI is quite simple. 

Just by dropping an element from the left panel to the right panel, AMW creates 

an annotation object for the selected element.  

Finally, we have already mentioned that a decisive factor in favour of ATL 

is its good coupling with ATL. Hence, it is also a decisive factor to choose AMW 

as tool for creating weaving models in the context of M2DAT. Chapter 5 will 

show that AMW annotations are easily handled in ATL transformations. 

4.6 Code Generation: the last step in the MDSD process  

Any MDSD process culminates in the obtention of the working-code that 

implements the software system. Hence, after having identyfing the approaches 

and technologies to build the DSLs fo M2DAT and bridge them by means of 
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(parameterized) model transformations, it is time to select the approach to follow 

for code generation and the preferred technology. 

In the following we provide with a brief discussion on existing approaches 

and present the main motivation behind the use of MOFScript to deploy code 

generation in M2DAT. 

4.6.1 Selecting a Code Generation Approach 

The term code generation has been traditionally related with the last phase 

of a compiler, where an Abstract Syntax Tree (AST) was translated to source code 

in the targeting programming language [140]. Hence, when we addressed the 

specification of how code generation has to be tackled in M2DAT, code 

generation tasks were mainly related with stand-alone parsers following a 

template-based approach, like Velocity, Smarty, Contemplate, Cheetah, Jinja, 

Savant, or Liquid to name only a few. 

With the advent of MDE the role of code generation gained attention. In 

essence any MDSD process is a chain of model to model transformations that 

generates models with a lower abstaction level until a model close enough to the 

targetted platform is obtained. Then a code generation step serializes such model 

into the source code. Since the input for the code generation is a model, a new 

term was coined to refer to code generation in MDE contexts: model-to-text 

transformations. As a result, a number of DSLs for model-to-text 

transformation has appeared during the last years. 

Although deep down, stand-alone parsers and DSLs for model-to-text 

transformation are similar, the main difference lies in which is the artefact that 

drives the generation process.  

In the former, the grammar of the language drives the generation process, 

the parser navigates the input programs to find matches of grammar constructions. 

In the latter, it is the metamodel of the DSL the one that drives the generation 

process. The generator navigates the input models trying to match their elements 

with the patterns (defined in terms of the metamodel) collected in the 

transformation specification. This way, in a code generation process supported by 

a model-to-text transformation language, the model plays the role of the AST. In 

fact, the classes that are instantiated when defining an AST corresponds to the 

classes defined in the metamodel of the DSL. In addition, we can match the 

syntactic sugar [213, 214] of programming languages with the concrete syntax of 

today‘s DSLs. 
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The idea behind code generation remains valid, the innovation is in the way 

the processing is carried out. In GPL compiling, a parser walks the AST while the 

correspondent code is written to an output stream. In MDE contexts the approach 

is the same, it differs only in that the generator visits the internal representation of 

the model to generate the output stream. 

Indeed, the former is comprised in the latter that also comprises traditional 

simple text replacement approaches, whose most representative example is XSLT 

[389]. At best, this type of generators provides with the same capabilities than a 

model-to-text language but a higher cost in terms of complexity and verbosity 

[192]. This is mainly due to the fact they do not take advantage from the 

metamodel to navigate terminal models. By constrast, model-to-text languages 

lean on the metamodel to simplify code generation. Indeed, they do not need to 

perform a lexical analysis, a preprocessing and a parsing phases to build the 

Abstract Syntax Tree (AST). They lean on the metamodel, that defines the classes 

of the AST to build the AST. This way, the metamodel results much more useful 

than a BNF grammar [140] and the task of defining the transformation is much 

more simpler. 

Besides, DSLs for model-to-text transformations use to be metamodel-

based text-generation tools. That is, they may be expressed as models conforming 

to an underlying metamodel. Therefore, as models, they are suitable to be used in 

the context of any model processing task: they might be transformed, validated, 

simulated, etc. In sumamry, using a DSL for model-to-text trasnformations we are 

taking advantage of the same issues already sketched in section 4.4.1 when 

comparing GPLs vs DSLs for model-to-model transformation. 

Therefore, code generation tasks in M2DAT will be developed using 

model-to-text transformation languages. 

4.6.2 Selecting a Model-to-Text Transformation Language: the 

MOFScript language 

Afetr deciding on using a model-to-text transformation language for code 

generation, we have to state which is the language to use. Please, note that we 

stick to code generators in the EMF framework, since we have already made a 

decision on which the underlying framework of M2DAT is. However, this 

decision in not restrictive at all, since the most important (open-source) solutions 

are built upon EMF as the state of the art in section 2.3.4 showed. Hence, such 

section provided also with a brief overview on generating technologies in the 

Eclipse framework.  
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Up to now, MOFScript has been the model-to-text transformation language 

for generation tasks in existing M2DAT prototypes because of several reasons.  

MOFScript was one of the first submissions in response to OMG MOF 

Model to Text RFP process [267], thus when we addressed this task it was 

probably the most contrasted and the most commonly used. Besides, the adoption 

of the visitor-based approach (very similar to traditional programming) shorten the 

training period. Furthermore, the visitor-based approach proven to work fine for 

the firsts generation tasks we tackled in M2DAT protoypes: mainly SQL code.  

Before making the decision, we did some tests with the other generative 

technology that existed in the context of Eclipse: JET. We discarded it because of 

its verbosity. We find it too complex to code M2T transformations with JET since 

it was too JAVA-based and was not devised to work with models (i.e. it sifferes 

from the drawbacks already commented in previous section about standa-lone 

parsers). 

Likewise, by the time we started to develop code generation scripts, nor 

Xpand, neither Acceleo MTL had appeared. Not even the OMG had delivered the 

final specification of the standard. Besides, when Xpand appeared it seemed to be 

too tightened to its underlying framework, OpenArchitectureWare. The definitions 

of M2T transformations with Xpand imposes the use of its workflow component. 

However, right now we are revisiting those technologies, which are much 

more mature than they were a couple of years ago. In addition, when we have 

tackled model-to-text transformations for new concerns we have realised that, in 

some cases, template-based approach fits better and eases the task. For instance, 

when the code to generate is expressed in some mark-up language, like XML or 

HTML, the template based approach simplifies the task. Otherwise, auxiliary 

functions have to be coded and invoked all along the transformation program to 

generate repetitive constructions. 

As well, it should be mentioned that so far there has been much more 

activity around model-to-model than on model-to-text transformation languages. 

Hence, it is still mainly a research field, as the late arrival of the standard 

confirms, where new proposals appear each day. 

Therefore, we do not discard changing our preferences on code generators 

on the mid-time. As a matter of fact, this is one of the advantages of M2DAT. We 

can use or integrate new technologies in the platform as long as they are based on 

EMF. And on current MDE context, this requirement is met by 99% of new 

technological proposals. 
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4.7 Model Validation 

The new role of models in MDE also influences the relevance of having at 

one‘s dispossal model validation mechanisms [91]. Before MDE, models were 

used just for documentation purposes. Thus, their level of accuracy was not a 

cornerstone issue. By contrast, in MDE proposals models are the driving force. 

Any error in a particular model will be transmitted through the different models 

generated until the working-code. Model validation mechanisms can be used to 

detect errors and inconsistencies in the early stages of development and can help 

to increase the quality of the models built as well as the code generated from them. 

These activities are especially important in proposals aligned with MDE because it 

proposes that models were used as a mechanism to carry out the whole software 

development process [249]. 

We have already mentioned that the metamodel of a DSL is not enough to 

reach a precise and rigorous specification of which will be the valid models. The 

metamodel just collect the static semantics of the language, whereas some 

constraints have to be to defined to collect some domain rules that were not able to 

be collected in the metamodel [125]. Such constraints are defined at metamodel 

level and evaluated over conforming models to check if the model is valid. In fact, 

the model will be passed as input to a model transformation designed to work with 

correct models (whether it is a model-to-model or a model-to-text transformation). 

Thus, it has to be free of errors before being used by the transformation. 

In the case of M2DAT specification, the need for model validation 

mechanisms arose when we started to build the firsts prototypes. Hence at that 

moment, the issue has been already tackled in MDE contexts. Therefore our 

decision on this matter was clearly influenced by existing works in the area. This 

is another point to show how the reference implementation of M2DAT influences 

its conceptual architecture and technical design, as Figure 1-4 showed in the 

Introduction Chapter. 

Next two sections summarize our main findings regarding how model 

validation mechanisms can be supported and the reasons behind our final 

decissions on how it will be done in M2DAT. 

4.7.1 Selecting a Model Validation Approach 

There are not many approaches to implement model validation 

mechanisms. In essence, we can distinguish between hard-coding the validation 
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rules in the model editors provided with the DSL toolkit or defining them outside 

of the editors using a DSL for constraints definition. 

Following the same reasonings spread over this dissertation, the latter 

approach results more convenient. Hard-coding the constraints to check in the 

editors goes completely against the traditional principles of modularization [116] 

and separation of concerns [286] since we would be mixing the code for 

visualizing models with the code for validating them in on single place. 

Besides, working that way the constraints remains hidden from the 

developer, thus he would find harder to understand which were the errors he 

introduced that made the validation failed.  

By contrast, coding the constraints outside of the editors improves 

modularization and extensibility. For instance, if the domain rules changes new 

constraints have to be implemented to define what is a valid model. Then, the 

toolkit for the DSL has to be updated to support the new constraints. However, 

working this way, it is just the constrainst checking component what has to be 

updated and the place where such modifications have to be made is much more 

localized. 

Moreover, in contrast with with model-to-model transformation, code 

generation, model-to-text transformation or design decisions introduction, there 

has been a consensus about how model validation is to be implemented in MDE 

proposals and OCL [268] has been commonly accepted as the language to express 

constraints in metamodelling frameworks. Indeed, it was devised for this task 

from the beginning and had been already used to that purpose before the advent of 

MDE.  

Therefore, in this section we will not go deep into the discussion around the 

approach followed and we will adopt one based on the definition of OCL 

constraints. Hence, in the next section we to compare and justify our selection 

among the exiting tools or technologies to integrate OCL constraints in EMF-

based DSLs. 

4.7.2 Selecting a Model Validation Technology: EVL 

When selecting an OCL-based implementation of a model validation 

mechanism we have to first consider the complexity of OCL. Though it seems to 

be a rather simple language, its complexity is a real shortcoming and this is one of 

the reasons why you find such a variety of modelling tools having their own 

navigation language (ATL, QVT, MTL, XPand, Acceleo, JET, etc.) though OCL 
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was devised as a universal navigation and constraint language for MOF-based 

models. The most of them started from OCL and ended by defining an adapted-

version of the standard. 

Likewise, we can find several attempts to support OCL-based model 

validationa in the context of EMF. 

For instance, RoclET [228] allows defining UML models and adding OCL 

constraints over them. In addition, refactoring of constraint after refactoring the 

UML model is also supported. Nevertheless, it is limited to work with UML (1.5) 

models and, though OCL evaluation is supported, validation of models is still too 

immature. 

The EMF validation framework [66] provides a means to evaluate and 

ensure the well-formedness of EMF models both in batch and live modes. 

Although it is based on the definition of OCL constraints, the validation 

mechanisms have to be ad-hoc coded for each metamodel using the framework 

API. That is, you have to develop a plug-in that works over the plug-ins that 

implements your model editors. This was not a good option for us since we aimed 

at a more automatic and declarative way to add validation over M2DAT models. 

In contrast, [101] showed a way to use the MDT-OCL project (another 

EMP subproject) for validation purposes doing exactly what we expected from a 

models validator. It used OCL syntax and it provided with models validation both 

in batch and direct mode. Nevertheless, this work showed two main shortcomings: 

when we used it to implement model validation in M2DAT prototypes:  

 It is too dependent on EMF version, thus it did not work properly as soon as 

we updated EMF.  

 The approach leans too much in EMF-generation capabilities what causes 

that, onde you have implemented some validation over your DSL, it results 

challenging to modify it. For instance, if some constraint has to be modified 

or added, the whole generation process had to be done again and the code 

generated modified by-hand. 

In addition, we have to consider that, though it seems to be a rather simple 

language, OCL specification is quite complex. In fact, this is one of the reasons 

why you find such a variety of modelling tools having their own navigation 

language (ATL, QVT, MTL, XPand, Acceleo, JET, etc.) The most of them started 

from OCL since it was thought as a universal navigation and constraint language 

for MOF-based models. Actually, all of them ended by extending and adapting the 

standard to their needs. These shortcomings have a direct influence when OCL is 

used for validation purposes.  
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In the following we enumerate a number of issues that have been identified 

when OCL is used to that end [61, 102, 203]. They are mainly related with 

usability, but also with ease of development. 

 OCL brings both expressiveness and limitations. You can write analysis 

expressions as complex as OCL allows to do it. In some cases it is more than 

enough while in others it is just poor. Just to put an example of this matter, 

think of the landscape provided by existing transformation languages. While 

they adopt an OCL style to define their navigation languages, none of them 

(apart from the standard QVT) uses OCL ―as-is‖. They extend the language to 

enhance its expressiveness. 

 Directly related with the previous one, we might refer to the weak standard 

library of OCL. It hampers the specification of OCL constraint to carry out 

complex validations . For instance, there is a lack of useful operations to work 

with String types. Again, the fact that model transformation languages use to 

extend OCL to define their validation languages serves to prove this 

statement. 

 Besides, OCL does not supplies mechanisms to provide with detailed reports 

regarding validation results. In the best case, you might alert of which is the 

violated invariant. Therefore, the user should know OCL to understand the 

error commited. 

 By design, OCL does not provides with model modification capabilities. In 

particular, it cannot be used to create, update, or delete model elements, nor 

can it update attribute or reference values. As a consequence, there is no way 

of suggesting valid alternatives, what acts against usability, neither of 

executing corrective actions to solve the detected problem. For instance, if the 

name of an attribute is missing, we might show a widget to the user to set a 

name for such attribute. 

 Besides, there is no distinction between severity levels. That is, your model 

might fulfil or not a constraint, but you can not state whether it is a minor 

problem (warning) or an issue that invalidates the whole model. 

 OCL specification present inconsistencies, specially in the alignment with 

UML 2.X since there remains many references to UML 1.X. For instance, 

some classes specifications have been missing, such as TypeType or 

UnlimitedNaturalExp. This shortcomings hamper the development of OCL 

implementations. 
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 Since constraints to be checked use to be inter-dependent. It might occur that 

there is no sense in checking one constraint if another is previously does not 

evaluate to true. For instance, checking the uniqueness of the name of an user 

defined type has no sense if we have not checked before that every type owns 

a valid name. 

As a conclusion, since OCL is closer to an implementation language than a 

conceptual language, one might argue about why not using another 

implementation language that extends OCL capabilities for validation purposes. 

Just as it has been done with navigation languages supported by current model 

transformation engines. 

M2DAT follows such approach and uses EVL [201] (Epsilon Validation 

Languag,) to support validation of models for M2DAT supported DSLs. Among 

the different proposals studied, EVL is the only language that supports concepts 

such as dependent constraints, user interaction and the ability to define 

inconsistency-repairing behaviour (fixes). This way, we specify the constraints to 

be checked using EVL at metamodel level, and the Epsilon engine evaluates them 

(on demand) on every model conforming to such metamodel.  

4.8 Development Process for M2DAT Modules 

Once we have explained the main technical decisions that compose 

M2DAT technical design, this section aims at presenting the generics of using the 

specification in order to develop a new module for M2DAT, i.e. the technical 

support for integrating a new DSL in M2DAT. 

The development process for new M2DAT modules is summarized in 

Figure 4-8. Steps in the development process are represented with rounded 

rectangles while the different software artefacts produced along the development 

process are represented with ellipses (or circles). 
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Figure 4-8. Development process for M2DAT modules 

1. First step is the abstract syntax definition of the DSL. To that end, the 

metamodel of the DSL is defined in terms of the Ecore metamodel using the 

facilities provided by EMF (like the Ecore tools and the Ecore diagrammer). 

2. Next task is the concrete syntax definition of the DSL. To that end, EMF 

and GMF capabilities are used to generate a couple of model editors, a tree-

like editor with basic capabilities and a diagrammer. Due to GMF 

architecture, the latter is based on the former, what will help on subsequent 

steps of te process. In particular, the GMF editor uses the EMF.Core and 

EMF.Edit generated code (see section 2.1.12.2). 

3. Since we have found that the EMF tree-like editor result quite convenient for 

accurate edition of models though it is too generic, next step implies the 

graphical editors improvement according to the techniques sketched in 

section 5.2.2.2. As a result, not only the EMF tree-like but also the GMF 

editors are improved.  

4. Once the DSL has been defined, it is time to bridge it with already existing 

DSLs. To that end, the next consits of the model transformations 

development. Each transformation comprises several steps:  

o Defining a set of structured rules in natural language 
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o Translate then to a graph-based specification in order to 

formalize them with graph grammars 

o Finally, translate the graph-based specification to executable 

trasformations with ATL. Actually, this is just a first draft of the 

transformation where all the possible design decisions are coded 

using default decisions. 

5. Hence, the next step is the improvement of the model transformations 

introducing annotation models. The transformations are then modified to be 

able to process the weaving models containing the annotations. In addition, if 

the default annotation metamodel does not fit the requirements of the DSL in 

terms of annotations, a new annotation (weaving) metamodel has to be 

defined. 

6. Besides, if the DSL is to be used to define models at the lower abstraction 

levels (PSMs), we have to address the code generation, i.e. to develop the 

model-to-text transformation/s that serialize terminal models into working-

code using the MOFscript language. 

7. Once all the transformations in which the new DSL have been developed, we 

address the implementation of the automatic model validation. We proceed 

this way because of some findings gathered during the development of first 

M2DAT‘s protoypes. We have found that as long as we were developing the 

model transformations, a number of domain rules that each input model has to 

obey arose. Indeed, these rules do not appear until the model transformations 

were addressed since the transformations execution failed in presence of 

erroneous models. Therefore, we delay the implementation of the support for 

automatic model validation until the last moment in order to be able to 

identify all the constraint that a given model has to satisfy. Note that the 

restrictions are coded at metamodel level and attached to EMF generated 

code, thus the validation could be invoked both from the EMF and GMF 

editors. 

8. In addition, the DSL toolkit developed according to the development process 

described is basically a set of plug-ins. In order to ease the task of deploying 

such plug-ins into Eclipse we should address the integration of the developed 

module. To that end, another set of plug-ins have to be developed that let us 

publishing the new bundle of plug-ins (so-called features) that constitute the 

DSL toolkit. 
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Please note that Figure 4-8 is just a simplified version of the development 

process for new M2DAT‘s modules. For instance, we have not included the V&V 

tasks, neither the regression tests that should be made. 

In the following we detail each one of the above-mentioned steps. To that 

end, we summarize the main features of each one of the selected components (in 

case they have not been presented previously) and show how they are used in the 

development process of any M2DAT module.  

Moreover, when presenting the reference implementation for M2DAT in 

Chapter 5 we will show concrete examples of the application of the guidelines 

provided in the following sections. 

4.8.1 Abstract Syntax Definition: using Ecore to define new 

Metamodels in M2DAT 

The core of any project focused on MDSD is at the modelling languages it 

proposes. As well, the core of any modelling language is its abstract syntax. As 

section 4.2.4 stated, the definition of abstract syntaxes in M2DAT lies on EMF. 

Specifically, we use the basis of modelling technologies in Eclipse, the EMF‘s 

metamodelling language, so-called Ecore. We might say that Ecore is the MOF of 

Eclipse. 

Note that this is an example of the everlasting dicothomy between 

standards and their implementations: EMF toolsmiths opted for defining their own 

metametamodel since MOF does not satisfy their needs. In fact, MOF evolution 

has caused its kernel, EMOF, to be aligned with Ecore, reverseing the natural 

tendency: the implementation is conditioning new versions of the standard. 

This way, any new DSL to be incorporated in M2DAT will be defined in 

terms of the Ecore metamodel. Figure 4-9 shows a simplified subset of it. An 

EClass abstract the traditional concept of Class. EClasses own 

EStructuralFeatures that can be EReferences or EAttributes. The former 

represents the properties of the EClass while the latter represents association ends. 

The multiplicity of an association can be specified with the help of the 

lowerBound and upperBound attributes, while bidirectional relationships are 

expressed by two EReferences whith their oppositeOf reference pointing mutually 

to each other. 
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Figure 4-9. Simplified Ecore metamodel 

Besides, EMF provides with the infrastructure to automatically connect the 

modelling concepts collected in the abstract syntax definition, with their 

implementation. From an Ecore model (i.e. an EMF metamodel), EMF generates 

the JAVA code to handle programatically instances of such model (terminal 

models). It also includes generic reusable classes for building editors for them. 

The EMF generation process is summarized in Figure 4-10.  

EMF Runtime

EMF Tools

Model EditorApplication

Generates

Eclipse Platform

Core Edit

Codegen

 
Figure 4-10. EMF Code Generation overview 

EMF consists of three fundamental pieces: Core, EMF.Edit and 

EMF.Codegen.  

 The Core provides the basic support for generating and executing the JAVA 

code that implement the model. Apart from the Ecore metamodel, it includes 

runtime support for the models, including change notification, persistence 
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support with default XMI serialization, and an efficient API for manipulating 

EMF objects. The API lies in JAVA reflection to provide with a generic way 

of handling the objects. 

 EMF.Edit includes generic reusable classes for building editors for EMF 

models and extends the Core by adding support for generating adapter classes 

that enable preview and work with the model, as well as a basic (visual) editor 

for the model. 

 Finally, the EMF code generation facility (EMF.Codegen) is capable of 

generating everything needed to build a complete editor for an EMF model. It 

includes a GUI from which generation options can be specified, and 

generators can be invoked.  

4.8.2 Concrete Syntax Definition: using EMF and GMF to 

develop Graphical Editors in M2DAT 

This section summarizes the process for development of graphical editors 

thas has to be followed when building the technical support for a new DSL has to 

be integrated into M2DAT: 

 First, the metamodel for the given DSL is defined using EMF. As mentioned 

before it will be specified in Ecore format (MYDSL.Ecore in Figure 4-11).  

 From an Ecore (meta-)model, EMF provides runtime support for graphically 

editing, manipulating, reading, and serializing data based on the given (meta)-

model. Thus, models conforming to the previous metamodel can be created 

using a very simple but powerful tree-like editor (e.g. see Sample.mydsl in 

Figure 4-11). 

 As we have mentioned in section 4.3.3.3, we bet for improved EMF tree-like 

editors as the most convenient for handling models in M2DAT. Thus, after 

having generated the EMF-basic editor for our DSL, the next step is to follow 

the techniques described in section 5.2.2.2 to customize it according to the 

specific needs of our DSL. 



230    Juan M. Vara 

 

c2

MYDSL.ecore

ECore

c2

c2

Sample.mydsl

emf
gmf

Sample.mydsl_diagram

 
Figure 4-11. ECORE (meta-)models and EMF/GMF graphical editors 

 Since we still think that diagrammers are convenient in order to provide with 

an useful overview of any model, GMF is used to develop a graphical editor 

for models conforming to the previous metamodel. Remember that bet for 

UML-like syntax, thus the GMF graphical model will be based on a common 

template defined to that end. This way, we ensure that all of the M2DAT 

editors share a common look and feel.  

o Please, note that the model is still stored in the same file 

(Sample.mydsl). In addition, a new file (Sample.mydsl_diagram) is 

created to store the graphical information about the classes and 

associations included in the model. Any subsequent change made 

over the graphical representation will be translated to the underlying 

model. Next Chapter will show some screen captures from the 

graphical editors already develop in M2DAT prototypes. 

Finally, it is worth mentioning that these editors are automatically created 

as Eclipse plug-ins. Thus, they are integrated in the Eclipse platform without any 

extra effort. 
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4.8.3 Model Transformations Development in M2DAT 

We have already introduced the way EMF facilities are used for defining a 

new DSL in M2DAT. To that end, we define the abstract syntax of every DSL 

using EMF metamodelling facilities and its concrete syntax using EMF and GMF 

capabilities for generating model editors. 

The next step towards the integration of the new DSL is the development 

of the model transformations that will connect the models defined with such DSL 

with the rest of models already supported in M2DAT. To that end, we have to 

specify and implement the mapping rules that compose each model 

transformation. 

Regarding how model transformations should be defined, the MDA guide 

[246] stated ―the mapping description may be in natural language, an algorithm in 

an action language, or a model in a mapping language‖ (p. 24). This way, in [355] 

we sketched a common approach to address the development of model 

transformations in M2DAT: 

 First, the mappings between models are defined using natural language. 

 Next, they are structured by collecting them in a set of rules, expressed again 

in natural language. 

 Then, the mapping rules from the last step are formalized using graph 

grammars [126]. 

 Finally, the resulting graph transformation rules are implemented using ATL. 

4.8.3.1 Using graph grammars to formalize model transformations 

This section focuses on explaining the use of graph grammars to formalize 

model transformations as a previous step to implementation oriented to give 

solution to some problems we have detected in the field of model transformations 

[74, 355]. 

There is a gap between the developers behind the different model 

transformations approaches (model transformation toolsmiths) and those who will 

have to use them, the researchers or developers working on MDSD 

methodological proposals (model transformation practitioners). The latter have to 

use the tools developd by the former to implement the mappings embedded in 

their proposals. The technique sketched in the previous section aims at reducing 

this gap by providing a simple methodological approach to the definition of 

mappings.  
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Moreover, formalizing the mappings before implementing them can be 

used to detect errors and inconsistencies in the early stages of development and 

can help to increase the quality of the models built as well as the subsequent code 

generated from them. These activities are especially important in MDE proposals 

since the models are to be used as a mechanism to carry out the whole software 

development process [249]. Graph grammars are based on a solid mathematical 

theory and therefore they present a number of attractive theoretical properties that 

allows formalizing model transformations.  

In addition, from a pure mathematical point of view, we can think on 

UML-like models as graphs. A graph has nodes and arcs, while an UML model 

have classes and associations between those classes; this way the fact that models 

are well represented as graphs is particularly appealing to shorten the distance 

between modellers and model transformation developers Rule-based 

transformations with a visual notation may close the semantic gap between model 

transformation practitioners and toolsmiths [377]. 

To express model transformations by graph grammars, a set of graph rules 

must be defined. These rules follow the structure LHS:= RHS (Left Hand Side:= 

Right Hand Side). Both, the LHS and the RHS are graphs: the LHS is the graph to 

match while the RHS is the replacement graph. If a match is found on the source 

model, then it is replaced by the RHS in the target model. In the context of 

M2DAT, we will follow the approach introduced in [74] to define the graph 

transformation rules for each case.  

In the following, we summarize its guidelines: 

 The nodes in the LHS will be identified by consecutive numbers. These 

numbers make it possible to identify the respective nodes in the RHS. 

 All the properties of the different nodes will have an initial value. To point 

out that this value is undefined, the term ‗???‘ is used. 

 To refer to a LHS node in the RHS, the expression ‗match(x)‘ will be used, 

being ‗x‘ the number that identifies the node in the LHS. 

 Likewise, when referring to an attribute of a LHS node, the dot notation will 

be used, for example ‗match(x).name‘. 

 As the nodes in the LHS, the nodes in the RHS will be numbered. The next 

guidelines must be considered in relation with these numbers: 

o If the same number appears in the Left and the Right Hand Side, the 

type of the node in the RHS will be the same of the respective node 

in the LHS. 
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o If a node in the RHS is identified with a number followed by an 

apostrophe (x‘), the type of this node will be different from the type 

of the respective node in the LHS. All the connections with other 

elements will be preserved. 

o If a number appears in the LHS but not in the RHS, the respective 

node from the LHS will be deleted, as well as the connections in 

which it participated. 

o If the number appears in the RHS but not in the LHS, a new node 

will be added. 

4.8.3.2 Coding mapping rules with the ATL 

Once the mapping rules have been formally specified using graph 

grammars, it is time to translate the formal specification into an operational 

abstraction. To that end, as we argued in section 4.4, we use ATL. 

ATL is a model transformation language and toolkit that provides ways to 

produce a set of target models from a set of source models. Developed within the 

Eclipse platform, the ATL Integrated Environment (IDE) comprises a number of 

standard development facilities (syntax highlighting, debugger, editor, etc.) that 

eases the development of ATL transformations. It is mainly based on the OCL 

standard and it supports both the declarative and imperative approach, although 

the declarative one is the recommended. 

Mappings are implemented in ATL by defining a set of rules: each rule 

specifies a source pattern and a target pattern, both of them at metamodel level. 

Once the ATL transformation is executed, the ATL engine establishes matchings 

between the source pattern and the source model. Then for each matching, the 

target pattern is instantiated in the target model, replacing the matching found in 

the source model.  

In contrast with the most of exiting languages, ATL allows for rule 

inheritance and provides both implicit and explicit scheduling. The implicit 

scheduling is supported by the imperative constructions of ATL. When the 

transformation starts, the algorithm starts with calling a rule that is designated as 

an entry point and may call further rules. After completing this first phase, the 

transformation engine automatically checks for matches on the source patterns and 

executes the corresponding rules. Finally, it executes a designated exit point. 

Explicit scheduling is supported by the ability to call a rule from within the 

imperative block of another rule. ATL transformation descriptions are transformed 

to instructions for the ATL Virtual Machine, which executes the transformations. 

This is analogous to Java and the Java Virtual Machine.  
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One minor comment we would like to do about ATL is a problem detected 

when working with several models conforming to the same metamodel. In this 

situation, there is no way no distinguish between the elements of one model or 

other since the rules are defined at metamodel level. However, it would be helpful 

to be able to make such distinction in order to control which matchings will be 

found for each model. This can be done for instance in SmartQVT, where different 

identifiers can be used to refer to the same metamodel (we can do it also in ATL, 

but the engine will omit the distinction). Nevertheless, this drawback can be 

overcome in ATL by adding complexity on the guard of the rules. 

4.8.4 Improvement of Model Transformations: Introducing 

Design Decisions in M2DAT transformations 

This sections aims at summarizing the main issues related with the use of 

AMW to create annotation models to drive model transformation executions in 

M2DAT. To that end, it first introduces some insights on AMW to later present 

the technique to follow. 

4.8.4.1 ATLAS Model Weaver 

Since the definition of new weaving metamodels in AMW is based on the 

extension of the Core Weaving Metamodel [115], we first describe such 

metamodel. The Core Weaving metamodel, shown in Figure 4-12, contains a set 

of abstract classes to represent information about links between model elements.  

 WElement is the base element from which all other elements inherit. It has a 

name and a description. 

 WModel represents the root element that contains all model elements. It is 

composed by the weaving elements and the references to woven models. 

 WLink expresses a link between model elements, i.e., it has a simple linking 

semantics. To be able to express different link types and semantics, this 

element is extended by different metamodel elements. 

 WLinkEnd defines the link endpoint types. Every link endpoint represents a 

linked model element. It allows creating N-ary links. 

 WElementRef elements are associated with a dereferencing function. This 

function takes as parameter the value of the ref attribute and it returns the 

linked element. For practical reasons, it is defined as a string attribute. There 

is also the inverse identification function that takes the linked element as 

parameter and that returns a unique identifier. 
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 WModel‘s contains also WModelRef’s, which is equivalent with the reference 

of WLinkEnd and WElementRef, but for models as a whole. 

It is possible to associate the dereferencing/identification functions directly 

with the link endpoints. However, the use of separate WElementRef elements 

enables referencing the same model element by several link endpoints. 

WModel

WModelRef

WLink

WLinkEnd

-name : String

-description : String

WElement

-ownedElement 1

-model

1..*

ref : String

WRef

WElementRef

modelRef 

 *

ownedElementRef

wovenModel

child

parent

end

1-*    link

element

 
Figure 4-12. Core Weaving Metamodel 

Typically, the classes from the core Weaving Metamodel are extended to 

define new weaving metamodels for specific contexts. One of those extensions 

was presented also in [115]. It is shown in Figure 4-13 below and allows defining 

annotation models. Note that the Core Weaving Metamodel is depicted on the top 

of the figure, whereas the extension is depicted on the bottom. 

An annotation model includes a single-valued reference to the 

AnnotatedModel plus a set of annotation objects. Each annotation contains a 

single-valued reference to the model element plus a list of properties. The 

properties have an identification key and the corresponding value. The 

AnnotatedModelElement class acts as the proxy for the linked/annotated elements. 

That is, each record is merely a set of key-value pairs.  
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Figure 4-13. AMW Annotation Metamodel 

Once you are able to define your own annotation metamodels, next step is 

showing how a weaving model is used in the model ttransformation development. 

4.8.4.2 Using weaving models as annotation models on M2DAT 

To address the development of model transformations in M2DAT we 

follow the method sketched in section 4.4.2. That is, we firstly carry out a 

preliminary study to obtain a set mapping rules expressed with natural language to 

later formalize them using graph grammars. The next step is to implement those 

formalized rules. To that end we use ATL.  

However, as we have stated at the beginning of this section, in occasions 

some design decisions has to be considered before executing a model 

transformation. This was the case of some of the mappings embedded in M2DAT. 

To solve this drawback we use AMW weaving models as annotation models.  

All this given, the resulting process to code model transformations in 

M2DAT is summarized in Figure 4-14. For every execution of the ATL 

transformation - in other words, for each source model (Ma) - we define a weaving 

model (Annotation Model) conforming to the annotation metamodel that in turn 

conforms to the Core Weaving Metamodel. Such weaving model contains a set of 

annotations. They represent the extra information needed to execute the 

transformation (we may refer to them as the parameters of the transformation). 

Thus, the target model (Mb) is generated from the source model and the weaving 

model. This process allows obtaining different target models from the very same 

source model just by modifying the annotation/weaving model. 
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Figure 4-14. Using Weaving models as annotation models to drive model transformations 

execution 

It is worth mentioning that, though the annotation metamodel presented 

works pretty fine for many scenarios, in some cases we have to define an ad-hoc 

annotation metamodel to ease the addition of extra information to drive the 

mapping process. For instance, we proceed this way to develop the model 

transformations encoded in [357]. 

We may qualify this technique of simple due to the genericity and power of 

the AMW tool, its good coupling with the ATL model transformation solution and 

the use of a common underlying framework used as model handler by all the 

technical solutions that compose M2DAT: EMF. 

4.8.5 Code Generation: model-to-text transformations in M2DAT 

There is not much to say about how code generation tasks are to be tackled 

in M2DAT, therefore in this section we will limit ourselves to introduce the main 

features of the MOFScript language, the model-to-text transformation language 

we have used to implement code generation in existing M2DAT‘s modules. 

MOFScript is a prototype implementation based on concepts submitted to 

the OMG MOF Model to Text RFP process [267]. Since it was the first 

submission to the OMG RFP, it is probably the most contrasted and the most 

commonly used. Besides, its training period is quite short. After coding some 

model-to-model transformations, moving to model-to-text transformations is quite 

easy. A more detailed explanation on the way MOFScript is used will be given 

when presenting the case study. Opposite to the declarative approach of ATL (and 
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the vast majority of existing model to model proposals), model to text 

transformation engines take the form of imperative programming languages. In 

fact, a MOFScript script is a parser for models conforming to a given metamodel. 

While it parses the model structure, it generates a text model based on 

transformation rules. On a second phase this text model is serialized into the 

desired code. This way, MOFScript takes advantage of the metamodel to drive the 

navigation through the structure of the source model, just as an XML Schema 

drives the validation of an XML file. As a matter of fact, every model is persisted 

in XMI format, an XML syntax for representing UML-like (or MOF) models. All 

things considered, model to text transformation are much simpler than model to 

model transformations. 

4.8.6 Automatic Model Validation: supporting Model-Checking 

in M2DAT with EVL 

Finally, this sectiom aims at summarizing how the specification of DSLs in 

M2DAT is to be completed by means of defining the set of additional constraints 

that every model should satisfy in order to be considered a valid model. According 

to section  , automatic model validation is implemented in M2DAT using EVL, 

one of the languages provided by the EPSILON componente.  

EPSILON [203] (Extensible Platform for Specification of Integrated 

Languages for mOdel Management) is an Eclipse component that provides 

support for a number of tasks related with model-driven development. To that end, 

it integrates a family of languages for specialized tasks, like models merge or 

model comparison.  

The Epsilon Validation Language [201] (EVL) is one of them. In 

particular, EVL is a language to specify and evaluate constraints on models of 

arbitrary metamodels and modelling technologies. The idea is the usual, you 

specify the constraints to be checked at metamodel level in an EVL file or module. 

Later, these constraints are evaluated (on demand) over conforming models. 

EVL uses an OCL-like syntax. Indeed, EVL validation specifications are 

structured into Invariants and each Invariant is applicable only over the objects 

whose type conforms to the one specified in the Context of the invariant. This way 

we can look at EVL as OCL with annotations that provide with additional 

facilities: 

 Guards to restrict the context of a given invariant (that is, not all the 

association objects, but just those whose name is X) 
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 Fixes that allows user interaction. A fix let you specify a message to show the 

user when the invariant is not fulfilled, as well as valid alternatives to repair 

the problem. The latter is implemented using EOL (Epsilon Object Language, 

[201]), another OCL-based language to navigate and modify models. In fact, 

EOL is the core language of EVL. Notice that this way, the validation 

mechanism implemented in the DSL toolkit already incorporates the facilities 

for updating the model to solve the issue that raised the error. 

 Two different sub-types of Invariant (Constraint and Critique) to allow the 

separation between errors, that invalidate the model, and warnings, that are 

allowed but act against the quality of the model. 

To show how EVL works, Figure 4-15 shows a simple example: a Critique 

to prevent from Classes whose name does not start with an upper case. 

context Class {

-- The name of a class should start with an upper case letter

critique NameShouldStartWithUpperCase {

guard : self.satisfies('HasName')

check : self.name.substring(0,1) = self.name.substring(0,1).toUpperCase()

message : 'The name of class ' + self.name + ' should start with an upper-case letter'

fix {
title : 'Rename class ' + self.name + ' to ' + self.name.firstToUpperCase()

do {
self.name := self.name.firstToUpperCase();

}
}

}
 

Figure 4-15. Simple EVL example 

The context of the Invariant is Class, thus it will be evaluated over every 

class found on the model. Note that this is not correct indeed since there is also a 

guard. The guard limits the set of objects over which the body of the invariant will 

be evaluated. In this case, just those Classes for which the ‗HasName‘ invariant 

evaluates to true (i.e. those that have a name). The Check defines the body of the 

invariant, i.e. whether the class name starts with an upper case. The Message 

specifies the information provided if the check evaluates to false, while the Fix 

defines a context-aware title (‗Rename class …‘) and contains a statement block to 

specify the fixing functionality (Do part). 
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5. Validation: M2DAT-DB 
A reference implementation is to be used as a consistent interpretation for 

the corresponding specification. Indeed, at least one relatively trusted 

implementation of a given specification is nedeed to discover errors or ambiguities 

in the specification, and validate the feasibility of the underlying proposal [95]. 

Thereby, the main features of a reference implementation are [100]:  

 Developed concurrently with the specification. 

 Verifies that specification is implementable. 

 Serves as a reference against which other implementations can be measured. 

 Helps to clarify the intent of the specification. 

This Chapter aims at introducing the reference implementation for 

M2DAT: M2DAT-DB, a set of interconnected modules developed according to 

M2DAT‘s specification. All together they conform the technical support for  

MIDAS/DB [363], the MIDAS proposal for the development of the content aspect 

of a WIS. In particular we will focus on the module that supports a DSL for 

modelling ORDB schemas conforming to the SQL:2003 standard and the model 

transformations in which it is implied. 

The construction of M2DAT-DB serves as reference implementation for 

M2DAT specification since it confirms that the specification is implementable and 

clarifies the way it has to be done.  

To that purpose we start by giving a brief overview on M2DAT-DB 

architecture and capabilities to later focus on how each MDE task in the 

development of the afore-mentioned DSL is addressed.  

5.1 M2DAT-DB Overview 

M2DAT-DB is a framework for model-driven development of modern DB 

schemas that support the whole development cycle, from PIM to working code. In 

particular, M2DAT-DB support the generation of ORDB schemas for Oracle and 

the SQL:2003 standard as well as XML Schemas from a conceptual data model 

represented with a UML class diagram. 

However, we do not want to focus on M2DAT-DB itself as a development 

tool but as the first prototype of M2DAT. That is, apart from providing with the 

mentioned functionality, M2DAT-DB has served to prove that M2DAT 

architecture and design decisions were right and to put them into practice. In the 
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following we introduce M2DAT-DB architecture as well as the functionality 

supported by the tool. 

5.1.1 M2DAT-DB architecture and capabilities 

Figure 5-1 provides an overview of M2DAT-DB and the model-driven 

development process for modern DB schemas that it supports. 
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Figure 5-1. M2DAT-DB Architecture 

A conceptual data model serves to model the DB schema at PIM level. It is 

represented by means of a UML class diagram. This model is defined using the 

tools provided by UML2 and UML2 Tools, two subprojects of the Eclipse 

Modelling Tools project (MDT, http://www.eclipse.org/modeling/mdt/). They 

focuses on providing implementations of industry standard metamodels, as well as 

exemplary tools for developing models based on those metamodels. This way, the 

UML2 project provides with an EMF-based implementation of the UML standard 

[391], while UML2 Tools is a set of GMF-based editors for viewing and editing 

the different types of UML diagrams. 

At PSM level, two different technologies are considered to implement the 

DB schema: Object-Relational and XML. This way, the DB schema will be 

modelled with an ORDB model or an XML Schema model. In turn, two different 

OR models are considered, the one for the standard, SQL:2003 [387] and the one 

for an specific product, Oracle 10g [391]. 

http://www.eclipse.org/modeling/mdt/
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To move from the PIM to the desired PSM, three model-to-model 

transformations have been developed following the method for model 

transformation sketched on Section 4.8.3. In particular, we have developed the 

following transformations:  

 From UML class diagram to ORDB model for Oracle (UML2ORDB4ORA) 

 From UML class diagram to ORDB model for SQL:2003 standard 

(UML2SQL2003)  

 From UML class diagram to XML Schema model (UML2XMLSchema).  

All of them were first defined in set of structured rules, next formalized by 

means of graph grammars and finally translated to ATL mapping rules. 

Note that, in order to evaluate different languages for model 

transformation, the UML2ORDB4ORA transformation was replicated using 

QVTo (the QVT-Operational Mappings implementation from OpenCanarias, see 

section 2.3.3.13); VIATRA (see section 2.3.3.10) and mediniQVT (see section 

2.3.3.12). Some highlights gathered during the development of such 

transformations were presented in section 5.3.4.2. 

The mapping from conceptual data models to DB schema models leaves 

some space to design decisions. For instance, which collection type is to be used 

when mapping multivalued attributes. To support the introduction of those 

decisions, we use weaving models as annotation models, according to the process 

described in section 4.8.4.2. This way, the ATL existing transformations were 

refined to compute not only the source models, but also such AMW annotation 

models. 

At PSM level, we have also built the bridge to move from the SQL:2003 

ORDB model to the one for Oracle and vice versa. To that end, we have 

developed two ATL unidirectional transformations (SQL20032ORDB4ORA and 

ORDB4ORA2SQL2003) since support for bidirectional transformations is still 

quite immature [99]. 

Finally, a last set of MOFScript model-to-text transformations generates 

the working-code from each specific PSM, i.e. SQL standard from the SQL:2003 

model, SQL for Oracle from the Oracle model and XML Schema from the XML 

Schema model. 

As well, three diagrammers plus three tree-like editors have been 

developed using EMF facilities. One for each type of PSM supported. Actually, as 

we discussed in section 4.3.3.3, we prefer the tree-like editors for development 

tasks, though the diagrammers are well-suited to provide with a quick overview of 
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the model. In this sense, it is worth mentioning that we discarded the diagrammer 

for XML schema models since we realized that, as long as the model get complex, 

its representation as a class diagram was unmanageable. Indeed, the tree-like EMF 

editors fit better to the nature of XML documents and result much more intuitive 

and user-friendly for this task. 

Finally, as we have already mentioned, M2DAT uses EVL to support 

automatic model validation (see section 4.7.2). This way, EVL files were coded 

for each DSL integrated into M2DAT-DB. These files collect the set of 

restrictions that have to be checked over a terminal model defined which any one 

of such DSLs. 

As Figure 5-1 shows, we plan to add support for two other MDE tasks: 

textual editing of models and extracting models from legacy code. In fact, we have 

already developed a textual editor for Oracle OR models. To that end we have 

used the TEF framework (Textual Editing Framework, see section 2.2.14). 

Though the results are promising, the framework is still too instable to be included 

as is in M2DAT-DB. Regarding model extraction, we have started to study text-

to-model transformation languages (see Appendix C) to evaluate if they fulfil our 

requirements in order to integrate model extraction capabilities into M2DAT. 

All things considered, it becomes clear that developing M2DAT-DB 

implies making use of the whole M2DAT‘s solution defined in Chapter 4. 

However, next section provides with some ideas to back up the election of 

M2DAT-DB as a reference implementation for M2DAT.  

5.1.2 Why we choose M2DAT-DB as a first M2DAT prototype 

When we addressed the task of defining and building a MDSD framework 

to support the development of WIS, the first task was designing its architecture. 

To that end, we fixed some requirements, like modularization and extensibility. 

Once we had a first draft of the architecture, it was time to validate it. To 

that purpose, we built the two MIDAS-CASE prototypes presented on Chapter 3. 

Such prototypes serve to confirm that, though they performed their jobs in an 

efficient way, they presented some drawbacks from a pure MDE point of view. 

They implemented a very localized functionality. Each prototype supported a 

different DSL, whose metamodel was not too complex, in a completely isolated 

way. In fact, when we started thinking on the connection of MIDAS-CASE 

prototypes, we realized that MIDAS-CASE architecture did not meet our needs. 

As well, they provided with a set of lessons learned. 



Validation: M2DAT-DB    247 

 

As a result, we defined a new version of the architecture, the M2DAT 

architecture presented in section 4.1. Regarding the conceptual architecture, it was 

merely a refinement of the previous MIDAS-CASE architecture. In contrast, 

technology advances resulted in a completely new technical design as we have 

shown. Indeed, all the tools and components used in M2DAT‘s specification did 

not exist when we developed MIDAS-CASE. 

To validate M2DAT‘s specification, we had to make a decision on which 

of the methodologies that integrate MIDAS (see Section 1.3) was the most 

suitable to develop a first prototype supporting the method. In contrast with 

MIDAS-CASE, this time we aimed at testing every one of the capabilities that we 

wanted to integrate into M2DAT. Therefore, we chose to develop the technical 

support for MIDAS/DB, the method for the content aspect of MIDAS [363] since: 

 First of all, it was complex enough since it comprises a number of different 

DSLs. 

 It allowed us to prove the feasibility of the proposal for a complete 

development cycle: from PIM models to working-code. 

 Different platforms were to be targeted, two standard platforms, SQL:2003 

and XML Schema, plus a commercial one, Oracle. In addition, both the result 

of the code generation processes for XML Schema and Oracle could be 

loaded and validated against existing commercial products. 

 Likewise, the models involved were real models, widely-acknowledged and 

rather complex. XML Schema and SQL:2003 are two standards widely used, 

whereas Oracle is probably the most adopted DBMS worldwide. 

 It included not only PIM2PSM, but also PSM to PSM transformations plus 

model-to-text transformations. Besides, the complexity of those models imply 

the need to support additional mechanisms of validation to enforce the 

consistency of terminal models.  

 Last but not least, before addressing the development of this thesis, the 

research activities of the PhC candidate were focused on the study of OR and 

XML databases. In particular, we had been working in the definition of a 

methodological proposal to model ORDB schemas and XML schemas. 

Therefore, we were ready to tackle the definition of DSLs for these tasks, plus 

the development of the corresponding toolset to support them. 

All in all, the rest of this Chapter presents how the specification of M2DAT 

has been put into practice to built M2DAT-DB, the technical support for the 

development of the content aspect of a WIS. To that end, we use the support for 
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each MDE tasks that comprise a MDSD process. As we have mentioned, we will 

focus on the development of a DSL for modelling ORDB schemas conforming to 

the SQL:2003 standard. 

As well, along this Chapter we will show the application of the resulting 

tooling. To that end, though we have handled a battery of self-made case studies 

during the development process, here we will not use one of them. Instead, we 

take one from existing literature to illustrate that the tooling developed works 

properly for any model. Using an ―external‖ case study prevent us from using ad-

hoc models that might fit better to our needs. So, to illustrate the following 

sections we use a case study taken from [385] (p. 5): an Online Movie Database 

(OMDB). The complete Case Study can be found in Appendix D. 

5.2 Defining new DSLs in M2DAT 

This section focuses on introducing how the definition and toolset building 

for a new DSL is addressed in the context of M2DAT. In essence, this task 

corresponds to the definition of a new metamodel, that collects the abstract syntax 

of the DSL, and the construction of an editor for the DSL, that associates the 

concepts collected in the metamodel with its concrete syntax. 

In the following we present the definition of the SQL:2003 DSL that allows 

modelling ORDB schemas conforming to the SQL:2003 standard. 

5.2.1 Abstract Syntax Definition 

M2DAT‘s metamodels are defined in terms of Ecore (see section 4.2.4), 

the metametalanguage of EMF, a simplified implementation of EMOF (Essential 

MOF, [265]). We have already presented the Ecore metamodel in section 2.1.12.2 

In the following we present how the Ecore metametamodel is used to 

define the OR metamodel for SQL:2003 standard. 

5.2.1.1 ORDB Metamodel for SQL:2003 

Figure 5-2 shows the complete ORDB metamodel for SQL:2003. Due to its 

complexity, in the following we have shred it according to the main building 

blocks that contains to ease its presentation. 

 



 

 

 
Figure 5-2. SQL:2003 ORDB Metamodel  
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First of all, note that due to the underlying XML nature of Ecore, any Ecore 

metamodel has to include a root element. In this case, the root element is the 

Schema class. 

Each Schema is composed of (Figure 5-3): DataTypes, whether they are 

built-in (predefined) or user-defined types; Behavioural Components, that will 

be Procedures or Functions (returning an object of a DataType) and Tables. 

 
Figure 5-3. Partial view of the ORDB metamodel for SQL:2003: Schema metaclass 

Regarding Data Types, we have identified three big groups (see Figure 

5-4):  

 Predefined Types receive special attention, thus section 5.2.1.2 is dedicated 

to the technique devised to support modelling of built-in types in PSM 

models. 

 User Defined types could be Distinct Types, defined over a Predefined Type, 

or Structured Types, the basis of ORDB schemas designing. 

 Finally, constructors allow defining Constructed Types on top of Data Types. 

This, way a Reference Type simulates a pointer to a User Defined type. A 

Collection serve to model sets of objects of a particular Data Type. They 

could be ARRAYs (predefined size) or MULTISETs (whose size can be 

modified dynamically), and ROW types that collect a set of fields, all of them 

of a Predefined Type. 
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Figure 5-4. Partial view of the ORDB metamodel for SQL:2003: Data types 

Every Structured Type (Figure 5-5) may extend another Structured Type. 

Besides, it owns a set of Attributes, that admits a default value and a set of 

Methods. Each method could override another one and contains a set of 

Parameters, that will be a Parameter With Mode, i.e. in, out in/out mode. 

 
Figure 5-5. Partial view of the ORDB metamodel for SQL:2003: Structured Type 
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The Structural Component class (see Figure 5-6) collects the set of 

properties and relationships shared by Columns (belonging to a particular Table), 

Attributes (belonging to a particular Structured Type) and Fields (belonging to a 

particular Row Type). The particularities of every Structural Component are 

modelled as Features. For instance, the model could contain a Column object of 

CHAR type that includes a Feature object that limits the size of the column to 20 

characters. 

Though every Restriction is always included in a Table, it is related to one 

or more Structural Components. In turn, there are Table Restrictions and 

Column Restrictions. The latter will be Not Null constraints, while the former 

could be a Check, a Referential Constraint (Foreign Key) or a Unique 

constraint, that could be as well a Primary Key. 

 
Figure 5-6. Partial view of the ORDB metamodel for SQL:2003:  

Structural Component and Restrictions 

To conclude, we will focus on the different types of Tables that could be 

found on a SQL:2003 ORDB schema.  
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Figure 5-7. Partial view of the ORDB metamodel for SQL:2003: Tables 

A Base Table is a regular table whereas a Typed Table is a special type of 

Base Table defined over a Structured Type. While a Base Table contains values, a 

Typed Table contains objects. Besides, it could extend another Typed Table. On 

the other hand, a Derived Table is defined over a Table and may be persisted as a 

View. Derived Tables are created on-the-fly using a SELECT statement, and 

referenced just like a regular table or view. Derived tables exist in memory and 

can only be referenced by the outer SELECT in which they are created. For 

instance, SELECT * FROM (SELECT * FROM Sales) AS a . Finally, triggers 

might be defined over any table. 

5.2.1.2 Modelling Primitive Types on Platform Specific Models 

As we have sketched in the previous section, the task of modelling built-in 

types in PSMs needs special attention. If you aim at being able of generating 

working code from a model, you need it to be very detailed. Otherwise, you end 

up generating just some skeleton of the final code. Part of the complexity related 

with platform modelling resides in the type system supported by each platform. 

Technological platforms, like SQL:2003 or Oracle, supports very rich type 

systems. To be able to use the whole type system supported by a platform when 

defining a model for such platform, special considerations have to be made when 

defining the metamodel of the corresponding DSL. In addition, related tooling has 

to provide with special facilities to simplify the definition of models. The tooling 

issue will be addressed later. Here we focus just on the technique devised to 

include built-in types in the metamodel in an efficient and semantically rich way. 

Each platform uses to structure the supported built-in types in a 

hierarchical way. Leafs are the concrete types that can be instantiated, while 

enumerated data types serve to choose one among the family of final types. For 
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instance, if you have a look at Figure 5-8 you will find that there are three 

different Number Types, NUMBER, BINARY FLOAT and BINARY_DOUBLE. 

Datatype

BasicDatatype

ANSITypeBuiltInType

CharacterType

SuppliedType

NumberType LOBType

NumberTypes

#NUMBER
#BINARY_FLOAT
#BINARY_DOUBLE

 
Figure 5-8. Partial view of the SQL:2003 Built-in Data Type System 

Each different Data Type owns a series of inherent characteristics, that no 

other Data Type has. When the Data Type is used to define the type of some 

element in a model, a value has to be set for each characteristic of the Data Type. 

This value applies just for this very concrete use of the Data Type. If the Data 

Type is used to define the type of another element, the value of each characteristic 

has to also set for that concrete use. For instance, in Figure 5-9, the Customer table 

owns two columns, Name and Address, having the same type, CHARACTER. 

However, the size of the CHARACTER Data Type has a different value for each 

column. 

CUSTOMER

Name

Address

CHARACTER

SIZE: 50

SIZE: 100

TABLE

DATATYPE

 
Figure 5-9. Defining Data Types characteristics 
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To support the complete modelling of built-in Data Types without adding 

too much complexity to the metamodel we lean on two main techniques: 

 A Feature class is added in the metamodel. It is extended to define a set of 

valid Features for each family of Data Types. To that end, each descendant is 

a pair key-value, where the key take its value from an enumerated Data Type 

that states which features can be defined for each concrete Data Type. For 

instance, Figure 5-10 shows the Features defined for the SQL:2003 built-in 

Data Types. This way, a Structural Component whose type is Numeric, may 

include a Feature object that sets the precision, the scale and the radix of the 

concrete Data Type used. 

 
Figure 5-10. Partial view of the ORDB metamodel for SQL 2003: Features 

 Then, each Structural Component owns a set of Features. This way, when 

a Structural Component object is added, the value of the features for the Data 

Type used to define the type of the object are nested in theoobject itself. An 

example is shown in Figure 5-11: both, the Name and Address attributes of 

the Customer table share the same data type: Character. However, each one 

―customize‖ the data type according to its needs. In this case, the size of each 

attribute needs to be different. To that end, each one owns a feature object. 

The key value is taken from an enumerated data type defined to that purpose. 

The value of the feature is the size of each attribute. Section 5.2.2.1 will show 

how this metaclasses are used/instantiated in M2DAT‘s editors.  
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Figure 5-11. Using features to model built-in data types 

 Besides, including metaclasses to model the whole set of built-in data types 

blots out the metamodel. To avoid this problem, we elliminate all the leaf 

types by using Descriptors to distinguish between the concrete types that 

compose a particular family of primitive Data Types. This way, each family is 

modelled by adding just one metaclass. Such class contains a Descriptor 

attribute whose value is defined by an enumerated Data Type whose values 

are correspond to the types that compose the family of Data Types. For 

instance, Figure 5-13 is a partial view from the SQL:2003 ORDB metamodel 

that shows the built-in data types. Following the technique described, the 

CharacterStringTypes enumerated data type indicates that there are three 

different Character String types: CHARACTER, CHARACTER VARYING 

and CHARACTER LARGE OBJECT. 

 
Figure 5-12. Partial view of the ORDB metamodel for SQL 2003: Built-in Data Types 
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5.2.2 Concrete Syntax Definition 

From the .Ecore file that collects and EMF-based metamodel, i.e. the 

abstract syntax, EMF allows generating a tree-like editor with basic capabilities 

for models conforming to the metamodel. Besides, GMF allows generating a 

graphical editor based on boxes and edges (diagrammer) from that same 

metamodel. To that end, you have to define three additional models that encode 

the relationships between metaconcepts and graphical elements (see sections 

2.1.12.2 and 4.8.1). 

As we have already mentioned, from our experiences working with both 

type of editors, we conclude that the tree-like editor is best suited for development 

tasks, whereas the graphical one provides with a comfortable overview of the 

depicted model. 

Thus, although we have developed the graphical editors for M2DAT 

models, we have focused on identifying the way to boost and customize the tree-

like editors of EMF. We present the results using the editor for the SQL:2003 

ORDB DSL in the following sections. First we give a brief introduction on EMF 

support for automatic editors generation. 

5.2.2.1 EMF Implementation 

Section 2.1.12.2 already gave an overview on the use EMF for 

metamodelling purposes. Here we will give a brief overview on the insights of 

tree-like editors generation in EMF. 

Once we have defined our metamodel, the first step is the creation of an 

EMF model (so-called Genmodel) from our Ecore model, also known as the core 

model. This is a mandatory step previous to code generation for our model.  

Most of the data needed by the EMF generator is stored in the core model. 

The classes to be generated and their names, attributes, and references are all 

there. There is, however, more information that needs to be provided to the 

generator, such as where to put the generated code and what prefix to use for the 

generated factory and package class names, that isn't stored in the core model. All 

this user-settable data also needs to be saved somewhere so that it will be available 

if we regenerate the model in the future. The EMF code generator uses a generator 

model, the Genmodel, to store this information. 

The significance of all this is that the EMF generator runs off of a generator 

model instead of a core model; it's actually a generator model editor. When you 

use the generator, you will be editing a generator model, which in turn indirectly 

accesses the core model from which you're generating. Thus, the .genmodel file is 
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a serialized generator model with cross-document references to the .Ecore file. In 

summary, as showed in Figure 5-13, the Genmodel is an EMF model that wraps 

the core model. Generator model classes are Decorators of Ecore classes. 

.genmodel

GenFeature

GenClass

GenFeature EAttribute

EClass

EAttribute

.ecore

 
Figure 5-13. Relationship between .genmodel and .Ecore model 

Separating the generator model from the core model like this has the 

advantage that the actual Ecore metamodel can remain pure and independent of 

any information that is only relevant for code generation. The disadvantage of not 

storing all the information right in the core model is that a generator model may 

get out of sync if the referenced core model changes. To handle this, the generator 

model classes include methods to reconcile a generator model with changes to its 

corresponding core model. Using these methods, the two files are kept 

synchronized automatically by the framework and generator. 

From the Genmodel, EMF generates JAVA code that can be structured in 

three big categories: the model code, the edit code and the editor code. As well, 

test code could be generated but it is rarely used for anything. See  

In essence, the Model code allows accessing the metamodel, create a 

conforming model and serialize and de-serialize it programmatically. This code is 

used by the Edit and Editor code, that wraps those functionalities with a graphical 

interface, i.e. the Edit and Editor code provide with a simple (tree-like) editor for 

handling models conforming to the Ecore metamodel used as starting point. To 

that end, Edit and Editor code uses the Model code. Figure 5-14 shows an 

overview of this generation process. 
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Figure 5-14. Overview of EMF Editors generation 

From the .Ecore model (more properly, from that and the .genmodel) that 

collects the abstract syntax of the metamodel, the JAVA code that implements a 

simple, yet powerful, tree-like editor for conforming models is generated. This 

way, we can edit .sql2003 models conforming to the SQL2003 metamodel. 

To conclude this section, Figure 2-5 shows show another example of using 

EMF editors. In particular, it focuses on how the metaclasses defined to support 

the modelling of built-in data types are to be instantiated in the EMF editor. 

 First, we add a feature object nested on the list_price attribute. In particular, 

since we want the type of the attribute to be numeric, we create Numeric 

Feature object. (1) 

 Next, we set the concrete feature to use, among the allowed features for 

number (precision and scale). To that end, we use the properties view of the 

tree-like editor. (2) 

 Finally, see that the editor displays the list_price attribute. Whose type is 

REAL and whose size and scale has been also fixed to 2 and 3 respectively 

(3). Note that this model contains all the information needed to generate the 

SQL code that implements the designed schema.  
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Figure 5-15. Using features on EMF editors 

5.2.2.2 Customizing EMF editors:  

The huge collection of primitive types supported by platform specific 

models, like the one from Oracle or the SQL standard hampers the definition of 

models using the tree-like editors of EMF. In general, all of them have to do with 

usability issues. One of the main concerns with MDE tools so far [318]. 

As well, we have already argued in favour of EMF tree-like editors over 

graphical editors for development tasks (see section 4.3.3.3). Nevertheless, the 

generic nature of EMF makes the generated editors too generic. Therefore we have 

worked to identify the way of adopting them to specific needs. 

In the following, we present some results on the tree-like editors of 

M2DAT-DB. Note that the techniques applied will be also applied to develop the 

editors for the rest of DSLs that will integrate M2DAT. 

Including primitive types in any new model 

When defining a PSM, each primitive type supported by the targeted 

platform has to be added manually in order to use it to define the type of any 

object in the model. That is, if the user wants an object to be of a particular type, 

he needs first to instantiate the metaclass that abstracts the type on the 

corresponding metamodel. For instance, back to the ORDB SQL:2003 DSL, if the 

user wants an attribute to be of type CHARACTER VARYING, he has to 
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instantiate the Character String Type metaclass and sets its descriptor attribute to 

CHARACTER VARYING. Just think on the work needed to have at one‘s 

disposal the whole set of built-in types at the time of model edition.  

We have identified the way to modify EMF (both the tree-like and the 

diagrammer) editors to overcome this issue. The technique provides with the 

following functionality: whenever a new PSM is created (in this case, an ORDB 

model for SQL:2003), the set of primitive types supported by that platform are 

automatically instantiated in the model. This way, when the user needs to assign a 

type to any of the objects in the model, he can use any of the built-in types 

supported by the targeted platform. To that end, we have modified the way new 

models are created in EMF. 

Remember that a mandatory feature of any EMF model, because of EMF 

underlying XML format, is including a root element. Indeed, whenever a new 

model is created, a root object has to be created by selecting one of the 

metaclasses collected in the respective metamodel. We have followed the same 

approach to modify EMF generated code to bundle the built-in types in any new 

model. 

Left-hand side of Figure 5-16 shows a screen capture from the EMF 

―default‖ editor from the SQL:2003 ORDB DSL, whereas right-hand side shows 

one from the M2DAT customized editor for the very same DSL. 

1 2

 
Figure 5-16. Assigning primitive types in EMF “Default” editor VS M2DAT EMF Editor 

In both cases, the objective is to define an attribute Name in Person_Type 

and assign it a character type. In the first case (1), the Character String Type 

object has to be created. In addition, notice just the newly created type and the 

Person_Type can be used to define the type of the attribute, i.e. just those objects 

visualized in the editor. In contrast, when using M2DAT modified editor (2), any 
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of the SQL:2003 built-in types could be used at the time of defining the type of the 

attribute since they were already instantiated when the model was created. 

Finally, we would like to mention that the same technique is applied for 

GMF-graphical editors. 

Hiding primitive types in EMF editors 

Previous section showed the customization of EMF tree-like editors to 

include the built-in types of the corresponding DSL in any newly created model. 

However, if we limit to include them in the model, we are adding too much 

―noise‖. Indeed, when a new model is edited (using the diagrammer or the tree-

like editor) it contains a huge number of static objects, i.e. objects that will not be 

modified. They are needed just to define the type of new elements to add in the 

model. Apart from that task, they just serve to add distraction. In other words, 

displaying all the (already created) primitive types in the editor acts against 

usability. 

Figure 5-17 compares the effect of filtering the objects corresponding to 

the already instantiated primitive types (1) versus a non-filtered view of the model 

(2). Notice that the functionality provided is exactly the same: any SQL:2003 

primitive type can be used to define the type of a model element. Nevertheless, 

they differ visibly regarding usability.  
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Figure 5-17. Filtering instantiated primitive types in M2DAT editors 

Filtering elements to be added on a model 

The last issue related with the huge amount of primitive types supported by 

any ―real‖ platform refers to the creation of new elements in a given model. 

Whenever the user wants to add a new element, he clicks on the menu 

―Create Child‖. Then, a combo box is open out showing all the metaclasses, i.e. all 

the classes included in the corresponding metamodel. This way, he can instantiate 

the one he needs. However, including all the metaclasses that serve to capture 

primitive types hampers usability. Given that all the supported primitive types are 

already instantiated at model creation, there is no need to allow the user creating 

new primitive type objects. 

Once again, we modify EMF generated editors to solve this drawback. All 

the metaclasses corresponding to primitive types, i.e. all the metaclasses that 
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inherits from Predefined Type in the case of SQL:2003 metamodel (see Figure 

5-2), are automatically filtered in the combo box used to add new elements to a 

given model. Figure 5-18 shows a screen capture from the M2DAT modified 

editor (1) and the default one where no filter is applied (2). 

1

2

 
Figure 5-18. Filtering metaclasses to instantiate in M2DAT editors 

In addition, the figure serves to illustrate the effect of not preventing the 

creation of new Primitive Types. After instantiating the selected family (Numeric 

in the picture), the user must select which one from the concrete types of this 

family he deserves to instantiate, i.e. DECIMAL, SMALLINT, INTEGER, 

BIGINT, etc.  

Enhancing user feedback on M2DAT Editors 

Another improvement we would like to comment on is related with the way 

information about each model element is displayed in the editors. To introduce the 

problem and how it is solved we use a very simple example shown in Figure 5-19. 

Left-hand side of the picture shows a simple metamodel to model methods 

and its parameters while right-hand side shows a sample instantiation. The 

Subtraction method receives two parameters: p1 and p2. Both are Integers and 

respectively the minuend and subtraend of the difference. The bottom of Figure 

5-19 shows how this method is displayed in the tree-like editor generated by EMF 

(1) and the M2DAT improved editor (2). The latter shows not only the name of 

the method, but also which parameters it receives plus the type of each one. 
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Figure 5-19. Displaying a method signature on EMF editors 

To than end, both the JAVA code generated by EMF to display Method 

objects and Parameter objects has been modified. We have added a 

getFriendlyName to the JAVA interfaces generated for each metaclass of the 

starting metamodel. Likewise, we have redefined the getText() method to invoke 

getFriendlyName(). No need to say, the information provided by the modified 

editor is much better in terms of usability. 

We have applied the same principle to modify M2DAT editors in order to 

enhance their usability. To illustrate the result Figure 5-20 shows the OMDB 

model used as a case study so far displayed in the EMF ―default‖ editor and the 

M2DAT improved one. 

1

2
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Figure 5-20. EMF Default editor VS M2DAT improved editor: OMDB for SQL:2003 model 

First of all, we have already mentioned in this dissertation our inclination 

in favour of DSLs with a UML-like flavour (see section 4.2.3). That is, models 

that looks as UML profiles, to take advantage from the universal nature of UML. 

Actually, they are defined with a DSL to ease the task of processing them. In line 
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with this idea, M2DAT editors are modified to show, next to any modelled 

element, the visual stereotype assigned to the corresponding metaclass. This way, 

we ease the task of identifying any desired element in the model.  

Back to the figure, the name of each structured type, like the product_type 

(1) is followed by its corresponding stereotype (<<UDT>>). Besides, its attribute 

displays, not only its name, but also its type (2). Even if the attribute‘s type is 

composed, like the production company attribute, the type is described completely 

(3). If any restriction has been defined over the attribute, it is also shown in-line 

(4). As well, when it is a Reference type, the type referenced is shown (4). Next to 

each method name, the name and type of its parameters is displayed in-line (5), 

i.e. the complete signature. Collection types are described displaying the type of 

each item and the corresponding stereotype (6). Finally, next to the restrictions 

defined over each table, the attributes/columns affected by the constraint are also 

displayed (7). 

Automatic Identification of root elements 

We would like to comment a last usability improvement on M2DAT 

editors. We have already mentioned that any EMF model has to include a root 

element. Thus, whenever a new model is created the corresponding wizard asks 

the user to select a metaclass to be instantiated as the root element. When the 

metamodel is large enough, finding the right metaclass might be annoying. To 

avoid the need for such selection, we have modified EMF generated code. This 

way, the wizard will identify automatically the root element when a new model is 

created. Figure 5-21 shows the original wizard (1) versus the improved one 

integrated n M2DAT (2). 

Ongoing work 

Finally, it is worth mentioning that we plan to integrate all these 

modifications in EMF itself. That is, instead of modifying the generated editors, 

we are studying the way to modify EMF generation process in order to include all 

these capabilities in any newly created EMF-based editor. 

To that end, since EMF is migrating GMF code generation to XPand, we 

have already started to use XPand as a model-to-text transformation language to 

develop other M2DAT modules. The aims is at mastering Xpand to be able to 

adapt EMF‘s Xpand templates to our needs. 
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Figure 5-21. Setting root element in EMF editors 

5.2.2.3 GMF Implementation 

We already gave an overview of the development process for GMF editors 

in section 4.3.2. Therefore, here we will focus just on how its is used in the 

framework of M2DAT. To that end we show its application to develop the 

SQL:2003 diagrammer.  

The idea is summarized in Figure 5-22: two GMF models, the Graphical 

model and the Tooling model collect the graphical information (the concrete 

syntax) for the new DSL. The mapping between the concrete syntax and the 

abstract syntax is depicted in another model, the Mapping model. Then, a 

Generator model is automatically obtained. As well as with EMF generation, the 

generator model encodes some details to drive the generation process. Finally, the 

JAVA code that implements the editor, i.e. the Diagram(mer) plug-in is generated. 

From there on, the user can edit .sql2003 models diagramatically. To that purpose, 

for every .sql2003 model, an .sql2003_diagram is created. The later contains the 

data related with the visual presentation of the model (its concrete syntax), while 

the model itself (its abstract syntax) remains in the .sql2003 model. 
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Figure 5-22. GMF Overview 

GMF is a perfect example of model-driven development since the 

generation of a GMF graphical editor is driven by a set of models. In the 

following, we will present each of them using the case study we have followed so 

far, the development of the diagrammer for ORDB SQL:2003 models. We will 

focus on the specification of how Typed Tables should be represented. To that 

purpose, Figure 5-23 shows partial views of the GMF models used. In particular, 

those parts referring to the representation of Typed Tables have been bordered 

with coloured rectangles. 
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Figure 5-23. GMF models to develop the SQL:2003 Graphical Editor 

First of all, the domain model collects the abstract syntax of the DSL. 

Actually, when we refer to the domain model, we are referring to the DSL 

metamodel (SQL2003.Ecore). 

Next, all the graphical elements that will appear in the resulting editor are 

defined in the SQL2003.gmfgraph model. For instance, it includes a Figure 

Descriptor object called TypedTableFigure. This object collects all the graphical 

information needed to represent Typed Tables. Note that the figure is a Rectangle, 

whose foreground and background colours are fixed using a Foreground and 

Background nested objects. Besides, it contains two labels to show the name and 

the stereotype deserved. In addition, two more rectangles are nested to show the 

attributes and the methods of the Typed Table. 

Besides, any diagrammer has to provide with controls to add new elements 

to the diagram. This way, the SQL2003.gmftool model specifies which controls 

will be included in the diagrammer. In particular, note the TypedTable Creation 

Tool object that will allow adding new Typed Table objects to a model. 

At this moment, there is still no connection between the graphical elements 

specified in the graphical and tool models and the domain concepts collected in 

the domain model (the metamodel). The definition of these correspondences is 

done in the mapping model (SQL2003.gmfmap). If you look at the properties of 
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the Node Mapping TypedTable/TypedTable you will find the links defined for 

representing Typed Tables. The node mapping links the domain element 

TypedTable (that inherits from BaseTable), with the diagram node TypedTable 

and the Creation Tool TypedTable.  

Finally, the generator model is automatically obtained. It contains the 

options that drive the generation of the JAVA code that compose the plug-in 

implementing the diagrammer. 

It is worth mentioning that GMF rests extensively on EMF generated code. 

How model elements are displayed on GMF editors, the icons used to identify 

them, even the labels that show their names, are directly taken from EMF 

generated code. Thus, the improvements over the EMF tree-like editor showed in 

section 5.2.2.2 are automatically transfered to the GMF editor. 

To conclude this section, we would like to mention that we have provided 

here a very simplified version of the development of graphical editors in M2DAT. 

Indeed, working this way, a default editor is obtained at the end of the process. In 

some cases it could be enough, but if the editor is thought to be distributed, 

generated code should be probably modified in order to get the desired look and 

feel and behaviour. In this sense, it is also remarkable that GMF code is far from 

being trivial. This is due to the fact that, as it happens with UML, the objective of 

having a one-size-fits-all solution results in too much complexity. 

5.3 Model Transformations in M2DAT 

Several times along this dissertation we have stressed the role of model 

transformations in MDE development processes. They are the key to automate and 

drive the process. Therefore, we will show how model transformations are 

implemented in M2DAT using the solutions selected. Those that were introduced 

in the previous chapter. 

To that purpose, we indentify a set of common generic scenarios to address 

when developing model transformations. Each scenario is defined by the set of 

constructions that compose the source and target pattern in each case. For 

instance, one common scenario is the following: the existence of one element in 

the source model implies the creation of several elements in the target model. 

For each scenario we will show how it is implemented using ATL and, 

when a design decision is needed, AMW for collecting such decision. Afterwards, 

we will explain a number ok key issues and lessons learned. 
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5.3.1 Common Scenarios 

It is not our intention to show all the transformations coded during the 

development of M2DAT-DB, but provide with a set of common scenarios found 

when developing model transformations and show how they are addressed. The 

underlying ideas are:  

 On the one hand, to identify the techniques or strategies used to address each 

of these scenarios. They will be applicable in the transformations to develop 

in forthcoming M2DAT prototypes.  

 On the other hand, to prove that the components and techniques used to 

develop model transformations in M2DAT are valid to address any possible 

scenario. This is achieved to agreat extent through the use of annotation 

models to drive model transformation executions. 

Table 5-1 summarizes the common scenarios identified in model-to-model 

transformations. We distinguish them according to the number of source elements 

in the source pattern (1 – N) and the number of elements of the target pattern (1 – 

N). Besides, we make a difference between those cases in which the source pattern 

is always mapped to the same target pattern (FIXED), and those in which different 

target patterns could be instantiated to map the matched source pattern 

(OPTIONAL). The latter needs from a design decision to state which target 

pattern is to be used. 

Table 5-1. Common Scenarios for Model-to-Model transformations 

           TARGET MODEL 

 

SOURCE MODEL 

1 N 

FIXED OPTIONAL FIXED OPTIONAL 

1 X X X X 

N X X X X 

In following subsections we show an example of occurrence of each 

scenario, next to how we have addressed its implementation in the 

UML2SQL2003 transformation embedded in M2DAT-DB. As explained in 

section 5.1.1, this transformation generates ORDB models conforming to 

SQL:2003 from a pure conceptual data model depicted in a UML class diagram. 

As well, we will show the application of the rules using excerpts from the Case 

Study used so far, the Online Movie Database (remember that the whole Case 

Study can be found in Appendix D). 



272    Juan M. Vara 

 

5.3.1.1 One–to–One  

This scenario refers to those situations in which there is a one-to-one 

correspondence between a metaclass from the source metamodel and another from 

the target one. It is sketched in Figure 5-24. Obviously, this is the simplest 

situation to address and we found many examples in any model transformation. 

Indeed, we should aim at expressing all the rules in this way in order to keep 

simple the transformation and ease the maintenance of traceability links. However, 

this is just feasible for quite simple metamodels or at least those that are 

semantically closer. 

A

SOURCE METAMODEL

1

TARGET METAMODEL

 
Figure 5-24. One-to-One transformation 

In the UML2SQL2003 model transformation we can find a number of rules 

that tackle this type of scenario. For instance, since we have already mentioned 

that every Ecore metamodel has to own a root element, we need something akin to 

a ―root‖ rule to map them. This is a very simple rule shown in Figure 5-25. 

ORDB SQL:2003

UML2

rule Package2Schema {

from

p : UML!Package

to

s : SQL2003!Schema (

name <- p.name

)

}

 
Figure 5-25. ATL Rule Package2Schema 

The source pattern states that the rule will match any Package found on the 

UML source model. The target pattern states that for each match, i.e. for every 

Package, a Schema is created in the target model. Besides, the name of the newly 

created Schema will be that of the matched Package (Online Movie Database in 

the Case Study). 

5.3.1.2 One–to–Many 

This situation is a little bit more complex that the previous one, but still 

almost trivial. As Figure 5-26 illustrates, this time the source pattern contains just 

one element while the target pattern contains several elements. 
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Figure 5-26. One-to-Many transformation 

Back to the UML2SQL2003 transformation, a generic rule states that every 

Class from the conceptual data model is mapped to an Structured Type (so-called 

UDT from now on) plus a Typed Table. Please, note that this rule applies just for 

the generic case, that will be later refined attending to the nature of each artefact. 

For instance, if the class is the parent class in some generalization, the mapping 

might not be direct. 

To that end, the rule ClassWithoutHierarchy2UDTandTT (Figure 5-27) 

includes a guard that ensures that only instantiable UML classes that do not 

participate in any hierarchy will match this rule. For each matched class, an 

Structured Type and a Typed Table (whose type is the newly created) are added to 

the target model. 

OMDB.uml
OMDB.sql2003

rule ClassWithoutHierarchy2UDTandTT {

from

c : UML!Class (

(not c.isAbstract) and

(not c.hasSuperClass()) and

(not c.hasSubClasses())

)

to

udt : SQL2003!StructuredType (

name <- c.getUDTName(),

is_final <- c.isLeaf,

is_instantiable <- not c.isAbstract,

schema <- thisModule.PACKAGE(),

typed <- tt

),

tt : SQL2003!TypedTable (

name <- c.getTypedTableName(),

schema <- thisModule.PACKAGE(),

structured <- udt,

supertable <- c.getSuperTypedTable()

)

}

 
Figure 5-27. ATL Rule ClassWithoutHierarchy2UDTandTT 

Note also that this refers only to the mapping of the class. Its attributes and 

methods are handled as isolated objects that will be mapped by other rules. Indeed, 

this is the main advantage of adopting declarative approaches (actually, hybrid 

with emphasis on the declarative style): when implementing the mapping of one 

element, there is no need to worry about how related elements are mapped. The 

underlying engine ensures that they will be mapped.  
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5.3.1.3 Many–to–One 

This scenario is depicted in Figure 5-28. Two elements from the source 

metamodel has to be mapped to the same element in the target metamodel. 

A

SOURCE METAMODEL

1

TARGET METAMODEL

B

 
Figure 5-28. Many-to-One transformation 

Although this scenario seems to be as simple as the previous one, it is 

much more challenging. In fact, a declarative approach implies that for each 

element to match in the source model, one element (or more) have to be created in 

the target model, i.e. declarative approaches implement injective transformations. 

Nevertheless we do not want to implement an injective function, but a surjective 

one, where the occurrence of a set of elements in the source model induces the 

creation of just one element in the target model.  

Hopefully, the improvements on the last version of ATL engine (ATL-VM 

2006), in particular the support for defining rules with multiple source patterns, 

simplifies the implementation of this scenario. This way, we apply such ATL 

feature to implement the mapping of cardinalities from conceptual models to 

ORDB models. For instance, if there is an UML property whose multiplicity lower 

bound is 1 or greater, we have to control that the corresponding OR attribute does 

not take a null value. To that end, we have to add a Not Null constraint on every 

table defined over the Structured Type that contains such attribute. An example is 

shown in Figure 5-29, next to the ATL rule that encodes its management. 
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rule ClassPropertyNotNull2NotNullConstraintOnTT {

from

prop : UML!Property,

c : UML!Class

(

(c.generatesMergingTypedTable()) and 

(c.ownsClassProperty(prop)) and 

(prop.isNotNullAttribute())

)

to

check : SQL2003!NotNull (

table <- thisModule.resolveTemp(c, 'tt'),

columns <- prop

)

}

OMDB.sql2003

OMDB.uml

 
Figure 5-29. ATL Rule ClassPropertyNotNull2NotNullConstraintOnTT 

The Person_type Class owns a dob Property, whose multiplicity lower 

bound is 1. The union of the Class and the Property matches the source pattern 

defined in the ATL rule. As well, the guard restricts the possible matches by 

allowing just classes that do generate a Typed Table (since abstract classes 

mapping do not generate a Typed Table) and Properties that have to be mapped 

with Not Null constraints (the isNotNullAttribute helper ensures this). Since there 

is a positive matching, a Not Null constraint is added to the target model. It is 

defined over the Person_type Typed Table and refers to the dob attribute. 

5.3.1.4 Many-to-Many 

Next, we focus on the scenario sketched in Figure 5-30.  

A

SOURCE METAMODEL

1

TARGET METAMODEL

B 2

 
Figure 5-30. Many-to-Many transformation 

We can look at this case in two different ways: 

 As a variation of the previous one: there is still several elements in the 

construction to find in the source model, but there is a number of elements in 

the construction to create on the target model. Though we have not 

implemented this scenario as-is in M2DAT-DB so far, it is not complex. 

Indeed, the ATL rule from the previous case with some minor modifications 
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could be used to implement this case. For instance, the rule from Figure 5-31 

serves to implement the situation shown in Figure 5-30 

rule AB_2_12 {

from

a : SourceMM!A,

b : SourceMM!B

(

a.checkSomeStuff() and

b.chekSomeOtherStuff()

)

to

one : TargetMM!One (

my_property <- a.property

),

two : TargetMM!Two (

my_property <- b.property

)

}
 

Figure 5-31. ATL Rule Many-to-Many (Generic) 

 As a composition of more simple situations. This is the case of a Class and its 

Properties mapped to a Structured Type and the corresponding attributes. We 

illustrate the situation in Figure 5-32 with the mapping of the Person_type 

class. 

OMDB.sql2003
OMDB.uml

rule ClassWithoutHierarchy2UDTandTT { … }

rule ClassProperty2UDTAttribute { … }

rule DerivedProperty2Method { … }

 
Figure 5-32. Many-to-Many transformation decomposed into One-to-One transformations 

The mapping of each element from the source pattern (i.e. the class and 

each property) is carried out by a different rule. This way, the Person_Type Class 

is mapped by the ClassWithoutHierarchyToUDTandTT rule, the Primitive type 

Properties (country, dob, name and sex) are mapped by means of the 

ClassProperty2UDTAttribute rule and the Derived Property (Age) is mapped by 

the DerivedProperty2Method rule. 

5.3.1.5 One-to-One (multiple options) 

As illustrated in Figure 5-33, this scenario differs from the previous one  in 

the sense that the source pattern admits two possible target patterns, i.e. the A 

object from the source model may be mapped as an object of class 1 or as an 

object of class 1‘. 



Validation: M2DAT-DB    277 

 

A

SOURCE METAMODEL

1

TARGET METAMODEL

1'

 
Figure 5-33. One-to-One transformation (multiple options) 

Following with the UML2SQL2003 transformation, a generic rule states 

that every Property of a Class is to be mapped as an attribute in the corresponding 

Structured Type. 

Nevertheless, derived attributes admits two extra ways of mapping: as a 

method or as a simple attribute plus a trigger to calculate its value. We can 

annotate the source model to discern which rule has to be applied for a given 

matching, i.e. for a particular derived property. This way, Figure 5-34 illustrates 

the three possibilities. 

OMDB.amw

OMDB.uml

OMDB.uml

OMDB.sql2003OMDB.sql2003

OMDB.sql20031 2
3

 
Figure 5-34. Different ways of mapping derived attributes 

In the first case (1), we do not annotate the Age Property of the 

Person_type class (the slash preceding the name of the property denotes that it is a 
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derived property according to UML). Thus, it is mapped by adding an Age 

attribute on the Person_Type structured type. 

In the second case (2), we annotates the Age property. To that end, we add 

an Annotation object in the corresponding weaving model (OMDB.amw). As we 

described in section 4.8.4.2, each annotation contains a set of key-value properties 

that serve to contain the extra information needed to drive the transformation. In 

this case, the key (derived attribute) indicates that we aim at controlling the way a 

derived attribute has to be mapped, whereas the value (method) states the desired 

option. As a result, this time the Person_Type structured type does not contain an 

Age attribute, but a getAge() method, that returns an Integer (this was the type of 

the source property). 

The last case is similar but this time the Value of the annotation states that 

we want to map the derived attribute using a trigger. Therefore, the Person_Type 

structured type contains an Age attribute. Additionally, two triggers are created 

over the corresponding typed table (Person_Type). One of them will serve to 

compute the new value of the Age property after the insertion and the other one 

will do the same after any update. 

To support these behaviour we have to code three different ATL rules. 

The first one (we can look at it as the default one), 

ClassProperty2UDTAttibute, is shown in Figure 5-35 and maps UML properties 

to UDT attributes. 

rule ClassProperty2UDTAttribute {

from

prop : UML!Property ( 

not prop.isDerivedAttribute() and

not prop.isMultivaluedAttribute() and

(

prop.type.oclIsTypeOf(UML!DataType) or 

prop.type.oclIsTypeOf(UML!PrimitiveType)

) and

prop.refImmediateComposite().oclIsTypeOf(UML!Class)

)

to

aUDT : SQL2003!Attribute (

name <- prop.name,

type <- prop.type,

structured <- prop.getOwningClass()

)

}  
Figure 5-35. ATL Rule ClassProperty2UDTAttibute 

The guard uses some helpers to identify the nature of the Property. If it is a 

multivalued or a derived property, it will be mapped by other rules. As well, it 

checks its type and whether it belongs to a class (to distinguish from member end 

associations, that are also properties). If the guard evaluates to true, an SQL:2003 

attribute is added in the Structured Type that maps the owning class. The binding 
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to the Structured Type is automatically resolved by ATL engine using the transient 

links created (see section 4.8.3.2). 

The rule for the second options is DerivedProperty2Method (Figure 5-36). 

Its guard ensures that it will match just derived properties that have been annotated 

to be mapped as methods. Then, a method is added to the corresponding UDT ant 

the return type is set to be the same of the matched property.  

rule DerivedProperty2Method {

from

prop : UML!Property (

(prop.isDerivedAttribute()) and

(prop.isMapDerivedAttributeToMethod())

)

to

m : SQL2003!Method (

name <- 'get' + 

prop.name.substring(1,1).toUpper() +

 prop.name.substring(2,prop.name.size()),

structured <- prop.getOwningClass(),

return_type <- prop.type

)

}
 

Figure 5-36. ATL Rule DerivedProperty2Method 

Finally, the DerivedProperty2AttributeandTrigger rule (Figure 5-37) 

replicates the target pattern of the afore-showed ClassProperty2UDTAttibute rule. 

Likewise, it contains two additional target patterns to create the two triggers to 

compute the value of the created attribute after insertions and updates. Notice that 

the resolveTemp() ATL operation is used to identify the table over which the 

triggers have to be created. To that end, it is invoked with two arguments: the first 

is the containing class of the matched property. The second is the identifier of one 

of the target patterns that contain the rule that maps such class. Every class is 

mapped to an UDT plus a Typed Table. Here, we are just interested in such table. 

So, the resolveTemp operation navigates the transient links created during 

transformation execution to retrieve a reference to such table.  
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rule DerivedProperty2AttributeandTrigger {

from

prop : UML!Property (

(prop.isDerivedAttribute()) and 

(prop.isMapDerivedAttributeToTrigger()) and

(not (prop->refImmediateComposite().isAbstract))

)

to

a : SQL2003!Attribute (

name <- prop.name,

type <- prop.type,

structured <- prop->refImmediateComposite()

),

tin : SQL2003!Trigger (

name <- 'get' + prop.name.substring(1,1).toUpper() + 

prop.name.substring(2,prop.name.size()),

event <- #INSERT,

actionTime <- #AFTER,

table <- thisModule.resolveTemp(prop.refImmediateComposite(),'tt'),

updateColumns <- a

),

tup : SQL2003!Trigger (

name <- 'get' + prop.name.substring(1,1).toUpper() +

 prop.name.substring(2,prop.name.size()),

event <- #UPDATE,

actionTime <- #AFTER,

table <- thisModule.resolveTemp(prop.refImmediateComposite(),'tt'),

updateColumns <- a

)

}

 
Figure 5-37. ATL DerivedProperty2AttributeandTrigger 

5.3.1.6 One–to–Many (multiple options) 

This time we focus on the generic situation illustrated in Figure 5-38, 

where one element from the source model correspond to several elements on the 

target one, but multiple options can be chosen: we may map an (A) object to a pair 

of objects (1) and (2) or to a pair of (1‘) and (2‘) objects. 

A

SOURCE METAMODEL

1

TARGET METAMODEL

1'

2

2'

 
Figure 5-38. Many-to-Many transformation (multiple options) 

In the UML2SQL2003 this scenario appears a number of times. For 

instance, to map multivalued properties to ORDB schemas we have to create both 

an attribute of a collection type plus the collection type itself. We may choose 

between two different collection types: MULTISET (dynamically sized) and 

ARRAY (predefined size). By default, ARRAY types are used, but we can modify 



Validation: M2DAT-DB    281 

 

this behaviour by annotating the multivalued property. Figure 5-39 shows an 

example. 

OMDB.amw

OMDB.uml

OMDB.uml

OMDB.sql2003OMDB.sql2003

1 2

 
Figure 5-39. Different ways of mapping multivalued attributes 

The upper bound multiplicity of the production_company Property is 3. 

Thus, it is multivalued property that can be mapped in two different ways. To 

choose the one desired for each execution of the transformation, we annotate the 

Property. This time, the key for the annotation object is multivalued attribute. If 

we set the value to array (1), the transformation adds to the target model an 

ARRAY object. Its type will be the one that maps the type of the source Property. 

The ARRAY is used to define the type of the OR attribute that maps the UML 

Property. On the other hand, if we set the annotation value to multiset (2), this 

time the collection type used is a MULTISET. Remember that, in absence of 

annotation, the default option is to use an ARRAY. 

These two different ways of mapping multivalued attributes are encoded in 

two similar ATL rules shown in Figure 5-40 and Figure 5-41. 
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rule MultivaluedPropertyWithoutGeneratedType2ARRAYAttribute {

from

prop : UML!Property (

(prop.isMultivaluedAttribute()) and

(prop.isFixedSizeMultivaluedAttribute()) and

(not prop.isGeneratedMultivaluedType())

)

to

a : SQL2003!Attribute (

name <- prop.name,

type <- array,

structured <- prop->refImmediateComposite()

),

array : SQL2003!ARRAY (

name <- prop.name,

type <- prop.type,

num_elements<-prop.upperValue.value,

schema <- thisModule.PACKAGE()

)

}
 

Figure 5-40. ATL Rules MultiValuedPropertyWithoutGeneratedType2ARRAYAttribute 

Both rules are very similar, their guard matches multivalued UML 

Properties for which no collection type has already been generated (otherwise, 

they will be mapped by other rules). Besides, each one filters just those properties 

to be mapped using a ARRAY (isFixedSizeMultiValuedAttribute) or a 

MULTISET (isVarSizeMultiValuedAttribute). Regarding target patterns, the 

difference lies in the type of the collection object created: one creates an ARRAY 

(and set its size to the upper bound multiplicity of the matched Property) while the 

other one creates a MULTISET. 

rule MultivaluedPropertyWithoutGeneratedType2MULTISETAttribute {

from

prop : UML!Property (

(prop.isMultivaluedAttribute()) and

(prop.isVarSizeMultivaluedAttribute()) and

(not prop.isGeneratedMultivaluedType())

)

to

a : SQL2003!Attribute (

name <- prop.name,

type <- multiset,

structured <- prop->refImmediateComposite()

),

multiset : SQL2003!MULTISET (

name <- prop.name,

type <- prop.type,

schema <- thisModule.PACKAGE()

)

}

 
Figure 5-41. ATL Rules 

MultiValuedPropertyWithoutGeneratedType2MULTISETAttribute 
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5.3.1.7 Many-to-One (multiple options) 

In this case a source pattern composed of several elements could be 

mapped to two different target patterns, both containing just one element. The 

scenario is depicted in Figure 5-42. 

A

SOURCE METAMODEL

1

TARGET METAMODEL

B 2

 
Figure 5-42. Many-to-One transformation (multiple options) 

To illustrate this situation we use the mapping of UML properties, that 

works as identifiers, to ORDB models. Since a pure conceptual model should not 

specify which are the properties of a Class that should be considered as possible 

keys, we have to mark the desired Property to be used as unique identifier. To that 

end, we annotate the property. So, a Class that contains a Property marked as 

candidate key has to be mapped to a restriction on any Typed Table defined over 

the UDT that maps the Class. However, the restriction could be a Primary Key or 

an Unique restriction, depending on the value of the annotation. We illustrate this 

situation in Figure 5-43. 

OMDB.amw

OMDB.uml

OMDB.sql2003

1 2

 
Figure 5-43. Different ways of mapping unique properties 
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In this case, the title Property of the movie_type Class is to be used as 

unique identifier for movie_type objects. Therefore we add an annotation to such 

Property whose key is restriction to indicate so. The type of the restriction to 

create is set by the value of the annotation: primary key or alternative key. The 

former creates a Primary Key over the movie_type Typed Table referencing the 

title attribute (1), while the later results in a Unique object with the same bindings 

(2). 

Again, two similar rules serve to address the two options. They are shown 

in Figure 5-44 and Figure 5-45. 

rule ClassPropertyPrimaryKey2PrimaryKeyConstraintOnTT {

from

a : AMW!Annotation,

c : UML!Class

(

c.generatesTypedTable() and

            a.getReferredProperties()->forAll(prop | c.ownsClassProperty(prop)) and

            a.isPrimaryKeyAnnotation()

)

to

check : SQL2003!PrimaryKey (

name <- c.getPrimaryKeyName(a.getKeyAttributes()),

table <- thisModule.resolveTemp(c, 'tt'),

columns <- a.getReferredProperties()

)

}
 

Figure 5-44. ATL Rule ClassPropertyPrimaryKey2PrimaryKeyConstraintOnTT 

Both of them match any pair of Annotation and Class objects found on the 

source model if the former annotates a property of the latter. In addition, the Class 

has to be instantiable class to ensure that it generates a Typed Table in the target 

model. In that case, the target pattern generates a Primary Key (respectively 

Unique) object in the target model. Such restriction is binded to the Typed Table 

that maps the matched Class and refer to all the attributes of such Class that has 

been annotated to be the Primary Key (respectively the alternative key). Note that 

this is needed since several properties of a given Class might be annotated in order 

to obtain a composed Primary (or Alternative) Key. 
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rule ClassPropertyAlternativeKey2UniqueConstraintOnTT {

from

a : AMW!Annotation,

c : UML!Class

(

c.generatesTypedTable() 

and a.getReferredProperties()->forAll(prop | c.ownsClassProperty(prop) and

prop.isAlternativeKeyAttribute()) and a.isAlternativeKeyAnnotation()

)

to

ak : SQL2003!UniqueConstraint (

name <- c.getAlternativeKeyName(a.getKeyAttributes()),

table <- thisModule.resolveTemp(c, 'tt'),

columns <- a.getReferredProperties()

)

}  
Figure 5-45. ATL Rule ClassPropertyAlternativeKey2UniqueConstraintOnTT 

5.3.1.8 Many-to-Many (multiple options) 

The last common scenario we consider is sketched in Figure 5-46. When a 

pair of A and B objects are found in the source model, they can be mapped to a 

pair of 1 and 2 objects, or a pair of 1‘ and 2‘ objects. 

A

SOURCE METAMODEL TARGET METAMODEL

B

1

1'

2

2'

 
Figure 5-46. Many-to-Many transformation (multiple options) 

We have found this scenary a number of times in the transformations 

developed so far. They specially arise when mapping UML hierarchies to DB 

models since the later do not support inheritance. Actually, the ORDB model for 

SQL:2003 does support (partially) such concept, though none commercial product 

implements such functionality. 

To illustrate how we address the development of many-to-many 

transformations when there are multiple options for the target pattern we will use 

the example shown in Figure 5-47. Please, note that we have made an extensive 

study on the different ways of mapping conceptual hierarchies to ORDB models 

and we have implemented all of them in the transformations bundled in M2DAT-

DB (they can be checked in the accompanion CD). Nevertheless, it is not the 
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intention of this dissertation to go deep into the insights of M2DAT-DB. Here we 

use it just as a reference implementation for M2DAT‘s specification. 

 
Figure 5-47. Example of UML hierarchy (one level) 

In relational data models, the above hierarchy is to be mapped in two 

different ways: three tables, one per each Class, or one table containing one 

column per each Property of the three Classes. Figure 5-48 shows the result of 

encoding these two approaches in the model transformation. 

To select the way to map the hierarchy we annotate the parent Class 

(Class_A). This time the key for the annotation is hierarchy. If its value is tables 

(1), one merging Structured Type plus one merging Typed Table are created, (so-

called Merge [Class_A, Class_B, Class_C]). The Structured Type contains all the 

attributes and methods of the three classes to map plus a new attribute: type_of_A. 

This is the discriminant attribute that allows identifying the concrete type of each 

object stored in the merging Typed Table. In addition, a Check constraint is 

defined over the table to ensure that the discriminant will take an allowed value 

(Class_A, Class_B or Class_C) and a Not Null constraint to prevent from objects 

without a concrete type assigned. 
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Figure 5-48. Two ways of mapping simple hierarchies from conceptual to ORDB models 

On the other hand, if the annotation value is tables (2) (default behaviour), 

three different Structured Types plus three Typed Tables are created. Notice that, 

in this case, both Class_B and Class_C Structured Types inherits from Class_A 

Structured Type. 

To conclude, Figure 5-49 shows the ATL rule that encodes the first 

approach, since the later has been already introduced. In fact, each Class is 

mapped by the ClassWithoutHierarchy2UDTandTT rule (see Figure 5-27), giving 

raise to the three different UDTs plus the three Typed Tables. 
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rule SuperClassWithOneTableHierarchy2UDTandTTandAttributeandCHECKandNOTNULL {

from

c : UML!Class (c.isSuperClassWithOneTableHierarchy())

to

udt : SQL2003!StructuredType (

name <- c.getUDTName(),

is_final <- true,

is_instantiable <- true,

schema <- thisModule.PACKAGE(),

super_type <- c.getUDTSuperType(),

typed <- tt

),

tt : SQL2003!TypedTable (

name <- c.getTypedTableName(),

schema <- thisModule.PACKAGE(),

structured <- udt,

supertable <- c.getSuperTypedTable()

),

a : SQL2003!Attribute (

name <- 'type_of_' + c.name,

type <- thisModule.ELEMENT_TYPE_STRING(),

structured <- c

),

check : SQL2003!TableCheckConstraint (

name <- 'Check_Discriminant',

expression <- c.getOneTableCheckExpression(),

columns <- a,

table <- tt

),

notNull : SQL2003!NotNull (

table <- tt,

columns <- a

)

}
 

Figure 5-49. ATL Rule 

SuperClassWithOneTableHierarchy2UDTandTTandAttributeandCHECKandNOTNULL 

The guard of the rule invoke the isSuperClassWithOneTableHierarchy 

helper. It restricts the matching to UML Classes acting as parents in a simple 

hierarchy (i.e. with just one level of descendants) that has been annotated to map 

the whole hierarchy into just one Structured Type and the corresponding Typed 

Table. 

For each match, the target pattern adds five objects to the target model: the 

mentioned UDT and Typed Table, the discriminant attribute and the Check and 

Not Null constraints for the discriminant. 

5.3.2 Mapping of Primitive Data Types between PSM Models:  

In section 5.2.1.2 we sketched the problems related with modelling the 

primitive types supported by technological platforms. We provided a solution 

based on the concept of features. They serve to encapsulate the specific 

information that has to be provided to specialize a given primitive type for each 

attribute of such type. Besides, to enhance usability of M2DAT editors, we 

decided to automatically instantiate all the primitive types in any new model. This 

way, the user can use them to define the type of the model elements. 
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Nevertheless, the previous decision entails some challenges for the 

management of primitive types in model transformations. The improvements on 

M2DAT editors ensure that new models defined from scratch incorporates all the 

predefined types. But we need to support the same behaviour for any model 

obtained as the result of an M2DAT model transformation. In other words, the 

transformation has to include rules to create all the primitive types of the targeted 

platform. In this sense, there are two different situations to tackle: PIM2PSM and 

PSM2PSM transformations.  

In the following we show how each one is addressed. 

5.3.2.1 Mapping Primitive Types in PIM2PSM transformations 

This is the simpler case. We just add a set of matched rules to map each 

primitive type included in the PIM model, that is, Boolean, String, Integer and 

Real. For instance, the Figure 5-50 shows the rule to map the Date data type. The 

source pattern matches those PrimitiveType objects from the UML model that are 

Date types. The target pattern instantiates the Datetime metaclass. The descriptor 

property is set to DATE to specify the desired concrete type among the family of 

Datetime types. Besides, the new primitive type is nested in the Schema object 

that constitutes the root of the target model. To that end the expression 

thisModule.PACKAGE() resolves the transient link that relates the source Package 

with the target Schema. 

rule Date2Date {

from

dt : UML!PrimitiveType(dt.isDatePT())

to

out : SQL2003!DatetimeType (

descriptor <- #DATE,

schema <- thisModule.PACKAGE()

)

}
 

Figure 5-50. ATL Rule Date2Date  

Besides, we include an imperative rule to generate the rest of primitive 

types. In particular, it is an end point rule, an ATL rule that is automatically 

executed just before the transformation execution is finished. Figure 5-51 shows 

an excerpt of the rule. Note that it only contains a target pattern, i.e. it just adds 

elements in the target model, without the need for a previous matching with some 

source pattern. Each element in the target pattern follows the structure of the one 

from the Date2Date matched rule already commented. 
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endpoint rule generateTypes(){

to 

datetime_timewithtimezone : SQL2003!DatetimeType (

 descriptor <-#TIMEWITHTIMEZONE,

schema <- thisModule.PACKAGE()

),

datetime_timewithouttimezone : SQL2003!DatetimeType (

 descriptor <-#TIMEWITHOUTTIMEZONE,

schema <- thisModule.PACKAGE()

),
 

Figure 5-51. ATL Rule generateTypes()  

5.3.2.2 Mapping Primitive Types in PIM2PSM transformations 

The task of mapping primitive types in PSM2PSM transformations is more 

challenging. Apart from mapping the primitive types, we need to map the features 

that each element uses to customize the Primitive Type used (see section 5.2.1.2). 

We propose two different techniques to tackle these issues: one for mapping the 

Primitive Type objects and another for the Feature objects. Next, we introduce 

them using the SQL20032ORDB4ORA transformation bundled in M2DAT-DB 

(see section 5.1.1). It maps ORDB schemas conforming to the SQL:2003 standard 

to ORDB schemas for Oracle. 

Mapping Primitive type objects 

Regarding just primitive types, we can identify the different scenarios 

summarized in Table 5-2. 

Table 5-2. Possible Scenarios for Primitive Types mapping in PSM2PSM transformations 

SOURCE MODEL TARGET MODEL 

One Element One Element 

None One element 

Several elements One Element 

The first one is tackled with a matched rule. For instance, the Figure 5-52 

shows the ATL rule to map SQL:2003 Character type objects 

(CharacterStringType.CHARACTER) to Oracle Character type objects 

(ANSICharacterType.CHARACTER). 
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rule CharacterStringType2Varchar {

from

cs : SQL2003!CharacterStringType(cs.descriptor = #CHARACTER)

to

ch1 : ORDB4ORA!ANSICharacterType (

Descriptor <- #CHARACTER,

model <- thisModule.schema

)

}
 

Figure 5-52. ATL Rrule CharacterStringType2Varchar  

We have already shown how the second scenario (none source type to one 

target type) is solved. An endpoint rule like the one from Figure 5-51 takes care of 

this issue by instantiating any primitive type considered in the target platform, that 

is not considered in the source platform. 

Finally, the last scenario is the most complex. Here, several source types 

have to be mapped to the same target type. For instance, both the SQL:2003 

NCHAR and CHAR types are mapped to the same Oracle CHARACTER type. In 

such a situation, we call the source types mirror types since they have to return the 

same target type. This situation is solved with two different steps:  

 Mapping one of the mirror types to the desired target type. 

 If a source object uses any of the mirror types to define its type, the 

corresponding target object will use the target type created before. 

First step is encoded in a matched rule like the ones already shown in 

Figure 5-50 and Figure 5-52. As an example, Figure 5-53 summarizes how the 

second step is carried out to map Parameter objects from SQL:2003 ORDB 

models to ORBD models for Oracle. 

rule Parameter2Parameter{

from

pIN : SQL2003!MethodParameter

to

pOUT : ORDB4ORA!MethodParameter

(

Name <- pIN.name,

Type <- if pIN.type.isMirrorType() then 

pIN.type.mirrorType() 

else 

pIN.type 

endif

)

}
 

Figure 5-53. SQL:2003 to ORDB4ORA --> ATL Rule Parameter2Parameter  

We have already explained how target elements are referenced in ATL 

code. To that purpose, ATL replaces references to a source element by a reference 

to the corresponding target element. We can not proceed this way in this case 
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since the target type has not just one corresponding source element but several (the 

mirror types). So, whenever a reference to a primitive type has to be made, we 

check whether it is a mirror type. If so, instead of using the reference as-is, we 

invoke the mirrorType helper directly. From the set of mirror types that has to be 

mapped to the same target type, the helper returns the type that is used by the 

matched rule that creates the corresponding target type.  

Mapping Feature objects 

Once the primitive types are correctly mapped, we need to address the 

mapping of the features that each structural component (attribute, field or column) 

uses to adapt the type to its specific needs (see section 5.2.1.2). Notice that only 

those source features with a corresponding feature in the target model could be 

mapped. Figure 5-54 shows part of the solution. In particular, it shows the rule to 

map SQL:2003 attributes to Oracle attributes. 

 

rule Attribute2Attribute {

from

attIN : SQL2003!Attribute

to

attOUT : ORDB4ORA!Attribute (

Name <- attIN.name,

Type <- if attIN.type.isHiddenType() then 

attIN.type.mirrorType() 

else 

attIN.type 

endif,

structured <- attIN.structured,

features <- attIN.features->select(f|f.haveLegalTarget())->collect(f|thisModule.Feature2Feature(f))

)

}

 
Figure 5-54. SQL:2003 to ORDB4ORA --> ATL Rule Attribute2Attribute  

Whenever an Attribute is mapped, its features have to be mapped as well. 

To that end, we first select just those features that have a correspondent feature on 

the target metamodel. To filter them we use the haveLegalTarget() helper. Then, 

we invoke the rule that creates the target feature (Feature2Feature()). 

Indeed, the Feature2Feature rule, shown in Figure 5-55, is an abstract rule. 

It maps the source key-value pair to the target key-value pair. To that end, two 

different helpers return the target key and the target value for each source key and 

source value. Taking advantage from ATL rule inheritance, the rule is later 

specialized for each family of primitive types.  
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lazy abstract  rule Feature2Feature

{

from

fIN:SQL2003!Feature

to fOUT:ORDB4ORA!Feature

(

key <- fIN.targetKey(),

value <- fIN.targetValue()

)

}
 

Figure 5-55. SQL:2003 to ORDB4ORA --> ATL Rule Feature2Feature 

For instance, Figure 5-56 shows how the rule is specialized for the families 

of String (1) and Numeric (2) primitive types. 

lazy rule NumericFeature2NumberFeature extends Feature2Feature 

{

from

fIN:SQL2003!NumericFeature(fIN.oclIsTypeOf(SQL2003!NumericFeature))

to 

fOUT:ORDB4ORA!NumberFeature

}

lazy abstract  rule Feature2Feature

{

from

fIN:SQL2003!Feature

to 

fOUT:ORDB4ORA!Feature

(

key <- fIN.targetKey(),

value <- fIN.targetValue()

)

}

lazy rule StringFeature2CharacterFeature extends Feature2Feature

{

from

fIN:SQL2003!StringFeature(fIN.oclIsTypeOf(SQL2003!StringFeature))

to 

fOUT:ORDB4ORA!CharacterFeature

}

1

2

 
Figure 5-56. SQL:2003 to ORDB4ORA --> Instantiating Feature2Feature ATL rule 

5.3.3 Documenting ATL Transformations 

So far, we have already presented how model transformations are 

addressed when developing M2DAT‘s modules. In this section we would like to 

present another minor improvement introduced in M2DAT regarding the 

development of ATL model transformations. 

One of the main drawbacks of current model transformation languages is 

available documentation. Since they are still too recent, the most of the effort is 

dedicated to build and improve the transformation engine while almost no effort is 

dedicated to document it, a crucial factor regarding final adoption of the language. 

Although ATL is the best of existing languages in this sense, we have added an 

improvement on M2DAT regarding documentation of ATL transformations. We 

firmly believe it contributes to improve M2DAT usability. 

Constant addition of comments in the code is a good practice. However, 

when the transformation gets too large or complex, documenting could turn out to 

be a tedious task. One possible improvement is the use of automatic 

documentation mechanisms, like Javadoc [394], the most recognised and adopted 

way of documenting source code. Following this approach, we have built a utility 

similar to Javadoc to generate HTML doc from ATL source code, so-called 
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ATLDoc. It is based on two main points: the comment format and the HMTL 

output style. 

 Comment Format: we will use the modular nature of ATL to define enriched 

comments for each ATL block (rules, helpers, etc.). To associate a meaning to 

each comment we lean on a little grammar encoded in an XML file. It serves 

to identify the beginning and finish of each comment, plus the different 

subsections that it owns. Figure 5-57 shows an example of such file. 

<?xml version="1.0" encoding="ISO-8859-1" ?>

 <ATLDOC>   

  <Comment>

          <Begin>--BEGIN DOC

          </Begin>

          <End>--END DOC</End>

          <Sections escapeChars="#">

                <Title escapeChars="" name="PRECONDITION">

          </Title>

          <Title escapeChars="" name="About">

          <Subtitle>@name</Subtitle>

          <Subtitle>@version</Subtitle>

          <Subtitle>@domains</Subtitle>

          <Subtitle>@authors</Subtitle>

          <Subtitle>@date</Subtitle>

          <Subtitle>@description</Subtitle>

          </Title>

          <Title escapeChars="" name="DESCRIPTION">

          <Subtitle>@CONTEXT</Subtitle>

          <Subtitle>@INPUTS</Subtitle>

          <Subtitle>@RETURN</Subtitle>

          <Subtitle>@LIBRARIES</Subtitle>

          <Subtitle>@AUTOR</Subtitle>

          </Title>

          </Sections>

     </Comment>

     <Code>

     <startWith>helper</startWith>

     <startWith>rule</startWith>

     <startWith>lazy</startWith>

     <startWith>entrypoint</startWith>

     <startWith>endpoint</startWith>

     <startWith>uses</startWith>

     <startWith>library</startWith>

     <startWith>module</startWith>

     <startWith>abstract</startWith>

     <startWith>unique</startWith>

     </Code>

</ATLDOC>
 

Figure 5-57. ATLDoc Template 

This way, the <Begin> tag identifies the beginning of a comment while the 

<End> tag identifies its finishing. The escapeChars attribute of the <Sections> tag 

denotes each subsection inside a comment. In turn, each Section has a title denoted 
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by the name attribute of the <Title> tag and can have subsections, marked by the 

<Subtitle> tag.  

For instance, the ATL file from Figure 5-58 has been coded according to 

the default template.  

-- @atlcompiler atl2006

-- @nsURI UML=http://www.eclipse.org/uml2/2.1.0/UML

--BEGIN DOC

--#About

-- @name UML_constants

-- @version 1.0

-- @domains database, dsl, sql2003, uml, mda, transformation,

-- metamodel, model

-- @authors Alejandro Galindo (Universidad Rey Juan Carlos)

-- @date       24-03-2008

-- @description Esta libreria ATL contiene las constantes utilizadas en las

-- transformaciones realizadas desde un modelo conforme 

-- al metamodelo UML.

--END DOC

library UML_constants;

-- Dentro de las librerias de ATL no se permite definir atributos o constantes.

-- Entonces, las constantes hay que definirlas como helpers.

--BEGIN DOC

--#DESCRIPTION

--Constante asociada al tipo primitivo de UML para representar cadenas de texto.

--END DOC

helper def : TYPE_STRING() : String = 'string';

--BEGIN DOC

--#DESCRIPTION

--Constante asociada al tipo primitivo de UML para representar caracteres.

--END DOC

helper def : TYPE_CHAR() : String = 'char';

 
Figure 5-58. Excerpt from UML_Constants.ATL file 

 Output Style: the style of the documentation file is encoded in a CSS style 

sheet. As Figure 5-59 shows, when ATLDoc is invoked, the ATL file 

containing the structured comments is processed by the ATLDoc utility 

according to the active template. The output will be an HTML file containing 

all the source code with the comments section interleaved in a friendly 

interface according to the styles defined in the CSS file. 
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ATL
File

HTML
ATLDoc

UML2SQL2003.atl
UML2SQL2003.html

ATLDoc

 
Figure 5-59. ATLDoc overview 

This way, after invoking ATLDoc over the ATL file shown in Figure 5-58, 

an HTML preserving the name with a different suffix is created in the same folder. 

An excerpt of the file is shown in Figure 5-60. 

17/05/2008

 
Figure 5-60. ATLDoc generated file: UML_Constants.html 

In essence, it is the same ATL file with extra features. Next to the name of 

the module (library in this case), the date of creation plus the name of the ATL file 

are added on the header. Besides, the name of each section and sub-section of each 
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comment are bolded, while reserved words and primitive type values (like strings) 

are displayed in a different colour. 

To conclude, it is worth mentioning that in the next future we can extend 

ATLDoc to generate code documentation in other formats, such as PDF, CHM or 

RTF. 

5.3.4 On the Development of Model Transformations 

The previous sections serve to prove that using ATL and AMW we are able 

to address any given scenario that may arise in the context of model 

transformations. This section is just an attempt to capture some findings, thoughts 

and lessons learned while developing the model transformations bundled in 

M2DAT‘s reference implementation (M2DAT-DB). As well, we would like to 

provide with some comments on the comparison between ATL and existing 

implementations of the QVT standard. 

5.3.4.1 Some generic reflections  

Regarding the language used to code the transformations, the hybrid 

approach of ATL has turned out to be the most suitable. On the one hand, 

adopting a declarative style gets rid of part of the complexity inherent to the 

development of model transformations. Working this way, when you are coding 

the rules that map a particular metaclass you do not have to wonder about the rest 

of the metaclasses in the metamodel.  

Besides you do not have to worry about how target elements are created, 

you just need to specify the relationships that must hold between source and target 

model. The rest is undertaken by the transformation engine.  

As well, this eases the task of traceability management. Indeed, the 

transformation engine uses transient links to establish the bindings needed 

between target elements. Those transient links stores the information on which 

target elements have been created to map each source element. Therefore, you just 

need to persist those transient links if you want your traceability information to be 

registered.  

Likewise, there is no need to care about the order in which rule is executed 

since declarative programming has no explicit order. The transformation enforces 

that all the relationships between source and target elements encoded in the rules 

will hold after execution. But nothing has to be sais about the order in which it has 

to be done. 
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Finally, matching of source elements is automatically done by the engine. 

With imperative programming you would need to code huge loops to navigate the 

whole source model in order to find all the elements of a given type, and then 

check if they conform to whatever condition you may impose to map them. In 

declarative programming, this is done by free by the transformation engine. You 

just need to specify which condition must be checked over each type of element 

found on the source model. 

Nevertheless, when you are coding complex model transformations you 

will need for sure some aid from imperative constructions. As we have shown so 

far, it is very common the situation in which you need to create some ―new‖ 

elements in the target model. That is, elements for which no relation to a source 

element must hold. For instance, when moving from PIM to PSM, you need to 

create the built-in types of the given platform in your model in order to define the 

type of the target elements. However, those types do not have a correspondence 

with anything from the source model. In this case, you need to explicitly create the 

types. To that end, you need an imperative construction. 

In this sense, it might be remarkable the fact that even the standard, QVT, 

proposes tow different languages to support both programming paradigms, 

allowing to use some imperative operations on your declarative rules. 

From our experiences, we can state that the main problem of adopting a 

declarative approach was changing our mindset. Moving from the imperative 

programming style to the declarative one resulted quite challenging in the 

beginning. You tend to twist the declarative rules to make them look like 

imperative. However, once you have acquired some skills with declarative 

programming, you immediately come to the conclusion that it is the most suitable 

for model transformation development. We might say that you start to ―think on 

declarative‖. 

Another issue related with declarative approaches is performance. We have 

confirmed that, in presence of large models, the performance is rather slow. 

However, we should take into account the novelty of model transformation 

engines. They are constantly improved. Thus, we have to let them some time to 

check if those improvements solve this drawback. 

Besides, we have mentioned that traceability management is easier to 

address in declarative transformations. However, we are using an hybrid approach 

because we need some imperative constructions. Obviously, this hampers the 

management of traceability links. In fact, with ―new‖ objects no traceability link 

could be created, since they do not have relation with any element from the source 
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model. Thus, new techniques are needed to solve this problem. Meanwhile, some 

temporal fixes can be used. For instance, as we have done so far with built-in 

types, associate them with the root element of the source model. This way, since 

every EMF model has to include a root element, we can bind the ―new‖ elements 

in the target model with the root element from the source model. This way, we can 

create traceability links also for ―new‖ elements. 

Finally, we would like to mention that, our experiences so far has 

confirmed that a visual notation for developing model transformations is, at best, 

not enough to develop complex transformations. Think on graph-based 

transformations, a formal way of defining visual transformations. Though they are 

mainly visual languages, we have realized that in the most cases, they need to 

include textual add-ins in their graph-rules to be able to support the whole 

transformation (ATOM
3 

works this way, and even VIATRA itself is still 

developing support for visual rules). In the end, some expressions are just 

impossible to model in a visual way. Or if possible, the effort needed is not 

worthwhile when compared with that needed to specify the same expression in a 

textual language. 

Regarding annotation models, we are pretty sure about the need of having 

mechanisms to mark source models in order to support design decisions. A 

complete automatic process from CIM to working-code is nor feasible, neither 

acceptable. Indeed, this was recognised in the early versions of MDA guide and all 

along MDE literature. However, as we have argued along this dissertation, 

marking the model itself means polluting it with concepts from other domains. We 

stated that the best option was to use annotation models and we have proved that 

weaving models serve in an efficient and usable way as annotation models. The 

screen captures has shown that AMW integrates perfectly with EMF tree-like 

editors and provides with an intuitive and easy to use, yet powerful annotating 

mechanism. Besides, the good coupling of AMW and ATL eases processing the 

annotation in the model transformations. 

5.3.4.2 ATL vs QVT implementations 

As we have already mentioned, we wanted to ensure that existing 

implementations of QVT standard were not enough to develop complex 

transformations. Nevertheless, QVT is not a language but a family of  languages. 

Therefore, in order to test how the different programming styles fit with the task 

of developing model transformations, we use two of the languages from the QVT  

family: QVT-Operational Mappings (imperative style) and QVT-Relations 

(declarative style). Thus, we replicated an ATL transformation with two of the 
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most mature existing implementations of QVT: mediniQVT and QVTo from 

OpenCanarias. This section presents some highlights gathered from such tests.  

Please, note that the objective of this dissertation is not to carry out an 

exhaustive comparative between model transformation languages. We just want to 

be able to select the best model transformation language for our purposes. In this 

sense, the level of complexity is quite relevant. Besides, the ability to make these  

kind tests in the framework of M2DAT serves to prove the utility of M2DAT as 

an integrated framework where emerging technologies may be tested and 

evaluated. Again, this is due to the open nature of M2DAT and the underlying 

EMF framework. 

All this given, our main concern with QVT implementations regards 

usability. The use of the evaluated languages hampers the code of the 

transformation. This fact is mainly due to the difference ways of using tracing 

information.  

The ATL engine stores the tracing information between every source 

element and the corresponding target elements in transient links. This information 

is used by the ATL-VM [180]. Each time one transformation rule is matched, a 

new tracing link is created between the matched source element and all its 

corresponding target elements. Subsequently, when a transformation rule 

implicitly requires the target elements produced for a different rule, the ATL-VM 

automatically resolves the dependency using the tracing links. We use a code 

excerpt (Figure 5-61) from one of the transformations carried out in this thesis to 

show how this works. 

rule Class2UDT {

from

c : UML!Class

to

udt : ORDB4ORA!StructuredType(

name <- c.getUDTName(),

typed <- tt

…………..

),

tt : modeloOR!TypedTable(

name <- c.getTypedTableName()

}

rule Property2Attribute {

from

p:UML!Property (not p.isDerived and not p.isMultivalued() and p.refImmediateComposite().oclIsTypeOf(UML!Class))

to

a : ORDB4ORA!Attribute(

name <- p.name,

type <- p.type,

structured <- p->refImmediateComposite())
}
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Figure 5-61. ATL Code Excerpt: Class2UDT and Property2Attribute mapping rules 
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Rule Class2UDT (lines 1-9) maps every class from the source model to an 

StructuredType plus a Typed Table on the target model. Rule Property2Attribute 

(14-22) maps every Property of a UML!Class to an Attribute of the corresponding 

StructuredType in the target model. The binding structured <- 

p.refImmediateComposite() returns a reference to such StructuredType. In fact, the 

binding returns a reference to the owning class of the property. The ATL-VM 

replaces it for a reference to the corresponding StructuredType. To do so, the 

ATL-VM uses the internal traceability links handled during the execution of the 

transformation. This way, the reference to the owning class is replaced by a 

reference to the StructuredType that generates the Class2UDT rule that maps the 

class. 

The absence of those transient links in QVT studied engines hampers the 

development of model transformations. As noticed before this fact forces 

somehow to follow a not purely declarative style. When you are developing a 

model transformation in the declarative style, you should be able to code each rule 

without worrying about how the rest of elements from the source model are 

mapped. In the previous example, you do not have to worry about Properties 

mapping when coding the Class2UDT rule. In contrast, we can have a look at the 

equivalent mapping rules for mediniQVT (Figure 5-62).  

top relation Class2UDT {

n : String;

checkonly domain uml c : uml::Class {name = n};

enforce domain ordb4ora s : ORDB4ORA::StructuredType

{name = n + ' <<udt>>‘, typed = t : ORDB4ORA::TypedTable {name = c.name}, model = getModel()};

when {PackageToModel(getPackage(), getModel());(c.generalization->first()->oclIsUndefined())=true;}

where {PropertyToAttribute2 (c, s); PropertyDerivedToMethod (c, s);

}

}

relation PropertyToAttribute2 {

an : String;

pn : String;

checkonly domain uml c : uml::Class 

{ownedAttribute = p : uml::Property {name = an, type = upt : uml::PrimitiveType {name = pn}}

};

enforce domain ordb4ora s : ORDB4ORA::StructuredType

{attribute = a : ORDB4ORA::Attribute {name = an, type = opt : ORDB4ORA::PrimitiveType {model = getModel()}}

};
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Figure 5-62. mediniQVT Code Excerpt: Class2UDT and Property2Attribute mapping rules 

Notice that when you are coding the mapping rule for Classes (lines 1-13), 

you have to keep in mind Class‘ properties since the Properties2Attributes 

mapping rule has to be invoked from the Class2UDT rule (line 12). 

The same happens to any other model element nested in a Class, like 

methods or association ends. Clearly, this way of programming model 
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transformations is not recommended, at least for us, and it differs from the purely 

declarative style. 

Another limitation of existing QVT implementations (at least, of QVT-

Operational Mappings) lies in the way they handle the target model. Any element 

added to the target model has to be initially nested on the root element and later 

reallocated using a property of any element from that same model.  

A global remark that can be made about QVT-Relational and QVT-

Operational Mapping is related with the approach adopted by each one. While 

QVT-Relations adopts a purely declarative approach, QVT-Operational Mappings 

adopt an imperative one. As we have argued in section 4.4.2.3, we believe that 

none of them are the best way to address the development of model 

transformations. While using just declarative constructions is not feasible in some 

scenarios, sticking to imperative constructions results in too much verbosity and 

very complex transformations. 

Finally, as MOF QVT Revision Task Force shows 

(http://www.omg.org/issues/qvt-rtf.html), QVT specification presents serious 

drawbacks and is rather susceptible of being revisited as long as QVT 

implementers advance in their work and more inconsistencies are detected. Hence, 

a complete, efficient and reliable QVT implementation is still to come. 

5.4 Code Generation in M2DAT 

Previous section has focused on the development of model-to-model 

transformations in M2DAT. Indeed code generation is also a model 

transformation, but this is a model-to-text transformation. 

However, as we have mentioned several times along this dissertation, we 

believe that model-to-model transformation is the cornerstone of model-driven 

development. Indeed, model-to-text transformation is just about serializing 

models. If you start from a well-defined and precise PSM, though relevant, it is a 

less challenging task.  

In contrast, model-to-model transformations have to deal with changes in 

abstraction levels and/or domains, what adds a lot of complexity to the task, if you 

want your model transformations to be complete. That is, you need to be very 

careful when developing transformation to capture all the information from the 

source model and to translate it properly to the set of abstraction supported by the 

target metamodel. 
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All this given, this section will provide just with some insights on how 

model-to-text transformations have been developed in M2DAT so far. To that end 

we use the MOFScript program for generating SQL scripts conforming to 

SQL:2003 standard from SQL:2003 ORDB schemas. 

5.4.1 Using MOFScript for code generation purposes 

In front of the declarative approach of ATL (and the vast majority of 

existing model to model proposals), model to text transformation engines take the 

form of imperative programming languages. In fact, a MOFScript script is a parser 

for models conforming to a given metamodel. While it parses the model structure, 

it generates a text model based on transformation rules. On a second phase this 

text model is serialized into the desired code. This way, the script uses the 

metamodel to drive the navigation through the source model, just as an XML 

Schema drives the validation of an XML file. As a matter of fact, every model is 

persisted in XMI format, an XML syntax for representing UML-like (or MOF) 

models. 

The program that implements the model to text transformation is basically 

a model parser. It navigates the structure of the model, generating a formatted 

output stream. In this case, the model os the ORDB model while the output stream 

is  the SQL script that implements the modeled DB schema. In the following we 

introduce this script showing some code excerpts. The reader is referred to [262] 

for more information on how to configure MOFScript execution. 

As showed below, a main function  is the entry point for the script. It 

includes a set of rules for processing each possible type of element that can be 

found in the source model (so-called context types in MOFScript). Besides, we 

include the eco parameter in the script header to specify which the input 

metamodel is. To that end we use the URI that identifies the metamodel we have 

presented in section 5.2.1.1. 
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texttransformation codigo (in eco:"http://SQL2003.ecore") {

   

   eco.Schema::main(){

     var nombre:String

     

     if (self.name.size()=0)

     nombre="codigo_SQL2003.sql"

     else

     nombre=self.name + "_SQL2003.sql"

     file (nombre)

     

     println("CREATE SCHEMA " + self.name + ";")

     println("")

     

     

     //code generation for Structured Types

     self.datatypes->forEach(s:eco.StructuredType)

     {

 s.generateStructured()

 println("")

     }
 

Figure 5-63. MOFScript code excerpt: heading 

Next, a transformation rule is defined for each context type. For simple 

rules, we code the rule inside the main body whilst the complex ones are coded by 

means of auxiliary rules. Those functions are invoked from the main body. 

For instance, the rule for Structured Types creation is probably the most 

complex one since it encapsulates a lot of semantics. Thus, it is coded in the 

generateStructured auxiliary function. The main body invokes it for every 

Structure Type object found in the source model. 

The code excerpt shown in Figure 5-64 presents the beginning of the 

generateStructured rule. 

   eco.StructuredType::generateStructured() {

       var texto:String=""

       var mCount:integer= self.method.size()

       var currentMethod:integer=0

       var i:integer=0

       

       if (self.super_type.name.size()=0)

       texto="CREATE " + self.name + " AS"

       else

       texto="CREATE  " + self.name + 

" UNDER " + self.super_type.name+ " AS"

       if(self.attributes.size() == 0 and self.method.size() == 0)

       print(texto + "()")

       else

       {   

         println(texto + "\n(")

       

       //adds UDT’s attributes

       self.attributes ->forEach(a:eco.Attribute) {

         i=i+1

        a.generateAttribute()

        if(i==self.attributes.size())

         println("")

         else

         println(",")

       }
 

Figure 5-64. MOFScript code excerpt: GenerateStructuredType rule 

First, the auxiliary variable that will store the SQL code is initialized. Next, 

we add the SQL code to start the creation of the structured type, distinguishing 

those types that inherit from any other type  from those that do not. Then, the 

script checks whether the Structured Type contains any attribute. If so, it navigates 

the collection of attributes invoking the corresponding rule (generateAttribute) 

and so on. 
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To conclude this section, Figure 5-65 shows a piece of the SQL code 

generated for the case study.  

MOFScript

Code Generation

eco.StructuredType::generateStructured() {…}

self.attribute->forEach(a:eco.Attribute) {…}

self.typed->forEach(t:eco.TypedTable){…}

MOFScript

CREATE TYPE cast_type AS (

id INTEGER(25),

casting_order INTEGER,

role CHARACTER VARYING(25),

actor Ref_actor_type,

movie Ref_movie_type

);

CREATE TABLE casts OF cast_type (

id PRIMARY KEY,

role NOT_NULL,

actor NOT NULL

);

CREATE TYPE Ref_cast_type AS (

ref REF cast_type

);

CREATE TYPE cast_type_MULTISET AS MULTISET (cast_type);

CREATE TYPE actor_type UNDER person_type (

casts cast_type_MULTISET

);

CREATE TABLE actors OF actor_type (

casts NOT NULL

);

CREATE TYPE Ref_actor_type AS (

ref REF actor_type

);

 
Figure 5-65. SQL Generated Code exceprt 

The upper side is a screen capture of the developed graphical editor. It 

shows an extract from the OR model of the case study. Specifically the cast and 

actor types and the corresponding typed tables, next to the REF types created from 

them as well as the collection types. This code is generated by the execution of the 

mapping rules listed in the annotation beside. 

5.5 Validating models in M2DAT 

Section 4.7 discussed the election of EVL as the way to integrate OCL-

based model validation in the DSLs bundled in M2DAT. With EVL, the 

constraints to be checked are defined at metamodel level. The Epsilon engine 

provides with the mechanisms to add the evaluation of such constraints over any 

terminal model conforming to such metamodel.  
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We have opted for batch validation instead of live validation since live 

validation presents the recurrent problem of modelling objects going out of a valid 

state only to be eventually placed back into a valid state. 

In the following we show how a constraint is defined to ensure that any 

Schema object will have a name and the rules to define such name. In addition, we 

show the result of validating an .sql2003 file when such constraint is not satisfied.  

First thing to do is to code the corresponding invariant. into an .evl file. 

After installing Epsilon, wizards to create EVL files are available (see Figure 

5-66). 

 
Figure 5-66. Creating EVL files 

Figure 5-67 shows the EVL code that implements the invariant to control 

that every Schema object owns a valid name. 

The notEmptySchemaName invariant prevents from void Schema names 

(1). Next, the validSchemaName is evaluated over those schema objects for which 

the previous invariant evaluates to true (2). It checks if the name fulfil the 

specified construction rules. Those rules are summarized in a regular expression 

encoded in the isValidName() operation (3). If the name is not correct, then the fix 

code is executed. It shows a getTitleValidName message inviting the user to 

correct the error detected. If the user does show, the getInputValidName operation 

will show an input box where the user can enter a new name for the Schema 

object. 
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Figure 5-67. EVL Invariant to enforce Schema names consistency 

Then, the .evl file has to be associated to the plug-in that contains the code 

for handling models. To that end, the configuration file of the plug-in that 

implements the editor is used. We have to specify that the editor extends the 

validation plug-in from Epsilon as well as the URI assigded to the metamodel of 

the DSL plus the path to the .evl file containing the constraints definition (Figure 

5-68). 

namespaceURI: nsUri of the metamodel

constraints: path to EVL file

We use this
extension point

 
Figure 5-68. Declaring extensions to the Epsilon validation plug-in 

Since we have implemented validation in batch mode, the validation has to 

be invoked over the desired model as shown in Figure 5-69 (1). If any invariant 

does not evaluates to true, the message specified in those invariants are shown. In 
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this case, the Schema name does not satisfy the constraits imposed (2), thus the 

model is marked as an invalid model (3). 

1

2

3

 
Figure 5-69. Launching model validation in M2DAT. 

Then, the problems view (see Figure 5-70) allows invoking the fixing 

behaviour coded in the .evl file (1).  

1

2

3

4

 
Figure 5-70. Fixing validation problems 
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The available solutions are shown in a new window (2). In this case, the 

user might just Ignore the problem or ‗Change the name of Schema ---‗. If the 

latter is chosen, an input box let the user enter the new name for the Schema (3). 

Now, if validation is invoked again it raises a satisfactory evaluation. 

5.6 Integrating New Modules in M2DAT 

We have already mentioned a number of times that usability is a crucial 

aspect when developing tools for MDSD. The use of Eclipse helps in this sense 

since it provides with a common interface, devised to be extended and customized 

according to specific needs. 

Regarding M2DAT, the main functionality that the user interface should 

provide is the way to invoke or launch, in a friendly way, the different model 

transformations (both model-to-model and model-to-text) bundled in each 

M2DAT‘s module. To that end, this section presents the way we have used 

Eclipse‘s facilities to develop model transformation launchers and to incorporate 

the needed controls in Eclipse that allows invoking such launchers. 

We aim at showing that, developing such launchers and controls is feasible 

using existing components and available documentation, thus we will focus on 

presenting the results without going deep into the code that implement them. In 

this sense, readers interested are referred to the enclosed CD, that includes 

M2DAT-DB source code. Therefore, in the following we present some of the 

Eclipse extensions developed to build M2DAT-DB user interface.  

5.6.1 Developing an Integration plug-in 

In essence, the integration of the functionality provided by a new module in 

M2DAT resides in the development of an integration plug-in. Such plug-in 

implements the launchers for the model transformations bundled in the module, 

plus the add-ins for the user interface that invokes such launchers. Such plug-in 

depends on the differentplug-ins tha implement the DSLs bundled in the module 

and the plug-ins provided by the EMP that are used by the module. 

For instance, Figure 5-71 shows the dependencies among the 

transformations bundled in M2DAT-DB and the different plug-ins that compose 

or uses the module. 
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UML2SQL2003

UML2ORDB4ORA

UML2XMLSchema

MOFScript Scripts

SQL20032ORDB4ORA

ORDB4ORA2SQL2003

ORDB4ORA

XMLSchema

SQL2003

AMW

MOFScript

M2DAT-DB
Integration

plug-in

 
Figure 5-71. Dependencies between M2DAT-DB plug-ins and transformations 

The integration plug-in for M2DAT-DB bundles five model-to-model 

transformations, plus three model-to-text transformations (the latter represented by 

the common moniker MOFScript Scripts). In addition, it depends on the different 

components provided by the EMP, like EMF, ATL, AMW, Epsilon and 

MOFScript, and the plug-ins that implement the three DSLs bundled in M2DAT-

DB: XMLSchema, SQL2003 and ORDB4ORA. 

In the following we describe the integration plug-in distinguishing the part 

supporting the launch of model transformations programmatically and the part that 

provides with a user interface to do it. Note that the latter leans on the former.  

5.6.2 Launching Model Transformations Programmatically 

To have an idea of what is needed in order to launch a model 

transformation, check the header of the UML2SQL2003 ATL transformation 

shown in Figure 5-72. It defines which are the source and target models and the 

libraries used by the transformation. 
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-- @atlcompiler atl2006

-- @nsURI UML=http://www.eclipse.org/uml2/2.1.0/UML

-- @nsURI SQL2003=http://SQL2003.ecore

-- @path AMW=/UML2SQL2003/Metamodels/ORAnnotationMeta.ecore

module UML2SQL2003;

create OUT : SQL2003 from IN : UML, ANNOTATIONS : AMW;

-- IMPORTS         -------------------------

uses UML2SQL2003_constants;

uses UML2SQL2003_helpers;

uses UML2SQL2003_AMW; 

uses UML;
 

Figure 5-72. ATL Header UML2SQL2003 

According to such header, from a model conforming to the UML 

metamodel and a model conforming to the AMW metamodel, the transformation 

generates a model conforming to the SQL2003 metamodel. At development time, 

the correspondences between such variables and real files or models is defined 

using the wizards provided by the ATL IDE. This way, the user creates a 

transformation execution that can be retrieved an reused at any moment. What we 

aim to do is to eliminate the need of having to do such execution configurations, 

or at least, simplify it, in order to ease the task and provide with more user-

friendly interface for M2DAT. The first thing to do is to be able to launch the 

transformation programmatically, i.e. to configure the transformation execution 

programmatically. Once the configuration has been created it could be invoked 

from the code that handles the user interface events.  

The main part of the the integration plug-in concerning the programmatic 

launch of model transformations in M2DAT‘s modules is a class called 

Transformations.  

One of the main responsabilities of such class is to load the different 

transformations. Since this is a costly task in terms of memory and processing 

time, the Transformations class follows the singleton pattern to avoid replicating 

the load of metamodel. This way, the transformations will be loaded the first time 

the plug-in is used and remain loaded until Eclipse is closed. Figure 5-73 shows 

the beginning of M2DAT-DB‘s Transformations constructor. 
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private Transformations() {

modelHandler = (AtlEMFModelHandler) 

AtlModelHandler.getDefault(AtlModelHandler.AMH_EMF);

UML2ORDB4ORA_TransfoResource = Transformations.class.getResource

("resources/UML2ORDB4ORA/UML2ORDB4ORA.asm");

UML2SQL2003_TransfoResource = Transformations.class.getResource

("resources/UML2SQL2003/UML2SQL2003.asm");

UML2XMLSCHEMA_TransfoResource = Transformations.class.getResource

("resources/UML2XMLSCHEMA/UML2XMLW.asm");

SQL20032ORDB4ORA_TransfoResource = Transformations.class.getResource

("resources/SQL20032ORDB4ORA/SQL20032ORDB4ORA.asm");

ORDB4ORA2SQL2003_TransfoResource = Transformations.class.getResource

("resources/ORDB4ORA2SQL2003/ORDB4ORA2SQL2003.asm");

}
 

Figure 5-73. Excerpt from M2DAT-DB’s Transformations constructor: metamodels loading 

In addition, the Transformations class contains a method to launch each 

model-to-model transformation bundled in the module. In contrast, all the model-

to-text transformation launchers are encoded in an unique method (so-called 

mofscriptTransformation) since the configuration of MOFScript transformations is 

much more simpler that that of ATL transformations. 

As an example, we will focus on the code to launch the UML2SQL2003 

transformation, already mentioned a number of times along this dissertation. 

However, note that all the code that implements M2DAT-DB, and thus the 

integration plug-in, can be found in the enclosed CD. 

Launching the UML2SQL2003 transformation programmatically 

To be able to launch the UML2SQL2003 ATL transformation, the 

Transformations class from the M2DAT-DB‘s integration plug-in contains the 

uml2sql2003 method, whose signature is displayed in Figure 5-74. Note that it 

receives three different parameters that correspond to the source and target models 

handled by the transformation. 

public void uml2sql2003(String inUMLFilePath,String inAMWFilePath, 

String outFilePath) {

try {

Map<String, Object> models = new HashMap<String, Object>();

Map<String, Object> libraries = new HashMap<String, Object>();

initSQLMetamodels(models);

initSQLLibraries(libraries);
 

Figure 5-74. Signature of the UML2SQL2003 launcher 

The first thing to do is to define a couple of has tables that will collect all 

the information provided by the ATL header to launch the transformation. In 

particular, which are the metamodels to use (models), as well as the libraries to 

import (libraries), in case there are some libraries to import. Next, such tables are 



Validation: M2DAT-DB    313 

 

populated by invoking the corresponding method, initSQLMetamodels (see Figure 

5-75) and initSQLLibraries respectively. 

private void initSQLMetamodels(Map<String, Object> models) {

umlMetamodel = (ASMEMFModel) modelHandler.loadModel(

"UML", modelHandler.getMof(), 

this.getClass().getResourceAsStream("resources/UML.ecore"));

amwMetamodel = (ASMEMFModel) modelHandler.loadModel

("AMW", modelHandler.getMof(),

this.getClass().getResourceAsStream

("resources/ORAnnotationMeta.ecore"));

sql2003Metamodel = (ASMEMFModel) modelHandler.loadModel("SQL2003", 

modelHandler.getMof(), 

this.getClass().getResourceAsStream("resources/SQL2003.ecore"));

models.put("UML", umlMetamodel);

models.put("AMW", amwMetamodel);

models.put("SQL2003", sql2003Metamodel);

}
 

Figure 5-75. initSQLMetamodels method 

To that end, the ATL API for model handling is used. In particular, note 

the use of the loadModel method to recover each (meta)model by providing its 

path. This way, the keys in the hash table corresponds with the variable names 

used in the ATL header (―UML‖, ―AMW‖ and ―SQL2003‖), whereas the values 

correspond to the respective (meta)models. 

Next thing to do is to load the models handled by the transformation in the 

models hash table. Figure 5-76 shows the corresponding code. Again, the ATL 

API is used to that purpose. 

// get/create models

ASMEMFModel umlInputModel = (ASMEMFModel) modelHandler.loadModel

("IN", umlMetamodel, URI.createFileURI(inUMLFilePath));

models.put("IN", umlInputModel);

if(inAMWFilePath != null)

{

ASMEMFModel amwInputModel = (ASMEMFModel) modelHandler.loadModel

("amw", amwMetamodel, URI.createFileURI(inAMWFilePath));

models.put("amw", amwInputModel);

}

ASMEMFModel orOutputModel = (ASMEMFModel) modelHandler.newModel("OUT", 

URI.createFileURI(outFilePath).toFileString(), sql2003Metamodel);

models.put("OUT", orOutputModel);
 

Figure 5-76. Loading models for executing an ATL transformation 

Finally, once all the models and metamodels have been loaded, it is time to 

execute the transformation, using once more, the methos provided by the ATL 

API. 
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// launch

AtlLauncher.getDefault().launch(this.UML2SQL2003_TransfoResource,

libraries, models, Collections.EMPTY_MAP,

Collections.EMPTY_LIST, Collections.EMPTY_MAP);

modelHandler.saveModel(orOutputModel, outFilePath, false);
 

Figure 5-77. Launching an ATL transformation programmatically 

As a result, the target model is stored in the resource pointed by the 

outFilePath.  

5.6.3 Adding Graphical Support for launching Model 

Transformations  

Once we are able to launch a model transformation programmatically, it is 

time to develop the support to be able to invoke it from the user interface. To that 

end, Eclipse provides with some kind of generic launchers that can be extended 

according to specific needs. It is based on two main concepts: Launch 

Configurations (aka as Run Configurations) and Launch Configuration Types.  

At the simplest level, LaunchConfigurationTypes are cookie cutters, and 

LaunchConfigurations are the cookies made from these cookie cutters. When a 

plug-in developer decides to create a launcher, what he is really doing is creating a 

specific kind of cookie cutter that will allow users to stamp out as many cookies as 

they need. In slightly more technical terms, a LaunchConfigurationType 

(henceforth, a 'config type') is an entity that knows how to launch certain types of 

launch configurations, and determines what the user-specifiable parameters to 

such a launch may be. Launch configurations (henceforth, 'configs') are entities 

that contain all information necessary to perform a specific launch. For example, a 

config to launch a HelloWorld Java application would contain the name of the 

main class ('HelloWorld'), the JRE to use (JDK1.4.1, for example), any program 

or VM arguments, the classpath to use and so on. When a config is said to be 'of 

type local Java Application', this means that the local Java application cookie 

cutter was used to make this config and that only this config type knows how to 

make sense of this config and how to launch it [339]. 

For instance, Figure 5-78 shows that the contextual menu of any file in the 

Eclipse workspace gives access to the different Run Configurations that might be 

launched using such file as input.  
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Figure 5-78. Eclipse’s shortcut to Run Configurations 

In order to add graphical support for launching model transformations, 

M2DAT-DB uses such APIs and mechanisms to build a graphical wrapper for the 

programmatic launchers commented in the previous section. This wrapper incude 

two big groups of controls: 

 First, M2DAT-DB includes five new Launch Configuration Types, one for 

each model-to-model transformation bundled in M2DAT-DB.  

 Second, M2DAT-DB adds actions to the contextual menus of the models 

produced by M2DAT-DB to invoke the different model-to-text 

transformations. We have proceed this way because model-to-text 

transformations are much more simpler to launch since they require less 

parameters. In essence, all the information needed to execute the model 

transformations is in the source model (i.e. the file over which the execution 

of the model transformation is invoked). Therefore, there is no need to create 

a new Launch configuration type to that purpose or to bother the user with 

wizards full of controls to fill. 

In the following we show some results. Nevertheless, remember that the 

code of M2DAT-DB can be found on the CD enclosed. 

5.6.3.1 Launch Configuration Types for M2DAT-DB model-to-model 

transformations 

As Figure 5-79 shows, M2DAT-DB includes five new types of Run 

Configurations, one for each model-to-model transformation supported. 
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Figure 5-79. M2DAT-DB’s Run Configuration Types 

After creating a new Run Configuration Type, it can be used in any view of 

the Eclipse workspace. For instance, Figure 5-80 shows that the contextual menu 

shown for UML models includes the ability to access the new Run Configuration 

Types that are appropiate for UML models. That is, UML->ORDB4ORA, UML-

>SQL2003 and UML->XMLSCHEMA. 

 
Figure 5-80. M2DAT-DB’s Run Configuration shortcuts 

If the user clicks over the second one, the wizard to define UML-

>SQL2003 Run Configurations is shown (see Figure 5-81). 

Then, the user can use the wizard to provide with the parameters needed to 

execute the transformation, i.e. the source models and where to store the target 

model. Note that it already recognises one of the source models (the one over the 

contextual menu was invoked) and provides with a tentative location for the target 

model. By contrats, no default annotation model is provided since annotating the 

conceptual data model (the UML model) is not mandatory. Note also that the user 

does not need to specify the location of the metamodels and the ATL libraries 

used by the transformation. The result is quite user-friendly. 
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Figure 5-81. UML2SQL2003 Run Configuration Wizard 

In addition, such configuration is automatically stored with the name 

provided in the Name field. Thus, the user can invoke the same transformation 

execution as many times as needed, without the need to configure it again. For 

instance, if the user has defined a couple of UML->SQL2003 Run Configurations, 

whenever he uses the shortcut over the same file,the window in Figure 5-82 will 

be shown in order to let him choose which is the Configuration he wants to run.  

 
Figure 5-82. Selecting a UML2SQL2003 RunConfiguration 

5.6.3.2 Shortcut menus and Contributing Actions for M2DAT-DB model-

to-text transformations 

As mentioned before, the execution of model-to-text transformations needs 

from less information or parameters that the one of model-to-model 

transformations. Therefore, the user interface to launch model-to-text 

transformations could be limited to the addition of some controls that allow 
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launching the transformation. Indeed, no extra information, apart from the source 

model, is needed to execute the transformation. 

This way, M2DAT-DB includes controls to launch the different model-to-

text transformations that supports. All of them have been developed following the 

process sketched in [19]. The controls developed can be divided in two main 

groups: shortcut menus and contributing actions. 

Regarding the former, the contextual menu shown over any type of 

M2DAT-DB model, i.e. ORDB4ORA, SQL2003 or XMLSchema, includes a 

shortcut to generate the corresponding code from the given model. For instance, 

Figure 5-83 shows the contextual menu for a .sql2003 file. 

 
Figure 5-83. SQL2003 Shortcut Menu 

On the other hand, M2DAT-DB contributes the Navigator view of 

Eclipse‘s workspace with new actions to invoke the model-to-text transformations 

bundled in the module. This way, whenever the user selects one M2DAT-DB 

model, the corresponding action becomes active and can be invoked by the user, 

while the rest of time is remains shadowed. Figure 5-84 shows the result. 
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Figure 5-84. M2DAT-DB’s Actions contributed to Eclipse Navigator’s toolbar 

Depending on the type of file the user selects, the corresponding control 

becomes active, allowing the user to launch the model-to-text transformation that 

generates code from the model selected. 
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6. Conclusion 
To conclude this dissertation, this chapter summarizes the main 

contributions of this thesis and contrasts the fulfilled objectives with those stated 

at the beginning of the thesis. In addition, an analysis of the results is provided 

next to the enumeration of the publications that serve to contrast them both on 

national and international forums. Besides, a number of questions for further 

research are raisen next to the directions to follow in order to tackle them. 

6.1 Analysis of Achievements 

At the beginning of this dissertation, section 1.2 stated a set of partial 

objectives to fulfil the main objective if this thesis: the specification of a technical 

solution for the construction of a framework to support model-driven development 

of Web Information Systems. 

In the following, the achievement of those objectives is analysed: 

O1. Analysis and evaluation of existing tools for MDE tasks in order to 

identify the most suitable to build a framework for model-driven 

development of Web Information Systems.  

To fulfil this objective, chapter 2 provided, first, with a detailed review of 

existing solutions to build the support for model-driven methodological proposals 

according to a set of relevant features convenient for developing M2DAT. 

Therefore, the review was focused on existing MDE technology to build an open-

source framework that promotes extensibility and interoperability. 

The main conclusions gathered from that review spin around the selection 

of technologies in the context of the Eclipse Modelling Project for building 

M2DAT. This decision promotes extensibility and interoperability. In particular, 

the Eclipse Modelling Framework was selected as metamodelling technology and 

underlying basis for M2DAT. It provides with the basic capabilities for defining 

new DSLs, a basic toolkit to work with the new DSLs and, what is more relevant, 

the extension mechanisms needed to adequate the basic generated toolkit to the 

specific needs of a particular methodology. In addition, the core metamodel, 

Ecore, is becoming the de-facto standard for metamodelling tasks, thus using EMF 

maximizes the interoperability of any tool develop atop of it.  
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O2. Analysis and evaluation of existing frameworks for MDSD.  

The previous objective was set with the idea of identifying the most 

convenient tools to build the tooling for supporting a MDSD methodology. In 

contrast, this objective was set to asses the main drawbacks of existing works in 

the field. Therefore, Chapter 2 provided with a complete analysis and evaluation 

of existing frameworks for model-driven development of software for concrete 

domains.  

On the one hand, regarding existing tools supporting methodologies for 

model-driven development of Web Information Systems, the main findings had to 

do with the lack of interoperability and extensibility. As it has been described 

along this dissertation, M2DAT has solved the shortcomings detected in previous 

works in this sense.  

On the other hand, before building M2DAT-DB a review of existing works 

for model-driven development of modern DB schemas was also performed. The 

conclusions gathered confirmed that there are no frameworks that support model-

driven development of Object-Relational Database Schemas while model-driven 

development of XML Schemas is just partially supported since there are no 

solution supporting both PIM and PSM models. M2DAT-DB, the reference 

implementation for M2DAT developed as part of this thesis fills the 

aforementioned gaps. 

O3. Specification of the conceptual architecture of M2DAT framework. 

The conceptual architecture of M2DAT, presented in section 4.1 has been 

defined starting from the architecture of MIDAS-CASE (section 3.2). MIDAS-

CASE was a first step towards the complete specification of the MDSD 

framework presented. Its architecture was thought as a set of co-existing modules 

or subsystems, each one providing with specific capabilities. The underlying idea 

was to encapsulate all the functionality related with a given concern of the system 

in just one place. Therefore, when new concerns were to be considered for the 

development of the system, a new module was to be developed and integrated 

with the rest of modules. 

M2DAT‘s architecture follows the same approach and is structured 

according to two orthogonal dimensions: 

 On the one hand, M2DAT can be thought of as a set of modules, one for 

each concern of the system development. It encapsulates a set of DSLs to 

model, at different abstraction levels, the set of concepts related with such 

concern, plus the model transformations that bridge them. 
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 On the other hand, M2DAT‘s architecture follows the classical separation 

between the interface and the application logic plus the persistence layer. 

The interface is composed mainly of one or more graphical editors for each 

model and the wizards needed to integrate them. The application logic is 

encoded in a common module so-called model processor that encapsulates 

model transformation, model validation, code generation and the like. 

O4. Selection of the technologies to be used for M2DAT 

Chapter 4 gave an overview on the design decisions that drove the mapping 

from the conceptual architecture of M2DAT to a technical design. In other words, 

which are the approaches and technologies adopted. To that purpose, a set of 

discussions around the most adopted ways of addressing the main tasks related 

with deploying model-driven software development proposals were presented. 

At the end of each section, the selected option for M2DAT was described 

along with the criteria used to justify such decision. In other cases where there 

were no space for selection since the right way of performing the task (in a model-

driven context) was one and unique, such way of working has been described, as 

well as its uniqueness justified. 

For instance, new modelling languages are typically defined following two 

different approaches. Such dichotomy between UML profiles or DSLs was tackled 

in section 4.2. 

Regarding model-to-model transformation languages, the hybrid approach 

was selected as the most convenient, emphasizing the relational style since it fits 

better with the declarative nature of model transformations. In particular, after 

several tests with different languages, the ATLAS Transformation Language was 

chosen as model-to-model transformation language. 

Finally, model-to-text transformation has been tackled with MOFScript, so 

far, this remains an open issue. In fact, the OMG standard for this task is still quite 

recent [266], what proves that there is still lot of space for improvement on this 

field. 

O5. Specification of the technical design of M2DAT. 

The set of tools for MDE tasks selected to implement M2DAT are 

integrated under the common architecture sketched in section 4.1.2. In essence, 

this design is the summary of the methodlogical and technlological decisions that 

are presented and justified along the rest of the sections of chapter 4. 
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O6. Specification of the development process for each M2DAT module. 

As it has been clearly stated along this dissertation, this thesis will serve as 

a basis for future research works. It lays the foundations to develop the 

technological support for forthcoming advances on model-driven development of 

information systems that MIDAS methodlogy will incorporate as long as they 

appear. Thereby, as soon as new concerns are to be considered for the 

development of a system according to MIDAS methodology, the corresponding 

technical support will be developed. To that purpose, section 4.8 described the 

development process to follow when building new M2DAT modules. Basically, it 

combines the techniques and technical solutions previously presented along that 

same chapter. 

O7. Validation of M2DAT specification  

The conceptual architecture and the technical design of M2DAT, next to 

the proposed development process for new modules constitute the specification of 

M2DAT. However, a specification is unuseful without a reference implementation 

showing its feasibility and how it is to be interpreted. Thereby, a proof of concept 

for M2DAT has been provided by building M2DAT-DB, a M2DAT module that 

supports model-driven development of modern database schemas. 

Chapter 5 focused on showing how the technical design of M2DAT and the 

development process proposed were applied to build M2DAT-DB. Besides, the 

result of building M2DAT-DB was shown. This way, the construction of 

M2DAT-DB served as reference implementation for the specification of M2DAT 

specification. It confirmed that the proposal is implementable and it has clarified 

how the specification of the architecture and the development process has to be 

interpreted.  

Besides, a set of case studies served to complete the validation of the 

proposal. To that end, a complete set of case studies performed with M2DAT-DB, 

the reference implementation for M2DAT, were described. Such case studies 

contributed on the detection of errors and improvements for M2DAT-DB that 

served to refineM2DAT specification.  

6.2 Main Contributions 

This thesis has resulted in a number of contributions, regarding not only the 

scope of this research (M2DAT specification) but also related with other collateral 

aspects. Some of them were objectives fixed before addressing this work while 
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others have emerged during its development. They are summarized in the 

following. 

A complete analysis of the existing solutions for building frameworks 

supporting methodologies for model-driven development of Web Information 

Systems. 

The technical decisions that drive the open specification of M2DAT have 

been clearly justified along this dissertation. However, on the way to such 

decisions a complete review of existing technology in the field of MDE has been 

provided. This review is in its turn a clear contribution of this thesis since it could 

be used for more specific purposes.  

Some of the reviewing frameworks for model-driven development of 

software are being improved (or it is planned to do so) in order to adapt them to 

advances in the field. The findings and analysis provided in the state of the art of 

this thesis might help the researchers behind those works in the selection of the 

technology that best suit their needs (that not necessarily have to be the same of 

M2DAT). 

For instance, model transformation is a field where those frameworks 

admit a lot of improvement. In this sense, this thesis provides with a number of 

valuable conclusions and lessons learned in order to bring the advantages of 

current technology to existing frameworks, like the use of annotation models or 

the drawbacks related with using pure imperative approaches for model 

transformation development. 

Specification of a framework for model-driven development of Web 

Information Systems. 

The main contribution of this thesis has been the specification of M2DAT, 

an open MDSD framework that supports model-driven development of Web 

Information Systems. The main contributions of M2DAT regarding previous 

works are its extensible and interoperable nature and the support for 

customizable transformations by means of annotation models. 

These features contribute to simplify the extension of the framework in 

order to support new capabilities. Whenever the underlying methodology, 

MIDAS, is to be extended by adding a new concern to MIDAS architecture, a new 

module will be built atop of M2DAT. Such module will support the corresponding 

method. Besides, the models supported by the new module will be directly 

interoperable with existing models with no extra effort, i.e. without the need of 

building technological bridges between technical spaces [208] as it has been 

traditionally done. Indeeed, though any modelling tool might be said to be located 
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in the same technological space that the rest, this is not completely true when it 

comes to implementation. Importing/Exporting models to/from one tool to/from 

the other implies moving through different technical spaces, typically 

grammarware and modelware. Though there are technical solutions for these 

tasks, it usually entails some loss of semantics and it is always prone to errors. In 

contrast, when the models are defined atop a common metametamodel, the only 

artefact needed to bridge them is a model transformation and, optionally a 

weaving model to drive the mapping. 

On the other hand, none of the previous works offered support for 

customizable transformations. This way, when the processes were completely 

automated, the only way of having some control over the resulting system was 

modifying the models handled. Even after modifying the models, some of the 

model transformations bundled on those frameworks were never able to produce 

some constructions on the target models. The only way of including those 

constructions on the models (thus, of generating the code that implements them in 

the system) was to refine the output model by hand. In constrast, M2DAT model 

transformations consider the use of annotation models to drive the execution of the 

transformation. This way, any construction might be obtained on the target model 

without decreasing the level of automation. At the same time, the design decisions 

that contribute to produce the specific target model are persisted. Moreover, the 

software artefact containing these decisions is the most natural in a MDE 

environtment: another model. 

Furthermore, the specification of M2DAT comprises the definition of the 

development process to follow in order to build M2DAT modules as well as a 

the reference implementation, M2DAT-DB, that clarifies the way the 

specification is to be used and shows the result of doing so.  

Support for semi-automatic model-driven development of modern DB 

schemas. 

Although the objective of developing M2DAT-DB was mainly providing 

with a proof of concept for M2DAT proposal, it constitutes a complete and open 

framework for model-driven development of modern database schemas. The state 

of the art showed that there were no previous works providing support for this 

task. Hence, M2DAT-DB itself is a contribution of this thesis.  

To that end, M2DAT-DB provides with a DSL toolkit for developing OR 

DB schemas conforming to the SQL:2003 standard and OR DB schemas for 

Oracle. Such toolkit supports the generation of the OR DB schema from a UML2 

conceptual data model. Besides, the generation process might be customized by 
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attaching an annotation model to the conceptual data model (though it is not 

mandatory since a default generation is provided). Besides, it bundles the model 

transformations needed to move from the OR model for SQL:2003 to the one for 

Oracle and the other way round. Likewise, graphical editors are provided to 

handle Oracle and SQL:2003 models. 

To complete the support, M2DAT-DB also bundles a toolkit for 

development of XML Schemas following the same approach. That is, the XSD 

model is obtained from a conceptual data model and the generation process lend 

space to the introduction of design decisions by means of an annotation model. 

6.3 Scientific Results 

Some of the results of this thesis have been published in different fourms, 

both national and international. In the following, those publications are grouped 

according to the type of publication. 

 Articles in International Journals 

o Vara, J.M., De Castro, V., Didonet Del Fabro, M. & Marcos, E. (2009). 

Using Weaving Models to automate Model-Driven Web Engineering 

proposals. International Journal of Computer Applications in 

Technology. (Accepted to be published)  

o Koch, N., Meliá, S., Moreno, N., Pelechano, V., Sánchez, F. & Vara, 

J.M. (2008). Model-Driven Web Engineering. UPGRADE, IX(2), 40-45. 

(April 2008) 

o Vara, J.M., De Castro, V. & Marcos, E. (2005). WSDL Automatic 

Generation from UML Models in a MDA Framework. International 

Journal of Web Services Practices, 1(1-2), 1-12. 

 Articles in Iberoamerican Journals 

o Vara, J.M., Vela, B., Cavero, J. M. & Marcos, E. (2007). Transformación 

de Modelos para el Desarrollo de Bases de Datos Objeto-Relacionales. 

IEEE Latin America Transactions, 5(4), 251-258. (July 2007) 

 Articles in National Journals 

o Vara, J M., Acuña, C. J., Marcos, E. & Lopez Sanz, M. (2004). 

Desarrollo de un Sistema de Información web: una experiencia con 

Oracle XMLDB. CUORE (Círculo de Usuarios de Oracle España), 

VIVAT ACADEMIA, 27, 3-12. 
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 Articles in International Conferences 

o López Sanz, M. Vara, J.M., Marcos, E. & Cuesta, C. A Model-Driven 

Approach to Weave Architectural Styles into Service-Oriented 

Architectures. 1st International Workshop on Model-Driven Service 

Engineering (MoSE 2009). Hong Kong, China. (November 6, 2009). 

(Accepted to be published). 

o Vara, J.M., Vela, B., Bollati, V. & Marcos, E. (2009). Supporting Model-

Driven Development of Object-Relational Database Schemas: a Case 

Study. ICMT2009 - International Conference on Model 

Transformation, Zurich, Switzerland. (29-30 June, 2009) (Acceptance 

Ratio: 22%). 

o Vara, J.M., Bollati, V., Vela, B. & Marcos, E. (2009). Leveraging Model 

Transformations by means of Annotation Models. 1st International 

Workshop in Model Transformation with ATL (MtATL 2009), Nantes, 

France. (July 8-9, 2009). 

o Vara, J.M., Didonet Del Fabro, M., Jouault, F. & Bézivin, J. (2008, 

29/01/2008). Model Weaving Support for Migrating Software Artefacts 

from AUTOSAR 2.0 to AUTOSAR 2.X. 4th European Congress on 

EMBEDDED REAL TIME SOFTWARE (ERTS 2008), Toulouse, 

France. (January 29- 31, February 1, 2008). 

o Vara, J.M., De Castro, V. & Marcos, E. From Real Computational 

Independent Models to Information System Models: an MDE approach. 

Proc. of the 4th International Workshop on Model-Driven Web 

Engineering (MDWE 2008), Toulosue, France. (September 30, 2008). 

CEUR Workshop Proceedings, ISSN 1613-0073. 

o Vara, J.M., Vela, B., Cavero, J.M. & Marcos, E. (2007). Model 

Transformations for Object-Relational Databse Development. ACM 

Symposium on Applied computing (SAC 2007), Seoul, Korea. ACM 

Press. (11-15 March, 2007). (Acceptance Ratio: 32.5%). 

o De Castro, V., Vara, J.M. & Marcos, E. Model Transformation for 

Service-Oriented Web Applications Development. Proc. of the 3rd 

International Workshop on Model-Driven Web Engineering (MDWE 

2007), Como, Italy. (July 16-20, 2007). CEUR Workshop Proceedings, 

ISSN 1613-0073. 

o Caceres, P., De Castro, V., Vara, J.M. & Marcos, E. (2006). Model 

Transformations for Hypertext Modelling on Web Information Systems. 
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ACM Symposium on Applied computing (SAC 2006), Dijon, France. 

ACM Press. (23–27 April, 2006). (Acceptance Ratio: 32%). 

o Vara, J.M., De Castro, V. & Marcos, E. (2005). WSDL Automatic 

Generation from UML Models in a MDA Framework. International 

Conference on Next Generation Web Services Practices (NWeSP), Seul, 

Korea. (22-26 August, 2005)IEEE Computer Society Press. 

 Articles in Iberoamerican Conferences 

o Acula, C. Minoli, M. & Vara, J.M. Model Driven Development of 

Semantic Web Services using Eclipse Modelling Languages. 10th 

Mexican International Conference on Computer Science (ENC 2009). 

Mexico City, Mexico. (21-25 September, 2009). (Accepted to be 

published). 

o Bollati, V.A., Vara, J.M, Vela, Belén & Marcos, E. Uso de Modelos de 

Anotación para automatizar el Desarrollo Dirigido por Modelos de 

Esquemas XML. XII Conferencia Iberoamericana de Ingeniería de 

Requisitos y Ambientes de Software. (IDEAS'09), Medellín (Colombia). 

(Abril 13-17, 2009). 

o Bollati, V.A., Vela, B., Vara, J.M. & Marcos, E. Una Aproximación 

Dirigida por Modelos para el Desarrollo de Bases de Datos Objeto-

Relacionales. XIV Congreso Argentino de Ciencias de la Computación. 

(CACIC 2008). Chilecito (La Rioja, Argentina). (October 6th-10th, 

2008). 

o De Castro, V., Vara, J.M., Herrmann, E. & Marcos. A Model Driven 

Approach for the Alignment of Business and Information Systems Model. 

9º Mexican International Conference on Computer Science (ENC 2008). 

Mexicali, Baja California, Mexico. (6-10 October, 2008). (Acceptance 

Ratio: 26%). IEEE Computer Society. 

o Bollati, V.A., Marcos, E., Vara, J.M. &. Vela, B. Analisis de 

Herramientas MDA. XIII Congreso Argentino de Ciencias de la 

Computación. (CACIC 2007). Corrientes and Resistencia, Argentina. 

(October 1st-5th, 2007)  

o Molina, F., Lucas, F. J., Toval, J. A., Vara, J.M. & Marcos, E. (2006). 

Soporte CASE para el desarrollo preciso de Sistemas de Información 

WEB. IADIS International Conference, WWW/Internet 2006, Murcia, 

Spain. (5-8 October, 2006) 
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o Vara, J.M., De Castro, V., Caceres, P. & Marcos, E. (2004). Arquitectura 

de MIDAS-CASE: una herramienta para el desarrollo de SIW basada en 

MDA. IV Jornadas Iberoamericanas en Ingeniería del Software e 

Ingeniería del Conocimiento. JIISIC'04, Madrid, Spain. (3-5 November, 

2004). (Acceptance Ratio: 49%). 

 Articles in National Conferences 

o Bollati, V.A., Vara, J.M., Vela, B. & Marcos, E. Una Aproximación 

Dirigida por Modelos para el Desarrollo de Esquemas XML. XIII 

Jornadas de Ingeniería del Software y Bases de Datos (JISBD’08). 

Gijón, Spain. (October 7-10, 2008). (Acceptance Ratio: 25%) 

o Vara, J.M., Bollati, V., Vela, B. & Marcos, E. Uso de Modelos de 

Anotación para automatizar el Desarrollo Dirigido por Modelos de 

Bases de Datos Objeto-Relacionales. V Taller sobre Desarrollo de 

Software Dirigido por Modelos. DSDM‘08. Gijón, Spain (España) 

(October 7, 2008). 

o Vara, J.M., De Castro, V., Didonet Del Fabro, M. & Marcos, E. (2008). 

Using Weaving Models to automate Model-Driven Web Engineering 

proposals. ZOCO‘08: Integración de Aplicaciones Web. Gijón, Spain 

(España) (October 7, 2008). 

o De Castro, V., Vara, J.M., Herrmann, E. & Marcos, E. Obteniendo 

Modelos Sistemas de Información a partir de Modelos de Negocios de 

Alto Nivel: Un Enfoque Dirigido por Modelos. IV Jornadas Científico-

Técnicas en Servicios Web y SOA (JSWEB‘08). Sevilla, Spain (October 

29-30, 2008).  

o Vara, J.M., Vela, B., Cavero, J.M. & Marcos, E. (2007). Transformación 

de Modelos para el Desarrollo de Bases de Datos XML. III Taller sobre 

Desarrollo Dirigido por Modelos. MDA y Aplicaciones (DSDM‘06) -  XI 

Jornadas de Ingeniería del Software y Bases de Datos, JISBD‘2006. 

Sitges, Spain. (4 October, 2006). 

o Vara, J. M., Vela, B., Cavero, J.M. & Marcos, E. (2007). Transformación 

de Modelos para el Desarrollo de Bases de Datos XML. XI Jornadas de 

Ingeniería del Software y Bases de Datos, JISBD’2006. Sitges, Spain. 

(3-6 October, 2006). (Acceptance Ratio: 35%). 

o Vara, J.M., De Castro, V. & Marcos, E. (2005). Generación Automática 

de WSDL a partir de Modelos UML. I Jornadas Científico-Técnicas en 

Servicios Web (JSWEB 2005). Granada, Spain. (13-14 September, 

2005). 
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6.4 Future Work 

Despite the contributions made on this thesis, it has detected several 

directions to further work. Some of them were just not considered as objectives of 

this thesis while others have emerged during the development of this work. In the 

following, we summarize some of them. 

6.4.1 Development of M2DAT Modules 

As we have mentioned a number of times along this dissertation, the main 

objective of this work has been the specification of M2DAT. Besides, we have 

built one M2DAT module (M2DAT-DB) in order to provide with a reference 

implementation for the specification.  

Actually, this specification has been devised to be extensively applied 

during the next years when building the support for the rest of MIDAS 

methodology. Indeed, the main direction for further work of this thesis is exactly 

that: the development of the modules that will support the rest of MIDAS 

methodology attending to the specification of M2DAT provided in this thesis. 

Likewise, notice that the construction of the whole framework is an endless 

task since MIDAS is open to include new views of the system. In fact, its modular 

architecture was devised to promote extensibility of the framework by inclusion of 

new views. Accordingly, M2DAT has to be also open to integrate support for 

them. Therefore, both the definition of the conceptual architecture of M2DAT and 

the decisions that have driven its technical design have been made with the aim of 

easying the integration of new modules. 
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In fact, we have already started to work on the technical support for the 

behaviour view [107, 108] or the semantics view [8]. Besides, the thesis from 

Marcos Lopez will incorporate support for the architecture and the one from Elisa 

Herrmann will improve code generation facilities. 

6.4.2 Traceability in Model Transformations 

Traceability has been always a relevant topic in Software Engineering. 

Maintaining the links from requirements forward to corresponding design 

artifacts, code, and test cases has attracted the attention of researchers for long 

time as a way of performing impact analysis, regression tests, requirements 

validation, etc. [27].  

With the advent of MDE and the MDA, traceability management has even 

gained relevance. The key role of models as driving force in the development 

process eases the task of maintaining the traces from the requirements to the 

working-code. Indeed, the main artefacts obtained along the development process 

are models. Thus, handling traceability might be simplified to the creation and 

maintenance of traces between the elements of such models. Even more, such 

traces could be automatically generated if the models are connected by a model 

transformation and the language used offers support to keep information about 

which elements are related to which by the model transformation [342]. This way, 

if some element from the source model is modified, the modification might be 

replicated over the corresponding element of the target model. Actually, this is a 

mandatory feature according to the QVT standard though technical support is still 

quite inmature.  

Besides, in the context of MDA traceability management deals also with 

CIM to PIM traceability. In MDA literature, little is said about the CIM-to-PIM 

mapping and MDA tools do not use to support it [165]. This fact is mainly due to 

the different nature of both models. The CIM serves to model the requirements for 

the system, describing the situation in which the system will be used [246]. In 

essence, it might be shown as the business/domain model [193]. By contrast, if the 

business or organization uses some kind of software system, it will be described in 

a specific model to that end, the PIM, which provides with a description of the 

software system. Business and software system are rather different. Therefore, 

automatic derivation of a PIM from a CIM is not always feasible. The (human) 

designer has to state which things from the CIM will be translated to a software 

system, and accordingly define the corresponding PIM for such sytem. At best, 
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some information for the PIM might be extracted from the CIM, but a complete 

PIM model cannot be derived just from the CIM.  

This way, the transition from high-level business modelling, generally 

carried out by business analysts, to an executable business process which implies 

several software functionalities (e.g., web services, components, legacy systems, 

etc) is far from being a trivial issue [367]. Therefore, the problem of aligning high-

level business models (corresponding to the business view) and information 

technologies (corresponding to the information system view) became a crucial 

aspect in the field of software development. 

In order to address this issue, we have already started to work on the 

extraction of valuable information from CIM to PIM models [106]. Besides, we 

believe that the improvement of transformation engines to support efficient 

traceabilty mechanisms will help on this task. Therefore, we will keep assessing 

the performance of model transformation languages regarding traceability support 

in order to integrate traces management in M2DAT. 

6.4.3 Automatic development of Model Transformations, 

Metamodel Evolution and Model Co-Evolution 

The development of model transformations is the most challenging task 

among those of implementing any proposal for model-driven software 

development. Besides, constant evolution of metamodels and co-evolution of 

models has been a common issue to any model-driven proposal [84]. Any 

modification over a given metamodel (metamodel evolution) implies the need to 

update conforming models (model co-evolution). Besides, it has another relevant 

collateral effect: since model transformations are defined at metamodel level, any 

change over the metamodel has to be subsequently transmitted to any model 

transformation that use it as soource or target metamodel. 

Applying model-driven techniques to support semi-automatic generation of 

model transformations would help decisively to address these issues.  

We have already started to work on two main directions to address this 

issue. On the one hand, we are carrying out a complete study of existing model 

transformation engines (part of it has been presented in this thesis) in order to 

identify the common abstractions used by all of them. The objective is to obtain a 

common (meta)-metamodel for model transformations. This way, any model 

transformation could be expressed in terms of such metamodel and translated to 

any model transformation engine whose metamodel conforms with the afore 

mentioned. 
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On the other hand, we have provided with a first case study on the use of 

weaving models and cumulative weaving to automate model migration [356]. 

6.4.4 Bidirectional Model-to-Text Transformations  

When we reviewed existing model transformation languages, we gave a 

brief overview on existing languages for text-to-model transformations (see 

section 6.4.6C). This review confirmed that, though there are quite a lot of tools 

for model-to-text transformations (indeed, any code generator can do it), there are 

very few works focused on the reverse process and the most of them are focused 

on the generation of textual syntaxes for DSLs. 

Note that one of the advantages of MDE is supposed to be the ability to 

help on platform migration and interoperability and the first step in such processes 

implies always the extraction of models from the legacy code, in other words, a 

text-to-model transformation is needed to produce a model from the existing code. 

Therefore, MDSD tooling should provide with tools to that end.  

As well, that overview highlighted that the main drawback of text-to-model 

tranformation languages or tools is their starting point. From a grammar 

specification, such tools generate a textual editor and a metamodel capturing the 

abstract syntax of the DSL (indeed, it captures the abstract syntax of the 

grammar). That is, the concrete syntax is defined before the abstract syntax. While 

it might be acceptable when working with an isolated DSL, it is not a good 

practice when working with interrelated DSLs connected by means of model 

transformations. Modifying any given metamodel takes you to the already 

mentioned complex scenary of metamodel evolution. Therefore, you will need to 

update any conforming model and any model transformation that used the 

modified metamodel as source or target metamodel. 

We aim at integrating model extraction capabilities in M2DAT, but the 

above-mentioned approach for text-to-model transformations does not apply since 

M2DAT metamodels are already defined and they should not be modified. In this 

sense, a feasible solution is to follow a recent approach to generate textual 

syntaxes for a DSL. The idea is to start from the metamodel and then define the 

grammar, generate the editors, etc. In addition, a parser is generated that decides 

how the text is translated into model elements. Hence, both model-to-text and text-

to-model transformations for the given metamodel are obtained. Some works have 

appeared recently in this direction, though they are still quite immature or badly 

documented (see [158]). We plan to follow advances in this field in order to 

integrate injection/extraction capabilities on M2DAT as soon as possible. 
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6.4.5 Improving the Development of Graphical Editors 

Next sextions describe the two main directions that have been detected for 

further work around graphical‘s editors development. 

6.4.5.1 Automatic development of graphical editors for DSLs 

As sections 4.3.3 and 5.2.2.3 stated, GMF is used to build the graphical 

editors integrated in M2DAT. To that purpose, GMF is based on the definition of 

a graphical model. It specifies the visual elements that will be used to represent 

each metaclass from the metamodel that defines the abstract syntax of the DSL. 

Besides, another model is defined to design the tooling while another model 

connects the elements from the previous three models (metamodel, graphical and 

tooling models). 

However, it is expected that a graphical or tooling definition may work 

equally well for several domains. For example, the UML class diagram has many 

counterparts, all of which are strikingly similar in their basic appearance and 

structure [120].  

A simpler development process would be desirable, where not the 

graphical definition, neither the correspondence with the abstract syntax have to 

be defined. In this sense, we have already started to work on the provision of 

tentative graphical and correspondence models derived directly from the 

metamodel of the DSL (i.e. the abstract syntax definition). This way, a default 

visual editor (based on boxes and arrows) could be generated once the metamodel 

had been defined. 

6.4.5.2 Improving graphical capabilities of M2DAT 

The discussion around approaches for the development of graphical editors 

of section 4.3.3  highlighted that GMF, though efficient, present some drawbacks, 

mainly related with the look and feel of the diagrams. Besides, that section 

confirmed that graphical editors developed useing JAVA Graph components 

provide with more control over the result. This fact is derived from the generative 

nature of GMF editors. For instance, the screen captures spread over this 

dissertation serve to confirm that the graphical features of MIDAS-CASE 

diagrammers were betther than M2DAT‘s, though they are much less useful. 

Here, the direction for future research would be to combine graphical 

capabilities of MIDAS-CASE with those from M2DAT. To that end, we need to 

bring MIDAS-CASe models, persisted in row XML files, to the EMF platform. To 

accomplish this task we will build technical bridges between MIDAS-CASE‘s 
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grammarware and M2DAT‘s modelware following the approach applied by other 

authors in previous works [44, 45] 

This way, we aim at combining the graphical capabilities of JAVA Graph 

components with that from the functionality provided by EMF in terms of 

interoperability, etc. In addition, the synergy might work in both directions, since 

M2DAT capabilities for handling models could be used from a MIDAS-CASE 

look and feel. 

6.4.6 Future works on the Context of M2DAT-DB 

Finally, section 6.2 affirmed that M2DAT-DB is a complete result itself. 

As any other research result, it lends some space for improvement and further 

work. Next sub-section summarizes the main points in this sense.  

 Extending M2DAT-DBN. M2DAT-DB aims at providing with a complete 

framework supporting model-driven development of database schemas, so far 

it support just OR and XML models. However, we plan to add support for the 

relational model. Besides, we plan to add support for more DB solutions, like 

SQL Server or MySQL. To that end, the SQL standard will be used as a pivot 

model to move between products. Thereby, M2DAT-DB will bundle model 

transformations to bridge each concrete product model with the standard 

model and the other way round. 

 Application of M2DAT-DB for computer science teaching. We have 

already started to work in the use of M2DAT-DB for educational purposes. 

The main directions for further work on this line would be: 

o Model-Driven Engineering. M2DAT-DB is a complete framework that 

supports all the common tasks related with implementing a MDSD 

methodological proposal, like model transformation, model validation or 

code generation. Hence, it will be used to show the students the heart of a 

MDSD process. They will learn how to develop model transformations, 

code generators, graphical editors, weaving models, etc. 

o Logical Models. M2DAT-DB supports the object-relational model for 

databases. Therefore, it will serve to introduce the students in the 

distinction between a pure object-oriented model and a relational model, 

as well as in the role of the Object-Relational model to bridge them. 

o Standards VS Implementations. Finally, the ability to work both with 

models compliant to the SQL standard (even generating SQL standard 
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code) and Oracle models will serve to show the difference between a 

standard and its implementations. 
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A Resumen en Castellano 
Este apéndice ofrece un resumen extendido en castellano de la tesis 

doctoral que se presenta en esta memoria.  

En primer lugar se ofrece una panorámica general de las razones históricas 

que han llevado a la realización de esta tesis con el objetivo de justificar e 

identificar claramente los problemas de partida que pretendía atacar en el 

momento de su realización. A continuación se exponen la hipótesis y principales 

objetivos de esta tesis, para pasar a presentar la metodlogía seguida durante su 

desarrollo y concluir cons sus principales aportaciones. 

A.1 Antecedentes 

A finales del 2000, una nueva forma de concebir el desarrollo de software 

resultó en un gran grupo de siglas (MDE, MDSD, MDD, DSL, MIC, etc.) que, en 

realidad, no eran sino distintas formas de referirse a formas de desarrollar software 

siguiendo una misma aproximación: potenciar el papel de los modelos y las 

actividades de modelado en cualquier etapa del desarrollo de software. Así, la 

principal característica del nuevo paradigma de desarrollo, la Ingeniería Dirigida 

por Modelos (IDM) pasa por centrarse en los modelos en lugar de en los 

programas [41]. De hecho, la IDM es un paso natural en la tendencia histórica 

hacia elevar el nivel de abstracción en el desarrollo de software. Cuando 

aparecieron, los lenguajes de ensamblador, la programación estructurada o los 

lenguajes orientados a objetos fueron pasos en la misma dirección.  

Aunque los modelos habian sido utilizados tradicionalmente en el 

desarrollo de software, hasta ahora habían desempeñado un papel eminentemente 

documentativo y, en el mejor de los casos, podían llegar a utilizarse como entrada 

para la generación de un esqueleto del código final (la herramienta Rational Rose 

es el ejemplo perfecto de esta tendencia [173]). De este modo, los modelos eran 

deshechados en cuanto se llegaba a la etapa de codificación y nunca se 

actualizaban para reflejar los cambios realizados sobre el sistema. 

Con la llegada de la IDM el panorama cambia drásticamente, ya que los 

desarrolladores desplazan su atención del código a los modelos. Así, surge la 

necesidad de definir modelos lo más precisos y completos posibles, que sean 

capaces de especificar el sistema a desarrollar y capturar todos sus requisitos, 

combinándolos con los detalles la plataforma sobre la que se desplegará. Para ello, 

se parte de modelos de alto nivel de abstracción, que proporcionan detalladas 
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especificaciones del sistema ovbiando detalles tecnológicos. Dichos modelos van 

siendo refinados hasta alcanzar modelos de bajo nivel que puedan ser directamente 

traducidos a código fuente.  

En realidad, la idea no termina de ser realemente nueva, lo que en realidad 

confiere un carácter más novedoso a la propuesta es la relevancia que adquiere la 

automatización del proceso de desarrollo. De hecho, la única forma de hacer 

realidad las promesas de la IDM en términos de desarrollos más rápidos y baratos 

pasa por automatizar al máximo el proceso de desarrollo  [21, 134]. Como 

consecuencia, en los últimos años han aparecido numerosas herramientas para 

soportar las tareas relacionadas con la IDM para automatizar cada una de las 

tareas que implica poner en práctica un proceso de Desarrollo de Software 

Dirigido por Modelos (DSDM). Así, se encuentran herramientas para definir y 

utilizar nuevos lenguajes de modelado; herramientas o lenguajes para desarrollar 

transformaciones de modelos; herramientas para asegurar que los modelos son 

consistentes y correctos, etc. Cada una de estas herramientas soporta una tarea 

concreta, es decir, proporciona sólo una parte de la funcionalidad que se necesita 

para implementar un proceso completo de DSDM. Por ejemplo, el lenguaje de 

transformación de modelos ATL [184], el más aceptado hasta la fecha, sería una 

de estas herramientas. Aunque resulta muy potente para su cometido, no es 

suficiente para desplegar un proceso de desarrollo completo. En el mejor de los 

casos, se necesitaría de otro lenguaje o herramienta para definir los modelos que 

ATL se encargará de transformar.  

Por otro lado, el impacto de la IDM ha dado lugar a la aparición de 

propuestas metodológicas de DSDM. Dichas metodologías se basan en la 

definición y uso de nuevos lenguajes de modelado (bien de propósito general o de 

propósito específico) para modelar y capturar, a distintos niveles de abstracción, 

las diferentes partes del sistema a desarrollar. Como consecuencia, apareció un 

nuevo grupo de herramientas cuyo objetivo era dar soporte a estas propuestas. Así, 

las herramientas de soporte a metodologías de DSDM son entornos de 

desarrollo para trabajar con el conjunto de modelos interrelacionados que la 

metodología correspondiente define como necesarios para poder generar el código 

final que implementa el sistema software. A modo de ejemplo podemos citar 

ArgoUWE [195], la herramienta que soporta la metodología UWE [198], como 

una de las herramientas más conocidas en esta categoría. 

Los esfuerzos que los autores de estas metodologías dedicaron a construir 

el soporte técnico para automatizarlas resultó en una serie de herramientas 

aisladas, que proporcionaban soluciones ad-hoc. Su naturaleza cerrada y la total 

ausencia de estándares cuando comenzaron a desarrollarse impidieron que se 
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beneficiasen de los avances tecnológicos y la funcionalidad que proporcionan las 

herramientas para soportar tareas de IDM. Por ejemplo, en ausencia de lenguajes o 

herramientas para el desarrollo de transformaciones de modelos, los autores 

optaron por embeber las transformaciones en el código de la propia herramienta, 

lo que iba claramente en contra de los principios de abstracción y modularidad que 

rigen el desarrollo de software. 

Por todo ello, existe la necesidad de construir nuevas herramientas de 

soporte para metodologías de DSDM que integren la funcionalidad aislada que 

propocionan las herramientas existentes para tareas de IDM. Es decir, se deben 

utilizar las herramientas de soporte a tareas de IDM para construir entornos 

integrados que implementen metodologías de DSDM. 

Cómo construir dicho entorno? En primer lugar, definiendo una 

arquitectura conceptual que se abstraiga por completo de los detalles técnicos. A 

continuación, plasmando dicha arquitectura en un diseño técnico que identifique 

los componentes tecnoloógicos a utilizar. Y finalmente, proporcionando una 

implementación de referencia de dicho diseño técnico, para demostrar que es 

viable y factible construir un entorno de desarrollo siguiendo la especificación y 

cómo debe hacerse. 

En este sentido, la pujanza del paradigma de la IDM ha resultado en una 

tendencia clara hacia la construcción de este tipo de entornos integrados para dar 

soporte a metodologías de DSDM. No obstante, tal y como muestra el Capítulo 2, 

no existían este tipo de herramientas cuando abordamos la realización de esta 

tesis. De hecho, las herramientas de soporte a metodologías de DSDM que 

adolecían de los problemas comentados, están evolucionando hacia entornos 

integrados y extensibles, como el que se presenta en esta tesis. 

Además, el carácter novedoso de la IDM obliga a hacer especial hincapié 

en algunos aspectos tradicionalmente relacionados con el desarrollo de 

herramientas de soporte para tareas de Ingeniería del Software. Tanto la 

extensibilidad como la inteoperabilidad y la posibilidad de personalizar el entorno 

son más relevantes si caben cuando hablamos de construir el soporte para una 

metodología de DSDM. De este modo, la herramienta deberá ser facilmente 

extensible para responder con rapidez a la aparición de nuevos avances en el 

campo. Por ejemplo, aunque la definición de la semántica de un lenguaje de 

modelado o las especificaciones formales cobran cada día mayor aceptación como 

una forma de soportar la simulación y ejecución de modelos [319], el soporte 

tecnológico para estas tareas se encuentra todavía en fases muy iniciales. No 

obstante, cualquier herramienta de soporte a una metodología de DSDM debe 
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estar en condiciones de ser extendida para integrar con facilidad el soporte para las 

tareas mencionadas, en cuanto éste alcance una estabilidad y grado de madurez 

aceptables. 

En el peor de los casos, si la herramienta no soporta una funcionalidad 

concreta, pero existen otras herramientas que si lo hacen, la herramienta que dará 

soporte a la metodología debería ser capaz de integrar dicha funcionalidad de 

forma sencilla. Para ello, los modelos elaborados con la nueva herramienta 

deberían poder ser facilmente exportados/importados a/desde la herramienta que 

proporcione la funcionalidad deseada. Por lo tanto, la interoperabilidad se 

convierte en otro de los requisitos clave para herramientas de soporte a 

metodologías de DSDM. 

Igualmente, aunque el objetivo de partida pasa por ser capaces de 

automatizar el proceso de desarrollo completo propuesto por la metodología, 

resultaría muy conveniente soportar un proceso de desarrollo que admitiera ciertos 

puntos de variabilidad, de forma que el diseñador/desarrollador pudiera introducir 

ciertas decisiones de diseño que dirigieran el resultado final [246]. Por lo tanto, se 

necesita una forma de introducir dichas decisiones de diseño en el proceso de 

desarrollo, sin reducir el nivel de automatización. Aparte de las decisiones de 

diseño que ya se hayan recogido en los diferentes modelos, el único modo de 

introducir decisiones de diseño en el proceso de desarrollo es soportar 

transformaciones de modelos personalizables. 

En este contexto, la tesis que se presenta aborda la especificación de un 

entorno para el desarrollo semi-automático de Sistemas de Información Web 

dirigido por modelos. Para ello, esta tesis presenta M2DAT (MIDAS MDA Tool), 

una herramienta para el DSDM que sigue las propuestas metodológicas de 

MIDAS, una metodología dirigida por modelos para el desarrollo de Sistemas de 

Información Web (SIW). 

Como parte de la propuesta, se define una arquitectura conceptual para la 

construcción de entornos de DSDM. Dicha arquitectura es modular y dinámica, 

para facilitar la integración de nuevas funcionalidades en forma de nuevos 

módulos o subsistemas y soportará la introducción de decisiones de diseño que 

dirijan la ejecución de las transformaciones de modelos embebidas en la 

herramienta. Igualmente, se define una aproximación sistemática para la 

construcción de nuevos módulos de acuerdo a la especificación realizada. 

Así mismo, la arquitectura conceptual propuesta será plasmada en un 

diseño técnico. Esta tarea implica una serie de decisiones de diseño a cerca de cuál 

es la mejor aproximación y la mejor tecnología para cada tarea relacionada con la 
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IDM, y cómo debe utilizarse. Así, se realizan y justifican una serie de decisiones 

tanto metodológicas como tecnológicas, como cuál es la mejor herramienta para 

definir nuevos lenguajes de modelado; cuál es la mejor aproximación para 

desarrollar transformaciones de modelos; el mejor lenguaje de entre aquellos que 

sigan dicha aproximación, etc. Estas decisiones se basan en una completa revisión 

de la tecnología existente, de acuerdo a una serie de criterios definidos según los 

requisitos impuestos para la construcción de M2DAT (extensibilidad, 

interoperabilidad, soporte a transformaciones personalizables, etc.). Como 

resultado se obtiene una selección de tecnología que identifica la aproximación a 

seguir para cada tarea, el componente tecnológico a utilizar y las decisiones de 

diseño que guían el paso de la arquitectura conceptual al diseño técnico de la 

herramienta. 

Finalmente, como parte de esta tesis, se proporciona una implementación 

de referencia para demostrar que la propuesta es factible, que puede ser utilizada 

en la práctica y cómo debe hacerse [95]. En particular, se desarrolla M2DAT-DB  

(MIDAS MDA Tool for DataBases), uno de los módulos de M2DAT. Dicho 

módulo soporta el desarrollo dirigido por modelos de esquemas de BD modernas. 

La construcción de M2DAT-DB permite mostrar que, tanto la especificación 

conceptual como el diseño técnico propuestos, así como las decisiones 

metodológicas y técnicas que permiten el paso de uno al otro, y el proceso de 

desarrollo propuesto para la construcción de nuevos módulos, son apropiados para 

implementar propuestas metodológicas de DSDM. 

A.2 Objetivos 

A continuación se exponen la hipótesis y principales objetivos de esta tesis. 

La hipótesis formulada en esta tésis es que ―es factible proporcionar una 

solución técnica para la construcción de un entorno que soporte el desarrollo 

semi-automático dirigido por modelos de Sistemas de información Web, utilizando 

las herramientas y componentes existentes a día de hoy en el contexto de la IDM‖ 

Por lo tanto, el objetivo principal de esta tesis, derivado directamente de la 

hipótesis, es ―proporcionar una solución técnica para la construcción de un 

entorno que soporte el desarrollo semi-automático dirigido por modelos de 

Sistemas de información Web, utilizando las herramientas y componentes 

existentes a día de hoy en el contexto de la IDM‖ 

Este objetivo se desglosa en una serie de objetivos parciales: 
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O1. Análisis y evaluación de la tecnologñia existente (herramientas de soporte 

para tareas de IDM) de cara a identificar las más apropiadas para construir 

un entorno para soportar el desarrollo dirigido por modelos de SIWs. De 

acuerdo a las tareas concretas que implica la construcción de dicho entorno, 

podemos descomponer este objetivo como sigue: 

O1.1. Análisis y evaluación de herramientas de (meta)modelado. 

O1.2. Análisis y evaluación de motores de transformación de modelo-a-

modelo, haciendo especial hincapié en el soporte para la 

introducción de decisiones de diseño. 

O1.3. Análisis y evluación de motores de transformación modelo-a-

texto (también referidos como generadores de código). 

O1.4. Análisis y evaluación de herramientas de soporte para el resto de 

tareas relacionadas con la IDM, como desarrollo de editores 

gráficos o validadores de modelos.. 

O2. Análisis y evaluación de entornos que soporten propuestas de DSDM. 

O2.1. Analisis y evaluación de entornos para el desarrollo dirigido por 

modelos de SIWs.. 

O2.2. Análisis y evaluación de entornos para el desarrollo dirigido por 

modelos de esquemas de BD modernas (objeto-relacionales y 

XML). 

O3. Especificación de la arquitectura conceptual de M2DAT. 

O4. Selección de tecnologías a emplear para construir M2DAT. 

O5. Especificación del diseño técnico de M2DAT. 

O6. Especificación del proceso de desarrollo para cada módulo de M2DAT. 

O7. Validación del diseño técnico de M2DAT. Para ello, se plantean dos sub-

objetivos: 

O7.1. Construcción de M2DAT-DB, uno de los módulos de M2DAT, 

que actúa a modo de prueba de concepto para la propuesta 

(arquitectura conceptual, diseño técnico, selección de tecnología y 

proceso de desarrollo de nuevos módulos). 

O7.2. Desarrollo de casos de estudio con M2DAT-DB. 
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A.3 Metodología 

La diferente naturaleza de las Ingenierías respecto al resto de ciencias 

empíricas y formales imposibilitan la aplicación directa de métodos clásicos a la 

investigación en Ingeniería del Software. Así, el método de investigación que se 

sigue en esta tesis está adaptado del propuesto en [223] para la investigación en 

ingeniería del Software. Se basa en el método hipotético–deductivo de Bunge [67], 

y se compone de varias etapas que, dada su genericidad, son aplicables a cualquier 

tipo de investigación. 

Tal y como muestra la Figura A-1, la definición del método de 

investigación es un paso del propio método. Dicho pasa es necesario porque cada 

proceso de investigación posee sus propias características. Por lo tanto, no hay un 

método universal que pueda aplicarse a cualquier trabajo de investigación. 
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Figura A-1. Método de Investigación 

Dado que la fase más importante de dicho método es la de resolución y 

validación, a continuación se proporciona una vista más amplia del proceso 

seguido en esta fase, que en cierto modo es una adaptación del tradicional proceso 
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en cáscada [300] y el Proceso Unificado de Rational [177]. La Figura A-2 muestra 

una vista simplificada del proceso. 
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Figura A-2. Fase de Resolución y Validación del Método de Investigación 

Primera Iteración: desarrollo de MIDAS-CASE 

Durante la fase de especificación de la primera iteración se revisan los 

trabajos relacionados con herramientas CASE y la metodología MIDAS. El 

objetivo es identificar las necesidades relacionadas con dar soporte a MIDAS y si 

las herramientas existentes podían satisfacerlas. Dicha revisión conluye con la 

decisión de construir un nuevo entorno para soportar la representación gráfica de 

los modelos propuestos en MIDAS, el paso de unos a otros y la generación de 

código a partir de dichos modelos. Además, se establece el uso de una BD XML 

como repositorio de modelos. Igualmente se identifican los dos requisitos más 

importantes que dicho entorno debía reunir: extensibilidad y modularidad. 

La fase de diseño se relaciona fundamentalmente con la definición de la 

arquitectura del nuevo entorno, de acuerdo a los requisitos establecidos durante la 

fase de especificación. Además, se identifican los componentes tecnológicos a 

utilizar y el proceso de desarrollo a seguir para construir cada módulo. La 

principal salida de esta fase es la arquitectura de MIDAS-CASE, que combina la 

arquitectura conceptual con el diseño técnico. 
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Para validar los resultados de la fase de diseño, se construyen dos 

prototipos durante la fase de construcción: MIDAS-CASE4WS y MIDAS-

CASE4XS, que soportan, respectivamente, el modelado de Servicios Web y XML 

Schemas con UML extendido y la serialización de dichos modelos en código final 

(WSDL y XSD). Estos prototipos son la prueba de concepto para la 

especificación de la arquitectura de MIDAS-CASE. 

Finalmente, la fase de pruebas consiste en el desarrollo de una batería de 

casos de estudio con los prototipos de MIDAS-CASE para evaluar la viabilidad y 

utilidad de la propuesta, así como para mejorar la arquitectura y el proceso de 

desarrollo de nuevos módulos definidos durante la fase de diseño. 

Nótese que cada paso del proceso realimenta los anteriores. Por ejemplo, 

los hallazgos y lecciones aprendidas obtenidos en la fase de construcción de 

prototipos influyen en la fase de diseño de cara a refinar la arquitectura de la 

herramienta. 

Segunda Iteración: desarrollo de M2DAT 

Tras concluir con el desarrollo de MIDAS-CASE se comienza una nueva 

iteración con dos objetivos principales: considerar, estudiar e incorporar los 

avances en el campo de la IDM y aprovechar las lecciones aprendidas durante la 

primera iteración para solventar o paliar los principales problemas y deficiencias 

encontrados en las herramientas que soportan propuestas metodológicas para el 

DSDM.  

Por lo tanto, durante la fase de especificación se realiza una revisión de la 

tecnología existente para dar soporte a las tareas relacionadas con la IDM y de las 

lecciones obtenidas del desarrollo de MIDAS-CASE. Una conclusión importante 

pasa por separar la definición de la arquitectura del entorno de desarrollo, a alto 

nivel, de su descripción técnica, a bajo nivel. Así, la salida principal de esta fase es 

la arquitectura conceptual de M2DAT, la nueva versión de la herramienta de 

soporte para MIDAS, y los conocimientos técnicos necesarios para abordar la fase 

de diseño. 

Durante la fase de diseño, la arquitectura conceptual se refina en un diseño 

técnico de acuerdo al conocimiento adquirido de las revisiones de tecnología 

realizadas durante la fase de especificación. Frente a la arquitectura de MIDAS-

CASE, M2DAT se define a partir de varias herramientas que soportan tareas 

concretas relacionadas con la IDM sobre la plataforma Eclipse y más 

concretamente, el Eclipse Modelling Framework (EMF) [66, 161]. El resultado es 

un entorno muy fácilmente extensible, que puede integrar nuevas funcionalidades 
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a medida que sean liberadas. Así mismo, se define el proceso de desarrollo para 

nuevos módulos de acuerdo al diseño técnico de M2DAT. 

Dicho diseño guía la construcción de M2DAT-DB, la prueba de 

concepto para M2DAT, durante la fase de construcción. M2DAT-DB sirve como 

implementación de referencia para probar y validar la viabilidad del diseño técnico 

de M2DAT y del proceso de desarrollo de nuevos módulos. Al mismo tiempo, 

M2DAT-DB sirve de guía sobre cómo seguir la especificación de M2DAT a la 

hora de construir e integrar nuevos módulos en la herramienta. 

Finalmente, una batería de casos de estudio llevados a cabo con M2DAT-

DB durante la fase de pruebas ayudan en el refinamiento de la propuesta. Por 

ejemplo, la necesidad de disponer de transformaciones de modelos personalizables 

se detectó durante el desarrollo de estos casos de estudio. Concecuentemente, el 

diseño técnico de M2DAT y el proceso de desarrollo de nuevos módulos (en 

particular de las transformaciones de modelos) fueron modificados de acuerdo a la 

nueva necesidad. 

A.4 Conclusiones 

Esta tesis proporciona una serie de contribuciones, no sólo en el ámbito de 

la investigación planteada en el punto de partida (la especificación de M2DAT), 

sino también relacionadas con otros aspectos colaterales. Se resumen a 

continuación. 

Un completo análisis de las soluciones existentes para la construcción 

de entornos que soporten metodologías para el desarrollo dirigido por 

modelos de Sistemas de Información Web. 

Todas las decisiones técnicas que se recogen en la especificación de 

M2DAT han sido explicadas y justificadas a lo largo de esta tesis. No obstante, en 

el camino hacia esas decisiones se ha realizado una completa revisión de la 

tecnología existente en el campo de la IDM. Dicha revisión constituye en sí misma 

una contribución relevante, dado que podría utilizarse para otros propósitos más 

concretos. 

De hecho, algunos de los entornos para soportar metodlogías de DSDM 

revisados están siendo mejorados (o al menos dicha mejora se ha planificado) para 

adaptarlos a los avances en el campo. Los hallazgos y el análisis proporcionados 

en el estado del arte de esta tesis podrían ayudar a los investigadores responsables 

de esos trabajos a la hora de realizar la selección de tecnología que mejor se 
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adapte a las necesidades particulares de su metodología, que no tienen por qué ser 

exactamente las mismas que plantea M2DAT. 

Por ejemplo, la forma en que dichos entornos soportan las 

transformaciones de modelos es un caspecto susceptible de mejora en todos los 

casos estudiados. En este sentido, esta tesis proporciona una serie de conclusiones 

y lecciones aprendidas que ayudarán a incoporar las ventajas de la tecnología 

actual a dichos entornos, como el uso de modelos de anotación o las ventajas de 

usar una aproximación híbrida frente a una puramente declarativa o imperativa. 

Especificación de un entorno para el desarrollo dirigido por modelos 

de Sistemas de Información Web 

La principal contribución de esta tesis ha sido la especificación de 

M2DAT, un entorno abierto que soporta el desarrollo dirigido por modelos de 

Sistemas de Información Web. Las principales aportaciones de M2DAT con 

respecto a los trabajos existentes pasan por su naturaleza extensible e 

interoperable y el soporte de transformaciones personalizables mediante modelos 

de anotación. 

Estas características contribuyen a facilitar la tarea de extender la 

herramienta para que soporte nuevas funcionalidades. Siempre que MIDAS, la 

metodología soportada por M2DAT, sea extendida para incluir un nuevo aspecto 

en la arquitectura de MIDAS, se desarrollará un nuevo módulo de M2DAT que 

soportará la extensión de la metodología. Además, los modelos que el nuevo 

módulo soporte serán interoperables con los ya soportados sin necesidad de 

realizar ningún esfuerzo adicional. Es decir, no será preciso construir puentes entre 

espacios técnológicos [208], como sucedía hasta la fecha. De hecho, aunque a 

priori todas las herramientas de modelado podrían considerarse en el mismo 

espacio tecnológico, la práctica demuestra que esta afirmación no es del todo 

cierta. Importar y exportar modelos desde una herramienta a otra implica moverse 

entre distintos espacios tecnológicos, en general el de las gramáticas y el de los 

modelos (grammarware y modelware). Esta tarea, a pesar de que existen 

soluciones técnicas que ayudan a llevarla a cabo, suele implicar perdida de 

semántica y resulta muy propensa a introducir errores. En cambio, cuando los 

modelos se definen a partir de un metametamodelo común, el único artefacto 

necesario para conectarlos es una transformación de modelos, y, opcionalmente, 

una modelo de weaving para establecer la forma en qué llevarla a cabo. 

Por otro lado, ninguno de los trabajos existentes ofrecía soporte para 

transformaciones personalizables. De esta manera, cuando el proceso de 

desarrollo propuesto por la metodología era completamente automatizado, la única 
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forma de mantener algún control sobre el resulatdo final era modificar los modelos 

de entrada. Incluso después de modificarlos, algunas de las transformaciones 

incluidas en dichas herramientas no eran capaces de producir ciertas 

construcciones en los modelos de salida. La úncia forma de hacerlo era modificar 

manualmente los modelos de salida. 

Frente a este comportamiento, las transformaciones de modelos incluidas 

en M2DAT utilizan modelos de anotación para controlar la ejecución de la 

transformación. Así, se pueden obtener diferentes modelos de salida a partir de un 

mismo modelo de entrada sin más que modificar el modelo que contiene las 

anotaciones. De esta forma se soporta la personalización del proceso de desarrollo 

sin que ello perjudique el nivel de automatización. Además, en ausencia de 

anotaciones, dichas transformaciones incorporan un comportamiento por defecto. 

Una ventaja adicional es que, de esta manera, las decisiones de diseño son 

guardadas y pueden ser recuperadas, consultadas y modificadas en cualquier 

momento. Por último, el artefacto para guardar dichas decisiones es el más 

adecuado en el contexto de la IDM: un modelo. 

Finalmente, la especificación de M2DAT tambien comprende la definición 

del proceso de desarrollo a seguir para construir nuevos módulos, así como la 

implementación de referencia, M2DAT-DB, que constata que dicha especificación 

es viable y ayuda a interpretarla. 

Soporte para el desarrollo semi-automático dirigido por modelos de 

esquemas de BD modernos. 

Aunque el objetivo de desarrollar M2DAT-DB era fundamentalmente 

proporcionar una prueba de concepto para la propuesta de M2DAT, M2DAT-DB 

constituye en si mismo una herramienta completa para el desarrollo dirigido por 

modelos de esquemas de BD modernas. Dado que el estado del arte ha servido 

para constatar que a día de hoy no existen herramientas que soporten toda la 

funcionalidad proporcionada por M2DAT-DB, podemos decir que ésta es en sí 

misma una aportación relevante de la tesis. 

M2DAT-DB proporciona un conjunto de herramientas para trabajar con 

DSLs para el modelado de esquemas de BD Objeto-Relacionales, tanto para el 

estándar SQL:2003, como para el producto comercial Oracle. Dichas herramientas 

permiten generar el esquema de la BD a partir de un modelo conceptual de datos 

representado con un diagrama de clases UML. Además, el proceso de generación 

puede ser personalizado mediante la definición de un modelo de anotación que 

recoja las decisiones de diseño que especifican cómo se quiere mapear un 

elemento concreto del modelo conceptual. Igualmente, la herramienta incluye las 
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transformaciones para pasar de un modelo Obejto-Relacional conforme al estándar 

a uno para Oracle y viceversa, así como editores gráficos para manejar los 

modelos elaborados. 

Finalmente, para completar el soporte al aspecto del contenido, M2DAT-

DB incluye también las facilidades para el desarrollo de esquemas XML siguiendo 

la misma aproximación. Es decir, el modelo XML se obtiene automáticamente a 

partir del modelo conceptual de datos y el proceso de generación deja espacio para 

la personalización mediante modelos de anotación. 





 

 

Appendix B: About Graph 

Transformations





 

 

B About Graph Transformations 
This sections aims at putting forward some commonalites on graph 

transformations in order to help on the understanding of the reviewed works that 

provide with a graph-based transformation language. 

B.1 Graph-Based Model Transformation Languages 

Graph transformation rules consist of a LHS graph pattern and a RHS 

graph pattern. When applying a graph transformation rule, every match with the 

left-hand-side graph pattern is replaced by the right-hand-side graph pattern. In 

addition to the left-hand-side graph pattern, non-matching conditions can be 

defined, e.g. negative conditions. 

The graph patterns can be rendered in the concrete syntax of their 

respective source or target language (e.g., in VIATRA) or in the MOF abstract 

syntax. The latter is the way it is done in AGG and BOTL. 

a

b

 
Figure B-1. UML simple model rendered in UML concrete syntax (a)  

and in MOF abstract syntax (b) 
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As Figure B-1 shows (retrieved from [98]), models expressed in the 

concrete syntax are more familiar to developers working with a given modelling 

language. Besides, for complex languages like UML, patterns in a concrete syntax 

tend to be much more concise than patterns in the corresponding abstract syntax. 

The kernel of some graph-based languages is defining triple graph 

grammars (TGG), a particular type of graph-based transformation approach 

introduced by Andy Schurr [313]. In addition to the graphs used to specify the 

LHS and RHS of the rule, Triple Graph Grammar rules use a third sub-graph, 

called correspondence graph. Its elements are linked to the source and target 

elements located at the LHS and RHS. In essence, the correspondence graph holds 

the tracing information of the transformation. A very simple example, taken from 

[388], is shown in Figure B-2. 

 
Figure B-2. Example of Triple Graph Grammar (TGG) rewriting rule 

Besides, it is also very common to provide support for definition of 

Negative Application Condition (NAC). NACs specify conditions that should not 

be present in the host graph in order for the rule to be applied. Figure B-3, adapted 

from [382], uses a simplified example to show the use of NAC rules. It is based on 

the Pac Man game, commonly used in graph grammars literature. Pac Man can 

move in two ways. It might go to a field that contains a marble. Then, the marble 

disappears, Pac Man is located in the next field and increments his count of 

marbles (Figure B-3 (a)). On the other hand, Pac Man next movement could be to 
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a field with no marble in. This is a NAC, and it is represented as a crossed out 

object (Figure B-3 (b)).  

marbles: int = i

PacmanOID: PacMan

CurrentField: Field NextField: Field

marbles: int

MarbleOID: Marble

in

from to

in

marbles: int = i

PacmanOID: PacMan

CurrentField: Field NextField: Field

in

from to

marbles: int = i

PacmanOID: PacMan

CurrentField: Field NextField: Field

marbles: int

MarbleOID: Marble

in

from to

in

marbles: int = i + 1

PacmanOID: PacMan

CurrentField: Field NextField: Field

in

from to

a

b

PacMan movement eating

PacMan movement without eating

 
Figure B-3.  Production rules for PACMAN game: (a) Pac Man movement eating  

(b) Pac Man movement without eating 

Finally, although many graph-based model transformation languages use a 

visual notation for specifying the transformation, identifying graph-based 

transformations with visual notations is a common mistake. In fact, many of them 

support (just) textual notations, like VIATRA. 
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C Text-to-Model Transformations 
This section has been added at the time of finishing this dissertation in 

order to cope with an emerging research field in the context of MDE, closely 

related with the development of tools for MDSD: text to model transformations. 

Since we plan to integrate support for this task in M2DAT, we have decided to 

include a review of existing works in the field. This section summarizes our main 

findings. 

C.1 Text-to-Model Transformation approaches 

Obtaining models from code is an area of increasing interest is. Indeed, the 

Architecture Driven Modernization (ADM, http://adm.omg.org/) initiative from 

the OMG is related to extending the modelling approach to the existing software 

systems. It is a kind of reverse engineering whose first step should be producing 

models from legacy code, also known as model injection, the opposite of code 

generation (extraction). In contrast with model-to-text transformation languages, 

the underlying objective of text-to-model transformation languages is the mapping 

of concrete syntaxes to abstract syntaxes. To that purpose, these languages might 

follow a grammar-based or a metamodel-based approach.  

The former are focused on the definition of a context-free grammar [83] to 

specify the concrete syntax of the language. The metamodel that defines the 

abstract syntax is derived from the grammar, together with a textual editor (a 

parser indeed) for conforming models. This approach have been traditionally 

adopted to build compilers for programming languages and is currently adopted 

by the Xtext [146] component of OpenArchitectureWare (see section 2.2.13). 

On the other hand, metamodel-based approaches start from the metamodel 

and provides with a (user-friendly) grammar language to define the grammar for 

your DSL. Such language for grammars allows specifying a textual representation 

for each concept of the metamodel. Doing so, you are defining the (textual) 

concrete syntax of the DSL. From that, the framework generates textual editors for 

the new DSL and even in some cases, like TEF [312], synchronically updated with 

the corresponding visual editor 

Whereas grammar-based approaches worked fine for compilers 

development, they fail when it comes to MDE. Their main drawback is the 

starting point. To specify a text-to-model transformation following a grammar-

based approach, you have to, first, define the grammar. Then, the metamodel is 
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automatically derived from the grammar specification. This approach suffers of 

the inability to create a custom metamodel. While it might be acceptable when 

working with an isolated DSL, it is not a good practice when working with 

interrelated DSLs, since the metamodels are to be the ports where model 

transformation are anchorage to connect the DSLs. In fact, since you are defining 

the concrete syntax before defining the abstract syntax, the generated metamodel 

is in essence a high-level representation of the grammar, more than an abstraction 

of the domain concepts you want your DSL to model.  

As Markus Scheidgen argued in his blog [311], MDE changes the software 

engineering scene and the way IDEs have to be developed. Before, those IDEs 

were only tools to help on coding tasks. At present, they have to be 

(meta)modelling frameworks providing with support for all types of model 

processing tasks, such as analysis, validation, transformation, etc. In this context, 

textual editors have to be developed in a different way. Existing frameworks 

ignore that most DSLs contains non-context-free features that are described in the 

corresponding metamodel. The starting point to develop a textual editor for a 

given DSL should be the metamodel and not the grammar. From the metamodel, 

you should specify the grammar, generate graphical and textual editors, etc. 

We believe that bidirectional bidirectional mappings that supports both 

model-to-text (extraction), and text-to-model transformations (injection) [255] are 

the way to address this task. This approach eases the development of bidirectional 

editors, supporting both injection (text-to-model) and extraction (model-to-text) of 

models.  

Working this way you get an extra contribution, that is the interesting one 

for us. Along with the textual editor, injectors/extractors are generated. As far as 

we know, only TCS [183] is providing (in an minimum reliable manner) with this 

functionality and has been applied in several projects. Unfortunately, developing 

TCS specifications is a challenging task and lacking of documentation.  

Due to it is still an emerging field, we will not make an exhaustive 

comparative here on works supporting some kind of text-to-model transformations 

and we refer the reader to the first works comparing exiting works for this task 

[158]. However, since we plan to integrate support for models extraction in 

M2DAT, in the following we present the main features of existing languages to 

specify model extraction processes and we will follow advances in the field in 

order to integrate support for text-to-model transformations in M2DAT as soon as 

possible. 
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C.2 Languages for bidirectional mapping of text to models 

In the following we summarize the main features of the main text-to-model 

transformation languages supporting bidirectional mapping of model-to-text and 

text-to-model 

TCS 

The Textual Concrte Syntax (TCS, [183]) is an Eclipse/GMT component 

that enables the specification of textual concrete syntaxes for DSLs by attaching 

syntactic information to metamodels. With TCS, it is possible to parse (text-to-

model) and pretty-print (model-to-text) DSL sentences. Moreover, TCS provides 

an Eclipse editor, which features: syntax highlighting, an outline, hyperlinks, and 

hovers for every DSL which syntax is represented in TCS. 

To that end, TCS provides with a DSL for the specification of the 

correspondence between the metamodel and its textual representation. From that, 

an ANTLR grammar together with a parser for this grammar is generated. Such 

parser (also know as injector) takes as input a textual program of the DSL and 

generates a model conforming to the DSL metamodel. In addition, TCS also 

generates an extractor that provides with model-to-text capabilities (code 

generation in fact).  

TCS also has some limitations. Despite technical concerns, we might notice 

that the mapping is too complex when the metamodel is far from the desired 

syntax. For example it is currently impossible to create blank delimited or case 

insensitive languages. Besides, there is not much documentation available and 

coding TCS mappings is much more complex than ATL transformations. 

Xtext 

Xtext [124] is a language of the OpenArchitectureWare framework (see 

section 2.2.13) that enables text-to-model transformations. 

In contrast with TCS, that followed the metamodel-based approach, Xtext 

follows the grammar-based approach. Hence, the metamodel is derived from a 

Xtext grammar file that describes the syntax of the DSL. From the grammar 

specification an ANTLR grammar and a Ecore metamodel are generated. The 

generated metamodel corresponds to an AST specification for the DSL. Besides, 

Xtext generates an Eclipse-based textual editor for the DSL. 

The parser generated works as an injector that creates model elements from 

textual specifications. Its main issue resides in the approach followed, since the 

generated metamodel is basically an abstraction of the concrete syntax. To 
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overcome this drawback the authors propose [146] to transform from the 

generated metamodel into the intended target metamodel. That is, the model 

transformation would translate a model of the concrete syntax to a model of the 

abstract syntax. 

At present, there is ongoing work to integrate both TCS and Xtext under 

the Eclipse Textual Modelling Framework project 

(http://www.eclipse.org/modeling/tmf/). 

Sintaks/TCSSL 

Sintaks [135, 255] uses bidirectional mapping-models to support both 

model-to-text and text-to-model transformations (generators and parsers). 

Thereby, it defines bridges between concrete (textual files) and abstract syntax 

(models). Additionally, Sintaks allows generating automatically textual editors for 

a model providing syntax highlighting. Sintaks is based onto the EMF repository. 
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D Case Studiy 
This Chapter presents the Case Study used all along Chapter 5 to show the 

application of the reference implementation of M2DAT. 

This Case Study is taken from [385] (p. 5). As mentioned before, using an 

―external‖ case study prevent us from using ad-hoc models that might fit better to 

our needs. The Online Movie Database (OMDB) is devised to manage information 

about movies, actors, directors, play writers and movie related information. Users 

can browse this information on the OMDB website and purchase products (i.e. 

movie videos, DVDs, books, CDs, and other movie related merchandise). The 

movie information includes the movie title, director, the official movie website, 

genre, studio, short synopsis, and the cast (i.e. actors and the roles they play in the 

movie). Each movie has up to 5 external editorial reviews, and unlimited number 

of user reviews entered by users online. OMDB website offers products for sale 

including movie videos and DVDs. Information about videos and DVDs includes 

title, rating, list price, release date, and other relevant information. This situation 

can be modelled using the UML Class Diagram shown in Figure D-1. 
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Figure D-1. Conceptual Data Model for the OMDB Case Study 

Using M2DAT-DB, such conceptual data model can be translated to an 

ORDB schema conforming to the SQL:2003 standard, and ORDB Schema for 

Oracle or an XML Schema. Such mapping could be driven by a set of annotations. 

Since we will focus on the DSL for modelling ORDB schemas to show model 

edition and validation capabilities in M2DAT, Figure D-2 shows the conceptual 

model next to the correspondent annotation model for generating an ORDB model 

for SQL:2003. 
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Figure D-2. Annotation Model for the OMDB Case Study 

Figure D-3 shows the resuling ORDB model for SQL:2003. 
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Figure D-3. OR Model for the OMDB Case Study (Diagrammer) 

As well, Figure D-4 shows the same model displayed in the improved EMF 

tree-like editor. 
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Figure D-4. OR Model for the OMDB Case Study (improved EMF tree-like editor)
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