

Universidad Rey Juan Carlos

Escuela Técnica Superior de Ingeniería Informática

Departamento de Lenguajes y Sistemas Informáticos II

M2DAT: a Technical Solution for Model-

Driven Development of Web Information

Systems

Author: Juan M. Vara Mesa

Thesis Supervisor: Esperanza Marcos Martínez

Móstoles, September 2009

La Dra. Dª Esperanza Marcos Martínez, Profesora Titular de Universidad

Departamento de Lenguajes y Sistemas Informáticos II de la la Universidad Rey

Juan Carlos de Madrid, directora de la Tesis Doctoral: ―M2DAT: A TECHNICAL

SOLUTION FOR MODEL-DRIVEN DEVELOPMENT OF WEB

INFORMATION SYSTEMS‖ realizada por el doctorando D. Juan Manuel Vara,

HACE CONSTAR QUE:

esta tesis doctoral reúne los requisitos para su defensa y aprobación

En Madrid, a 2 de Septiembre de 2009

Fdo.: Esperanza Marcos Martínez

―In theory, there is no difference between theory and practice.

But in practice, there is‖

(Jan L. A. van de Snepscheut/Yogi Berra)

III

Abstract

During the last 20 years, there has been a continuous tendency towards

raising the level of abstraction at which software is designed and developed. This

way, assembly languages gave way to structured programming that yielded to

object-orientation and so on. The last step in this line has been the Model-Driven

Engineering (MDE) paradigm,that promotes the use of models as primary actors

in the software development.

The underlying idea is to capture the system requirements and specification

in high-level abstraction models that are automatically refined into low-level

abstraction models. The latter takes into account the details of the targetting

platforms and could be shown as the plans for the working-code. Indeed, such

models are directly serialized into the working-code that implements the system.

This way, automation comes as the other key of MDE: there is a need of tools for

defining models, connecting them by means of model transformations, serializing

them into code, etc.

During the last years, the impact of the MDE paradigm has resulted in the

advent of a number of methodological proposals for Model-Driven Software

Development (MDSD). According to the MDE principles, the authors of such

proposals have developed the corresponding tools that should provide with the

technical support for them. However, the absence of standards and their closed

nature have resulted in tools providing with ad-hoc solutions that do not make the

most of IDM‘s advantages in the form of less costly, rapid software development.

In this context, this thesis addresses the specification of M2DAT (MIDAS

MDA Tool), a framework for semi-automatic model-driven development of Web

Information Systems. To that end, instead of developing the technical support for

each task comprised in a MDSD proposal, M2DAT integrates the isolated

functionality provided by a set of existing tools for MDE tasks that will be used as

building blocks.

This way, as part of this thesis we will define a conceptual architecture for

MDSD frameworks. It will be an extensible, modular and dynamic architecture

that promotes the integration of new capabilities in the form of new modules or

subsystems and supports introducing desing decisions to drive the embedded

model transformations. As well, since the proposed environtment follows a

modular architecture, the development process to follow in order to build and

integrate new modules will be defined.

IV

Likewise, a set of methodological and technological decisions will be

reasoned and justified to map the conceptual architecture to a technical design.

Finally, in order to prove the feasibility of the proposal and to show that it

can be used in practice and how it should be done, a reference implementation will

be provided. In particular, one of the modules of M2DAT, that supports the

model-driven development of modern Database schemas will be developed.

In summary, M2DAT aims at solving some drawbacks detected in existing

tools for supporting MDSD methodologies, mainly due to their isolated and closed

nature: in contrast with previous works in the field, M2DAT will be easily

extensible to ease the task of responding to new advances in the field. Likewise, it

will be highly interoperable to simplify the use of the functionality provided by

any other tool with M2DAT‘s models. Finally, special attention will be paid to the

management of model transformations in M2DAT, since they are the cornerstone

of any MDSD methodological proposal.

V

Resumen

Durante los últimos 20 años la tendencía a elevar el nivel de abstracción

con el que el software se diseña y construye ha venido siendo una constante. Los

lenguajes de ensamblador dieron paso a la programación estructurada, que a su

vez cedió el protagonismo a la orientación a objetos y así sucesivamente. El

útlimo paso en esta dirección ha sido la aparición de la Ingeniería Dirigida por

Modelos (IDM), cuya principal característica es el papel principal que juegan los

modelos en el desarrollo de software.

La idea subyacente es recoger los requisitos y la especificación del sistema

en modelos con un alto nivel de abstracción, que son automáticamente

transformados en modelos de bajo nivel. Estos modelos, que consideran ya los

detalles tecnológicos de la plataforma final y pueden contemplarse como los

planos del software, son directamente transformados en el código fuente que

implementa el sistema. De este modo, la automatización es otra de las claves de la

IDM: se necesitan herramientas para definir modelos, para conectarlos mediante

transformaciones, para generar código a partir de ellos, etc.

Durante los últimos años, el impacto de la IDM ha resultado en la aparición

de numerosas propuestas metodológicas para el Desarrollo de Software Dirigido

por Modelos (DSDM). De acuerdo a los principios de la IDM, los autores de

dichas metodologías han desarrollado las herramientas que debían proporcionar el

correspondiente soporte tecnológico para sus propuestas. Sin embargo, la ausencia

de estándares y su naturaleza cerrada ha resultado en herramientas aisladas que

proporcionan soluciones demasiado específicas y que no aprovechan por completo

las ventajas de la IDM.

En este contexto, la tesis doctoral que se presenta aborda la especificación

de M2DAT (MIDAS MDA Tool), un entorno para soportar el desarrollo semi-

automático y dirigido por modelos de Sistemas de Información Web (SIW). Para

ello, en lugar de desarrollar el soporte para cada una de las tareas que implica

cualquier proceso de DSDM, M2DAT integra las funcionalidades aisladas que

propocionan un conjunto de herramientas ya existentes. Es decir, dichas

herramientas se utilizan como unidad de construcción para obtener un entorno

integrado que dé soporte al proceso de desarrollo completo.

Así, como parte de la tesis se definira una arquitectura conceptual para

entornos de DSDM. Será una arquitectura extensible, modular y dinámica que

favorecerá la inclusión de nuevas funcionalidades como nuevos módulos o

VI

susbsistemas y que soportará la introducción de decisiones de diseño que guién la

ejecución de las transformaciones de modelos soportadas por la herramienta.

Igualmente, dado que la herramienta sigue una arquitectura modular, se define el

proceso de desarrollo a seguir para la construcción e integración de nuevos

módulos.

Así mismo, un conjunto de decisiones metodológicas y tecnológicas,

debidamente razonadas y justificadas, servirán para trasladar la arquitectura

conceptual propuesta a un diseño técnico.

Finalmente, con el objetivo de demostrar la viabilidad de la propuesta y

mostrar que puede llevarse a la práctica y cómo debe hacerse, se proporcionará

una implementación de referencia. En particular, se desarrollará uno de los

módulos de M2DAT, que soportará el desarrollo dirigido por modelos de

esquemas de BD modernas.

Con todo ello, el objetivo final de M2DAT es solventar y/o paliar algunos

de los problemas detectados en las herramientas existentes para dar soporte a

metodologías de DSDM. Así, frente a dichas herramientas, que son de naturaleza

eminentemente aislada, M2DAT será fácilmente extensible para responder a la

aparición de nuevos avances en el campo de la IDM; tendrá un alto nivel de

interoperabilidad, lo que posibilitará utilizar la funcionalidad proporcionada por

cualquier otra herramienta para trabajar con los modelos elaborados con M2DAT;

y pondrá especial atención en la gestión de las transformaciones de modelos, dado

que constituyen el núcleo de cualquier propuesta de DSDM.

VII

Acknowledgements

First and foremost, I would like to thank to Esperanza, my thesis

supervisor. She introduced me to the research world and gave me the opportunity

to involve myself in it; she has showed me, with her support and ideas, the

successful path to the finishing of this PhD thesis; she has motivated me when I

was depressed and she has helped me to keep my feet in the ground when I was

too enthusiastic. All in all, I guess she knows me even better than myself. I guess

it is enough with saying that, after all these years, she has became my friend.

I would like to thank also the rest of members of the KYBELE Research

Group. Sometimes it was some of you, during some other periods, it was some

others of you. At the end, all of you have contributed decisively to the finishing of

this thesis. Specially those three girls ;-) that made this possible.

Thanks also to those two guys behind the scenes in the last stages: Emanuel

and Alex. Modelling, coding and transforming with you has been a pleasure. I will

miss the never-ending discussions and debates around the best way to eclipse any

light .

During these years, the friends from the University have been another way

of escape: Diego, Ramón et al. you know how it pains and you know what it costs.

Thanks also for sharing being there.

I would like to remember the people from INRIA. Jean and his guys taught

me a lot about Model-Driven Engineering and the like. In addition, Fred taught me

some french and Marcos taught me that you can have real friends from abroad .

Special thanks to my family: my mother, Amada, my brother, Berny, my

grandpa, Luis and my grandma, Ana. We are alone but together. You are always

there when the end seems too far away. You are the only thing in which I trust and

the only one that I know will never fail. Vane, you are becoming another one …

Of course, I could not forget my friends: we do not discuss about computer

science, software engineering and the like. You made me leave all the stuff behind

as soon as we met in El Desván or wherever. And I thank you a lot for this. You

are grandes guys.

All of you have been the witnessess of my complaints, my results and

achievementes, my failures and my frustations during all these years. For that and

for all the rest, thanks to all.

VIII

Finally, when the time to finish this thesis comes, I would like also to

remember my father. You are not here, but I hope you are proud of me today. In

the end, I guess that deserving your recognition has always been there, like a leif-

motif to go forward.

…………..Y ahora en español …………

Primero y sobre todo, gracias a mi directora, Esperanza. Ella me introdujo

en esto de la investigación y me dio la oportunidad de ganarme la vida con ello.

Con sus ideas y su apoyo me ha mostrado el camino para llegar al final de esta

tesis (y soy muy consciente de que en algunos momentos, esa tarea ha resultado

realmente desesperante). Me ha echado un cable cuando lo veía todo negro y me

ha hecho poner los pies en la tierra cuando se me iba la cabeza. A estas alturas,

creo que me conoce casí mejor que yo mismo. Supongo que bastará con decir que,

después de todos estos años, se ha convertido en mi amiga.

Gracias también al resto de Kybelitos. A veces habeis sido unos, en otros

épocas habéis sido otros. Pero todos vosotros habéis contribuido a que esta tesis

llegase a su fin. Especialmente las tres maravillosas señoritas (VBV) sin las que

esto NO habría sido posible.

Por supuesto, gracias a los dos chicos que han estado tras las bambalinas en

la etapa final y cuya aportación ha sido decisiva: Emanuel y Alex. Modelar,

programar y transformar con vosotros ha sido un placer y un lujo. Y echaré de

menos las eternas discusiones en torno a la mejor forma de eclipsar cualquier

lucecilla

A lo largo de estos años, los amigos de la Universidad también han sido

buenos compañeros de fatigas y doctorandos sufridores: Diego, Ramón et al.

sabeis lo que duele y lo que cuesta. Gracias también por estar ahí.

Quiero recordar también a la gente del INRIA en Nantes. Jean y sus chicos

me enseñaron un montón de cosas sobre esto de la Ingeniería Dirigida por

Modelos (que al final he llegado a creerme, al menos en parte). Fred además me

enseño un poquito de francés y Marcos me enseñó que puedes hacer amigos de

verdad en cualquier parte del mundo.

Obviamente, los agradecimientos especiales van para mi familia. Mi madre

Amada, mi hermano Berny, mi abuelo Luis y mi abuela Ana han estado ahí

siempre. Sois a lo que me agarraba los días realmente j…, en los que todo parecía

demasiado malo, demasiado duro y demasiado lejos. Pero lo hemos hecho (una

vez más). Sois lo único que sé que no me va a fallar nunca. Y sólo espero no

fallaros a vosotros. Vane, bienvenida al club ;-) …

IX

Y no me olvido de mis amigos: nunca discutimos de ordenadores, de

Ingniería del Software o de cosas por el estilo … y no sabeis cómo os lo

agradezco. Dejar atrás todas esas paranoias en cuanto entraba por la puerta de El

Desván o plantabamos el pie en la pista de futbol era una auténtica y necesaria

liberación. Sois grandes chavales. Y me habeis aguantado como campeones que

sois

Todos y cada uno de vosotros habéis sido los testigos de mis subidones y

mis bajones, de mis éxitos y mis fracasos, de mis frustaciones y mis quejas (y soy

un quejica compulsivo …). Por todo eso, y por todo lo demás, GRACIAS a todos.

Por último y antes de acabar, quiero acordarme de mi padre. Aunque no

estás hace tiempo y me fastidie reconocerlo, nunca dejaste de estar. Merecerme tu

respeto y demostrarte que no era tan … fue siempre una de las principales razones

para tirar pa‘lante y echarle lo que había que echarle. Espero que hoy te puedas

sentir un poquitín orgulloso del que suscribe …

XI

Index

1. INTRODUCTION .. 31

1.1 Problem Statement and Approach ... 31

1.2 Hypothesis and Objectives .. 35

1.3 Research Context ... 36

1.3.1 Research Projects and Stages ... 39

1.4 Research Method ... 41

1.4.1 Resolution and Validation Method ... 42

1.4.2 First Iteration: MIDAS-CASE development 43

1.4.3 Second Iteration: M2DAT development 44

1.5 Thesis Outline .. 45

2. STATE OF THE ART .. 49

2.1 Previous Concepts ... 50

2.1.1 MD* Acronyms ... 50

2.1.2 On CASE Tools, Frameworks and Components 50

2.1.3 Models and Metamodels ... 51

2.1.4 Concrete Syntax, Abstract Syntax and Semantics 53

2.1.5 Metamodelling Frameworks ... 54

2.1.6 Model Transformation .. 54

2.1.7 Weaving Models .. 56

2.1.8 Code Generation ... 57

2.1.9 Domain-Specific Modelling .. 58

2.1.10 What Model-Driven Engineering is .. 59

2.1.11 Model-Driven Architecture ... 61

2.1.11.1 MOF ... 61

2.1.11.2 UML ... 63

2.1.11.3 XMI .. 64

2.1.11.4 OCL .. 65

2.1.11.5 QVT ... 66

2.1.12 Eclipse ... 67

XII

2.1.12.1 The Eclipse Modelling Project ... 69

2.1.12.2 The Eclipse Modelling Framework .. 70

2.2 Tools supporting MDE tasks ... 71

2.2.1 Evaluation Criteria ... 72

2.2.2 AndroMDA .. 75

2.2.3 ATOM
3
 .. 76

2.2.4 DOME ... 76

2.2.5 DSL Tools ... 77

2.2.6 Eclipse Modelling Framework .. 77

2.2.7 EMFATIC ... 78

2.2.8 GME ... 78

2.2.9 Kermeta .. 80

2.2.10 MetaEdit+ ... 81

2.2.11 MOFLON .. 81

2.2.12 MOMENT ... 82

2.2.13 openArchitectureWare .. 82

2.2.14 TEF ... 83

2.2.15 Whole Platform ... 84

2.2.16 XMF-Mosaic ... 84

2.2.17 Others ... 84

2.2.18 Summary and Discussion .. 87

2.3 Model-Transformation Languages .. 91

2.3.1 Previous Works on Classifying Model Transformation proposals

 91

2.3.2 Model Transformation Approaches .. 93

2.3.2.1 Evaluation Criteria ... 95

2.3.3 Model-to-Model Transformation Languages 97

2.3.3.1 AGG ... 97

2.3.3.2 ATLAS Transformation Language .. 98

2.3.3.3 ATOM3 .. 99

2.3.3.4 GReAT ... 100

2.3.3.5 Kermeta .. 101

XIII

2.3.3.6 MOFLON-FUJABA ... 102

2.3.3.7 MOLA .. 102

2.3.3.8 RubyTL .. 103

2.3.3.9 Tefkat ... 104

2.3.3.10 VIATRA ... 104

2.3.3.11 QVT ... 105

2.3.3.12 QVT-Relations Implementers .. 107

2.3.3.13 QVT-Operational Mappings Implementers 110

2.3.3.14 QVT Implementers Summary .. 112

2.3.3.15 Others ... 113

2.3.4 Model-to-Text Transformation Languages 114

2.3.4.1 Acceleo ... 115

2.3.4.2 Acceleo/MTL ... 115

2.3.4.3 AndroMDA .. 116

2.3.4.4 Java Emitter Templates .. 116

2.3.4.5 MOFScript.. 116

2.3.4.6 Xpand ... 117

2.3.5 Summary & Discussion ... 117

2.3.5.1 On Model-to-Model Transformation Languages 120

2.3.5.2 On Model-to-Text transformation Languages 121

2.4 Model-Driven Software Development Tools................................... 122

2.4.1 Evaluation Criteria ... 122

2.4.2 Tools for Model-Driven Development of Web Information

Systems 126

2.4.2.1 ArgoUWE (MagicUWE) .. 127

2.4.2.2 WebRatio.. 129

2.4.2.3 WebTE ... 130

2.4.2.4 OOWS Suite ... 131

2.4.2.5 HyperDE .. 133

2.4.2.6 Others ... 134

2.4.3 Tools for (Model-Driven) Development of (Modern) DB

Schemas 135

2.4.3.1 Altova XML ... 136

XIV

2.4.3.2 Oxygen XML Editor .. 136

2.4.3.3 Stylus Studio 2008 ... 136

2.4.3.4 hyperModel .. 137

2.4.3.5 Rational Rose Data Modeler .. 137

2.4.3.6 Enterprise Architect ... 138

2.4.3.7 ERwin .. 138

2.4.3.8 Others ... 139

2.4.4 Summary & Discussion ... 140

2.4.4.1 On Tools supporting Model-Driven Development of Web

Information Systems ... 145

2.4.4.2 On Tools supporting Model-Driven Development of (Modern)

Database Schemas .. 147

3. 1
ST

 ITERATION: MIDAS-CASE .. 153

3.1 MIDAS-CASE: a stand-alone CASE tool for MDSD of WIS 153

3.2 MIDAS-CASE Architecture .. 154

3.2.1 Presentation .. 156

3.2.2 Logic ... 156

3.2.2.1 Parsers .. 156

3.2.2.2 Transformation ... 157

3.2.3 Persistence .. 157

3.2.3.1 Using an XML Database as Models Repository 158

3.3 MIDAS-CASE Prototypes ... 160

3.3.1 Modelling Web Services with Extended UML 160

3.3.1.1 WSDL Metamodel ... 160

3.3.1.2 UML Profile for WSDL ... 161

3.3.2 MIDAS-CASE4WS Case Study: a Web Service for validating e-

mail addresses .. 164

3.3.2.1 Distinguishing syntax from semantics 166

3.3.3 Modelling XML Schemas with Extended UML 167

3.3.3.1 XML Schema Metamodel .. 167

3.3.3.2 UML Profile for XML Schema .. 168

3.3.4 MIDAS-CASE4XS Case Study: a Web Information System for

medical images management .. 170

XV

3.3.4.1 Code Generation ... 171

3.3.5 Developing MIDAS-CASE: Technical Issues 172

3.3.5.1 Presentation .. 173

3.3.5.2 Logic and Persistence ... 174

3.3.6 Adding more Functionality to MIDAS-CASE 175

3.4 Lessons Learned .. 176

3.4.1 User Interface Development ... 177

3.4.2 XML Schema as (meta)modelling language 178

3.4.3 Separating the Abstract Syntax from the Concrete Syntax.... 178

3.4.4 UML Profiles became DSLs at the Time of Implementation . 179

3.4.5 Model-Transformation Language ... 180

3.4.6 Separation of Concerns: Modularization.............................. 181

4. SOLUTION: M2DAT ARCHITECTURE AND TECHNICAL DESIGN 185

4.1 M2DAT Overview ... 185

4.1.1 M2DAT Conceptual Architecture ... 186

4.1.2 M2DAT Technical Design ... 187

4.2 Modelling and Metamodelling .. 190

4.2.1 UML Profiles .. 190

4.2.2 DSLs .. 191

4.2.3 Discussion ... 193

4.2.4 Selecting a Metamodelling Framework: EMF 196

4.2.4.1 Combining DSLs with UML Modelling 196

4.2.4.2 Interoperability ... 197

4.2.4.3 Extensibility ... 198

4.3 Development of Graphical Editors .. 198

4.3.1 JAVA Graph Components ... 199

4.3.2 GMF .. 200

4.3.3 Selecting a Technology to Develop Model Editors 202

4.3.3.1 Compromise between development effort and result 202

4.3.3.2 Interoperability ... 203

4.3.3.3 On the relative relevance of diagrammers in MDSD 203

4.4 Model Transformations: the Kernel of a MDSD process 204

XVI

4.4.1 GPLs vs DSLs ... 205

4.4.2 Selecting a Model-to-Model Transformation Approach: the

Hybrid Approach .. 206

4.4.2.1 Discarding less commonly adopted approaches 206

4.4.2.2 Discarding Graph-Based approaches ... 207

4.4.2.3 Discarding purely Declarative and Imperative approaches 208

4.4.3 Selecting a Transformation Language: the ATLAS

Transformation Language .. 210

4.5 Introducing Design Decisions on Model Transformations 212

4.5.1 Selecting an Approach to Drive Model Transformations:

Annotation Models .. 212

4.5.2 Selecting a Technology to Create Annotation models: AMW214

4.6 Code Generation: the last step in the MDSD process 216

4.6.1 Selecting a Code Generation Approach 217

4.6.2 Selecting a Model-to-Text Transformation Language: the

MOFScript language .. 218

4.7 Model Validation ... 220

4.7.1 Selecting a Model Validation Approach 220

4.7.2 Selecting a Model Validation Technology: EVL 221

4.8 Development Process for M2DAT Modules 224

4.8.1 Abstract Syntax Definition: using Ecore to define new

Metamodels in M2DAT ... 227

4.8.2 Concrete Syntax Definition: using EMF and GMF to develop

Graphical Editors in M2DAT ... 229

4.8.3 Model Transformations Development in M2DAT 231

4.8.3.1 Using graph grammars to formalize model transformations 231

4.8.3.2 Coding mapping rules with the ATL .. 233

4.8.4 Improvement of Model Transformations: Introducing Design

Decisions in M2DAT transformations .. 234

4.8.4.1 ATLAS Model Weaver .. 234

4.8.4.2 Using weaving models as annotation models on M2DAT 236

XVII

4.8.5 Code Generation: model-to-text transformations in M2DAT237

4.8.6 Automatic Model Validation: supporting Model-Checking in

M2DAT with EVL ... 238

5. VALIDATION: M2DAT-DB ... 243

5.1 M2DAT-DB Overview .. 243

5.1.1 M2DAT-DB architecture and capabilities 244

5.1.2 Why we choose M2DAT-DB as a first M2DAT prototype..... 246

5.2 Defining new DSLs in M2DAT .. 248

5.2.1 Abstract Syntax Definition .. 248

5.2.1.1 ORDB Metamodel for SQL:2003 ... 248

5.2.1.2 Modelling Primitive Types on Platform Specific Models 253

5.2.2 Concrete Syntax Definition ... 257

5.2.2.1 EMF Implementation ... 257

5.2.2.2 Customizing EMF editors: ... 260

5.2.2.3 GMF Implementation ... 267

5.3 Model Transformations in M2DAT ... 270

5.3.1 Common Scenarios ... 271

5.3.1.1 One–to–One ... 272

5.3.1.2 One–to–Many ... 272

5.3.1.3 Many–to–One ... 274

5.3.1.4 Many-to-Many ... 275

5.3.1.5 One-to-One (multiple options) ... 276

5.3.1.6 One–to–Many (multiple options) ... 280

5.3.1.7 Many-to-One (multiple options) ... 283

5.3.1.8 Many-to-Many (multiple options) .. 285

5.3.2 Mapping of Primitive Data Types between PSM Models: 288

5.3.2.1 Mapping Primitive Types in PIM2PSM transformations 289

5.3.2.2 Mapping Primitive Types in PIM2PSM transformations 290

5.3.3 Documenting ATL Transformations 293

5.3.4 On the Development of Model Transformations 297

5.3.4.1 Some generic reflections .. 297

5.3.4.2 ATL vs QVT implementations ... 299

XVIII

5.4 Code Generation in M2DAT ... 302

5.4.1 Using MOFScript for code generation purposes 303

5.5 Validating models in M2DAT ... 305

5.6 Integrating New Modules in M2DAT ... 309

5.6.1 Developing an Integration plug-in .. 309

5.6.2 Launching Model Transformations Programmatically 310

5.6.3 Adding Graphical Support for launching Model

Transformations ... 314

5.6.3.1 Launch Configuration Types for M2DAT-DB model-to-model

transformations ... 315

5.6.3.2 Shortcut menus and Contributing Actions for M2DAT-DB model-

to-text transformations .. 317

6. CONCLUSION ... 323

6.1 Analysis of Achievements ... 323

6.2 Main Contributions .. 326

6.3 Scientific Results ... 329

6.4 Future Work .. 333

6.4.1 Development of M2DAT Modules ... 333

6.4.2 Traceability in Model Transformations 334

6.4.3 Automatic development of Model Transformations, Metamodel

Evolution and Model Co-Evolution .. 335

6.4.4 Bidirectional Model-to-Text Transformations 336

6.4.5 Improving the Development of Graphical Editors 337

6.4.5.1 Automatic development of graphical editors for DSLs 337

6.4.5.2 Improving graphical capabilities of M2DAT 337

6.4.6 Future works on the Context of M2DAT-DB 338

A RESUMEN EN CASTELLANO .. 343

A.1 Antecedentes ... 343

A.2 Objetivos ... 347

A.3 Metodología... 349

A.4 Conclusiones ... 352

XIX

B ABOUT GRAPH TRANSFORMATIONS ... 359

B.1 Graph-Based Model Transformation Languages 359

C TEXT-TO-MODEL TRANSFORMATIONS .. 365

C.1 Text-to-Model Transformation approaches 365

C.2 Languages for bidirectional mapping of text to models 367

D CASE STUDIY ... 371

E BIBLIOGRAPHY .. 379

F ACRONYMS .. 401

XXI

List of Figures

Figure 1-1. MIDAS Architecture overview ... 37

Figure 1-2. Ph.D. Thesis Research Context ... 40

Figure 1-3. Research Method .. 42

Figure 1-4. Resolution and Validation phase on the research method 43

Figure 2-1. Modelling and Metamodelling .. 52

Figure 2-2. Simplified Relational Metamodel and Conforming model 52

Figure 2-3. Overview of Model Transformation process 55

Figure 2-4. Model Weaving Overview .. 57

Figure 2-5. Simplified overview of MDE .. 61

Figure 2-6. OMG four layered metamodel architecture .. 62

Figure 2-7. Applying the OMG four layered metamodel architecture 63

Figure 2-8. Defining and using an UML profile. ... 64

Figure 2-9. Using XMI .. 65

Figure 2-10. The mortgage system expressed in a class diagram 66

Figure 2-11. Eclipse Workspace and Workbench plug-ins 68

Figure 2-12. The Eclipse Modelling Project .. 70

Figure 2-13. QVT Architecture ... 106

Figure 3-1. MIDAS-CASE Architecture ... 155

Figure 3-2. The use of an XML Database as models repository.......................... 159

Figure 3-3. WSDL Metamodel .. 161

Figure 3-4. UML Profile for Web Services Modelling 163

Figure 3-5. WSDL description of the ValidateEmail Web Service 164

Figure 3-6. Screen Capture from MIDAS-CASE4WS: ValidateEmail Web Service

represented in extended UML .. 165

Figure 3-7. Excerpt from the Validate E-Mail Web Service model and XML files

 .. 167

Figure 3-8. XML Schema metamodel and corresponding UML profile 168

XXII

Figure 3-9. UML extension for XML Schema .. 169

Figure 3-10. Screen Capture from MIDAS-CASE4WS – XML Schema model for

medical images management .. 171

Figure 3-11. Screen Capture from XMLSpy - Validation of the XML Schema

generated by MIDAS-CASE4XS ... 172

Figure 3-12. User Interface Layer Architecture .. 173

Figure 3-13. Application Logic and Persistente layers architecture 174

Figure 3-14. MIDAS-CASE Extending process .. 176

Figure 4-1. M2DAT Conceptual Architecture... 186

Figure 4-2. M2DAT Technical Design overview .. 188

Figure 4-3. Dependencies between GMF, EMF and GEF 200

Figure 4-4. GMF Development Process Overview ... 201

Figure 4-5. GMF anchoring problems ... 203

Figure 4-6. Weaving models as annotation models ... 215

Figure 4-7. AMW GUI Screen Capture .. 216

Figure 4-8. Development process for M2DAT modules 225

Figure 4-9. Simplified Ecore metamodel .. 228

Figure 4-10. EMF Code Generation overview .. 228

Figure 4-11. ECORE (meta-)models and EMF/GMF graphical editors 230

Figure 4-12. Core Weaving Metamodel .. 235

Figure 4-13. AMW Annotation Metamodel .. 236

Figure 4-14. Using Weaving models as annotation models to drive model

transformations execution .. 237

Figure 4-15. Simple EVL example .. 239

Figure 5-1. M2DAT-DB Architecture ... 244

Figure 5-2. SQL:2003 ORDB Metamodel .. 249

Figure 5-3. Partial view of the ORDB metamodel for SQL:2003: Schema

metaclass .. 250

Figure 5-4. Partial view of the ORDB metamodel for SQL:2003: Data types 251

Figure 5-5. Partial view of the ORDB metamodel for SQL:2003: Structured Type

 .. 251

XXIII

Figure 5-6. Partial view of the ORDB metamodel for SQL:2003: Structural

Component and Restrictions ... 252

Figure 5-7. Partial view of the ORDB metamodel for SQL:2003: Tables........... 253

Figure 5-8. Partial view of the SQL:2003 Built-in Data Type System 254

Figure 5-9. Defining Data Types characteristics ... 254

Figure 5-10. Partial view of the ORDB metamodel for SQL 2003: Features 255

Figure 5-11. Using features to model built-in data types..................................... 256

Figure 5-12. Partial view of the ORDB metamodel for SQL 2003: Built-in Data

Types .. 256

Figure 5-13. Relationship between .genmodel and .Ecore model 258

Figure 5-14. Overview of EMF Editors generation ... 259

Figure 5-15. Using features on EMF editors ... 260

Figure 5-16. Assigning primitive types in EMF ―Default‖ editor VS M2DAT EMF

Editor .. 261

Figure 5-17. Filtering instantiated primitive types in M2DAT editors 263

Figure 5-18. Filtering metaclasses to instantiate in M2DAT editors 264

Figure 5-19. Displaying a method signature on EMF editors 265

Figure 5-20. EMF Default editor VS M2DAT improved editor: OMDB for

SQL:2003 model... 265

Figure 5-21. Setting root element in EMF editors ... 267

Figure 5-22. GMF Overview ... 268

Figure 5-23. GMF models to develop the SQL:2003 Graphical Editor 269

Figure 5-24. One-to-One transformation ... 272

Figure 5-25. ATL Rule Package2Schema ... 272

Figure 5-26. One-to-Many transformation .. 273

Figure 5-27. ATL Rule ClassWithoutHierarchy2UDTandTT 273

Figure 5-28. Many-to-One transformation .. 274

Figure 5-29. ATL Rule ClassPropertyNotNull2NotNullConstraintOnTT........... 275

Figure 5-30. Many-to-Many transformation .. 275

Figure 5-31. ATL Rule Many-to-Many (Generic) ... 276

Figure 5-32. Many-to-Many transformation decomposed into One-to-One

transformations ... 276

XXIV

Figure 5-33. One-to-One transformation (multiple options) 277

Figure 5-34. Different ways of mapping derived attributes................................. 277

Figure 5-35. ATL Rule ClassProperty2UDTAttibute ... 278

Figure 5-36. ATL Rule DerivedProperty2Method .. 279

Figure 5-37. ATL DerivedProperty2AttributeandTrigger 280

Figure 5-38. Many-to-Many transformation (multiple options) 280

Figure 5-39. Different ways of mapping multivalued attributes 281

Figure 5-40. ATL Rules

MultiValuedPropertyWithoutGeneratedType2ARRAYAttribute 282

Figure 5-41. ATL Rules

MultiValuedPropertyWithoutGeneratedType2MULTISETAttribute 282

Figure 5-42. Many-to-One transformation (multiple options) 283

Figure 5-43. Different ways of mapping unique properties................................. 283

Figure 5-44. ATL Rule ClassPropertyPrimaryKey2PrimaryKeyConstraintOnTT

 .. 284

Figure 5-45. ATL Rule ClassPropertyAlternativeKey2UniqueConstraintOnTT 285

Figure 5-46. Many-to-Many transformation (multiple options) 285

Figure 5-47. Example of UML hierarchy (one level) .. 286

Figure 5-48. Two ways of mapping simple hierarchies from conceptual to ORDB

models .. 287

Figure 5-49. ATL Rule

SuperClassWithOneTableHierarchy2UDTandTTandAttributeandCHECKan

dNOTNULL ... 288

Figure 5-50. ATL Rule Date2Date .. 289

Figure 5-51. ATL Rule generateTypes() ... 290

Figure 5-52. ATL Rrule CharacterStringType2Varchar 291

Figure 5-53. SQL:2003 to ORDB4ORA --> ATL Rule Parameter2Parameter ... 291

Figure 5-54. SQL:2003 to ORDB4ORA --> ATL Rule Attribute2Attribute 292

Figure 5-55. SQL:2003 to ORDB4ORA --> ATL Rule Feature2Feature 293

Figure 5-56. SQL:2003 to ORDB4ORA --> Instantiating Feature2Feature ATL

rule .. 293

Figure 5-57. ATLDoc Template .. 294

Figure 5-58. Excerpt from UML_Constants.ATL file ... 295

XXV

Figure 5-59. ATLDoc overview .. 296

Figure 5-60. ATLDoc generated file: UML_Constants.html 296

Figure 5-61. ATL Code Excerpt: Class2UDT and Property2Attribute mapping

rules .. 300

Figure 5-62. mediniQVT Code Excerpt: Class2UDT and Property2Attribute

mapping rules ... 301

Figure 5-63. MOFScript code excerpt: heading .. 304

Figure 5-64. MOFScript code excerpt: GenerateStructuredType rule 304

Figure 5-65. SQL Generated Code exceprt ... 305

Figure 5-66. Creating EVL files .. 306

Figure 5-67. EVL Invariant to enforce Schema names consistency 307

Figure 5-68. Declaring extensions to the Epsilon validation plug-in 307

Figure 5-69. Launching model validation in M2DAT. .. 308

Figure 5-70. Fixing validation problems ... 308

Figure 5-71. Dependencies between M2DAT-DB plug-ins and transformations 310

Figure 5-72. ATL Header UML2SQL2003 ... 311

Figure 5-73. Excerpt from M2DAT-DB‘s Transformations constructor:

metamodels loading .. 312

Figure 5-74. Signature of the UML2SQL2003 launcher 312

Figure 5-75. initSQLMetamodels method .. 313

Figure 5-76. Loading models for executing an ATL transformation 313

Figure 5-77. Launching an ATL transformation programmatically 314

Figure 5-78. Eclipse‘s shortcut to Run Configurations 315

Figure 5-79. M2DAT-DB‘s Run Configuration Types 316

Figure 5-80. M2DAT-DB‘s Run Configuration shortcuts 316

Figure 5-81. UML2SQL2003 Run Configuration Wizard 317

Figure 5-82. Selecting a UML2SQL2003 RunConfiguration 317

Figure 5-83. SQL2003 Shortcut Menu .. 318

Figure 5-84. M2DAT-DB‘s Actions contributed to Eclipse Navigator‘s toolbar 319

Figura A-1. Método de Investigación .. 349

Figura A-2. Fase de Resolución y Validación del Método de Investigación 350

XXVI

Figure B-1. UML simple model rendered in UML concrete syntax (a) and in

MOF abstract syntax (b) ... 359

Figure B-2. Example of Triple Graph Grammar (TGG) rewriting rule 360

Figure B-3. Production rules for PACMAN game: (a) Pac Man movement eating

(b) Pac Man movement without eating ... 361

Figure D-1. Conceptual Data Model for the OMDB Case Study 372

Figure D-2. Annotation Model for the OMDB Case Study 373

Figure D-3. OR Model for the OMDB Case Study (Diagrammer) 374

Figure D-4. OR Model for the OMDB Case Study (improved EMF tree-like

editor) ... 375

XXVII

List of Tables

Table 2-1. OCL Expressions for the mortgage system diagram [374] 66

Table 2-2. Evaluated Features on tools for MDE tasks ... 87

Table 2-3. Frameworks and tools for MDE tasks .. 88

Table 2-4. QVT Implementers... 112

Table 2-5. Evaluated features for model transformation languages 118

Table 2-6. Model Transformation Languages ... 119

Table 2-7. Evaluation criteria for tools supporting Model-Driven Software

Development ... 140

Table 2-8. Tools supportinng Model-Driven Development of Web Information

Systems ... 142

Table 2-9. Tools supporting (Model-Driven) development of (modern) Database

Schemas .. 144

Table 5-1. Common Scenarios for Model-to-Model transformations 271

Table 5-2. Possible Scenarios for Primitive Types mapping in PSM2PSM

transformations ... 290

Introduction

1. Introduction
In this thesis, a technical solution for model-driven development of

Information Systems is proposed.

The first section of this chapter (section 1.1) introduces the motivations that

led to the decision of undertaking this work as well as its main contributions.

Section 1.2 states the main hypothesis and the objectives directly derived from it,

where as section 1.3 describes the context in which this work has been developed,

referring mainly to the research projects. Finally, section 1.4 summarizes the

research method followed and section 1.5 provides with a general overview on the

the rest of this dissertation.

1.1 Problem Statement and Approach

By the end of 2000, a new way of conceiving software development

resulted in a mare magnum of acronyms (MDE, MDSD, MDD, DSL, MIC, etc.)

that served to refer to a number of approaches sharing a common basis: to boost

the role of models and modelling activities at the different steps of the

development cycle. The main feature of the new paradigm, Model-Driven

Engineering (MDE, [41]), was focusing on models rather than in computer

programs. Indeed, MDE is a natural step in the historical tendency of software

engineering towards raising the abstraction level at which software is designed and

developed. Assembly languages gave way to structured programming languages

that yielded to object-orientation and so on.

Notice that, though models have always been considered in software

development, they have been traditionally used as simple documentation, and in

the best case, they have served to generate a reduced skeleton of the final code

(Rational Rose was the perfect example on this line [173]). From this point of

view, models were discarded as soon as the corresponding development phase was

finished, and they were not updated to reflect the changes made in subsequent

models or in the working code.

The landscape has changed drastically with the advent of MDE. MDE

practitioners shift their focus from coding to modelling. There is a swing towards

defining accurate models that capture all the requirements and specifications about

the system to build as well as the platform where it will be deployed. To that end,

high-level models are subsequently refined into low-level models, until their level

of detail is that of the underlying platform. Finally, the working-code for the

32 Juan M. Vara

whole system (and not only a skeleton) is automatically generated from those

models.

However, the only way to get a full return of MDE promises of faster, less

costly software development, was automating any model-driven software

development proposal. This way, automation came as one of the keys of MDE

[21, 134]. As a result, a number of tools for supporting MDE tasks have arisen

during the last years to automate each task related with MDE. Consequently, since

MDE is based on the use of models, one can find tools to define and use new

modelling languages. Because model transformations are the key to bridge those

models, there exist a number of tools or languages for model transformation.

Given that models consistency is essential since now they are the driving force in

the development process, several tools for model checking have appeared, etc.

Notice that each one of these tools aims at providing with generic support for one

concrete task among all the different tasks related with a model-driven

development process, i.e. they focus on a subset of the functionality needed to

implement a model-driven development proposal. For instance, the most

commonly adopted model transformation language, ATL [184], fall in this

category of tools for MDE tasks.

On the other hand, the impact of MDE has given rise to a number of

Model-Driven Software Development (MDSD) methodologies. These

methodologies are based on the definition and use of different modelling

languages (whether general or special-purpose) to model and capture different

parts of the system at different levels of abstraction. As a response, a new group of

tools appeared to support those methodologies: the tools for supporting MDSD

methodologies are software development environments that provide with toolkits

to work with the specific set of interrelated models defined in the corresponding

methodology in order to generate the working-code of a software system. One of

the most recognised tools falling in this category is ArgoUWE [195], a CASE tool

that aimed at implementing the UWE methodology [198].

The efforts that the developers behind those initial MDSD methodologies

have dedicated to build the technical support to automate them have resulted in a

number of isolated tools that provide with ad-hoc solutions. Their closed nature

and the absence of standards when they started to be developed prevented them

from taking advantage from the advances in the field and the capabilities provided

by tools for MDE tasks. For instance, in the absence of model transformation

engines when they were developed, they use to hard-code model transformations

or constraints checking.

Introduction 33

As a result, there is a need for building new tools to support MDSD

methodologies that integrate the functionality provided by the existing tools for

MDE tasks. In other words, tools for MDE tasks have to be used as building

blocks in order to develop an integrated environtment that implements a MDSD

methodology.

How the building of such environment is to be addressed? First, defining a

conceptual architecture that abstracts from technical underpinning; next, mapping

the conceptual architecture to a technical design and finally, providing with a

reference implementation of such technical design.

In this sense, it is worth mentioning that nowadays, the strength of the

MDE paradigm has resulted in a trend towards building this kind of integrated

environtments to support MDSD methodologies. However, when we first

addressed the development of this thesis there were no such type of tools. As it

will be shown in Chapter 2, the trend is quite recent. Indeed, existing tools for

supporting MDSD methodologies that were developed to run in an isolated way

are moving to turn theirselves into integrated and extensible tools like the one that

will be presented in this dissertation.

Besides, the innovative nature of MDE oblies to put special attention on a

set of traditional requirements related with the development of software

engineering tools. Under the light of MDE, extensibility, interoperability and

customization become even more relevant when building the support for a MDSD

methodology.

In fact, a tool supporting a MDSD methodology shall be rather extensible

in order to response to the advent of new advances in the field. For instance, both

definitions of dynamic semantics and formal specifications are gaining acceptance

as a way towards model execution and simulation [319]. Technical support for

these tasks is still rather immature. However, when it is mature enough, a tool

supporting a MDSD methodology should be ready to be extended in order to

support formal specifications of models and attachment of semantics definition.

Besides, if a desired functionality is already implemented in some other

tool, it might be preferable integrating its use in the new tool that will support the

methodology, instead of hard-coding directly such functionality. To that end, the

new tool has to be able of handling models created with the tool supporting the

methodology. Therefore, interoperability becomes a crucial feature to be

supported by tools supporting MDSD methodologies.

As well, although the objective is at automating the whole development

process proposed in the methodology, a customizable process that gives the

34 Juan M. Vara

designer the option of introducing design decisions to drive the development

process at any stage, is also recommended [246]. Hence, we need a way of

introducing support for design decisions without lessening the level of

automation. Apart from the design decisions spread over the models handled along

the process, the only way of introducing design decisions is supporting model-to-

model and model-to-text customizable transformations.

In this context, the thesis presented addresses the specification of a

framework for semi-automatic model-driven development of web Information

Systems. To that end, this thesis will introduce M2DAT (MIDAS MDA Tool), a tool

for MDSD based on the methodological proposals of MIDAS, a model-driven

methodology for Web Information Systems (WIS) development.

As part of this thesis, we will define a conceptual architecture for MDSD

frameworks. It will be an extensible, modular and dynamic architecture that

promotes the integration of new capabilities in the form of new modules or

subsystems and supports introducing desing decisions to drive the embedded

model transformations. As well, a systematic approach to build those modules will

be defined.

Likewise, the conceptual architecture will be mapped to a technical design.

This task implies a set of decisions about which is the best technology for each

task and how it should be used. This way, a set of technological decisions will be

made, like which is the most suitable tool for implementing the new modelling

languages; the most convenient approach to develop the transformations that have

to bridge those languages; the most convenient model transformation engine

among those following the selected approach, etc. To that end, a review of

existing technology will be made according to a set of criteria defined to fulfil the

requirements of the planned framework (extensibility, interoperability,

customizable transformations, etc.). As a result, a selection of technology will be

obtained. It will identify the component that will provide with support for each

specific task and the design decisions that will drive the mapping between

conceptual and technical design.

Finally, a reference implementation will be provided to prove the

feasibility of the proposal and show that it can be used in practice [95]. In

particular, one of the modules of M2DAT will be developed. The module for

model-driven development of modern database schemas, M2DAT-DB (MIDAS

MDA Tool for DataBases) will support the development of Object-Relational and

XML Schemas DBs. The construction of M2DAT-DB will serve to show that

both, the conceptual and technical design of M2DAT, as well as the design

Introduction 35

decisions and the development process defined, are suitable for implementing

MDSD proposals. In fact, M2DAT-DB bundles a wide range of model

transformation types (vertical, horizontal, PIM2PSM, PSM2PSM, PSM2CODE,

etc.) as well as the rest of tasks that need to be automated when implementing a

MDSD methodology (definition of abstract and concrete syntax for DSLs,

graphical editors, models validators, etc.)

1.2 Hypothesis and Objectives

In the following, the main hypotheses in this thesis as well as the objectives

derived from it are put forward.

The hypothesis formulated in this dissertation is that ―it is feasible to

provide with a technical solution for the construction of a framework supporting

semi-automatic model-driven development of Web Information systems using

existing tools and components in the context of MDE‖

Hence, the main objective of this thesis, directly derived from the

hypothesis, is: ―to provide with a technical solution to build a framework for

semi-automatic model-driven development of Web Information Systems using

existing tools and components in the context of MDE‖

This objective is broke down into a set of partial objectives:

O1. Analysis and evaluation of existing technologies (tools for MDE tasks) in

order to identify the most suitable to build a framework for model-driven

development of WIS. According to the specific tasks that building such a

farmework entails, we can split this objective as follows:

O1.1. Analysis and evaluation of (meta)modelling tools.

O1.2. Analysis and evaluation of existing model-to-model

transformation engines, stressing support for introducing design

decisions in the mapping process.

O1.3. Analysis and evaluation of model-to-text transformation engines

(also known as code generators).

O1.4. Analysis and evaluation of tools supporting the rest of specific

tasks in MDE contexts, such as graphical/textual editors‘

development or constraints checkers for models.

O2. Analysis and evaluation of existing frameworks supporting model-driven

software development.

36 Juan M. Vara

O2.1. Analysis and evaluation of existing frameworks for model-driven

development of Web Information Systems.

O2.2. Analysis and evaluation of existing frameworks for model-driven

development of modern database schemas (object-relational and

XML).

O3. Specification of the conceptual architecture of M2DAT framework.

O4. Selection of the technologies to be used for M2DAT.

O5. Specification of the technical design of M2DAT.

O6. Specification of the development process for each M2DAT module.

O7. Validation of the technical design of M2DAT. To that end, two main sub-

objectives are identified:

O7.1. Construction of one of M2DAT‘s modules to achieve a proof of

concept for the proposal (conceptual architecture and technical

design).

O7.2. Development of a set of case studies using M2DAT-DB.

1.3 Research Context

All the works of the research group in which the Ph.D. candidate is

integrated, as well as this thesis itself, spin around a common objective: the

specification of MIDAS [1, 104, 105, 121, 211, 355, 366], that provides with an

architecture-centric methodological framework (ACMDA in fact) for model-driven

development of Web Information Systems, following a Service Oriented

approach. The current version of MIDAS architecture is shown in Figure 1-1

Introduction 37

Figure 1-1. MIDAS Architecture overview

This models architecture is based on the MDA principles [264] and is

defined upon a multidimensional basis that spreads through several abstraction

levels and concerns of the system development. For each dimension or

development concern, the models are considered together with the transformation

rules between models and the influence of each model on the rest. As mentioned,

MIDAS architecture can be considered from different dimensions:

 Vertical dimension. This one comes directly from the proposal of MDA

defining three abstraction levels: Computation Independent Models (CIM),

Platform Independent Models (PIM) and Platform Specific Models (PSM).

This way, MIDAS moves down from the concepts associated to the problem

domain gathered in the CIM models to the system representation according to

specific features of the targeted platform by means of PSM models.

38 Juan M. Vara

 Core of the models architecture. Since the architecture plays a guiding role,

its models make up the core of the development process. Indeed, the

architecture specifies features affecting not only one aspect of the system but

all of them.

 Inner concentric layer. The models in this layer are organized according to

the main concerns traditionally involved in the development of any

Information System. This comprises the modelling of the Content, the

Behaviour and the Interface, such as the hypertext modelling in Web

applications.

 External layers. Advances in information technology have given rise to

considering new aspects when developing information systems, such as the

Semantics, related with the use of ontologies. These are included in MIDAS

as orthogonal aspects for which a new set of models is defined.

 Tool – M2DAT. Finally, in order to implement the MIDAS methodological

proposal, an extensible and interoperable MDSD framework, so-called

M2DAT (MIDAS MDA Tool) has to be developed, providing support for

each model comprised in the models architecture of MIDAS.

In the scope of MIDAS four Ph.D. theses have been previously developed.

The most recents being the ones from Dr. César Acuña, which focuses on the

semantics concern of MIDAS and the one from Dr. Valeria De Castro that focuses

on the behaviour concern. Besides, apart form the present thesis, there are three

more in progress. In particular, the thesis of Marcos Lopez is on its final stage. It

tackles the development of Software Architectures from a Service-Oriented

perspective and using a Model-Driven approach. The thesis of Veronica Bollati

focuses on the definition of a common metamodel for model transformation

languages. Finally, Elisa Herrmann‘s thesis is focused on the improvement of

code generation mechanisms in the framework of MIDAS

On its turn, the last point from the description of MIDAS architecture will

be tackled in this thesis. To that end, the present thesis will address the definition

and design of the technical solution to automate MIDAS methodology.

Notice that the development of the technological support for MIDAS will

make the most of the aspects separation that offers MIDAS architecture. Indeed,

MIDAS architecture can be shown as a methodological approach composed of

small methods offering solutions for specific problems or tasks, such as hypertext

or database development. To that end, each method proposes a set of interrelated

models. Those methods are combined and integrated to give rise to the final result:

the information system.

Introduction 39

Accordingly, M2DAT development will be addressed as a set of isolated

subsystems providing with similar functionalities for a set of interrelated models.

Such subsystems or modules will be later integrated by means of model

transformation and model weaving techniques. Besides, MIDAS‘ modular

architecture is devised to promote extensibility of the framework by inclusion of

new concerns. Accordingly, the supporting framework, M2DAT, has to be also

open to integrate support for the new concerns. Hence, extensibility is a must for

M2DAT.

Furthermore, as Figure 1-1 shows, the M2DAT framework will act as the

binding force that connects the different methods that compose MIDAS. Hence,

interoperability is also mandatory for M2DAT.

In the end, the present thesis will serve as building basis for other research

works focused on covering other aspects of MIDAS architecture. To that end, this

thesis will perform a study of existing technology to choose the most convenient

to address each task. As well, the way they have to be integrated to conform a

technical solution to implement any new method incorporated in MIDAS will be

specified. For instance, people working on the semantics concern will use the

technical solution specified in this thesis to develop a set of DSLs for modelling

the semantics of the information system. To that purpose, they will follow the

techniques described here and will use the technical components appointed for

each task. Besides, because of its interoperable nature, M2DAT will provide with

immediate integration of the models comprised in the new method with those from

the already implemented methods.

1.3.1 Research Projects and Stages

Throughout the development of this thesis, the Ph.D. candidate has done

two research stages (see Figure 1-2). During the first one, he spent three months in

the ALARCOS group from the University of Castilla-La Mancha (UCLM),

working under the supervision of Dr. Francisco Ruiz in the field of CASE tools

for MDA. The second one was a four-months stage in Nantes, where integrated in

the ATLAS group, led by Professor Jean Bézivin, the Ph.D. candidate worked

mainly on the studying ot the ATL language, the use of weaving models to

introduce design decisions in model transformations and the automation of model

migration by means of model-driven tecniques.

40 Juan M. Vara

Figure 1-2. Ph.D. Thesis Research Context

Besides, along this period, the Ph.D. candidate, integrated in the Kybele

research group from the Rey Juan Carlos University, has worked in a series of

research projects. In particular, the work undertaken for this dissertation has been

framed mainly in three interrelated projects: DAWIS, EDAD and GOLD.

DAWIS [TIC 2002-04050-C02-01], funded by Ministry of Science and

Technology, was a coordinated project joint with the Technical University of

Madrid between 2002 and 2005. It was focused on the systematic and semi-

automatic development of Web portals providing integrated access to multiple

digital libraries. The tasks of the Ph.D. candidate lied on the construction of

bridges between different storage formats and the use of XML DBs for file

management.

The proposals of DAWIS were implemented in, EDAD [07T/0056/2003 1]

a project co-financed by the Regional Government of Madrid and the European

Community that evolved during the 2003 and 2004. In the context of this project,

the Ph.D. candidate worked on the construction of model-driven tools for Web

Services and XML Schema development.

Finally, the GOLD project [TIN2005-00010], the main frame of this thesis,

was also financed by the Ministry of Science and Technology and took place from

the beginning of 2005 to the end of 2008. The main objective of this project was

the construction of a platform for Web Information Systems development and its

application to a system for medical images management. The Ph.D. candidate has

been responsible for providing with a technical solution extensible and

interoperable to build such platform. To that purpose, he has been involved in the

application of model-driven solutions to all the aspects comprised in the design

and construction of this platform, especially on those related with the development

of model transformations. Hence, the results of the GOLD project comes mainly

from the work undertaken in this thesis.

Introduction 41

The continuation of GOLD is the MODEL-KAOS project, funded by the

Ministry of Science and Technology [TIN2005-00010]. It aims at adapting the

proposals of GOLD accordingly to the Service-Oriented paradigm [285].

As well, the Ph.D. candidate has been involved in the FOMDAS [URJC-

CM-2006-CET-0387] and M-DOS [URJC-CM-2007-CET-1607] projects, co-

funded by the Rey Juan Carlos University and the Regional Government of

Madrid. The former was focused on formalizing part of the metamodels and model

transformations specified in GOLD whereas the latter addressed the adaption of

GOLD proposals to the Service Oriented paradigm.

1.4 Research Method

The different nature of engineering disciplines from that of empiric and

formal disciplines does not allow the direct application of classical research

methods to software engineering research.

The research method followed in this thesis is adapted from the one

proposed in [223] for research in Software Engineering. It is based on the

hypothetical-deductive method of Bunge [67] that is composed of several steps

that, due to its genericity, apply to any kind of research.

As Figure 1-3 shows, the definition of the research method is a step in the

method itself. It is needed since each research process has its own features. Hence

there is no universal method that apply to any research work.

The most important phase of this method is the relosution and validation

phase. Hence, next section provides with a wide overview on this matter.

42 Juan M. Vara

Problem Statement

Hypothesis

Working Method
Definition

Resolution

Validation

Results Analysis and
Conclusions

Thesis Dissertation
Writing

New Problems

Body of Knowledge

D

O

C

U

M

E

N

T

A

T

I

O

N

Problems

Body of Knowledge

Figure 1-3. Research Method

1.4.1 Resolution and Validation Method

The resolution and validation method followed in this thesis is somehow

adapted from the traditional waterfall [300], the Rational Unified Process [177]

and the. Figure 1-4 shows a simplified overview of the method.

Introduction 43

MIDAS-CASE
Body of Knowledge

SPECIFICATION SPECIFICATION

Existing MDE
Works & Technology

MIDAS Methodology

SO
LU

TI
O

N
V

A
LI

D
AT

IO
N

1ST
IT

ER
AT

IO
N

Resolution

Validation

MIDAS-CASE
Requirements

M2DAT
Conceptual
Architecture

DESIGN / SELECTION
of TECHNOLOGY

2N
D

IT
ER

AT
IO

N

TESTING

Case Studies

CONSTRUCTION

MIDAS-CASE
Prototypes

MIDAS-CASE
Architecture

DESIGN

Case Studies

TESTING

M2DAT-DB

CONSTRUCTION

M2DAT
Technical

Design

PROOF
of

CONCEPT

Figure 1-4. Resolution and Validation phase on the research method

In essence, two big iterations can be identified. In turn, these were

composed of several iterations each one. A brief description of the work carried

out in each iteration follows.

1.4.2 First Iteration: MIDAS-CASE development

During the specification phase of the first iteration, the existing works

spinning around CASE tools were reviewed along with the MIDAS methodology.

The aim was at identifying, on the one hand, the needs related with supporting

MIDAS and on the other hand, to identify if existing tools could fit those needs.

Such review resulted in the decision of building a new framework to support the

graphical representation of all the models comprised in MIDAS, the automatic

mapping between them and the automatic code generation from those models.

Moreover, the use of an XML DB repository for model management was planned.

In addition, two desired features were identified in order to support MIDAS open

nature: the new framework had to be easily extensible and modular .

The design phase was mainly related with defining the architecture of the

framework according to the requirements stated during the specification phase.

Besides, the technical components to be used were identified and the development

44 Juan M. Vara

process to follow in order to build each module was defined. The main output of

this phase was MIDAS-CASE architecture. It merged the conceptual description

with the technical decisions.

To validate the result of the design phase, two prototypes were built during

the construction phase: MIDAS-CASE4WS and MIDAS-CASE4XS supported

the modelling of Web Services, respectively XML Schemas, with extended UML

and the serialization of models into working-code (WSDL and XSD). They

constitute the proof of concept for MIDAS-CASE architecture.

Finally, the testing phase consisted in the development of several case

studies with the prototypes built. Such case studies served to assess on the

feasibility and utility of the proposal in order to improve both the architecture and

the development process for building MIDAS-CASE modules.

Note that each step on the process provides with continuous feedback over

the previous ones. For instance, the findings gathered during the construction of

MIDAS-CASE prototypes influenced the design phase in order to refine MIDAS-

CASE architecture.

1.4.3 Second Iteration: M2DAT development

After finishing MIDAS-CASE development a new iteration (in turn

comprised of a number of inner iterations) was undertaken. The objective was to

incorporate and consider advances in the field of MDE and take the most from the

lessons learned during the first iteration in order to solve the main drawbacks

detected in tools supporting methodological proposals for MDSD.

Hence, the specification phase made an exhaustive review on existing

support for MDE tasks ((meta)-modelling tools, model transformation engines,

etc.) as well as the lessons learned from MIDAS-CASE project. A relevant

conclusion was the convenience of separating the definition of the architecture of

the framework at a higher abstraction level from its technical description. Thereby,

the main output of this phase was the definition of the conceptual architecture of

M2DAT, the new version of the tool to support MIDAS methodology, and the

technical knowledge needed to address the design phase.

Lately, in the design phase the conceptual architecture was refined to a

technical design according to the knowledge collected during the reviews from the

specification phase. In contrast with MIDAS-CASE architecture, M2DAT was

built by integrating a number of exiting tools for MDE tasks on top of the Eclipse

Modelling Framework. Working this way, the result is a highly extensible

Introduction 45

framework, capable of integrating new capabilities as long as they are delivered.

Likewise, the development process proposed to address the development of new

modules according to the technical design of M2DAT was defined.

Such design guided the construction of the proof of concept, M2DAT-DB,

during the implementation phase. It served as reference implementation to prove

and validate the technical design of M2DAT.

Finally, a battery of case studies developed with M2DAT-DB during the

testing phase helped on the refinement of the proposal. For instance, the need for

parametrizable model transformations was detected during the development of

those case studies. Consequently, the technical design of M2DAT and the

development process for M2DAT‘s model transformations were modified

according to the emerging need.

1.5 Thesis Outline

Remaining chapters of this thesis are organized as follows:

 Chapter 2 provides with a complete overview on the state of the art. To that

end, section 2.1 introduces the previous concepts related with this work. Next,

three big groups of previous works are reviewed. Existing tools for MDE

tasks are reviewed in section 2.2. A detailed review on model transformation

engines is performed in section 2.3 while section 2.4 reviews existing

frameworks for MDSD of Web Information Systems and modern database

schemas.

 Chapter 3 is focused on presenting the result of the first iteration of the

research method followed, MIDAS-CASE (see section 1.4). To that purpose,

section 3.2 describes MIDAS-CASE architecture and the process proposed to

develop MIDAS-CASE modules. Section 3.3 introduces MIDAS-CASE

prototypes: MIDAS-CASE4WS and MIDAS-CASE4XS. Besides, two case

studies using each module are presented. Finally, section 3.4 puts forward the

main conclusions and lessons learned gathered from developing MIDAS-

CASE.

 Chapter 4 presents the technological proposal acting as the basis of this

thesis: M2DAT conceptual architecture, design decisions to map it to a

technical design and development process for new modules. To that purpose,

section 4.1 brings forward the conceptual architecture of M2DAT, adapted

from that of MIDAS-CASE. In the remaining of the chapter, it is described

how the conceptual architecture is refined into a technical design by selecting

46 Juan M. Vara

the approach and technology for each specific task. The result is a framework

that integrates a number of existing tools for specific MDE tasks using

Eclipse and the Eclipse Modelling Framework as a meeting ground. To that

end, each section provides with a discussion on the different methodlogical

and technical options to address the common tasks related with deploying

model-driven methodologies and reasons out the ones selected to build

M2DAT.

 Chapter 5 addresses the validation of M2DAT specification using M2DAT-

DB, the reference implementation for M2DAT, that serves as proof of

concept. It serves to introduce the way each specific task is to be implemented

in M2DAT according to the methodlogical and technological decisions made

on the previous chapter. Thereby, after providing an overview of M2DAT-DB

functionality, this chapter deals with the way new DSLs are built on M2DAT

(both abstract and concrete syntax). Next, a set of common scenarios that

arose when developing model transformations and the way they are addressed

in the context of M2DAT is described. Finally, ways of using M2DAT

capabilities in a user-friendly manner by extending the Eclipse GUI are

presented.

 Finally, Chapter 6 concludes by summarizing the main contributions of this

thesis. To that purpose, it provides an analysis of the results and reviews the

publications that serve to contrast them both on national and international

forums. Besides, it raises a number of questions for future research and puts

forward the directions to follow for further work.

 In addition, Appendix A provides with a summary of this dissertation in

Spanish; Appendixes B and C provide with more detailed discussions on

graph-based and model-to-text transformations. Appendix D presents the

main Case Study used along this dissertation to show M2DAT-DB‘s

capabilities. Finally, Appendix E collects the bibliographical and electronic

references used along this dissertation and Appendix F summarizes the

acronyms spread over the text.

State of the Art

2. State of the Art
During the last years, the popularity of Model-Driven Engineering (MDE)

has given rise to the advent of many tools and frameworks providing with all or a

part of the functionality needed to deploy MDE proposals. This chapter aims at

providing an overview on them.

In order to make a comparative, the artefacts to compare should own the

same nature. Therefore, we have splitted the state of the art on the following

categories.

 Tools supporting MDE tasks. Here we give a brief overview on the main

tools or projects focused on providing support to automate each task related

with MDE. Thus, this section covers different types of tools, like

metamodelling environments or frameworks for development of graphical

editors. Due to its special relevance, we include a dedicated section for the

Eclipse Modelling Framework (EMF, [66, 161]).

 Model Transformation languages. Since model, transformation is the

cornerstone of MDE [52, 318], we provide with a wide study on existing

model transformation languages. Both model-to-model and model-to-text

transformation languages fall in this category.

 Tools for Model-Driven Development of software. This category groups

together tools supporting model-driven software development for specific

domains. Given the nature of this thesis, we will focus just on tools

supporting methodological proposals for Web Information Systems (WIS)

development and tools supporting model-driven development of (modern, OR

and XML) database schemas.

The conclusions obtained from the state of the art are very relevant since

this thesis is focused on designing and building and MDE framework. In fact, one

of the main tasks to design M2DAT was selecting the right technology. Thus, the

reasoning spread over the following sections will be revisited all along this

document, especially in Chapter 4, where M2DAT technical design is presented.

Finally, before diving into review of exiting works, we would like to define

a set of terminology to use along this dissertation. Please, note that we do not

mean that this is the only one, but one consistent and valid for our purposes.

50 Juan M. Vara

2.1 Previous Concepts

From the very first days of software engineering, researchers have had

problems to make an agreement on a common terminology [63]. The problem gets

worse in front of a fledging topic like Model-Driven Engineering, that is still far

from being an established engineering discipline [319, 346]. Therefore, the

following sections give a set of definitions and overviews for some common terms

related whith Model-Driven Engineering. This is a needed step, since the success

of the proposal has given rise to many buzzwords like metamodelling, domain

specific modelling, concrete or abstract syntax and the like. We need a common

understanding on those terms before diving into the study of existing works in the

field.

2.1.1 MD* Acronyms

Applying Model-Driven techniques to the task of software development is

becoming a hot topic today. As a result, a lot of initiatives and proposals have

emerged on this field during the last years. However, the advent of so many

proposals turned out in a mare magnum of acronyms to refer to the same

approach. Different authors use different names to refer to (almost) the same

thing. Thus, we may talk about Model-Driven Software Development [328]

(MDSD), Model-Driven Development [166] (MDD), Model-Driven Engineering

[41] (MDE), Model-Based Software Engineering [319] (MBSE) and so on. Along

this dissertation we will use the term MDE as a common moniker for all of them,

following the idea gathered in [110].

2.1.2 On CASE Tools, Frameworks and Components

Following Ambler‘s recommendation [15], throughout this dissertation we

will use the term CASE (computer aided system/software engineering) tool to

refer to software-based modelling tools.

In addition, we will refer indistinctively to frameworks and tools and will

use the term component to refer just to a software module that encapsulates some

specific functionality integrated into some framework. For instance, the Eclipse

Modelling Framework (EMF) might be referred as a component of the Eclipse

framework. As well, each EMF subproject, like the Validation Framework would

be a component of EMF, and so on.

State of the Art 51

2.1.3 Models and Metamodels

There is a vast amount of definitions of what a model is (see [209] for a

complete review on them). However, one can extract some common features to all

of them that allow providing with a standard definition: a model is always an

abstraction of something that exists in reality, i.e. details are left out, and it can be

used to produce the reality modelled.

Following this line, a common issue to traditional engineering disciplines

has been the definition of models as a previous step to the construction of the

system. Such models act as the plans for the system under development and

provide a specification that allows describing its structure and behaviour.

Likewise, modelling has been widely adopted as a common practice in Software

Engineering. Software models serve to visualize how the software system should

look, specify its structure and its behaviour, guide its implementation and

document the design decisions that drive the development process. In this sense,

Kleppe et al. [193] provides with a commonly accepted definition of software

model: ―A model is a description of (part of) a system written in a well-defined

language. A well-defined language is a language with well-defined form (syntax),

and meaning (semantics), which is suitable for automated interpretation by a

computer‖.

As it happens with the plan of a building, the model of a software system

has to be precise enough to avoid errors when moving from the specification, i.e.

the plan or the model, to the real system, i.e. the building or the software system.

Thereby, strong efforts have been put to provide with modelling languages and

notations that allows the definition of precise models. A key part on the rigorous

definition of models is the specification of which are the allowed modelling

elements and how they can be combined to create a new model. This knowledge is

collected in a metamodel.

A metamodel is the model of a modelling language [315]. That is, a

metamodel makes statements about what can be expressed in the valid models of a

certain modelling language. Since a metamodel is nothing but another model, it

might be expressed using the same modelling language that it defines. In that case,

expressions in the metamodel are represented in the same language that describes

the metamodel. This metamodel is called reflexive metamodel or

metametamodel. Figure 2-1 depicts the conformance relationships between the

different types of models. Such conformance relationship means that a model is

defined according to the rules collected in another model.

52 Juan M. Vara

c2

Metamodel

Metametamodel

c2

c2

Model

conforms to

(c2)

Figure 2-1. Modelling and Metamodelling

This way, any terminal model conforms to another model known as

metamodel that, in turn, conforms to another model. In addition, the latter

conforms to itself, thus it is called a metametamodel.

For instance, Figure 2-2 shows a simplified metamodel for modelling

relational database schemas and a conforming model.

TABLE

Table_Name : Company

TABLE

Table_Name : CompanyTable_Name : Company

COLUMN

Column_Name: Company_Name

Type: String

COLUMN

Column_Name: Company_Name

Type: String

Column_Name: Company_Name

Type: String

COLUMN

Column_Name: First_Name

Type: String

COLUMN

Column_Name: First_Name

Type: String

Column_Name: First_Name

Type: String

TABLE

Table_Name : Employee

TABLE

Table_Name : EmployeeTable_Name : Employee

COLUMN

Column_Name: Last_Name

Type: String

COLUMN

Column_Name: Last_Name

Type: String

Column_Name: Last_Name

Type: String

ForeignKeyForeignKey

TABLE

Table_Name : Company

TABLE

Table_Name : CompanyTable_name: String

COLUMN

Column_Name: Company_Name

Type: String

COLUMN

Column_Name: Company_Name

Type: String

Column_Name: String

Type: String

ForeignKeyForeignKey

hasColumn

hasFK

re
fe

rs
T

o

conformsTo

Figure 2-2. Simplified Relational Metamodel and Conforming model

State of the Art 53

2.1.4 Concrete Syntax, Abstract Syntax and Semantics

As we have already sketched, the first step towards the definition of a

modelling language is the specification of its metamodel. In essence the

metamodel collects the abstract syntax of the language, that describes the

vocabulary of concepts provided by the language and how they may be combined

to create models. On the other hand, the concrete syntax provide a notation that

facilitates the presentation and construction of models or programs in the

language.

There are two main types of concrete syntax typically used by languages:

textual syntax and visual syntax. That is, a model can be expressed using a textual

notation (like coding a program) or a graphical notation, the most common being

diagrams and tree-like representations. In fact, you can define several concrete

syntax for the same abstract syntax, i.e. the set of concepts collected in a particular

modelling language might be expressed using several notations. For instance, you

may opt for a nodes & edges notation to provide with an overview of the model

and a textual one to provide with a more detailed view.

Along this dissertation the reader might find a distintinction in this line.

Some times we will distinguish between a model and a diagram. The former will

serve to refer to the abstract syntax of the model, while the later will refer to its

concrete (visual) syntax.

By contrast, it is not so clear what the semantics of a modelling language

is. If you have a look at [86] (a milestone in MDE literature) you will find clear

and precise definitions on abstract and concrete syntax. However, they give a

fuzzy definition on semantics. Whenever a MDE practitioner has tried to explain

the term, he has resort to a classical state machine example to argue in favour of

the need of defining the semantics of a language as a way of specifying how each

meta-concept behaves when the model is executed. Another fuzzy way of thinking

in the semantics of a la language is ―that stuff about the (meta)concepts that you

are not able to capture in the (meta)model‖ [25]. But even the theoreticians behind

this statement makes a distinction between static and dynamic semantics and

claim that the former is more or less collected in the abstract syntax while the

latter is still to be addressed. Curiously, they conclude that the best way to express

the semantics of a language is using the state machine abstraction.

In most cases, semantics are not explicitly define and they have to be

derived from the run-time behaviour [111]. In our opinion, you can only define the

semantics of an executable language, one that owns some dynamic component.

For instance, a language to define state machines.

54 Juan M. Vara

In fact, it had been one of the traditional differences between modelling and

programming languages. Since the latter had to be executable, they needed a

semantics definition for each (meta)concept. The other traditional difference had

been associating visual notations with modelling languages and textual notations

to programming languages. As we will show along this dissertation, these

assertions are not valid in the current scene.

2.1.5 Metamodelling Frameworks

In essence, a metamodelling framework is an environment for the

definition of models and metamodels [296].

To that end, it has to supply a precise meta-meta modelling language for

the production of the abstract syntax of the modelling language, plus the

mechanism to define its concrete syntax and generate the tooling for the new

language [2]. That is, from the specification of the modelling language (both the

abstract and concrete syntaxes), the framework has to be able to generate (or at

least, provide the way to do it) complete editors for creation of models using the

new modelling language. As well, it has to support models persistence and

retrieveing.

Traditionally, these editors have been graphical editors following the nodes

& edges style. However, the use of XML as underlying storage format has

contributed on the rise of tree-like editors. Beside, note that according to previous

sections, the concrete syntax might be expressed in terms of a textual or a visual

notation. Hence, the generation of textual editors for modelling languages is also

acceptable. In fact, it is gaining acceptance nowadays as a way towards easing the

definition of very precise models.

2.1.6 Model Transformation

Even with a meta-model in hand, a graphical modelling tool is little better

than a fancy drawing tool if we cannot automate the translation of these models

into code, documentation or analysis.

Working with multiple, interrelated models requires significant effort to

accomplish some tasks related with model management, such as refinement,

consistency checking, refactoring, etc. Many of these activities can be performed

as automated processes, which take one or more source models as input and

produce one or more target models as output, following a set of transformation

rules [356]. We refer to this process as model transformation [320].

State of the Art 55

In the MDE literature we can find several definitions of what model

transformations are:

 The MDA Guide [246] gives a definition of model transformation: "Model

transformation is the process of converting one model to another model of the

same system".

 Kleppe et al. defines model transformation as "automatic generation of the

target model from a source model, which conforms to the transformation

definition" [193].

 Tratt uses the following definition: "A Model Transformation is a program

which mutates one model into another; in other works, something akin to a

compiler" [342]

 Sendall & Kozaczynski define model transformations as ―Automated

processes which take one or more source models as input and produce one or

more target models as output, following a set of transformation rules‖ [320].

Figure 2-3 provides with an overview of the model transformation process.

Model Transformation

(MMa2MMb)

Meta-Model A

(MMa)

source

Meta-Meta-Model

(MMM)

Model B

(Mb)

Model A

(Ma)

Meta-Model B

(MMb)

Model Transformation

Language Meta-Model

(MtMM)

target

conforms to

uses

Model Transformation Engine

Figure 2-3. Overview of Model Transformation process

The root of the process is the metametamodel (MMM). It provides with a

set of basic abstractions that allow defining new metamodels. Next, the source and

target metamodels are defined by instantiating the abstractions provided by the

metametamodel. They are said to conform to the metametamodel. Finally, the

model transformation engine executes the MMa2MMb model transformation to

56 Juan M. Vara

map a model Ma into another model Mb. To do so, MMa2MMb specifies a set of

rules that encodes the relationships between the elements from the MMa and

MMb metamodels. The model transformation is defined at metamodel level, i.e., it

maps elements from the input and output metamodels. So, it can be used to

generate an output model from any set of models conforming to the input

metamodel. In other words, the model transformation program works for any

model defined according to the input metamodel.

Note that if we define the set of rules and constraints that drives the

construction of a model transformation in a metamodel (MtMM), any model

transformation can be expressed as a model conforming to that metamodel.

Expressing model transformations as models (so-called transformation models)

allow manipulating them by means of other transformations. This provides with

several advantages. For instance, any model transformation can be the input or

output of another model transformation. We use a specific term to refer to this

type of model transformations. A Higher Order Transformation (HOT) is a

special kind of model transformation whose input or/and output is a model

transformation. In addition, we may compose transformation models like we

compose any other type of models [51, 373], we can deploy metamodel evolution

and model co-evolution techniques [84], define chains of model transformations

[351], reuse exiting model transformations [309], etc.

In section 2.3, we provide with an overview on current model

transformation approaches plus a brief overview on existing model transformation

languages.

2.1.7 Weaving Models

Model transformation is essentially intended to define executable

operations. Hence it is not always adapted to define and to capture various kinds

of relationships between models elements. However, we often need to establish

and handle these correspondences between the elements of different domains, each

one defined by means of a model. The correspondences may be informal,

incomplete, and preliminary. In many cases they may not be used directly to drive

an executable operation. Model weaving is the process of representing, computing,

and using these initial correspondences. This way, a set of correspondences

between different model elements is represented as a weaving model [35].

A Weaving Model is thus a special kind of model used to establish and

handle the links between models elements. This model stores the links (i.e., the

relationships) between the elements of the (from now on) woven models. We

State of the Art 57

illustrate this idea in Figure 2-4: Mw is a weaving model that captures the

relationships between Ma and Mb (the woven models), denoted by the triple [Mw,

Ma, Mb]. Then, each element of Mw links a set of elements of Ma with a set of

elements of Mb. For instance, the r2 element of Mw defines a relationship between

a2 and a3 from Ma, and b1 from Mb.

Ma

b1

b2

Mb

b1

b2

Weaving Model
Mw

Figure 2-4. Model Weaving Overview

In the context of MDE, weaving models might help to implement

separation of concerns [286]. Instead of using huge models comprising all the

aspects of the system, it is more convenient to define a set of more manageable

models, each one focused on modelling one aspect of the system. Them, the

connections between those models can be specified using a weaving model.

In addition, the use of a weaving model to collect the relationships between

the elements of source and target metamodels may help to develop the

corresponding model transformation. Furthermore, if we express the relationships

between the elements of two metamodels as a set of links contained in a weaving

model, we are capable of using the information provided by that model to generate

the program (the model transformation) that supports the transformation from one

to another. For instance, in [356] we proposed a matching process based on

cumulative weaving to generate automatically model transformations.

2.1.8 Code Generation

So far we have looked at software models as the plans of the system under

development. However, we need a way to translate the model into the code that

implements the system. This is done by code generators. In essence, the code

generation process maps the specification of the system, collected in the software

model, to a set of executables, undestable by execution platforms.

58 Juan M. Vara

In some sense, code generation is similar to programs compilation where a

tree-walker visits each node in the AST (Abstract Syntax Tree), to build smaller

components and assemble them into larger components [140]. Likewise, a code

generator navigates the model while it generates the code that implements each

concept in the model.

A well-accepted approach is to collect all the infrastructure into a set of

base classes and then have the user-viewed class inherit of them [140]. For

instance, this is the case of the Eclipse Modelling Framework (see section 2.2.6),

which provides with a complete framework of class libraries based on the model-

view-controller deign pattern [148] for model handling, storing, editing, etc. Then,

EMF generated code uses this classes directly and you may opt for using the

default implementation, based on the definition of JAVA Interfaces, or modify it

as needed by extending such interfaces.

2.1.9 Domain-Specific Modelling

Domain-specific languages (DSLs) are languages tailored to a specific

application domain. They offer substantial gains in expressiveness and ease of use

compared with general-purpose programming languages in their domain of

application [241]. Indeed, like high-level programming languages rise abstraction

higher from assembly language, DSLs rise abstraction another step higher.

So far, there is no paradigm that allows representing any type of problem in

such a way that the solution could be automatically generated from the

specification of the problem. Each domain has a set on inherent features that

distinguish it from the others and that has to be considered when specifying the

problem. Hence, there is a need for Domain Specific Modelling (DSM) [187] in

order to provide with a vocabulary for each domain. This way, the problem could

be expressed in a complete and reliable manner in order to automatically generate

ist solution.

We can identify two different trends in the use of DSLs. On the one hand,

we can find DSLs that support higher-level abstractions than general-purpose

modelling languages, and are closer to the problem domain than to the

implementation domain [299]. Such DSLs allow modelers to perceive themselves

as working directly with domain concepts. On the other hand, we can make a

simile between DSLs and programming languages. A DSL might be shown as the

grammar of the language and a model expressed with such DSL would be a

program written in the corresponding grammar. From such model, a code

State of the Art 59

generator automatically produces the code that implements the modelled program

[138].

This is our point of view, we argue in favour of DSLs for platform-specific

modelling, using them in a way similar to programming. That is, we rise one point

the level of abstraction, good for programmers/developers but not enough for

business analysts since the result is still too technical. For those non-IT

stakeholders we provide with a higher abstraction level by means of platform-

independent modelling. Then, we develop model transformations to translate

their human-understandable designs to technical designs. In addition, since the

translation or mapping process lend some space to decision-making when moving

from the human to the IT technical space, we provide with a way to make them in

the form of annotations. Note that these annotations are to be made by the

developers, probably assisted by the business analysts, since they do not have to

be aware of technical concerns. Finally,

It is worth mentioning that, though there is a trend towards using textual

syntaxes for Domain Specific Modelling (DSM) [187], the authors were thinking

mainly in graphical modelling languages when they invent the term. In Steven

Kelly‘s words [190] ―when we were looking for a name (…) DSL was clearly

similar, but we needed to distinguish what was different: we were talking about

graphical modelling languages‖. However, DSM is not just about attaching visual

syntaxes to programming languages. This is mainly related with external DSLs.

But you might use a DSL also to rise the abstraction level when coding, or at least,

to ease the task [138].

2.1.10 What Model-Driven Engineering is

After reviewing the concepts that forms the basis of MDE, here we focus

on explaining how they combine to constitute a new software development

paradigm.

So far, Software Engineering has been tradidionally identified with

programming tasks, what partially explains why it has been conceived as a minor

discipline when compared with other engineering disciplines. The rest of

engineers, like civil, agronomist, mining or aeronautic are responsible for making

a design of the system prior to its construction. In fact, they are not the ones that

effectively build the system. They just supervise the development process. A

similar approach has to be brought to software engineering. To that end, there is a

need for raising the abstraction level.

60 Juan M. Vara

The Model Driven Engineering (MDE) paradigm [41, 131, 143, 166, 316,

328, 368] is a new trend in software engineering whose main proposal is to focus

on models rather than in computer programs. MDE is a natural step in the

historical tendency of software engineering towards raising the abstraction level at

which software is designed and developed. Assembly languages gave way to

structured programming languages that yielded to object-orientation and so on.

Appart from raising the level of abstraction, MDE aims at increasing the

level of automation in software development. To that purpose, the idea promoted

by MDE is using models that specify the software system at different levels of

abstraction. This way, higher-level models are transformed into lower-level

models until the model can be made executable using either code generation or

model interpretation. The increase of automation comes mainly from the fact that

the step from one model to the following is performed by using executable model

transformations.

MDE has been applied in different contexts, resulting in a vast amount of

model-driven methodologies for software development that covers almost every

field of software engineering, from Web Engineering to real-time systems,

database development, etc. All these proposals consist of a development process, a

set of (meta-)models handled along that process and a set of mappings between

them. The mappings between models play a very important role since the process

proposed is always a continuous development process, which according to the

MDE principles consider the models as the prime actors. As Figure 2-5 shows,

each step of this common process consists basically on the generation of an output

model starting from one or more input models over which the mapping rules are

applied. In the remaining steps of the process, this output model acts as one of the

input models. Therefore, the process could be summed up as the sequence of

model transformations that have to be carried out in order to obtain the different

models defined in the process, until the last one, that is, the working code, is

generated − notice that the working code is no more than another model, this one

with the lower abstraction level.

State of the Art 61

STEP - N STEP - N + 1

FinancialTransactionBase

DisplayStatus

CreationData

FinancialTransactionConsumerData

1 11

+displayStatus

1

+creationData

11

FinancialTransactionData

FinancialTransaction

Note

FinancialTransactionExtended

0..1

*

0..1

+note*

CurrencyAmount

FinancialTransactionTypeCode

<<enumeration>>

PAYMENT

FUNDS_TRANSFER

FinancialTransactionSpecification

0..1

1

0..1

+specification1

0..11 0..1

+amount

1

+transactionType

11

ProcessingData

1 11

+processingData

1

ProcessingStatus

0..1

1

0..1

+status 1

ProcessingStep

0..1

*

0..1

+previousStep

{ordered}
*

+status

0..1

1

0..1

1

FinancialTransactionBase

DisplayStatus

CreationData

FinancialTransactionConsumerData

1 11

+displayStatus

1

+creationData

11

FinancialTransactionData

FinancialTransaction

Note

FinancialTransactionExtended

0..1

*

0..1

+note*

CurrencyAmount

FinancialTransactionTypeCode

<<enumeration>>

PAYMENT

FUNDS_TRANSFER

FinancialTransactionSpecification

0..1

1

0..1

+specification1

0..11 0..1

+amount

1

+transactionType

11

ProcessingData

1 11

+processingData

1

ProcessingStatus

0..1

1

0..1

+status 1

ProcessingStep

0..1

*

0..1

+previousStep

{ordered}
*

+status

0..1

1

0..1

1

Figure 2-5. Simplified overview of MDE

2.1.11 Model-Driven Architecture

The principles of MDE emerged as a generalization of the Model Driven

Architecture (MDA) [143, 157, 193, 238, 239, 246], proposed in 2001 by the

Object Management Group (OMG). Indeed, Favre [131] states that MDA is a

specific encarnation of MDE.

MDA is a framework for software development aligned with MDE, whose

main characteristics are the definition of models as first class elements for the

design and implementation of systems, and the definition of mappings between

those models, which allow such transformations to be automated.

MDA considers three big groups of models according to its abstraction

level. System requirements are modelled by Computer Independent Models

(CIMs). Platform Independent Models (PIMs) allow modelling system

functionality, without taking into account any specific platform. Finally,

specifications described in the PIMs are adapted to the specific platforms by

means of Platform Specific Models (PSMs) from which the code is automatically

generated.

Besides, the OMG proposes a set of standards to put MDA to work (some

of them, like the UML existed before the advent of MDA). In fact, some

recognised authors argue that MDA is MDE with OMG standards [139].

In the following, we summarize them since they are probably the main

contribution of OMG to MDE, apart from the definition of the different

abstraction levels.

2.1.11.1 MOF

The Meta-Object Facility (MOF) [265] serves as the metadata management

foundation for MDA. MOF provides a standard for specifying metamodels, i.e. a

meta-metamodel, which is the root of the metamodelling hierarchy shown in

Figure 2-6. MOF is defined at level M3 and serves to define models at M2 level.

62 Juan M. Vara

Note also that MOF is reflective, thus it is defined in terms of MOF itself. Next,

the models at M2 are theirselves metamodels for the models defined at M1 that

still own some level of abstraction regarding the objects layer situated at M0.

An UML model

QVT

Metamodel

Meta-Metamodel

MOF

Another application of

the UML model

An application of

the UML model

CWM

Metamodel

UML

Metamodel

conforms to

Figure 2-6. OMG four layered metamodel architecture

The relevant part of this architecture is the ability to navigate from one

element (it does not matter if it is a class, an object or whatever) to its

corresponding metaobject. This is shown in Figure 2-7. At M3 level, the MOF

specification states that any model conforming to MOF is composed of two types

of objects: classes and associations. At M2 level, both types of constructions

might be used to define any desired model conforming to these statements. For

instance, the UML metamodel is in its turn a MOF conforming model. It states

that any UML model will contain classes, which in turn contain properties. This is

stated by the composition association that connect both metaobjects. At M1 level,

a simple UML model contains one class (Customer) that contains one property

(name). Finally, the UML model admits infinite instantiations, one particular

example is shown at level M0.

State of the Art 63

source

target

Class Association

Class Property

Customer

name : String

MOF

UML

My_Customer::Customer

name : John Doe

UML

Model

Instantiation

of UML model

metaobject conforms to

Figure 2-7. Applying the OMG four layered metamodel architecture

2.1.11.2 UML

The Unified Modelling Language (UML, [270]) is a widely recognised and

adopted modelling language. It is a general-purpose language (GPL) specially

intended for modelling object-oriented software systems. The basic building block

of UML is a diagram. There are several types of diagrams for specific purposes

(e.g., time diagrams) and a few for generic use (e.g., class diagrams).

Besides, it defines a lightweight extension mechanism so-called UML

profile. A UML profile is a modelling package containing modelling elements

customized for a specific purpose or domain. It combines stereotypes, tagged

values, and constraints in order to define a variation of UML for a specific

purpose. In other words, a UML profile defines new types of modelling elements

by extending existing ones. For instance, the (simplistic) UML profile for XML

Schema modelling shown at left-hand side of Figure 2-8 provides with three new

types of modelling elements: the XML Complex Type and XML Element classes

and the Complex Content association. Besides, modelling the type of compositor

used to define the Complex Content of the Complex Type is supported by adding

a Compositor tagged value. Likewise, the namespace of the Complex Type is

64 Juan M. Vara

modelled with the nameSpace tagged value. The result may be considered as a

new metamodel at M2 level that can be used to define new models at M1 level,

like the one shown at left-hand side of Figure 2-8. It models an XML Schema

containing just a Complex Type (Person_Type) that in turn contains one XML

Element (NIF).

nameSpace: String

<< stereotype >>
XML Complex Type

Class

<< metaclass >>

Association

<< metaclass >>

<< stereotype >>
XML Element

<<prof ile>>

XMLSchema

<< XML Complex Type >>
Person_Type

<< XML Element >>
NIF

nameSpace: KYB_MYXSD

<<XML Complex Content>>

MySchema

compositor: CompositorType

<< stereotype >>
XML Complex Content

All
Choice
Sequence

<< enumeration >>
CompositorType

compositor: Sequence

Figure 2-8. Defining and using an UML profile.

2.1.11.3 XMI

XML Metadata Interchange (XMI, [275]) is an XML-based standard for

sharing meta-data. It can be used to represent ordinary data as well. That is, XMI

might be used for both serializing objects in XML documents and to generate

schemas from models.

Thereby, XMI includes several artefacts. The most relevant being:

 A set of rules to generate XML Schemas for MOF based metamodels.

 A Schema for UML

 A Schema for MOF

 A set of rules to generate XML documents from instances of MOF models.

In fact, since UML is the most popular MOF model, the XMI Schema for

UML (also known as XMI[UML]) has been the most commonly adopted. Figure

2-9 shows the relation between UML and XMI. Any MOF model, like the UML

metamodel, is persisted in a XMI Schema. Likewise, any UML model is persisted

in an XML document conforming to the above Schema.

State of the Art 65

Meta-Metamodel

MOF conforms to

XMI Schema

(UML)

XMI

Document

UML

Metamodel

An UML model (m)

Figure 2-9. Using XMI

Unfortunately, nowadays, the XMI documents generated by most tools

present some differences from the XMI standard and are seldom interchangeable

[70]. Indeed, although it is widely accepted as storage format, the whole point of

XMI is interoperability. It is quite rare to find two different tools using the same

XMI version [188].

The problem is well-stated by Uhl in [344]: ―(…) XMI can come in handy

for integration if you are lucky enough to find two compliant tools with matching

XMI versions and metamodels or, alternatively, if you are XSLT-literate. Of

course, exchange is limited to the model‘s abstract syntax because Gentleware, the

one company that participated in the UML diagram interchange standard, remains

the only supporter‖.

In the end, the only way of solving the interoperability problem that has

proved itself to be useful and efficient is the use of model transformations [55,

113].

2.1.11.4 OCL

The Object-Constraint Language (OCL, [268]) is a declarative language to

define expressions that apply to any MOF conforming model, like the UML

metamodel, or any UML conforming model. Though it was conceived as a

constraint definition language, OCL might be considered as a general-purpose

query language. Indeed, the most of the existing model transformation engines use

OCL as navigation language or, at least, an OCL-like language.

66 Juan M. Vara

Besides, OCL allows defining invariants, that must hold for the model

elements and pre- and post-conditions for on actions or operations. Working this

way, OCL allows adding value to any model.

For instance, Figure 2-10 shows a simple class diagram capturing a

(simplistic) mortgage system taken from [374].

Figure 2-10. The mortgage system expressed in a class diagram

Needles to say, there are some rules that the diagram itself is not capable of

capturing. These are collected in a set of OCL expressions in next to its

description in natural language.

Table 2-1. OCL Expressions for the mortgage system diagram [374]

OCL Expression Meaning

context Mortgage
inv: security.owner = borrower

A person may have a mortgage on a house
only if that house is owned by him- or
herself; one cannot obtain a mortgage on
the house of one's neighbor or friend

context Mortgage
inv: startDate < endDate

The start date for any mortgage must be
before the end date.

context Person
inv: Person::allInstances()->isUnique(socSecNr)

The social security number of all persons
must be unique.

2.1.11.5 QVT

The MOF Query/View/Transformation (QVT, [273]) is the OMG standard

for model transformations. It allows defining three types of constructions:

State of the Art 67

 A Query is an expression evaluated over a model that results in a set of

objects fulfilling the restriction imposed by the query. It results in one or more

instances of types defined in the source model, or defined by the query

language. Indeed, OCL is an example of a query language and is actually used

in QVT.

 A view is a model which is completely derived from another model (the base

model). A view cannot be modified separately from the model from which it

is derived. Changes to the base model cause corresponding changes to the

view. A query is a restricted kind of view

 Finally, a transformation generates a target model from a source model.

Transformations take a model as input and update it or create a new model. In

fact, a view is a restricted kind of transformation in which the target model

cannot be modified independently of the source model. If a view is editable,

the corresponding transformation must be bidirectional in order to reflect the

changes back to the source model.

The QVT specification provides with three different languages:

 The QVT Relations is a declarative transformation language that allows

defining the relations that must hold between the elements of the source and

target model.

 The QVT Core language is a simpler though equally expressive declarative

language. Indeed, the Relations language might be expressed in terms of the

Core language but the latter does not provide with automatic traceability

support.

 Finally, the QVT Operational-Mapping language is an imperative language

that may be used to extend the Relations language with imperative

constructions.

Due to the relevance of model transformations as thriving force of any

model-driven development process, QVT exiting implementations will be widely

covered in section 2.3.3.11.

2.1.12 Eclipse

We could look at Eclipse as a framework to build Integrated Development

Environments (IDEs), i.e. it is an IDE whose architecture was designed to be used

as underlying infrastructure to develop new IDEs for new languages or models. To

that end, its infrastructure provides with extension points to plug the new IDEs,

so-called plug-ins, in the Eclipse IDE. Because of its extensibility and industrial-

68 Juan M. Vara

quality user interface, Eclipse has been widely adopted as underlying platform for

every type of sotware engineering supporting tools.

This way, Eclipse platform is a kernel so-called Platform Runtime plus a

set of plug-ins. Apart from such kernel, everything in Eclipse is a plug-in. The

Platform Runtime is in charge of discovering, loading and executing the different

available plug-ins at run-time. Once Eclipse is launched, the platform runtime

offers an integrated IDE composed by the available plug-ins. Thus, Eclipse is a

kind of puzzle where each plug-in constitutes a piece that is identified and

assembled with the rest. New functionalities are encoded in new plug-ins that

connects with the existing ones.

Though all the plug-ins are treated equivalent, it is worth to pay special

attention on two of them shown in Figure 2-11:

Platform Run-Time

Workspace Workbench

My plug-in

Figure 2-11. Eclipse Workspace and Workbench plug-ins

 The user interface rests on the Workbench plug-in. It defines a series of

extension-points to extend the user interface as needed. For instance, we may

add new toolbars; create new views (a view defines the layout of the

workbench) or record notification requests for any event. If you need to build

an XML editor, you will develop a plug-in that extends the classes that

implements the Workspace. This way, you might color the text in a special

way and so on.

 On the other hand, the Workspace supports the managemet of the resources

displayed on the IDE, such as projects, folders or individual files. The

workspace contains a number of projects that has a one-to-one

correspondence with a folder on the operating file system. Each resource is

State of the Art 69

represented as an object of the workspace. Thus, there are classes to abstract

them and one can extend and customize those classes in order to get files,

folders or projects with special features.

The different Eclipse plug-ins are grouped into Eclipse projects, that

collects all the (sub-)projects focused on development of tools focused on the

same topics or purposes. In the following we give a brief overview on the Eclipse

Modelling Project, that aims at grouping together all the MDE technologies

developed atop of Eclipse.

2.1.12.1 The Eclipse Modelling Project

In general, organizations that adopt standards do not use to follow the

standard as-is. The preferred way of working is to follow the reference

implementation. Within the scope of MDE, the OMG standards presented so far

provide the language definitions needed to achieve the goals of a metamodelling

framework. However, the OMG does not provide a reference implementation and

when looking into the details, the language definitions are partially incomplete,

inaccurate, or ambiguous.

In absence of such reference implementation, practitioners tend to agree on

a de facto standard upon which their proposals are built. Eclipse, and more

specifically, EMF has been playing this role in the context of MDE. The advent of

the Eclipse modelling Project (EMP) has contributed to bridge the gap between

different modelling tools by providing a set of frameworks, tools and reference

implementations for standards that help on the development of support for any

methodological proposal based on MDE principles.

The Eclipse Modelling project is logically organized into projects that

provide the following capabilities: abstract syntax development, concrete syntax

development, model-to-model transformation, and model-to-text transformation.

A single project, the Model Development Tools (MDT) project, is dedicated to the

support of industry-standard models. Another project within the Modelling project

focuses on research in generative modelling technologies.

Figure 2-12 gives an overview of the structure of the modelling project and

its functional areas taken from [161]. As you can see, the Eclipse Modelling

Framework is at the center. It provides with abstract syntax-development

capabilities. EMF Query, Validation, and Transformation complement the EMF

core functionality. Teneo and CDO provides with database persistence of model

instances. Surrounding the abstract syntax-development components are model-

transformation technologies. They include both model-to-text (Java Emitter

Templates [JET] and Xpand) and model-to-model (QVT and ATL). However,

70 Juan M. Vara

notice that not all the solution for model-to-model and model-to-text are enclosed

in the ―official‖ Eclipse projects. VIATRA and MOFScript are examples of this

fact. Concrete syntax development can be implemented in the form of graphical

editors or textual editors. To that end, you might use the Graphical Modelling

Framework (GMF) and the Textual Modelling Framework (TMF) respectively.

Finally, a series of orbiting projects and components represent models,

capabilities, and research initiatives available from the Modelling project.

Figure 2-12. The Eclipse Modelling Project

2.1.12.2 The Eclipse Modelling Framework

As we just mentioned, all the facilities provided by the EMP are built on

top of a common basis, the Eclipse Modelling Framework (EMF) [66, 161], that

provides with the utils needed to define, edit and handle (meta-)models. Indeed,

the strength of EMF has given rise to a new generation of EMF tools during the

last years. We will present some of them in forthcoming sections. We will

State of the Art 71

itroduce EMF capabilities and how are they to be used for building M2DAT‘s

modules along this dissertation.

After this brief overview of MDE terms, we address the main part of this

Chapter: the State of the Art on technology to support model-driven development

of software.

2.2 Tools supporting MDE tasks

As stated in the introduction of this chapter, the emergence of MDE has

resulted in the advent of a wide set of tools for supporting MDE tasks. Some of

them provides with specific capabilities, mainly modelling and metamodelling

functionality. Others try to integrate all the needed functionality, adding model

transformation engines, code generators and the like. This section studies those

works focusing on exiting metamodelling frameworks and paying a special

attention on EMF, which has contributed decisively to boost the MDE paradigm

[52]. Besides, some examples of tools providing with individual capabilities are

cited.

These tools are grouped together because, in terms of MDE, they are not

general-purpose tools, since they focus on supporting a special functionality, such

as developing textual editors. However, all of them are valid for any DSL. In

contrast with M2DAT, that is built to deal with the set of DSLs proposed in

MIDAS methodology, the following tools are not devised to work with a

particular DSL. They are used to build domain-specific tools. In other words, this

section aims at reviewing the technology that we might use to build M2DAT. The

objective is to be ready to face the selection of technology that will drive the

specification of M2DAT.

Likewise, it is worth mentioning that we will not reference explicitly

diagrammers or pure UML tools like magicDraw, Fujaba, IBM Rational, etc. for

two interrelated reasons:

 We are not interested in working (just) with UML. In M2DAT, UML will be

used with platform-independent modelling purposes, but UML models will

have to be mapped to M2DAT DSL models. The proprietary storage formats

used by those tools, as well as the classical XMI versioning problems (see

section 2.1.11.3) advise against the use of these tools in MDE processes

where different DSLs/metamodels are to be interconnected.

 In addition, we want M2DAT models to be, not only translated into code, but

also validated, weaved, edited with different editors, etc. In particular, we

72 Juan M. Vara

want to be able to handle M2DAT models with other existing and

forthcoming tools. Thus, building M2DAT models with the above-mentioned

type of tools is completely discouraged.

Note also that the aim of this thesis is the specification of an open-source

extensible framework for model-driven development of WIS. Thus, building it in

top of a commercial tool makes no sense. Therefore, we will limit to mention

some of the existing commercial tools, but we will not consider them to build

M2DAT.

Finally, before presenting each reviewed tool, we sketch the evaluation

criteria used to asses them. Examples of evaluation criteria can be found on

existing literature on software engineering [54, 303]. Likewise, there are more

recent focused on evaluating MDE proposals, like [97], focused on Model

Transformation, [99] focused on Bidirectional Transformations, or [361] focused

on Graph Transformations. Here, we have defined one that is structured according

to our needs to build M2DAT.

2.2.1 Evaluation Criteria

We need to have effective criteria to compare existent tools for MDE tasks.

To that end, we would like to evaluate each tool in relation with the follwing set of

features (next to each future, we state the possible values):

 Scope. [Values: Commercial / Academic / Open-source]

One of the main concerns regarding software engineering tools is whether

they are commercial or open-source tools. Since we want M2DAT to be an

open-source tool, there is no sense in using any commercial component to

build it. This way, the first criteria to discard existing tools for MDE tasks will

be their scope. In addition, we will mention if it is an academic tool, just to

provide with some more information.

 Metamodelling. [Values: YES / NO].

The first step towards a new MDE methodological proposal is the definition

of a new modelling language (whether it is a UML profile or a DSL).

Therefore, as part of building M2DAT we need tools supporting the definition

of new metamodels (the metamodel defines the abstract syntax for the new

language, we will talk later about supporting the concrete syntax). Besides,

those tools should provide with the tooling to ―instantiate‖ the metamodel, i.e.

to define terminal models that conform to the new metamodel. Therefore, we

State of the Art 73

need to check which of the reviewed tools offer metamodelling support and

how does it work in order to choose one for M2DAT.

 Model-to-Model Transformations. [Values: YES / NO / Limited]

We have alredy mentioned that model transformations are the cornerstone to

support MDE proposals. In particular, the holy gray of automation is not

feasible without model transformation support. Thus, when evaluating

components to build M2DAT, we need to study whether those components

include facilities to develop model-to-model transformations.

 Model-to-Text Transformations. [Values: YES / NO / Limited]

 This feature complements the previous one. Here we study if the evaluated

component does provide support for model to text transformations, i.e. code

generation capabilities. Besides, we will show that there are a number of

components exclusively focused on model-to-text transformations, like

AndroMDA or the MDWorkbench..

 Validation. [Values: YES / NO / Limited]

A common issue related with MDE tools is the support of models validation

[91]. In spite of the proliferation of methodologies and tools for MDSD, we

have detected that most of them do not include activities and/or features

related to the analysis of the constructed models built or, if they exist, they are

rather weak. These activities are especially important in proposals aligned

with MDE since models are used as the mechanism to carry out the whole

software development process. Thus, errors at initial stages of development

will be reproduced in the subsequent generated code [249]. This can be

avoided by providing support to specify constraints at metamodel level and to

evaluate then on terminal models. We aim at integrating model validation

mechanisms in M2DAT. Therefore, we will study whether each reviewed tool

supports this feature and how it is done.

 Graphical Editors. [Values: YES / NO / Graphical / Textual]

This feature might be stated as supporting the definition oa graphical concrete

syntax for a new modelling languages. A common issue related with MDE

tools is usability. To enhance usability, the tool has to provide with graphical

editors to edit terminal models conforming to previously defined metamodels.

Therefore, we will analyse the support of each tool (if existing) to develop

graphical editors for terminal models. We will not limit to boxes and arrows

editors, we also refer to tree-like editors, like the ones from EMF, or any other

graphical way of defining models. To summarize, here we will study if the

74 Juan M. Vara

tool is able to generate an environment for handling models conforming to a

given metamodel.

 Standardized. [Values: YES / NO].

Here, we are interested on analysing to which extent the tool is aligned with

standards. When we talk about standards in MDE contexts, we are mainly

refererring to OMG standards, like UML, MOF or OCL. For instance, we will

consider if the metamodelling capabilities are based on MOF [265], the

model-to-model transformation is based on QVT [273] or the validation

mechanisms based on OCL [268]. It is worth mentioning that we will consider

not only standards de jure, like MOF, but also its reference implementations

(in case they exist). This way, since Ecore [66] is considered the de facto

standard for metamodelling, we will consider a tool based on Ecore as an

standardized tool.

 Extensibility. [Values: YES / NO / Partially].

Another key issue for us when designing M2DAT is reaching the highest level

of extensibility. We aim at integrating in M2DAT any interesting technical

solution for MDE that arises. To that end, we need to build M2DAT in top of

components that can be extended. Therefore, we will analyse how easy it

results to integrate new functionalities into reviewed tools. Notice that a

number of tools claim to be extendable but when you address the task of

developing the corresponding extension, you realise that it is a rather

challenging task. In this sense, the perfect example of extensible framework is

Eclipse, which was specifically devised to be extended.

 Interoperability. [Values: YES / NO / Partially].

This point is directly related with the previous one. Since we aim at using

M2DAT as a test bench for any new appearance in the field of MDE

components for development of MDE tools, we need it to be highly

interoperable with other tools. So, it has to be built on top of components that

provides with automatic import/export mechanisms for software artefacts

developed with other tools. At worst, we need tools for which building

support for migration of software artefacts can be developed in reasonable

time and manner. The major advance in terms of interoperability for MDE

tools in recent years was the advent of EMF. Since it provides with an

underlying model management framework on top of which MDE tools could

be developed. The rest of tools developed on top of EMF handle models

developed with such tools with no additional effort. We could say tha EMF is

the ―esperanto‖ of MDE tools. Therefore, any tool developed on top of EMF

State of the Art 75

will be judged as highly interoperable. However, running atop of EMF is not

the only way to achieve interoperability. For instance, purely UML-based

tools that use XMI should be also interoperable.

 EMF-based. [Values: YES / NO / TO-DO (it is planned)].

The previous point has clarified why we are interested in evaluating the level

of compliance of any tool for MDE tasks with the EMF framework.

In the following section, we review the main tools for MDE tasks

according to the above-described features that compose our evaluation criteria.

2.2.2 AndroMDA

AndroMDA [17] is a template-based code generator framework from UML

models for J2EE, Spring and .NET platforms. The functionality to provide source

code for a specific platform is collected on a cartridge. A set of cartridges oriented

to the current development kits, like Axis, jBPM, Struts, JSF, Spring or Hibernate

is included by default. In addition, you can develop your own cartridge or modify

an existing one by extending a generic cartridge so-called Meta.

Current release, AndroMDA 3.3, is an open-source and stand-alone tool. At

the beginning of 2007, the authors started to work on a new release (AndroMDA4)

to be integrated into the Eclipse platform. It added metamodelling capabilities,

plus model transformation support (using the ATL language [387]) and visitor-

based code generation (using the MOFScript language [391]). This is why we

place AndroMDA in this category instead of plaging it just in the model-to-text

transformation engines (section 2.3.4). However, AndroMDA4 is on hold and very

experimental since the developer behind (Matthias Bohlen) shifted his focus to

other activities.

To sum up, we may qualify AndroMDA as an open-source framework for

model-to-text transformations. It does not provide support for metamodelling,

model-to-model transformations, model validation or model management. On the

other hand, it is highly extensible since you might develop your own templates.

Besides, it is rather interoperable since works with UML models, though the XMI

versioning problem (see 2.1.11.3) might complex real interoperability. Finally,

EMF compliance is planned, though not supported at the time of writing this

dissertation.

76 Juan M. Vara

2.2.3 ATOM
3

ATOM
3

(A Tool for Multi-formalism and Meta-Modelling, [107]) is a

framework for the definition of multi-view languages that incorporates

mechanisms for syntactic and semantic validation, as well as metrics to evaluate

the quality of a design and trigger re-designs when needed.

Although it is mostly known as a graph-based model transformation

framework, it does provide metamodelling support plus validation facilities.

However, the rules that drive this validation have to be coded as preconditions in

Python, the underlying language or ATOM
3
.

We qualify it as not standardized since it does not follow any OMG

standard. In addition, it owns a low interoperability level since ATOM
3
 models

does not use any common underlying format. Finally, nothing is said in its

documentation about the ability of adding/modifying its functionality.

Theoretical foundations of ATOM
3
 make it a very appealing tool.

However, it seems not to be ready for production settings yet. Some parts of the

documentation are outdated and even the basic example caused several exceptions

and useless warnings. Nevertheless, it is one of the few tools providing with real

graph-based model transformations.

Regarding evaluated features, ATOM
3

is an academic tool that allows

defining new metamodels using the E/R model [82]. From such metamodel, it

provides with a basic graphical editor for conforming models. Besides, it supports

model-to-model but not model-to-text transformation. As mentioned, model

validation is also supported, though not in a user-friendly manner. It does not

follow any of the OMG standards and no information is provided about extension

capabilities. Besides, nothing is said about the ability of importing/exporting

model to/from other tools. Finally, it is not EMF-compliant.

2.2.4 DOME

Domain Modelling Environment (DOME) is an extensible system for

graphically developing, analyzing and transforming models of systems and

software [129]. That is, DOME is a metamodelling framework.

It aims at providing toolsets for newly defined metamodels. To that end,

you have to define a notation using a meta-tooling model called DOME Tool

Specification (DTS) that includes a set of predefined constructions, such as model,

graph, component, port, etc. From that notation, DOME generates the code that

State of the Art 77

implements the desired toolset. DOME provides just basic support for the

definition of the visual concrete syntax.

The definition of restrictions is based on the use of a scripting language

called Alter. Besides, Alter is said to be a way to code model-to-model and model-

to-text transformations in DOME.

In the beginning, the code generated was SmallTalk, the code in which

DOME was developed. From 2003, the whole framework is been re-implemented

in JAVA to support also JAVA generation. Likewise, they plan to add Eclipse-

integration capabilities.

It is worth mentioning that at the moment of writing this dissertation

DOME seems to be abandoned. So far, all the references that we have found

pointing to DOME have turned out to be dangling references

All things considered, DOME supports metamodelling and edition of

conforming models, plus (limited) model-to-text transformations and (limited)

model validation. Nevertheless, coding of complex transformations using the Alter

language is not feasible and there seems to be no way of connecting DOME with

existing model transformation engines. Besides, it does not conform to any

standard and it is not extensible neither interoperable with other tools.

2.2.5 DSL Tools

The DSL Tools from Microsoft [90] is a suite for creating, editing,

visualizing, and using domain-specific models.

To that end, a graphical editor is used to create a domain model using a set

of predefined constructions. From such model, a graphical editor for confoming

models is automatically generated. In addition, it allows defining code generation

templates that takes as input such terminal models.

Nevertheless, there is no support for model-to-model transformation

neither for defining constraints over terminal models. The standardization level is

is nil since it is completely based on proprietary notations and there is no way of

extending the platform.

2.2.6 Eclipse Modelling Framework

We cannot state that the Eclipse Modelling Framework (EMF, [161]) does

or does not provide with specific capabilities, like model-to-model transformation

or code generation.

78 Juan M. Vara

Actually, EMF itself does not provide with these facilities, but as we have

already shown in section 2.1.12.1, the EMP projects collect all these facilities.

Indeed, those projects will be presented as isolated components in the following

sections, since we might use EMF with or without each one of those components

to build M2DAT.

All this given, regarding the target features to evaluate, we can state that

EMF is a metamodelling framework, devised to be extended and providing the

highest interoperability level.

In section 2.1.12.2 we will provided with a detailed insight in EMF

principles since it deserves a special attention due to its widespread adoption as

underlying model management framework. So far, we have just focused on how

EMF behaves regarding the features pointed out in section 2.2.1.

2.2.7 EMFATIC

Emfatic is a language for defining Ecore models [172]. It uses a compact

and human-readable syntax similar to Java. The Emfatic plug-ins supplies an

editor and a parser for the language. They support actions to compile Emfatic

source code into an Ecore model and allow Ecore models to be decompiled into

Emfatic source code (injection/extraction). Emfatic itself builds upon Gymnastic

[153], a framework for jumpstarting text editors for custom Domain Specific

Languages.

Emfatic‘s main functionality is injection/extraction of Ecore from/to textual

specifications. Thus, you can use Emfatic with metamodelling purposes. Instead

of defining en Ecore model, you may prefer defining your metamodel using the

Emfatic language. In fact, some authors argue in favour of textual editors for DSL

against graphical editors [183]. We bet for combining both approaches [368].

Regarding evaluated features, Emfatic just provide with metamodelling

capabilities and generates a textual editor for conforming models. Thus, no

support for model transformations, model validation of graphical edition of

models is provided in Emfatic. Besides, we may qualify it as rather standardized

and interoperable since it is completely based on EMF.

2.2.8 GME

The Generic Modelling Environment (GME, [103, 216]) is a mature and

recognised metamodelling framework that was born before the boom of MDE.

State of the Art 79

GME supports its own metamodelling language to define metamodels

(Paradigms in GME jargon) so-called MetaGME. It is a subset of UML that

includes abstractions like Atom (any model element), Model, Connection

(association), Attribute, etc. Visual syntax is defined by attaching decorator

objects to the concepts included in the metamodel. From the metamodel and the

decorators‘ specification, GME generates an editor for conforming models that

provides with several functionalities, like zooming, undo/redo, etc. Additional

constraints to be checked over terminal models can be added using its own flavour

of OCL.

A very interest feature is the ability to register several versions of the same

metamodel. In some sense, this mitigates the problem of metamodel evolution and

model co-evolution [84]. Model transformations can be attached in GME, by they

have to be developed using C++.

Since GME is based in MS COM, it can be extended using any language

that supports COM, primarily C++ and Visual Basic. Model transformations can

be developed for GME models using the GReAT language [9] that will be

introduced later. Besides, the GReAT language provides with some limited

capabilities to translate models to code but we would not say it supports properly

code generation.

Finally, it is worth mentioning some works that have focused on bridging

GME and EMF:

In [45] the authors use the AMMA (ATLAS Model Management Platform)

tools to that end. Apart from some development problems, like the loss of

graphical data from GME models when they are carried to the EMF world, the

authors point out the complexity of the task. They claim that more advanced MDE

frameworks were needed for this task.

Besides, the GEMS project (Generic Eclipse Modelling System [152]) aims

at bringing the GME metamodelling facilities to EMF in order to support rapid

development of graphical editors. Please, note that it is still an incubation project.

GEMS supports the graphical definition of a metamodel and generates a GEF-

based [250] graphical editor for conforming models. Customization of the editor is

based on a CSS style sheets mechanism. Currently, GEMS support basic

importation of GME metamodels and models into GEMS, but reverse importation

is still to be done.

To summarize, GME is an open-source framework that provides with all

the needed capabilities to build M2DAT except from code generation. It is

80 Juan M. Vara

extensible, but in a quite challenging manner and its models cannot be exported to

other tools, though ongoing work is focused on bridging GME and EMF.

2.2.9 Kermeta

Kermeta is metaprogramming environment that allows defining the

structure and behaviour of (meta) models [175, 329]. It is based on an object-

oriented DSL optimized for metamodel engineering and is fully integrated with

Eclipse, including features such as an interpreter, a debugger, a prototype, an

editor and various import/export transformations.

Its initial purpose was to enable metamodellers to give an operational

semantics to their metamodels but it also works as a model transformation tool as

we will describe in section 2.3.3.5.

A metamodel is defined textually in the Kermeta language. From that

specification, you can generate a Kermeta model and edit it with a typical EMF

reflexive editor or you can translate it to en Ecore model and use all the graphical

capabilities of EMF to edit it. Therefore, since Kermeta metamodels are directly

imported/exported from/to Ecore metamodels, Kermeta can be used as a roundtrip

textual editor for Ecore models. In addition, you can specify the semantics of the

model using the Kermeta language, a DSL that directly maps to the behaviour

model. Moreover, it is possible to transform a Kermeta model, which contains

semantic information into an Ecore model. The semantic is preserved within Ecore

annotations. Once you have defined the dynamic semantics of the metamodel

using Kermeta, you can execute any conforming model.

This approach is interesting because it contains a model-based

representation of semantic information. Yet, it is not possible to create a

customizable textual representation for the model itself. The main reason to

include Kermeta in this discussion is because it allows to describe the semantics of

a modelling language following a model-driven approach.

All this given, we may conclude that Kermeta is to be used to enhance the

capabilities of EMF as a metamodelling framework by adding semantics to

defined models. That is, it completes better that replaces EMF. Besides, the

Kermeta language can be used for model-to-model transformations and to check

constraints on EMF models, though it does not support model-to-text

transformations. No editor (apart from those provided by EMF) is provided for

terminal models. Finally, running atop of EMF lent it a standardized character and

eases the task of extending and using it from other tools.

State of the Art 81

2.2.10 MetaEdit+

MetaEdit+ [243] is an environment for creating and using DSLs. It was

initially conceived as a research prototype [187, 323] developed by the metaphor

research group that later became a commercial product.

It provides a metamodelling language called GOPPRR attending to its

components: Graphs, Objects, Ports, Properties, Relations and Roles, but no

graphical editor for it. Therefore, metamodels has to be defined using a forms

based interface. Although the concrete syntax is not explicitly separated from the

abstract syntax, the use of different editors for each eases the distinction. For

instance, a symbols editor allows connecting a symbol with each metamodel

element. In addition, new symbols can be defined using a drawing panel. Once the

metamodel has been defined, MetaEdit+ generates a graphical editor for

conforming models.

Regarding model validation, additional constraints can be added to the

metamodel by defining reports in a proprietary language of limited expressiveness.

The very same language is used for code generation, thus the code generation

capabilities are also limited. You can extend them invoking external routines

coded with a GPL, but then you have to translate the metamodel to the GPL.

To summarize, MetaEdit+ is a robust and contrasted DSL framework.

Apart from being commercial, its main drawback is that it is an isolated

framework (DSLs will work just in the MetaEdit+ generated environment) without

any support for model transformation and questioned code generation capabilities.

Though some works have been done in both directions [191], they are still too

incipient.

2.2.11 MOFLON

MOFLON is a metamodelling framework that supports also graph-based

transformations [16] by adapting FUJABA [68] to work with MOF metamodels.

Its metamodelling language is MOF and model validation is supported by defining

OCL restrictions over metamodels. For model transformations, triple graph

grammar rules are translated to JAVA code and QVT-compliance is planned and

partially achieved. After you define a metamodel, MOFLON generates a JMI

(Java Metadata Interface, [338]) API to handle conforming models.

Some tests with MOFLON have shown that, when compared with other

metamodelling frameworks, it owns a low level of automation. Although it

generates code from the metamodel specification, it is a set of JAVA disconnected

82 Juan M. Vara

packages. The user has to carry out the integration and configuration tasks in order

to use the generated code. That is, instantiating a model after defining your

metamodel is not a trivial task. Since Eclipse integration is planned for the next

release (April, 2009) we hope it will help to solve this kind of drawbacks.

All this given, MOFLON provides with metamodelling and terminal

models editing capabilities. In addition, those models can be transformed but they

cannot be serialized into code. It owns a standardized nature that rests in the use of

JMI and partial QVT conformance. However, since the standards chosen are not

widely adopted nowadays, interoperability can be put into question. A movement

towards EMF will help on this matter.

2.2.12 MOMENT

MOMENT is a formal framework for MOdel manageMENT [60, 61]

embedded into the Eclipse platform that provides a set of generic operators to deal

with EMF models. The underlying formalism is the algebraic language Maude

[87]. MOMENT relies upon a set of generic operators to manipulate models and a

set of bridges between EMF and Maude. The idea is to translate EMF models to

algebraic specifications. The model management operators are Maude rewriting

rules that works over such specifications. The results are translated back to the

EMF technical space.

MOMENT does not provides metamodelling capabilities (though you can

use EMF for this task) neither model-to-text transformation support. It implements

partially QVT-Relations and supports the definition of OCL restrictions for model

validation. Since it is an EMF component, we may qualify it as highly

interoperable and extensible, though no information is available on how to extend

it.

It is worthy mentioning that a new version was released when we were

writing this dissertation (MOMENT2, November 2008) that improves the support

for model transformations and model validation of MOMENT. As well, it

enhances MOMENT‘s aligment to standards.

2.2.13 openArchitectureWare

openArchitectureWare (oAW, [277, 369]) is a suite of Eclipse-based tools

focused on code generation. We can look at it as an improved version of

AndroMDA that takes the most of the advances of MDE, like the model handling

facilities provided by EMF and the industrial-quality user interface of the Eclipse

State of the Art 83

platform. In fact, all the oAW tools, like the textual editors, are Eclipse plug-ins

that you can use separately.

oAW supports parsing of terminal models and supplies a family of

languages to check and transform models as well as code generation from them.

Although it is strongly connected with EMF, it can work with other models like

UML2, XML or simple JavaBeans. Its use is based on the definition of workflows

to specify generation/transformation executions. Besides, a number of prebuilt

workflow components can be used for reading and instantiating models, checking

them for constraint violations, transforming them into other models and then

finally, for generating code.

This way, its main components are the Xpand [192] model–to-text and

Xtend [123] model-to-model transformation languages; the oAW workflow engine

and the Xtext [122] language for development of textual modelling frameworks,

i.e. textual concrete syntaxes for DSLs. In addition, the Check language supports

definition and checking of declarative constraints over a model (similar to OCL).

To sum up, we will not say that oAW supports metamodelling capabilities,

since metamodels are actually Ecore models generated from a grammar. Model-to-

model and model-to-text transformations are both supported, as well as model

validation and terminal models edition (just with a textual editor). As it happens

with Kermeta, being fully integrated in Eclipse and EMF results in high

interoperability. Besides, it is extensible by nature.

2.2.14 TEF

The Textual Editing Framework (TEF, [311]) is an Eclipse plug-in for

generating textual editors for DSLs. In turn, TEF generated editors are Eclipse

plug-ins that provide with the traditional facilities of programming editors: syntax

highlighting, content assist (code completion), intelligent navigation, or

visualisation of occurrences. To that end, TEF provides with a language for

defining textual concrete syntaxes in a set of templates. Each template describes

the textual representation of a metamodel element. TEF is based on an abstract

interface for modelling frameworks. This interface is implemented for EMF, but it

could also easily be implemented for other technologies as well.

Therefore, a TEF editor is based on a metamodel and allows editing

terminal models conforming to such metamodel. Thus, it does not support

metamodelling since the metamodel is an input artefact from which TEF generates

the textual editor. Besides no model transformation is supported. Althought it is

built as an Eclipse plug-in, no documentation has been found on how to extend it.

84 Juan M. Vara

Furthermore, since it is thought to complement EMF capabilities, it is fully

interoperable, since TEF textual editors could be used along with any other EMF

component. As well, being EMF-compliant make us qualify it as a standardized

tool.

2.2.15 Whole Platform

The Whole Platform [326] is an Eclipse-based Language workbench for

developing new languages. It provides with a textual metamodelling language.

From there, you can define programs (terminal models) using the concepts

included in the defined metamodel. To that end, the platform provides with a

graphical editor that uses a set of generic notations already bundled (you may

define new notations).

Since it is merely devised for metamodelling, it does not support model

transformations, nor model validation. Note that it is based on Eclipse and GEF,

but not on EMF. Thus, underlying storage formats are XML and JAVA what

results on a medium interoperability level. However, it is worth mentioning it

since seems to be rather powerful for defining new programming languages and

building a minimum tooling for them.

2.2.16 XMF-Mosaic

XMF-Mosaic from Xactium is the last Eclipse-based metamodelling

framework we mention. Its kernel is a MOF-based language called XCORE [85,

86] focused on the definition of executable languages.

In addition, it supplies languages for defining the tooling as well as the

visual syntax (XTools), the textual syntax (XBNF), transformations (XMap) and

restrictions (XOCL). The last is also used for semantics definition.

Its main concern is that it is a commercial tool, though a free evaluation

version is available.

2.2.17 Others

In this section, we briefly introduce those tools or components less relevant

from the point of view of this review due to its low adoption ratio, non-availbale

information, late appearance or simply because of they have been already

deprecated.

State of the Art 85

 IEME

The Integrated Eclipse Modelling Environment (IEME, [2, 3]) is a

modelling environment based on Eclipse that aims at integrating existing Eclipse

plug-ins to support MDE proposals. Therefore, the architecture of IEME is the

closer to M2DAT from all previous works.

However, IEME seems to limit its contribution to define an architecture

(close to that from M2DAT) of Eclipse plug-ins, but nothing is say on how they

are integrated and more important, how they are to be used. Regarding technical

issues, IEME does not support the definition of customizable model

transformations. Besides, the validation support is limited to graphical models

whereas as we will state on this thesis, the cornerstone of a MDE process is not

the visual representation of the model, but the model itself.

Nevertheless, the main point with IEME is the absence of information apart

from the referenced publications. Nothing has been found on the Web, nor the

digital libraries visited (IEEE, ACM, Springer, and Elsevier) about IEME.

 MDWorkbench

MDWorkbench is an Eclipse-based IDE for code generation and model

transformation [324]. It is said also to be a metamodelling framework supporting

Ecore, UML and KM3 [181] metametamodels. Nevertheless, it is a commercial

tool the free version is limited to work just with UML models.

It provides with transformation capabilities by means of a proprietary

imperative language called MQL (Model Query Language). It owns a JAVA-like

syntax and supports special operations to work with collections. In addition, ATL

transformations can be used. Code generation is also supported by means of a

template-based language called TGL (Text Generation Language).

Just as a matter of interest, it supports documentation of models in MS-

Word format.

 MOSKitt

Modeling Software KIT (MOSKitt) is a free case tool, built on Eclipse and

running atop of EMF which is being developed by the Valencian Regional

Ministry of Infraestructure and Transport to support the gvMétrica methodology

(adapting Métrica III [248] to its specific needs).

Regarding M2DAT, MOSKitt aims at supporting exactly the same

capabilities using almost the same technologies (EMF, ATL, AMW, etc.).

However, we cannot compare it with M2DAT since its first version was released

in October 2008, when this thesis was almost finishing. Besides, so-far it just

86 Juan M. Vara

offers support for some common models, widely supported in Eclipse, like UML

class diagrams or Business Process models.

Nevertheless, the advent of MOSKitt is another proof of the correctness of

M2DAT proposal. It is a very similar tool that has been planned long after

M2DAT was designed and that shares quite a lot of its technical design.

 openMDX

openMDX [278] is said to be a framework for MDA support. In fact, it

seems to be just a J2EE code generation framework. It takes UML models

conforming to MOF 1.4 and generates EJB, .NET or CORBA code. The

generation process is based on the use of JMI [338]. It is worth noting that

openMDX skips the PSM. It works directly with PIM models. The platform

specific knowledge is encoded in the tool itself.

Therefore, we will not include openMDX in the section of model-to-text

transformation languages since its primarily goal is broader than generating code

from a model. In essence, it aims at providing with a complete information system

from the source models. We might say that it encapsulates both model-to-model

and model-to-text transformations in just one step since it skips the PSM.

 PathMate

PathMate is a commercial tool quite similar to openMDX. This time, code

generation is limited to Java, C and C++ from UML models. Code generation is

based on a proprietary template language, so called PathMATE™ Transformation

Engine notation. However, code templates are customizable.

 RoclET

There are also tools dedicated just to provide with validation capabilities

over terminal models. We bring here just one of them, RoclET [228].

It is an Eclipse plug-in that allows defining UML models and specifying

OCL constraints over them. In addition, refactoring of constraint after refactoring

the UML model is also supported. Nevertheless, it is limited to work with UML

(1.5) models and, though OCL evaluation is supported, validation of models is

still too immature.

Please note that there are similar proposals like OSLO, Octopus, etc. A

good survey on this can be found at [71]. However, none of them fulfils our

requirements for M2DAT. Thus, we include RoclET as an example since it is the

closer to what we were looking for.

State of the Art 87

2.2.18 Summary and Discussion

In order to provide with an overview on existing proposals, Table 2-3

summarizes the main features of the works reviewed regarding the evaluation

criteria described in section 2.2.1. The set of features considered are summarized

on Table 2-2

Table 2-2. Evaluated Features on tools for MDE tasks

FEATURE DESCRIPTION VALUES

SCOPE Commercial, Open-Source, Academic C/O/A

METAMODELLING

(MM)
Ability to define new metamodels YES/NO

MODEL to MODEL

(M2M)

Support for Model to Model

transformations
YES/NO

MODEL to TEXT (M2T)
Support for Model to Text transformations:

there is, there is not, limited
YES/NO/LMT

VALIDATION (VLDTN) Support for models validation YES/NO/LMT

GRAPHICAL EDITORS

(EDTR)

Generation of graphical editors from the

metamodel: Textual, Graphical, Not at all
T/G/NO

STANDARIZED

(STDRD)

UML/MOF-Based or Proprietary

Languages
YES/NO

EXTENSIBILITY

(EXTNSBL)

Ease of adding new capabilities and/or

modifying the already existing.
YES/NO/PRT

INTEROPERABILITY

(INTRPRBL)

Ease of using functionalities provided by

other tools.
YES/NO/PRT

EMF-BASED (EMF)
Whether runs on top of Eclipse EMF

(or is planned)

YES/NO/TO-

DO

Table 2-3. Frameworks and tools for MDE tasks

 SCOPE MM M2M M2T VLDTN EDTR STDRD EXTNSBL INTRPRBL EMF

AndroMDA (O) NO NO YES NO NO NO YES YES TO-DO

ATOM3 (O, A) YES YES NO YES (G) NO NO NO NO

DOME (O) YES NO LMT LMT NO NO NO NO NO

DSL Tools (C) YES NO YES NO YES NO NO NO NO

EMP (EMF) (O) YES YES YES YES (G/T) YES YES YES YES

EMFATIC (O) YES NO NO NO (T) YES YES YES YES

GME (O, A) YES YES NO YES (G) NO PRT NO TO-DO

Kermeta (O, A) YES YES NO YES NO YES YES YES YES

MetaEdit+ GOPRR YES NO YES YES (G) NO NO NO NO

MOFLON (A) YES YES NO YES NO YES PRT PRT NO

MOMENT (O, A) NO YES NO YES NO YES YES YES YES

OpenArchitectureWare (O) NO YES YES YES (T) YES YES YES YES

TEF (O) NO NO LMT NO (T) YES PRT YES YES

Whole Platform (O, A) YES NO YES NO (G) NO NO NO NO

XMF-Mosaic (C) YES YES YES YES YES YES NO PRT NO

State of the Art 89

The first and most important decision to take when developing a tool for

MDSD is which metamodelling framework is going to be used. In some sense,

this decision conditionates the rest of technological decisions.

In this sense, despite of the efficiency and performance of existing tools,

none of them meets all the requirements for building M2DAT. ATOM
3
 or GME

lack of code generation capabilities. The DSL Tools or MetaEdit+ do not support

model-to-model transformations. XMF-Mosaic is a commercial tool, what

automatically discards it to build M2DAT. MOFLON owns a low interoperability

and extensibility levels, etc.

That is, although there exist some all-in-all frameworks that aim at

providing support for all the tasks related with model-driven development, hose

frameworks do not fulfil our requirements to develop a new MDE tool. Specially,

those related with tool interoperability. When using these kinds of frameworks,

the result uses to be too tightened to the technology used. Hence, we argue in

favour of combining the functionality provided by tools for specific MDE tasks to

build your own tool. In other words, the only way of achieving full compliance

with M2DAT needs is combining a set of tools that fulfil some of those needs in

order to build a tool fulfilling all of them. Therefore, we opt for using EMF as

underlying modelling framework.

EMF itself is an open framework, constantly evolving and integrating new

projects. Any tool for MDSD built on top of EMF will be able to use the

functionality provided by those projects. Therefore, using EMF we are ensuring

that the new tool could integrate support for all the current MDE tasks already

supported in the context of EMF (like model transformations, model validation,

graphical editors development, etc.) but also for the new needs that might emerge

as long as MDE advances keep growing. That is, using EMF we ensure rapid

inclusion of emerging technology in M2DAT.

This way, if we need to support a new capability in M2DAT and there is an

existing component providing it, we will be able to plug-in into M2DAT in an

easy way. Even if there was no such component, we could develop it ourselves

using the facilities provided by EMF. The integration with the rest of the tool

would be effortless due to the extensible nature of the Eclipse platform.

Another key point is standardization. Although OMG standards have been

the reference for MDE, a standard is useless without a reference implementation

and EMF projects are not only the reference, but in some cases the unique

implementation of some OMG standards or, at least, the most promising projects

to implement the standard (like it happens with QVT).

90 Juan M. Vara

As a conclusion we can say that there are very good frameworks and

components for development of MDE tools. GME is a good example. ATOM
3
 is

another. However, the main drawback of these tools resides on the underlying

framework. Since they are not based on a common platform, it is very hard to

connect them with other existing tools or frameworks. In our opinion, isolated

DSLs that do not shift information up and down the different abstraction levels are

not helpful. For example, think of a DSL for component designing that you use to

build your design models (deep down, your PSM). If it is a stand-alone tool,

without any connection with the tool used to depict your analysis models, you are

losing MDE promises of faster, less costly software development at a higher level

of abstraction. In essence, the use of DSL frameworks comes out into a fully

world of proprietary tools and languages for very specific purposes. This has not

to be necessarily bad; the main problem is the absence of interoperability between

them.

Finally, we would like to mention that when we started to work on this

thesis EMF was just an emerging proposal. However, nowadays it has become the

de facto standard for emerging technologies in the MDE field and the most

succesful technical solutions for MDE are provided by EMF-based tools. Even

existing frameworks are working on the development of EMF bridges (like the

GEMS project for GME). Furthermore, the recent advent of new tools following

the line proposal of M2DAT, like Moskitt (http://www.moskitt.org/) or Blueprint

ME (http://www.atportunity.com/blueprintme.php) confirm that the bet for

building an integrated MDE framework atop of EMF was correct. In other words,

we would like to point out that, though nowadays the use of EMF as basis for

building MDE tools is acknowledged as a common practice, it was far from being

an obvious decision when we addressed the development of this thesis.

Finally, it seems EMF will keep its privilegiated status during the next

years. In fact, forthcoming solutions to more recent problems are been developed

in the context of EMF. For instance, one can think on metamodel evolution

capabilities [84] and bridges between grammarware and modelware [380].

Actually, even those frameworks that existed before the advent of EMF, like

GME, are driving their efforts to bridge the gap with EMF. Therefore, using EMF

we ensure M2DAT a long-life of constantly improvement (because of the huge

EMF community) and a lot of synergy with other exiting proposals (since more

EMF-based tools appear each day).

State of the Art 91

2.3 Model-Transformation Languages

Although the study of transformation techniques has been a research topic

for the last 30 years [69, 287], it was mainly focused on program transformations

(source code). Model transformations had aroused little interest so far, but the

boom of MDE and the advent of MDA have changed this situation drastically

since model transformations play a key role in model-driven software

development. As a consequence, a number of tools or langauges for model

transformation development have arisen. Neverteheless, just by having a look at

the different definitions for model transformation given in section 2.1.6, it

becomes clear that model transformation is still an emerging research field.

These definitions, although being similar, leave some fuzzy points: the

concept of what a model transformation is in essence (automated processes, a

program, a description, an algorithm, a model, etc.); the level of automation that

should support a model transformation proposal; the cardinality of the input and

output models, etc.

If there is not even a complete consensus about what model transformation

stands for, think on the complexity associated to choose one among the wide

variety of existing proposals. To add complexity to this task, existing proposals

could be classified according to a wide set of criteria. For instance, the number of

input/output models, the approach they follow, the support for a graphical

notation, the quality and quantity of documentation, the usability level, etc.

This task needs from a thorough study of the different proposals and, as we

will show in this document, this was one the initial objectives this work. This

section is devoted to present the main results on this matter. It is structured as

follows: section 2.3.1 reviews previous works focused on classifying model

transformation approaches. Sections 2.3.2.1 and 2.3.4 reviews the existing model-

to-model and model-to-text transformation languages according to our own

evaluation criteria. Finally, section 2.3.5 summarizes the main conclusions.

2.3.1 Previous Works on Classifying Model Transformation

proposals

Our first step when we addressed the task of developing model

transformations in the context of M2DAT was to get a complete understanding on

existing languages. To that end, we started by reviewing all the previous works

focused on classifying model transformation proposals, though there were not too

many since model transformation was still emerging as a research topic. Even

92 Juan M. Vara

some of them aimed to present a new proposal, so they just included a

classification aside but not as the main contribution of the work. This section

summarizes our conclusions from reviewing those works.

 In [320] Sendall & Kozaczynski focus on studying the desirable

characteristics that a model transformation language should have. Besides,

they include a brief classification of approaches to model transformation

definition. The most valuable conclusion from this work is that, according to

the authors, the most recommended approach is some kind of transformation

language support since the language can be adapted to the special needs of

model transformation development. These languages, despite the different

names used by different authors, are typically divided into declaratives,

imperatives and the hybrid ones, that combine advantages from the both

previous. At present, this approach is the most recognised: using a DSL for

model transformation development.

 The work from Czarnecki & Hensel [97], which they revisited on [98], is

probably the most referenced classification of model transformation

approaches. Since the authors had focused their previous works in the study

and definition of ontologies and feature models, their main contribution is

defining a taxonomy of model transformations based on a feature model

[96]. In pur opinion, despite the proposed feature model is complete and

correct, it is too large and complex. A more simple and concise model would

help on the election of a model transformation engine. In fact, the

classification proposed is not even capable of defining a sub-category for each

different value of the features identified.

 In [342] Tratt focuses on the maintenance of the traceability between the input

and output artefacts as the way to reach real interoperability between

modelling tools. After defining a set of simple steps to follow to develop a

transformation engine that maintains the traceability information, Tratt

presents a classification of techniques to define model transformations and

concludes that the majority of the existing proposals follow a declarative

approach since results more suitable to support change propagation and

traceability maintenance.

 The last work we have considered explicitly to elaborate this state of the art

can be found on the INRIA (Institut National de Recherche en Informatique et

en Automatique) Web site [179]. Even though this work is the least formal, it

results much more intuitive and collects ideas spread all along the previous

classifications.

State of the Art 93

Since these classifications were made from the point of view of developers

of model transformation approaches, they are too complex for non-experts in

model transformation. We have to keep in mind that model transformations will

be used by developers that have nothing to do with model transformation before.

There are a vast amount of research groups that proposed model-driven

methodologies, even before the MDE paradigm appeared. In fact, the traditional

requisites-analysis-design-implementation-testing life cycle from the unified

process [173] does not differ too much from the more thriving MDE approach.

This way, a lot of work is being done in order to adapt works coming from these

traditional frames to the MDE approach. In this context mappings between models

that until now were carried out by hand, have to be automated (at least in some

extent) using the newly model transformation approaches. So, developers behind

those proposals, such as we ourselves, have to face the task of selecting and using

one among all the existing model transformation approaches. Next section aims to

help on this task.

2.3.2 Model Transformation Approaches

This section refines the ideas spread the above-mentioned classifications to

state a clear and simple classification of the main approaches to model

transformation. Later on, we will use this classification to identify the approach

adopted by the model transformation languages reviewed.

 Direct Model Manipulation. It is based in the fact that, any given

programming language aided by the use of APIs, can be used to define

transformations between models. The JMI (Java Metadata Interface)

specification is by far the most common example [338]. Using these APIs a

new representation of a given model can be generated, what can be

considered as a model transformation. On the one hand, this approach is quite

simple, since the provided APIs are defined in general purpose languages like

JAVA, so there is no previous learning. On the other hand, these languages

were not intended for direct model manipulation. Therefore, using them to

define transformations in different contexts or implying models at different

abstraction levels results too complex.

 XML-Based. This approach used to be related with the XML technical space

[208] and the most typical situation is that in which the models are

represented using the XMI (XML Metadata Interchange) standard and the

transformations are defined using XSLT (XML extensible Style-sheets

94 Juan M. Vara

Language Transformations). It suffers from the complexity and verbosity that

entails the use of XSLT [342].

 Template-based. The code is embedded in code templates spread between

programming directives in a similar way to JavaScript. Typical examples of

this approach are the transformation mechanism found on ArcStyler [20],

AndroMDA [17] and CodaGen Architect [87]. It is commonly related with

model-to-text transformations and result too rygid for model-to-model

transformations.

 Graph-Based. It combines graph theory [126] with typed graphs − graphs

with attributed nodes [93]. Graph-based approaches gathers the advantages of

a solid theoretical basis and the similarity between models and graphs.

Therefore, some of the most recognised proposals (that will be reviewed

later), like AGG [70], VIATRA [94] or AToM
3

[107] have adopted it

presently. Though they are quite appealing from the formal point of view

because of their mathematical basis, they do not result convenient for

complex transformations. Due to its different nature from other approaches,

Appendix B provides with a more detailed overview on this approach.

 The Declarative style (AKA Relational) is based on defining the relations

that must be kept between the input and output artefacts. This way, if the

defined relations are not satisfied, the appropriate modifications will be made

over the output artefacts. QVT-Relations is the perfect example of a

declarative model transformation proposal [273]. As previously mentioned,

the declarative style eases the mainteinance of traceability links.

 The Structure Driven approach starts by creating the elements of the output

model to later add the corresponding attributes and references. Later on, this

approach has been referred as imperative style in the model transformation

literature. In contrast with declarative languages, QVT-Operational Mappings

exemplarizes imperative languages. Using an imperative language results

much more intuitive since it is similar to GPL.

 Finally, Hybrids approaches combine the declarative and imperative styles. It

is worth mentioning that the most recognised proposals follow the hybrid

approach, advocating that the declarative style should prevail over the

imperative one. So far, the most recognised languages adopt an hybrid

approach, where the declarative style prevails.

State of the Art 95

2.3.2.1 Evaluation Criteria

The review of model transformation languages has been made from the

point of view of deciding which language will be adopted to develop M2DAT

transformations. Since there are a number of proposals, we have identified a set of

features that will help us on classifying them to choose the one that best fits our

needs. Those features are described in the following, next to the reasons for their

election:

 Scope. [Values: Open-Source, Commerical, Academic]

We want M2DAT to be open-source, thus just open-source model

transformation engines will be considered. Therefore, we will identify

whether it is a commercial tool or an open-source one and also whether it

comes from academics.

 Approach. [Values: Declarative, Graph-Based, Hybrid, Imperative,

Template]

As we have presented in previous sections, model transformation languages

may adopt a number of approaches: declarative, imperative, hybrid, graph-

based (that are also declarative in essence), XML-based, etc. Indeed, even

those languages that adopt a hybrid approach, bets for using a preferred

programming style. Since some constructions are more or less feasible to code

depending on the approach followed, we will identify the one chosen by each

reviewed language.

 Direction. [Values: Unidirectional, Bidirectional]

Bidirectional transformations are a mechanism for maintaining the

consistency of two (or more) related sources of information [99]. In MDE

contexts, they allow to compute and synchronize views of software models.

They are a need for future improvement of MDE proposals if we want to cope

with issues like metamodel evolution and model co-evolution or roun-trip

engineering. Even, the QVT standard bets for a bidirectional transformation

language. Therefore, we are quite interested in determining if the languages to

review support bidirectional transformations.

 Tooling. [Values: Low, Medium, High]

Since we aim at identyfing the best language to develop M2DAT model

transformations, usability of the selected language will be a key factor to

make a decision. In this sense, we are concerned about the quality of the

toolkit associated with the language (if available). For instance, we would like

96 Juan M. Vara

to know if it includes an IDE with code completion, syntax highlighting and

the like.

 Documentation. [Values: Low, Medium, High]

Another key factor at the time of selecting the transformation language to use

is available documentation. Actually, the novelty of those languages results in

very few (if any) documentation. Since the developers of the language are

focused on improving and evolving the engine, very little time is dedicated to

document the language. We have confirmed so far that, when facing new

technology, the most valuable information is users feedback. Therefore, when

studying available documentation, we will not focus just on manuals, tutorials,

how-to documents and the like. We are mainly interested in complete case

studies of successful applications, newsgroups, wikis and any other

collaborative environtment that promotes knowledge sharing.

 QVT/MTL-Compliant. [Values: None, Fully, Partially, Planned]

Although QVT specification [273] was still to come when we started to work

on this thesis, the RFP had been already publisehd [274]. We have already

mentioned that we want to reach the higher level of standards compliance for

M2DAT without compromising usability. This way, since there exists an

standard for model transformations we should check how existing model-to-

model transformation languages align with the standard. The same is valid for

the MOF Model to Text standard [266], regarding model-to-text

transformation languages.

 Framework. [Values: name of the framework / ---]

As we have already mentioned when reviewing frameworks and components

for development of MDE tools, some of them support their own

transformation language. Thus, we must identify if each reviewed language is

tightened to some framewok.

 EMF-Compliant. [Values: EMF, Non-EMF, Bridge available]

Finally, if the language is defined to run atop of EMF, we get all the

advantages derived from EMF in terms of interoperability and extensibility

that we have already commented. Moreover, since we will use EMF to build

M2DAT, we look for a language able to cope with EMF models without the

need for an extra effort.

State of the Art 97

2.3.3 Model-to-Model Transformation Languages

In the context of MDE, it becomes obvious the need for a way to

effectively define and apply the model transformations implied in any MDE

process. Obviously, one can opt for using a GPL like JAVA or C# plus the EMF

generated API for .Ecore models to code a model transformation. However, this

would be a very tedious and challenging task whose development and

maintenance cost does not make up for the benefits provided.

In response to this need, a vast amount of model transformations engines

has been delivered during the last years. A set of the most contrasted, covering a

wide range of the existing approaches to the problem can be found in [50, 64].

This way, we can find proposals based on the use of graph grammars [126], like

[16, 70, 94, 107]; proposals focused on the definition of DSLs for model

transformation [184, 211, 305]; CASE tool proprietary model transformation

languages [20, 88]; or model transformation engines that work by translating the

mapping rules to algebraic specifications expressed in formal languages [60, 222],

etc.

In the following, we present some of them. Those that have been most

commonly adopted and those that, though not so successful, own a special interest

from the research point of view. For instance, this is the case of the different

works focused on implementing the QVT standard. They are still quite immature

yet interesting to be evaluated with a view to future standard compliance of

M2DAT transformations.

Finally, note that this section will limit to describe the main features of

existing languages. Later on, in Chapters 4 and 5 we will provide with more

detailed descriptions of the selected technologies used to develop model

transformations in M2DAT (section 4.4).

The following sections, provide with an overview of each selected model

transformation language. As well, each section ends by highlighting the way they

behave regarding the features listed above.

2.3.3.1 AGG

The Attributed Graph Grammars (AGG, [70]) system is a visual language

to define graph-based model transformations. Its main feature is that both the

source and target models will be labelled graphs owning attributes whose types

could be primitive or user-defined types.

AGG may be used (implicitly in "code") as a general-purpose graph

transformation engine in high-level JAVA applications employing graph

98 Juan M. Vara

transformation methods. Due to its rule-based character, AGG may also be near in

the field of artificial intelligence. The AGG tool supplies graphical editors for

graphs and rules plus a textual editor to add JAVA expressions.

Regarding validation in AGG, one can check the consistency of a particular

graph by means of graph constraints. Besides, the consistency of a graph

transformation specification can be checked by defining critical pair analysis to

find conflicts between rules (that could lead to a non-deterministic result) and

checking the termination criteria.

The Tiger (TransformatIon based Generation of modelling EnviRonments)

project [53] uses AGG to generate GEF-based Eclipse editors from a formal,

graph-transformation based visual language specification. It focuses on in-place

transformations (endogenous transformations, in contrast with traditional

source2target exogenous transformations) used, for instance, in refactoring,

reconfiguration or runtime models of executable languages (transformations as

virtual machines). Moreover, it supplies formal analysis e.g., it can check whether

a transformation terminates and always produces the same output.

To sum up, AGG is an open-source, graph-based and uni-directional

transformation language. It provides with a complete IDE to code model

transformations and the home site offers quite a lot of documentation. However,

there are no cases of successful application, neither newsgroups nor (active) user

forums. It does not align with QVT and it is a stand-alone application that could

be integrated with JAVA applications but with no available bridge to use EMF

models.

2.3.3.2 ATLAS Transformation Language

ATL (ATLAS Transformation Language) [184] is a model transformation

language framed in Eclipse. It supplies an IDE that incorporates facilities like

dedicated editors, debuggers, code completion, syntax highlighting, metamodel

registry, etc. It is based on the OCL specification [268] and it is mainly a

declarative language, though some imperative constructions are allowed to ease

the coding of complex transformations.

ATL is a component of the AMMA (Atlas Model Management

Architecture) platform [48]. Other components of AMMA are the ATLAS Model

Weaver (AMW, [114]), the KM3 metamodelling language [40] and the Textual

Concrete Syntax language (TCS, [183]).

ATL transformations are always unidirectional. Source models are read-

only, while target models are write-only. During the execution of a transformation

source models may be navigated, but changes are not allowed, whereas target

State of the Art 99

models cannot be navigated. The last version of ATL compiler (ATL 2006)

provides with advanced capabilities, like multiples source patterns, rule

inheritance, and endpoint rules .The language is very stable and mature and it is

constantly improved. In addition, there is a huge amount of available

documentation in the form of manuals, usage scenarios and user newsgroups.

The delay on closing the QVT specification plus the absence of a reference

implementation has resulted in ATL been widely accepted as standard de-facto for

model transformation development. Additionally, some works have been made to

align ATL and QVT [182] and a QVT-Relations implementation based on ATL-

VM [180] is on the way [155].

All things considered, ATL is a uni-directional, hybrid transformation

language (declarative programming style is preferred) developed as an EMF

component. It provides with a complete IDE and a wide range of documentation

that covers manuals, newsgroups, metamodels and transformations zoos, etc.

Although it is not QVT-Compliant, it will be aligned with QVT.

2.3.3.3 ATOM
3

In section 2.2.3, we have already presented ATOM
3
 as a metamodelling

framework with model transformation capabilities. In fact, it was developed

focusing on defining a framework for graph-based model transformations.

ATOM
3
 forces you to define your metamodels using its own

metametamodelling language. This will limit the expressiveness of your

metamodels. For instance, ATOM
3
 metametamodel does not support composition

associations. In general, this type of problems is common to all the languages that

impose their own metametamodel. Some constructions you are used to employ

when defining MOF (meta)models are just not supported by them.

ATOM
3

supports TGG and NAC (see Appendix B). However, although the

framework bundles some templates, you should have Python programming skills

(Python is the source language of ATOM
3
) to define actions or pre- and post-

conditions, which are usually needed when developing complex transformations.

Likewise, ATOM
3
 transformations are unidirectional and does not support explicit

scheduling.

To sum up, we can state that ATOM
3
 is a graph-based, unidirectional

transformation language. It provides with an IDE to develop model

transformations and complete manuals on ATOM
3
 site. Nevertheless, very few

applications are found. It is not aligned with QVT and there is no way os handling

EMF models with ATOM
3
.

100 Juan M. Vara

2.3.3.4 GReAT

GReAT (Graph Rewriting and Transformation) [9] is the graph-based

transformation language of GME (see section 2.2.8).

GReAT programs are typically executed using a virtual machine, called the

GR Engine. It interprets the rewriting rules comprised in the GReAT program and

supports debugging tasks. Once the transformation has been checked (and

corrected if needed) it can be translated into C++ working-code (remember that

C++ was the source language of GME).

Using GReAT, one describes the transformations as a sequence of graph

rewriting rules that operate on the input models to build the output model. The

rules specify complex rewriting operations in the form of a matching pattern and a

pattern to be created as the result of the application of the rule. The rules (1)

always operate in a context that is a specific sub-graph of the source model, and

(2) are explicitly sequenced for efficient execution. They are specified with visual

notation thanks to a graphical editor. Three languages constitute the core of

GReAT:

 Pattern specification language. This language is used to express the

construction that should be matched in the source model. It supports a notion

of cardinality on each pattern vertex and each edge.

 Graph transformation language. It is a rewriting language that uses the pattern

language described above. It collects the source model, destination model and

temporary objects in a single model that has to conform to a unified

metamodel. This way, only transformations that do conform to the metamodel

are allowed. At the end of the transformation, the temporary objects are

removed and the two models conform exactly to their respective metamodels.

In addition, one can add guards to control the rule applications by means of

boolean C++ expressions.

 Control flow language. It is the language to sequence GReAT rewriting rules.

It supports a number of features.

In contrast with AGG or ATOM
3
, GReAT supports explicitly scheduling.

To that end, a data-flow graph states the order in which mapping rules are

executed.

To conclude, GReAT is an open-source graph-based transformation

language. It supports just unidirectional transformations and provides a complete

IDE since it is integrated into GME. As well, it provides with a huge amount of

documentation, including application case studies, forums, etc. It does not

State of the Art 101

conform to QVT, nor plans to be. Finally, no way of using EMF models with

GReAT is identified.

2.3.3.5 Kermeta

Kermeta was already introduced in section 2.2.9 when we presented the

Kermeta framework. Kermeta language is an executable meta-language not

specifically intended to model-to-model transformation. It was born as a

refactoring of MTL [371], another language from the Triskell team

Kermeta follows the operational approach. It is similar to direct

manipulation but offers more dedicated support for model transformation. A

typical solution in this category is to extend the utilized metamodelling formalism

with facilities for expressing computations. An example would be to extend a

query language such as OCL with imperative constructs. Likewise, QVT-

Operational Mappings follow the same approach.

Indeed, Kermeta takes the form of an object oriented imperative language

(with roots in Eiffel and Java) for (meta)-model manipulation. Additionally to the

imperative syntax, it provides OCL-like constructs and facilities to work with

models. Finally, yet importantly, a simple aspect mechanism allows you to

modularize your code and simplify the design of your transformation.

Its imperative approach results in a very different code from that of any

language that follows the declarative paradigm. Instead of rules, Kermeta uses

operations, which are basically very similar to operations or methods in object-

oriented programming languages, such as Java.

It should also be noted that, although it supports Ecore as domain language

(i.e. models expressed in Ecore can be imported to any Kermeta transformation)

the input and output of metamodel and model data has to be taken care of by the

programmer. Therefore, every Kermeta program has to load and save data

explicitly by itself. In other EMF-based languages, the input and output

metamodels and models can be specified outside the transformation code, using

Eclipse Run Configurations.

Kermeta is available as Eclipse plug-in, providing with a debugger, syntax

highlighting and in-line error detection. Each transformation is implemented by

three Kermeta files. The first file implements the preconditions, the second file

implements the operations and last file implements the post-conditions of the

transformation.

Like any other imperative language. Kermeta is recommended just for

relatively complex transformations, where the expressiveness of imperative

constructions become essential. On the downside, features supported by other

102 Juan M. Vara

transformation languages, like the mentioned load of models, or automatic tracing

support are completely missing.

Concluding this section, we can say that Kermeta is an imperative language

devised for metamodelling purposes that is also used to develop unidirectional

model transformations. Besides, it owns a huge quantity of documentation though

the tooling is not as powerful as those from other reviewed works are. Finally,

although it is not thought to work specifically with EMF models, exiting bridge

allows using EMF models with Kermeta.

2.3.3.6 MOFLON-FUJABA

Section 2.2.11 presented MOFLON as a metamodelling framework with

model transformation support [247]. In fact, its underlying model transformation

is based on adapting FUJABA [68] to MOF and JMI code generation.

In FUJABA, graph rewriting rules are wrote using the SDM (Story Driven

Modelling, [12]) language. We can look at SDM as a mixture of collaboration and

activity diagrams. In fact, collaboration diagrams was the abstraction used to

express graph rewriting rules in first releases of FUJABA. Those SDMs are

translated into JAVA (JMI) code directly executable over JAVA (JMI) objects.

Like other tools, you can define rules scheduling in FUJABA by given

them different priorities in order to resolve conflicts where more than one rule

applies. This can improve the performance of a transformation engine.

Although MOFLON has not been widely accepted as a model

transformation language, it has been commonly recognised as a good tool for

models simulation.

To sum up, MOFLON is another graph-based transformation language that

claims to be bidirectional. The toolkit for developing MOFLON transformations

could be qualified as medium whereas available documentation is rather poor,

especially regarding application examples. Finally, MOFLON claims to be QVT-

compliant, since it implements the graphic syntax of QVT-Relations and no way

of processing EMF models with MOFLON is supported.

2.3.3.7 MOLA

MOLA is another graph based transformation language [186]. MOLA

source and target metamodels are expressed by means of UML class diagrams by

using its own metamodelling environment, METAclipse. MOLA aims at

combining graph rewriting rules with the structures of control of traditional

structured programming languages. Each MOLA sentence is represented by means

State of the Art 103

of a graph rewriting rule. Those rules are sequenced in the way of an activity

diagram. That is, rules scheduling is supported in the form of control flow graphs.

Regarding evaluated features, MOLA is open-source and graph-based. In

contrast with MOFLON, it does not support bidirectional transformations. The

toolkit provided, though frugal is efficient. There is available documentation from

its home site and it does not plan any alignment with QVT languages, nor with

EMF.

2.3.3.8 RubyTL

RubyTL [307, 309] is a model transformation language embedded in Ruby

[301], what influences its concrete syntax. It is a rule-based hybrid transformation

language and includes significant features such as the organization of rules in

phases [309]. Besides, if it is specified at the time of configuring the

transformation execution, one might modify the source model.

RubyTL syntax is rather intuitive, though it is not based on OCL. This way,

a RubyTL rule includes the following clauses:

 from, where the constructs of the source metaclasses are indicated;

 to, where the constructs of the target metaclasses are specified;

 filter, which holds a condition over the source constructs for the

transformation to be enacted;

 mapping, which states binding relationships between source and target model

constructs. A binding is a kind of assignment that indicates what needs to be

transformed into what, instead of how the transformation must be performed.

An interesting feature of RubyTL is its transactional behaviour. If some

errors arise during the execution of the transformation, the target model is not

created.

To outline the main features of RubyTL, we can say that it is an open-

source hybrid transformation language (declarative style is preferred) that supports

also code generation through a DSL plus code templates. It provides an Eclipse-

based IDE, called AGE, that includes a Ruby editor with syntax highlighting, code

templates and some code completion. Currently, one of its main drawbacks is the

lack of available documentation and successful use cases showing its application.

Likewise, it does not plan any QVT alignment. Though it was not developed to

run on top of EMF, it works efficiently with Ecore models without raising any

problem when they are imported.

104 Juan M. Vara

2.3.3.9 Tefkat

Tefkat [211, 212] is a declarative, logic-based transformation language

defined in terms of a MOF metamodel. It was initially developed as a response to

the OMG‘s QVT RFP [274]. It supports single-direction transformation

specifications from one or more source models to one or more target models. The

transformation specifications are constructive, meaning that they specify the

construction of the target model(s). There is currently no support for in-place

update of models.

The Tefkat implementation is based on EMF and supports transforming

native Ecore models as well as those based on MOF2, UML2, and XML Schema.

It is usable in both standalone form and as an Eclipse plug-in with a source-level

debugger.

In contrast with OCL-like syntax adopted by other languages, Tefkat‘s is

similar to SQL and it results specifically designed for writing scalable

transformations using high-level domain concepts rather than operating directly on

the XML syntax. However, the concrete syntax is decoupled from the abstract

syntax (the transformation model). Thus, Tefkat engine can be adapted to import

model transformation specifications defined in different languages.

Tefkat supports templates and pattern definitions to encapsulate and reuse

common expressions. It has a good support and tutorials. In addition, a Tefkat–

Fujaba‘s TGG bridge was presented in [163].

In summary, Tefkat is an open-source language that follows the declarative

style to support unidirectional transformations. As other EMF-based languages, it

extends the Eclipse GUI to provide with an efficient IDE. Likewise, it lacks of

application case studies and complete reference manuals. Finally, being an EMF

component, it is fully functional to work with EMF models.

2.3.3.10 VIATRA

VIATRA [28] is another graph-based language that runs on top of Eclipse

(not EMF) that uses its own metamodelling language, based on algebraic

specifications: VPM [359]. It has served as the underlying model transformation

technology of several ongoing European projects mainly in the field of dependable

systems.

Mapping rules in VIATRA are expressed by means of graph rewriting rules

that capture elementary transformation steps. They are combined using abstract

state machines (ASM, [164]) to build complex transformations. Those state

machines provide a set of common control structures with precise semantics

frequently used in imperative or functional languages. This way, the ASMs act as

State of the Art 105

control structures to reduce non-determinism and improve run-time performance.

This identifies VIATRA2 as a hybrid language, since the transformation rule

language is declarative but the rules cannot be executed without an execution

strategy specified in an imperative manner.

The language used to implement all these concepts is the VIATRA Textual

Command Language (VTCL). This language is primarily textual, thus VIATRA

does not support graphical definition of model transformations presently.

Although it provides with exporters/importers, we can confirm that they do

not work as expected with complex metamodels.

VIATRA2 (the last release) provides support for generic and meta-

transformations [360] that allow type parameters and manipulate transformations

as ordinary models, respectively. This allows arranging common graph algorithms

(e.g. transitive closure, graph traversals, etc.) into a reusable library, which is

called by assigning concrete types to type parameters in the generic rules.

Furthermore, transformations can be externalized by compiling transformations

into native Java code, as stand-alone transformation plug-ins. VIATRA2

transformations may call external Java methods if necessary to integrate external

tools into a single tool chain.

As stated, one of the main differences with AGG or ATOM
3
 is the support

for explicit scheduling by defining abstract state machines to schedule the

execution of the mapping rules.

Our main concern with VIATRA is that it is tied to its own metamodelling

language. Though importers/exporters are provided, we can state that they do not

work as expected with complex metamodels.

In addition, though there is available documentation, the syntax is not very

intuitive. Besides, there is no way of defining auxiliary functions in VIATRA. The

whole transformation must be coded inside the rules.

Moreover, when we have tested VIATRA we have encountered serious

problems at the time of importing the UML-Ecore metamodel and conforming

models. As well, target models are defined in the VIATRA format that raises

some problems when imported in EMF. To sum up, though VIATRA provides

with EMF-bridges, it does not work properly for every scenario.

2.3.3.11 QVT

Since the OMG released a standard for model transformations, we believe

that special attention must be paid on it. After a minor introduction, next

subsections will give a brief overview on the available implementation at the time

106 Juan M. Vara

of writing this dissertation. However, we would like to mention that, so far, there

is little or no agreement at all on a reference implementation for QVT. The

absence of such a reference implementation has definitively acted against QVT

adoption. Moreover, existing attempts have shown that the standard still presents

some fuzzy points.

QVT Overview

The Query/View/Transformations standard (QVT, [273]) is a family of

languages for defining transformations. It defines two user-level languages, QVT-

Operational Mappings and QVT-Relations, plus a low-level language that can be

shown as the byte code of QVT, QVT-Core. Figure 2-13 shows an overview of the

QVT architecture.

Besides, the mappings from QVT-Relations to QVT-Core is specified. This

is a mapping of interest to possible implementers, but with no utility for mere

users.

Operational

Mappings

Black Box

Operations

Relations

Core

Relations to
Core

Transformation

extends

extends

extends

extends

Figure 2-13. QVT Architecture

 QVT Core is a relational language (declarative) that supplies the set of basic

constructions that allow defining source and target patterns and variables

binding. QVT Core forms the basis for the other two languages and is not

really meant to be directly used (as far as we understood it).

 QVT-Relations is another declarative language defined in top of QVT-Core.

It supports complex expressions and a graphic notation.

 Finally, QVT-Operational Mappings is an imperative language that extends

the previous.

In addition, black-box operations should be supported to allow calling

external programs during transformation execution.

State of the Art 107

Until the final version of QVT specification was released, there were

several projects focused on building a model transformation engine that fulfilled

QVT RFP [274]. With the advent of the final adopted specification, many of them

were abandoned whereas some new appeared. Though none of them has been able

to provide with a complete implementation that include the three QVT languages

so far, there do exist some promising works that are contributing to improve the

specification.

In the following subsections, we enumerate the most relevant,

distinguishing those that implement QVT-Relations from those that implement

QVT-Operational Mappings. Please, note that we will not focus on studying how

they behave regarding the features that compose the evaluation criteria, since we

will not use any of them to develop model transformations in M2DAT because of

two main reasons:

 They did not exist or was just incipient when we addressed M2DAT design

and development.

 They are still quite immature due to the delay on providing a QVT final

specification and the fact that it still presents some inconsistencies that

constantly arise as long as QVT implementers progress.

In summary, since QVT tool support is still in its infancy [210], the

following review on QVT implementations aims at identyfing the most promising

works for future aligment of M2DAT transformations with QVT standard.

2.3.3.12 QVT-Relations Implementers

In the following we review the main projects focused on implementing the

QVT-Relations language.

mediniQVT

mediniQVT [174] is a commercial product from ikv++ integrated in

Eclipse that, up to now, seems the more stable and mature implementation of

QVT-Relations. It is freely available under Eclipse Public License with non-

commercial purposes.

mediniQVT includes tools for convenient development of transformations,

such as an graphical debugger and an editor with code completion. It supports

bidirectional transformations but suffers from some drawbacks when coding

model transformations sketched on section 5.3.4.2. Besides, it works atop of EMF.

Indeed, it is distributed as an Eclipse plug-in. Documentation is poor, almost

reduced to the QVT-Relations specification itself, plus some notes on how to use

108 Juan M. Vara

the Eclipse GUI. There is a lack of real applications and the newsgroups are not

very active.

ModelMorf

ModelMorf [343] is also a commercial implementation of QVT-Relations

developed by TRDCC, a subsidiary of TATA Consulting Services. Though it is

integrated on the Eclipse platform, it does not use EMF. Thus, models and

metamodels are defined in terms of its own metamodeller.

Currently, not all features of QVT-Relational are supported in ModelMorf.

Most notably, there is no support for incremental transformation execution,

transformation extensibility and graphical syntax.

ModelMorf offers no development environment or graphical user interface.

Transformation code may be created using any text editor and executed by calling

the executable with parameters. Since there is no IDE, errors in the code are only

detected when the transformation is executed, though useful messages are given in

case of error. Application conditions are also supported by ModelMorf, via the

when and where clauses of QVT rules. ModelMorf also builds up intermediate

structures, for example for saving the tracing information.

Its main drawback is that, at present, it seems to be an abandoned project

since the Web site has not been update since the version 3 of its beta was released

(December 2006) with no clear sign of a forthcoming release. In addition, there is

very few documentation and we have not been able to get a version of the engine.

Nevertheless, it is worth mentioning that Sridhar Reddy, that was a major

influence on ModelMorf, has been also the greatest influence on the QVT-

Relations specification chapters.

MOMENT-QVT

The MOMENT-QVT is a prototype integrated in the MOMENT

framework (see section 2.2.12) that provides with partial implementation of QVT-

Relations based on the term rewriting formalism MAUDE [87]. Since MOMENT

works with EMF models, MOMENT-QVT allows defining transformation

between EMF models.

Besides it provides with a QVT-Relations editor that supports syntax

coloring, editing facilities and parsing facilities. Once the model transformation is

defined by using the concrete syntax of the QVT Relations language, it is parsed

to get a QVT model definition.

State of the Art 109

MOMENT-QVT provides support for traceability, in the sense that a

traceability model definition, which records what objects of the target model

definition have been generated from objects of the source model definition, is

generated in an automated way during the execution of the transformation.

Declarative QVT: QVT-Relations in Eclipse M2M

The Eclipse M2M project (http://www.eclipse.org/m2m/) is a subproject of

the Eclipse Modelling Project that provides a framework for model to model

transformation languages. In particular, there are three transformation engines that

are developed in the scope of this project: ATL (see section 2.3.3.2), Procedural

QVT (Operational) and Declarative QVT (Relational and Core).

So, Declarative QVT is an Eclipse M2M subproject that aims at providing

a implementation of QVT-Relations. In the M2M project proposal it was said that

―An exemplary implementation will be for the QVT Core language, using EMF as

implementation of Essential MOF and the OCL implementation from the OCL

subproject. The main deliverable for this part of the project will be an execution

engine that supports transformations. The engine will execute the Core language

in either interpreted or compiled form. Following Core, the M2M project will

provide an implementation of the QVT Relations language, based on the QVT

Core execution engine, EMF and OCL. For both languages full language support

will be delivered.‖

The QVT-Relations (QVTR) project was initially led by Compuware, who

passed the baton to Obeo (industrial partner of AtlanMOD , the research group

behind ATL) on July 2007.

Actually, the QVT-Relations implementation targets not QVT-Core but the

ATL Virtual Machine (ATL VM, [180]). The implementation aimed to map QVT-

Relations rules to ATL VM byte code, like QVT-Relations->QVT-Core mappings

are described in the specification. Then, a transformation will be launchable by

providing the ATL VM with a compiled version of the transformation, the models

on which it must run and the metamodels to handle them. The first build of

Declarative QVT was available in October 2008. Trace models, bidirectional and

incremental transformations are not supported yet, but planned to be. A new

version is to be bundled in the forthcoming release of Eclipse, Galileo.

Another Eclipse project, closely related with Declarative QVT is UMLX,

led by Ed Willink [379]. Basically, it is a concrete graphical syntax to complement

the OMG QVT, that was born as a graphical transformation language based on

UML.

http://www.eclipse.org/m2m/

110 Juan M. Vara

It provides accurate QVT models and validating editors for QVT-Relations

and QVT-Core. Indeed, the evolution of the QVTR to QVT-Core transformation

in the QVT specification can be attributed to the usage within ModelMorf and

validation within UMLX. A text editor for (among others) QVT-Relations is

available as part of UMLX, as well as .Ecore models for the ASTs of QVT-

Relations and other languages.

However, it seems that UMLX is in troubles at present. Not long ago, the

author claimed that his progress on a enhanced QVT-Relations graphical language

is very slow since there are numerous issues with OCL and QVT that he has to

work on.

2.3.3.13 QVT-Operational Mappings Implementers

Next, we review the main projects focused on implementing the QVT-

Operational Mappings language.

SmartQVT

SmartQVT [141] is a open-source JAVA implementation of QVT-

Operational Mappings built on top of EMF. It acts as a compiler in the sense that

QVT-Code is compiled to Java source code. This is accomplished by a two-stage

architecture:

 The QVT Parser converts QVT textual syntax into the corresponding

representation in terms of the QVT metamodel, i.e. it builds an abstract syntax

transformation model from the QVT code.

 The QVT Compiler translates the QVT model to a Java program. It uses EMF

generated APIs for the source and target metamodels to execute the

transformation.

This way, the SmartQVT compiler might be used in connection with other

tools capable of producing a QVT model conforming to the QVT metamodel

[273]. Additionally, serialized QVT transformations conforming to the QVT

metamodel can be loaded and executed at runtime.

The first versions, based on a Python QVT parser, did not support error

detection, but recent versions of SmartQVT do. Additionally, syntax highlighting

is available. However, since SmartQVT compiles QVT code to Java code, no

QVT-level debugger is available.

According to the QVT standard, tracing information in SmartQVT can be

retrieved using one of three different resolving operations:

 resolveone. Looks for a target object created from a given source object.

State of the Art 111

 invresolve. Reverse resolve, looks for a source object created from a given

target object.

 resolveIn. Looks for target objects created from a source object by a unique

mapping operation.

Additionally, SmartQVT also supports late resolve, which behaves just like

described above, with the exception that the resolving operation is performed at

the end of the transformation.

Borland Together / QVTO

Borland Together [59] is an Eclipse-based commercial suite quite aligned

with OMG standards. It provides with UML and BPMN editors, BPEL4WS

translation, definition of OCL restrictions and, finally, one of the first

implementations of QVT-Operational Mappings.

Moreover, Together supports model-to-text transformations using JET

templates (we will introduce JET in section 2.3.4.4).

Procedural QVT: QVT-Operational Mappings in Eclipse M2M

In addition, Borland is contributing to the Eclipse QVTO M2M project that

aims at providing with an EMF open-source implementation of QVT-Operational

Mappings. In particular, a text editor, parser, and interpreter for QVT-Operational

Mappings has been contributed by Borland to write .qvto files with some cool

capabilities, like the support for hyperlinks (from usages to declarations).

Actually, Together uses the QVTO from the M2M project but has some

commercial add-ons like debugger or code-completion. Although working with

QVTO you are losing these advantages and using a more instable version, in

exchange, you get access to new features that are not part of the Together release.

QVTo from OpenCanarias

Finally, OpenCanarias, have developed an open virtual-machine

implementation of QVT-Operational Mappings [306]. To that end, they base on

ATC [130], a low-level, imperative model transformation language built upon

Eclipse and EMF. They aimed at supporting QVT, but from an indirect approach

to avoid the cost of potential changes in the specification.

The idea is to inject QVTo specifications into QVTo models. Those models

are transformed into ATC models (that can be showed as a byte code for model

transformation) that are executed on the ATC virtual machine. This way, other

112 Juan M. Vara

transformation languages will be also executable on ATC-VM. Just as Declarative

QVT is compiled to ATL byte code (see section 2.3.3.12 above)

It is worth mentioning that, during the development of OpenCanarias‘

QVTo, several discussions on the newsgroups resulted in the solution of several

bugs in other Eclipse projects, like the OCL one.

In addition, OpenCanarias‘ team plans to support QVT Core as an

intermediate step towards QVT-Relations. However, this project will be much

more challenging since ATC is imperative, in contrast with the declarative nature

of QVT-Relations.

2.3.3.14 QVT Implementers Summary

To summarize, Table 2-4 gathers the main features of existing QVT

implementers.

Table 2-4. QVT Implementers

 SCOPE FRAMWRK ENGINE EMF-Based

D
ec

la
ra

ti
ve

mediniQVT (C) Eclipse JVM EMF

ModelMorf (C) --- JVM NON-EMF

MOMENT-QVT (O) Eclipse MAUDE EMF

Declarative QVT (O) Eclipse ATL-VM EMF

Im
p

er
at

iv
e SmartQVT (A) Eclipse JVM EMF

Borland QVTO (C) Together Borland QVT engine EMF

Procedural QVT (O) Eclipse Borland QVT engine EMF

OpenCanarias QVTo (C) Eclipse ATC-VM EMF

Some remarks can be made:

 The most mature QVT engines at the moment of writing this dissertation

comes from the industry. Therefore, some time is needed in order to get an

open-source QVT engine.

 Most of the implementers run in Eclipse and use the EMF framework as

model management platform.

 Finally, it is not clear which is the best option in order to provide with a QVT

engine: some kind of virtual machine implementation (MOMENT,

Declarative QVT and OpenCanarias QVTo) or a direct implementation

(mediniQVT, ModelMorf, SmartQVT)

To conclude, as we have already mentioned, QVT implementations need

more time to get realy useful and reliable to be used in real projects.

State of the Art 113

2.3.3.15 Others

Here we mention briefly some languages that, due to the state of the

project, its novelty or its low adoption are less relevant but that has some interest,

either as forerunner of present languages or because they own some interesting

feature.

BOTL

The Bidirectional Object-oriented Transformation Language (BOTL, [62,

229]) is a tool for object-oriented model transformations. It works with models

conforming to metamodels defined with a simple sublanguage of MOF. This way,

a UML-based graphical notation is used for BOTL metamodels and model

variables.

Graph-rewriting rules are specified using an UML-like notation. To that

end, an ArgoUML extension could be used in the past. Since BOTL always

transforms object models, the source model is a class model that can be mapped to

UML or MOF meta class. BOTL is not a good option presently, due to the

available documentation and the state of the project that seems to be abandoned.

However, it owns a research interest since it supports bidirectional

transformations, one of the main research fields around MDE in forthcoming years

[99]

MTF

Model Transformation Framework (MTF) [170] is a set of tools developed

by IBM that allows the implementation of transformations between EMF models.

To that end, it provides a simple extensible rule language based on relations (text-

based) called the Relation Definition Language (RDL).

MTF supports dynamic mode restriction [98], i.e. it allows marking any of

the participating in/out-domains as read-only, restricting them to a particular

execution of a transformation. Essentially, such restrictions define the execution

direction. Besides, it supports Java code to select, match, or construct parts of the

model(s), via extensions and custom constraints, which allow you to extend the

MTF mapping definition language. Indeed, the RDL owns a JAVA look & feel.

This work is part of IBM's involvement in the QVT standardization. It was

developed partly in order to prototype concepts that were to appear in the QVT

standard. The intention was to implement more of the specification over time.

We have found a problem in MTF that is recurrent in transformation

languages that claim to follow the declarative style. In the MTF documentation,

the announced programming style is declarative. However, since each relation call

114 Juan M. Vara

explicitly the relation to apply to its contained elements, the transformation

relations are very close to invoked rules. This way the relations are organised to

follow the structure of the model and the structure of the whole transformation is

more sensitive to the model structure. Working this way, the writing of

transformation is less intuitive and more difficult for complex mappings.

Another weak point is the lack of documentation and examples especially

on the way to use UML Profiles and to set properties value of stereotypes elements

Xtend

Xtend [123] is a DSL for extending metamodels, for example with custom

properties for a metaclass. It is used for template modularization and also enables

aspect-oriented templates. As of version 4.1, Xtend can also be used for functional

style model-to-model transformations. However, only simple and limited

transformations are possible, in comparison to ATL, Tefkat and other languages

reviewed so far.

YATL

The Yet Another Transformation Language (YATL, [290]) is a

transformation language developed within the Kent Modelling Framework

(KMF). It is a hybrid language designed to express model transformations and to

answer the QVT RFP [274].

It is described by an abstract syntax (a MOF meta-metamodel) and a

textual concrete syntax (BNF). A transformation model in YATL is expressed as a

set of transformation rules. A YATL transformation is unidirectional. The source

and target models are defined using a MOF editor (e.g., Rational Rose or

Poseidon) and KMF-Studio is used to generate Java implementations of the source

and target models. The source model repository is populated using either Java

hand-written code or GUI generated code provided by the modelling tool

generated by KMF-Studio. The major part of the development of this tool was

done before 2005 and it seems to be withdrawn at present.

2.3.4 Model-to-Text Transformation Languages

This section focuses on another sub-group of specific-task tools: code

generators. In fact, code generators are also model transformation engines

producing models with a very low abstraction level. Another feature of these

models is that they are textually represented. However, the advent of textual

State of the Art 115

editors for high level models implies that textual representation of models is not

just proper of low level models.

In the following, we provide with a brief overview of the most adopted

proposals focused on generating code from models, though some of them might

offer support for other MDE tasks.

All the reviewed engines follow one of the model to code approaches

identified by Czarnecki et al. in [97]: template based and visitor based.

Template-based generation is similar to Web dynamic programming, like

JSP (Java Server Pages, [334]) or ASP (Active Server Pages, [244]) pages. Each

template contains text blocks and control structures so that the latter combine the

text blocks with the information gathered forrm the source model/s.

By contrast, in visitor based approaches the correspondent code is written

to an output stream while the internal representation of the model is visited.

2.3.4.1 Acceleo

Acceleo [1] is an open-source code generator natively integrated in Eclipse.

It supports template-based code generation for J2EE (Struts/Hibernate), Java, C#,

Php and Python. Acceleo tooling is quite complete and provides many features for

templates editing, such as syntax highligthing, meta-model and scripts based

completion, real time error detection and real time preview. Unfortunately,

documentation is not so good.

To implement complex operations, Acceleo supports a kind of black-box

operations coded in JAVA that can be invoked from inside the templates, so-

called Services. This allows for extensibility while keeping templates clean and

easy-to-read.

Acceleo is based on two frameworks for model handling: EMF and MDR

(NetBeans project), therefore it is fully EMF compliant

2.3.4.2 Acceleo/MTL

The Model To Text project (M2T, http://www.eclipse.org/modeling/m2t/)

is an Eclipse project focused on the generation of textual artifacts from models. In

the context of this project, the MTL subproject was started at mid of 2008 in

response to the final version of the OMG standard for model-to-text

transformations [266]. Its objective was to provide with an implementation of such

specification.

Likewise, with the advent of the standard, people from Acceleo made a

movement towards standard compliance and took the lead on the MTL project. As

a result, the development of a new version of Acceleo, aligned with the OMG

116 Juan M. Vara

standard, was addressed and the MTL project was renamed to Acceleo. The first

releases have been liberated in March 2009.

The development strategy is to stop having two similar projects in two

different places: Eclipse MTL and Acceleo, and promote just the Eclipse one as

the next generation of Acceleo. Actually, this is not the case: although they are

similar, the syntax of the two Acceleo versions is different. The most recent one is

entirely based on OCL.

At the moment, perfect stability is provided just in Acceleo original version

since the Acceleo/MTL project is still under continuous development.

2.3.4.3 AndroMDA

We have already presented AndroMDA [17] in section 2.2.2. However, we

mention it here since its primarily goal is code generation. Actually, its goal was

to provide with a complete MDE framework but right now, it is just a code

generator.

AndroMDA follows the template-based approach, though templates are

known as cartridges. It bundles a number of cartridges for current development

kits, like Axis, jBPM, Struts, JSF, Spring or Hibernate. In addition, new cartridges

might be developed by extending a generic cartridge so-called Meta.

AndroMDA tooling is just adequate and provided documentation is more

than enough. Besides, EMF compliance is planned, though not supported at the

time of writing this dissertation.

2.3.4.4 Java Emitter Templates

JET (Java Emitter Templates) [293] is another component of the Eclipse

M2T project that was developed by IBM. Indeed, it is the technology used for

code generation in EMF, although a migration to an adapted version of Xpand (see

section 2.3.4.6) is quite probable.

Its distinguising mark is its JAVA-like syntax what makes a JET file

looking as a JSP page. Thereby, JET is especially appealing for JAVA developers.

In contrast with some of the mentioned languages that use OCL or adapted OCL

for navigating models, JET uses XPath [382], what results in too complex

expressions when navigating source models. That is, the main problem of JET is

that it is too JAVA-oriented. In fact, JET admits any XML file as input. It was not

devised to work specifically with models.

2.3.4.5 MOFScript

MOFScript [262] was one of the first submissions in response to OMF‘s

RFP for a model-to-text standard [267] developed in the context of the European

State of the Art 117

projects Modelplex and Modelware. It follows a visitor-based approach, is fully

integrated in Eclipse and uses the EMF model handler. Actually, a MOFScript

program is basically a parser that navigates the source model while generates an

output stream that will be the code produced.

Until recently, it has been the most commonly adopted, mainly because it is

quite easy to use (the imperative approach result more intuitive to non-experts on

MDE) and it was one of the first works on this line. Besides, MOFScript tooling

and the companion documentation have proved to be enough to develop model-to-

text transformations in different contexts.

2.3.4.6 Xpand

Xpand [178] is a statically template-based language for model-to-text

transformation integrated in OpenArchitectureWare (see section 2.2.13) and thus

in Eclipse. Indeed, it is one of the components of the Eclipse M2T project.

Xpand itself has basic syntax but uses an underlying expression language

and Xtend (see section 2.3.3.15) to provide powerful model-to-text (and even

model-to-model) capabilities. A transformation template is defined for a specific

metaclass and executed on all the objects of the source model that conforms to

such class. Besides, transformations can be composed and inherited. The output of

a transformation template is a concatenation of literal code and properties of the

model element.

It also uses EMF as model handler and its syntax is OCL-like, though not

pure OCL. It is comparable to any modern template engine, for instance Velocity

or Smarty. An interesting detail about Xpand is that an adpated version of the

language is used in the GMF generation process. In particular, the GMF project

has made a movement towards standard-compliance by refactoring its version of

Xpand by removing the use of Xtend in favour OCL and Procedural QVT (see

section 2.3.3.13).

To conclude, it is worth mentioning that Xpand tooling is rather complete

as well as Xpand documentation. Nevertheless, no aligment with the OMG

standard is planned.

2.3.5 Summary & Discussion

In order to provide with an overview of the existing proposals, Table 2-6

summarizes the evaluation of selected features for the reviewed works. Besides,

sections 2.3.5.1 and 2.3.5.2 put forward the main conclusions and ideas gathered

118 Juan M. Vara

from such review. The features evaluated, that were presented in section 2.3.2.1,

are summarized on Table 2-5.

Table 2-5. Evaluated features for model transformation languages

FEATURE DESCRIPTION VALUES

SCOPE Commercial, Open-Source, Academic C/O/A

APPROACH

Adopted approach: declarative,

imperative, hybrid (prevailing some

style), graph-based, template-based

DEC/IMP/

HYB(DEC/IMP)

/GRAPH/TEMPLATE

DIRECTION Unidirectional / Bidirectional UNI/BI

TOOLING Capabilities of related IDE: LOW/MEDIUM/HIGH

DOCUMENTATION Available documentation LOW/MEDIUM/HIGH

QVT/MTL-

COMPLIANT

Aligment degree with the corresponding

standard (may be future work)

FULLY/NONE/

PART/PLAN

FRAMEWORK
Framework in which the language is

integrated, if there is one
Framework Name/ ---

EMF-BASED (EMF)

It is based on EMF or, ta least there is a

bridge available (EMF) based /

(BRIDGE) available / NON-EMF

EMF/BRIDGE/

NON-EMF

Table 2-6. Model Transformation Languages

 SCOPE APPRCH DRCTN TOOLING DOC
QVT / MTL-
Compliant

FRAMWRK EMF-Based

AGG (O, A) GRAPH UNI HIGH MEDIUM NONE --- NON-EMF
M

2
M

ATL (O, A) HYBDEC UNI HIGH HIGH (PART/PLAN) AMMA EMF

ATOM3 (O, A) GRAPH UNI HIGH MEDIUM NONE ATOM3 NON-EMF

BOTL (O, A) GRAPH BID MEDIUM LOW PART --- NON-EMF

GREAT (O, A) GRAPH UNI HIGH MEDIUM NONE GME NON-EMF

Kermeta (O, A) IMP UNI HIGH HIGH NONE Kermeta BRIDGE

mediniQVT (C) DEC BID HIGH LOW FULLY Eclipse EMF

ModelMorf (C) DEC BID LOW LOW PART --- NON-EMF

MOFLON (O, A) GRAPH BID MEDIUM LOW PART MOFLON NON-EMF

MOLA (O, A) GRAPH UNI MEDIUM HIGH NONE MOLA NON-EMF

MTF (O) DEC BID MEDIUM LOW PART Eclipse EMF

RubyTL (O, A) HYBDEC UNI HIGH MEDIUM NONE EMF BRIDGE

TefKat (O, A) HYBDEC UNI HIGH MEDIUM NO Eclipse EMF

VIATRA (O, A) HYBGRAPH UNI HIGH MEDIUM NO Eclipse BRIDGE

XTend (O) TEMPLATE UNI MEDIUM HIGH NO oAW EMF

YATL (O, A) HYBRID UNI LOW LOW NO KMF NON-EMF

ACCELEO (O) TEMPLATE HIGH MEDIUM NO Eclipse EMF

M
2

T

ACCELEO -MTL (O) TEMPLATE HIGH LOW FULLY Eclipse EMF

AndroMDA (O) TEMPLATE MEDIUM MEDIUM NO AndroMDA PLAN

JET (O) TEMPLATE HIGH HIGH NO Eclipse NON-EMF

MOFScript (O, A) VSTOR-BSD HIGH HIGH NO Eclipse EMF

Xpand (O) TEMPLATE HIGH HIGH NO OAW EMF

120 Juan M. Vara

2.3.5.1 On Model-to-Model Transformation Languages

After choosing EMF as underlying modelling platform to build M2DAT,

the selected transformation language has to be able to work with EMF models. In

some sense, one might think that the bet on EMF reduces the scope of the search.

However, if you take a look at Table 2-6 you notice that limiting our selves to

EMF-compliant tools is not a restricting decision at all. In fact, the opposite

decision would be much more restrictive since the most commonly adopted and

mature engines are EMF-based tools.

Taking this into account, the main conclusion obtained from the review is

the selection of ATL as the (preferred) technology to develop model-to-model

transformations in M2DAT. Nevertheless, we will test other engines running atop

of EMF in order to ensure that our decision was correct. In the following we put

forward some remarks related to these decisions, though we will elaborate more

on this in Chapter 4.

During the last years, we have worked extensively in the development of

model transformations. This background let us state that the most suitable

approach to address the development of model transformations is to use a DSL

that follows the declarative style. However, the aid of some imperative

constructions is needed to keep a readable transformation. In other words,

although purely declarative programming is enough for any (model

transformation) task, in some scenarios the imperative alternative brings simplicity

to the transformation. Therefore, we bet for an hybrid transformation language that

follows the declarative style. As well, we discard the graph-based approach

because its usability for complex transformations can be put into question, though

it is probably more appealing from a purely researcher point of view. Likewise,

though the fact that graph-based transformations can be represented graphically is

another advantage, it might be extended to any model transformation approach

since the final QVT specification defines a graphical notation for model

transformations.

As mere users of the transformation language, one of our main concerns

was to check the available documentation. A common problem we have detected

is that the toolsmiths and the practitioners of each transformation language are the

same: only those that have developed the language use it. This results in the lack

of application scenarios and made us infer that they are not devised to be used by

non-expert users. Besides, the recurrent use of toy examples (like the well-known

class to relational [46]) instead of real complex case studies make us wonder about

the feasibility of using those languages in real projects. In this sense, ATL is the

State of the Art 121

best option since the ATL project site (http://www.eclipse.org/m2m/atl/) provides

with a complete set of successful applications in projects from different domains.

Additionally, the ATL newsgroup provides with a constant and valuable feedback

where the user might find the answers to problems that some other have faced

before.

As well, though present QVT compliance is not mandatory for us, plans for

future alignment are a must. In this sense, ATL seems to be also the most

appealing. As we have mentioned, a QVT engine running atop of the ATL-VM is

under development in the Eclipse M2M project. Therefore, ATL and QVT

alignment will allow us to translate M2DAT model transformations to standard-

compliant transformations without an extra effortwhen such engine is finished.

Last, but not least, the coupling of ATL with the ATLAS Model Weaver

[113] will let us develop customizable transformations with almost no extra cost.

As we will show this ie one of the main contributions of M2DAT regarding how

model transformations are handled in existing tools supporting model-driven

development of software.

All these factors have worked in favour of the selection of ATL as model

transformation technology for M2DAT. Nevertheless, we will revisit thoroughly

some of the conclusions sketched here in Chapter 4.

2.3.5.2 On Model-to-Text transformation Languages

First of all, we would like to put forward our bet for model-to-text

transformation as the way towards code generation againts stand-alone parsers.

We will explain this decission on section 4.6.1

Once stated that we will use a (EMF-based) model-to-text DSL for code

generation, we finally decided to use MOFSript. Among the reviewed works, the

most mature ones when we started to work on this thesis were MOFScript,

AndroMDA and JET. However, AndroMDA and JET did not not work with EMF

models, thought it was planned to do so. Actually, AndroMDA will not do it since

the project‘s leader, Mattias Bohlen, has withdrawn it. Regarding JET, it was not

devised to work with models. It is more a template-based code generation

language than a proper model-to-text transformation language. As a result, EMF

projects, like GMF, are replacing JET as code generation technology in favour of

an adapted version of XPand. These facts made us decide for MOFScript.

Besides, MOFScript was the most contrasted since it was one of the first

submissions in response to the OMG RFP for a Model-to-Text standard [267]. It

provides with a complete tooling, including syntax highlighting, code completion

and the like and it is also the most complete regarding documentation.

122 Juan M. Vara

Furthermore, its learning curve is lower since it follows the visitor-based approach

(imperative style). This way, coding MOFScript transformations results easier

since it is similar to traditional programming.

Nevertheless, the template-based approach seem to be gaining acceptance.

as the OMG‘s MOFM2T standard confirms [391]. This wasy, template-based

languages that appeared after we decided for MOFScript, like Xpand are

becoming widely adopted. Therefore, we are currently testing Xpand with the

model-to-text transformations bundled in the reference implementation of

M2DAT (M2DAT-DB, see Chapter 5). Notice that this is one of the advantges of

M2DAT specification. At any time we are able to replace the technology used for

a specific MDE task for another technology supporting the same task, at very low

cost.

2.4 Model-Driven Software Development Tools

The focus of this section is to evaluate how existing tools support (if they

do) the functionality provided by M2DAT. By contrast, section 2.2 reviewed

existing tools for supporting MDE tasks to identify the best option for building

M2DAT, while section 2.3 was designed to study existing model transformation

languages in order to select one to be used in M2DAT. That is, previous reviews

aimed at defining the development framework for M2DAT while the following is

focused on comparing M2DAT with tools devised for similar objectives.

In particular, this section focuses on reviewing existing tools that support

model-driven development of software for two speficic domains: Web Information

Systems and modern database (DB) schemas (in turn, we will distinguish those

that support development of XML Schemas and those focused on ORDB

schemas). We focus on these domains because:

 M2DAT is a technical solution for model.driven development of Web

Information Systems.

 M2DAT-DB, the reference implementation for M2DAT, is a tool for model-

driven development of modern DB schemas.

2.4.1 Evaluation Criteria

We need to have effective criteria to compare existent tools for model-

driven development of software. To that end, we focus on identifying a series of

common features that are interesting from the point of view of MDE, such as

State of the Art 123

visual notation used, handling of model transformations, etc. Next, we describe

those features.

 Methodology. [VALUES: name of the methodlogy / ---]

One of the main inputs in order to evaluate the tool is studying the underlying

methodology. To that end, regarding tools for model-driven development of

WIS, since all of them are the result of implementing a given methodology,

we will provide with a brief overview on the methodology supported by the

tool. As well, we might assume that the underlying methodology for tools

supporting model-driven development of relational DB schemas is the

different works from Batini et al. around the mapping of ER to relational

models [33]. On the other hand, just some of the tools for model-driven

development of XML Schemas support a methodology, and just to some

extent.

 Paradigm. [VALUES: Object-Oriented, Data-Centered, Structured, Semi-

Structured, Service Oriented].

Although we can not state that each tool follows just one software

development paradigm (apart from the model-driven one), all of them some

prevails some style over the rest. Here we focus on identyifing which one is

the preferred in each case. This way, the most of tools for WIS development

follow the Object-Oriented paradigm, while all the tools for model-driven

development of XML Schema follow the semi-structured paradigm.

 Scope/Target. [VALUES: Commercial / Academic / Open-Source]

Once again, we want to identify if it is a commercial, an open-source or an

academic tool. Note that the same tool could fall in two categories.

 Modelling Basis. [VALUES: UML, Ecore, RDF, XML/ E/R]

This feature has to be evaluated in order to assess how complex it would be to

align the tool with MDE standards. For instance, here we will focus on

identifying if the modelling languages supported by the tool are UML

profiles, MOF-based languages or Ecore-based languages.

 Modelling Notation. [VALUES: UML-like, Nodes & Edges, Nested Boxes,

UML Profile, Tree-like]

This point is directly related with the previous one. While previous point

refers to the abstract syntax of the modelling languages supported by the tool,

i.e. the basis of the underlying metamodels, this point refers to the concrete

syntax. That is, in case model editors are provided, which is the notation used.

 Validation. [VALUES: None to Excellent]

124 Juan M. Vara

We want to identify if the tool supports model validation in the form of

restrictions defined at metamodel level and later checked over terminal

models.

 Standardization. [VALUES: None to Excellent]

Here we aim at evaluating the level of compliance to standards. In contrast

with the studies showed so far, here we consider not only OMG, but also

standards from other organizations, like RDF [387]. Notice that this feature is

directly related with the modelling basis of the tool. As we have mentioned,

using UML, Ecore or MOF as modelling basis implies a higher level of

standardization.

 Abstraction layers covered. [VALUES: CIM, PIM, PSM, PDM]

Some tools provide support for the complete development process, from user

requirements to final deployment, while other cover just a part of the

development process. One way to identify the concrete support provided by

each tool is to state which abstraction levels it covers (CIM, PIM, PSM).

 Extensibility. [VALUES: None to Excellent]

This feature evaluates the ease of adding new capabilities or modify the

existing ones, either ad-hoc or connecting with other tools. The evolving

nature of MDE implies the need to provide with extension mechanisms in

order to integrate the implementation of new advances in the existing tool.

 Usability. [VALUES: None to Excellent]

We refer to the ease of using the tool. This implies studying if the tool owns a

user-friendly front-end, the quantity and quality of available documentation,

not only manuals but also collaborative media, like forums or wikis, etc. For

instance, we would like to know if self-configuration of model

transformations is supported or it is the user who has to configure the

execution of the model transformations that have to be carried out during the

development process.

 Interoperability. [VALUES: None to Excellent]

We are interested in identifying if the models handled by the tools, can be

exported / imported to / from other tools.

 Code Generation. [VALUES: None to Excellent]

This feature evaluates the level of code generation supported. It might be able

to generate just some skeleton of the working-code, or it might generate a

fully functional artefact.

State of the Art 125

 Deployment Platforms. [VALUES: J2EE, .NET, DB Logical Model

targetted]

Another interesting feature to study is which are the platforms targeted by the

tool. To put it another way, which are the technological platforms the tool is

able of generating source code for: J2EE, .NET etc. Notice that, when

referring to DB Schemas we focus just on the logical model targeted (XML,

Relational, Object-Relational).

 Model Transformations (MT). We have already mentioned a number of

times that model transformations are the key of any MDE proposal since they

are the only way to automate them to support MDE promises of fast, less

costly software development. Therefore, we are very interesting in carefully

reviewing how model transformations are handled in each of the tools under

study. To that end, we identify a set of model transformation features.

Obviously, they only apply if the tool do support some kind of model

transformation, either model-to-model or model-to-text.

 DSL. [VALUES: None to Excellent]

Since some of these tools existed before the advent of MDE, the

mappings between the supported models are hard-coded in the tool. This

is a bad practice, not only from the point of view of MDE, where it would

be inadmissible, but also from the point of view of traditional software

engineering, since it violates the principles of abstraction and

modularization. Therefore, we aim at identifying to what extent can be

said that the mappings are coded with an external DSL for model

transformation.

 Automation. [VALUES: None to Excellent]

We are interested in the level of automation of the model transformations

supported. Some tools just provide with mappings that imply the need of

manual refinement of target models after transformation execution.

 Customizable. [VALUES: None to Excellent]

In our opinion, a completely automatic process from requirement to final

deployment is not only unfeasible, but also not recommendable. Design

decisions have to be introduced to drive the development process. In a

MDE context where the different steps of the development cycle should

be automated by model transformations, the only way of introducing such

design decisions is providing with a mechanism to parameterize such

model transformations. Therefore, we want to identify if the tool support

126 Juan M. Vara

some degree of customization to drive the execution of model

transformations.

 Supported Types. [VALUES: CIM2PIM, PIM2PiM, PIM2PSM,

etc.]

Another feature that must be studied is the kind of transformations

supported by the tool. Typically, you find vertical transformations from

PIM to PSM mappings, but also CIM to PIM and horizontal

transformations (PIM to PIM and PSM to PSM) should be implemented

to support. In fact, business process models (defined at CIM level) are

gaining acceptance each day as a first step in the development process.

Therefore, we have to provide with tools that support such models and

the mappings from them to the rest of models that compose the system.

 Formalization. [VALUES: None to Excellent]

Finally, we would like to check if the mapping rules implemented by each

tool have been formally specified in some way, whether using the QVT

standard or some formal language. Formalizing the mappings before

implementing them, leads to detection of errors and inconsistencies in the

early stages of software development and can help to increase the quality of

the built models as well as the subsequent code generated from them.

Likewise, the formalization of mappings simplifies its later

implementation.

In the following sections, we study how existing tools for model-driven

development of WIS behave in relation with the features just described.

2.4.2 Tools for Model-Driven Development of Web Information

Systems

This section provides an overview of frameworks supporting proposals for

model-driven development of Web Information Systems (WIS) development, so-

called Model- Driven Web Engineering (MDWE, [197, 252]). Tools falling in this

category are the result of implementing methodological proposals for WIS

development that covered the traditional aspects related with WIS, like

presentation layout, data persistence, business processes modelling or architecture

designing. All of them share a common basis: they define a set of models that

have to be specified along the different steps of the development process.

The following section follows the same structure of the previous reviews.

They first give a wide overview of the tool under study. Next, they conclude by

State of the Art 127

summarizing how it behaves regarding the features collected in the evaluation

criteria.

2.4.2.1 ArgoUWE (MagicUWE)

ArgoUWE [195, 196] was the result of extending the open-source

modelling tool, ArgoUML [297], with capabilities for modelling the content and

navigation structures of Web applications [206] comprised in the UWE

methodology (UML-Based Web Engineering, [198]). Later, new functionalities to

model the business domain and behaviour of Web applications driven by the

workflow were also added. Besides, support for checking OCL constraints over

UWE models was also bundled.

The main problem of ArgoUML (and thus ArgoUWE) was the non-support

for UML 2.0. However, ArgoUWE is not supported any more, since the authors of

UWE have shifted the focus to MagicDraw [258], another modelling tool based on

UML. This way, technological support for UWE is now distributed as a plug-in

for MagicDraw, so-called MagicUWE [220].

Although Argo/MagicUWE has proven to be rather efficient for modelling

Web applications, its main drawback from the point of view of MDE is the way

transformations are handled. It provides with a set of predefined transformations

(from content model to navigation model, from that to the presentation model,

etc.) that, at best, are embedded in the plug-in code. This way, it is rather hard to

incorporate on the tool any modification over the methodology. Moreover,

automatically derived models have to be manually refined by the developer [205].

By contrast, this issue will be solved in M2DAT with the use of annotation models

processed by customizable transformations.

In addition, UWE models are said to be UML profiled models and thus

UML-Compliant. Actually, the ATL transformations included in [205] shows that

UWE models conforms to a common metamodel defined in the KM3 language

[184]. Thus, UWE models are not UML-Compliant, but MOF-Compliant.

Extending MagicUWE is allowed, though it has not been conceived to be

extended. Indeed, there is no documentation on how it has been developed, neither

on how it could be extended. Moreover, you have to use the extending capabilities

of MagicDraw, a tool whose main objective, in contrast with Eclipse, was not

providing with an open-source IDE composed of extensible frameworks.

Since both ArgoUWE and MagicUWE have been developed on top of

well-known industrial environments, we could infer that they are user-friendly.

Moreover, the documentation available at the UWE site (http://uwe.pst.ifi.lmu.de/)

contributes to MagicUWE usability.

128 Juan M. Vara

By the time of writing this dissertation, MagicUWE did not provide with

code generation capabilities. UWE authors were developing the support to

generate code for the Java Server Faces platform from UWE models. Besides, in

[206], JAVA code generation is tackled but it is still to be integrated in

MagicUWE.

UWE uses UML-profiled models, thus they should be easily exported to

other tools. However, the well-known problems around XMI versioning, etc. put

this into question. This way, in terms of interoperability, the use of a common

underlying modelling framework like EMF brings more advantages than the use

of pure UML models. Besides, UWE models are defined at CIM, PIM and PSM

levels and the targeted platform (once the code generation is integrated) is JAVA.

Likewise, the authors are working to integrate Service Orientation on the UWE

methodology [291]. Thus, Service Orientation capabilities on the UWE tool will

delay for a while.

Regarding constraints checking, it is hard to say how they are implemented

in ArgoUWE. Indeed, according to [184] they are implemented by means of ATL

queries. Although this approach works fine, it is not the most efficient. The

checking process returns a Boolean value stating whether the model fulfils all the

defined constraints or not. It does not distinguish which was the restriction

violated, neither proposes a tentative or fix to solve the problem. Nevertheless,

according to [199], constraints are defined with OCL but are hard-coded in

ArgoUWE using JAVA.

Something similar happens for model transformations in UWE. Once

again, all the mappings comprised in [184] are implemented with ATL.

Nevertheless, in [199] is stated that not only ATL, but also QVT (just for

specification tasks) and hard-coded JAVA rules are used. As far as we know, the

real situation is that, though there are ATL transformations between some of UWE

models (not all of them) they are still to be integrated into MagicUWE. At present,

they are hard-coded in the tool. Besides, though there are wizards and launchers to

invoke the execution of the transformations, the output models need manual

refinement. In addition, the user has no option to drive the mapping process. Any

customization is done by means of such manual refinement over the output

models. Regarding the type of the transformations supported. There are PIM2PIM

and PIM2PSM mappings already integrated. Moreover, CIM2PIM mappings are

described in [184], but still to be integrated in MagicUWE. To conclude, we

would like to point out that only those mappings specified with QVT can be

considered as formalized and, as mentioned before, this is not the case of all the

mappings comprised in UWE.

State of the Art 129

Finally, although UWE models defined with ArgoUWE could be formally

validated using Hugo/RT [29], there is no way to validate UWE models from

MagicUWE nowadays.

To sum up, we will focus just on evaluating ArgoUWE features.

ArgoUWE follows the object-oriented paradigm. The modelling basis is UML

since UWE models are UML profiles. Therefore, the modelling notation is UML-

like. Constraints checking is supported but hard-coded in the tool. We may qualify

it as rather standardized since it was based on UML. UWE models cover CIM,

PIM and PSM levels and they are translated into J2EE applications. ArgoUWE

was not devised as an open framework, thus it owns a low level of extensibility.

By contrast, you might use the capabilities provided by other tools with

ArgoUWE models, since they are expressed in XMI (once again, this just a

theoretical statement since XMI has proven to be rather unsuccessful). Besides,

being integrated into ArgoUML plus available documentation results in an

acceptable level of usability. One of the main concerns with the tools is the way

mode transformations are addressed. Some of them are hard-coded in the tool.

Some others are specified with QVT but we guess that when it comes to

implementation, they are also hard-coded in the tool. Finally, some other are

implemented with ATL. They give some level of automation to the development

process, but the models generated have to be manually refined. Regarind

abstraction layers covered, just PIM2PIM and PSM2PSM mappings are covered,

though CIM2PIM mappings are to be integrated. Recently, some work to support

Service Orientation has being undertaken. Finally, formal validation of some

UWE models was supported.

2.4.2.2 WebRatio

WebRatio [4] supports WebML [6], a language for expressing the structure

of Web applications with a high-level description. It offers different models,

together forming a website, namely, structure, derivation, composition, navigation

and presentation models. Since the version 5.0, it is released as a set of Eclipse

plug-ins [5]. Although it was devised in academics, presently it is a commercial

tool distributed by WebModels, a spin-off created in 2001 from Polytechnics of

Milan.

WebML was born as a language for modelling data-intensive Web

applications [79] based on the E/R model [82]. Earlier versions of the supporting

tool, WebRatio, supported WebML metamodels defined in the form of DTDs

(Document Type Definition, [390]). Needless to say, DTD is not the best approach

for modelling purposes [38] and when compared with MOF as a metamodelling

130 Juan M. Vara

language, there is no space for discussion. Moreover, working this way the

advantages that MDE bring to Web Engineering, such as a common exchange

format or powerful model transformations, are lost. Indeed, model

transformations, in particular code generation to JAVA and JSPs, were coded

using the XSLT language [389]. We have already mentioned its shortcommings

when used for complex transformations [342]. Currently, XSLT is aided by ANT

and Groovy technologies but still seems too archaic to support a MDE approach.

Recently, a MOF-based metamodel (indeed, Ecore-based) was proposed

and implemented [310] to overcome these drawbacks. The metamodel was derived

semi-automatically from the DTD. In addition, some work has been done to

express WebML metamodels in the form of UML profiles [251].

Although WebRatio editors are built on top of GEF [250] and they use a

UML-like notation, the lack of an underlying common metametamodel hampers

interoperability with other tools and obviously implies a low level of

standardization for the whole framework. Code generation, though archaic, is

quite efficient and the targeting platform is JAVA. WebRatio does not support

modelling the business domain, since the model that drives the development

process is the data model (an E/R diagram). Thus, we can infer that the CIM layer,

at best, is covered in a very limited way. To conclude, WebML has incorporated

extensions for workflow-driven Web applications and Web Services, we may say

that it owns (limited) SOA capabilities.

Finally, although WebML and WebRatio sites provides with

documentation on how to apply WebML, the use of WebRatio is not so

documented or, at best, not freely available, since training courses are sold through

the Web site.

2.4.2.3 WebTE

WebTE [234] is an UML tool that supports the XMI standard. From the

models of the Web application defined in WebSA [235] and OO-H [237], plus a

UPT transformation model (a language for model transformation [236] based on

the use of UML specifications serialized to JMI), WebTE generates an integration

model that is transformed into working code using Velocity templates [18].

WebTE does not provide with a graphical interface to define such models.

In fact, it is just a Web interface to upload the mentioned models and launch the

transformations.

Regarding the evaluation criteria, WebTE‘s follows the object-oriented

paradigm. Its modelling basis is UML while no modelling notation can be

identified since it does not provide with model editors. Besides, there is no support

State of the Art 131

to check constraints over the models handled. It owns a high level of

standardization since all the artefacts are expressed in XMI format and covers

CIM, PIM and PSM levels. There is no way of extending the tool since it is a

closed environtment and the lack of graphical editors (apart from the Web

interface to load the models to process) and documentation results in a low level

of usability whereas the use of XMI provides a high level of interoperability (as

mentioned a numer of times, this is tru just in theory). Some code is generated for

J2EE and .NET platforms. It uses a DSL for model transformation (so-called

UPT) and provides with fully automatic transformations. However, they are just

CIM2PIM and PIM2PSM mappings and does not support any way of

customization. Finally, we can say that the mappings are somehow formal since

they are expressed with a UML profile. It seems the project is in an idle state, thus

no support for Service Orientation has been incorporated. Finally, there is no

support for formal validation of WebTE models.

As part of a fuller discussion on WebTE, we can state some issues related

with the tool. First and foremost, the lack of model editors is a serious drawback.

Indeed, it recommends the use of an UML editor since all source and target

models are provided in XMI format. We have already mentioned the inherent

problems of XMI.

In addition, UPT expressiveness might be put into question. We have

reviewed its metamodel as well as some examples, and we cannot state how it will

perform with complex models. Besides, those transformations are somehow hard-

coded in the components invoked from the Web interface and the user has no way

to drive their execution.

2.4.2.4 OOWS Suite

The OOWS Suite [347] is the framework that implements the OOWS

method [136]. The OOWS method is an extension to the OO-Method for Web

applications development that adds two new models, namely, presentation and

navigation, to capture the navigational and presentational aspects of Web

Applications. In turn, the object-oriented software development method (OO-

Method, [289]) is an automatic code generation method that produces the

equivalent software product from a conceptual specification of the system.

OOWS is similar to UWE since a navigation model represents the

navigational aspects of a Web application as views of classes from a class diagram

(we might see this as a content model). In contrast, a dedicated presentation model

for further abstraction of the user interface is not available and the presentation

aspect is integrated with the navigation.

132 Juan M. Vara

In essence, the OOWS suite is a framework for integrating the business

logic collected in OO-Method models with a Web Interface produced from OOWS

models. Therefore, the contribution of the OOWS Suite is basically the GMF-

based editors for OOWS models, plus Xpand templates (see section 2.3.4.6) to

generate the Web interface. Finally, integration between component objects

(COM+, J2EE, etc) and the generated Web interface (PHP-based) is done by

means of XML messages.

OOWS models use a UML-like notation based on custom metamodels. In

fact, an ad-hoc extension to OMG‘s BPMN is used to model the business process.

Such business process model is the source of a model transformation that is coded

in QVT-Operational Mappings. It returns a PIM navigation model that has to be

manually refined and later transformed into a PSM. Finally, the code generation

lies over OlivaNOVA, the commercial tool that implements the OO-method [76].

However, the navigational model of OOWS is actually defined by

specifying a set of views over the classes collected in the structural model from

the OO-Method. To use it in the OOWS framework, a previous XSLT

transformation has to translate the XML format used by OlivaNOVA to XML-

Ecore format. The imported model should not be modified in OOWS Suite since

OlivaNOVA relies in it to later generate the business logic.

Without considering technical details, our main concern with the OOWS

method is that it emphasizes the use of conceptual models for generating both

presentation and behavioural aspects. The use of conceptual models for

presentation aspects can be put into question, but for navigation aspects, it is

categorically erroneous. Instead, behavioural aspects have to be captured in the

business process models that should drive the development process. Indeed, the

authors state that following their approach ―some minor details are still to be fixed

directly in the final code‖.

Regarding model transformations, the PSM has been completely omitted.

Indeed, in [347] the authors state that ―Each transformation engine is composed of

four elements that define its code generation strategy: (…) An Application Model

(PSM) for each target platform (Java, .Net, ASP) that represents its technological

aspects. The application model does not need to be modified by analysts because

there is a clear relationship between Conceptual Model elements and Application

Model elements. For this reason, it is hidden inside the transformation engine.‖ (p.

9). Obviously, hard-coding transformations in supporting tools is not a good MDE

practice. In addition, asserting that conceptual elements are univoquely mapped to

deployment components is also too ambitious.

State of the Art 133

To sum up, the OOWS suite adopts the object-oriented approach and is

based on two types of DSLs, thus two types of modelling basis are identified:

Ecore metamodel and ad-hoc metamodels (based on OASIS, a language for

specification of object-oriented systems [288]). Its editors use a UML-like

notation and no constraint checking over terminal models is supported. Note that,

since PIM models are directly translated into code, nor CIM neither PSM levels

are covered. We might qualify the tool as partially extensible since it is partially

based on EMF (open-source and highly extensible) and OlivaNOVA (a

commercial tool not extensible). Usability is disminished by the absence of

documentation and again it is partially interoperable (EMF versus OlivaNOVA).

Code generation is supported for J2EE, .NET and COM technological platforms.

Model transformations are hard-coded in the tool in the case of OlivaNOVA,

while some XSLT transformations allow combining OlivaNOVA models with

those from the EMF editors of OOWS suite. They are fully automatic but does not

lend any space to customization. Since it moves from PIM models to working

code, just PIM2Code mappings are supported. No Service Oriented functionality

is planned and no formal validation or specification of models is supported.

2.4.2.5 HyperDE

HyperDE (Hypermedia Developing Environment, [260]) is a combination

of a MVC (Model-View-Controller [148]) framework and a development

environment for creating semantic Web prototype applications. It is based on the

Object-Oriented Hypermedia Design Method (OOHDM, [314]), the first method

that postulated separation of concerns for Web applications, and its successor, the

Semantic Hypermedia Design Method (SHDM, [217]).

This way, from OOHDM models plus a user interface specification (views)

and following the MVC pattern, HyperDE generates the Web application.

Actually, SHDM models are used, thus the object model is derived from RDF

descriptions [387] that provides with semantic descriptions of both data and

metadata.

HyperDE inherits a distinguishing trait from SHDM: all depicted models

conform to a common metamodel that collects all the abstractions used along the

development process.

It is implemented as a modification of the Ruby on Rails framework [301]

where the persistence layer (ActiveRecord) has been replaced by another one

based on a RDF database. All HyperDE functions are accessed via Web interfaces.

In addition, HyperDE also generates a Ruby-based API to manage both the model

and SHDM‘s meta-model.

134 Juan M. Vara

In summary, HyperDE does not supply visual editors. The level of

standardization is quite low according to OMG, since the metamodel is an ad-hoc

metamodel and no modelling framework is used. In contrast, the use of RDF

models can be showed as a step towards interoperability. Besides, extending the

tool is feasible but challenging, though the Web site provides with a huge amount

of documentation. Like the OOWS suite, it omits the PSM level and goes directly

from PIM to working-code. Regarding SOA capabilities, we may state that it is

aligned in some sense with Service Orientation since it is focus on the semantic

Web. Finally, no model transformation (as understood in the MDE context) is

bundled in the tool.

The results of this review confirms that although HyperDE has been

deployed using DSL techniques, it does not support a proper MDE development

process.

2.4.2.6 Others

In the following we mention some works less relevant, either because they

are part of abandoned projects or just because they do not align with MDE

principles.

W2000

W2000 [31] is a methodology that extends the HDM methodology

(Hypertext Design Model, [151]), a hypermedia and data-centric Web design

approach, but it also adopts some features from UML to support the concept of

business processes.

W2000 abstractions are collected in a MOF-based metamodel. Although

the toolset is said to be integrated in Eclipse, it seems to be a set of disconnected

components [32]. It includes a GEF-based editor, plus a MOF repository based on

MDR/Net beans [258]. Some constraints are externally validated over W2000

models, while the rest were still to be supported. As well, some transformation

rules were defined with AGG (see section 2.3.3.1) but they were not integrated in

the tool.

All this given, we can state that W2000‘s tool support is quite instable and

immature. Moreover, from reviewed works it seems that the authors abandoned

the project. We found no available documentation or download site for the tool.

HERA

HERA-S [348] is the evolution of HERA [361], a method for developing

adaptable and customizable Web Applications following a navigational structure

State of the Art 135

that is defined semantically. In turn, HERA-S supports the design of navigation-

oriented Web structures over Semantic Web data.

The idea is to wrap the data modelled in a domain model with a Web

interface modelled in a presentation model. To that end, an application model is

used as intermediate step. Each metamodel is represented in RDFS [388], while

terminal models are expressed with RDF [387]. In addition, a user/platform

profile, plus an adaption model, allow personalization of the presentation

according to user preferences and browsing platform.

Unfortunately, the implementation of the above process is encoded in a set

of XSLT transformations, while the edition of each model is supported by MS-

Visio add-ins. While the premises of HERA-S are promising, more mature

technical support is necessary in order to consider it a real framework for WIS

development. In addition, we cannot state this is a MDE framework.

All this given, we do not include HERA in the final discussion neither in

the summary displayed in Table 2-8.

2.4.3 Tools for (Model-Driven) Development of (Modern) DB

Schemas

In order to provide with a reference implementation for M2DAT, we have

chosen to implement its content module, M2DAT-DB (MIDAS MDA Tool for

DataBases). Considered in an isolated way, M2DAT-DB constitutes a complete

framework for model-driven development of modern database schemas that

supports the generation of an Object-Relational DataBase (ORDB) schema or an

XML Schema (XML Schema Definition, XSD) from a conceptual data model.

To confirm that M2DAT-DB improves existing technology in the field, this

section aims at reviewing existing tools.

During the last years, the extended use of XML as preferred format for

both data storage and exchange has resulted in the advent of a number of XML

(and XML Schema) editors. In the following, we review the most recognised or

accepted, plus those that has a special interest from the research point of view.

In general, all of them share a series of features, the most common being

the support for different views of the XML Schema, like visual editors based on

nested boxes and textual editors with syntax highlighting and the like.

On the other hand, defining the scope of our study, it is important to

acknowledge that most Database Management Systems (DBMS) support the

Object-Relational model, both commercial, such as Oracle [282], SQL Server

136 Juan M. Vara

[243] or Informix Dynamic Server [169], and open-source, like PostgreSQL [287],

MySQL [337], etc. By contrast, there are no frameworks that support modelling of

pure ORDB schemas. That is why we enclose between brackets the terms ―model-

driven‖ and ―modern‖ in the title of tis section (and the sections related).

Therefore, in contrast to the review on tools for MDWE, this study will

limit to give a brief description of the tools that has a similar functionality. To that

purpose, we will introduce the most recognised tools for development of relational

DBs to help on the understanding of M2DAT-DB capabilities. In this sense, we

would like to reference also some works focused on applying the MDA proposal

to Data Warehouse development, like the ones from Klimavicius et al. [194] or the

ones from Trujillo et al. [231]. However, they are not really in the scope of this

thesis.

2.4.3.1 Altova XML

Altova XML [14] is one of the first tools for XML Schemas development,

and probably the most-accepted so far.

It supplies different editors offering different views of the Schema. Among

them, we find a visual editor based on nested boxes plus a (-n almost) plain text

editor that, at the end, is the one preferred by developers.

The distinguishing trait of Altova with regard to other tools is that, in

response to the impact of MDE and the boom experimented by software

modelling, an UML-like editor has been added recently.

Notice that Altova XML pays no regard to the conceptual model and

focuses just on the XSD definition. In other words, like most of the reviewed

tools, Altova XML works just with the XSD model.

2.4.3.2 Oxygen XML Editor

Oxygen XML Editor [283] main objective is edition of XML documents.

However, it also bundles XML Schema editing facilities, similar to those from

Altova, though a UML-like editor is not supported in this case.

In addition, it provides with some capabilities for working with relational

databases, but they are limited to exploring capabilities. Thus, it has not been

considered as a proper tool for designing DB schemas.

2.4.3.3 Stylus Studio 2008

Stylus Studio 2008 [333] is similar to Altova and Oxygen.

In this case, its distinguishing mark is the addition of mechanisms to

execute mappings between XML Schemas. Indeed, the tool support the graphical

definition of the correspondences between two particular XML Schemas. From

State of the Art 137

that, it generates the XSLT or XQuery code that implements the mapping (after an

intermediate translation to JAVA).

2.4.3.4 hyperModel

Regarding XML Schemas development, hyperModel [391] is probably the

most similar tool to M2DAT-DB. Indeed, it is also integrated in the Eclipse

platform.

hyperModel is the tool supporting Carlson‘s proposal for modelling XML

Schemas with extended UML [77, 78]. However, note that like the

aforementioned tools, it goes directly to the XML Schema model, without

considering a conceptual data model.

While Carlson advocates in favour of modelling the XML schema with

extended UML, M2DAT-DB supports a higher abstraction level by allowing

getting the XSD model from a conceptual data model. That is, the development

process in M2DAT-DB starts from a PIM, that works as the classical domain

model used in DB development process. Such model makes no reference at all to

the deployment platform. Therefore, the very same model could be used as

starting point to generate the DB model for any other logical model, whether it is

OR, relational or whatever. Indeed, M2DAT-DB uses this model to generate both

the XSD model or the ORDB model.

2.4.3.5 Rational Rose Data Modeler

Rational Rose [173] is a product line that resulted from the evolution of a

CASE tool whose core functionality was to manage software models of a system

under development. Originally, it was based on the use UML as modelling

language. It has been traditionally recognized as the tool implementing the Unified

Software Development Process [177] and the most adopted by software engineers

during a number of years. Indeed, a common mistake has been identifying the use

of UML with applying such process.

During the last years, its ratio of adoption has decreased with the advent of

Eclipse and other open-source modelling tools.

The XSD plug-in of Rational Rose is able to generate an XML Schema file

from a UML class diagram or inject an XML Schema into a UML class diagram.

Therefore, no XSD model is supported. It moves directly from the conceptual data

model to code and viceversa. This way, though it provides with a bidirectional

UML-XML Schema bridge, it does not consider a proper XML model.

Furthermore, the mapping process is predefined and hard-coded in the tool. There

is no option to change or customize it

138 Juan M. Vara

2.4.3.6 Enterprise Architect

Enterprise Architect [327] is a commercial tool quite similar to Rational

Rose. It also encourages the use of UML, can be integrated in Eclipse and

provides with an extractor from UML class diagrams to XML Schema.

Since it is the most recent of reviewed tools, it seems to be more aligned

with MDE principles. For instance, it bundles customizable code generation

templates. Indeed, Enterprise Architect is said to be a MDE framework.

It provides with automatic transformation from the conceptual data model

to a stereotyped class model that acts as the XSD model. However, the XSD

generation is a little bit tricky. Indeed, the code generation template uses the

conceptual data model to generate the XSD code. If you want to customize the

generation, then you have to spread XSD stereotypes over your UML classes in

order to drive the code generation process. That is, you are not using a proper

XSD model, but polluting your conceptual data model with platform specific

information.

Among the reviewed works, Enterprise Achitect is probably the most

similar to M2DAT-DB (regarding XML Schemas support). However, despite the

fact that it is a commercial tool, we have to consider the strange way of generating

the XSD. It is done directly from the conceptual data model, though some UML

stereotypes might serve to mark the model. By contrast, M2DAT-DB allows

generating a XSD model from the conceptual model whereas Enterprise Architect

just lets moving formard form PIM to code or PSM to code. No PIM to PSM is

supported. In addition, M2DAT-DB allows using a weaving model to annotate the

conceptual model without polluting it. This way, the conceptual model is still

valid to be used in other context, like the ORDB schema generation.

Regarding support for DB schema modelling, it advocates in favour of

using a UML class diagram to represent the conceptual data model. From such

model, a template-based transformation generates a logical data model represented

in extended UML (which can be showed as a PSM). Finally, the logical model is

serialized into code by means of a model-to-text transformation.

This way, the functionality provided by Enterprise Architect is the more

similar to the one from M2DAT-DB among reviewed tools, since it uses UML for

conceptual modelling plus model transformations specified wth a DSL. In

addition, it allows adding new ad-hoc transformations.

2.4.3.7 ERwin

There are a number of applications, tools or frameworks for Database

management (ERWin [92], Enterprise Architect [327], Oracle Designer [281],

State of the Art 139

etc.). Although they include capabilities for designing the underlying DB schema,

their main objective is supplying an IDE for all the tasks related with DB

administration. Thus, when you want to use them as simple modellers they tend to

be complex and not very intuitive. This fact matches up with a common drawback

of existing MDE frameworks: the low usability level [318]. This becomes clear

when one examines, for instance, the complexity associated to install the Oracle

Designer repository in order to use the Oracle modelling tool.

Moreover, since they do not support the OR model, there is no sense in

providing with a complete review on all of them. Hence, we will focus on ERwin

to provide with some highlights about these kind of tools.

A number of those tools consider the possibility of starting from a

conceptual data model (PIM) represented with the E/R notation [82] as a previous

step towards a relational model [89] (PSM), following the ideas gathered in [33].

However, those are not pure E/R models, but adaptations polluted with logical

details that ease the (automatic) mapping to the logical model. In this case, it is

worth mentioning that the transformation is hard-coded in the tool, although some

options to drive the mapping from the conceptual to the logical model are allowed.

All of them are commercial tools, what is typically related with good usability

levels and, in some sense, we might say that they are somehow aligned with

standards since they use both the (adapted) E/R modelling language and Codd‘s

relational model.

2.4.3.8 Others

We can mention other tools, like Liquid XML Studio, XMLFox or the

Visual Studio add-in for XML Schemas development: Microsoft XML Schema

Designer.

As well, a particularly interesting editor for this dissertation, since it is

integrated in the Eclipse platform is the Eclipse XML Schema Editor, a visual

editor quite similar to the already presented. Indeed, it might own a more austere

look and feel, though it is equally functional. Its interest resides in the fact that, in

the near future, XML Schema models generated with M2DAT-DB will be editable

with this editor without the need for any integration task.

Likewise, regarding ORDB schemas development, there are a number of

frameworks that encapsulate the object to relational mapping. As a matter of fact,

object-orientation has been the preferred programming paradigm during the last

years, while relational databases have been the technology par excellence to

endow with persistence the data handled by any given application. At present, the

most popular are the Data Access Objects (DAO) of J2EE [335]. They offer an

140 Juan M. Vara

interface between the application and the DBMS and there are several

implementations quite popular, like Hibernate [178] or JDBAccess

(http://jdbaccess.com/).

2.4.4 Summary & Discussion

To provide with an overview of the reviewed works, Table 2-8 summarizes

the main features of reviewed tools for model-driven development of WIS, while

Table 2-9 does the same for tools focused on database schemas development. To

that purpose, we use selected features collected in the evaluation criteria described

in section 2.4.1. They are summarized in Table 2-7.

Next, the main conclussions gathered from these reviews are presented in

two different sections.

Table 2-7. Evaluation criteria for tools supporting Model-Driven Software Development

BENCHMARK DESCRIPTION VALUES

METHODOLOGY Underlying Methodology Methodology’s Name

PARADIGM

Preferred development

paradigm: Data-Centered,

Object-Oriented, Semi-

Structured, Service

Oriented

DATA-CENTER / OO /

SEMI-STR / STRUCT/

SOA

SCOPE/TARGET
Commercial / Open-Source

/ Academic
C / O / A

MODELLING BASIS Basis for abstract syntax UML/Ecore/RDF/XML/E/R

MODELLING

NOTATION
Basis for concrete syntax

UML-Like / E/R /

Nodes&Edges/ …

VALIDATION

Support for constraint

definition and checking and

formal validation

(-) to ()
 (1)

STANDARDIZATION
Level of conformance to

standards
(-) to ()

(1)

ABSTRACTION

LAYERS

Abstraction Layers

supported
CIM, PIM, PSM

EXTENSIBILITY
Ease of adding new

capabilities
(-) to ()

(1)

USABILITY
Ease of using /

Documentation
(-) to ()

(1)

INTEROPERABILITY
Ease of import/export-ing

models
(-) to ()

(1)

CODE GENERATION
Level of code generation

supported
(-) to ()

(1)

TECHNOLOGICAL

PLATFORMS

Targetted deployment

platforms

J2EE/.NET/ ...

DB Logical Model

http://jdbaccess.com/

State of the Art 141

BENCHMARK DESCRIPTION VALUES

MT

DSL
Mappings implemented

with a DSL for MT
(-) to ()

(1)

AUTOMATION Level of automation (-) to ()
(1)

CUSTOMIZABLE Customizable mappings (-) to ()
(1)

SUPPORTED

TYPES

Types of transformation

supported

CIM2PIM, PIM2PIM,

PIM2PSM, PSM2PSM, etc.

FORMALIZATION Formalization of mappings (-) to ()
(1)

(1) LEGEND (for weightable fields)

SYMBOL VALUE

 NONE

 POOR

 FAIR

 GOOD

 VERY GOOD

 EXCELLENT

Table 2-8. Tools supportinng Model-Driven Development of Web Information Systems

 ArgoUWE WebRatio WebTE
OOWS
Suite

HyperDE M2DAT

METHODLOGY UWE Methodology WebML WebSA / OO-H OOWS OOHDM / SHDM MIDAS

PARADIGM OO DATA-CENTERED OO OO OO SOA

SCOPE/TARGET (A) (O), (A) (C) (A) (A) (A, O)
Open-

Source/Academic

MODELLING BASIS UML
(E/R extension) /

DTD
UML OASIS / Ecore DSL / RDF Ecore

MODELLING NOTATION UML-like UML-like Not Supported UML-like UML-like UML-like

RESTRICTIONS

STANDARDIZATION

(UML-compliant)

(UML-

compliant)

(Ecore-

compliant)

(RDF-Compliant)

(UML / Ecore)-

compliant

ABSTRACTION LAYERS
COVERED

CIM, PIM, PSM PIM, PSM CIM, PIM, PSM PIM PIM
CIM - PIM –
PSM - PDM

EXTENSIBILITY

USABILITY

INTEROPERABILITY

CODE GENERATION

TECHNOLOGICAL
PLATFORMS

J2EE J2EE J2EE, .NET
J2EE, .NET,

COM+
Ruby on Rails Oracle, .NET, PHP

 ArgoUWE WebRatio WebTE
OOWS
Suite

HyperDE M2DAT
M

T

DSL NO EMBEDED

AUTOMATION

CUSTOMIZABLES

SUPPORTED
TYPES

CIM2PIM, PIM2PIM,
PIM2PSM

PIM2PSM
CIM2PIM,
PIM2PSM

PIM2Code
CIM2PIM, PIM2PIM,
PIM2PSM, PSM2PSM

FORMALIZATION

Table 2-9. Tools supporting (Model-Driven) development of (modern) Database Schemas

 Altova
XML

Oxygen
XML

Editor

Stylus
Studio

hyper-
Model

Rational
Rose

ERwin
Enterprise
Architect

M2DAT-DB

METHODOLOGY Carlson’s Batini’s Codd’s MIDAS-DB

PARADIGM SEMI-STR SEMI-STR SEMI-STR SEMI-STR OO STRUCT OO OO OO

SCOPE (C) (C) (C) (O) (C) (C) (C) (C)

MODELLING BASIS XML XML XML XML UML E/R UML UML Ecore

MODELLING
NOTATION

Nodes
& Edges Nodes &

Edges
Nodes

& Edges
Nested
Boxes

UML
notation

E/R UML Pure UML

UML-Alike
Relational

Tables
UML Profile

UML-
Alike

Tree
Editor

RESTRICTIONS

STANDARDIZATION

ABSTRACTION LAYERS PSM PSM PSM PSM PIM, PSM PIM, PSM PIM, PSM PIM, PSM PIM, PSM, PDM

EXTENSIBILITY

USABILITY

INTEROPERABILITY

CODE GENERATION

TECHNOLOGICAL
PLATFORMS

XML XML XML XML XML Relational Relatnl XML OR XML

M
T

DSL

AUTOMATION

CUSTOMIZABLES

FORMALIZATION

State of the Art 145

2.4.4.1 On Tools supporting Model-Driven Development of Web

Information Systems

This study has focused on how a number of MDE issues are addressed by

existing tools for WIS development. Concluding this section, we can say that the

most mature and stable one is WebRatio. However, WebRatio presents serious

drawbacks when it is confronted with MDE principles. Indeed it does not adhere

to any OMG standard (or Eclipse implementations, currently de facto standards),

nor uses model transformations; neither encourages interoperability with other

frameworks.

Besides, Argo/MagicUWE seems to be the most MDE-friendly, in the

sense that it adheres to OMG standards by using extensively UML profiles and

OCL restrictions plus a DSL for model transformations, though some drawbacks

have been detected regarding how customization and formalization are handled.

Nevertheless, the state of Argo/MagicUWE serves to prove the instability

of the tooling support for MDWE. Indeed, UWE is in the process of migrating its

whole framework to the Eclipse platform and replacing UML profiles for MOF-

Based DSLs (actually, EMF-based ones, like M2DAT).

One tentative reason for this landscape might be that those methodologies

appeared before the advent (or the boom) of MDE. Thus, they opted for adapting

their proposals to MDE principles. So, they addressed (or planned to do so) the

building or adaptation of (existing) frameworks to support the new nature of their

proposals, but the adaptation processes carried out so far are still immature. From

a MDE point of view, there is still much work to do in order to align those

frameworks with MDE guidelines.

For instance, one common drawback, clearly stated by Moreno and

Vallecillo in [252], is located at how they handle model transformations. Some of

them just hard-code the rules in the underlying tool while some other use XSLT

style-sheets. This fact results in a gap between the design of the Web application

and the final implementation. According to MDA principles, these rules should be

defined at a more abstract level. Although some proposals have already tackled

this task (see [199] for UWE, [234] for WebSA and [253] for WEI), these

improvements have still to be integrated in the corresponding tools. By contrast,

all the mappings of M2DAT will be implemented using a DSL for model

transformation.

Besides, none of the reviewed frameworks offers support for customizable

or parametrizable transformations, neither for applying formal techniques over the

models handled by the framework. We plan to address these issues in M2DAT.

146 Juan M. Vara

Indeed, we have already showed how it will be done in previous works. For

instance, in [357] we used weaving models to support model transformations

driven by user decisions in a MDWE process.

Another common problem is interoperability. In this sense, the use of

weaving models to automate model migration is becoming widely accepted. In

[356] we showed how to apply this approach in a real industrial environment.

Such approach is been studied as a way to automate tools interoperability. As

well, the fact that it will be developed entirely on EMF conferes advanced features

to M2DAT in terms of interoperability. The studies about existing MDE

technology that we have presented state that the most of them are built as Eclipse-

EMF components. Thus, M2DAT models could be handled by any of those

components without the need for building any bridge.

Among the reviewed tools, just ArgoUWE supports constraint checking

over terminal models. However, they are hard-coded in the tool. By contrast,

M2DAT will support checking constraints over terminal models defined in a

separate way. Working this way, we are able to separate models edition from

model validation. We can invoke validation just when needed, and we can modify

the constraints to be checked at any time, without having to worry about the rest of

the components of the tool. Likewise, the reviewed tools do not offer any support

for applying formal techniques over the models handled by the framework. In this

sense, [249] showed how M2DAT models were translated to MAUDE [87] to

support the definition and formal verification of properties, as well as its

validation.

As well, one of the main contributions of M2DAT regarding previous

works is extensibility. M2DAT will be completely extensible since all the

components used to build it are open-source components, specially devised to

accept modifications, improvements and incorporate new functionalities. This

way, M2DAT will allow for rapid inclussion of emerging technology benefits. An

immediate consequence is the ability to target new technological platforms.

Adding support for a new platform will consist in defining a new platform

model to abstract the targeting platform, weaving such platform model with

already existing PSMs to obtain new PDMs (Platform Dependant Models, that is,

models that map the concepts captured in PSMs to the abstractions supported by

concrete technological platforms) and finally serializing them into code. Although

this is not immediate, the process and the techniques to do it are well identified,

thus it is a feasible task, both in time and manner, thanks to its extnesible nature

and modularized architecture.

State of the Art 147

Last, but not least we would like to make a reference to Service Oriented

capabilities. In response to the impact of Service Orientation [392] in recent years,

some methodologies are updating their proposals to adequate them to services

paradigm. However, so far just UWE has worked on this direction, though their

initial results are still to be integrated into ArgoUWE (we guess it will be done in

MagicUWE, the new version of the tool). By contrast, M2DAT follows the SOA

paradigm from the beginning, since MIDAS is a complete Service Oriented

methodology. First results on this line have already been presented [106, 353].

All this given, this study has highlighted a number of problems in the area

of MDWE and lends strong support to the idea that M2DAT features will serve to

fill some gaps detected. Specially, how model transformations are handled in

existing proposals, poor interoperability and extensibility and their level of

formalization. Besides, the study has highlightened a growing trend in MDWE

proposals towards developing their tools as Eclipse plug-ins, or at least, upgrading

or re-defining them to be ―Eclipse compliant‖, like UWE, WebML and the OOWS

suite. Since M2DAT will be built atop of EMF from scratch, it will be ahead of

exiting tools in this sense.

Finally, the reader should notice that even though MDE is a widely

accepted approach, MDWE is still relatively new: all the tools listed in this section

are academic proposals. We can conclude that the most outstanding challenge for

the developers of MDWE tools is to take their tools from academic to industrial

environments.

2.4.4.2 On Tools supporting Model-Driven Development of (Modern)

Database Schemas

Acording to Berstein [380], in some cases, object-relational and XML

technologies are the best choice to build a DB. However, we have confirmed that,

so far, there is no tool supporting a complete model-driven process for ORDB or

XML schemas development.

Regarding ORDBs, this fact is probably due to traditional DB has always

followed the relational model as is. Thus, the frameworks for DB design have

limited their selves to such model. In some cases (very few), they opted for

extending the framework to support the modelling of object-relational

constructions. However, instead of improvement, the effect was to bring

additional complexity to the original framework.

On the other hand, regarding XML Schema development, the main

problem so far is related with the fact the XML was not considered as a proper DB

technology until recently. Thus, there is a lack of methodological proposals for

148 Juan M. Vara

XML Schema development following the traditional principles for DB design.

That is, we found no works considering a conceptual data model and a logical

(XML) model.

In fact, just hyperModel, Rational Rose and Enterprise Architect might be

said to be model-driven tools. However, hyperModel just ignores the PIM, going

from a UML-sterotyped model to XML code, Rational ignores the PSM, going

from a class diagram (conceptual model) to the XML code, and Enterprise

Architect just supportd the movement from PIM to code or PSM to code. No PIM

to PSM mapping is supported. The rest of works just focus on XML Schema

editing without any support for a conceptual data model. Obviously they do not

support the mapping from a conceptual data model to an XSD logical model.

Even existing tools for traditional DB design, like ERwin, that starts from

conceptual data models (PIM) represented with adapted E/R notations, do not

consider pure PIM models since they are polluted with logical details that ease the

(automatic) mapping to the logical model.

By constrast, M2DAT-DB starts from a pure conceptual model represented

by means of a class diagram, that is mapped to the selected logical model, XML or

OR. The design decisions that drive the mapping process and help on mapping

conceptual abstractions to technological components, are defined separately in an

annotation model. This way, M2DAT-DB provides with full separation between

conceptual and logical models while preserving the ability to generate different

logical models from the very same conceptual data model.

Besides, M2DAT-DB is the result of a continuous improvement and

refinement of a methodological proposal for XSD and ORDB modelling

developed during the last years. Hence, methods and technologies supported have

been widely studied and validated before its implementation, one of the main

concerns of MDE tools nowadays [160].

Once again, a common issue to the reviewed tools is the way they handle

model transformations. Just Enterprise Architect uses a DSL. It is a template based

language used both for model-to-model and model-to-code transformations.

However, we can state that the language is only suitable for quite simple and

direct transformations. The constructions supported are not enough to support

complex transformations. The rest of tools that support some kind of

transformation just hard-code it in the tool itself.

By contrast, M2DAT framework emphasizes the role of model

transformations in MDE development and this is immediately captured in the

mappings bundled in M2DAT-DB. All of them are formalized and later coded

State of the Art 149

using DSLs for model transformation. In addition, the user can drive the execution

of the mapping by using weaving models to annotate the conceptual model before

launching the transformation.

To conclude, we would like to point out two very important advantages of

M2DAT-DB over existing works on DB schema design.

On the one hand, it supports a pure conceptual data model. In fact, existing

tools start from a conceptual, in general an E/R model. However, they only

support an adapted version of E/R ready to be mapped into logical models. For

instance, they do not support n-ary relationships since they are challenging to be

mapped to a relational model. By contrast, M2DAT-DB starts from a pure

conceptual data model. It is the model transformations that deals with the

problems inherent to the mapping of a conceptual data model to a logical one.

On the other hand, M2DAT-DB does support a standard data model. That

is, existing tools focus on the logical model for specific products. In contrast,

M2DAT-DB offers the possibility of generating the ORDB model conforming to

the SQL:2003 standard. However, since no implementation conforms to the

standard 100%, it allows moving from the standard logical model to a logical

model for Oracle (probably the best DB engine, at least in what has to do with

support for ORDB constructions). The use of a platform-specific model (logical

model for SQL:2003) plus a platform-dependent model [322] (Oracle logical

model) provides with much more flexibility and real interoperability between

different DB vendors, since the SQL:2003 model acts as a pivot to/from which

mappings from/to any particular logical model are much more simple.

All this given, from the point of view of MDE, where it is essential to rely

on modelling tools as accurate and precise as possible, current technology for

ORDB and XML schemas modelling is, at best, inadequate. M2DAT-DB aims at

filling this gap.

1
st
 Iteration: MIDAS-CASE

3. 1
st

 Iteration: MIDAS-CASE
This thesis provides with a technical solution to build a framework for

semi-automatic model-driven development of Web Information Systems. One of

its main features is the use of existing technology in the field of MDE, like EMF,

ATL, etc. Currently, this way of building frameworks for MDSD is probabbly the

most adopted and it is gaining acceptance every day. Indeed, the State of the Art

has shown a number of works following this approach, what serves to confirm that

our decisions have proved to be right.

However, when we tackled the specification of a tool for MDSD of WIS,

this type of decissions was not even considered since such MDE tools or

components were just starting to emerge. The tendency was to build ad-hoc

solutions using GPLs. Hence, in order to evaluate the advantages and drawbacks

of this approach, we addressed the specification and construction of a stand-alone

CASE tool for MDSD of WIS: MIDAS-CASE.

This chapter presents MIDAS-CASE specification and the prototypes that

provides with a reference implementation. Likewise, the lessons learned from

MIDAS-CASE project are put forward since they will be used in Chapter 4 to

justify some of the technical decisions collected in M2DAT specification.

Finally, it is worth mentioning that, though MIDAS-CASE suffers from the

technical limitations already sketched, its conceptual design is still valid and thus

partially reflected on M2DAT conceptual architecture. Indeed, the mandatory

requirement of modularization promotted by MIDAS was the driving force in the

specification of MIDAS-CASE architecture. Such premise was preserved in

M2DAT.

3.1 MIDAS-CASE: a stand-alone CASE tool for MDSD of

WIS

There were some objectives to meet when we first faced the task of

developing a supporting environment for the MIDAS methodology. Basically, we

had to develop an environment that supports the graphical representation of all the

models comprised in MIDAS, the automatic mapping between them and the

automatic code generation from those models. Moreover, we planned to use an

XML DB repository for XML-based storage of the models.

154 Juan M. Vara

From the very first moment, we considered two requirements that technical

support for MIDAS had to meet: it had to be both easily scalable and highly

modular.

The aim was to be able to support a constant evolution of the tool. Since it

was thought as a research prototype, new functionalities were to be added day by

day. Furthermore, those already supported were candidates for continuous

improvement, refinement. Besides, we aim at supporting the rapid inclusion of

emerging technologies.

The result of MIDAS-CASE project wvere mainly:

 The definition of MIDAS-CASE architecture, which constitutes the basis of

the actual version of M2DAT architecture.

 MIDAS-CASE4WS and MIDAS-CASE4XS. Two prototypes of MIDAS-

CASE modules. MIDAS-CASE4WS uses the UML extension for WSDL

(Web Services Description Language) [383] proposed in [225] to support the

modelling of Web Services in extended UML and the automatic generation of

the respective Web Service description in the WSDL standard. On the other

hand, MIDAS-CASE4XS uses the UML extension introduced in [364] to

support the modelling of XML Schemas in extended UML. From that model,

the tool generates the corresponding XML Schema. The former prototype was

presented in [353] whereas the later was introduced in [354].

MIDAS argued in favour of using UML.Specifically, a class diagram is

used to depict conceptual data models. Thus, we also developed a module for

UML class diagrams in MIDAS-CASE to ensure the integration with the rest of

MIDAS-CASE models (UML extended models). To do so, we opted for having

our own UML editor in MIDAS-CASE. We will not go deep into this editor since

a pure UML editor is not a real contribution (there are quite a lot of commercial

products for this task in the market). However, we include some screen captures

on the appendix, next to the corresponding metamodel for class diagrams.

3.2 MIDAS-CASE Architecture

MIDAS-CASE architecture, shown on Figure 3-1, was defined according

to two orthogonal dimensions.

On the one hand, it assumed a classical three-tier architecture [119],

considering the traditional aspects in software development, i.e. the user interface,

the logic and the persistence or data tiers.

1st Iteration: MIDAS-CASE 155

On the other hand, MIDAS-CASE architecture was composed of a set of

modules or subsystems, one for each concern considered in MIDAS for the

development of the WIS (the hypertext, the content, the semantics, etc.). This way,

support for new concerns could be added during the life cycle of the project, either

as a response to new requirements or just to incorporate new advances in the field.

The result is a scalable and easy-to extend tool. The support for a new model is

embedded in a new module.

Figure 3-1 shows the original MIDAS-CASE Architecture including three

different modules. From left to right, dotted rectangles distinguish the Object-

Relational, the Web services and the Others module. The latter tries to show how

the rest of subsystems are to be integrated in MIDAS-CASE to extend its initial

capabilities.

CONTROLLER

TRANSFORMATION

STORAGE

P
e

rs
is

te
n

c
e

L
o

g
ic

P
re

s
e

n
ta

ti
o

n

XML
UI

WSDL
UI

Others
UI

SYNTAX SEMANTIC SYNTAX SEMANTIC

GRAPHICS RENDERING DATA

(SYNTAX)

SYNTAX SEMANTIC

XML MODELS

(SEMANTIC)

XML
PARSER

WSDL
PARSER

Others
PARSER

WSDL MODELS

(SEMANTIC)

Others MODELS

(SEMANTIC)
O-R METAMODEL WSDL METAMODEL

Others METAMODEL

Figure 3-1. MIDAS-CASE Architecture

The whole architecture is guided by a common idea: MIDAS-CASE allows

the definition of extended UML models that are stored in XML format. To carry

out this task, the metamodel for each type of model considered in MIDAS is

specified in an XML Schema. This way, the XML document that persists the

156 Juan M. Vara

model conforms to the respective XML Schema. If the XML document does not

conform to the Schema, we conclude that the model is not valid.

In the following we summarize the main features of each tier from top to

bottom.

3.2.1 Presentation

The presentation tier corresponds to the user interface. It encodes both the

graphical representation of the model depicted on the working panel, and the

controls to add, delete or modify any element from the model. In turn, it is

composed of two layers.

First, a common unit or module, so-called controller, comprises the

controls common to any of the different modules of MIDAS-CASE. That is, those

controls that are shown despite the kind of model depicted in the working panel.

This module has to load one of the lower UI (User Interface) units. They

customize the user interface according to the model being edited. In other words, it

provides with the graphic controls for the elements included in the corresponding

metamodel. Thus, there is a different UI unit for each module.

3.2.2 Logic

Again, the logic tier comprises two different levels: in the upper level there

is a set of parsers, one for each kind of model. From the information conatined in

the diagram, they generate two XML documents to store seprately the semantics

and the syntax of the model. On the other hand, the lower level is a common

module to support transformations between the different types of models.

3.2.2.1 Parsers

All the parsers share the same internal architecture and perform the same

task. Each one collects the data provided by the corresponding UI unit to generate

two XML documents. The first one gatthers the semantics of the model depicted

in the working panel. The other one collects the syntax or layout of the diagram.

That is, the position and dimensions of the graphical elements included that

compose the diagram. This distinction serves to separate the relevant from the

secondary information.

For instance, in a conceptual data model we are interested in which the

attributes of a class are, whether o not there is an association between two classes,

etc. Nevertheless, we are not interested in the size of the rectangle that represents

1st Iteration: MIDAS-CASE 157

the class, nor the shape of the line representing the association. The XML

document containing the semantics of the model is the one used for model

processing (we use this term to refer to all the ways in which a model can be

processed: validated, transformed, generated into code, interpreted, etc. [368])

We used a variation of GXL (Graph eXchange Language) to serialize the

syntax of the model. GXL [167, 381] was a standard XML format for data

interchange between graph-based tools. Starting from the GXL proposal, defined

as a DTD, an XML Schema was defined ad-hoc for the special nature of MIDAS-

CASE. Such Schema defines the structure of the XML document used to collect

the syntax of any MIDAS-CASE model.

3.2.2.2 Transformation

We need to connect the different modules that support the development of

each concern of the WIS. In other words, we need to connect the models depicted

with each module. To that end, the transformation bus has to implement the

mappings between those models. However, model transformation was still a

bedding research field by the time MIDAS-CASE was designed. Hence, we

adopted a very simplistic approach: we just encode the mapping rules for each

specific transformation in the tool, i.e. we code them with the GPL used to build

MIDAS-CASE (JAVA). Later on, we will discuss the problems derived from such

approach.

3.2.3 Persistence

Since XML was gaining acceptance as format for data management and

storage, the models created with MIDAS-CASE are serialized as XML

documents. Therefore, after studying the different solutions for XML content

management [81, 378], we opted for using an XML DB as the underlying

repository of MIDAS-CASE, specifically, Oracle XML DB [117, 295].

Oracle XML DB was the first attempt of Oracle to support native XML

storage and management. Its basis was a flexible mapping of XML Schemas to

object-relational database schemas. Then, any XML document stored on the DB is

shredded among the DB objects that mapped the corresponding XML Schema. We

exploit this feature in MIDAS-CASE. Each XML Schema used to define the

syntax and semantics of the models supported by MIDAS-CASE were mapped to

an Oracle DB schema. This way, as shown in Figure 3-1, the basis of MIDAS-

CASE models repository is an Oracle XML DB. Next section summarizes the

management process for such repository.

158 Juan M. Vara

3.2.3.1 Using an XML Database as Models Repository

The first step in the management process of the models repository of

MIDAS-CASE is the specification of the metamodels of each type of model

supported by the tool (step (a) in Figure 3-2). In essence, each module supports

one or more models. Such metamodels are defined by means of an XML Schema.

Next, the set of XML Schemas are registered on the repository of Oracle

XML DB (step (b) in Figure 3-2). As a result, a set of DB schemas is created [295,

347, 354] in the underlying DB. Each schema supports the storage of the models

conforming to the respective metamodel. Notice that when we talk about models,

we are referring just to the XML document that collects the semantics of the

model. Nevertheless, recovering a MIDAS-CASE model also implies retrieving its

syntax, that is, the rendering information of the diagram that depicts the model. As

we have described in section 3.2.2.1, the syntax is stored in a separate XML

document. The structure of those documents is the same for any kind of model.

Thus, one XML Schema is enough to define it and thus one DB schema is enough

to store the syntax of any model depicted with MIDAS-CASE, despite of the type

of the model.

Finally, the XML DB that supports the MIDAS-CASE repository is

composed of a set of DB schemas: one for every type of model supported, plus

one for storing the syntax of any diagram (see Figure 3-1). Whenever a model is

persisted, the logic tier generates the two XML documents (syntax and semantics)

and passes it to the persitence tier. Then, the storage unit loads each document into

the corresponding DB schema, i.e. the XML data is shredded into the

corresponding OR tables. Likewise, whenever a model has to be retrieved, the two

XML documents are passed from the persistence to the logic tier. This one uses

the mutual references in the documents to build a diagram according to the syntax

and semantics collected on those documents. Later, the UI unit depicts the

diagram built.

The underlying XML Database provides with all the advantages inherent to

DBs for the management of the models respository. For instance, retrieving all the

models in which a particular class appears; modifying some information about a

particular element on every model at a time; querying a model or just some

specific parts of them, etc.

In addition, Oracle XML DB provides automatic validation of the models

generated with MIDAS-CASE for free since each metamodel is defined by means

of a (registered) XML Schema and every model is persisted as an XML document.

1st Iteration: MIDAS-CASE 159

If the document conforms to the respective Schema, the model is said to be valid

according to the respective metamodel.

Regarding the mapping rules, the idea is similar. Once a model is obtained

by applying the mapping rules over a source model, the target model is validated

as described above. If the model is valid, we infer that so they were the mapping

rules.

XML DB Storage

Figure 3-2 summarizes the internals of using Oracle XML DB for models

storage.

Oracle

XML DB

Creation of

Object-Relational tables

Conforms To

Conforms To

UML Metamodel

PropertyClass
1

*

Person

Name

UML Model

XML Schema

registering process

XML Data

shredding

SERIALIZATION SERIALIZATIONa

b

c

Figure 3-2. The use of an XML Database as models repository

First, the metamodel is serialized into an XML Schema (a). Such Schema is

registered in XML DB (b). As a result, a new DB schema is created containing a

set of user-defined Data types and typed tables. The registration is equivalente to

launch a SQL script that creates the mentioned objects.

From that moment on, whenever the DB receives an XML document (c), it

checks the XSD Uri of the document against those from the XML Schemas

already registered. Then the XML data is shredded into the tables corresponding to

the XML Schema matched.

160 Juan M. Vara

3.3 MIDAS-CASE Prototypes

To prove that the architecture of MIDAS-CASE was a valid and feasible

proposal, we developed a couple of prototypes: MIDAS-CASE4WS and MIDAS-

CASE4XS. Both of them follow the same idea: they implement one of the UML

profiles of MIDAS and support code generation from a UML stereotyped model.

The former uses the UML extension for WSDL proposed in [225] to

support the modelling of Web Services in extended UML. From this model, the

tool generates the description of the Web Service in the WSDL standard.

The later implements a refined version of the UML extension for XML

Schema from [364]. From such UML extended model, the tool generates the

corresponding XML Schema.

Both profiles have been defined following the steps described in [147] for

the definition of UML profiles: first, identifying the elements of interest from the

domain to model and collecting them into a metamodel; next, extending the UML

standard to cope with the previous metamodel.

In the following, we present both prototypes by means of a pair of case

studies. Previously, we introduce the UML extensions that they implement.

3.3.1 Modelling Web Services with Extended UML

As previously mentioned, in order to be able to model Web Services with

UML, we have to define a Web Services metamodel This task had been solved

previously by the WSDL standard that states which the components needed to

precisely describe a Web Service were. Therefore, we went to the specification

[383] to extract the main constructors identified by WSDL to describe a Web

Service. The result is the Web Services metamodel presented in the following

section.

Once we had defined the metamodel, we need to extend the UML standard

to cope with the previous metamodel.

3.3.1.1 WSDL Metamodel

Figure 3-3 shows the WSDL meta-model represented by an UML class

diagram. The definitions included on the WSDL standard can be separated into

two different groups of components, according to the abstraction level of the

respective concept represented by each class.

1st Iteration: MIDAS-CASE 161

SCHEMA

WSDL

COMPONENT

BINDING

Name

END POINT

Name

TargetNameSpace

ELEMENT

TargetNameSpace

Name

BaseType

MinOccurs

MaxOccurs

OPERATION

INTERFACE

Name

DOCUMENTATION

Name

Location

Name

DEFINITION

TYPES

Name

Type

Element

Name

Name

MESSAGE

(0..1)

1 1

1

1

(1..*)

SERVICE
*

* * *

(0..1)

(0..1)

input

(0..1)

output(0..1)

fault

*
*

Location

INCLUDE
NameSpace

Location

IMPORT

PART

SCHEMA

WSDL

COMPONENT

BINDING

Name

END POINT

Name

TargetNameSpace

ELEMENT

TargetNameSpace

Name

BaseType

MinOccurs

MaxOccurs

OPERATION

INTERFACE

Name

DOCUMENTATION

Name

Location

Name

DEFINITION

TYPES

Name

Type

Element

Name

Name

MESSAGE

(0..1)

1 1

1

1

(1..*)

SERVICE
*

* * *

(0..1)

(0..1)

input

(0..1)

output(0..1)

fault

*
*

Location

INCLUDE
NameSpace

Location

IMPORT

PART

Figure 3-3. WSDL Metamodel

 The operations offered by a Web Service are grouped in INTERFACEs. Every

time an OPERATION is used, the requester interchanges a set of MESSAGEs

with the service provider. At the same time each message can contain several

PARTs or parameters, whose type can be a base type XSD [385] (int, float,

string, etc.), or any one of the types defined in the types section. In the last

case, the data type can be defined by means of a TYPE or an ELEMENT

attribute, from one of the SCHEMAs referenced in the WSDL document.

 A Web Service could be defined with the components already mentioned,

despite of the platform or the language used for implementing it. The

BINDING component allows binding the conceptual Web Service definition

with the implementation in a specific platform. Each implementation will

offer access points (END POINT) to the whole SERVICE.

Please, refer to the enclosed CD to find the XML Schema used to specify

this metamodel.

3.3.1.2 UML Profile for WSDL

After defining the metamodel, we have to identify which UML metaclasses

had to be extended and how to do it. To this end, the following design guidelines

were defined in [225]:

162 Juan M. Vara

 DEFINITION objects will be represented by means of a stereotyped class

since it is explicitly defined in the WSDL specification and it constitutes the

root of the document. All other elements will be nested within.

 Likewise, MESSAGE, PART, INTERFACE, OPERATION, BINDING,

ENDPOINT, SERVICE and IMPORT components have been considered

stereotyped classes since they are essential components, explicitly defined in

the WSDL specification.

 TYPES and SCHEMA components will be represented by means of

stereotyped compositions (<<Type Schema>>). Those elements represent the

relation between a DEFINITION component and its data type definitions.

 Each PART component will be related to the MESSAGE component using it

by means of a composition.

 The PART-ELEMENT relationship will be represented as a stereotyped

association. If the PART component is used as a type, the stereotype will be

<<Part Type>>, else the stereotype will be <<Part Element>>.

 The relationship between an OPERATION component and the MESSAGEs

that it uses will be represented as an association stereotyped with <<In>>,

<<Out>> or <<Fault>>, depending on the type of the message: an input

message, an output message or a fault message.

 The MESSAGE, INTERFACE, BINDING, SERVICE and IMPORT

components will be related with the DEFINITION component by means of a

composition.

Finally, WSDL data types are based on the XML Schema Standard. Thus,

we use the UML extension for XML Schemas modelling proposed in [364]. All

things considered, the resulting UML profile is graphically depicted on Figure 3-4.

1st Iteration: MIDAS-CASE 163

Servicio del Negocio

Consumidor Final

<<profile>>
UML SOD-M

<<metaclass>>
Actor

<<metaclass>>
UseCase

Servicio de Uso Básico

<<stereotype>>
Comp

(Caso de Uso Compuesto)

<<metaclass>>
ActivityNode

Acción

Actividad de Servicio
<<metaclass>>

Activity

Colaborador del Negocio
<<metaclass>>
ActivityPartition

<<metaclass>>
ActivityNode

SOD-M/PIM

SOD-M/PSM

-Operations[*] : Operation

<<stereotype>>
WS

(Servicio Web)

<<stereotype>>
PartType

<<stereotype>>
PartElement

-TargetNamespace

<<stereotype>>
TypeSchema

<<stereotype>>
Input

<<stereotype>>
Output

<<stereotype>>
Fault

AssociationPartElement

AssociationOperationMessage

<<metaclass>>
Association

<<metaclass>>
Class

-Name
-Documentation

<<stereotype>>
Service

-Name
-Documentation

<<stereotype>>
Interface

-Name
-Documentation

<<stereotype>>
Binding

-Name
-Documentation

<<stereotype>>
EndPoint

-Name
-Documentation

<<stereotype>>
Operation

-Name
-Documentation

<<stereotype>>
Message

-TargetNameSpace
-Documentation

<<stereotype>>
Definition

-Name
-Documentation
-Type

<<stereotype>>
Part

-Name
-BaseType
-MinOccurs
-MaxOccurs

<<stereotype>>
Element

-Location
-NameSpace
-Documentation

<<stereotype>>
Import

Figure 3-4. UML Profile for Web Services Modelling

The UML extension collects a set of stereotypes, tagged values and

constraints that enable us to describe a Web Service according to WSDL standard

and using UML as notation. In the following, we show how we use this extension

in a case study.

164 Juan M. Vara

3.3.2 MIDAS-CASE4WS Case Study: a Web Service for

validating e-mail addresses

This section shows the application of the profile just introduced to model a

Web Service for validating e-mail addresses. This is the case study that will be

used to introduce MIDAS-CASE4WS.

Figure 3-5 shows the WSDL document for describing the ValidateEmail

Web Service.

<?xml version="1.0" encoding="UTF-8"?>

<UMLWSDL2.0testing-Diagram xmlns:xsi=http://www.w3.org/2001/XMLSchema-instance

xsi:noNameSpaceSchemaLocation="http://kybele.escet.urjc.es/UMLWSDL2.02Schema-testing">

<definitions>

<targetNameSpace>http://example.com/ValidateEmail</targetNameSpace>

<nameSpace location="http://schemas.soap.org/wsdl" prefix="default"/>

<nameSpace location="http://www.w3.org/2001/XMLSchema" prefix="xs"/>

<nameSpace location="http://schemas.xmlsoap.org/wsdl/soap" prefix="soap"/>

<type name="ValidateResponse" complexity="complexType"/>

<type name="ValidateAddress" complexity="complexType"/>

<typeSchema>

<targetNameSpace>http://soap.einsteinware.com/Email</targetNameSpace>

<type>ValidateAddress</type>

<type>ValidateResponse</type>

</typeSchema>

<message name="ValidateEmailAddressSoapOut">

<part name="ParametersIn" typeOfPart="udtType">

<udtType>ValidateAddress</udtType>

</part>

</message>

<message name="ValidateEmailAddressSoapIn">

<part name="ParametersOut" typeOfPart="udtType">

<udtType>ValidateResponse</udtType>

</part>

</message>

<interface name="EmailServiceInterface">

<operation name="ValidateEmailAddress">

<input name="ValidateEmailAddressSoapOut"/>

<output name="ValidateEmailAddressSoapIn"/>

</operation>

</interface>

<binding name="EmailServiceBinding" type="EmailServiceInterface">

<soap-binding protocol="http://schemas.xmlsoap.org/soap/http"/>

<operation-binding name="ValidateEmailAddress">

<soap-operation style="encoded“

soapAction="http://soap.einsteinware.com/emailservices.aspx/ValidateEmailAddress"/>

<input>

<soap-body use="encoded" namespace=http://soap.einsteinware.com/emailservices.aspx

encodingStyle="http://schemas.xmlsoap.org/soap/encoding"/>

</input>

<output>

<soap-body use="literal"/>

</output>

</operation-binding>

</binding>

<service name="ValidateEmailService">

<endpoint name="EmailServiceSoap" binding="EmailServiceBinding">

<soap-address location="http://soap.einsteinware.com/emailservices.aspx"/>

</endpoint>

</service>

</definitions>

</UMLWSDL2.0testing-Diagram>

Figure 3-5. WSDL description of the ValidateEmail Web Service

1st Iteration: MIDAS-CASE 165

The Web Service defines one operation, ValidateEmailAddress, owning

two messages (input and output). The input message,

ValidateEmailAddressSoapIn defines one part, ParametersIn, whose type is

defined by the ValidateEmailAddress XML Element. Likewise, the output

message ValidateEmailAddressSoapOut defines the ParametersOut part whose

data type is the ValidateEmailResponse XML Element. Both XML Elements are

located at the Types section since they are included in the WSDL document just

for data typing purposes.

The portType EmailServicePortType collects the operations that will be

performed by the Service. In this case there is only one operation,

ValidateEmailAddress. The link between this portType and the SOAP protocol is

described by the EmailServiceBinding Element. The service has only one port

EmailServiceSoap, which defines the Web Service location through an URL.

Figure 3-6 shows the ValidateEmail Web Service modeled using the

mentioned UML extension with MIDAS-CASE4WS.

Figure 3-6. Screen Capture from MIDAS-CASE4WS: ValidateEmail Web Service

represented in extended UML

The working panel depicts the Web Service model for the above case

study. The controls bar on the left hand allows adding any one of the elements

166 Juan M. Vara

identified in the presented WSDL metamodel. The upper tools bar provides with

the usual utilities, such as undo/redo, zoom in/zoom out, etc.

Back to the model itself, the name attribute of the definition component

serves to name the class while the TargetNameSpace attribute will be represented

as a property of the class.

The set of namespaces used to build the WSDL document are represented

as tagged values. For the sake of clarity, tagged values are represented as notes

linked to the corresponding element. The relationship between the

<<DEFINITION>> class and the data types ValidateEmailAddress and

ValidateEmailResponse are represented by means of a composition stereotyped as

<<TypesSchema>>. The TargetNameSpace attribute of the schema is be

represented as a tagged value.

Regarding messages, they are connected to their parts by means of

compositions, while <<Part_Element>> associations serve to connect each part

with the data type it uses. Therefore, the association between ParametersIn part

and ValidateEmailAddress element is stereotyped with <<Part_Element>>. And

so it is the association between ParametersOut part and ValidateEmailResponse.

Next, the EmailServicePortType uses one operation,

ValidateEmailAddress. This fact is represented by means of an aggregation

between them. In turn, the operation defines two messages,

ValidateEmailAddressSoapIn and ValidateEmailAddressSoapOut. Stereotyped

associations represent this fact. The stereotype depends on the nature of the

message (whether it is an <<Input>> or an <<Output>> message).

Whereas the binding is also included in the model, its connection with the

SOAP protocol is omitted. The EmailServiceBinding component describes the

binding to the porttype. Therefore an association is depicted connecting both of

them.

Finally, the service and port elements are represented by means of the

EmailService object that contains the EmailServiceSoap port. A composition is

used to show this containment relation.

3.3.2.1 Distinguishing syntax from semantics

In previous sections, when we have described MIDAS-CASE architecture,

we have mentioned that two different files were used to store any MIDAS-CASE

model: one for the semantics and one for the syntax. This idea remains valid in the

context of MDE (with some modifications as we will show). Hence, we elaborate

more on this topic in this section. To that end, we use the case study to show the

decomposition conducted between the syntax and the semantics of the model.

1st Iteration: MIDAS-CASE 167

We focus on the definition of the operation offered by the Web service, the

messages it uses, and the parameters or parts of each message. Left hand side of

Figure 3-7 shows such messages and parts, while right hand side shows part of the

XML files to store separately the semantics (a) and the syntax (b) of the model.

a

b

Figure 3-7. Excerpt from the Validate E-Mail Web Service model and XML files

On the one hand, the semantics of the Web Service is collected as a WSDL

document. So, the data in the XML fragment showed in (a) is merely WSDL

information. It describes the messages used by the operation provided by the Web

Service and the parameters used by these messages.

On the other hand, the XML fragment in (b) contains just the data for the

appropriate rendering of the drawing elements in the diagram. Therefore, an XML

element stores the data for the element representing the input message; another

one does so for the output message, etc.

3.3.3 Modelling XML Schemas with Extended UML

As it happens with Web Services, UML has to be extended to represent

XML Schemas. Therefore, to develop MIDAS-CASE4XS, that aims at supporting

XML Schema modelling with UML, we started from the UML profile proposed in

[364, 365]. Following section summarizes the metamodel as well as the

corresponding UML profile.

3.3.3.1 XML Schema Metamodel

Current M2DAT-DB bundles a complete DSL for XML Schemas

modelling (including the corresponding metamodel). However, when we first

addressed the task of supporting the modelling of XML Schemas, we sketched the

168 Juan M. Vara

one below. Although it is quite simple and obviously far from being complete, it

was a good starting point and the origin of the final version that has been obtained

after several iterations. As a matter of fact, a metamodel is not proven to be valid

until you really start working with it. This implies not only creating terminal

models conforming to your metamodel, but also coding model transformations

and code generation programs that use it, either as source or target metamodel.

Hence, the strengths and weaknesses of the initial version started to arose when

we adressed the development of the tooling for the proposal, never before.

Type

name

name
type

use

complexType

simpleType

ALLCHOICESEQUENCE

Restriction

type: String

Facetattribute

*

{c
o

m
p

le
te

,d
is

jo
in

t}

*

1..*

Group

1..*

1..*

Compositor

{complete,disjoint}

{ordered}
{choice}

{unordered}

1..*

1..*

is_based_on

0..1

1

satisfies

1..*

1..*

{incomplete,overlapping}

name: String

baseType: String

minOccurs: Number = 1
maxOccurs: Number = 1

ELEMENT

uses 0..*

complexContent
is_redefined_by 0..*

1

simpleContent

redefines

0..*

1

{in
c
o
m

p
le

te
}

uses

points

references

defines

0..*

Enumeration

set_values

Pattern

expression

Length

value

minLength

length

REF Attribute

baseType = REF

Figure 3-8. XML Schema metamodel and corresponding UML profile

In the following section we describe the metamodel next to the UML

extension.

3.3.3.2 UML Profile for XML Schema

Again, for the definition of the UML extension for XML Schema

modelling, we followed the guidelines proposed in [147].

First we defined the metamodel (previous subsection), using UML. Then,

for each relevant element of the metamodel we included a stereotype in the

profile. Notice that not all of the elements in the metamodel are ―relevant

elements‖. Some of them can be ignored, or just represented by common UML

elements. The UML extension is depicted in below.

1st Iteration: MIDAS-CASE 169

<<profile>>

XML Schema

-OrderNumber

«stereotype»

ELEMENT

«stereotype»

Simple Content

«stereotype»

uses

«stereotype»

attribute

«metaclass»

Class

«metaclass»

Association

1

*

1

*

«metaclass»

Attribute

1 *

1 *

«metaclass»

Package

-name

«stereotype»

Schema

1 *

«stereotype»

Complex Content

1

*

Figure 3-9. UML extension for XML Schema

 According to the proposed UML extension, an XML schema is represented by

means of a UML package stereotyped with <<Schema>>, which will include

all the components of the XML schema. The name of the schema will be the

name of the package.

 The XML ELEMENTS are represented as classes stereotyped with

<<ELEMENT>>. To name them, the ‗name‘ attribute of the element is used,

since they are explicitly defined in the XML Schema. The attributes of the

element will be tagged values of the class. Besides, the order of appearance of

the element in the including XML Schema is represented prefixing the name

of the class.

 The XML ATTRIBUTES are represented by means of UML attributes added

in the class that represents the containing XML element. The base type of an

XML attribute will be represented as the data type of the corresponding UML

attribute. The constraints to be satisfied by the attribute (required, optional)

and the default or fixed value will be represented as tagged values.

 A COMPOSITOR composition is a special kind of composition stereotyped

with the kind of compositor: <<Choice>>, <<Sequence>> or <<All>>. It can

only be used to join an element (whole) with the elements that compose it

170 Juan M. Vara

(parts). The compositors can be used to represent graphically nameless XML

complexTypes.

 Named COMPLEX TYPES were represented as classes with the

<<complexType>> stereotype. The complexType will be related by means of

a USES association with the element, complexType or simpleType that uses

it. If the complexType has no name, it will be represented in an implicit way

by the compositor used to define the complexType.

 An XML type with no sub-elements or attributes is a SIMPLE TYPE.

simpleTypes were considered as classes stereotyped with <<simpleType>>.

Its name being the same of the containing element, to whom it will be related

by means of a composition stereotyped with <<simpleType>>.

 An XML COMPLEXCONTENT element allows redefining a complexType.

Thus, it was represented as a subclass of the complexType that it defines.

 A simple content element allows redefining an XML type. Therefore,

SIMPLECONTENT elements were represented as stereotyped classes related

by means of an inheritance association to the type (simple or complex type)

which is redefined by the simpleContent type.

 A USES association is a special kind of unidirectional association,

stereotyped as <<uses>>. It joins a named complexType with the element or

type (simple or complex) that uses it. It can also be used to join two elements

by means of a ref attribute in one of the elements. An arrow pointing to the

referenced element represents the direction of the association.

 A REF element will be represented by means of an attribute stereotyped with

<<REF>> and represents a link to another element.

3.3.4 MIDAS-CASE4XS Case Study: a Web Information System

for medical images management

To show MIDAS-CASE4XS capabilities we briefly present a case study

that is part of a real application presented in [364]: a Web Information System for

medical images management. The system uses XML DB as data repository to

integrate the management of both the structured (OR) and semi-structured (XML)

data of the application.

Figure 3-10 shows the model for the XML Schema represented with

extended UML that drives the design of the XML part of the DB

1st Iteration: MIDAS-CASE 171

Figure 3-10. Screen Capture from MIDAS-CASE4WS – XML Schema model for medical

images management

Broadly speaking, the information from each medical image is shredded

into a group of Fichero_Info files. Each Fichero_Info could contain two types of

data: Analyze (Info_Analyze) or DICOM (Info_DICOM), as stated by the choice

compositor linked to the Fichero_Info element. Both, Analyze and DICOM are

formats for medical images storing and interchanging [7, 230].

Intrun, each Analyze or DICOM element is composed of a set of elements

whose internal structure differs from one to the other. To define such structures

two named complex types are used, Elemento_Analyze_Type and

Elemento_DICOM_Type. Both types are a sequence of XML elements.

3.3.4.1 Code Generation

As we have already mentioned, MIDAS-CASE modules provides with

code generation from extended UML models. In the case of MIDAS-CASE4XS,

the code generated is the XML document defining the XML Schema.

Back to the case study, the model shown in Figure 3-10 is automatically

serialized into the XML Schema shown in Figure 3-11 shows such schema edited

on XMLSpy [14], an XML editor that supports automatic validation of XML

Schemas. Likewise, the output from validating the Schema at the official checker

172 Juan M. Vara

from the W3C (http://www.w3.org/2001/03/webdata/xsv) is also shown in the

picture.

Figure 3-11. Screen Capture from XMLSpy - Validation of the XML Schema generated by

MIDAS-CASE4XS

3.3.5 Developing MIDAS-CASE: Technical Issues

This section aims at summarizing some remarks about the implementation

of MIDAS-CASE prototypes. Obviously, the three prototypes mentioned

(MIDAS-CASE4WS, MIDAS-CASE4XS, MIDAS-CASE4UML) were developed

using the same technologies, all of them spinning around the JAVA language.

Next, we describe briefly some details about the implementation of each tier of

MIDAS-CASE architecture.

http://www.w3.org/2001/03/webdata/xsv

1st Iteration: MIDAS-CASE 173

3.3.5.1 Presentation

To develop the interface layer we used JGraph [10, 11]. JGraph is an open

source graph component available for JAVA whose powerful API simplifies the

tedious task of drawing diagrams. Figure 3-12 shows the JAVA classes

architecture of MIDAS-CASE UI.

JComponent

JGraph

MyGraphMyGraphModel
MyGraphUI

JGraph JGraph

MidasCell

MidasCellView

EdgePort PortView EdgeView

DefinitionCell BindingCell ElementCell …….Cell

MidasCellEditor

DefinitionView BindingView ElementView …….View

DefinitionView

Editor

BindingView

Editor

ElementView

Editor

MidasCellRenderer
DefinitionView

Renderer

BindingView

Renderer

ElementView

Renderer

………….

Editor

……………

Renderer

MyGraphHandler

ActionsMenu

Figure 3-12. User Interface Layer Architecture

As it happens with almost every graphical application, it is based on the

Model-View-Controller pattern (MVC, [148]). Each new model or diagram in

MIDAS-CASE is a MyGraph object. This class extends JGraph, the root class of

JGraph. The MyGraph object is associated with a data model (MyGraphModel) as

well as a view (MyGraphUI object).

The data model is composed of a set of nodes and edges, plus ports. Each

node owning at least one port. This way, two nodes are connected by connecting

their ports. The data from each node lies in a MidasCell object while its

presentation lies in a MidasCellView object. In turn, the aggregation of all the

_View classes constitues the view of the model that is the MyGraphUI class.

For rendering the data, each MidasCellView is connected to a Renderer and

an Editor object. The former deals with node appearance, such as dimensions,

174 Juan M. Vara

size, location, colours, shapes, etc. The later allows modifying the data of that

node. That is, the information included in the corresponding MidasCell objetc.

Finally, event handling lies on the MyGraphHandler class, that connects

the data model with its view.

3.3.5.2 Logic and Persistence

As explained in sections 3.2.2 and 3.2.3, each model created in MIDAS-

CASE is persisted in two different XML documents (syntax and semantics). In

some sense, we are separating the data model from its view. So, the conceptual

architecture of MIDAS-CASE fits perfectly with the technical deployment of the

tool based on JGraph.

MyGraphMyGraphModel
MyGraphUI

MyGraphHandler

ActionsMenu

XMLDataManager

XMLDataParser

ImportGraph StoreGraphUtilXMLDB

…….Cell …….View

MIDAS-CASE

User Interface

Figure 3-13. Application Logic and Persistente layers architecture

Figure 3-13 summarizes the JAVA classes architecture for the logic and

persistence tiers. The ActionMenu class is connected to the StoreGraph,

ImportGraph and UtilXMLDB classes. Whenever the user wants to save a model,

the ActionMenu class handles the event raised. This one invokes the method of

one of the other two classes.

When the user saves a model, the StoreGraph uses its link with the

MyGraph class to collect all the information about the model. Next, it generates

1st Iteration: MIDAS-CASE 175

two XML documents: one conforming to the XML Schema for diagram data

management and the other one conforming to the corresponding XML Schema,

depending on the type of the model. That is, the XML Schema for persisting

WSDL models XML Schema models or UML class diagrams. All these Schemas

can be found on the enclosed CD.

Later on, an UtilXMLDB object is in charge of saving the XML documents

in the Oracle XML DB. To do so, this class provides with methods for storing,

retrieving, deleting and modifying XML documents stored in the DB.

On the other hand, it is the ImportGraph class, which deals with retrieving

models. To do so, it creates a new XMLDataParser object that implements a SAX

(Simple API for XML) parser. The XMLDataManager class handles the events

raised by the parser as it finds XML tags. Handling these events means adding

new elements to the model, as well as setting their properties. This information is

found on the XML document being parsed.

3.3.6 Adding more Functionality to MIDAS-CASE

All along this chapter we have emphasized the relevance of extensibility in

any tool for MDSD. In particular, the modular and open nature of MIDAS to new

advances in the field implied the need to design MIDAS-CASE as an open

framework, ready to incorporate new technologies and support new

fucntionalities.

Therefore, when we first planned the development of MIDAS-CASE we

stated that the tool had to be both modular and scalable. The underlying idea was

to make lighter the workload related with adding more functionality. The modular

architecture of MIDAS-CASE helps on this task. So, whenever a new type of

model has to be supported, a new module is developed. To buid the new module,

we just have to follow the same architecture and development process of the

previous ones. Hence, we need to identify clearly the different steps to carry out in

order to complete the development process of the module.

In the following, we describe the set of steps to carry out such process.

Note that they are clearly identified, what eases the task of developing a new

module. Figure 3-14 summarizes these steps.

176 Juan M. Vara

Extending Process
MIDAS-CASE

Metamodel
Definition

Defining XML Schema
Registering in XML DB

Integration

Updating common
classes

Customize
User Interface

Extending MidasCell
and MidasView

Customize
Application

and
Persistence

Layers

Coding new parsers

Figure 3-14. MIDAS-CASE Extending process

 First, the metamodel for the new type of model is defined in an XML Schema.

Then, the Schema is registered in the underlying XML DB. This way, the

repository is ready to store models conforming to the new metamodel.

 Next, we have to customize the user interface to add support for modelling the

elements included in the new metamodel. To do so, we have to extend the

MidasCell and MidasView classes (see section 3.3.5.2).

 To adapt both the logic and the persistence tiers to the new type of model,

new StoreGraph and XMLDataManager classes are implemented. They

provide with the parsers to retrieve and store models conforming to the

recently added metamodel. Anyway, the gap between the classes to

implement and the existing ones is minimal. The changes consist of a few

modifications over some methods well-localized.

 Finally, minor revisions over the common classes (those implementing menus

and toolbars) will integrate the newly implemented functionality into

MIDAS-CASE.

3.4 Lessons Learned

MIDAS-CASE was a coarse approach to a tool for MDSD of WIS.

Nevertheless, designing, planning and developing MIDAS-CASE provided with a

set of lessons learned and good practices. Likewise, some of the ideas that we tried

to capture in MIDAS-CASE had proven to be valid later. In fact, the most

1st Iteration: MIDAS-CASE 177

important MDE frameworks or tools are total or partially based on some of those

ideas.

Next, we summarize and put forward some of them, next to the main

conclusions obtained from the MIDAS-CASE project. We follow the same

structure used to present MIDAS-CASE: we present these ideas in a top-down

way, from the presentation to the persistence tiers.

3.4.1 User Interface Development

One of the main tasks that a tool supporting MDSD has to provide with is

model editors. In fact, such editors constitute the most of the user interface of this

type of tools. Therefore, mastering the development of model editors is a must in

order to develop tools for MDSD.

In the context of the MIDAS-CASE project we have constated that the use

of graphical components (like JGraph) to develop user interfaces increases the

degree of freedom. You are able to do almost anything when coding the user

interface from scratch since it provides with fine-grained control over the result.

Taking it to the extremes, we might say that the graphical component provides

with an API to create and handle (very simple) lines and nodes and it is up to the

developer how they are combined in order to create the look and feel of the tool.

On the other hand we consider the frameworks for development of tools for

MDSD. Some of them include facilities for developing graphical editors for

models, starting from the corresponding metamodel (see EMF/GMF or MetaEdit).

However, when using such frameworks you are losing control over the result.

Developing the editor (at least, the graphical part) is easier, but the kind of things

your editor will be able to do are limited by the capabilities of the framework. For

instance, you may not be able to use a specific shape or it may be impossible to

format the information shown on those elements as needed

Regarding MIDAS-CASE, the screen captures spread over the previous

sections prove that such approach works well. The result is quite appealing and the

editors built are intuitive and elegant.

Nevertheless, you should consider that coding the user interface was the

most time-consuming task of MIDAS-CASE development. Given that there

should be a compromise between the graphical capabilities you want for your tool

and the effort you dedicate to implement the user interface, the lesson to learn is to

use one of the above-mentioned facilities whenever you need to develop a models

editor.

178 Juan M. Vara

3.4.2 XML Schema as (meta)modelling language

A quick look at the most accepted modelling tools serves to confirm that

the use of XML Schemas to express metamodels and XML documents to express

conforming models, have been finally the most adopted way of building models

repositories.

Indeed, UML models are persisted using XMI [391], the OMG standard for

interchanging, manipulating and integrating XML data and objects. Hence, a tool

implementing XMI creates an XML Schema from the UML model (before XMI

2.0, a DTD was created instead of the Schema) [386]. From there on, you may

define terminal models conforming to your model by defining XML documents

conforming to the above Schema.

EMF [382] itself follows this approach. Its underlying format for model

management is also based on XMI. In a simplistic approach, we could argue that

Ecore metamodels are direct translations of XML Schemas to (XMI) conforming

Schemas. Likewise, Ecore terminal models are (almost) XML documents

conforming to the above Schemas.

Since XML syntax is too verbose and not very easy to use, abstractions

over the underlying models are provided in the form of graphical editors to

simplify the task of model editing. However, the idea of using XML as modelling

language remain valid, though it is done at lower abstraction levels.

3.4.3 Separating the Abstract Syntax from the Concrete Syntax

All along the previous sections we have stressed the separation between

syntax and semantics that we implemented in MIDAS-CASE. In fact, we used

different files to store the syntax and the semantics of each model.

At the time of writing this dissertation, when we revisited the MIDAS-

CASE project we realised that the idea of distinguishing syntax from semantics is

widely adopted by the most relevant MDE tools, though the terminology has

changed (see section 2.1.4 for clear definitions of each term), maybe because we

were on the dawning of MDE and some concepts were still a bit unclear. At

present, abstract syntax is used to refer to what we called semantics in MIDAS-

CASE. Likewise, we used just syntax instead of the actual concrete syntax.

However, the idea remains valid: we need to separate the relevant

information from the way we render it. When talking about (graphical) models we

mean that we distinguish the abstract syntax (the concepts modelled) from the

concrete syntax (the layout of the visual diagrams used to show them).

1st Iteration: MIDAS-CASE 179

In fact, this is one of the bases of EMF, where models are stored as .Ecore

files whereas diagrams are stored as .diagram files. As well, OMG followed this

approach when they liberated the UML Diagram Interchange (XMI-DI)

specification [271]. They aimed at easing the task of model exchange between

different modelling tools. Since XMI was devised just for exchanging the abstract

syntax of models, the concrete syntax was lost. Thus, when a model was imported

from other tool, it was not displayed correctly. Indeed, apart from the eternal

dilemma around XMI versioning drawbacks, nothing was said about diagramming

information exchange. Definitively, this fact hampered the adoption of XMI and

thus, OMG conceived the UML Diagram Interchange to cover this gap.

Nevertheless, CASE tools developers did not pay a slight bit of attention on

XMI-DI due to its limitations. Basically, it was not rich enough to support

exchange of the visual presentation of a model. In fact, OMG has created recently

a working group to facilitate interoperability among software models and model

standards, i.e. to taddress specifically this issue, the Model Interchange Working

Group (MIWG) [276].

The problem is still a serious drawback on the most accepted industrial

tools. Just to cite an example, we have tried ERwin to ArgoUML import/export

(see section 2.4.3.7). Indeed, ERwin is (said to be) able to export models to a wide

variety of formats.

When you import any ERwin model you are interchanging just the abstract

syntax of the model (and not completely), the concrete syntax is ignored. Hence,

you are not able to display the diagram that represents your model. When you are

using a big model, this is not a trivial problem. Indeed, the only models that will

be correctly displayed in this kind of tools will be the proprietary model, i.e. those

made with the tool itself because they are persisted in just one file that mix-up

concrete with abstract syntax.

3.4.4 UML Profiles became DSLs at the Time of Implementation

Although next chapter will elaborate more on this matter, after building

MIDAS-CASE prototypes we were on the position of saying that, when it comes

to implementation, DSLs (again the term was not much used at that time) are a

better option than UML profiles. Indeed, the most recognised model-driven

methodological proposals have opted for using DSLs to implement their UML

profiles (see UWE [205] and the works from Trujillo et al. for instance [231]).

180 Juan M. Vara

3.4.5 Model-Transformation Language

On of the most important things we learnt developing MIDAS-CASE was

the relevance and crucial role of model transformations in MDE.

All the transformations (model-to-model and model-to-code) bundled in

MIDAS-CASE are encoded in the tool. More specifically, the XML parsers are in

charge of these tasks. To that purpose, the parser navigates the extended UML

class diagram whereas it generate an XML output. Such XML file is the target

model. The code generation follows the same path, aside from the fact that this

time the XML output stream has to conform to a different Schema: the one that

defines the XML Schema or the WSDL metamodel.

This solution worked fine just for a while. As soon as we decided to

introduce some minor modifications over the metamodels (the XML Schemas),

we realised that we had to re-implement the parsers. This was a quite tedious and

repetitive task. Moreover, encoding the mapping rules in the tool hides the logic of

the application. The user has no idea about the development process that the tool

is implementing. Even worse, he has no option to modify it in order to adapt to

new business rules.

For the MDE vision to become reality, development tools should not only

offer the possibility of applying predefined model transformations on demand, but

should also offer a language that allows (advanced) users to define their own

model transformations and then execute them on demand [320].

Finally, the use of general-purpose programming languages for model

transformations coding is discarded bt the MDE community. As a matter of fact,

the vast majority of model transformation languages adopt declarative approaches

versus the traditional imperative approach of standard programming languages.

For instance, when you code a model transformation, you need to keep track of

which elements have been already mapped and to which output elements they

have been mapped. The use of an imperative language to that purpose is an error

prone task. In addition, it results on too verbose programs, very complex to

manage [342].

In summary, model transformations cannot be sensibly written in a

standard programming language, Object Oriented (OO) or otherwise. Instead, a

DSL for model transformation is to be used.

1st Iteration: MIDAS-CASE 181

3.4.6 Separation of Concerns: Modularization

The architecture of MIDAS-CASE favoured the modularization of the tool.

The tool was thought as a set of coexisting modules or subsystems, each one

providing with specific capabilities: deploying a UML class diagram, modelling a

Web Service description and so on. The underlying idea was to encapsulate all the

functionality related with each type of model in one place. That is, one module for

each type of model. This way, to support a new type of model we add a new

module whereas adding new capabilities to work with a specific type of model

means modifying only the corresponding module.

You may consider this modular architecture as a separation of concerns, a

traditional practice in Software Engineering [286, 340], to which MDE has also

adhered from its origins [207]. The idea is very similar to the one we captured in

MIDAS methodlogy: a layered architecture, with each layer representing one

concern of the system.

Solution: M2DAT Architecture

and Technical Design

4. Solution: M2DAT Architecture and
Technical Design

Previous chapter has presented MIDAS-CASE, our first attempt to develop

a tool supporting MDSD according to MIDAS methodology. However, the advent

of MDE an its related technologies made us reconsider the design and

specification of MIDAS-CASE in order to take advantage of the advances in the

field. We want to move from an isolated stand-alone tool to an integrated

framework. that bundles the most recognised tools supporting MDE tasks and is

open to constant evolution. The result is M2DAT.

This Chapter presents M2DAT‘s conceptual architecture and the decisions

that drive M2DAT‘s technical design. That is, which are the approaches and

technologies adopted for support each MDE task in M2DAT and how they are

used. In addition, in those tasks where several options could be sonsidered, we

provide with a discussion on them in order to justify the final decision.

Indeed, MDE is still mainly a research field and it was just an incipient

idea when we starterd to wotk on this thesis. Hence, building an integrated

framework for MDSD implies studying the different options before making a

decision on which is the approach or technology used to support each task. For

instance, you may use a general-purpose language or a DSL to code model

transformations. If you choose a DSL, then you may use a declarative language, or

an imperative one. Besides, there are different languages based on each paradigm.

Which is the one that best fit your needs?

In the following sections we will explain also this kind of decisions (both

methodological and technological). First, we present M2DAT‘s conceptual

architecture and put forward some remarks on its technical design. Next, we

present each component of M2DAT‘s technical design. Finally, the last section of

this chapter summarizes some guidelines on how M2DAT‘s specification is to be

used in order to develop a new module for M2DAT.

4.1 M2DAT Overview

Before diving into M2DAT‘s specification, we would like to provide with a

brief overview of the tool. We believe that having in mind a general idea will help

in the understanding of the rest of this chapter. Thus, we first present M2DAT‘s

conceptual architecture to later introduce M2DAT‘s technical design.

186 Juan M. Vara

4.1.1 M2DAT Conceptual Architecture

M2DAT architecture, sketched in Figure 4-1 follows roughly the initial

architecture of MIDAS-CASE (see section 3.2). It keeps a high level of

modularization and can be described according to two orthogonal dimensions:

P
re

s
e
n

ta
ti

o
n

ORDB4ORA
UI

ORDB4ORA
Model

XML Schema
UI

L
o

g
ic

SQL2003
UI

UML2
UI

SQL2003
Model

XML Schema
Model

UML2
Model

P
e
rs

is
te

n
c
e

Figure 4-1. M2DAT Conceptual Architecture

On the one hand, M2DAT can be thought of as a set of modules, one for

each model proposed by MIDAS to model the WIS. Each model is defined as a

DSL (insights on the motivation behind this decission will be given along this

chapter). So, M2DAT is a kind of workbench to work with those DSLs. To that

purpose, each tool provides with the functionality needed to handle models

elaborated with the DSL, like model editors or validators. For instance, Figure 4-1

shows four different modules: the one for ORDB modelling in Oracle, the one for

modelling standard-compliant ORDB schemas, the one for XML Schema

modelling and finally the one for UML modelling. The first three modules

together constitutes M2DAT-DB, the reference implementation for M2DAT

presented in this dissertation. In contrast, the last one is provided in the context of

the EMP project (see section 2.1.12.1), showing the perfect integration of M2DAT

with existing technologies.

On the other hand, M2DAT conceptual architecture follows the separation

of concerns principle [207, 286] by distinguishing the presentation of each model

from the model itself. We will show how this is semi-automatically provided by

EMF and thus supported in M2DAT when introducing M2DAT technical design.

This way, the presentation tier includes the editors (whether they are

Solution: M2DAT Architecture and Technical Design 187

diagrammers, tree-like or textual editors) to work with each type of model

supported by M2DAT while the models are handled by the logic tier.

M2DAT aims to integrate several DSLs. This implies adding support for, at

least, model transformations to connect the different DSLs and you may consider

also supply with model weaving capabilities. In addition, the capabilities that a

DSL workbench should support consist not only in a graphical editor and code

generation capabilities. The inclusion of support for model checking, model

execution, etc. might be also considered [241]. We use the term model processing

to refer to all these tasks, following the idea expressed in [370] to refer to all the

tasks related with model handling. Indeed, the model-processing tasks constitute

the logic of any tool for MDSD like M2DAT. Therefore, we call the module

comprising all these functionalities model processor. For instance, when the user

requests a model to be validated, it is the model processor which will carry out the

validation.

Finally, the persistence tier of M2DAT, in contrast with the one of

MIDAS-CASE, is a file system that incorporates traditional versioning policies.

We have discarded the use of an XML Database since, at the moment, it just

brings complexity to the development of M2DAT while most of the advantages

derived from using a Database commented in section 3.2.3 are already supported

(or in the way to be) by MDE technologies [30, 43, 304].

In the following we detail how this conceptual architecture is mapped into

a technical design.

4.1.2 M2DAT Technical Design

After defining the conceptual architecture of M2DAT, the next step is to

select the approaches and technologies to be used in order to obtain a complete

specification of the tool, i.e. for each MDE task, we have to select the existing tool

or component supporting such task, that best suit M2DAT‘s needs. To provide

with a brief overview on this selection of technology, Figure 4-2 shows the main

components used to deploy one particular module to support a DSL called

MyModel. Please, note that each component and the decision to use it will be

described and justified in the following sections. We might say that present

sections aims at putting forward what comes.

First of all, Eclipse is the underlying platform over which M2DAT will run.

In particular, all the technologies that M2DAT integrates, as well as M2DAT

itself, are built on top of EMF (section 2.1.12.2 gives an overview on Eclipse

architecture and EMF). Therefore, the core of M2DAT is Eclipse and the set of

188 Juan M. Vara

plug-ins that compose EMF. Later, each component or tool that is integrated into

M2DAT is another plug-in (or set of plug-ins) running atop of EMF and using the

models handling facilities that it provides with. Indeed, M2DAT is another set of

plug-ins running atop of EMF that connects the different components that

integrates M2DAT. These connections are represented by grey arrows in Figure

4-2.

ABSTRACT SYNTAX

CONCRETE SYNTAX

MODEL PROCESSOR MOFScript

CODE GENERATION

DIAGRAMMERS

GRAPH
GRAMMARS

QVTR ATL

MyModel

plug-in

MyModel

AMW

MODEL WEAVING

MODEL VALIDATION

MODEL TRANSFORMATION

Figure 4-2. M2DAT Technical Design overview

The top of Figure 4-2 shows that the separation between the presentation

of the model and the model itself (concrete VS abstract syntax) that was captured

in the conceptual architecture is automatically supported by EMF (we will cover

this matter in more detail in EMF section). To that end, EMF provides with

generic editors for models plus the infrastructure to use other components, like the

Generic Modelling Framework (GMF) to build more sophisticated editors.

By contrast, at the lower level we can see that the abstract syntax of the

model is used as input or output in any model processing task. The support for

these tasks is embedded in the model processor:

 The model transformations are developed using ATL as transformation

language (see section 2.3.3.2) since it has been identified as the most

convenient in order to get a reliable and efficient tool for MDSD (we will

justify this statement in forthcoming sections). However, a secondary

objective of M2DAT is to test the different MDE technologies. This implies

Solution: M2DAT Architecture and Technical Design 189

things like replicating the same task, like model transformations, with

different technologies in order to compare them. This way, some

transformations have been also coded using QVTo from OpenCanarias (see

section 2.3.3.13), mediniQVT (section 2.3.3.12) and VIATRA (section

2.3.3.10).

 In addition, we have mentioned that one of the main contributions of M2DAT

is the use of parameterized transformations as a way towards supporting

the introduction of design decisions without reducing the level of automation.

To that end, M2DAT leans on the ATLAS Model Weaver (AMW) tool to

define weaving models that are used as annotation models that drive the

transformation. In addition, the AMW tool is also used for its original

purpose, i.e. to define weaving models that allow defining the relationships

between the elements of two models. In this sense, weaving models will be

used to establish the correspondences between the models used to model the

different concerns of the WIS. Those models plus the weaving models that

link them are later processed by ATL model transformations.

 Code generation responsabilities fall on the MOFScript language (see

section 2.3.4.5) so far. However, we are planning to integrate also XPand in

order to compare it with MOFScript performance.

 Regarding models validation, the Epsilon Validation Language (EVL) is

used to define constraints over metamodels that are later checked over

conforming models.

Finally, we have already mentioned that the persistence of models leans on

a traditional version control system. In particular we use another Eclipse plug-in

so-called Subclipse, in order to handle the different software artifacts created with

M2DAT. Subclipse is an implementation of the recognised Subversion for the

Eclipse platform.

All things considered, M2DAT is a framework that integrates the best tools

supporting each specific MDE task in order to obtain an efficient tool. Even more

relevant is the fact that M2DAT is completely open to integrate new tools or

emerging technologies that, either provides with new functionalities or just

improve the tools supporting the existing ones.

We would like to mention that developing a tool like M2DAT, that

integrates different tools for supporting MDE tasks, means living on an ever-

lasting beta version. Even after making your decision, you should be ready for

changing. New and better products might come or new releases of the underlying

technology might appear. It is not our intention to threaten the reader with this

190 Juan M. Vara

discouraging outlook. The design decisions that drive M2DAT specification have

been taken to be able to cope with constant evolution.

In the following we present each technological decision that drive

M2DAT‘s technical design plus the components used to support each MDE task.

Note also that, in some cases the technological decision is preceded by a

methodological decision, i.e. before selecting a technology we may have to select

an approach. For instance, we have to select a model transformation approach

before choosing a model transformation language. Both type of decisions will be

reasoned in forthcoming sections.

To that end, we follow the same structure we have followed in this

dissertation so far. First, we tackle the decisions on the way to define new

modelling languages. Next, the ones related with supporting graphical

management of models. Then, we focus on model transformations, putting a

special emphasis on model-to-model transformations. The use of annotation

models follows and finally we conclude with the discussion on the integration of

automatic model validation.

4.2 Modelling and Metamodelling

As clearly stated along this document, the building block in MDE are

models. Any MDE proposal is based on the definition of new modelling

languages. To that end, two different approaches may be followed: the traditional

one, based on the extension of the UML standard in an UML profile, or the more

trendy at present, based on the definition of a new modelling language (almost)

from scratch (i.e. a completely new DSL).

In the following we present both approaches and provide with a discussion

on them in order to justify the methodological decision taken at the time of

developing the M2DAT specification: to combine the use of UML models at

higher abstraction levels with the use of DSLs at lower abstraction levels.

4.2.1 UML Profiles

UML provides with its own extension mechanism in order to allow

extending the language in a controlled way. Those mechanisms allow creating

new building blocks by means of stereotypes, tagged values and restrictions. This

way, an UML Profile is a package that contains model elements that have been

customized for a specific domain or purpose using extension mechanisms, such as

stereotypes, tagged definitions and constraints [70, 270]. A very common way of

Solution: M2DAT Architecture and Technical Design 191

applying UML was to first define a UML profile for a particular problem or

domain and then to use that profile instead of or in addition to general UML. This

traditional way of working, let us contemplate a UML profile as a way to produce

a domain-specific language (DSL) [317].

In effect, a UML 2.0 stereotype is defined as if it was simply a subclass of

an existing UML metaclass, with associated attributes (representing tags for

tagged values), operations, and constraints. Finally, you can also use the UML 2.0

profiling mechanism to view a complex UML model from multiple, different

domain-specific perspectives—something not generally possible with DSLs. That

is, you can selectively ―apply‖ or ―de-apply‖ any profile without affecting the

underlying UML model in any way. For example, a performance engineer may

choose to apply a performance modelling interpretation over a model, attaching

various performance-related measures to the model‘s elements. An automated

performance analysis tool can then use these to determine a software design‘s

fundamental performance properties. At the same time and independent of the

performance modeler, a reliability engineer might overlay a reliability-specific

view on the same model to determine its overall reliability characteristics.

The language extension mechanisms were slightly restructured and

simplified for a more direct way of defining UML-based domain-specific

languages. These languages have the distinct advantage that they can directly take

advantage of UML tools and expertise, both of which are abundantly available

In subsequent revisions of UML, the notion of a profile was defined in

order to provide more structure and precision to the definition of Stereotypes and

Tagged values. The UML2.0 infrastructure and superstructure specifications have

carried this further, by defining it as a specific metamodelling technique.

Stereotypes are specific metaclasses, tagged values are standard metaattributes,

and profiles are specific kinds of packages [270].

It is worth mentioning that the first MDE methodological proposals based

adopted UML profiles as modelling language. Since UML was (almost) the

unique modelling language known, they opted for extending it to support the

abstractions considered in their proposals. For instance, the most recognised

proposals for Web Engineering, like UWE [198], MIDAS [226] or OO-H [156]

were (initially) based on the use of UML profiles.

4.2.2 DSLs

In software development, a Domain-Specific Language (DSL) is a

programming language or specification language dedicated to a particular problem

192 Juan M. Vara

domain, a particular problem representation technique, and/or a particular solution

technique. The concept isn't new—special-purpose programming languages and

all kinds of modelling/specification languages have always existed, but the term

has become more popular due to the rise of domain-specific modelling.

The opposite is:

 a general-purpose programming language, such as C or Java,

 or a general-purpose modelling language such as the UML.

Therefore, DSLs are languages tailored to a specific application domain.

They offer substantial gains in expressiveness and ease of use compared with

general-purpose programming languages (GPLs) like UML in their domain of

application [227]. In other words, while a DSL is designed to solve a delimited set

of problems, GPLs are supposed to be useful for much more generic tasks and

thus they cross multiple application domains. In other words, a GPL aims to

provide with a way to represent abstractions from any particular domain. A given

DSL provides means for expressing concepts derived from a well defined and

well-scoped domain of interest [184]. Furthermore, the rules of the domain can be

included into the language as constraints, disallowing the specification of illegal or

incorrect models. Examples of DSLs range from the Structured Query Language

(SQL) [176] to the SED Linux utility for matching and replacing regular

expressions.

As well, it is worth mentioning the traditional difference stated between

Internal (aka as embebbed) and External DSLs [213]. The former is a DSL built

of constructs in a surrounding programming language. Therefore, the host

language restricts and influences the syntax of the DSL. The later is built from the

ground up, what means that you‘ll need to specify a grammar, develop a parser,

etc. They seem to be small programming languages.

The trend is to design and develop and internal DSL when an organization

that uses a GPL needs a technical API for specific tasks. A well-known example is

Ruby on Rails [301], a Ruby-based DSL for Web applications development. In

general, the ability to develop an internal DSL depends on the features of the

underlying language. Dynamic languages like Smalltalk or Ruby itself results

more convenient that JAVA or C#. In contrast, when you want to provide help to

non-software experts or developers in the form of support for design and

development tasks, you better go for an external DSL.

Another feature of external DSLs is that, opposite to GPL, they are not

compiled to executable code. By contrast, they use to be translated to the language

Solution: M2DAT Architecture and Technical Design 193

used by the underlying framework. This is the case of EMF-DSLs, where the

underlying language is JAVA.

Finally, it is worth mentioning that when we refer to DSLs in this

document we are always referring to external DSLs unless explicitly said.

In general, Language Workbenches (DSL development frameworks) allow

you to define a new DSL abstract syntax by means of a metamodel plus a concrete

syntax, typically visual. Note, however that there are some frameworks dedicated

to define textual concrete syntaxes for DSLs, like xText [122], TCS [179] or TEF

(http://www2.informatik.hu-berlin.de/sam/meta-tools/tef/). From those

specifications, the framework provides with a graphical and/or textual editor and

automatic storage of models. Later on, and depending on the framework, you may

add code generation capabilities from those models and even code model

transformations between your DSL and others.

As stated in chapter 2, there are several frameworks to work with DSLs,

like MetaEdit+, GME, or the well-known DSL Tools from Microsoft etc.

However, during the last years the vast majority of MDE research proposals

(based on the use of DSLs) has adopted Eclipse and more specifically EMF as its

preferred DSL framework. Mainly because using a common basis (i.e. a common

underlying framework) simplifies enormously interoperability issues. The basis of

DSL definition and construction in EMF is Ecore, a common metametamodel,

which can be seen as a simplified or industrialized version of MOF, whose

implementation is based on JAVA. We use to refer to those DSLs as MOF-based

DSLs. This way, if you define the metamodel of your DSL as a model conforming

to Ecore, the task of building bridges between your DSL and any other built on the

EMF framework does not have to be simple, but at least feasible.

Finally, we would like to mention that there is a growing trend in the

Microsoft and Eclipse communities to use the term DSL to refer to Graphical

DSL, but this has not to be the case. We may define a DSL and then we may opt

for adding a graphical notation or not [140, 190].

4.2.3 Discussion

The dilemma between UML Profiles and DSLs has been in the air since the

beginning of MDE [375]. In fact, we may see it as part of an older dichotomy:

agile modelling VS monolithic modelling [47]. The underlying idea could be

summarized as: Shall we use just one big modelling language (like UML) to

model the whole system or it is preferable to use a different set of abstractions to

model each part of the system?

194 Juan M. Vara

In an organization where UML has been used as modelling language UML,

and that implies almost any software engineering organization, defining a new

UML profile might be the quickest approach to build a graphical DSL. If your

organization has been used an UML tool, the task will be done in relatively short

time with relatively short effort. However, as an internal DSL is constrained by

the hosting language, a UML profile is constrained by UML itself. Thus, the

composition rules you may define for your DSL will have to be an extension from

those defined by UML. Likewise, all the native UML information will be present

in the modeller, which is distracting if it is not relevant to the domain [140].

Although at the beginning there was a huge trend towards extending UML

as a way to define new DSLs, we can state that some years later UML profiles are

not taking off. As a matter of fact, quite a lot of methodological proposals based

on MDE were initially based on UML profiles. However, when researchers started

to develop the technical support for their proposals, the above-mentioned

drawbacks become more apparent. As a result, those proposals, originally based

on the use of UML profiles, moved to the use of DSLs. This is the case of the

already referred MIDAS or UWE. We can find even works that use UML profiles

as a formal way of specifying their proposal, but uses MOF-based DSLs to deploy

them [231].

In this sense, the use or UML profiles or MOF-based DSLs has been

conditioned by the effort needed to develop the tooling support for any MDE

proposal. Just to show how this fact has influenced research works on any MDE

field, we now have a look at the situation of Model-Driven Web Engineering

(MDWE, [200]).

When talking about CASE tool support it should be noticed that the

proliferation of technologies and tools for developing ―your own‖ MDE tools is

facilitating the adoption and implementation of MDA principles and techniques.

Many software companies and research groups are really considering the

development of their own CASE tool for supporting their own MDE method

(following the MDA, Software Factories, Product Lines, Generative Programming

of whatever other more specific model driven proposal). This way, technology is

playing a key role in the distinction between UML based and non-UML based

tools: the facilities provided in the context of the Eclipse Modelling Project (EMP)

and other DSL frameworks, like the Generic Modelling Environment (GME) or

the DSL Tools, have shifted the focus from UML-based approaches to MOF-based

ones. Special attention has to be paid on the EMP. The quantity and quality of the

MDD facilities provided in the context of this project (a common modelling

framework like EMF, meta-editors like GMF, transformation engines like ATL or

Solution: M2DAT Architecture and Technical Design 195

VIATRA, code generators like MOFScript) has given rise to a new generation of

Eclipse tools. As a consequence, more and more MDWE proposals are developing

their tools as Eclipse plug-ins, like the OOWS suite [347] and M2DAT itself, or at

least, upgrading or re-defining them to be ―Eclipse compliant‖, like WebRatio [6]

or ArgoUWE [205].

Another factor in favour of using DSL resides on the storing format. UML

models are to be persisted using XMI [275], an OMG standard that aimed at

making reality the never-kept promises of UML advantages in the form of

interoperability. Unfortunately, XMI for UML has turned out as an additional

complication because mainly of its versioning problems: each tool uses a different

XMI version, thus UML models are not exportable-importable. Besides, the

verbosity of XMI complicates enormously handling UML-XMI artefacts. In

contrast, when you develop your own DSL you can define your own XML format

for models storage.

Even Microsoft, always far away from the OMG standards, is adopting

such approach: they refer to it as pragmatic modelling and is based on the

combination of UML and DSLs [321].

Finally, the ability of applying or de-applying UML profiles in order to

have different views of a same model is compensated with the use of different

DSLs to model the different views of the system plus the use of weaving models

to weave those views. The result is much more flexible than using an unique

model to specify the whole system.

Regarding DSLs, some authors claim that, since those languages are closer

to the problem domain than to the implementation domain and follows the domain

abstractions and semantics, they allow modelers to perceive themselves as

working directly with domain concepts [299]. However, in our opinion a DSL is

not just valid but the best option to model also the solution domain. In fact, we

follow a well-known principle, followed by some of the most important Software

Engineering practitioners [136]: we use UML to model the problem domain (for

instance Conceptual Data models or Use Case models). UML is recognised as the

best language to for analyzing and designing the architecture of the enterprise. It is

more intuitive and thus more convenient to be used when transmitting ideas to the

business architects and the like. On the contrary, we use DSLs to model the

solution domain, like the ORDB model, the XML Schema model or the WSDL

model. When we talk about the solution domain, we are referring to IT/SW issues.

In this case, we need from more detailed and specialised models if we really aim

to generate working code. Thus, UML is too generic for these tasks. Moreover, the

196 Juan M. Vara

stakeholders in this case will be software developers, not very prone to the use of

UML.

All things considered, our response to the dichotomy between UML-

profiles or (MOF-based) DSLs is not just A or B. We bet for a mix of both

approaches. We use pure UML at the higher abstraction levels (like Class

Diagrams or Use Case models) and DSLs at the lower abstraction levels, when

we are close to the final platform and thus we need models that are more detailed.

However, we do not discard UML completely at those lower levels, since we try

to define UML-like DSLs. That is, although the underlying language will be an

Ecore-based DSL, the concrete (visual) syntax will be that of UML. This way, we

define our own metamodel for Activity Diagrams, Use Case models, etc. Working

this way, we take advantage from the main contribution of UML: any Software

Engineer is capable of recognising a UML model. At the same time, we get rid of

the main drawback of UML: the size of the specification. For instance, when you

are defining a Use Case model, where is the sense of having to navigate the whole

UML specification whenever you want to check whether a particular property

exists or not? This kind of situations has a dramatically input on performance

when you are using the models as input for code generation or model

transformation tasks. Your model parser need to navigate the whole UML

metamodel, while just a little part is needed for defining the different models for

the different parts of the system.

4.2.4 Selecting a Metamodelling Framework: EMF

Previous section has focused in presenting and justifying a methodological

decision: the selected approach for modelling languages in M2DAT specification.

The logical step that follows is to translate such methodological decision into a

technical decision, i.e. it is time to choose the technology to develop M2DAT‘s

DSLs. In the following we justify our decision on this matter and our bet for EMF

as metamodelling framework.

4.2.4.1 Combining DSLs with UML Modelling

According to the methodological decision that states that M2DAT has to

combine UML modelling with the definition of new DSLs, the first requisite of

the selected technology is to support also UML modelling. Indeed, the

movement from high abstraction levels to low abstraction levels, i.e. from UML

models to DSL models, will be carried out by means of model transformations and

weaving models. Hence, the better the integration between UML and the DSLs

used, the easier it will be to make this movement downwards.

Solution: M2DAT Architecture and Technical Design 197

This requisite inhabilitates almost all the metamodelling frameworks

reviewed in section 2.2. In fact, all of them were focused on the definition of new

DSLs but provide with no support for UML modelling. Besides, their closed and

isolated nature hampers the building of bridges to bring UML models to such

frameworks. By contrast, EMF is a DSL toolkit [161] that supports UML

modelling since the EMP includes the UML2 sub-project, an EMF-based

implementation of the UML2 standard [270].

This way, the fact that the new DSLs developed in the context of M2DAT

will be defined over the same metametamodel that UML (at least, a widely

adopted UML implementation) eases the task of bridging UML models with DSL

models.

4.2.4.2 Interoperability

We have already mentioned that a recurrent problem regarding tool-support

for MDE is interoperability. The main explanation to this issue lies in another

recurrent problem in software engineering: the gap between standards and their

implementations [34, 132]. For instance, we have shown how the advantages that

XMI was to bring as format for models interchange has never come to reality

because of the different interpretations of the standard that each manufacturer has

done at the time of implementing it.

In order to solve this gap, software developers tend to agree in a common

implementation close enough to the standard and adopt it as reference

implementation. In fact, the current trend towards the use of EMF has resulted in a

wide community of EMF users and developers. The most outstanding research

organizations in the field of MDE are developing their prototypes using EMF. As

a result, the use of EMF as metamodelling framework leverages the level of

interoperability of M2DAT since M2DAT‘s models could be imported/exported

from/to the most recognised and accepted tools in the field of MDE.

As a matter of fact, the use of EMF as metamodelling framework eases the

task of finding the right tool to support the rest of MDE tasks. Since the most

adopted and mature tools for MDE tasks have been also developed in top of EMF,

we can use any of them without the need of an extra effort to import/export

M2DAT‘s models from/to such tools. The state of the art from Chapter 2 showed

that model transformations are the example par excellence of this statement.

All this given, we can conclude that the use of EMF is basic for any MDE

proposal to success in current panorama. In fact, M2DAT architecture is a

simplified version of MIDAS-CASE architecture, where the facilities provided by

the underlying framework (EMF) solve for free some problems that were solved in

198 Juan M. Vara

MIDAS-CASE by developing a specific component, like the XML parsers or the

separation between abstract and concrete syntax of the model.

4.2.4.3 Extensibility

M2DAT aims at supporting model-driven development of WIS according

to MIDAS methodology. MIDAS itself is constantly evolving and incorporating

techniques to include and support the development of new concerns in the WIS.

Hence, M2DAT has to be also open to incorporate support for the modelling of

the new concerns as well as for connecting such models with the models of the

already suported concerns. Therefore, extensibility was clearly identified as

another mandatory feature that M2DAT had to meet.

In this context, EMF and Eclipse comes as the perfect platforms to build an

extensible framework. Indeed, Eclipse is conceived as an extensible framework

that provides with the basic infrastructure to be extended and was thought to that

end. Likewise, EMF itself is also an open framework that is permanently evolving

and incorporating emerging technologies.

Hence, we will be able to:

 Integrate any new functionality developed upon EMF on M2DAT. Just think

of a new model transformation engine, a better code generation tool or

whatever. As long as they are developed using EMF, they will be completely

compatible with M2DAT.

 Integrate support for new model processing tasks in M2DAT. For instance,

right now M2DAT does not incorporate any model comparison facility, but it

will be feasible to integrate it once the tools developed in the framework of

the EMF Compare project [65] are mature enough.

 Test new prototypes and approaches as soon as they are liberated.

 Develop and integrate new modules to support the inclussion of new concerns

in the development of the WIS.

After selecting a metamodelling framework, i.e. a toolkit for defining the

new DSLs that will be bundled in M2DAT, the next step is choosing the

technology to be used to develop graphical editors for such DSLs.

4.3 Development of Graphical Editors

When we define a new DSL we start by defining its abstract syntax with a

new metamodel. Next we need to define its concrete syntax. This means

associating a notation to each concept and relationship collected in the metamodel.

Solution: M2DAT Architecture and Technical Design 199

Traditionally this notation has been identified with a visual shape, though it could

be just a textual notation. In fact, we find the later more useful when using the

DSL for code generation purposes as we will explain later. However, we should

not dismiss the relevance and the utility of visual representations of models, which

has been typically identified as a one of the technological foundations support for

MDE [21].

In this section, after presenting the two options considered for the

development of the traditional boxes and arrows model editors (aka diagrammers)

for new DSLs in M2DAT, we justify the final decisions on this matter.

Besides, notice that using EMF as DSL toolkit we do not need to worry

about the support for UML graphcial modelling since the UML2 project already

mentioned (indeed, it is the UML2 Tools project) already provides support for this

task.

4.3.1 JAVA Graph Components

In general, any GPL provides with some libraries for graphics that allow

defining user interfaces. For instance, when we developed the MIDAS-CASE

prototypes presented in the previous section, we used JAVA graphics capabilities

to build the model‘s editors (see sections 3.2.1 and 3.3.5.1 for a more detailed

insight on this issue).

However, coding a user interface from scratch is a very tedious task since

you have to add the needed code not only to depict any detail of your GUI, but

also to detect any user interaction and make your GUI react properly. That is, you

are responsible of event handling in the diagram and reflecting the effect of the

event in the underlying model.

To help on these tasks, there are several graph components available for

JAVA, like JGraph [10, 11], the one we used to develop MIDAS-CASE GUI.

These components provide with an additional abstraction layer over the JAVA

Foundation Classes that serve to ease the development of graphical editors. They

provide with abstractions to add in the GUI panel editors, boxes, arrows, widgets

for properties edition, etc. Besides, the whole framework is based on the MVC

pattern [148], thus it provides also with the corresponding event handlers for each

widget of the GUI. In addition, those graph components provides with the

traditional capabilities you would expect from a model editor, like zooming,

folding, undo, drag and drop, etc.

200 Juan M. Vara

Using these facilities we were able to develop MIDAS-CASE‘s model

editors in a systematic way.

4.3.2 GMF

The Graphical Modelling Framework (GMF) [341] provides a generative

component and runtime infrastructure for developing graphical editors based on

EMF and GEF (Graphical Editing Framework) [250]. Figure 4-3 shows the

dependencies between those Eclipse components.

<component>>

DSL Graphical Editor

<component>>

EMF

<component>>

GMF Runtime
<component>>

GEF

<component>>

Eclipse Platform

<<use>>

<<use>>

<<use>>

<<use>>

<<use>>

Figure 4-3. Dependencies between GMF, EMF and GEF

Any GMF editor depends on the GMF runtime and uses the EMF, GEF and

Eclipse platform. Before the advent of GMF, an Eclipse model editor was

developed by binding the EMF model with the GEF view by hand-coding. GMF

undertakes this task replacing the coding by modelling to provide an easier way to

develop graphical editors using GEF and an underlying EMF model [161].

The underlying idea is that a set of models serve to define the concrete

visual syntax of the DSL and collect the correspondences between the EMF model

(the abstract syntax) and the graphical elements. From such models, GMF

generate the code that implements the graphical editor in the form of an Eclipse

plug-in. The development process is depicted on Figure 4-4, detailing the different

models that you should define to build a GMF editor.

Solution: M2DAT Architecture and Technical Design 201

Domain
Model

Graphical
Model

Tooling
Model

.ecore

.gmfgraph

.gmftool

Mapping
Model

.gmfmap

Generator
Model

.gmfgen

Diagram

Plug-in

GMF
Project

Figure 4-4. GMF Development Process Overview

 The domain model: this is the Ecore metamodel used to define the abstract

syntax of the given DSL. It defines the non-graphical information managed by

the editor.

 The graphical definition model: this model defines the graphical elements to

be displayed in the editor.

 The tooling definition model: it states which are the widgets that compose

the user interface of the editor. In essence, it defines the tool palette.

 The mapping model: finally, this model links the previous models together.

Graphical and tooling elements are linked with their corresponding elements

form the domain model. In other works, it bridges the abstract syntax of the

DSL with the concrete (visual) syntax plus the widgets to add each different

modelling element to the diagram.

GMF tries to simplify the tasks of defining these models by providing with

wizards that drive the user on the process to define each one. In addition, a

tentative mapping model is automatically generated. It is a first attempt to match

the domain, graphical and tooling model. From that initial mapping, the user has

the the right to modify the mappings identified as needed.

Once the above models have been defined, GMF generates a new model,

so-called the generator model. This model encodes implementation details that

will drive the generation of the final plug-in that implements the diagrammer.

202 Juan M. Vara

This way, the main features of GMF are reutilization of the graphical

definition for different domains and applications and automatic generation of the

diagrammer.

On the one hand, since the only connection between the domain concepts

and its graphical representation is the mapping model, we just have to modify the

mapping model to reuse the graphical abstractions already defined for any other

domain. On the other hand, GMF applies MDE techniques. The diagrammer is

automatically generated from a set of models applying model transformations.

Actually, until recently they were not proper model transformations since JET was

used to generate the diagrammer code. More recently, Xpand has been adopted to

support this task. All this given, GMF is a perfect example of MDSD.

Finally, if you are ok with the default capabilities of a GMF editor, you do

not need to touch a single line of code since the whole process is automatic.

However, you still have the right to modify the generated code to obtain a

different look and feel for your editor or to add/modify the capabilities provided

by GMF.

4.3.3 Selecting a Technology to Develop Model Editors

In the following we expose the main reasons in order to select GMF as the

technology to use in order to develop diagrammers for a DSL plus our bet for

EMF tree-like improved editors as default editors for M2DAT‘s DSLs.

4.3.3.1 Compromise between development effort and result

In general, JAVA Graph components are much more powerful than GMF

as a tool for graphical editors development. The former provide with a higher level

of control and detail over the final result. In contrast, a GMF generated editor can

only be customized to some extent in reasonable time and manner. In addition, the

look and feel of a GMF editor does not always fit the user needs. For instance,

Figure 4-5 shows that anchoring between shape is not very accurate. Notice the

space left between the connector and the node to anchor.

Solution: M2DAT Architecture and Technical Design 203

no coupling between

the arrow and the ellipse

Figure 4-5. GMF anchoring problems

Although this issue could be addressed by modifying GMF generated code,

it is a very challenging task. The problem lies in GMF internals. GMF‘s

developers had to compromise the simplicity of the architecture for the sake of

genericity. However, the advantages derived from using GMF are still

compensating this drawback.

4.3.3.2 Interoperability

When we argued in favour of using EMF as metamodelling framework (see

section 4.2.4), we already mentioned the advantages provided by EMF in terms of

interoperability.

Being developed atop of EMF, GMF shares its beneits in terms of

interoperability. Hence, while JAVA Graph components and some other exiting

metamodelling frameworks, like MetaEdit+ (section 2.2.10) offers more accuracy

when developing graphical editors development, the underlying modelling

framework of GMF (EMF) provides with direct interoperability with a wide

variety of MDE tools.

To sum up, models elaborated with a GMF diagrammer preserve the

advantages of EMF in terms iof interoperability. In the case of M2DAT, this fact

is a winning argument in favour of selecting GMF for model editors development.

4.3.3.3 On the relative relevance of diagrammers in MDSD

Finally, we would like to downplay the relevance of diagrammers in

MDSD. As a matter of fact, though graphical editors are an useful and important

component in any MDSD tool, we have realised that in some scenarios they are

not the best tool.

When we first addressed the development and construction of first

M2DAT‘s prototypes we thought that diagrammers were an essential piece of the

tooling to be developed. Indeed, they had been traditionally one of the most

commonly used and accepted tool for Software Engineering tasks. Actually,

204 Juan M. Vara

diagrammers were essential when models were nothing but additional

documentation for the projects. Then, those diagrams offered a good overview on

the domain analysis, the system design, the business process and so on. However,

in the context of MDSD projects, a model became software itself. Hence, a brief

overview of the model is not enough. For instance, think of JAVA/C# framework

providing a capability for simultaneous editing in textual and graphical mode. It is

assumed that the graphical view provides a limited view on programs [99].

If we want models to be mapped directly to working code, we need

extremely detailed models. A graphical editor is not always capable of providing

with the level of detail demanded to that end. Note also that our approach to

modelling languages, where DSLs are used at lower abstraction levels while UML

is used at higher abstraction levels, implies that M2DAT‘s DSLs are close to

deployment platforms. Hence, the need of accurate editors is a must for M2DAT.

In this context, during the construction of first M2DAT‘s prototypes we

found that the simple tree-like editors provided by EMF resulted much more

convenient to work with DSLs modelling PSMs that are directly translated into

code. As a result, we have worked in identyfing the mechanisms and techniques to

improve such basic editors and customize them to the needs of each particular

DSL. Some of them will be introduced in section 5.2.2 when presenting the

reference implementation for M2DAT.

However, we still think that diagrammers are needed in any MDSD tool for

providing with first sights of any given model. Thus M2DAT‘s specification states

the toolkit for DSL supported by M2DAT has to bundle a diagrammer for

conforming models, though the effort dedicated to its development should be

considered very carefully. In this context, the generative nature of GMF fits

perfectly with our purposes regarding graphical editors development: GMF

generates an efficient though not perfect diagrammer in reasonable time and

manner.

4.4 Model Transformations: the Kernel of a MDSD process

Model transformations are the masterpiece to drive any MDSD proposal

forward given that each step of the development process involves a model

transformation to create or generate a new model from one or more input models

[41, 316]. This way, once the DSLs of the proposal have been defined and the

toolkits to work with them have been developed, the next step is to bridge them by

means of model transformations [246].

Solution: M2DAT Architecture and Technical Design 205

As a matter of fact, without automating the mappings between models, the

effort needed to manually transform the models become prohibitive and

organizations will not get a full return on MDE‘s promise of faster, less costly

software development [134].

The state of the art provided a complete study on the exiting solutions and

approaches to develop model transformations. Hence, this section will focus just

on explaining theselection of approaches and technology made regarding how

model transformations are to be developed in M2DAT. To that end, the following

sections revisit some of the conclusions already sketched in section 2.3.

Given the relevance of model transformations, we separate this discussion

on the following points: discussion about the convenience of using a GPL or a

DSL for developing model transformations; selection of a model-to-model

transformation approach; selection of a (-n hybrid) model transformation language

and finally, some comments on the comparison between the seleted language and

existing implementations of the QVT standard.

4.4.1 GPLs vs DSLs

The first decision to make is to choose the generic way of address the

development of model transformations: we might use a GPL or a DSL for model

transformation. We opt for using a DSL approach.

The use of a DSL allows defining model transformations as

transformations models [49] and thus allows model-driven development of model

transformations [349]. Working with transformation models provides with several

advantages:

 During early stages of the development process, it might be preferable to

concentrate on the properties of the transformation by collecting them in a

transformation model, that on how it is implemented.

 We can handle and produce transformation models using the already

mentioned Higher Order Transformations (HOT), that is, transformations that

consume and/or produce transformation models [350].

 Besides, we can use refactoring or composition techniques to build new

transformation models [51, 309].

 As any other type of model, transformation models can be validated and

checked with existing tools [72, 218].

206 Juan M. Vara

 Finally, if we are able to identify a common metametamodel for model

transformation languages, we can migrate model transformations expressed in

a particular language to any of the others transformation languages

conforming to such metametamodel.

Likewise, the DSL approach is the recommended way of working by the

OMG itself. In fact, their proposal for model transformations development, QVT,

is nothing but a recommendation/normative to follow in order to build a DSL for

model transformations.

Finally, the use of a DSL eases the development of model transformations.

Since the language is focused in providing support for an specific task, it typically

bundles some facilities that, using a GPL, would have to be implemented by the

developer. In contrast, a DSL for model transformation is specifically intended to

define how a set of source models have to be visited to create a set of target

models. For instance, a relatively simple model transformation coded with a GPL

has to add increasing amounts of machinery to keep track of which elements have

already been transformed, while DSLs for model transformation use to include

built-in support for this task [342].

To conclude, our first decision on how to develop model transformations is

to use a DSL for model transformations.

4.4.2 Selecting a Model-to-Model Transformation Approach: the

Hybrid Approach

Once we have made a bet for using a DSL, we need to state which is the

preferred approach for developing transformations in M2DAT. In the following,

we briefly present the reasons to discard some of the approaches identified in

section 2.3.2 to later provide with a more detailed discussion on the remaining

approaches.

4.4.2.1 Discarding less commonly adopted approaches

First of all, direct model manipulation approaches suffers from the same

drawbacks already mentioned about GPLs: they were not intended for direct

model manipulation. Thus, a model transformation expressed following such

approach results complex and too verbose.

Next, while XML-based approaches work fine for transforming documents

expressed with markup languages, they are not usable for model transformations

where XML is used just as storage format but the resulting XML documents are

far from being intuitive and easily-to-use.

Solution: M2DAT Architecture and Technical Design 207

While template-based approaches are widely used for code generation

(indeed, the OMG‘s MOF2T standard is a template language [266]), they result

too rigid for model-to-model transformations. For sinatcne, they provide very

limited capability to compose patterns.

4.4.2.2 Discarding Graph-Based approaches

Due to the fact that there exists several model transformation languages

following the graph-based approach, this section aims at exposing its main

features and main issues in order to adopt or discard a graph-based approach.

Graph-based transformations are probably more appealing from a purely

researcher point of view. Graph grammars are based on a solid mathematical

theory and therefore they present a number of attractive theoretical properties that

allows formalizing model transformations. In addition, we can think on (visual)

models as graphs. A graph has nodes and arcs, while a model have classes and

associations between those classes; this way the fact that models are well

represented as graphs is particularly appealing to shorten the distance between

modellers and model transformation developers, a big problem around model

transformation. Rule-based transformations with a visual notation may close the

semantic gap between the user‘s perspective of the model and the implementation

of transformations [377].

However, the level of formalization brought by graph-based

transformations does not make up for the complexity added to the development of

transformations. Expressing a model transformation in terms of visual graph-

rewriting rules is too challenging. As a matter of fact, existing languages use to

need from textual constructions to be able to define the transformation. Even in

some cases, like VIATRA, the visual representation is not supported, thus one of

the main advantages of graph-based approaches broke up.

In addition, it is worth mentioning that their level of adoption is rather low

when compared with DSLs for model transformation. In general, their use is

limited to the teams that develop them, that use to publish works showing where

their language is successfully applied to solve some SE problem. We believe that

this issue is directly related with the inherent complexity of graph-based

transformations. This complexity hampers the adoption of a tool developed by

others, since you have to learn, not only how the mappings between your

metamodels are defined with graph rewriting rules, but also which type of

rewriting rules are used in the particular language (each language uses different

notations), how the rules are sequenced, etc.

208 Juan M. Vara

In contrast, we have experienced that DSLs for model transformations are

much more similar. Once the mapping rules to code have been clearly identified,

expressing them with different languages is a feasible challenge (given that they

follow a similar approach).

Finally, it is worth mentioning that, although not for transformations,

graph-based approaches have been widely accepted for the rest of model

processing tasks, especially for simulation of models with dynamic features. As

well, they are still valid for specification purposes, though a graph-based

specification has to be later compiled into operational mechanisms.

4.4.2.3 Discarding purely Declarative and Imperative approaches

So far we have already discarded almost every approach for model

transformation development identified in section 2.3.2. From such list, just

declarative, imperative and hybrid approaches remain to be considered. This

section summarizes our main conclusions around these approaches and states

which is the final decission. To that end, it mainly focuses on comparing

declarative vs imperative approaches. The former is based on defining the

relations that must be kept between the input and output artefacts while the latter

is based on explicit creation of target elements using a procedural style plus

typical programming constructions.

Declarative languages own an implicit nature. For instance, the pattern

matching mechanisms are implicit, thus there is no need to implement them in the

code of the transformation. By contrast, imperative languages force the developer

to make everything explicit. Hence, a transformation expressed with a declarative

language use to be more concise than the equivalent imperative specification. On

the other hand, conciseness might hamper understanding. Indeed, many issues

remain hidden to non-experts developers in a declarative transformation since it is

les explicit than an imperative one. Therefore, the learning curve for declarative

languages use to be longer.

A major advantage of a pure declarative approach is that each rule is

completely independent from the others. That is to say, you do not have to worry

about how X elements are mapped when defining the rule to map Z elements. This

way, once you master the technique of declarative programming, using a

declarative language simplifies enormously the task of coding the transformation.

Likewise, imperative approaches do not maintain intermediate structures

(so-called transient links). This might adds complexity to include built-in support

for traceability management in the transformation languages.

Solution: M2DAT Architecture and Technical Design 209

In addition, declarative approaches implies syntactic separation between

source and target constructions. A mapping rule in a declarative language

consists of clearly distinguished source and target patterns what helps on

identyfing to which model belongs a referred element in the code. In contrast, in

an imperative transformation you find elements from both source and target

models mixed on the code.

Regarding rules scheduling, there are also a remarkable difference. The

execution of declarative transformations (with and appropriate transient tracing

mechanism, as we will explain in section 5.3.4.2) is deterministic. Thus, there is

no need to worry about this issue. In contrast, imperative style implies that

scheduling of the rules is explicit and it is a mandatory task for the developer.

With complex metamodels, this becomes a quite challenging task.

Finally, imperative approaches hamper (if not prevent from) defining

updatable transformations to support change propagation. Since they focus just

on how elements are to be created in the target model, without taking into account

the relations that must hold between source and target elements. For example,

multidirectionality or target incrementality is only feasible in the context of a

declarative language.

To sum up, the imperative style results appropriate just in simple scenarios

[97]. When you are mapping a model element following the imperative style, you

are forced to visit all the nested elements. Back to the classical Class to RDMS

example [46], when you code the rule for mapping classes, you have to visit all

the nested elements of the class, that is, its properties, methods and association

ends, and invoke the mapping rules for them. If the source metamodel is complex

enough, owning a high degree of nesting, the transformation gets too complicated.

Besides, declarative style is more convenient to support change propagation and

traceability maintenance [342]. However, the need for imperative approaches

should not be diminished. Transformations with a huge structural difference

between source and target metamodel needs from imperative constructions, since

they own a higher expressiveness. In other words, imperative languages are

mainly for quick building of models. Its nature makes them more user-friendly to

developers used to work with GPLs, whereas declarative languages offer the way

to tie semantically two models and are more easily maintainable.

To conclude, since declarative languages eases the task of model

transformation development but imperative constructions are needed to avoid too

complex transformations, we bet for a hybrid approach where declarative style

takes precedence over imperative one. As a matter of fact, the state of the art

210 Juan M. Vara

revealed that this is the approach followed by the languages that are nost widely

accepted.

4.4.3 Selecting a Transformation Language: the ATLAS

Transformation Language

Previous sections have focused on making a methodological decision:

which is the approach selected to address the development of model

transformations. Finally, we decided to use a DSL for model transformation that

adopts an hybrid approach where declarative style is preferred. Now, it is time to

make a technological decision: we have choose one among the existing languages

following the selected approach, like ATL, RubyTL or Tefkat.

We have chosen ATL because, at present, it is considered as a de-facto

standard for model transformation since the OMG‘s QVT practical usage is hardly

called into question due to its complexity and the lack of a complete

implementation ready for industrial production [57]. Unfortunately, the lack of a

closed specification until recently has burdened the efforts to implement the

standard.

In fact, though the scenario has evolved, it is still immature. The efforts of

different groups working to provide with a complete QVT implementation have

revealed different problems, difficulties and ambiguities in the current

specification [149]. Thus, there is no QVT reference implementation. There do

exist partial implementations, both of QVT-Relational, like ikv++‘s mediniQVT,

and of QVT Operational Mappings, like SmartQVT or Eclipse‘s QVTo. However,

none of them combines both approaches (declarative and imperative), in theory,

one of the strengths of QVT. Moreover, they are still to be adopted by the MDE

community. As a matter of fact, one can find research works that claim to use

QVT for model transformations tasks but it turns out that they use QVT just for

formalizing the mapping of their proposals, while ATL is effectively used to code

them (see [199] and [231] for instance). Given that they have already a QVT

specification, why do they move to ATL at the time of coding? Actually QVT is

not the preferable option even for those that have already specified their mapping

rules using QVT.

Nevertheless, to ensure that standard-compliance was not feasible, we have

tested the usable languages of the QVT specification (since QVT-Core is more

like a byte code for QVT-Relations) as part of the work carried out in the

framework of this thesis. To that purpose, we have developed the very same

transformation (conceptual data model to OR logical data model) with

Solution: M2DAT Architecture and Technical Design 211

mediniQVT [174] (that implements QVT-Relations) and the QVT-Operational

Mappings implementation from OpenCanarias [306]. Both of them lose when

compared with ATL (see the next section). However, we still believe in standards,

and specifically in QVT. In fact, it is another reason for using ATL. As mentioned

before, some work has already been done in the alignment of ATL and QVT. Even

better, Obeo is on the way to finish a QVT-Relations implementation [155] based

on the ATL-VM [180] (see section 2.3.3.12). Therefore, we expect that an

efficient ATL-QVT bridge will be available soon.

In addition, a deciding factor in favor of ATL is available documentation.

In this sense, ATL is by far, the best existing model transformation engine. It

provides with a complete user manual [185]; a set of introductory examples

covering the basics to know when developing model transformations with ATL

[13]; a zoo of metamodels defined in several formats [24] (KM3 language, Ecore,

SQL, XMI, DSL Tools XML specific format, etc.); a battery of scenarios where

ATL transformations have been successfully applied (in research and industrial

contexts) and a very active newsgroup that helps on solving any doubt not covered

in the documentation already mentioned. All these resources are available from

the ATL site (http://www.eclipse.org/m2m/atl/).

Another important factor at the time of selecting ATL as model

transformation technology is its good coupling with the ATLAS Model Weaver

(AMW) tool. Following sections will show that we use AMW to define annotation

models that are processed by ATL parameterized transformations. In this sense,

the coupling between ATL and AMW (in fact, they wer developed by the same

research group) eases the handling of annotations in the model transformation.

Finally, we would like to mention that at the beginning of 2004, when we

first addressed the development of model transformations, it was still emerging as

a research field. Therefore, our decision was based on a preliminary review of the

few documentation existing and some initial tests. Later on, ATL has turned out to

be the preferable model transformation engine by the MDE community, and as we

have mentioned this has contributed decisively to constant improvement of the

engine, and what is more important for us, the documentation available. In

addition, during these years we have worked intensively in the development of

model transformations using not only ATL but also other model transformation

languages. The experiences gathered have served to confirm that our initial bet for

ATL was completely correct.

http://www.eclipse.org/m2m/atl/

212 Juan M. Vara

4.5 Introducing Design Decisions on Model Transformations

This chapter has already presented a set of methodological and technical

decisions that allow us to specify a MDSD framework. So far, we have identified

the selected modelling approach, the metamodelling framework to deploy such

approach, the technical solution to build graphical editors, the model

transformation approach to follow in order to bridge the different modelling

languages and the language to implement such model transformations.Therefore,

we are able to provide with the technical support to automatize a MDSD proposal

based on the use of DSLs.

Nevertheless, while we were building first M2DAT‘s prototypes, we

realised that a completely automatic process from requirement to final deployment

is not only unfeasible, but also not recommendable. Design decisions have to be

introduced to drive the development process when you move from one model to

the other, especially if you are moving down towards deploying platforms. There

is a need of stating how abstract concepts are to be mapped to concrete software

artefacts. In some sense, we need to support the introduction of design decisions in

the MDSD process.

In addition, the nature of some models makes it even more difficult to

automate the whole development process. For instance, business process models

present considerable differences compared to structural models that raises a

number of issues concerning model transformation [256, 332]. One has to be

familiar with the hidden concepts in the metamodels. Resulting ambiguities on the

metamodel layer have to be solved either by reasoning algorithms or user input.

We need from non-uniform mappings [153] that behave different depending on

the paremeters received.

In the following we discuss the different options to address this type of

issues according to the complexity and performance of each possible solution.

Likewise, we put forward the reasons that drive us to use the one that was finally

selected.

4.5.1 Selecting an Approach to Drive Model Transformations:

Annotation Models

According to the principles of MDE, a development process must provide

for the highest degree of automation. In fact, once the PIM has been defined, the

rest of the process should be completely automatic. In this context, the simplest

solution to the kind of problems mentioned in the introduction of this section is to

Solution: M2DAT Architecture and Technical Design 213

use a default value for these design decisions when coding the model

transformation.

For instance, back to the classical Class to RDMS example [46], you may

use either one of the following mapping rules for one to one associations: a

foreign key in the table for one of the classes or a distinct table containing the

primary key of each of the related classes and any link attributes. Traditional way

of acting is deciding for one option and encode it in the model transformation, i.e.

all the associations will be mapped by means of a distinct table. But defining a

one-size-fits-all model transformation in such contexts is not enough. It may occur

that, in absence of a design decision stating to do so, some constructions are never

generated on the target model.

It would be desirable to be able to select the most convenient option for

each matched pattern in the source model. Back to the example, given a Class

diagram we would like to state that the X associaton is to be mapped by means of

a distinct table while the Y association is to be mapped by means of a foreign key.

In a MDE context where the different steps of the development cycle should be

automated by model transformations, the only way of introducing such design

decisions is providing with a mechanism to parameterize model transformations.

The need of ways of driving model transformation executions was clearly

identified from the dawn of MDE and MDA. Indeed, the concept of mark

introduced in the MDA Guide [246] is direcly related with this matter: ―A mark

represents a concept in the PSM, and is applied to an element of the PIM, to

indicate how that element is to be transformed‖ (MDA guide, pp. 22). UML

profiles have been widely used as marks to drive the execution of model

transformations.

Nevertheless, marking the model itself we are polluting the model with

concepts not relevant for the domain that it represents. In section 2.4.4.2 we

already mentioned the tendency of current tools for model-driven development of

DB schemas towards the use of non-pure conceptual data models polluted with

logical details in order to ease the mapping to a logical model. If the conceptual

model is just to be used to that end, this behaviour might be acceptable. However,

if the very same conceptual model has to be mapped to another logical model, the

conceptual model is not valid: the logical details it contained have to be cleared

out in order to recover a pure conceptual model.

Then, given that the information to drive the mapping should not be

included in the model to map, one acceptable way of expressed it is in the way of

annotations [239]. In general, models are annotated or decorated to insert

214 Juan M. Vara

information that is not defined in the metamodel. Annotation data usually is not

conceptually relevant to be part of the metamodel. For example, annotations are

often meta-information used for pre-processing, testing, logging, versioning, or

parameterization [114, 154, 219].

Besides, MDSD must support incremental and iterative development. This

means that the mappings between models must be repeatable. So, if a mapping

requires some additional input apart from the source models, this information or

annotations must be persistent [344]. In a MDE context, everything should take

the shape of a model. Therefore, we propose to collect this extra data or

annotations in another model, so-called annotation model, that is attached to the

source model following the decorator design pattern [148].

For instance, suppose we have a source and a target metamodel, a terminal

model conforming to the former and the corresponding model transformation.

Then, for each annotation model used to execute the transformation, different

target models will be generated without any modification in the source model.

This is the approach followed to develop model transformations in M2DAT.

The use of annotation models to drive mappings execution leverages the

degree of automation in the MDSD process embedded in M2DAT. As long as the

models handled are complex enough (and this use to be the case when working in

real projects), complete automatization of the development process is not feasible.

However, using weaving/annotation models we are providing both with a way to

semi-automate the introduction of design decisions plus a way to persist them.

since the annotations or design decisions will be collected in the weaving models.

They can be modified and the target models regenerated to reflect the result of

these modifications. This contrasts with the approach followed by other

implemented proposals like UWE, where manual refinement tasks are to be made

after the transformations of some steps of the development process have been

executed [205].

4.5.2 Selecting a Technology to Create Annotation models:

AMW

We have just introduced the selected approach to drive the execution of

model transformations in M2DAT. Next step is to translate such methological

decision into a technical decision, i.e. we have to identify a technology to create

the annotation models used in M2DAT.

First, we have to consider that the need for defining an annotation model

for every source model might hamper the modelling task. If the process of

Solution: M2DAT Architecture and Technical Design 215

defining annotation models is not intuitive and user-friendly, the modelling task

might result too tedious. To help overcoming this issue, instead of using or

defining a completely new metamodel to create annotation models, we bet for

using a weaving model (see section 2.1.7).

Weaving models are a special kind of model used to establish and handle

the links between models elements. Hence, a weaving model is intended to be

attached to some other models by nature. Therefore, it fits better to our purposes:

each element of the weaving model will express some information about an

elment from the model we want to annotate (so-called woven model). This way, a

simple scenario of using a weaving model as annotation model is shown in Figure

4-6.

Ma

Weaving/Annotation Model
Mw

a12

a12

a12

Figure 4-6. Weaving models as annotation models

Note that this scenario differs from typical scenarios where two models are

woven. In this case only one model is woven: the annotated model (Ma). Both a1

and a2 are elements from Ma. They are annotated by linking them with the r1 and

r2 annotations. In turn, r1 contains a property (a12) that gives extra information

about a1 whereas r2 contains two properties (a21 and a22) playing the same role with

regard to a2.

To create and handle the weaving models used in M2DAT we use the

ATLAS Model Weaver (AMW). The AMW workbench provides a set of standard

facilities for the management of weaving models and metamodels [114].

Moreover, it supports an extension mechanism based on a Core Weaving

Metamodel that contains a set of abstract classes to represent information about

links between model elements [115]. Typically, the classes from the core Weaving

Metamodel are extended to define new weaving metamodels for specific contexts.

One of those extensions allows the definition of annotation models and was

presented also in [115]. Therefore, we could use the afore-mentioned annotation

216 Juan M. Vara

metamodel directly or use the extension mechanism supported by AMw to define

new annotation metamodels for each particular scenary.

In addition, AMW provides with a GUI that adapts to any weaving

metamodel extension. The user interface is automatic generated according to the

metamodel extensions by using effectively the reflective API of EMF. In other

words, using AMW there is no need to develop a graphical editor for annotation

models. If the annotation metamodel is based on the Core Weaving metamodel,

AMW generates automatically an easy-to-use and intuitive editor for conforming

models. For instance, Figure 4-7 shows a screen capture from AMW.

Figure 4-7. AMW GUI Screen Capture

The panel on the left-hand side shows a UML class diagram (represented in

the EMF tree-like editor) while the panel on the right-hand side shows the

corresponding annotation model. Note that when the user clicks over an element

from the weaving (annotation) model (the PK_title annotation object), the

referenced element is automatically shadowed (the title property) and viceversa.

Note also that this way of displaying a model and the corresponding weaving

(annotation) model results very intuitive: at one side the reference model and at

the other side, the references. Likewise, the use of AMW‘s GUI is quite simple.

Just by dropping an element from the left panel to the right panel, AMW creates

an annotation object for the selected element.

Finally, we have already mentioned that a decisive factor in favour of ATL

is its good coupling with ATL. Hence, it is also a decisive factor to choose AMW

as tool for creating weaving models in the context of M2DAT. Chapter 5 will

show that AMW annotations are easily handled in ATL transformations.

4.6 Code Generation: the last step in the MDSD process

Any MDSD process culminates in the obtention of the working-code that

implements the software system. Hence, after having identyfing the approaches

and technologies to build the DSLs fo M2DAT and bridge them by means of

Solution: M2DAT Architecture and Technical Design 217

(parameterized) model transformations, it is time to select the approach to follow

for code generation and the preferred technology.

In the following we provide with a brief discussion on existing approaches

and present the main motivation behind the use of MOFScript to deploy code

generation in M2DAT.

4.6.1 Selecting a Code Generation Approach

The term code generation has been traditionally related with the last phase

of a compiler, where an Abstract Syntax Tree (AST) was translated to source code

in the targeting programming language [140]. Hence, when we addressed the

specification of how code generation has to be tackled in M2DAT, code

generation tasks were mainly related with stand-alone parsers following a

template-based approach, like Velocity, Smarty, Contemplate, Cheetah, Jinja,

Savant, or Liquid to name only a few.

With the advent of MDE the role of code generation gained attention. In

essence any MDSD process is a chain of model to model transformations that

generates models with a lower abstaction level until a model close enough to the

targetted platform is obtained. Then a code generation step serializes such model

into the source code. Since the input for the code generation is a model, a new

term was coined to refer to code generation in MDE contexts: model-to-text

transformations. As a result, a number of DSLs for model-to-text

transformation has appeared during the last years.

Although deep down, stand-alone parsers and DSLs for model-to-text

transformation are similar, the main difference lies in which is the artefact that

drives the generation process.

In the former, the grammar of the language drives the generation process,

the parser navigates the input programs to find matches of grammar constructions.

In the latter, it is the metamodel of the DSL the one that drives the generation

process. The generator navigates the input models trying to match their elements

with the patterns (defined in terms of the metamodel) collected in the

transformation specification. This way, in a code generation process supported by

a model-to-text transformation language, the model plays the role of the AST. In

fact, the classes that are instantiated when defining an AST corresponds to the

classes defined in the metamodel of the DSL. In addition, we can match the

syntactic sugar [213, 214] of programming languages with the concrete syntax of

today‘s DSLs.

218 Juan M. Vara

The idea behind code generation remains valid, the innovation is in the way

the processing is carried out. In GPL compiling, a parser walks the AST while the

correspondent code is written to an output stream. In MDE contexts the approach

is the same, it differs only in that the generator visits the internal representation of

the model to generate the output stream.

Indeed, the former is comprised in the latter that also comprises traditional

simple text replacement approaches, whose most representative example is XSLT

[389]. At best, this type of generators provides with the same capabilities than a

model-to-text language but a higher cost in terms of complexity and verbosity

[192]. This is mainly due to the fact they do not take advantage from the

metamodel to navigate terminal models. By constrast, model-to-text languages

lean on the metamodel to simplify code generation. Indeed, they do not need to

perform a lexical analysis, a preprocessing and a parsing phases to build the

Abstract Syntax Tree (AST). They lean on the metamodel, that defines the classes

of the AST to build the AST. This way, the metamodel results much more useful

than a BNF grammar [140] and the task of defining the transformation is much

more simpler.

Besides, DSLs for model-to-text transformations use to be metamodel-

based text-generation tools. That is, they may be expressed as models conforming

to an underlying metamodel. Therefore, as models, they are suitable to be used in

the context of any model processing task: they might be transformed, validated,

simulated, etc. In sumamry, using a DSL for model-to-text trasnformations we are

taking advantage of the same issues already sketched in section 4.4.1 when

comparing GPLs vs DSLs for model-to-model transformation.

Therefore, code generation tasks in M2DAT will be developed using

model-to-text transformation languages.

4.6.2 Selecting a Model-to-Text Transformation Language: the

MOFScript language

Afetr deciding on using a model-to-text transformation language for code

generation, we have to state which is the language to use. Please, note that we

stick to code generators in the EMF framework, since we have already made a

decision on which the underlying framework of M2DAT is. However, this

decision in not restrictive at all, since the most important (open-source) solutions

are built upon EMF as the state of the art in section 2.3.4 showed. Hence, such

section provided also with a brief overview on generating technologies in the

Eclipse framework.

Solution: M2DAT Architecture and Technical Design 219

Up to now, MOFScript has been the model-to-text transformation language

for generation tasks in existing M2DAT prototypes because of several reasons.

MOFScript was one of the first submissions in response to OMG MOF

Model to Text RFP process [267], thus when we addressed this task it was

probably the most contrasted and the most commonly used. Besides, the adoption

of the visitor-based approach (very similar to traditional programming) shorten the

training period. Furthermore, the visitor-based approach proven to work fine for

the firsts generation tasks we tackled in M2DAT protoypes: mainly SQL code.

Before making the decision, we did some tests with the other generative

technology that existed in the context of Eclipse: JET. We discarded it because of

its verbosity. We find it too complex to code M2T transformations with JET since

it was too JAVA-based and was not devised to work with models (i.e. it sifferes

from the drawbacks already commented in previous section about standa-lone

parsers).

Likewise, by the time we started to develop code generation scripts, nor

Xpand, neither Acceleo MTL had appeared. Not even the OMG had delivered the

final specification of the standard. Besides, when Xpand appeared it seemed to be

too tightened to its underlying framework, OpenArchitectureWare. The definitions

of M2T transformations with Xpand imposes the use of its workflow component.

However, right now we are revisiting those technologies, which are much

more mature than they were a couple of years ago. In addition, when we have

tackled model-to-text transformations for new concerns we have realised that, in

some cases, template-based approach fits better and eases the task. For instance,

when the code to generate is expressed in some mark-up language, like XML or

HTML, the template based approach simplifies the task. Otherwise, auxiliary

functions have to be coded and invoked all along the transformation program to

generate repetitive constructions.

As well, it should be mentioned that so far there has been much more

activity around model-to-model than on model-to-text transformation languages.

Hence, it is still mainly a research field, as the late arrival of the standard

confirms, where new proposals appear each day.

Therefore, we do not discard changing our preferences on code generators

on the mid-time. As a matter of fact, this is one of the advantages of M2DAT. We

can use or integrate new technologies in the platform as long as they are based on

EMF. And on current MDE context, this requirement is met by 99% of new

technological proposals.

220 Juan M. Vara

4.7 Model Validation

The new role of models in MDE also influences the relevance of having at

one‘s dispossal model validation mechanisms [91]. Before MDE, models were

used just for documentation purposes. Thus, their level of accuracy was not a

cornerstone issue. By contrast, in MDE proposals models are the driving force.

Any error in a particular model will be transmitted through the different models

generated until the working-code. Model validation mechanisms can be used to

detect errors and inconsistencies in the early stages of development and can help

to increase the quality of the models built as well as the code generated from them.

These activities are especially important in proposals aligned with MDE because it

proposes that models were used as a mechanism to carry out the whole software

development process [249].

We have already mentioned that the metamodel of a DSL is not enough to

reach a precise and rigorous specification of which will be the valid models. The

metamodel just collect the static semantics of the language, whereas some

constraints have to be to defined to collect some domain rules that were not able to

be collected in the metamodel [125]. Such constraints are defined at metamodel

level and evaluated over conforming models to check if the model is valid. In fact,

the model will be passed as input to a model transformation designed to work with

correct models (whether it is a model-to-model or a model-to-text transformation).

Thus, it has to be free of errors before being used by the transformation.

In the case of M2DAT specification, the need for model validation

mechanisms arose when we started to build the firsts prototypes. Hence at that

moment, the issue has been already tackled in MDE contexts. Therefore our

decision on this matter was clearly influenced by existing works in the area. This

is another point to show how the reference implementation of M2DAT influences

its conceptual architecture and technical design, as Figure 1-4 showed in the

Introduction Chapter.

Next two sections summarize our main findings regarding how model

validation mechanisms can be supported and the reasons behind our final

decissions on how it will be done in M2DAT.

4.7.1 Selecting a Model Validation Approach

There are not many approaches to implement model validation

mechanisms. In essence, we can distinguish between hard-coding the validation

Solution: M2DAT Architecture and Technical Design 221

rules in the model editors provided with the DSL toolkit or defining them outside

of the editors using a DSL for constraints definition.

Following the same reasonings spread over this dissertation, the latter

approach results more convenient. Hard-coding the constraints to check in the

editors goes completely against the traditional principles of modularization [116]

and separation of concerns [286] since we would be mixing the code for

visualizing models with the code for validating them in on single place.

Besides, working that way the constraints remains hidden from the

developer, thus he would find harder to understand which were the errors he

introduced that made the validation failed.

By contrast, coding the constraints outside of the editors improves

modularization and extensibility. For instance, if the domain rules changes new

constraints have to be implemented to define what is a valid model. Then, the

toolkit for the DSL has to be updated to support the new constraints. However,

working this way, it is just the constrainst checking component what has to be

updated and the place where such modifications have to be made is much more

localized.

Moreover, in contrast with with model-to-model transformation, code

generation, model-to-text transformation or design decisions introduction, there

has been a consensus about how model validation is to be implemented in MDE

proposals and OCL [268] has been commonly accepted as the language to express

constraints in metamodelling frameworks. Indeed, it was devised for this task

from the beginning and had been already used to that purpose before the advent of

MDE.

Therefore, in this section we will not go deep into the discussion around the

approach followed and we will adopt one based on the definition of OCL

constraints. Hence, in the next section we to compare and justify our selection

among the exiting tools or technologies to integrate OCL constraints in EMF-

based DSLs.

4.7.2 Selecting a Model Validation Technology: EVL

When selecting an OCL-based implementation of a model validation

mechanism we have to first consider the complexity of OCL. Though it seems to

be a rather simple language, its complexity is a real shortcoming and this is one of

the reasons why you find such a variety of modelling tools having their own

navigation language (ATL, QVT, MTL, XPand, Acceleo, JET, etc.) though OCL

222 Juan M. Vara

was devised as a universal navigation and constraint language for MOF-based

models. The most of them started from OCL and ended by defining an adapted-

version of the standard.

Likewise, we can find several attempts to support OCL-based model

validationa in the context of EMF.

For instance, RoclET [228] allows defining UML models and adding OCL

constraints over them. In addition, refactoring of constraint after refactoring the

UML model is also supported. Nevertheless, it is limited to work with UML (1.5)

models and, though OCL evaluation is supported, validation of models is still too

immature.

The EMF validation framework [66] provides a means to evaluate and

ensure the well-formedness of EMF models both in batch and live modes.

Although it is based on the definition of OCL constraints, the validation

mechanisms have to be ad-hoc coded for each metamodel using the framework

API. That is, you have to develop a plug-in that works over the plug-ins that

implements your model editors. This was not a good option for us since we aimed

at a more automatic and declarative way to add validation over M2DAT models.

In contrast, [101] showed a way to use the MDT-OCL project (another

EMP subproject) for validation purposes doing exactly what we expected from a

models validator. It used OCL syntax and it provided with models validation both

in batch and direct mode. Nevertheless, this work showed two main shortcomings:

when we used it to implement model validation in M2DAT prototypes:

 It is too dependent on EMF version, thus it did not work properly as soon as

we updated EMF.

 The approach leans too much in EMF-generation capabilities what causes

that, onde you have implemented some validation over your DSL, it results

challenging to modify it. For instance, if some constraint has to be modified

or added, the whole generation process had to be done again and the code

generated modified by-hand.

In addition, we have to consider that, though it seems to be a rather simple

language, OCL specification is quite complex. In fact, this is one of the reasons

why you find such a variety of modelling tools having their own navigation

language (ATL, QVT, MTL, XPand, Acceleo, JET, etc.) The most of them started

from OCL since it was thought as a universal navigation and constraint language

for MOF-based models. Actually, all of them ended by extending and adapting the

standard to their needs. These shortcomings have a direct influence when OCL is

used for validation purposes.

Solution: M2DAT Architecture and Technical Design 223

In the following we enumerate a number of issues that have been identified

when OCL is used to that end [61, 102, 203]. They are mainly related with

usability, but also with ease of development.

 OCL brings both expressiveness and limitations. You can write analysis

expressions as complex as OCL allows to do it. In some cases it is more than

enough while in others it is just poor. Just to put an example of this matter,

think of the landscape provided by existing transformation languages. While

they adopt an OCL style to define their navigation languages, none of them

(apart from the standard QVT) uses OCL ―as-is‖. They extend the language to

enhance its expressiveness.

 Directly related with the previous one, we might refer to the weak standard

library of OCL. It hampers the specification of OCL constraint to carry out

complex validations . For instance, there is a lack of useful operations to work

with String types. Again, the fact that model transformation languages use to

extend OCL to define their validation languages serves to prove this

statement.

 Besides, OCL does not supplies mechanisms to provide with detailed reports

regarding validation results. In the best case, you might alert of which is the

violated invariant. Therefore, the user should know OCL to understand the

error commited.

 By design, OCL does not provides with model modification capabilities. In

particular, it cannot be used to create, update, or delete model elements, nor

can it update attribute or reference values. As a consequence, there is no way

of suggesting valid alternatives, what acts against usability, neither of

executing corrective actions to solve the detected problem. For instance, if the

name of an attribute is missing, we might show a widget to the user to set a

name for such attribute.

 Besides, there is no distinction between severity levels. That is, your model

might fulfil or not a constraint, but you can not state whether it is a minor

problem (warning) or an issue that invalidates the whole model.

 OCL specification present inconsistencies, specially in the alignment with

UML 2.X since there remains many references to UML 1.X. For instance,

some classes specifications have been missing, such as TypeType or

UnlimitedNaturalExp. This shortcomings hamper the development of OCL

implementations.

224 Juan M. Vara

 Since constraints to be checked use to be inter-dependent. It might occur that

there is no sense in checking one constraint if another is previously does not

evaluate to true. For instance, checking the uniqueness of the name of an user

defined type has no sense if we have not checked before that every type owns

a valid name.

As a conclusion, since OCL is closer to an implementation language than a

conceptual language, one might argue about why not using another

implementation language that extends OCL capabilities for validation purposes.

Just as it has been done with navigation languages supported by current model

transformation engines.

M2DAT follows such approach and uses EVL [201] (Epsilon Validation

Languag,) to support validation of models for M2DAT supported DSLs. Among

the different proposals studied, EVL is the only language that supports concepts

such as dependent constraints, user interaction and the ability to define

inconsistency-repairing behaviour (fixes). This way, we specify the constraints to

be checked using EVL at metamodel level, and the Epsilon engine evaluates them

(on demand) on every model conforming to such metamodel.

4.8 Development Process for M2DAT Modules

Once we have explained the main technical decisions that compose

M2DAT technical design, this section aims at presenting the generics of using the

specification in order to develop a new module for M2DAT, i.e. the technical

support for integrating a new DSL in M2DAT.

The development process for new M2DAT modules is summarized in

Figure 4-8. Steps in the development process are represented with rounded

rectangles while the different software artefacts produced along the development

process are represented with ellipses (or circles).

Solution: M2DAT Architecture and Technical Design 225

INTEGRATION

AUTOMATIC
MODEL
VALIDATION

IMPROVEMENT of
MODEL
TRANSFORMATIONS

GRAPHICAL
EDITORS
IMPROVEMENT

MODEL
TRANSFORMATIONS
DEVELOPMENT

ATL
Transformations

CONCRETE
SYNTAX
DEFINITION

EMF
Tree-like

Editor

Improved
EMF

Tree-like
Editor

ABSTRACT
SYNTAX
DEFINITION

Ecore

Metamodel

Graph-based
Specification

NL
Structured

Rules

Annotation
Metamodels

Parameterized
ATL

Transformations

CODE
GENERATION
DEVELOPMENT

MOFScript
Scripts

EVL Files

1

2 3

4 5

6 7
MOFScript

AMW

ATL
ATL

STEP

PRODUCT

L
E

G
E

N
D

Integration

Plug-ins
8

Figure 4-8. Development process for M2DAT modules

1. First step is the abstract syntax definition of the DSL. To that end, the

metamodel of the DSL is defined in terms of the Ecore metamodel using the

facilities provided by EMF (like the Ecore tools and the Ecore diagrammer).

2. Next task is the concrete syntax definition of the DSL. To that end, EMF

and GMF capabilities are used to generate a couple of model editors, a tree-

like editor with basic capabilities and a diagrammer. Due to GMF

architecture, the latter is based on the former, what will help on subsequent

steps of te process. In particular, the GMF editor uses the EMF.Core and

EMF.Edit generated code (see section 2.1.12.2).

3. Since we have found that the EMF tree-like editor result quite convenient for

accurate edition of models though it is too generic, next step implies the

graphical editors improvement according to the techniques sketched in

section 5.2.2.2. As a result, not only the EMF tree-like but also the GMF

editors are improved.

4. Once the DSL has been defined, it is time to bridge it with already existing

DSLs. To that end, the next consits of the model transformations

development. Each transformation comprises several steps:

o Defining a set of structured rules in natural language

226 Juan M. Vara

o Translate then to a graph-based specification in order to

formalize them with graph grammars

o Finally, translate the graph-based specification to executable

trasformations with ATL. Actually, this is just a first draft of the

transformation where all the possible design decisions are coded

using default decisions.

5. Hence, the next step is the improvement of the model transformations

introducing annotation models. The transformations are then modified to be

able to process the weaving models containing the annotations. In addition, if

the default annotation metamodel does not fit the requirements of the DSL in

terms of annotations, a new annotation (weaving) metamodel has to be

defined.

6. Besides, if the DSL is to be used to define models at the lower abstraction

levels (PSMs), we have to address the code generation, i.e. to develop the

model-to-text transformation/s that serialize terminal models into working-

code using the MOFscript language.

7. Once all the transformations in which the new DSL have been developed, we

address the implementation of the automatic model validation. We proceed

this way because of some findings gathered during the development of first

M2DAT‘s protoypes. We have found that as long as we were developing the

model transformations, a number of domain rules that each input model has to

obey arose. Indeed, these rules do not appear until the model transformations

were addressed since the transformations execution failed in presence of

erroneous models. Therefore, we delay the implementation of the support for

automatic model validation until the last moment in order to be able to

identify all the constraint that a given model has to satisfy. Note that the

restrictions are coded at metamodel level and attached to EMF generated

code, thus the validation could be invoked both from the EMF and GMF

editors.

8. In addition, the DSL toolkit developed according to the development process

described is basically a set of plug-ins. In order to ease the task of deploying

such plug-ins into Eclipse we should address the integration of the developed

module. To that end, another set of plug-ins have to be developed that let us

publishing the new bundle of plug-ins (so-called features) that constitute the

DSL toolkit.

Solution: M2DAT Architecture and Technical Design 227

Please note that Figure 4-8 is just a simplified version of the development

process for new M2DAT‘s modules. For instance, we have not included the V&V

tasks, neither the regression tests that should be made.

In the following we detail each one of the above-mentioned steps. To that

end, we summarize the main features of each one of the selected components (in

case they have not been presented previously) and show how they are used in the

development process of any M2DAT module.

Moreover, when presenting the reference implementation for M2DAT in

Chapter 5 we will show concrete examples of the application of the guidelines

provided in the following sections.

4.8.1 Abstract Syntax Definition: using Ecore to define new

Metamodels in M2DAT

The core of any project focused on MDSD is at the modelling languages it

proposes. As well, the core of any modelling language is its abstract syntax. As

section 4.2.4 stated, the definition of abstract syntaxes in M2DAT lies on EMF.

Specifically, we use the basis of modelling technologies in Eclipse, the EMF‘s

metamodelling language, so-called Ecore. We might say that Ecore is the MOF of

Eclipse.

Note that this is an example of the everlasting dicothomy between

standards and their implementations: EMF toolsmiths opted for defining their own

metametamodel since MOF does not satisfy their needs. In fact, MOF evolution

has caused its kernel, EMOF, to be aligned with Ecore, reverseing the natural

tendency: the implementation is conditioning new versions of the standard.

This way, any new DSL to be incorporated in M2DAT will be defined in

terms of the Ecore metamodel. Figure 4-9 shows a simplified subset of it. An

EClass abstract the traditional concept of Class. EClasses own

EStructuralFeatures that can be EReferences or EAttributes. The former

represents the properties of the EClass while the latter represents association ends.

The multiplicity of an association can be specified with the help of the

lowerBound and upperBound attributes, while bidirectional relationships are

expressed by two EReferences whith their oppositeOf reference pointing mutually

to each other.

228 Juan M. Vara

EStructuralFeature

name : StringeStructuralFeatures

0..*

0..*

eSuperTypes

1
eReferenceType

1

0..1eOpposite 0..1

EDataType

name : StringEAttribute

1

eAttributeType

1

EClass

name : String

EReference

containment : boolean
lowerBound : int
upperBound : int

Figure 4-9. Simplified Ecore metamodel

Besides, EMF provides with the infrastructure to automatically connect the

modelling concepts collected in the abstract syntax definition, with their

implementation. From an Ecore model (i.e. an EMF metamodel), EMF generates

the JAVA code to handle programatically instances of such model (terminal

models). It also includes generic reusable classes for building editors for them.

The EMF generation process is summarized in Figure 4-10.

EMF Runtime

EMF Tools

Model EditorApplication

Generates

Eclipse Platform

Core Edit

Codegen

Figure 4-10. EMF Code Generation overview

EMF consists of three fundamental pieces: Core, EMF.Edit and

EMF.Codegen.

 The Core provides the basic support for generating and executing the JAVA

code that implement the model. Apart from the Ecore metamodel, it includes

runtime support for the models, including change notification, persistence

Solution: M2DAT Architecture and Technical Design 229

support with default XMI serialization, and an efficient API for manipulating

EMF objects. The API lies in JAVA reflection to provide with a generic way

of handling the objects.

 EMF.Edit includes generic reusable classes for building editors for EMF

models and extends the Core by adding support for generating adapter classes

that enable preview and work with the model, as well as a basic (visual) editor

for the model.

 Finally, the EMF code generation facility (EMF.Codegen) is capable of

generating everything needed to build a complete editor for an EMF model. It

includes a GUI from which generation options can be specified, and

generators can be invoked.

4.8.2 Concrete Syntax Definition: using EMF and GMF to

develop Graphical Editors in M2DAT

This section summarizes the process for development of graphical editors

thas has to be followed when building the technical support for a new DSL has to

be integrated into M2DAT:

 First, the metamodel for the given DSL is defined using EMF. As mentioned

before it will be specified in Ecore format (MYDSL.Ecore in Figure 4-11).

 From an Ecore (meta-)model, EMF provides runtime support for graphically

editing, manipulating, reading, and serializing data based on the given (meta)-

model. Thus, models conforming to the previous metamodel can be created

using a very simple but powerful tree-like editor (e.g. see Sample.mydsl in

Figure 4-11).

 As we have mentioned in section 4.3.3.3, we bet for improved EMF tree-like

editors as the most convenient for handling models in M2DAT. Thus, after

having generated the EMF-basic editor for our DSL, the next step is to follow

the techniques described in section 5.2.2.2 to customize it according to the

specific needs of our DSL.

230 Juan M. Vara

c2

MYDSL.ecore

ECore

c2

c2

Sample.mydsl

emf
gmf

Sample.mydsl_diagram

Figure 4-11. ECORE (meta-)models and EMF/GMF graphical editors

 Since we still think that diagrammers are convenient in order to provide with

an useful overview of any model, GMF is used to develop a graphical editor

for models conforming to the previous metamodel. Remember that bet for

UML-like syntax, thus the GMF graphical model will be based on a common

template defined to that end. This way, we ensure that all of the M2DAT

editors share a common look and feel.

o Please, note that the model is still stored in the same file

(Sample.mydsl). In addition, a new file (Sample.mydsl_diagram) is

created to store the graphical information about the classes and

associations included in the model. Any subsequent change made

over the graphical representation will be translated to the underlying

model. Next Chapter will show some screen captures from the

graphical editors already develop in M2DAT prototypes.

Finally, it is worth mentioning that these editors are automatically created

as Eclipse plug-ins. Thus, they are integrated in the Eclipse platform without any

extra effort.

Solution: M2DAT Architecture and Technical Design 231

4.8.3 Model Transformations Development in M2DAT

We have already introduced the way EMF facilities are used for defining a

new DSL in M2DAT. To that end, we define the abstract syntax of every DSL

using EMF metamodelling facilities and its concrete syntax using EMF and GMF

capabilities for generating model editors.

The next step towards the integration of the new DSL is the development

of the model transformations that will connect the models defined with such DSL

with the rest of models already supported in M2DAT. To that end, we have to

specify and implement the mapping rules that compose each model

transformation.

Regarding how model transformations should be defined, the MDA guide

[246] stated ―the mapping description may be in natural language, an algorithm in

an action language, or a model in a mapping language‖ (p. 24). This way, in [355]

we sketched a common approach to address the development of model

transformations in M2DAT:

 First, the mappings between models are defined using natural language.

 Next, they are structured by collecting them in a set of rules, expressed again

in natural language.

 Then, the mapping rules from the last step are formalized using graph

grammars [126].

 Finally, the resulting graph transformation rules are implemented using ATL.

4.8.3.1 Using graph grammars to formalize model transformations

This section focuses on explaining the use of graph grammars to formalize

model transformations as a previous step to implementation oriented to give

solution to some problems we have detected in the field of model transformations

[74, 355].

There is a gap between the developers behind the different model

transformations approaches (model transformation toolsmiths) and those who will

have to use them, the researchers or developers working on MDSD

methodological proposals (model transformation practitioners). The latter have to

use the tools developd by the former to implement the mappings embedded in

their proposals. The technique sketched in the previous section aims at reducing

this gap by providing a simple methodological approach to the definition of

mappings.

232 Juan M. Vara

Moreover, formalizing the mappings before implementing them can be

used to detect errors and inconsistencies in the early stages of development and

can help to increase the quality of the models built as well as the subsequent code

generated from them. These activities are especially important in MDE proposals

since the models are to be used as a mechanism to carry out the whole software

development process [249]. Graph grammars are based on a solid mathematical

theory and therefore they present a number of attractive theoretical properties that

allows formalizing model transformations.

In addition, from a pure mathematical point of view, we can think on

UML-like models as graphs. A graph has nodes and arcs, while an UML model

have classes and associations between those classes; this way the fact that models

are well represented as graphs is particularly appealing to shorten the distance

between modellers and model transformation developers Rule-based

transformations with a visual notation may close the semantic gap between model

transformation practitioners and toolsmiths [377].

To express model transformations by graph grammars, a set of graph rules

must be defined. These rules follow the structure LHS:= RHS (Left Hand Side:=

Right Hand Side). Both, the LHS and the RHS are graphs: the LHS is the graph to

match while the RHS is the replacement graph. If a match is found on the source

model, then it is replaced by the RHS in the target model. In the context of

M2DAT, we will follow the approach introduced in [74] to define the graph

transformation rules for each case.

In the following, we summarize its guidelines:

 The nodes in the LHS will be identified by consecutive numbers. These

numbers make it possible to identify the respective nodes in the RHS.

 All the properties of the different nodes will have an initial value. To point

out that this value is undefined, the term ‗???‘ is used.

 To refer to a LHS node in the RHS, the expression ‗match(x)‘ will be used,

being ‗x‘ the number that identifies the node in the LHS.

 Likewise, when referring to an attribute of a LHS node, the dot notation will

be used, for example ‗match(x).name‘.

 As the nodes in the LHS, the nodes in the RHS will be numbered. The next

guidelines must be considered in relation with these numbers:

o If the same number appears in the Left and the Right Hand Side, the

type of the node in the RHS will be the same of the respective node

in the LHS.

Solution: M2DAT Architecture and Technical Design 233

o If a node in the RHS is identified with a number followed by an

apostrophe (x‘), the type of this node will be different from the type

of the respective node in the LHS. All the connections with other

elements will be preserved.

o If a number appears in the LHS but not in the RHS, the respective

node from the LHS will be deleted, as well as the connections in

which it participated.

o If the number appears in the RHS but not in the LHS, a new node

will be added.

4.8.3.2 Coding mapping rules with the ATL

Once the mapping rules have been formally specified using graph

grammars, it is time to translate the formal specification into an operational

abstraction. To that end, as we argued in section 4.4, we use ATL.

ATL is a model transformation language and toolkit that provides ways to

produce a set of target models from a set of source models. Developed within the

Eclipse platform, the ATL Integrated Environment (IDE) comprises a number of

standard development facilities (syntax highlighting, debugger, editor, etc.) that

eases the development of ATL transformations. It is mainly based on the OCL

standard and it supports both the declarative and imperative approach, although

the declarative one is the recommended.

Mappings are implemented in ATL by defining a set of rules: each rule

specifies a source pattern and a target pattern, both of them at metamodel level.

Once the ATL transformation is executed, the ATL engine establishes matchings

between the source pattern and the source model. Then for each matching, the

target pattern is instantiated in the target model, replacing the matching found in

the source model.

In contrast with the most of exiting languages, ATL allows for rule

inheritance and provides both implicit and explicit scheduling. The implicit

scheduling is supported by the imperative constructions of ATL. When the

transformation starts, the algorithm starts with calling a rule that is designated as

an entry point and may call further rules. After completing this first phase, the

transformation engine automatically checks for matches on the source patterns and

executes the corresponding rules. Finally, it executes a designated exit point.

Explicit scheduling is supported by the ability to call a rule from within the

imperative block of another rule. ATL transformation descriptions are transformed

to instructions for the ATL Virtual Machine, which executes the transformations.

This is analogous to Java and the Java Virtual Machine.

234 Juan M. Vara

One minor comment we would like to do about ATL is a problem detected

when working with several models conforming to the same metamodel. In this

situation, there is no way no distinguish between the elements of one model or

other since the rules are defined at metamodel level. However, it would be helpful

to be able to make such distinction in order to control which matchings will be

found for each model. This can be done for instance in SmartQVT, where different

identifiers can be used to refer to the same metamodel (we can do it also in ATL,

but the engine will omit the distinction). Nevertheless, this drawback can be

overcome in ATL by adding complexity on the guard of the rules.

4.8.4 Improvement of Model Transformations: Introducing

Design Decisions in M2DAT transformations

This sections aims at summarizing the main issues related with the use of

AMW to create annotation models to drive model transformation executions in

M2DAT. To that end, it first introduces some insights on AMW to later present

the technique to follow.

4.8.4.1 ATLAS Model Weaver

Since the definition of new weaving metamodels in AMW is based on the

extension of the Core Weaving Metamodel [115], we first describe such

metamodel. The Core Weaving metamodel, shown in Figure 4-12, contains a set

of abstract classes to represent information about links between model elements.

 WElement is the base element from which all other elements inherit. It has a

name and a description.

 WModel represents the root element that contains all model elements. It is

composed by the weaving elements and the references to woven models.

 WLink expresses a link between model elements, i.e., it has a simple linking

semantics. To be able to express different link types and semantics, this

element is extended by different metamodel elements.

 WLinkEnd defines the link endpoint types. Every link endpoint represents a

linked model element. It allows creating N-ary links.

 WElementRef elements are associated with a dereferencing function. This

function takes as parameter the value of the ref attribute and it returns the

linked element. For practical reasons, it is defined as a string attribute. There

is also the inverse identification function that takes the linked element as

parameter and that returns a unique identifier.

Solution: M2DAT Architecture and Technical Design 235

 WModel‘s contains also WModelRef’s, which is equivalent with the reference

of WLinkEnd and WElementRef, but for models as a whole.

It is possible to associate the dereferencing/identification functions directly

with the link endpoints. However, the use of separate WElementRef elements

enables referencing the same model element by several link endpoints.

WModel

WModelRef

WLink

WLinkEnd

-name : String

-description : String

WElement

-ownedElement 1

-model

1..*

ref : String

WRef

WElementRef

modelRef

 *

ownedElementRef

wovenModel

child

parent

end

1-* link

element

Figure 4-12. Core Weaving Metamodel

Typically, the classes from the core Weaving Metamodel are extended to

define new weaving metamodels for specific contexts. One of those extensions

was presented also in [115]. It is shown in Figure 4-13 below and allows defining

annotation models. Note that the Core Weaving Metamodel is depicted on the top

of the figure, whereas the extension is depicted on the bottom.

An annotation model includes a single-valued reference to the

AnnotatedModel plus a set of annotation objects. Each annotation contains a

single-valued reference to the model element plus a list of properties. The

properties have an identification key and the corresponding value. The

AnnotatedModelElement class acts as the proxy for the linked/annotated elements.

That is, each record is merely a set of key-value pairs.

236 Juan M. Vara

WModel

WModelRef

WLink

WLinkEnd

-name : String

-description : String

WElement

-ownedElement 1

-model

1..*

ref : String

WRef

WElementRef

modelRef

 *

child

parent

end

1-* link

element

AnnotationModelAnnotatedModel contents

*

AnnotationreferencedModel

1

AnnotatedModelElementannotatedModelElement

0..1

1

1 1

Key

Value

Property

*

properties 1

Core Weaving Metamodel
ownedElementRef

1 - *

wovenModel

Figure 4-13. AMW Annotation Metamodel

Once you are able to define your own annotation metamodels, next step is

showing how a weaving model is used in the model ttransformation development.

4.8.4.2 Using weaving models as annotation models on M2DAT

To address the development of model transformations in M2DAT we

follow the method sketched in section 4.4.2. That is, we firstly carry out a

preliminary study to obtain a set mapping rules expressed with natural language to

later formalize them using graph grammars. The next step is to implement those

formalized rules. To that end we use ATL.

However, as we have stated at the beginning of this section, in occasions

some design decisions has to be considered before executing a model

transformation. This was the case of some of the mappings embedded in M2DAT.

To solve this drawback we use AMW weaving models as annotation models.

All this given, the resulting process to code model transformations in

M2DAT is summarized in Figure 4-14. For every execution of the ATL

transformation - in other words, for each source model (Ma) - we define a weaving

model (Annotation Model) conforming to the annotation metamodel that in turn

conforms to the Core Weaving Metamodel. Such weaving model contains a set of

annotations. They represent the extra information needed to execute the

transformation (we may refer to them as the parameters of the transformation).

Thus, the target model (Mb) is generated from the source model and the weaving

model. This process allows obtaining different target models from the very same

source model just by modifying the annotation/weaving model.

Solution: M2DAT Architecture and Technical Design 237

AMW Annotation
Metamodel

c2

MMa

Ma

c2

MMb

Mb

c2

AMW Core Weaving
Metamodel

Annotation Model
for Ma

SOURCE

SOURCE

TARGET

MMb2MMa.atl

Conforms To

Figure 4-14. Using Weaving models as annotation models to drive model transformations

execution

It is worth mentioning that, though the annotation metamodel presented

works pretty fine for many scenarios, in some cases we have to define an ad-hoc

annotation metamodel to ease the addition of extra information to drive the

mapping process. For instance, we proceed this way to develop the model

transformations encoded in [357].

We may qualify this technique of simple due to the genericity and power of

the AMW tool, its good coupling with the ATL model transformation solution and

the use of a common underlying framework used as model handler by all the

technical solutions that compose M2DAT: EMF.

4.8.5 Code Generation: model-to-text transformations in M2DAT

There is not much to say about how code generation tasks are to be tackled

in M2DAT, therefore in this section we will limit ourselves to introduce the main

features of the MOFScript language, the model-to-text transformation language

we have used to implement code generation in existing M2DAT‘s modules.

MOFScript is a prototype implementation based on concepts submitted to

the OMG MOF Model to Text RFP process [267]. Since it was the first

submission to the OMG RFP, it is probably the most contrasted and the most

commonly used. Besides, its training period is quite short. After coding some

model-to-model transformations, moving to model-to-text transformations is quite

easy. A more detailed explanation on the way MOFScript is used will be given

when presenting the case study. Opposite to the declarative approach of ATL (and

238 Juan M. Vara

the vast majority of existing model to model proposals), model to text

transformation engines take the form of imperative programming languages. In

fact, a MOFScript script is a parser for models conforming to a given metamodel.

While it parses the model structure, it generates a text model based on

transformation rules. On a second phase this text model is serialized into the

desired code. This way, MOFScript takes advantage of the metamodel to drive the

navigation through the structure of the source model, just as an XML Schema

drives the validation of an XML file. As a matter of fact, every model is persisted

in XMI format, an XML syntax for representing UML-like (or MOF) models. All

things considered, model to text transformation are much simpler than model to

model transformations.

4.8.6 Automatic Model Validation: supporting Model-Checking

in M2DAT with EVL

Finally, this sectiom aims at summarizing how the specification of DSLs in

M2DAT is to be completed by means of defining the set of additional constraints

that every model should satisfy in order to be considered a valid model. According

to section , automatic model validation is implemented in M2DAT using EVL,

one of the languages provided by the EPSILON componente.

EPSILON [203] (Extensible Platform for Specification of Integrated

Languages for mOdel Management) is an Eclipse component that provides

support for a number of tasks related with model-driven development. To that end,

it integrates a family of languages for specialized tasks, like models merge or

model comparison.

The Epsilon Validation Language [201] (EVL) is one of them. In

particular, EVL is a language to specify and evaluate constraints on models of

arbitrary metamodels and modelling technologies. The idea is the usual, you

specify the constraints to be checked at metamodel level in an EVL file or module.

Later, these constraints are evaluated (on demand) over conforming models.

EVL uses an OCL-like syntax. Indeed, EVL validation specifications are

structured into Invariants and each Invariant is applicable only over the objects

whose type conforms to the one specified in the Context of the invariant. This way

we can look at EVL as OCL with annotations that provide with additional

facilities:

 Guards to restrict the context of a given invariant (that is, not all the

association objects, but just those whose name is X)

Solution: M2DAT Architecture and Technical Design 239

 Fixes that allows user interaction. A fix let you specify a message to show the

user when the invariant is not fulfilled, as well as valid alternatives to repair

the problem. The latter is implemented using EOL (Epsilon Object Language,

[201]), another OCL-based language to navigate and modify models. In fact,

EOL is the core language of EVL. Notice that this way, the validation

mechanism implemented in the DSL toolkit already incorporates the facilities

for updating the model to solve the issue that raised the error.

 Two different sub-types of Invariant (Constraint and Critique) to allow the

separation between errors, that invalidate the model, and warnings, that are

allowed but act against the quality of the model.

To show how EVL works, Figure 4-15 shows a simple example: a Critique

to prevent from Classes whose name does not start with an upper case.

context Class {

-- The name of a class should start with an upper case letter

critique NameShouldStartWithUpperCase {

guard : self.satisfies('HasName')

check : self.name.substring(0,1) = self.name.substring(0,1).toUpperCase()

message : 'The name of class ' + self.name + ' should start with an upper-case letter'

fix {
title : 'Rename class ' + self.name + ' to ' + self.name.firstToUpperCase()

do {
self.name := self.name.firstToUpperCase();

}
}

}

Figure 4-15. Simple EVL example

The context of the Invariant is Class, thus it will be evaluated over every

class found on the model. Note that this is not correct indeed since there is also a

guard. The guard limits the set of objects over which the body of the invariant will

be evaluated. In this case, just those Classes for which the ‗HasName‘ invariant

evaluates to true (i.e. those that have a name). The Check defines the body of the

invariant, i.e. whether the class name starts with an upper case. The Message

specifies the information provided if the check evaluates to false, while the Fix

defines a context-aware title (‗Rename class …‘) and contains a statement block to

specify the fixing functionality (Do part).

Validation: M2DAT-DB

5. Validation: M2DAT-DB
A reference implementation is to be used as a consistent interpretation for

the corresponding specification. Indeed, at least one relatively trusted

implementation of a given specification is nedeed to discover errors or ambiguities

in the specification, and validate the feasibility of the underlying proposal [95].

Thereby, the main features of a reference implementation are [100]:

 Developed concurrently with the specification.

 Verifies that specification is implementable.

 Serves as a reference against which other implementations can be measured.

 Helps to clarify the intent of the specification.

This Chapter aims at introducing the reference implementation for

M2DAT: M2DAT-DB, a set of interconnected modules developed according to

M2DAT‘s specification. All together they conform the technical support for

MIDAS/DB [363], the MIDAS proposal for the development of the content aspect

of a WIS. In particular we will focus on the module that supports a DSL for

modelling ORDB schemas conforming to the SQL:2003 standard and the model

transformations in which it is implied.

The construction of M2DAT-DB serves as reference implementation for

M2DAT specification since it confirms that the specification is implementable and

clarifies the way it has to be done.

To that purpose we start by giving a brief overview on M2DAT-DB

architecture and capabilities to later focus on how each MDE task in the

development of the afore-mentioned DSL is addressed.

5.1 M2DAT-DB Overview

M2DAT-DB is a framework for model-driven development of modern DB

schemas that support the whole development cycle, from PIM to working code. In

particular, M2DAT-DB support the generation of ORDB schemas for Oracle and

the SQL:2003 standard as well as XML Schemas from a conceptual data model

represented with a UML class diagram.

However, we do not want to focus on M2DAT-DB itself as a development

tool but as the first prototype of M2DAT. That is, apart from providing with the

mentioned functionality, M2DAT-DB has served to prove that M2DAT

architecture and design decisions were right and to put them into practice. In the

244 Juan M. Vara

following we introduce M2DAT-DB architecture as well as the functionality

supported by the tool.

5.1.1 M2DAT-DB architecture and capabilities

Figure 5-1 provides an overview of M2DAT-DB and the model-driven

development process for modern DB schemas that it supports.

PI
M

P
S

M

Conceptual
Data Model

C
O
D
IG

O

PS
M

SQL
XML

Schema
SQL

OR Model OR Model XML
Model

AMW

GRAPH
GRAMMARS

C
O
D
E

MOFScript

Figure 5-1. M2DAT-DB Architecture

A conceptual data model serves to model the DB schema at PIM level. It is

represented by means of a UML class diagram. This model is defined using the

tools provided by UML2 and UML2 Tools, two subprojects of the Eclipse

Modelling Tools project (MDT, http://www.eclipse.org/modeling/mdt/). They

focuses on providing implementations of industry standard metamodels, as well as

exemplary tools for developing models based on those metamodels. This way, the

UML2 project provides with an EMF-based implementation of the UML standard

[391], while UML2 Tools is a set of GMF-based editors for viewing and editing

the different types of UML diagrams.

At PSM level, two different technologies are considered to implement the

DB schema: Object-Relational and XML. This way, the DB schema will be

modelled with an ORDB model or an XML Schema model. In turn, two different

OR models are considered, the one for the standard, SQL:2003 [387] and the one

for an specific product, Oracle 10g [391].

http://www.eclipse.org/modeling/mdt/

Validation: M2DAT-DB 245

To move from the PIM to the desired PSM, three model-to-model

transformations have been developed following the method for model

transformation sketched on Section 4.8.3. In particular, we have developed the

following transformations:

 From UML class diagram to ORDB model for Oracle (UML2ORDB4ORA)

 From UML class diagram to ORDB model for SQL:2003 standard

(UML2SQL2003)

 From UML class diagram to XML Schema model (UML2XMLSchema).

All of them were first defined in set of structured rules, next formalized by

means of graph grammars and finally translated to ATL mapping rules.

Note that, in order to evaluate different languages for model

transformation, the UML2ORDB4ORA transformation was replicated using

QVTo (the QVT-Operational Mappings implementation from OpenCanarias, see

section 2.3.3.13); VIATRA (see section 2.3.3.10) and mediniQVT (see section

2.3.3.12). Some highlights gathered during the development of such

transformations were presented in section 5.3.4.2.

The mapping from conceptual data models to DB schema models leaves

some space to design decisions. For instance, which collection type is to be used

when mapping multivalued attributes. To support the introduction of those

decisions, we use weaving models as annotation models, according to the process

described in section 4.8.4.2. This way, the ATL existing transformations were

refined to compute not only the source models, but also such AMW annotation

models.

At PSM level, we have also built the bridge to move from the SQL:2003

ORDB model to the one for Oracle and vice versa. To that end, we have

developed two ATL unidirectional transformations (SQL20032ORDB4ORA and

ORDB4ORA2SQL2003) since support for bidirectional transformations is still

quite immature [99].

Finally, a last set of MOFScript model-to-text transformations generates

the working-code from each specific PSM, i.e. SQL standard from the SQL:2003

model, SQL for Oracle from the Oracle model and XML Schema from the XML

Schema model.

As well, three diagrammers plus three tree-like editors have been

developed using EMF facilities. One for each type of PSM supported. Actually, as

we discussed in section 4.3.3.3, we prefer the tree-like editors for development

tasks, though the diagrammers are well-suited to provide with a quick overview of

246 Juan M. Vara

the model. In this sense, it is worth mentioning that we discarded the diagrammer

for XML schema models since we realized that, as long as the model get complex,

its representation as a class diagram was unmanageable. Indeed, the tree-like EMF

editors fit better to the nature of XML documents and result much more intuitive

and user-friendly for this task.

Finally, as we have already mentioned, M2DAT uses EVL to support

automatic model validation (see section 4.7.2). This way, EVL files were coded

for each DSL integrated into M2DAT-DB. These files collect the set of

restrictions that have to be checked over a terminal model defined which any one

of such DSLs.

As Figure 5-1 shows, we plan to add support for two other MDE tasks:

textual editing of models and extracting models from legacy code. In fact, we have

already developed a textual editor for Oracle OR models. To that end we have

used the TEF framework (Textual Editing Framework, see section 2.2.14).

Though the results are promising, the framework is still too instable to be included

as is in M2DAT-DB. Regarding model extraction, we have started to study text-

to-model transformation languages (see Appendix C) to evaluate if they fulfil our

requirements in order to integrate model extraction capabilities into M2DAT.

All things considered, it becomes clear that developing M2DAT-DB

implies making use of the whole M2DAT‘s solution defined in Chapter 4.

However, next section provides with some ideas to back up the election of

M2DAT-DB as a reference implementation for M2DAT.

5.1.2 Why we choose M2DAT-DB as a first M2DAT prototype

When we addressed the task of defining and building a MDSD framework

to support the development of WIS, the first task was designing its architecture.

To that end, we fixed some requirements, like modularization and extensibility.

Once we had a first draft of the architecture, it was time to validate it. To

that purpose, we built the two MIDAS-CASE prototypes presented on Chapter 3.

Such prototypes serve to confirm that, though they performed their jobs in an

efficient way, they presented some drawbacks from a pure MDE point of view.

They implemented a very localized functionality. Each prototype supported a

different DSL, whose metamodel was not too complex, in a completely isolated

way. In fact, when we started thinking on the connection of MIDAS-CASE

prototypes, we realized that MIDAS-CASE architecture did not meet our needs.

As well, they provided with a set of lessons learned.

Validation: M2DAT-DB 247

As a result, we defined a new version of the architecture, the M2DAT

architecture presented in section 4.1. Regarding the conceptual architecture, it was

merely a refinement of the previous MIDAS-CASE architecture. In contrast,

technology advances resulted in a completely new technical design as we have

shown. Indeed, all the tools and components used in M2DAT‘s specification did

not exist when we developed MIDAS-CASE.

To validate M2DAT‘s specification, we had to make a decision on which

of the methodologies that integrate MIDAS (see Section 1.3) was the most

suitable to develop a first prototype supporting the method. In contrast with

MIDAS-CASE, this time we aimed at testing every one of the capabilities that we

wanted to integrate into M2DAT. Therefore, we chose to develop the technical

support for MIDAS/DB, the method for the content aspect of MIDAS [363] since:

 First of all, it was complex enough since it comprises a number of different

DSLs.

 It allowed us to prove the feasibility of the proposal for a complete

development cycle: from PIM models to working-code.

 Different platforms were to be targeted, two standard platforms, SQL:2003

and XML Schema, plus a commercial one, Oracle. In addition, both the result

of the code generation processes for XML Schema and Oracle could be

loaded and validated against existing commercial products.

 Likewise, the models involved were real models, widely-acknowledged and

rather complex. XML Schema and SQL:2003 are two standards widely used,

whereas Oracle is probably the most adopted DBMS worldwide.

 It included not only PIM2PSM, but also PSM to PSM transformations plus

model-to-text transformations. Besides, the complexity of those models imply

the need to support additional mechanisms of validation to enforce the

consistency of terminal models.

 Last but not least, before addressing the development of this thesis, the

research activities of the PhC candidate were focused on the study of OR and

XML databases. In particular, we had been working in the definition of a

methodological proposal to model ORDB schemas and XML schemas.

Therefore, we were ready to tackle the definition of DSLs for these tasks, plus

the development of the corresponding toolset to support them.

All in all, the rest of this Chapter presents how the specification of M2DAT

has been put into practice to built M2DAT-DB, the technical support for the

development of the content aspect of a WIS. To that end, we use the support for

248 Juan M. Vara

each MDE tasks that comprise a MDSD process. As we have mentioned, we will

focus on the development of a DSL for modelling ORDB schemas conforming to

the SQL:2003 standard.

As well, along this Chapter we will show the application of the resulting

tooling. To that end, though we have handled a battery of self-made case studies

during the development process, here we will not use one of them. Instead, we

take one from existing literature to illustrate that the tooling developed works

properly for any model. Using an ―external‖ case study prevent us from using ad-

hoc models that might fit better to our needs. So, to illustrate the following

sections we use a case study taken from [385] (p. 5): an Online Movie Database

(OMDB). The complete Case Study can be found in Appendix D.

5.2 Defining new DSLs in M2DAT

This section focuses on introducing how the definition and toolset building

for a new DSL is addressed in the context of M2DAT. In essence, this task

corresponds to the definition of a new metamodel, that collects the abstract syntax

of the DSL, and the construction of an editor for the DSL, that associates the

concepts collected in the metamodel with its concrete syntax.

In the following we present the definition of the SQL:2003 DSL that allows

modelling ORDB schemas conforming to the SQL:2003 standard.

5.2.1 Abstract Syntax Definition

M2DAT‘s metamodels are defined in terms of Ecore (see section 4.2.4),

the metametalanguage of EMF, a simplified implementation of EMOF (Essential

MOF, [265]). We have already presented the Ecore metamodel in section 2.1.12.2

In the following we present how the Ecore metametamodel is used to

define the OR metamodel for SQL:2003 standard.

5.2.1.1 ORDB Metamodel for SQL:2003

Figure 5-2 shows the complete ORDB metamodel for SQL:2003. Due to its

complexity, in the following we have shred it according to the main building

blocks that contains to ease its presentation.

Figure 5-2. SQL:2003 ORDB Metamodel

250 Juan M. Vara

First of all, note that due to the underlying XML nature of Ecore, any Ecore

metamodel has to include a root element. In this case, the root element is the

Schema class.

Each Schema is composed of (Figure 5-3): DataTypes, whether they are

built-in (predefined) or user-defined types; Behavioural Components, that will

be Procedures or Functions (returning an object of a DataType) and Tables.

Figure 5-3. Partial view of the ORDB metamodel for SQL:2003: Schema metaclass

Regarding Data Types, we have identified three big groups (see Figure

5-4):

 Predefined Types receive special attention, thus section 5.2.1.2 is dedicated

to the technique devised to support modelling of built-in types in PSM

models.

 User Defined types could be Distinct Types, defined over a Predefined Type,

or Structured Types, the basis of ORDB schemas designing.

 Finally, constructors allow defining Constructed Types on top of Data Types.

This, way a Reference Type simulates a pointer to a User Defined type. A

Collection serve to model sets of objects of a particular Data Type. They

could be ARRAYs (predefined size) or MULTISETs (whose size can be

modified dynamically), and ROW types that collect a set of fields, all of them

of a Predefined Type.

Validation: M2DAT-DB 251

Figure 5-4. Partial view of the ORDB metamodel for SQL:2003: Data types

Every Structured Type (Figure 5-5) may extend another Structured Type.

Besides, it owns a set of Attributes, that admits a default value and a set of

Methods. Each method could override another one and contains a set of

Parameters, that will be a Parameter With Mode, i.e. in, out in/out mode.

Figure 5-5. Partial view of the ORDB metamodel for SQL:2003: Structured Type

252 Juan M. Vara

The Structural Component class (see Figure 5-6) collects the set of

properties and relationships shared by Columns (belonging to a particular Table),

Attributes (belonging to a particular Structured Type) and Fields (belonging to a

particular Row Type). The particularities of every Structural Component are

modelled as Features. For instance, the model could contain a Column object of

CHAR type that includes a Feature object that limits the size of the column to 20

characters.

Though every Restriction is always included in a Table, it is related to one

or more Structural Components. In turn, there are Table Restrictions and

Column Restrictions. The latter will be Not Null constraints, while the former

could be a Check, a Referential Constraint (Foreign Key) or a Unique

constraint, that could be as well a Primary Key.

Figure 5-6. Partial view of the ORDB metamodel for SQL:2003:

Structural Component and Restrictions

To conclude, we will focus on the different types of Tables that could be

found on a SQL:2003 ORDB schema.

Validation: M2DAT-DB 253

Figure 5-7. Partial view of the ORDB metamodel for SQL:2003: Tables

A Base Table is a regular table whereas a Typed Table is a special type of

Base Table defined over a Structured Type. While a Base Table contains values, a

Typed Table contains objects. Besides, it could extend another Typed Table. On

the other hand, a Derived Table is defined over a Table and may be persisted as a

View. Derived Tables are created on-the-fly using a SELECT statement, and

referenced just like a regular table or view. Derived tables exist in memory and

can only be referenced by the outer SELECT in which they are created. For

instance, SELECT * FROM (SELECT * FROM Sales) AS a . Finally, triggers

might be defined over any table.

5.2.1.2 Modelling Primitive Types on Platform Specific Models

As we have sketched in the previous section, the task of modelling built-in

types in PSMs needs special attention. If you aim at being able of generating

working code from a model, you need it to be very detailed. Otherwise, you end

up generating just some skeleton of the final code. Part of the complexity related

with platform modelling resides in the type system supported by each platform.

Technological platforms, like SQL:2003 or Oracle, supports very rich type

systems. To be able to use the whole type system supported by a platform when

defining a model for such platform, special considerations have to be made when

defining the metamodel of the corresponding DSL. In addition, related tooling has

to provide with special facilities to simplify the definition of models. The tooling

issue will be addressed later. Here we focus just on the technique devised to

include built-in types in the metamodel in an efficient and semantically rich way.

Each platform uses to structure the supported built-in types in a

hierarchical way. Leafs are the concrete types that can be instantiated, while

enumerated data types serve to choose one among the family of final types. For

254 Juan M. Vara

instance, if you have a look at Figure 5-8 you will find that there are three

different Number Types, NUMBER, BINARY FLOAT and BINARY_DOUBLE.

Datatype

BasicDatatype

ANSITypeBuiltInType

CharacterType

SuppliedType

NumberType LOBType

NumberTypes

#NUMBER
#BINARY_FLOAT
#BINARY_DOUBLE

Figure 5-8. Partial view of the SQL:2003 Built-in Data Type System

Each different Data Type owns a series of inherent characteristics, that no

other Data Type has. When the Data Type is used to define the type of some

element in a model, a value has to be set for each characteristic of the Data Type.

This value applies just for this very concrete use of the Data Type. If the Data

Type is used to define the type of another element, the value of each characteristic

has to also set for that concrete use. For instance, in Figure 5-9, the Customer table

owns two columns, Name and Address, having the same type, CHARACTER.

However, the size of the CHARACTER Data Type has a different value for each

column.

CUSTOMER

Name

Address

CHARACTER

SIZE: 50

SIZE: 100

TABLE

DATATYPE

Figure 5-9. Defining Data Types characteristics

Validation: M2DAT-DB 255

To support the complete modelling of built-in Data Types without adding

too much complexity to the metamodel we lean on two main techniques:

 A Feature class is added in the metamodel. It is extended to define a set of

valid Features for each family of Data Types. To that end, each descendant is

a pair key-value, where the key take its value from an enumerated Data Type

that states which features can be defined for each concrete Data Type. For

instance, Figure 5-10 shows the Features defined for the SQL:2003 built-in

Data Types. This way, a Structural Component whose type is Numeric, may

include a Feature object that sets the precision, the scale and the radix of the

concrete Data Type used.

Figure 5-10. Partial view of the ORDB metamodel for SQL 2003: Features

 Then, each Structural Component owns a set of Features. This way, when

a Structural Component object is added, the value of the features for the Data

Type used to define the type of the object are nested in theoobject itself. An

example is shown in Figure 5-11: both, the Name and Address attributes of

the Customer table share the same data type: Character. However, each one

―customize‖ the data type according to its needs. In this case, the size of each

attribute needs to be different. To that end, each one owns a feature object.

The key value is taken from an enumerated data type defined to that purpose.

The value of the feature is the size of each attribute. Section 5.2.2.1 will show

how this metaclasses are used/instantiated in M2DAT‘s editors.

256 Juan M. Vara

CUSTOMER

Name

Address

TABLE

KEY: SIZE (EEnum)
VALUE: 100

CHARACTER

DATATYPE

KEY: SIZE (EEnum)
VALUE: 50

ATTRIBUTE

ATTRIBUTE

FEATURE

FEATURE

String Features

- SIZE

- UNIT

- MULTIPLIER

ENUMERATION

Figure 5-11. Using features to model built-in data types

 Besides, including metaclasses to model the whole set of built-in data types

blots out the metamodel. To avoid this problem, we elliminate all the leaf

types by using Descriptors to distinguish between the concrete types that

compose a particular family of primitive Data Types. This way, each family is

modelled by adding just one metaclass. Such class contains a Descriptor

attribute whose value is defined by an enumerated Data Type whose values

are correspond to the types that compose the family of Data Types. For

instance, Figure 5-13 is a partial view from the SQL:2003 ORDB metamodel

that shows the built-in data types. Following the technique described, the

CharacterStringTypes enumerated data type indicates that there are three

different Character String types: CHARACTER, CHARACTER VARYING

and CHARACTER LARGE OBJECT.

Figure 5-12. Partial view of the ORDB metamodel for SQL 2003: Built-in Data Types

Validation: M2DAT-DB 257

5.2.2 Concrete Syntax Definition

From the .Ecore file that collects and EMF-based metamodel, i.e. the

abstract syntax, EMF allows generating a tree-like editor with basic capabilities

for models conforming to the metamodel. Besides, GMF allows generating a

graphical editor based on boxes and edges (diagrammer) from that same

metamodel. To that end, you have to define three additional models that encode

the relationships between metaconcepts and graphical elements (see sections

2.1.12.2 and 4.8.1).

As we have already mentioned, from our experiences working with both

type of editors, we conclude that the tree-like editor is best suited for development

tasks, whereas the graphical one provides with a comfortable overview of the

depicted model.

Thus, although we have developed the graphical editors for M2DAT

models, we have focused on identifying the way to boost and customize the tree-

like editors of EMF. We present the results using the editor for the SQL:2003

ORDB DSL in the following sections. First we give a brief introduction on EMF

support for automatic editors generation.

5.2.2.1 EMF Implementation

Section 2.1.12.2 already gave an overview on the use EMF for

metamodelling purposes. Here we will give a brief overview on the insights of

tree-like editors generation in EMF.

Once we have defined our metamodel, the first step is the creation of an

EMF model (so-called Genmodel) from our Ecore model, also known as the core

model. This is a mandatory step previous to code generation for our model.

Most of the data needed by the EMF generator is stored in the core model.

The classes to be generated and their names, attributes, and references are all

there. There is, however, more information that needs to be provided to the

generator, such as where to put the generated code and what prefix to use for the

generated factory and package class names, that isn't stored in the core model. All

this user-settable data also needs to be saved somewhere so that it will be available

if we regenerate the model in the future. The EMF code generator uses a generator

model, the Genmodel, to store this information.

The significance of all this is that the EMF generator runs off of a generator

model instead of a core model; it's actually a generator model editor. When you

use the generator, you will be editing a generator model, which in turn indirectly

accesses the core model from which you're generating. Thus, the .genmodel file is

258 Juan M. Vara

a serialized generator model with cross-document references to the .Ecore file. In

summary, as showed in Figure 5-13, the Genmodel is an EMF model that wraps

the core model. Generator model classes are Decorators of Ecore classes.

.genmodel

GenFeature

GenClass

GenFeature EAttribute

EClass

EAttribute

.ecore

Figure 5-13. Relationship between .genmodel and .Ecore model

Separating the generator model from the core model like this has the

advantage that the actual Ecore metamodel can remain pure and independent of

any information that is only relevant for code generation. The disadvantage of not

storing all the information right in the core model is that a generator model may

get out of sync if the referenced core model changes. To handle this, the generator

model classes include methods to reconcile a generator model with changes to its

corresponding core model. Using these methods, the two files are kept

synchronized automatically by the framework and generator.

From the Genmodel, EMF generates JAVA code that can be structured in

three big categories: the model code, the edit code and the editor code. As well,

test code could be generated but it is rarely used for anything. See

In essence, the Model code allows accessing the metamodel, create a

conforming model and serialize and de-serialize it programmatically. This code is

used by the Edit and Editor code, that wraps those functionalities with a graphical

interface, i.e. the Edit and Editor code provide with a simple (tree-like) editor for

handling models conforming to the Ecore metamodel used as starting point. To

that end, Edit and Editor code uses the Model code. Figure 5-14 shows an

overview of this generation process.

Validation: M2DAT-DB 259

Java Edit Java Editor

Ecore

Model
Ecore

Model

Genmodel

Java Model

EMF

Generation
(JET Templates)

uses

conformsTo

MyModel.sql2003

SQL2003.ecore

Figure 5-14. Overview of EMF Editors generation

From the .Ecore model (more properly, from that and the .genmodel) that

collects the abstract syntax of the metamodel, the JAVA code that implements a

simple, yet powerful, tree-like editor for conforming models is generated. This

way, we can edit .sql2003 models conforming to the SQL2003 metamodel.

To conclude this section, Figure 2-5 shows show another example of using

EMF editors. In particular, it focuses on how the metaclasses defined to support

the modelling of built-in data types are to be instantiated in the EMF editor.

 First, we add a feature object nested on the list_price attribute. In particular,

since we want the type of the attribute to be numeric, we create Numeric

Feature object. (1)

 Next, we set the concrete feature to use, among the allowed features for

number (precision and scale). To that end, we use the properties view of the

tree-like editor. (2)

 Finally, see that the editor displays the list_price attribute. Whose type is

REAL and whose size and scale has been also fixed to 2 and 3 respectively

(3). Note that this model contains all the information needed to generate the

SQL code that implements the designed schema.

260 Juan M. Vara

1

2

3

Figure 5-15. Using features on EMF editors

5.2.2.2 Customizing EMF editors:

The huge collection of primitive types supported by platform specific

models, like the one from Oracle or the SQL standard hampers the definition of

models using the tree-like editors of EMF. In general, all of them have to do with

usability issues. One of the main concerns with MDE tools so far [318].

As well, we have already argued in favour of EMF tree-like editors over

graphical editors for development tasks (see section 4.3.3.3). Nevertheless, the

generic nature of EMF makes the generated editors too generic. Therefore we have

worked to identify the way of adopting them to specific needs.

In the following, we present some results on the tree-like editors of

M2DAT-DB. Note that the techniques applied will be also applied to develop the

editors for the rest of DSLs that will integrate M2DAT.

Including primitive types in any new model

When defining a PSM, each primitive type supported by the targeted

platform has to be added manually in order to use it to define the type of any

object in the model. That is, if the user wants an object to be of a particular type,

he needs first to instantiate the metaclass that abstracts the type on the

corresponding metamodel. For instance, back to the ORDB SQL:2003 DSL, if the

user wants an attribute to be of type CHARACTER VARYING, he has to

Validation: M2DAT-DB 261

instantiate the Character String Type metaclass and sets its descriptor attribute to

CHARACTER VARYING. Just think on the work needed to have at one‘s

disposal the whole set of built-in types at the time of model edition.

We have identified the way to modify EMF (both the tree-like and the

diagrammer) editors to overcome this issue. The technique provides with the

following functionality: whenever a new PSM is created (in this case, an ORDB

model for SQL:2003), the set of primitive types supported by that platform are

automatically instantiated in the model. This way, when the user needs to assign a

type to any of the objects in the model, he can use any of the built-in types

supported by the targeted platform. To that end, we have modified the way new

models are created in EMF.

Remember that a mandatory feature of any EMF model, because of EMF

underlying XML format, is including a root element. Indeed, whenever a new

model is created, a root object has to be created by selecting one of the

metaclasses collected in the respective metamodel. We have followed the same

approach to modify EMF generated code to bundle the built-in types in any new

model.

Left-hand side of Figure 5-16 shows a screen capture from the EMF

―default‖ editor from the SQL:2003 ORDB DSL, whereas right-hand side shows

one from the M2DAT customized editor for the very same DSL.

1 2

Figure 5-16. Assigning primitive types in EMF “Default” editor VS M2DAT EMF Editor

In both cases, the objective is to define an attribute Name in Person_Type

and assign it a character type. In the first case (1), the Character String Type

object has to be created. In addition, notice just the newly created type and the

Person_Type can be used to define the type of the attribute, i.e. just those objects

visualized in the editor. In contrast, when using M2DAT modified editor (2), any

262 Juan M. Vara

of the SQL:2003 built-in types could be used at the time of defining the type of the

attribute since they were already instantiated when the model was created.

Finally, we would like to mention that the same technique is applied for

GMF-graphical editors.

Hiding primitive types in EMF editors

Previous section showed the customization of EMF tree-like editors to

include the built-in types of the corresponding DSL in any newly created model.

However, if we limit to include them in the model, we are adding too much

―noise‖. Indeed, when a new model is edited (using the diagrammer or the tree-

like editor) it contains a huge number of static objects, i.e. objects that will not be

modified. They are needed just to define the type of new elements to add in the

model. Apart from that task, they just serve to add distraction. In other words,

displaying all the (already created) primitive types in the editor acts against

usability.

Figure 5-17 compares the effect of filtering the objects corresponding to

the already instantiated primitive types (1) versus a non-filtered view of the model

(2). Notice that the functionality provided is exactly the same: any SQL:2003

primitive type can be used to define the type of a model element. Nevertheless,

they differ visibly regarding usability.

Validation: M2DAT-DB 263

1

2

Figure 5-17. Filtering instantiated primitive types in M2DAT editors

Filtering elements to be added on a model

The last issue related with the huge amount of primitive types supported by

any ―real‖ platform refers to the creation of new elements in a given model.

Whenever the user wants to add a new element, he clicks on the menu

―Create Child‖. Then, a combo box is open out showing all the metaclasses, i.e. all

the classes included in the corresponding metamodel. This way, he can instantiate

the one he needs. However, including all the metaclasses that serve to capture

primitive types hampers usability. Given that all the supported primitive types are

already instantiated at model creation, there is no need to allow the user creating

new primitive type objects.

Once again, we modify EMF generated editors to solve this drawback. All

the metaclasses corresponding to primitive types, i.e. all the metaclasses that

264 Juan M. Vara

inherits from Predefined Type in the case of SQL:2003 metamodel (see Figure

5-2), are automatically filtered in the combo box used to add new elements to a

given model. Figure 5-18 shows a screen capture from the M2DAT modified

editor (1) and the default one where no filter is applied (2).

1

2

Figure 5-18. Filtering metaclasses to instantiate in M2DAT editors

In addition, the figure serves to illustrate the effect of not preventing the

creation of new Primitive Types. After instantiating the selected family (Numeric

in the picture), the user must select which one from the concrete types of this

family he deserves to instantiate, i.e. DECIMAL, SMALLINT, INTEGER,

BIGINT, etc.

Enhancing user feedback on M2DAT Editors

Another improvement we would like to comment on is related with the way

information about each model element is displayed in the editors. To introduce the

problem and how it is solved we use a very simple example shown in Figure 5-19.

Left-hand side of the picture shows a simple metamodel to model methods

and its parameters while right-hand side shows a sample instantiation. The

Subtraction method receives two parameters: p1 and p2. Both are Integers and

respectively the minuend and subtraend of the difference. The bottom of Figure

5-19 shows how this method is displayed in the tree-like editor generated by EMF

(1) and the M2DAT improved editor (2). The latter shows not only the name of

the method, but also which parameters it receives plus the type of each one.

Validation: M2DAT-DB 265

Method

Name
ReturnType

Parameter

Name
Type

m:Method

Substraction
Integer

p1:Parameter

minuend
Integer

p2:Parameter

subtrahend
Integer

co
nf

or
m

s
to

1 2

Figure 5-19. Displaying a method signature on EMF editors

To than end, both the JAVA code generated by EMF to display Method

objects and Parameter objects has been modified. We have added a

getFriendlyName to the JAVA interfaces generated for each metaclass of the

starting metamodel. Likewise, we have redefined the getText() method to invoke

getFriendlyName(). No need to say, the information provided by the modified

editor is much better in terms of usability.

We have applied the same principle to modify M2DAT editors in order to

enhance their usability. To illustrate the result Figure 5-20 shows the OMDB

model used as a case study so far displayed in the EMF ―default‖ editor and the

M2DAT improved one.

1

2

3

4

5

6

7

Figure 5-20. EMF Default editor VS M2DAT improved editor: OMDB for SQL:2003 model

First of all, we have already mentioned in this dissertation our inclination

in favour of DSLs with a UML-like flavour (see section 4.2.3). That is, models

that looks as UML profiles, to take advantage from the universal nature of UML.

Actually, they are defined with a DSL to ease the task of processing them. In line

266 Juan M. Vara

with this idea, M2DAT editors are modified to show, next to any modelled

element, the visual stereotype assigned to the corresponding metaclass. This way,

we ease the task of identifying any desired element in the model.

Back to the figure, the name of each structured type, like the product_type

(1) is followed by its corresponding stereotype (<<UDT>>). Besides, its attribute

displays, not only its name, but also its type (2). Even if the attribute‘s type is

composed, like the production company attribute, the type is described completely

(3). If any restriction has been defined over the attribute, it is also shown in-line

(4). As well, when it is a Reference type, the type referenced is shown (4). Next to

each method name, the name and type of its parameters is displayed in-line (5),

i.e. the complete signature. Collection types are described displaying the type of

each item and the corresponding stereotype (6). Finally, next to the restrictions

defined over each table, the attributes/columns affected by the constraint are also

displayed (7).

Automatic Identification of root elements

We would like to comment a last usability improvement on M2DAT

editors. We have already mentioned that any EMF model has to include a root

element. Thus, whenever a new model is created the corresponding wizard asks

the user to select a metaclass to be instantiated as the root element. When the

metamodel is large enough, finding the right metaclass might be annoying. To

avoid the need for such selection, we have modified EMF generated code. This

way, the wizard will identify automatically the root element when a new model is

created. Figure 5-21 shows the original wizard (1) versus the improved one

integrated n M2DAT (2).

Ongoing work

Finally, it is worth mentioning that we plan to integrate all these

modifications in EMF itself. That is, instead of modifying the generated editors,

we are studying the way to modify EMF generation process in order to include all

these capabilities in any newly created EMF-based editor.

To that end, since EMF is migrating GMF code generation to XPand, we

have already started to use XPand as a model-to-text transformation language to

develop other M2DAT modules. The aims is at mastering Xpand to be able to

adapt EMF‘s Xpand templates to our needs.

Validation: M2DAT-DB 267

1 2

Figure 5-21. Setting root element in EMF editors

5.2.2.3 GMF Implementation

We already gave an overview of the development process for GMF editors

in section 4.3.2. Therefore, here we will focus just on how its is used in the

framework of M2DAT. To that end we show its application to develop the

SQL:2003 diagrammer.

The idea is summarized in Figure 5-22: two GMF models, the Graphical

model and the Tooling model collect the graphical information (the concrete

syntax) for the new DSL. The mapping between the concrete syntax and the

abstract syntax is depicted in another model, the Mapping model. Then, a

Generator model is automatically obtained. As well as with EMF generation, the

generator model encodes some details to drive the generation process. Finally, the

JAVA code that implements the editor, i.e. the Diagram(mer) plug-in is generated.

From there on, the user can edit .sql2003 models diagramatically. To that purpose,

for every .sql2003 model, an .sql2003_diagram is created. The later contains the

data related with the visual presentation of the model (its concrete syntax), while

the model itself (its abstract syntax) remains in the .sql2003 model.

268 Juan M. Vara

Domain
Model

Graphical
Model

Tooling
Model

SQL2003.ecore

SQL2003.gmfgraph

SQL2003.gmftool

Mapping
Model

SQL2003.gmfmap

Generator
Model

SQL2003.gmfgen

Diagram

Plug-in

GMF
Project

edits

conformsTo

Figure 5-22. GMF Overview

GMF is a perfect example of model-driven development since the

generation of a GMF graphical editor is driven by a set of models. In the

following, we will present each of them using the case study we have followed so

far, the development of the diagrammer for ORDB SQL:2003 models. We will

focus on the specification of how Typed Tables should be represented. To that

purpose, Figure 5-23 shows partial views of the GMF models used. In particular,

those parts referring to the representation of Typed Tables have been bordered

with coloured rectangles.

Validation: M2DAT-DB 269

SQL2003.ecore

SQL2003.gmfgraph

SQL2003.gmftool

SQL2003.gmfmap

Figure 5-23. GMF models to develop the SQL:2003 Graphical Editor

First of all, the domain model collects the abstract syntax of the DSL.

Actually, when we refer to the domain model, we are referring to the DSL

metamodel (SQL2003.Ecore).

Next, all the graphical elements that will appear in the resulting editor are

defined in the SQL2003.gmfgraph model. For instance, it includes a Figure

Descriptor object called TypedTableFigure. This object collects all the graphical

information needed to represent Typed Tables. Note that the figure is a Rectangle,

whose foreground and background colours are fixed using a Foreground and

Background nested objects. Besides, it contains two labels to show the name and

the stereotype deserved. In addition, two more rectangles are nested to show the

attributes and the methods of the Typed Table.

Besides, any diagrammer has to provide with controls to add new elements

to the diagram. This way, the SQL2003.gmftool model specifies which controls

will be included in the diagrammer. In particular, note the TypedTable Creation

Tool object that will allow adding new Typed Table objects to a model.

At this moment, there is still no connection between the graphical elements

specified in the graphical and tool models and the domain concepts collected in

the domain model (the metamodel). The definition of these correspondences is

done in the mapping model (SQL2003.gmfmap). If you look at the properties of

270 Juan M. Vara

the Node Mapping TypedTable/TypedTable you will find the links defined for

representing Typed Tables. The node mapping links the domain element

TypedTable (that inherits from BaseTable), with the diagram node TypedTable

and the Creation Tool TypedTable.

Finally, the generator model is automatically obtained. It contains the

options that drive the generation of the JAVA code that compose the plug-in

implementing the diagrammer.

It is worth mentioning that GMF rests extensively on EMF generated code.

How model elements are displayed on GMF editors, the icons used to identify

them, even the labels that show their names, are directly taken from EMF

generated code. Thus, the improvements over the EMF tree-like editor showed in

section 5.2.2.2 are automatically transfered to the GMF editor.

To conclude this section, we would like to mention that we have provided

here a very simplified version of the development of graphical editors in M2DAT.

Indeed, working this way, a default editor is obtained at the end of the process. In

some cases it could be enough, but if the editor is thought to be distributed,

generated code should be probably modified in order to get the desired look and

feel and behaviour. In this sense, it is also remarkable that GMF code is far from

being trivial. This is due to the fact that, as it happens with UML, the objective of

having a one-size-fits-all solution results in too much complexity.

5.3 Model Transformations in M2DAT

Several times along this dissertation we have stressed the role of model

transformations in MDE development processes. They are the key to automate and

drive the process. Therefore, we will show how model transformations are

implemented in M2DAT using the solutions selected. Those that were introduced

in the previous chapter.

To that purpose, we indentify a set of common generic scenarios to address

when developing model transformations. Each scenario is defined by the set of

constructions that compose the source and target pattern in each case. For

instance, one common scenario is the following: the existence of one element in

the source model implies the creation of several elements in the target model.

For each scenario we will show how it is implemented using ATL and,

when a design decision is needed, AMW for collecting such decision. Afterwards,

we will explain a number ok key issues and lessons learned.

Validation: M2DAT-DB 271

5.3.1 Common Scenarios

It is not our intention to show all the transformations coded during the

development of M2DAT-DB, but provide with a set of common scenarios found

when developing model transformations and show how they are addressed. The

underlying ideas are:

 On the one hand, to identify the techniques or strategies used to address each

of these scenarios. They will be applicable in the transformations to develop

in forthcoming M2DAT prototypes.

 On the other hand, to prove that the components and techniques used to

develop model transformations in M2DAT are valid to address any possible

scenario. This is achieved to agreat extent through the use of annotation

models to drive model transformation executions.

Table 5-1 summarizes the common scenarios identified in model-to-model

transformations. We distinguish them according to the number of source elements

in the source pattern (1 – N) and the number of elements of the target pattern (1 –

N). Besides, we make a difference between those cases in which the source pattern

is always mapped to the same target pattern (FIXED), and those in which different

target patterns could be instantiated to map the matched source pattern

(OPTIONAL). The latter needs from a design decision to state which target

pattern is to be used.

Table 5-1. Common Scenarios for Model-to-Model transformations

 TARGET MODEL

SOURCE MODEL

1 N

FIXED OPTIONAL FIXED OPTIONAL

1 X X X X

N X X X X

In following subsections we show an example of occurrence of each

scenario, next to how we have addressed its implementation in the

UML2SQL2003 transformation embedded in M2DAT-DB. As explained in

section 5.1.1, this transformation generates ORDB models conforming to

SQL:2003 from a pure conceptual data model depicted in a UML class diagram.

As well, we will show the application of the rules using excerpts from the Case

Study used so far, the Online Movie Database (remember that the whole Case

Study can be found in Appendix D).

272 Juan M. Vara

5.3.1.1 One–to–One

This scenario refers to those situations in which there is a one-to-one

correspondence between a metaclass from the source metamodel and another from

the target one. It is sketched in Figure 5-24. Obviously, this is the simplest

situation to address and we found many examples in any model transformation.

Indeed, we should aim at expressing all the rules in this way in order to keep

simple the transformation and ease the maintenance of traceability links. However,

this is just feasible for quite simple metamodels or at least those that are

semantically closer.

A

SOURCE METAMODEL

1

TARGET METAMODEL

Figure 5-24. One-to-One transformation

In the UML2SQL2003 model transformation we can find a number of rules

that tackle this type of scenario. For instance, since we have already mentioned

that every Ecore metamodel has to own a root element, we need something akin to

a ―root‖ rule to map them. This is a very simple rule shown in Figure 5-25.

ORDB SQL:2003

UML2

rule Package2Schema {

from

p : UML!Package

to

s : SQL2003!Schema (

name <- p.name

)

}

Figure 5-25. ATL Rule Package2Schema

The source pattern states that the rule will match any Package found on the

UML source model. The target pattern states that for each match, i.e. for every

Package, a Schema is created in the target model. Besides, the name of the newly

created Schema will be that of the matched Package (Online Movie Database in

the Case Study).

5.3.1.2 One–to–Many

This situation is a little bit more complex that the previous one, but still

almost trivial. As Figure 5-26 illustrates, this time the source pattern contains just

one element while the target pattern contains several elements.

Validation: M2DAT-DB 273

A

SOURCE METAMODEL

1

TARGET METAMODEL

2

Figure 5-26. One-to-Many transformation

Back to the UML2SQL2003 transformation, a generic rule states that every

Class from the conceptual data model is mapped to an Structured Type (so-called

UDT from now on) plus a Typed Table. Please, note that this rule applies just for

the generic case, that will be later refined attending to the nature of each artefact.

For instance, if the class is the parent class in some generalization, the mapping

might not be direct.

To that end, the rule ClassWithoutHierarchy2UDTandTT (Figure 5-27)

includes a guard that ensures that only instantiable UML classes that do not

participate in any hierarchy will match this rule. For each matched class, an

Structured Type and a Typed Table (whose type is the newly created) are added to

the target model.

OMDB.uml
OMDB.sql2003

rule ClassWithoutHierarchy2UDTandTT {

from

c : UML!Class (

(not c.isAbstract) and

(not c.hasSuperClass()) and

(not c.hasSubClasses())

)

to

udt : SQL2003!StructuredType (

name <- c.getUDTName(),

is_final <- c.isLeaf,

is_instantiable <- not c.isAbstract,

schema <- thisModule.PACKAGE(),

typed <- tt

),

tt : SQL2003!TypedTable (

name <- c.getTypedTableName(),

schema <- thisModule.PACKAGE(),

structured <- udt,

supertable <- c.getSuperTypedTable()

)

}

Figure 5-27. ATL Rule ClassWithoutHierarchy2UDTandTT

Note also that this refers only to the mapping of the class. Its attributes and

methods are handled as isolated objects that will be mapped by other rules. Indeed,

this is the main advantage of adopting declarative approaches (actually, hybrid

with emphasis on the declarative style): when implementing the mapping of one

element, there is no need to worry about how related elements are mapped. The

underlying engine ensures that they will be mapped.

274 Juan M. Vara

5.3.1.3 Many–to–One

This scenario is depicted in Figure 5-28. Two elements from the source

metamodel has to be mapped to the same element in the target metamodel.

A

SOURCE METAMODEL

1

TARGET METAMODEL

B

Figure 5-28. Many-to-One transformation

Although this scenario seems to be as simple as the previous one, it is

much more challenging. In fact, a declarative approach implies that for each

element to match in the source model, one element (or more) have to be created in

the target model, i.e. declarative approaches implement injective transformations.

Nevertheless we do not want to implement an injective function, but a surjective

one, where the occurrence of a set of elements in the source model induces the

creation of just one element in the target model.

Hopefully, the improvements on the last version of ATL engine (ATL-VM

2006), in particular the support for defining rules with multiple source patterns,

simplifies the implementation of this scenario. This way, we apply such ATL

feature to implement the mapping of cardinalities from conceptual models to

ORDB models. For instance, if there is an UML property whose multiplicity lower

bound is 1 or greater, we have to control that the corresponding OR attribute does

not take a null value. To that end, we have to add a Not Null constraint on every

table defined over the Structured Type that contains such attribute. An example is

shown in Figure 5-29, next to the ATL rule that encodes its management.

Validation: M2DAT-DB 275

rule ClassPropertyNotNull2NotNullConstraintOnTT {

from

prop : UML!Property,

c : UML!Class

(

(c.generatesMergingTypedTable()) and

(c.ownsClassProperty(prop)) and

(prop.isNotNullAttribute())

)

to

check : SQL2003!NotNull (

table <- thisModule.resolveTemp(c, 'tt'),

columns <- prop

)

}

OMDB.sql2003

OMDB.uml

Figure 5-29. ATL Rule ClassPropertyNotNull2NotNullConstraintOnTT

The Person_type Class owns a dob Property, whose multiplicity lower

bound is 1. The union of the Class and the Property matches the source pattern

defined in the ATL rule. As well, the guard restricts the possible matches by

allowing just classes that do generate a Typed Table (since abstract classes

mapping do not generate a Typed Table) and Properties that have to be mapped

with Not Null constraints (the isNotNullAttribute helper ensures this). Since there

is a positive matching, a Not Null constraint is added to the target model. It is

defined over the Person_type Typed Table and refers to the dob attribute.

5.3.1.4 Many-to-Many

Next, we focus on the scenario sketched in Figure 5-30.

A

SOURCE METAMODEL

1

TARGET METAMODEL

B 2

Figure 5-30. Many-to-Many transformation

We can look at this case in two different ways:

 As a variation of the previous one: there is still several elements in the

construction to find in the source model, but there is a number of elements in

the construction to create on the target model. Though we have not

implemented this scenario as-is in M2DAT-DB so far, it is not complex.

Indeed, the ATL rule from the previous case with some minor modifications

276 Juan M. Vara

could be used to implement this case. For instance, the rule from Figure 5-31

serves to implement the situation shown in Figure 5-30

rule AB_2_12 {

from

a : SourceMM!A,

b : SourceMM!B

(

a.checkSomeStuff() and

b.chekSomeOtherStuff()

)

to

one : TargetMM!One (

my_property <- a.property

),

two : TargetMM!Two (

my_property <- b.property

)

}

Figure 5-31. ATL Rule Many-to-Many (Generic)

 As a composition of more simple situations. This is the case of a Class and its

Properties mapped to a Structured Type and the corresponding attributes. We

illustrate the situation in Figure 5-32 with the mapping of the Person_type

class.

OMDB.sql2003
OMDB.uml

rule ClassWithoutHierarchy2UDTandTT { … }

rule ClassProperty2UDTAttribute { … }

rule DerivedProperty2Method { … }

Figure 5-32. Many-to-Many transformation decomposed into One-to-One transformations

The mapping of each element from the source pattern (i.e. the class and

each property) is carried out by a different rule. This way, the Person_Type Class

is mapped by the ClassWithoutHierarchyToUDTandTT rule, the Primitive type

Properties (country, dob, name and sex) are mapped by means of the

ClassProperty2UDTAttribute rule and the Derived Property (Age) is mapped by

the DerivedProperty2Method rule.

5.3.1.5 One-to-One (multiple options)

As illustrated in Figure 5-33, this scenario differs from the previous one in

the sense that the source pattern admits two possible target patterns, i.e. the A

object from the source model may be mapped as an object of class 1 or as an

object of class 1‘.

Validation: M2DAT-DB 277

A

SOURCE METAMODEL

1

TARGET METAMODEL

1'

Figure 5-33. One-to-One transformation (multiple options)

Following with the UML2SQL2003 transformation, a generic rule states

that every Property of a Class is to be mapped as an attribute in the corresponding

Structured Type.

Nevertheless, derived attributes admits two extra ways of mapping: as a

method or as a simple attribute plus a trigger to calculate its value. We can

annotate the source model to discern which rule has to be applied for a given

matching, i.e. for a particular derived property. This way, Figure 5-34 illustrates

the three possibilities.

OMDB.amw

OMDB.uml

OMDB.uml

OMDB.sql2003OMDB.sql2003

OMDB.sql20031 2
3

Figure 5-34. Different ways of mapping derived attributes

In the first case (1), we do not annotate the Age Property of the

Person_type class (the slash preceding the name of the property denotes that it is a

278 Juan M. Vara

derived property according to UML). Thus, it is mapped by adding an Age

attribute on the Person_Type structured type.

In the second case (2), we annotates the Age property. To that end, we add

an Annotation object in the corresponding weaving model (OMDB.amw). As we

described in section 4.8.4.2, each annotation contains a set of key-value properties

that serve to contain the extra information needed to drive the transformation. In

this case, the key (derived attribute) indicates that we aim at controlling the way a

derived attribute has to be mapped, whereas the value (method) states the desired

option. As a result, this time the Person_Type structured type does not contain an

Age attribute, but a getAge() method, that returns an Integer (this was the type of

the source property).

The last case is similar but this time the Value of the annotation states that

we want to map the derived attribute using a trigger. Therefore, the Person_Type

structured type contains an Age attribute. Additionally, two triggers are created

over the corresponding typed table (Person_Type). One of them will serve to

compute the new value of the Age property after the insertion and the other one

will do the same after any update.

To support these behaviour we have to code three different ATL rules.

The first one (we can look at it as the default one),

ClassProperty2UDTAttibute, is shown in Figure 5-35 and maps UML properties

to UDT attributes.

rule ClassProperty2UDTAttribute {

from

prop : UML!Property (

not prop.isDerivedAttribute() and

not prop.isMultivaluedAttribute() and

(

prop.type.oclIsTypeOf(UML!DataType) or

prop.type.oclIsTypeOf(UML!PrimitiveType)

) and

prop.refImmediateComposite().oclIsTypeOf(UML!Class)

)

to

aUDT : SQL2003!Attribute (

name <- prop.name,

type <- prop.type,

structured <- prop.getOwningClass()

)

}
Figure 5-35. ATL Rule ClassProperty2UDTAttibute

The guard uses some helpers to identify the nature of the Property. If it is a

multivalued or a derived property, it will be mapped by other rules. As well, it

checks its type and whether it belongs to a class (to distinguish from member end

associations, that are also properties). If the guard evaluates to true, an SQL:2003

attribute is added in the Structured Type that maps the owning class. The binding

Validation: M2DAT-DB 279

to the Structured Type is automatically resolved by ATL engine using the transient

links created (see section 4.8.3.2).

The rule for the second options is DerivedProperty2Method (Figure 5-36).

Its guard ensures that it will match just derived properties that have been annotated

to be mapped as methods. Then, a method is added to the corresponding UDT ant

the return type is set to be the same of the matched property.

rule DerivedProperty2Method {

from

prop : UML!Property (

(prop.isDerivedAttribute()) and

(prop.isMapDerivedAttributeToMethod())

)

to

m : SQL2003!Method (

name <- 'get' +

prop.name.substring(1,1).toUpper() +

 prop.name.substring(2,prop.name.size()),

structured <- prop.getOwningClass(),

return_type <- prop.type

)

}

Figure 5-36. ATL Rule DerivedProperty2Method

Finally, the DerivedProperty2AttributeandTrigger rule (Figure 5-37)

replicates the target pattern of the afore-showed ClassProperty2UDTAttibute rule.

Likewise, it contains two additional target patterns to create the two triggers to

compute the value of the created attribute after insertions and updates. Notice that

the resolveTemp() ATL operation is used to identify the table over which the

triggers have to be created. To that end, it is invoked with two arguments: the first

is the containing class of the matched property. The second is the identifier of one

of the target patterns that contain the rule that maps such class. Every class is

mapped to an UDT plus a Typed Table. Here, we are just interested in such table.

So, the resolveTemp operation navigates the transient links created during

transformation execution to retrieve a reference to such table.

280 Juan M. Vara

rule DerivedProperty2AttributeandTrigger {

from

prop : UML!Property (

(prop.isDerivedAttribute()) and

(prop.isMapDerivedAttributeToTrigger()) and

(not (prop->refImmediateComposite().isAbstract))

)

to

a : SQL2003!Attribute (

name <- prop.name,

type <- prop.type,

structured <- prop->refImmediateComposite()

),

tin : SQL2003!Trigger (

name <- 'get' + prop.name.substring(1,1).toUpper() +

prop.name.substring(2,prop.name.size()),

event <- #INSERT,

actionTime <- #AFTER,

table <- thisModule.resolveTemp(prop.refImmediateComposite(),'tt'),

updateColumns <- a

),

tup : SQL2003!Trigger (

name <- 'get' + prop.name.substring(1,1).toUpper() +

 prop.name.substring(2,prop.name.size()),

event <- #UPDATE,

actionTime <- #AFTER,

table <- thisModule.resolveTemp(prop.refImmediateComposite(),'tt'),

updateColumns <- a

)

}

Figure 5-37. ATL DerivedProperty2AttributeandTrigger

5.3.1.6 One–to–Many (multiple options)

This time we focus on the generic situation illustrated in Figure 5-38,

where one element from the source model correspond to several elements on the

target one, but multiple options can be chosen: we may map an (A) object to a pair

of objects (1) and (2) or to a pair of (1‘) and (2‘) objects.

A

SOURCE METAMODEL

1

TARGET METAMODEL

1'

2

2'

Figure 5-38. Many-to-Many transformation (multiple options)

In the UML2SQL2003 this scenario appears a number of times. For

instance, to map multivalued properties to ORDB schemas we have to create both

an attribute of a collection type plus the collection type itself. We may choose

between two different collection types: MULTISET (dynamically sized) and

ARRAY (predefined size). By default, ARRAY types are used, but we can modify

Validation: M2DAT-DB 281

this behaviour by annotating the multivalued property. Figure 5-39 shows an

example.

OMDB.amw

OMDB.uml

OMDB.uml

OMDB.sql2003OMDB.sql2003

1 2

Figure 5-39. Different ways of mapping multivalued attributes

The upper bound multiplicity of the production_company Property is 3.

Thus, it is multivalued property that can be mapped in two different ways. To

choose the one desired for each execution of the transformation, we annotate the

Property. This time, the key for the annotation object is multivalued attribute. If

we set the value to array (1), the transformation adds to the target model an

ARRAY object. Its type will be the one that maps the type of the source Property.

The ARRAY is used to define the type of the OR attribute that maps the UML

Property. On the other hand, if we set the annotation value to multiset (2), this

time the collection type used is a MULTISET. Remember that, in absence of

annotation, the default option is to use an ARRAY.

These two different ways of mapping multivalued attributes are encoded in

two similar ATL rules shown in Figure 5-40 and Figure 5-41.

282 Juan M. Vara

rule MultivaluedPropertyWithoutGeneratedType2ARRAYAttribute {

from

prop : UML!Property (

(prop.isMultivaluedAttribute()) and

(prop.isFixedSizeMultivaluedAttribute()) and

(not prop.isGeneratedMultivaluedType())

)

to

a : SQL2003!Attribute (

name <- prop.name,

type <- array,

structured <- prop->refImmediateComposite()

),

array : SQL2003!ARRAY (

name <- prop.name,

type <- prop.type,

num_elements<-prop.upperValue.value,

schema <- thisModule.PACKAGE()

)

}

Figure 5-40. ATL Rules MultiValuedPropertyWithoutGeneratedType2ARRAYAttribute

Both rules are very similar, their guard matches multivalued UML

Properties for which no collection type has already been generated (otherwise,

they will be mapped by other rules). Besides, each one filters just those properties

to be mapped using a ARRAY (isFixedSizeMultiValuedAttribute) or a

MULTISET (isVarSizeMultiValuedAttribute). Regarding target patterns, the

difference lies in the type of the collection object created: one creates an ARRAY

(and set its size to the upper bound multiplicity of the matched Property) while the

other one creates a MULTISET.

rule MultivaluedPropertyWithoutGeneratedType2MULTISETAttribute {

from

prop : UML!Property (

(prop.isMultivaluedAttribute()) and

(prop.isVarSizeMultivaluedAttribute()) and

(not prop.isGeneratedMultivaluedType())

)

to

a : SQL2003!Attribute (

name <- prop.name,

type <- multiset,

structured <- prop->refImmediateComposite()

),

multiset : SQL2003!MULTISET (

name <- prop.name,

type <- prop.type,

schema <- thisModule.PACKAGE()

)

}

Figure 5-41. ATL Rules

MultiValuedPropertyWithoutGeneratedType2MULTISETAttribute

Validation: M2DAT-DB 283

5.3.1.7 Many-to-One (multiple options)

In this case a source pattern composed of several elements could be

mapped to two different target patterns, both containing just one element. The

scenario is depicted in Figure 5-42.

A

SOURCE METAMODEL

1

TARGET METAMODEL

B 2

Figure 5-42. Many-to-One transformation (multiple options)

To illustrate this situation we use the mapping of UML properties, that

works as identifiers, to ORDB models. Since a pure conceptual model should not

specify which are the properties of a Class that should be considered as possible

keys, we have to mark the desired Property to be used as unique identifier. To that

end, we annotate the property. So, a Class that contains a Property marked as

candidate key has to be mapped to a restriction on any Typed Table defined over

the UDT that maps the Class. However, the restriction could be a Primary Key or

an Unique restriction, depending on the value of the annotation. We illustrate this

situation in Figure 5-43.

OMDB.amw

OMDB.uml

OMDB.sql2003

1 2

Figure 5-43. Different ways of mapping unique properties

284 Juan M. Vara

In this case, the title Property of the movie_type Class is to be used as

unique identifier for movie_type objects. Therefore we add an annotation to such

Property whose key is restriction to indicate so. The type of the restriction to

create is set by the value of the annotation: primary key or alternative key. The

former creates a Primary Key over the movie_type Typed Table referencing the

title attribute (1), while the later results in a Unique object with the same bindings

(2).

Again, two similar rules serve to address the two options. They are shown

in Figure 5-44 and Figure 5-45.

rule ClassPropertyPrimaryKey2PrimaryKeyConstraintOnTT {

from

a : AMW!Annotation,

c : UML!Class

(

c.generatesTypedTable() and

 a.getReferredProperties()->forAll(prop | c.ownsClassProperty(prop)) and

 a.isPrimaryKeyAnnotation()

)

to

check : SQL2003!PrimaryKey (

name <- c.getPrimaryKeyName(a.getKeyAttributes()),

table <- thisModule.resolveTemp(c, 'tt'),

columns <- a.getReferredProperties()

)

}

Figure 5-44. ATL Rule ClassPropertyPrimaryKey2PrimaryKeyConstraintOnTT

Both of them match any pair of Annotation and Class objects found on the

source model if the former annotates a property of the latter. In addition, the Class

has to be instantiable class to ensure that it generates a Typed Table in the target

model. In that case, the target pattern generates a Primary Key (respectively

Unique) object in the target model. Such restriction is binded to the Typed Table

that maps the matched Class and refer to all the attributes of such Class that has

been annotated to be the Primary Key (respectively the alternative key). Note that

this is needed since several properties of a given Class might be annotated in order

to obtain a composed Primary (or Alternative) Key.

Validation: M2DAT-DB 285

rule ClassPropertyAlternativeKey2UniqueConstraintOnTT {

from

a : AMW!Annotation,

c : UML!Class

(

c.generatesTypedTable()

and a.getReferredProperties()->forAll(prop | c.ownsClassProperty(prop) and

prop.isAlternativeKeyAttribute()) and a.isAlternativeKeyAnnotation()

)

to

ak : SQL2003!UniqueConstraint (

name <- c.getAlternativeKeyName(a.getKeyAttributes()),

table <- thisModule.resolveTemp(c, 'tt'),

columns <- a.getReferredProperties()

)

}
Figure 5-45. ATL Rule ClassPropertyAlternativeKey2UniqueConstraintOnTT

5.3.1.8 Many-to-Many (multiple options)

The last common scenario we consider is sketched in Figure 5-46. When a

pair of A and B objects are found in the source model, they can be mapped to a

pair of 1 and 2 objects, or a pair of 1‘ and 2‘ objects.

A

SOURCE METAMODEL TARGET METAMODEL

B

1

1'

2

2'

Figure 5-46. Many-to-Many transformation (multiple options)

We have found this scenary a number of times in the transformations

developed so far. They specially arise when mapping UML hierarchies to DB

models since the later do not support inheritance. Actually, the ORDB model for

SQL:2003 does support (partially) such concept, though none commercial product

implements such functionality.

To illustrate how we address the development of many-to-many

transformations when there are multiple options for the target pattern we will use

the example shown in Figure 5-47. Please, note that we have made an extensive

study on the different ways of mapping conceptual hierarchies to ORDB models

and we have implemented all of them in the transformations bundled in M2DAT-

DB (they can be checked in the accompanion CD). Nevertheless, it is not the

286 Juan M. Vara

intention of this dissertation to go deep into the insights of M2DAT-DB. Here we

use it just as a reference implementation for M2DAT‘s specification.

Figure 5-47. Example of UML hierarchy (one level)

In relational data models, the above hierarchy is to be mapped in two

different ways: three tables, one per each Class, or one table containing one

column per each Property of the three Classes. Figure 5-48 shows the result of

encoding these two approaches in the model transformation.

To select the way to map the hierarchy we annotate the parent Class

(Class_A). This time the key for the annotation is hierarchy. If its value is tables

(1), one merging Structured Type plus one merging Typed Table are created, (so-

called Merge [Class_A, Class_B, Class_C]). The Structured Type contains all the

attributes and methods of the three classes to map plus a new attribute: type_of_A.

This is the discriminant attribute that allows identifying the concrete type of each

object stored in the merging Typed Table. In addition, a Check constraint is

defined over the table to ensure that the discriminant will take an allowed value

(Class_A, Class_B or Class_C) and a Not Null constraint to prevent from objects

without a concrete type assigned.

Validation: M2DAT-DB 287

OneLevelHierarchy.amw

OneLevelHierarchy.uml

O
n

e
Le

ve
lH

ie
ra

rc
h

y.
sq

l2
0

0
3

1 2

O
n

e
Le

ve
lH

ie
ra

rc
h

y.
sq

l2
0

0
3

Figure 5-48. Two ways of mapping simple hierarchies from conceptual to ORDB models

On the other hand, if the annotation value is tables (2) (default behaviour),

three different Structured Types plus three Typed Tables are created. Notice that,

in this case, both Class_B and Class_C Structured Types inherits from Class_A

Structured Type.

To conclude, Figure 5-49 shows the ATL rule that encodes the first

approach, since the later has been already introduced. In fact, each Class is

mapped by the ClassWithoutHierarchy2UDTandTT rule (see Figure 5-27), giving

raise to the three different UDTs plus the three Typed Tables.

288 Juan M. Vara

rule SuperClassWithOneTableHierarchy2UDTandTTandAttributeandCHECKandNOTNULL {

from

c : UML!Class (c.isSuperClassWithOneTableHierarchy())

to

udt : SQL2003!StructuredType (

name <- c.getUDTName(),

is_final <- true,

is_instantiable <- true,

schema <- thisModule.PACKAGE(),

super_type <- c.getUDTSuperType(),

typed <- tt

),

tt : SQL2003!TypedTable (

name <- c.getTypedTableName(),

schema <- thisModule.PACKAGE(),

structured <- udt,

supertable <- c.getSuperTypedTable()

),

a : SQL2003!Attribute (

name <- 'type_of_' + c.name,

type <- thisModule.ELEMENT_TYPE_STRING(),

structured <- c

),

check : SQL2003!TableCheckConstraint (

name <- 'Check_Discriminant',

expression <- c.getOneTableCheckExpression(),

columns <- a,

table <- tt

),

notNull : SQL2003!NotNull (

table <- tt,

columns <- a

)

}

Figure 5-49. ATL Rule

SuperClassWithOneTableHierarchy2UDTandTTandAttributeandCHECKandNOTNULL

The guard of the rule invoke the isSuperClassWithOneTableHierarchy

helper. It restricts the matching to UML Classes acting as parents in a simple

hierarchy (i.e. with just one level of descendants) that has been annotated to map

the whole hierarchy into just one Structured Type and the corresponding Typed

Table.

For each match, the target pattern adds five objects to the target model: the

mentioned UDT and Typed Table, the discriminant attribute and the Check and

Not Null constraints for the discriminant.

5.3.2 Mapping of Primitive Data Types between PSM Models:

In section 5.2.1.2 we sketched the problems related with modelling the

primitive types supported by technological platforms. We provided a solution

based on the concept of features. They serve to encapsulate the specific

information that has to be provided to specialize a given primitive type for each

attribute of such type. Besides, to enhance usability of M2DAT editors, we

decided to automatically instantiate all the primitive types in any new model. This

way, the user can use them to define the type of the model elements.

Validation: M2DAT-DB 289

Nevertheless, the previous decision entails some challenges for the

management of primitive types in model transformations. The improvements on

M2DAT editors ensure that new models defined from scratch incorporates all the

predefined types. But we need to support the same behaviour for any model

obtained as the result of an M2DAT model transformation. In other words, the

transformation has to include rules to create all the primitive types of the targeted

platform. In this sense, there are two different situations to tackle: PIM2PSM and

PSM2PSM transformations.

In the following we show how each one is addressed.

5.3.2.1 Mapping Primitive Types in PIM2PSM transformations

This is the simpler case. We just add a set of matched rules to map each

primitive type included in the PIM model, that is, Boolean, String, Integer and

Real. For instance, the Figure 5-50 shows the rule to map the Date data type. The

source pattern matches those PrimitiveType objects from the UML model that are

Date types. The target pattern instantiates the Datetime metaclass. The descriptor

property is set to DATE to specify the desired concrete type among the family of

Datetime types. Besides, the new primitive type is nested in the Schema object

that constitutes the root of the target model. To that end the expression

thisModule.PACKAGE() resolves the transient link that relates the source Package

with the target Schema.

rule Date2Date {

from

dt : UML!PrimitiveType(dt.isDatePT())

to

out : SQL2003!DatetimeType (

descriptor <- #DATE,

schema <- thisModule.PACKAGE()

)

}

Figure 5-50. ATL Rule Date2Date

Besides, we include an imperative rule to generate the rest of primitive

types. In particular, it is an end point rule, an ATL rule that is automatically

executed just before the transformation execution is finished. Figure 5-51 shows

an excerpt of the rule. Note that it only contains a target pattern, i.e. it just adds

elements in the target model, without the need for a previous matching with some

source pattern. Each element in the target pattern follows the structure of the one

from the Date2Date matched rule already commented.

290 Juan M. Vara

endpoint rule generateTypes(){

to

datetime_timewithtimezone : SQL2003!DatetimeType (

 descriptor <-#TIMEWITHTIMEZONE,

schema <- thisModule.PACKAGE()

),

datetime_timewithouttimezone : SQL2003!DatetimeType (

 descriptor <-#TIMEWITHOUTTIMEZONE,

schema <- thisModule.PACKAGE()

),

Figure 5-51. ATL Rule generateTypes()

5.3.2.2 Mapping Primitive Types in PIM2PSM transformations

The task of mapping primitive types in PSM2PSM transformations is more

challenging. Apart from mapping the primitive types, we need to map the features

that each element uses to customize the Primitive Type used (see section 5.2.1.2).

We propose two different techniques to tackle these issues: one for mapping the

Primitive Type objects and another for the Feature objects. Next, we introduce

them using the SQL20032ORDB4ORA transformation bundled in M2DAT-DB

(see section 5.1.1). It maps ORDB schemas conforming to the SQL:2003 standard

to ORDB schemas for Oracle.

Mapping Primitive type objects

Regarding just primitive types, we can identify the different scenarios

summarized in Table 5-2.

Table 5-2. Possible Scenarios for Primitive Types mapping in PSM2PSM transformations

SOURCE MODEL TARGET MODEL

One Element One Element

None One element

Several elements One Element

The first one is tackled with a matched rule. For instance, the Figure 5-52

shows the ATL rule to map SQL:2003 Character type objects

(CharacterStringType.CHARACTER) to Oracle Character type objects

(ANSICharacterType.CHARACTER).

Validation: M2DAT-DB 291

rule CharacterStringType2Varchar {

from

cs : SQL2003!CharacterStringType(cs.descriptor = #CHARACTER)

to

ch1 : ORDB4ORA!ANSICharacterType (

Descriptor <- #CHARACTER,

model <- thisModule.schema

)

}

Figure 5-52. ATL Rrule CharacterStringType2Varchar

We have already shown how the second scenario (none source type to one

target type) is solved. An endpoint rule like the one from Figure 5-51 takes care of

this issue by instantiating any primitive type considered in the target platform, that

is not considered in the source platform.

Finally, the last scenario is the most complex. Here, several source types

have to be mapped to the same target type. For instance, both the SQL:2003

NCHAR and CHAR types are mapped to the same Oracle CHARACTER type. In

such a situation, we call the source types mirror types since they have to return the

same target type. This situation is solved with two different steps:

 Mapping one of the mirror types to the desired target type.

 If a source object uses any of the mirror types to define its type, the

corresponding target object will use the target type created before.

First step is encoded in a matched rule like the ones already shown in

Figure 5-50 and Figure 5-52. As an example, Figure 5-53 summarizes how the

second step is carried out to map Parameter objects from SQL:2003 ORDB

models to ORBD models for Oracle.

rule Parameter2Parameter{

from

pIN : SQL2003!MethodParameter

to

pOUT : ORDB4ORA!MethodParameter

(

Name <- pIN.name,

Type <- if pIN.type.isMirrorType() then

pIN.type.mirrorType()

else

pIN.type

endif

)

}

Figure 5-53. SQL:2003 to ORDB4ORA --> ATL Rule Parameter2Parameter

We have already explained how target elements are referenced in ATL

code. To that purpose, ATL replaces references to a source element by a reference

to the corresponding target element. We can not proceed this way in this case

292 Juan M. Vara

since the target type has not just one corresponding source element but several (the

mirror types). So, whenever a reference to a primitive type has to be made, we

check whether it is a mirror type. If so, instead of using the reference as-is, we

invoke the mirrorType helper directly. From the set of mirror types that has to be

mapped to the same target type, the helper returns the type that is used by the

matched rule that creates the corresponding target type.

Mapping Feature objects

Once the primitive types are correctly mapped, we need to address the

mapping of the features that each structural component (attribute, field or column)

uses to adapt the type to its specific needs (see section 5.2.1.2). Notice that only

those source features with a corresponding feature in the target model could be

mapped. Figure 5-54 shows part of the solution. In particular, it shows the rule to

map SQL:2003 attributes to Oracle attributes.

rule Attribute2Attribute {

from

attIN : SQL2003!Attribute

to

attOUT : ORDB4ORA!Attribute (

Name <- attIN.name,

Type <- if attIN.type.isHiddenType() then

attIN.type.mirrorType()

else

attIN.type

endif,

structured <- attIN.structured,

features <- attIN.features->select(f|f.haveLegalTarget())->collect(f|thisModule.Feature2Feature(f))

)

}

Figure 5-54. SQL:2003 to ORDB4ORA --> ATL Rule Attribute2Attribute

Whenever an Attribute is mapped, its features have to be mapped as well.

To that end, we first select just those features that have a correspondent feature on

the target metamodel. To filter them we use the haveLegalTarget() helper. Then,

we invoke the rule that creates the target feature (Feature2Feature()).

Indeed, the Feature2Feature rule, shown in Figure 5-55, is an abstract rule.

It maps the source key-value pair to the target key-value pair. To that end, two

different helpers return the target key and the target value for each source key and

source value. Taking advantage from ATL rule inheritance, the rule is later

specialized for each family of primitive types.

Validation: M2DAT-DB 293

lazy abstract rule Feature2Feature

{

from

fIN:SQL2003!Feature

to fOUT:ORDB4ORA!Feature

(

key <- fIN.targetKey(),

value <- fIN.targetValue()

)

}

Figure 5-55. SQL:2003 to ORDB4ORA --> ATL Rule Feature2Feature

For instance, Figure 5-56 shows how the rule is specialized for the families

of String (1) and Numeric (2) primitive types.

lazy rule NumericFeature2NumberFeature extends Feature2Feature

{

from

fIN:SQL2003!NumericFeature(fIN.oclIsTypeOf(SQL2003!NumericFeature))

to

fOUT:ORDB4ORA!NumberFeature

}

lazy abstract rule Feature2Feature

{

from

fIN:SQL2003!Feature

to

fOUT:ORDB4ORA!Feature

(

key <- fIN.targetKey(),

value <- fIN.targetValue()

)

}

lazy rule StringFeature2CharacterFeature extends Feature2Feature

{

from

fIN:SQL2003!StringFeature(fIN.oclIsTypeOf(SQL2003!StringFeature))

to

fOUT:ORDB4ORA!CharacterFeature

}

1

2

Figure 5-56. SQL:2003 to ORDB4ORA --> Instantiating Feature2Feature ATL rule

5.3.3 Documenting ATL Transformations

So far, we have already presented how model transformations are

addressed when developing M2DAT‘s modules. In this section we would like to

present another minor improvement introduced in M2DAT regarding the

development of ATL model transformations.

One of the main drawbacks of current model transformation languages is

available documentation. Since they are still too recent, the most of the effort is

dedicated to build and improve the transformation engine while almost no effort is

dedicated to document it, a crucial factor regarding final adoption of the language.

Although ATL is the best of existing languages in this sense, we have added an

improvement on M2DAT regarding documentation of ATL transformations. We

firmly believe it contributes to improve M2DAT usability.

Constant addition of comments in the code is a good practice. However,

when the transformation gets too large or complex, documenting could turn out to

be a tedious task. One possible improvement is the use of automatic

documentation mechanisms, like Javadoc [394], the most recognised and adopted

way of documenting source code. Following this approach, we have built a utility

similar to Javadoc to generate HTML doc from ATL source code, so-called

294 Juan M. Vara

ATLDoc. It is based on two main points: the comment format and the HMTL

output style.

 Comment Format: we will use the modular nature of ATL to define enriched

comments for each ATL block (rules, helpers, etc.). To associate a meaning to

each comment we lean on a little grammar encoded in an XML file. It serves

to identify the beginning and finish of each comment, plus the different

subsections that it owns. Figure 5-57 shows an example of such file.

<?xml version="1.0" encoding="ISO-8859-1" ?>

 <ATLDOC>

 <Comment>

 <Begin>--BEGIN DOC

 </Begin>

 <End>--END DOC</End>

 <Sections escapeChars="#">

 <Title escapeChars="" name="PRECONDITION">

 </Title>

 <Title escapeChars="" name="About">

 <Subtitle>@name</Subtitle>

 <Subtitle>@version</Subtitle>

 <Subtitle>@domains</Subtitle>

 <Subtitle>@authors</Subtitle>

 <Subtitle>@date</Subtitle>

 <Subtitle>@description</Subtitle>

 </Title>

 <Title escapeChars="" name="DESCRIPTION">

 <Subtitle>@CONTEXT</Subtitle>

 <Subtitle>@INPUTS</Subtitle>

 <Subtitle>@RETURN</Subtitle>

 <Subtitle>@LIBRARIES</Subtitle>

 <Subtitle>@AUTOR</Subtitle>

 </Title>

 </Sections>

 </Comment>

 <Code>

 <startWith>helper</startWith>

 <startWith>rule</startWith>

 <startWith>lazy</startWith>

 <startWith>entrypoint</startWith>

 <startWith>endpoint</startWith>

 <startWith>uses</startWith>

 <startWith>library</startWith>

 <startWith>module</startWith>

 <startWith>abstract</startWith>

 <startWith>unique</startWith>

 </Code>

</ATLDOC>

Figure 5-57. ATLDoc Template

This way, the <Begin> tag identifies the beginning of a comment while the

<End> tag identifies its finishing. The escapeChars attribute of the <Sections> tag

denotes each subsection inside a comment. In turn, each Section has a title denoted

Validation: M2DAT-DB 295

by the name attribute of the <Title> tag and can have subsections, marked by the

<Subtitle> tag.

For instance, the ATL file from Figure 5-58 has been coded according to

the default template.

-- @atlcompiler atl2006

-- @nsURI UML=http://www.eclipse.org/uml2/2.1.0/UML

--BEGIN DOC

--#About

-- @name UML_constants

-- @version 1.0

-- @domains database, dsl, sql2003, uml, mda, transformation,

-- metamodel, model

-- @authors Alejandro Galindo (Universidad Rey Juan Carlos)

-- @date 24-03-2008

-- @description Esta libreria ATL contiene las constantes utilizadas en las

-- transformaciones realizadas desde un modelo conforme

-- al metamodelo UML.

--END DOC

library UML_constants;

-- Dentro de las librerias de ATL no se permite definir atributos o constantes.

-- Entonces, las constantes hay que definirlas como helpers.

--BEGIN DOC

--#DESCRIPTION

--Constante asociada al tipo primitivo de UML para representar cadenas de texto.

--END DOC

helper def : TYPE_STRING() : String = 'string';

--BEGIN DOC

--#DESCRIPTION

--Constante asociada al tipo primitivo de UML para representar caracteres.

--END DOC

helper def : TYPE_CHAR() : String = 'char';

Figure 5-58. Excerpt from UML_Constants.ATL file

 Output Style: the style of the documentation file is encoded in a CSS style

sheet. As Figure 5-59 shows, when ATLDoc is invoked, the ATL file

containing the structured comments is processed by the ATLDoc utility

according to the active template. The output will be an HTML file containing

all the source code with the comments section interleaved in a friendly

interface according to the styles defined in the CSS file.

296 Juan M. Vara

ATL
File

HTML
ATLDoc

UML2SQL2003.atl
UML2SQL2003.html

ATLDoc

Figure 5-59. ATLDoc overview

This way, after invoking ATLDoc over the ATL file shown in Figure 5-58,

an HTML preserving the name with a different suffix is created in the same folder.

An excerpt of the file is shown in Figure 5-60.

17/05/2008

Figure 5-60. ATLDoc generated file: UML_Constants.html

In essence, it is the same ATL file with extra features. Next to the name of

the module (library in this case), the date of creation plus the name of the ATL file

are added on the header. Besides, the name of each section and sub-section of each

Validation: M2DAT-DB 297

comment are bolded, while reserved words and primitive type values (like strings)

are displayed in a different colour.

To conclude, it is worth mentioning that in the next future we can extend

ATLDoc to generate code documentation in other formats, such as PDF, CHM or

RTF.

5.3.4 On the Development of Model Transformations

The previous sections serve to prove that using ATL and AMW we are able

to address any given scenario that may arise in the context of model

transformations. This section is just an attempt to capture some findings, thoughts

and lessons learned while developing the model transformations bundled in

M2DAT‘s reference implementation (M2DAT-DB). As well, we would like to

provide with some comments on the comparison between ATL and existing

implementations of the QVT standard.

5.3.4.1 Some generic reflections

Regarding the language used to code the transformations, the hybrid

approach of ATL has turned out to be the most suitable. On the one hand,

adopting a declarative style gets rid of part of the complexity inherent to the

development of model transformations. Working this way, when you are coding

the rules that map a particular metaclass you do not have to wonder about the rest

of the metaclasses in the metamodel.

Besides you do not have to worry about how target elements are created,

you just need to specify the relationships that must hold between source and target

model. The rest is undertaken by the transformation engine.

As well, this eases the task of traceability management. Indeed, the

transformation engine uses transient links to establish the bindings needed

between target elements. Those transient links stores the information on which

target elements have been created to map each source element. Therefore, you just

need to persist those transient links if you want your traceability information to be

registered.

Likewise, there is no need to care about the order in which rule is executed

since declarative programming has no explicit order. The transformation enforces

that all the relationships between source and target elements encoded in the rules

will hold after execution. But nothing has to be sais about the order in which it has

to be done.

298 Juan M. Vara

Finally, matching of source elements is automatically done by the engine.

With imperative programming you would need to code huge loops to navigate the

whole source model in order to find all the elements of a given type, and then

check if they conform to whatever condition you may impose to map them. In

declarative programming, this is done by free by the transformation engine. You

just need to specify which condition must be checked over each type of element

found on the source model.

Nevertheless, when you are coding complex model transformations you

will need for sure some aid from imperative constructions. As we have shown so

far, it is very common the situation in which you need to create some ―new‖

elements in the target model. That is, elements for which no relation to a source

element must hold. For instance, when moving from PIM to PSM, you need to

create the built-in types of the given platform in your model in order to define the

type of the target elements. However, those types do not have a correspondence

with anything from the source model. In this case, you need to explicitly create the

types. To that end, you need an imperative construction.

In this sense, it might be remarkable the fact that even the standard, QVT,

proposes tow different languages to support both programming paradigms,

allowing to use some imperative operations on your declarative rules.

From our experiences, we can state that the main problem of adopting a

declarative approach was changing our mindset. Moving from the imperative

programming style to the declarative one resulted quite challenging in the

beginning. You tend to twist the declarative rules to make them look like

imperative. However, once you have acquired some skills with declarative

programming, you immediately come to the conclusion that it is the most suitable

for model transformation development. We might say that you start to ―think on

declarative‖.

Another issue related with declarative approaches is performance. We have

confirmed that, in presence of large models, the performance is rather slow.

However, we should take into account the novelty of model transformation

engines. They are constantly improved. Thus, we have to let them some time to

check if those improvements solve this drawback.

Besides, we have mentioned that traceability management is easier to

address in declarative transformations. However, we are using an hybrid approach

because we need some imperative constructions. Obviously, this hampers the

management of traceability links. In fact, with ―new‖ objects no traceability link

could be created, since they do not have relation with any element from the source

Validation: M2DAT-DB 299

model. Thus, new techniques are needed to solve this problem. Meanwhile, some

temporal fixes can be used. For instance, as we have done so far with built-in

types, associate them with the root element of the source model. This way, since

every EMF model has to include a root element, we can bind the ―new‖ elements

in the target model with the root element from the source model. This way, we can

create traceability links also for ―new‖ elements.

Finally, we would like to mention that, our experiences so far has

confirmed that a visual notation for developing model transformations is, at best,

not enough to develop complex transformations. Think on graph-based

transformations, a formal way of defining visual transformations. Though they are

mainly visual languages, we have realized that in the most cases, they need to

include textual add-ins in their graph-rules to be able to support the whole

transformation (ATOM
3

works this way, and even VIATRA itself is still

developing support for visual rules). In the end, some expressions are just

impossible to model in a visual way. Or if possible, the effort needed is not

worthwhile when compared with that needed to specify the same expression in a

textual language.

Regarding annotation models, we are pretty sure about the need of having

mechanisms to mark source models in order to support design decisions. A

complete automatic process from CIM to working-code is nor feasible, neither

acceptable. Indeed, this was recognised in the early versions of MDA guide and all

along MDE literature. However, as we have argued along this dissertation,

marking the model itself means polluting it with concepts from other domains. We

stated that the best option was to use annotation models and we have proved that

weaving models serve in an efficient and usable way as annotation models. The

screen captures has shown that AMW integrates perfectly with EMF tree-like

editors and provides with an intuitive and easy to use, yet powerful annotating

mechanism. Besides, the good coupling of AMW and ATL eases processing the

annotation in the model transformations.

5.3.4.2 ATL vs QVT implementations

As we have already mentioned, we wanted to ensure that existing

implementations of QVT standard were not enough to develop complex

transformations. Nevertheless, QVT is not a language but a family of languages.

Therefore, in order to test how the different programming styles fit with the task

of developing model transformations, we use two of the languages from the QVT

family: QVT-Operational Mappings (imperative style) and QVT-Relations

(declarative style). Thus, we replicated an ATL transformation with two of the

300 Juan M. Vara

most mature existing implementations of QVT: mediniQVT and QVTo from

OpenCanarias. This section presents some highlights gathered from such tests.

Please, note that the objective of this dissertation is not to carry out an

exhaustive comparative between model transformation languages. We just want to

be able to select the best model transformation language for our purposes. In this

sense, the level of complexity is quite relevant. Besides, the ability to make these

kind tests in the framework of M2DAT serves to prove the utility of M2DAT as

an integrated framework where emerging technologies may be tested and

evaluated. Again, this is due to the open nature of M2DAT and the underlying

EMF framework.

All this given, our main concern with QVT implementations regards

usability. The use of the evaluated languages hampers the code of the

transformation. This fact is mainly due to the difference ways of using tracing

information.

The ATL engine stores the tracing information between every source

element and the corresponding target elements in transient links. This information

is used by the ATL-VM [180]. Each time one transformation rule is matched, a

new tracing link is created between the matched source element and all its

corresponding target elements. Subsequently, when a transformation rule

implicitly requires the target elements produced for a different rule, the ATL-VM

automatically resolves the dependency using the tracing links. We use a code

excerpt (Figure 5-61) from one of the transformations carried out in this thesis to

show how this works.

rule Class2UDT {

from

c : UML!Class

to

udt : ORDB4ORA!StructuredType(

name <- c.getUDTName(),

typed <- tt

…………..

),

tt : modeloOR!TypedTable(

name <- c.getTypedTableName()

}

rule Property2Attribute {

from

p:UML!Property (not p.isDerived and not p.isMultivalued() and p.refImmediateComposite().oclIsTypeOf(UML!Class))

to

a : ORDB4ORA!Attribute(

name <- p.name,

type <- p.type,

structured <- p->refImmediateComposite())
}

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

Figure 5-61. ATL Code Excerpt: Class2UDT and Property2Attribute mapping rules

Validation: M2DAT-DB 301

Rule Class2UDT (lines 1-9) maps every class from the source model to an

StructuredType plus a Typed Table on the target model. Rule Property2Attribute

(14-22) maps every Property of a UML!Class to an Attribute of the corresponding

StructuredType in the target model. The binding structured <-

p.refImmediateComposite() returns a reference to such StructuredType. In fact, the

binding returns a reference to the owning class of the property. The ATL-VM

replaces it for a reference to the corresponding StructuredType. To do so, the

ATL-VM uses the internal traceability links handled during the execution of the

transformation. This way, the reference to the owning class is replaced by a

reference to the StructuredType that generates the Class2UDT rule that maps the

class.

The absence of those transient links in QVT studied engines hampers the

development of model transformations. As noticed before this fact forces

somehow to follow a not purely declarative style. When you are developing a

model transformation in the declarative style, you should be able to code each rule

without worrying about how the rest of elements from the source model are

mapped. In the previous example, you do not have to worry about Properties

mapping when coding the Class2UDT rule. In contrast, we can have a look at the

equivalent mapping rules for mediniQVT (Figure 5-62).

top relation Class2UDT {

n : String;

checkonly domain uml c : uml::Class {name = n};

enforce domain ordb4ora s : ORDB4ORA::StructuredType

{name = n + ' <<udt>>‘, typed = t : ORDB4ORA::TypedTable {name = c.name}, model = getModel()};

when {PackageToModel(getPackage(), getModel());(c.generalization->first()->oclIsUndefined())=true;}

where {PropertyToAttribute2 (c, s); PropertyDerivedToMethod (c, s);

}

}

relation PropertyToAttribute2 {

an : String;

pn : String;

checkonly domain uml c : uml::Class

{ownedAttribute = p : uml::Property {name = an, type = upt : uml::PrimitiveType {name = pn}}

};

enforce domain ordb4ora s : ORDB4ORA::StructuredType

{attribute = a : ORDB4ORA::Attribute {name = an, type = opt : ORDB4ORA::PrimitiveType {model = getModel()}}

};

1

2

3

4

5
6

7

8

9

10
11

12

13

14

15
16

17

18

19

20
21

22

23

24

25
26

27

28

Figure 5-62. mediniQVT Code Excerpt: Class2UDT and Property2Attribute mapping rules

Notice that when you are coding the mapping rule for Classes (lines 1-13),

you have to keep in mind Class‘ properties since the Properties2Attributes

mapping rule has to be invoked from the Class2UDT rule (line 12).

The same happens to any other model element nested in a Class, like

methods or association ends. Clearly, this way of programming model

302 Juan M. Vara

transformations is not recommended, at least for us, and it differs from the purely

declarative style.

Another limitation of existing QVT implementations (at least, of QVT-

Operational Mappings) lies in the way they handle the target model. Any element

added to the target model has to be initially nested on the root element and later

reallocated using a property of any element from that same model.

A global remark that can be made about QVT-Relational and QVT-

Operational Mapping is related with the approach adopted by each one. While

QVT-Relations adopts a purely declarative approach, QVT-Operational Mappings

adopt an imperative one. As we have argued in section 4.4.2.3, we believe that

none of them are the best way to address the development of model

transformations. While using just declarative constructions is not feasible in some

scenarios, sticking to imperative constructions results in too much verbosity and

very complex transformations.

Finally, as MOF QVT Revision Task Force shows

(http://www.omg.org/issues/qvt-rtf.html), QVT specification presents serious

drawbacks and is rather susceptible of being revisited as long as QVT

implementers advance in their work and more inconsistencies are detected. Hence,

a complete, efficient and reliable QVT implementation is still to come.

5.4 Code Generation in M2DAT

Previous section has focused on the development of model-to-model

transformations in M2DAT. Indeed code generation is also a model

transformation, but this is a model-to-text transformation.

However, as we have mentioned several times along this dissertation, we

believe that model-to-model transformation is the cornerstone of model-driven

development. Indeed, model-to-text transformation is just about serializing

models. If you start from a well-defined and precise PSM, though relevant, it is a

less challenging task.

In contrast, model-to-model transformations have to deal with changes in

abstraction levels and/or domains, what adds a lot of complexity to the task, if you

want your model transformations to be complete. That is, you need to be very

careful when developing transformation to capture all the information from the

source model and to translate it properly to the set of abstraction supported by the

target metamodel.

Validation: M2DAT-DB 303

All this given, this section will provide just with some insights on how

model-to-text transformations have been developed in M2DAT so far. To that end

we use the MOFScript program for generating SQL scripts conforming to

SQL:2003 standard from SQL:2003 ORDB schemas.

5.4.1 Using MOFScript for code generation purposes

In front of the declarative approach of ATL (and the vast majority of

existing model to model proposals), model to text transformation engines take the

form of imperative programming languages. In fact, a MOFScript script is a parser

for models conforming to a given metamodel. While it parses the model structure,

it generates a text model based on transformation rules. On a second phase this

text model is serialized into the desired code. This way, the script uses the

metamodel to drive the navigation through the source model, just as an XML

Schema drives the validation of an XML file. As a matter of fact, every model is

persisted in XMI format, an XML syntax for representing UML-like (or MOF)

models.

The program that implements the model to text transformation is basically

a model parser. It navigates the structure of the model, generating a formatted

output stream. In this case, the model os the ORDB model while the output stream

is the SQL script that implements the modeled DB schema. In the following we

introduce this script showing some code excerpts. The reader is referred to [262]

for more information on how to configure MOFScript execution.

As showed below, a main function is the entry point for the script. It

includes a set of rules for processing each possible type of element that can be

found in the source model (so-called context types in MOFScript). Besides, we

include the eco parameter in the script header to specify which the input

metamodel is. To that end we use the URI that identifies the metamodel we have

presented in section 5.2.1.1.

304 Juan M. Vara

texttransformation codigo (in eco:"http://SQL2003.ecore") {

 eco.Schema::main(){

 var nombre:String

 if (self.name.size()=0)

 nombre="codigo_SQL2003.sql"

 else

 nombre=self.name + "_SQL2003.sql"

 file (nombre)

 println("CREATE SCHEMA " + self.name + ";")

 println("")

 //code generation for Structured Types

 self.datatypes->forEach(s:eco.StructuredType)

 {

 s.generateStructured()

 println("")

 }

Figure 5-63. MOFScript code excerpt: heading

Next, a transformation rule is defined for each context type. For simple

rules, we code the rule inside the main body whilst the complex ones are coded by

means of auxiliary rules. Those functions are invoked from the main body.

For instance, the rule for Structured Types creation is probably the most

complex one since it encapsulates a lot of semantics. Thus, it is coded in the

generateStructured auxiliary function. The main body invokes it for every

Structure Type object found in the source model.

The code excerpt shown in Figure 5-64 presents the beginning of the

generateStructured rule.

 eco.StructuredType::generateStructured() {

 var texto:String=""

 var mCount:integer= self.method.size()

 var currentMethod:integer=0

 var i:integer=0

 if (self.super_type.name.size()=0)

 texto="CREATE " + self.name + " AS"

 else

 texto="CREATE " + self.name +

" UNDER " + self.super_type.name+ " AS"

 if(self.attributes.size() == 0 and self.method.size() == 0)

 print(texto + "()")

 else

 {

 println(texto + "\n(")

 //adds UDT’s attributes

 self.attributes ->forEach(a:eco.Attribute) {

 i=i+1

 a.generateAttribute()

 if(i==self.attributes.size())

 println("")

 else

 println(",")

 }

Figure 5-64. MOFScript code excerpt: GenerateStructuredType rule

First, the auxiliary variable that will store the SQL code is initialized. Next,

we add the SQL code to start the creation of the structured type, distinguishing

those types that inherit from any other type from those that do not. Then, the

script checks whether the Structured Type contains any attribute. If so, it navigates

the collection of attributes invoking the corresponding rule (generateAttribute)

and so on.

Validation: M2DAT-DB 305

To conclude this section, Figure 5-65 shows a piece of the SQL code

generated for the case study.

MOFScript

Code Generation

eco.StructuredType::generateStructured() {…}

self.attribute->forEach(a:eco.Attribute) {…}

self.typed->forEach(t:eco.TypedTable){…}

MOFScript

CREATE TYPE cast_type AS (

id INTEGER(25),

casting_order INTEGER,

role CHARACTER VARYING(25),

actor Ref_actor_type,

movie Ref_movie_type

);

CREATE TABLE casts OF cast_type (

id PRIMARY KEY,

role NOT_NULL,

actor NOT NULL

);

CREATE TYPE Ref_cast_type AS (

ref REF cast_type

);

CREATE TYPE cast_type_MULTISET AS MULTISET (cast_type);

CREATE TYPE actor_type UNDER person_type (

casts cast_type_MULTISET

);

CREATE TABLE actors OF actor_type (

casts NOT NULL

);

CREATE TYPE Ref_actor_type AS (

ref REF actor_type

);

Figure 5-65. SQL Generated Code exceprt

The upper side is a screen capture of the developed graphical editor. It

shows an extract from the OR model of the case study. Specifically the cast and

actor types and the corresponding typed tables, next to the REF types created from

them as well as the collection types. This code is generated by the execution of the

mapping rules listed in the annotation beside.

5.5 Validating models in M2DAT

Section 4.7 discussed the election of EVL as the way to integrate OCL-

based model validation in the DSLs bundled in M2DAT. With EVL, the

constraints to be checked are defined at metamodel level. The Epsilon engine

provides with the mechanisms to add the evaluation of such constraints over any

terminal model conforming to such metamodel.

306 Juan M. Vara

We have opted for batch validation instead of live validation since live

validation presents the recurrent problem of modelling objects going out of a valid

state only to be eventually placed back into a valid state.

In the following we show how a constraint is defined to ensure that any

Schema object will have a name and the rules to define such name. In addition, we

show the result of validating an .sql2003 file when such constraint is not satisfied.

First thing to do is to code the corresponding invariant. into an .evl file.

After installing Epsilon, wizards to create EVL files are available (see Figure

5-66).

Figure 5-66. Creating EVL files

Figure 5-67 shows the EVL code that implements the invariant to control

that every Schema object owns a valid name.

The notEmptySchemaName invariant prevents from void Schema names

(1). Next, the validSchemaName is evaluated over those schema objects for which

the previous invariant evaluates to true (2). It checks if the name fulfil the

specified construction rules. Those rules are summarized in a regular expression

encoded in the isValidName() operation (3). If the name is not correct, then the fix

code is executed. It shows a getTitleValidName message inviting the user to

correct the error detected. If the user does show, the getInputValidName operation

will show an input box where the user can enter a new name for the Schema

object.

Validation: M2DAT-DB 307

1

2

3

Figure 5-67. EVL Invariant to enforce Schema names consistency

Then, the .evl file has to be associated to the plug-in that contains the code

for handling models. To that end, the configuration file of the plug-in that

implements the editor is used. We have to specify that the editor extends the

validation plug-in from Epsilon as well as the URI assigded to the metamodel of

the DSL plus the path to the .evl file containing the constraints definition (Figure

5-68).

namespaceURI: nsUri of the metamodel

constraints: path to EVL file

We use this
extension point

Figure 5-68. Declaring extensions to the Epsilon validation plug-in

Since we have implemented validation in batch mode, the validation has to

be invoked over the desired model as shown in Figure 5-69 (1). If any invariant

does not evaluates to true, the message specified in those invariants are shown. In

308 Juan M. Vara

this case, the Schema name does not satisfy the constraits imposed (2), thus the

model is marked as an invalid model (3).

1

2

3

Figure 5-69. Launching model validation in M2DAT.

Then, the problems view (see Figure 5-70) allows invoking the fixing

behaviour coded in the .evl file (1).

1

2

3

4

Figure 5-70. Fixing validation problems

Validation: M2DAT-DB 309

The available solutions are shown in a new window (2). In this case, the

user might just Ignore the problem or ‗Change the name of Schema ---‗. If the

latter is chosen, an input box let the user enter the new name for the Schema (3).

Now, if validation is invoked again it raises a satisfactory evaluation.

5.6 Integrating New Modules in M2DAT

We have already mentioned a number of times that usability is a crucial

aspect when developing tools for MDSD. The use of Eclipse helps in this sense

since it provides with a common interface, devised to be extended and customized

according to specific needs.

Regarding M2DAT, the main functionality that the user interface should

provide is the way to invoke or launch, in a friendly way, the different model

transformations (both model-to-model and model-to-text) bundled in each

M2DAT‘s module. To that end, this section presents the way we have used

Eclipse‘s facilities to develop model transformation launchers and to incorporate

the needed controls in Eclipse that allows invoking such launchers.

We aim at showing that, developing such launchers and controls is feasible

using existing components and available documentation, thus we will focus on

presenting the results without going deep into the code that implement them. In

this sense, readers interested are referred to the enclosed CD, that includes

M2DAT-DB source code. Therefore, in the following we present some of the

Eclipse extensions developed to build M2DAT-DB user interface.

5.6.1 Developing an Integration plug-in

In essence, the integration of the functionality provided by a new module in

M2DAT resides in the development of an integration plug-in. Such plug-in

implements the launchers for the model transformations bundled in the module,

plus the add-ins for the user interface that invokes such launchers. Such plug-in

depends on the differentplug-ins tha implement the DSLs bundled in the module

and the plug-ins provided by the EMP that are used by the module.

For instance, Figure 5-71 shows the dependencies among the

transformations bundled in M2DAT-DB and the different plug-ins that compose

or uses the module.

310 Juan M. Vara

UML2SQL2003

UML2ORDB4ORA

UML2XMLSchema

MOFScript Scripts

SQL20032ORDB4ORA

ORDB4ORA2SQL2003

ORDB4ORA

XMLSchema

SQL2003

AMW

MOFScript

M2DAT-DB
Integration

plug-in

Figure 5-71. Dependencies between M2DAT-DB plug-ins and transformations

The integration plug-in for M2DAT-DB bundles five model-to-model

transformations, plus three model-to-text transformations (the latter represented by

the common moniker MOFScript Scripts). In addition, it depends on the different

components provided by the EMP, like EMF, ATL, AMW, Epsilon and

MOFScript, and the plug-ins that implement the three DSLs bundled in M2DAT-

DB: XMLSchema, SQL2003 and ORDB4ORA.

In the following we describe the integration plug-in distinguishing the part

supporting the launch of model transformations programmatically and the part that

provides with a user interface to do it. Note that the latter leans on the former.

5.6.2 Launching Model Transformations Programmatically

To have an idea of what is needed in order to launch a model

transformation, check the header of the UML2SQL2003 ATL transformation

shown in Figure 5-72. It defines which are the source and target models and the

libraries used by the transformation.

Validation: M2DAT-DB 311

-- @atlcompiler atl2006

-- @nsURI UML=http://www.eclipse.org/uml2/2.1.0/UML

-- @nsURI SQL2003=http://SQL2003.ecore

-- @path AMW=/UML2SQL2003/Metamodels/ORAnnotationMeta.ecore

module UML2SQL2003;

create OUT : SQL2003 from IN : UML, ANNOTATIONS : AMW;

-- IMPORTS -------------------------

uses UML2SQL2003_constants;

uses UML2SQL2003_helpers;

uses UML2SQL2003_AMW;

uses UML;

Figure 5-72. ATL Header UML2SQL2003

According to such header, from a model conforming to the UML

metamodel and a model conforming to the AMW metamodel, the transformation

generates a model conforming to the SQL2003 metamodel. At development time,

the correspondences between such variables and real files or models is defined

using the wizards provided by the ATL IDE. This way, the user creates a

transformation execution that can be retrieved an reused at any moment. What we

aim to do is to eliminate the need of having to do such execution configurations,

or at least, simplify it, in order to ease the task and provide with more user-

friendly interface for M2DAT. The first thing to do is to be able to launch the

transformation programmatically, i.e. to configure the transformation execution

programmatically. Once the configuration has been created it could be invoked

from the code that handles the user interface events.

The main part of the the integration plug-in concerning the programmatic

launch of model transformations in M2DAT‘s modules is a class called

Transformations.

One of the main responsabilities of such class is to load the different

transformations. Since this is a costly task in terms of memory and processing

time, the Transformations class follows the singleton pattern to avoid replicating

the load of metamodel. This way, the transformations will be loaded the first time

the plug-in is used and remain loaded until Eclipse is closed. Figure 5-73 shows

the beginning of M2DAT-DB‘s Transformations constructor.

312 Juan M. Vara

private Transformations() {

modelHandler = (AtlEMFModelHandler)

AtlModelHandler.getDefault(AtlModelHandler.AMH_EMF);

UML2ORDB4ORA_TransfoResource = Transformations.class.getResource

("resources/UML2ORDB4ORA/UML2ORDB4ORA.asm");

UML2SQL2003_TransfoResource = Transformations.class.getResource

("resources/UML2SQL2003/UML2SQL2003.asm");

UML2XMLSCHEMA_TransfoResource = Transformations.class.getResource

("resources/UML2XMLSCHEMA/UML2XMLW.asm");

SQL20032ORDB4ORA_TransfoResource = Transformations.class.getResource

("resources/SQL20032ORDB4ORA/SQL20032ORDB4ORA.asm");

ORDB4ORA2SQL2003_TransfoResource = Transformations.class.getResource

("resources/ORDB4ORA2SQL2003/ORDB4ORA2SQL2003.asm");

}

Figure 5-73. Excerpt from M2DAT-DB’s Transformations constructor: metamodels loading

In addition, the Transformations class contains a method to launch each

model-to-model transformation bundled in the module. In contrast, all the model-

to-text transformation launchers are encoded in an unique method (so-called

mofscriptTransformation) since the configuration of MOFScript transformations is

much more simpler that that of ATL transformations.

As an example, we will focus on the code to launch the UML2SQL2003

transformation, already mentioned a number of times along this dissertation.

However, note that all the code that implements M2DAT-DB, and thus the

integration plug-in, can be found in the enclosed CD.

Launching the UML2SQL2003 transformation programmatically

To be able to launch the UML2SQL2003 ATL transformation, the

Transformations class from the M2DAT-DB‘s integration plug-in contains the

uml2sql2003 method, whose signature is displayed in Figure 5-74. Note that it

receives three different parameters that correspond to the source and target models

handled by the transformation.

public void uml2sql2003(String inUMLFilePath,String inAMWFilePath,

String outFilePath) {

try {

Map<String, Object> models = new HashMap<String, Object>();

Map<String, Object> libraries = new HashMap<String, Object>();

initSQLMetamodels(models);

initSQLLibraries(libraries);

Figure 5-74. Signature of the UML2SQL2003 launcher

The first thing to do is to define a couple of has tables that will collect all

the information provided by the ATL header to launch the transformation. In

particular, which are the metamodels to use (models), as well as the libraries to

import (libraries), in case there are some libraries to import. Next, such tables are

Validation: M2DAT-DB 313

populated by invoking the corresponding method, initSQLMetamodels (see Figure

5-75) and initSQLLibraries respectively.

private void initSQLMetamodels(Map<String, Object> models) {

umlMetamodel = (ASMEMFModel) modelHandler.loadModel(

"UML", modelHandler.getMof(),

this.getClass().getResourceAsStream("resources/UML.ecore"));

amwMetamodel = (ASMEMFModel) modelHandler.loadModel

("AMW", modelHandler.getMof(),

this.getClass().getResourceAsStream

("resources/ORAnnotationMeta.ecore"));

sql2003Metamodel = (ASMEMFModel) modelHandler.loadModel("SQL2003",

modelHandler.getMof(),

this.getClass().getResourceAsStream("resources/SQL2003.ecore"));

models.put("UML", umlMetamodel);

models.put("AMW", amwMetamodel);

models.put("SQL2003", sql2003Metamodel);

}

Figure 5-75. initSQLMetamodels method

To that end, the ATL API for model handling is used. In particular, note

the use of the loadModel method to recover each (meta)model by providing its

path. This way, the keys in the hash table corresponds with the variable names

used in the ATL header (―UML‖, ―AMW‖ and ―SQL2003‖), whereas the values

correspond to the respective (meta)models.

Next thing to do is to load the models handled by the transformation in the

models hash table. Figure 5-76 shows the corresponding code. Again, the ATL

API is used to that purpose.

// get/create models

ASMEMFModel umlInputModel = (ASMEMFModel) modelHandler.loadModel

("IN", umlMetamodel, URI.createFileURI(inUMLFilePath));

models.put("IN", umlInputModel);

if(inAMWFilePath != null)

{

ASMEMFModel amwInputModel = (ASMEMFModel) modelHandler.loadModel

("amw", amwMetamodel, URI.createFileURI(inAMWFilePath));

models.put("amw", amwInputModel);

}

ASMEMFModel orOutputModel = (ASMEMFModel) modelHandler.newModel("OUT",

URI.createFileURI(outFilePath).toFileString(), sql2003Metamodel);

models.put("OUT", orOutputModel);

Figure 5-76. Loading models for executing an ATL transformation

Finally, once all the models and metamodels have been loaded, it is time to

execute the transformation, using once more, the methos provided by the ATL

API.

314 Juan M. Vara

// launch

AtlLauncher.getDefault().launch(this.UML2SQL2003_TransfoResource,

libraries, models, Collections.EMPTY_MAP,

Collections.EMPTY_LIST, Collections.EMPTY_MAP);

modelHandler.saveModel(orOutputModel, outFilePath, false);

Figure 5-77. Launching an ATL transformation programmatically

As a result, the target model is stored in the resource pointed by the

outFilePath.

5.6.3 Adding Graphical Support for launching Model

Transformations

Once we are able to launch a model transformation programmatically, it is

time to develop the support to be able to invoke it from the user interface. To that

end, Eclipse provides with some kind of generic launchers that can be extended

according to specific needs. It is based on two main concepts: Launch

Configurations (aka as Run Configurations) and Launch Configuration Types.

At the simplest level, LaunchConfigurationTypes are cookie cutters, and

LaunchConfigurations are the cookies made from these cookie cutters. When a

plug-in developer decides to create a launcher, what he is really doing is creating a

specific kind of cookie cutter that will allow users to stamp out as many cookies as

they need. In slightly more technical terms, a LaunchConfigurationType

(henceforth, a 'config type') is an entity that knows how to launch certain types of

launch configurations, and determines what the user-specifiable parameters to

such a launch may be. Launch configurations (henceforth, 'configs') are entities

that contain all information necessary to perform a specific launch. For example, a

config to launch a HelloWorld Java application would contain the name of the

main class ('HelloWorld'), the JRE to use (JDK1.4.1, for example), any program

or VM arguments, the classpath to use and so on. When a config is said to be 'of

type local Java Application', this means that the local Java application cookie

cutter was used to make this config and that only this config type knows how to

make sense of this config and how to launch it [339].

For instance, Figure 5-78 shows that the contextual menu of any file in the

Eclipse workspace gives access to the different Run Configurations that might be

launched using such file as input.

Validation: M2DAT-DB 315

Figure 5-78. Eclipse’s shortcut to Run Configurations

In order to add graphical support for launching model transformations,

M2DAT-DB uses such APIs and mechanisms to build a graphical wrapper for the

programmatic launchers commented in the previous section. This wrapper incude

two big groups of controls:

 First, M2DAT-DB includes five new Launch Configuration Types, one for

each model-to-model transformation bundled in M2DAT-DB.

 Second, M2DAT-DB adds actions to the contextual menus of the models

produced by M2DAT-DB to invoke the different model-to-text

transformations. We have proceed this way because model-to-text

transformations are much more simpler to launch since they require less

parameters. In essence, all the information needed to execute the model

transformations is in the source model (i.e. the file over which the execution

of the model transformation is invoked). Therefore, there is no need to create

a new Launch configuration type to that purpose or to bother the user with

wizards full of controls to fill.

In the following we show some results. Nevertheless, remember that the

code of M2DAT-DB can be found on the CD enclosed.

5.6.3.1 Launch Configuration Types for M2DAT-DB model-to-model

transformations

As Figure 5-79 shows, M2DAT-DB includes five new types of Run

Configurations, one for each model-to-model transformation supported.

316 Juan M. Vara

Figure 5-79. M2DAT-DB’s Run Configuration Types

After creating a new Run Configuration Type, it can be used in any view of

the Eclipse workspace. For instance, Figure 5-80 shows that the contextual menu

shown for UML models includes the ability to access the new Run Configuration

Types that are appropiate for UML models. That is, UML->ORDB4ORA, UML-

>SQL2003 and UML->XMLSCHEMA.

Figure 5-80. M2DAT-DB’s Run Configuration shortcuts

If the user clicks over the second one, the wizard to define UML-

>SQL2003 Run Configurations is shown (see Figure 5-81).

Then, the user can use the wizard to provide with the parameters needed to

execute the transformation, i.e. the source models and where to store the target

model. Note that it already recognises one of the source models (the one over the

contextual menu was invoked) and provides with a tentative location for the target

model. By contrats, no default annotation model is provided since annotating the

conceptual data model (the UML model) is not mandatory. Note also that the user

does not need to specify the location of the metamodels and the ATL libraries

used by the transformation. The result is quite user-friendly.

Validation: M2DAT-DB 317

Figure 5-81. UML2SQL2003 Run Configuration Wizard

In addition, such configuration is automatically stored with the name

provided in the Name field. Thus, the user can invoke the same transformation

execution as many times as needed, without the need to configure it again. For

instance, if the user has defined a couple of UML->SQL2003 Run Configurations,

whenever he uses the shortcut over the same file,the window in Figure 5-82 will

be shown in order to let him choose which is the Configuration he wants to run.

Figure 5-82. Selecting a UML2SQL2003 RunConfiguration

5.6.3.2 Shortcut menus and Contributing Actions for M2DAT-DB model-

to-text transformations

As mentioned before, the execution of model-to-text transformations needs

from less information or parameters that the one of model-to-model

transformations. Therefore, the user interface to launch model-to-text

transformations could be limited to the addition of some controls that allow

318 Juan M. Vara

launching the transformation. Indeed, no extra information, apart from the source

model, is needed to execute the transformation.

This way, M2DAT-DB includes controls to launch the different model-to-

text transformations that supports. All of them have been developed following the

process sketched in [19]. The controls developed can be divided in two main

groups: shortcut menus and contributing actions.

Regarding the former, the contextual menu shown over any type of

M2DAT-DB model, i.e. ORDB4ORA, SQL2003 or XMLSchema, includes a

shortcut to generate the corresponding code from the given model. For instance,

Figure 5-83 shows the contextual menu for a .sql2003 file.

Figure 5-83. SQL2003 Shortcut Menu

On the other hand, M2DAT-DB contributes the Navigator view of

Eclipse‘s workspace with new actions to invoke the model-to-text transformations

bundled in the module. This way, whenever the user selects one M2DAT-DB

model, the corresponding action becomes active and can be invoked by the user,

while the rest of time is remains shadowed. Figure 5-84 shows the result.

Validation: M2DAT-DB 319

Generate

XMLSchema code

Generate

ORDB4ORA code

Generate

SQL2003 code

Figure 5-84. M2DAT-DB’s Actions contributed to Eclipse Navigator’s toolbar

Depending on the type of file the user selects, the corresponding control

becomes active, allowing the user to launch the model-to-text transformation that

generates code from the model selected.

Conclusion

6. Conclusion
To conclude this dissertation, this chapter summarizes the main

contributions of this thesis and contrasts the fulfilled objectives with those stated

at the beginning of the thesis. In addition, an analysis of the results is provided

next to the enumeration of the publications that serve to contrast them both on

national and international forums. Besides, a number of questions for further

research are raisen next to the directions to follow in order to tackle them.

6.1 Analysis of Achievements

At the beginning of this dissertation, section 1.2 stated a set of partial

objectives to fulfil the main objective if this thesis: the specification of a technical

solution for the construction of a framework to support model-driven development

of Web Information Systems.

In the following, the achievement of those objectives is analysed:

O1. Analysis and evaluation of existing tools for MDE tasks in order to

identify the most suitable to build a framework for model-driven

development of Web Information Systems.

To fulfil this objective, chapter 2 provided, first, with a detailed review of

existing solutions to build the support for model-driven methodological proposals

according to a set of relevant features convenient for developing M2DAT.

Therefore, the review was focused on existing MDE technology to build an open-

source framework that promotes extensibility and interoperability.

The main conclusions gathered from that review spin around the selection

of technologies in the context of the Eclipse Modelling Project for building

M2DAT. This decision promotes extensibility and interoperability. In particular,

the Eclipse Modelling Framework was selected as metamodelling technology and

underlying basis for M2DAT. It provides with the basic capabilities for defining

new DSLs, a basic toolkit to work with the new DSLs and, what is more relevant,

the extension mechanisms needed to adequate the basic generated toolkit to the

specific needs of a particular methodology. In addition, the core metamodel,

Ecore, is becoming the de-facto standard for metamodelling tasks, thus using EMF

maximizes the interoperability of any tool develop atop of it.

324 Juan M. Vara

O2. Analysis and evaluation of existing frameworks for MDSD.

The previous objective was set with the idea of identifying the most

convenient tools to build the tooling for supporting a MDSD methodology. In

contrast, this objective was set to asses the main drawbacks of existing works in

the field. Therefore, Chapter 2 provided with a complete analysis and evaluation

of existing frameworks for model-driven development of software for concrete

domains.

On the one hand, regarding existing tools supporting methodologies for

model-driven development of Web Information Systems, the main findings had to

do with the lack of interoperability and extensibility. As it has been described

along this dissertation, M2DAT has solved the shortcomings detected in previous

works in this sense.

On the other hand, before building M2DAT-DB a review of existing works

for model-driven development of modern DB schemas was also performed. The

conclusions gathered confirmed that there are no frameworks that support model-

driven development of Object-Relational Database Schemas while model-driven

development of XML Schemas is just partially supported since there are no

solution supporting both PIM and PSM models. M2DAT-DB, the reference

implementation for M2DAT developed as part of this thesis fills the

aforementioned gaps.

O3. Specification of the conceptual architecture of M2DAT framework.

The conceptual architecture of M2DAT, presented in section 4.1 has been

defined starting from the architecture of MIDAS-CASE (section 3.2). MIDAS-

CASE was a first step towards the complete specification of the MDSD

framework presented. Its architecture was thought as a set of co-existing modules

or subsystems, each one providing with specific capabilities. The underlying idea

was to encapsulate all the functionality related with a given concern of the system

in just one place. Therefore, when new concerns were to be considered for the

development of the system, a new module was to be developed and integrated

with the rest of modules.

M2DAT‘s architecture follows the same approach and is structured

according to two orthogonal dimensions:

 On the one hand, M2DAT can be thought of as a set of modules, one for

each concern of the system development. It encapsulates a set of DSLs to

model, at different abstraction levels, the set of concepts related with such

concern, plus the model transformations that bridge them.

Conclusion 325

 On the other hand, M2DAT‘s architecture follows the classical separation

between the interface and the application logic plus the persistence layer.

The interface is composed mainly of one or more graphical editors for each

model and the wizards needed to integrate them. The application logic is

encoded in a common module so-called model processor that encapsulates

model transformation, model validation, code generation and the like.

O4. Selection of the technologies to be used for M2DAT

Chapter 4 gave an overview on the design decisions that drove the mapping

from the conceptual architecture of M2DAT to a technical design. In other words,

which are the approaches and technologies adopted. To that purpose, a set of

discussions around the most adopted ways of addressing the main tasks related

with deploying model-driven software development proposals were presented.

At the end of each section, the selected option for M2DAT was described

along with the criteria used to justify such decision. In other cases where there

were no space for selection since the right way of performing the task (in a model-

driven context) was one and unique, such way of working has been described, as

well as its uniqueness justified.

For instance, new modelling languages are typically defined following two

different approaches. Such dichotomy between UML profiles or DSLs was tackled

in section 4.2.

Regarding model-to-model transformation languages, the hybrid approach

was selected as the most convenient, emphasizing the relational style since it fits

better with the declarative nature of model transformations. In particular, after

several tests with different languages, the ATLAS Transformation Language was

chosen as model-to-model transformation language.

Finally, model-to-text transformation has been tackled with MOFScript, so

far, this remains an open issue. In fact, the OMG standard for this task is still quite

recent [266], what proves that there is still lot of space for improvement on this

field.

O5. Specification of the technical design of M2DAT.

The set of tools for MDE tasks selected to implement M2DAT are

integrated under the common architecture sketched in section 4.1.2. In essence,

this design is the summary of the methodlogical and technlological decisions that

are presented and justified along the rest of the sections of chapter 4.

326 Juan M. Vara

O6. Specification of the development process for each M2DAT module.

As it has been clearly stated along this dissertation, this thesis will serve as

a basis for future research works. It lays the foundations to develop the

technological support for forthcoming advances on model-driven development of

information systems that MIDAS methodlogy will incorporate as long as they

appear. Thereby, as soon as new concerns are to be considered for the

development of a system according to MIDAS methodology, the corresponding

technical support will be developed. To that purpose, section 4.8 described the

development process to follow when building new M2DAT modules. Basically, it

combines the techniques and technical solutions previously presented along that

same chapter.

O7. Validation of M2DAT specification

The conceptual architecture and the technical design of M2DAT, next to

the proposed development process for new modules constitute the specification of

M2DAT. However, a specification is unuseful without a reference implementation

showing its feasibility and how it is to be interpreted. Thereby, a proof of concept

for M2DAT has been provided by building M2DAT-DB, a M2DAT module that

supports model-driven development of modern database schemas.

Chapter 5 focused on showing how the technical design of M2DAT and the

development process proposed were applied to build M2DAT-DB. Besides, the

result of building M2DAT-DB was shown. This way, the construction of

M2DAT-DB served as reference implementation for the specification of M2DAT

specification. It confirmed that the proposal is implementable and it has clarified

how the specification of the architecture and the development process has to be

interpreted.

Besides, a set of case studies served to complete the validation of the

proposal. To that end, a complete set of case studies performed with M2DAT-DB,

the reference implementation for M2DAT, were described. Such case studies

contributed on the detection of errors and improvements for M2DAT-DB that

served to refineM2DAT specification.

6.2 Main Contributions

This thesis has resulted in a number of contributions, regarding not only the

scope of this research (M2DAT specification) but also related with other collateral

aspects. Some of them were objectives fixed before addressing this work while

Conclusion 327

others have emerged during its development. They are summarized in the

following.

A complete analysis of the existing solutions for building frameworks

supporting methodologies for model-driven development of Web Information

Systems.

The technical decisions that drive the open specification of M2DAT have

been clearly justified along this dissertation. However, on the way to such

decisions a complete review of existing technology in the field of MDE has been

provided. This review is in its turn a clear contribution of this thesis since it could

be used for more specific purposes.

Some of the reviewing frameworks for model-driven development of

software are being improved (or it is planned to do so) in order to adapt them to

advances in the field. The findings and analysis provided in the state of the art of

this thesis might help the researchers behind those works in the selection of the

technology that best suit their needs (that not necessarily have to be the same of

M2DAT).

For instance, model transformation is a field where those frameworks

admit a lot of improvement. In this sense, this thesis provides with a number of

valuable conclusions and lessons learned in order to bring the advantages of

current technology to existing frameworks, like the use of annotation models or

the drawbacks related with using pure imperative approaches for model

transformation development.

Specification of a framework for model-driven development of Web

Information Systems.

The main contribution of this thesis has been the specification of M2DAT,

an open MDSD framework that supports model-driven development of Web

Information Systems. The main contributions of M2DAT regarding previous

works are its extensible and interoperable nature and the support for

customizable transformations by means of annotation models.

These features contribute to simplify the extension of the framework in

order to support new capabilities. Whenever the underlying methodology,

MIDAS, is to be extended by adding a new concern to MIDAS architecture, a new

module will be built atop of M2DAT. Such module will support the corresponding

method. Besides, the models supported by the new module will be directly

interoperable with existing models with no extra effort, i.e. without the need of

building technological bridges between technical spaces [208] as it has been

traditionally done. Indeeed, though any modelling tool might be said to be located

328 Juan M. Vara

in the same technological space that the rest, this is not completely true when it

comes to implementation. Importing/Exporting models to/from one tool to/from

the other implies moving through different technical spaces, typically

grammarware and modelware. Though there are technical solutions for these

tasks, it usually entails some loss of semantics and it is always prone to errors. In

contrast, when the models are defined atop a common metametamodel, the only

artefact needed to bridge them is a model transformation and, optionally a

weaving model to drive the mapping.

On the other hand, none of the previous works offered support for

customizable transformations. This way, when the processes were completely

automated, the only way of having some control over the resulting system was

modifying the models handled. Even after modifying the models, some of the

model transformations bundled on those frameworks were never able to produce

some constructions on the target models. The only way of including those

constructions on the models (thus, of generating the code that implements them in

the system) was to refine the output model by hand. In constrast, M2DAT model

transformations consider the use of annotation models to drive the execution of the

transformation. This way, any construction might be obtained on the target model

without decreasing the level of automation. At the same time, the design decisions

that contribute to produce the specific target model are persisted. Moreover, the

software artefact containing these decisions is the most natural in a MDE

environtment: another model.

Furthermore, the specification of M2DAT comprises the definition of the

development process to follow in order to build M2DAT modules as well as a

the reference implementation, M2DAT-DB, that clarifies the way the

specification is to be used and shows the result of doing so.

Support for semi-automatic model-driven development of modern DB

schemas.

Although the objective of developing M2DAT-DB was mainly providing

with a proof of concept for M2DAT proposal, it constitutes a complete and open

framework for model-driven development of modern database schemas. The state

of the art showed that there were no previous works providing support for this

task. Hence, M2DAT-DB itself is a contribution of this thesis.

To that end, M2DAT-DB provides with a DSL toolkit for developing OR

DB schemas conforming to the SQL:2003 standard and OR DB schemas for

Oracle. Such toolkit supports the generation of the OR DB schema from a UML2

conceptual data model. Besides, the generation process might be customized by

Conclusion 329

attaching an annotation model to the conceptual data model (though it is not

mandatory since a default generation is provided). Besides, it bundles the model

transformations needed to move from the OR model for SQL:2003 to the one for

Oracle and the other way round. Likewise, graphical editors are provided to

handle Oracle and SQL:2003 models.

To complete the support, M2DAT-DB also bundles a toolkit for

development of XML Schemas following the same approach. That is, the XSD

model is obtained from a conceptual data model and the generation process lend

space to the introduction of design decisions by means of an annotation model.

6.3 Scientific Results

Some of the results of this thesis have been published in different fourms,

both national and international. In the following, those publications are grouped

according to the type of publication.

 Articles in International Journals

o Vara, J.M., De Castro, V., Didonet Del Fabro, M. & Marcos, E. (2009).

Using Weaving Models to automate Model-Driven Web Engineering

proposals. International Journal of Computer Applications in

Technology. (Accepted to be published)

o Koch, N., Meliá, S., Moreno, N., Pelechano, V., Sánchez, F. & Vara,

J.M. (2008). Model-Driven Web Engineering. UPGRADE, IX(2), 40-45.

(April 2008)

o Vara, J.M., De Castro, V. & Marcos, E. (2005). WSDL Automatic

Generation from UML Models in a MDA Framework. International

Journal of Web Services Practices, 1(1-2), 1-12.

 Articles in Iberoamerican Journals

o Vara, J.M., Vela, B., Cavero, J. M. & Marcos, E. (2007). Transformación

de Modelos para el Desarrollo de Bases de Datos Objeto-Relacionales.

IEEE Latin America Transactions, 5(4), 251-258. (July 2007)

 Articles in National Journals

o Vara, J M., Acuña, C. J., Marcos, E. & Lopez Sanz, M. (2004).

Desarrollo de un Sistema de Información web: una experiencia con

Oracle XMLDB. CUORE (Círculo de Usuarios de Oracle España),

VIVAT ACADEMIA, 27, 3-12.

330 Juan M. Vara

 Articles in International Conferences

o López Sanz, M. Vara, J.M., Marcos, E. & Cuesta, C. A Model-Driven

Approach to Weave Architectural Styles into Service-Oriented

Architectures. 1st International Workshop on Model-Driven Service

Engineering (MoSE 2009). Hong Kong, China. (November 6, 2009).

(Accepted to be published).

o Vara, J.M., Vela, B., Bollati, V. & Marcos, E. (2009). Supporting Model-

Driven Development of Object-Relational Database Schemas: a Case

Study. ICMT2009 - International Conference on Model

Transformation, Zurich, Switzerland. (29-30 June, 2009) (Acceptance

Ratio: 22%).

o Vara, J.M., Bollati, V., Vela, B. & Marcos, E. (2009). Leveraging Model

Transformations by means of Annotation Models. 1st International

Workshop in Model Transformation with ATL (MtATL 2009), Nantes,

France. (July 8-9, 2009).

o Vara, J.M., Didonet Del Fabro, M., Jouault, F. & Bézivin, J. (2008,

29/01/2008). Model Weaving Support for Migrating Software Artefacts

from AUTOSAR 2.0 to AUTOSAR 2.X. 4th European Congress on

EMBEDDED REAL TIME SOFTWARE (ERTS 2008), Toulouse,

France. (January 29- 31, February 1, 2008).

o Vara, J.M., De Castro, V. & Marcos, E. From Real Computational

Independent Models to Information System Models: an MDE approach.

Proc. of the 4th International Workshop on Model-Driven Web

Engineering (MDWE 2008), Toulosue, France. (September 30, 2008).

CEUR Workshop Proceedings, ISSN 1613-0073.

o Vara, J.M., Vela, B., Cavero, J.M. & Marcos, E. (2007). Model

Transformations for Object-Relational Databse Development. ACM

Symposium on Applied computing (SAC 2007), Seoul, Korea. ACM

Press. (11-15 March, 2007). (Acceptance Ratio: 32.5%).

o De Castro, V., Vara, J.M. & Marcos, E. Model Transformation for

Service-Oriented Web Applications Development. Proc. of the 3rd

International Workshop on Model-Driven Web Engineering (MDWE

2007), Como, Italy. (July 16-20, 2007). CEUR Workshop Proceedings,

ISSN 1613-0073.

o Caceres, P., De Castro, V., Vara, J.M. & Marcos, E. (2006). Model

Transformations for Hypertext Modelling on Web Information Systems.

Conclusion 331

ACM Symposium on Applied computing (SAC 2006), Dijon, France.

ACM Press. (23–27 April, 2006). (Acceptance Ratio: 32%).

o Vara, J.M., De Castro, V. & Marcos, E. (2005). WSDL Automatic

Generation from UML Models in a MDA Framework. International

Conference on Next Generation Web Services Practices (NWeSP), Seul,

Korea. (22-26 August, 2005)IEEE Computer Society Press.

 Articles in Iberoamerican Conferences

o Acula, C. Minoli, M. & Vara, J.M. Model Driven Development of

Semantic Web Services using Eclipse Modelling Languages. 10th

Mexican International Conference on Computer Science (ENC 2009).

Mexico City, Mexico. (21-25 September, 2009). (Accepted to be

published).

o Bollati, V.A., Vara, J.M, Vela, Belén & Marcos, E. Uso de Modelos de

Anotación para automatizar el Desarrollo Dirigido por Modelos de

Esquemas XML. XII Conferencia Iberoamericana de Ingeniería de

Requisitos y Ambientes de Software. (IDEAS'09), Medellín (Colombia).

(Abril 13-17, 2009).

o Bollati, V.A., Vela, B., Vara, J.M. & Marcos, E. Una Aproximación

Dirigida por Modelos para el Desarrollo de Bases de Datos Objeto-

Relacionales. XIV Congreso Argentino de Ciencias de la Computación.

(CACIC 2008). Chilecito (La Rioja, Argentina). (October 6th-10th,

2008).

o De Castro, V., Vara, J.M., Herrmann, E. & Marcos. A Model Driven

Approach for the Alignment of Business and Information Systems Model.

9º Mexican International Conference on Computer Science (ENC 2008).

Mexicali, Baja California, Mexico. (6-10 October, 2008). (Acceptance

Ratio: 26%). IEEE Computer Society.

o Bollati, V.A., Marcos, E., Vara, J.M. &. Vela, B. Analisis de

Herramientas MDA. XIII Congreso Argentino de Ciencias de la

Computación. (CACIC 2007). Corrientes and Resistencia, Argentina.

(October 1st-5th, 2007)

o Molina, F., Lucas, F. J., Toval, J. A., Vara, J.M. & Marcos, E. (2006).

Soporte CASE para el desarrollo preciso de Sistemas de Información

WEB. IADIS International Conference, WWW/Internet 2006, Murcia,

Spain. (5-8 October, 2006)

332 Juan M. Vara

o Vara, J.M., De Castro, V., Caceres, P. & Marcos, E. (2004). Arquitectura

de MIDAS-CASE: una herramienta para el desarrollo de SIW basada en

MDA. IV Jornadas Iberoamericanas en Ingeniería del Software e

Ingeniería del Conocimiento. JIISIC'04, Madrid, Spain. (3-5 November,

2004). (Acceptance Ratio: 49%).

 Articles in National Conferences

o Bollati, V.A., Vara, J.M., Vela, B. & Marcos, E. Una Aproximación

Dirigida por Modelos para el Desarrollo de Esquemas XML. XIII

Jornadas de Ingeniería del Software y Bases de Datos (JISBD’08).

Gijón, Spain. (October 7-10, 2008). (Acceptance Ratio: 25%)

o Vara, J.M., Bollati, V., Vela, B. & Marcos, E. Uso de Modelos de

Anotación para automatizar el Desarrollo Dirigido por Modelos de

Bases de Datos Objeto-Relacionales. V Taller sobre Desarrollo de

Software Dirigido por Modelos. DSDM‘08. Gijón, Spain (España)

(October 7, 2008).

o Vara, J.M., De Castro, V., Didonet Del Fabro, M. & Marcos, E. (2008).

Using Weaving Models to automate Model-Driven Web Engineering

proposals. ZOCO‘08: Integración de Aplicaciones Web. Gijón, Spain

(España) (October 7, 2008).

o De Castro, V., Vara, J.M., Herrmann, E. & Marcos, E. Obteniendo

Modelos Sistemas de Información a partir de Modelos de Negocios de

Alto Nivel: Un Enfoque Dirigido por Modelos. IV Jornadas Científico-

Técnicas en Servicios Web y SOA (JSWEB‘08). Sevilla, Spain (October

29-30, 2008).

o Vara, J.M., Vela, B., Cavero, J.M. & Marcos, E. (2007). Transformación

de Modelos para el Desarrollo de Bases de Datos XML. III Taller sobre

Desarrollo Dirigido por Modelos. MDA y Aplicaciones (DSDM‘06) - XI

Jornadas de Ingeniería del Software y Bases de Datos, JISBD‘2006.

Sitges, Spain. (4 October, 2006).

o Vara, J. M., Vela, B., Cavero, J.M. & Marcos, E. (2007). Transformación

de Modelos para el Desarrollo de Bases de Datos XML. XI Jornadas de

Ingeniería del Software y Bases de Datos, JISBD’2006. Sitges, Spain.

(3-6 October, 2006). (Acceptance Ratio: 35%).

o Vara, J.M., De Castro, V. & Marcos, E. (2005). Generación Automática

de WSDL a partir de Modelos UML. I Jornadas Científico-Técnicas en

Servicios Web (JSWEB 2005). Granada, Spain. (13-14 September,

2005).

Conclusion 333

 Patents

o Title: M2DAT/DB: Herramienta para el Desarrollo Dirigido por

Modelos de BD.

 Inventors: E. Marcos, B. Vela, J.M. Vara, V. Bollati

 Application Nº: M-8452/2008

 Priority Country: España

 Priority Date: 24/10/2008

 Holder Entity: Universidad Rey Juan Carlos

 Extended Countries: Spain

6.4 Future Work

Despite the contributions made on this thesis, it has detected several

directions to further work. Some of them were just not considered as objectives of

this thesis while others have emerged during the development of this work. In the

following, we summarize some of them.

6.4.1 Development of M2DAT Modules

As we have mentioned a number of times along this dissertation, the main

objective of this work has been the specification of M2DAT. Besides, we have

built one M2DAT module (M2DAT-DB) in order to provide with a reference

implementation for the specification.

Actually, this specification has been devised to be extensively applied

during the next years when building the support for the rest of MIDAS

methodology. Indeed, the main direction for further work of this thesis is exactly

that: the development of the modules that will support the rest of MIDAS

methodology attending to the specification of M2DAT provided in this thesis.

Likewise, notice that the construction of the whole framework is an endless

task since MIDAS is open to include new views of the system. In fact, its modular

architecture was devised to promote extensibility of the framework by inclusion of

new views. Accordingly, M2DAT has to be also open to integrate support for

them. Therefore, both the definition of the conceptual architecture of M2DAT and

the decisions that have driven its technical design have been made with the aim of

easying the integration of new modules.

334 Juan M. Vara

In fact, we have already started to work on the technical support for the

behaviour view [107, 108] or the semantics view [8]. Besides, the thesis from

Marcos Lopez will incorporate support for the architecture and the one from Elisa

Herrmann will improve code generation facilities.

6.4.2 Traceability in Model Transformations

Traceability has been always a relevant topic in Software Engineering.

Maintaining the links from requirements forward to corresponding design

artifacts, code, and test cases has attracted the attention of researchers for long

time as a way of performing impact analysis, regression tests, requirements

validation, etc. [27].

With the advent of MDE and the MDA, traceability management has even

gained relevance. The key role of models as driving force in the development

process eases the task of maintaining the traces from the requirements to the

working-code. Indeed, the main artefacts obtained along the development process

are models. Thus, handling traceability might be simplified to the creation and

maintenance of traces between the elements of such models. Even more, such

traces could be automatically generated if the models are connected by a model

transformation and the language used offers support to keep information about

which elements are related to which by the model transformation [342]. This way,

if some element from the source model is modified, the modification might be

replicated over the corresponding element of the target model. Actually, this is a

mandatory feature according to the QVT standard though technical support is still

quite inmature.

Besides, in the context of MDA traceability management deals also with

CIM to PIM traceability. In MDA literature, little is said about the CIM-to-PIM

mapping and MDA tools do not use to support it [165]. This fact is mainly due to

the different nature of both models. The CIM serves to model the requirements for

the system, describing the situation in which the system will be used [246]. In

essence, it might be shown as the business/domain model [193]. By contrast, if the

business or organization uses some kind of software system, it will be described in

a specific model to that end, the PIM, which provides with a description of the

software system. Business and software system are rather different. Therefore,

automatic derivation of a PIM from a CIM is not always feasible. The (human)

designer has to state which things from the CIM will be translated to a software

system, and accordingly define the corresponding PIM for such sytem. At best,

Conclusion 335

some information for the PIM might be extracted from the CIM, but a complete

PIM model cannot be derived just from the CIM.

This way, the transition from high-level business modelling, generally

carried out by business analysts, to an executable business process which implies

several software functionalities (e.g., web services, components, legacy systems,

etc) is far from being a trivial issue [367]. Therefore, the problem of aligning high-

level business models (corresponding to the business view) and information

technologies (corresponding to the information system view) became a crucial

aspect in the field of software development.

In order to address this issue, we have already started to work on the

extraction of valuable information from CIM to PIM models [106]. Besides, we

believe that the improvement of transformation engines to support efficient

traceabilty mechanisms will help on this task. Therefore, we will keep assessing

the performance of model transformation languages regarding traceability support

in order to integrate traces management in M2DAT.

6.4.3 Automatic development of Model Transformations,

Metamodel Evolution and Model Co-Evolution

The development of model transformations is the most challenging task

among those of implementing any proposal for model-driven software

development. Besides, constant evolution of metamodels and co-evolution of

models has been a common issue to any model-driven proposal [84]. Any

modification over a given metamodel (metamodel evolution) implies the need to

update conforming models (model co-evolution). Besides, it has another relevant

collateral effect: since model transformations are defined at metamodel level, any

change over the metamodel has to be subsequently transmitted to any model

transformation that use it as soource or target metamodel.

Applying model-driven techniques to support semi-automatic generation of

model transformations would help decisively to address these issues.

We have already started to work on two main directions to address this

issue. On the one hand, we are carrying out a complete study of existing model

transformation engines (part of it has been presented in this thesis) in order to

identify the common abstractions used by all of them. The objective is to obtain a

common (meta)-metamodel for model transformations. This way, any model

transformation could be expressed in terms of such metamodel and translated to

any model transformation engine whose metamodel conforms with the afore

mentioned.

336 Juan M. Vara

On the other hand, we have provided with a first case study on the use of

weaving models and cumulative weaving to automate model migration [356].

6.4.4 Bidirectional Model-to-Text Transformations

When we reviewed existing model transformation languages, we gave a

brief overview on existing languages for text-to-model transformations (see

section 6.4.6C). This review confirmed that, though there are quite a lot of tools

for model-to-text transformations (indeed, any code generator can do it), there are

very few works focused on the reverse process and the most of them are focused

on the generation of textual syntaxes for DSLs.

Note that one of the advantages of MDE is supposed to be the ability to

help on platform migration and interoperability and the first step in such processes

implies always the extraction of models from the legacy code, in other words, a

text-to-model transformation is needed to produce a model from the existing code.

Therefore, MDSD tooling should provide with tools to that end.

As well, that overview highlighted that the main drawback of text-to-model

tranformation languages or tools is their starting point. From a grammar

specification, such tools generate a textual editor and a metamodel capturing the

abstract syntax of the DSL (indeed, it captures the abstract syntax of the

grammar). That is, the concrete syntax is defined before the abstract syntax. While

it might be acceptable when working with an isolated DSL, it is not a good

practice when working with interrelated DSLs connected by means of model

transformations. Modifying any given metamodel takes you to the already

mentioned complex scenary of metamodel evolution. Therefore, you will need to

update any conforming model and any model transformation that used the

modified metamodel as source or target metamodel.

We aim at integrating model extraction capabilities in M2DAT, but the

above-mentioned approach for text-to-model transformations does not apply since

M2DAT metamodels are already defined and they should not be modified. In this

sense, a feasible solution is to follow a recent approach to generate textual

syntaxes for a DSL. The idea is to start from the metamodel and then define the

grammar, generate the editors, etc. In addition, a parser is generated that decides

how the text is translated into model elements. Hence, both model-to-text and text-

to-model transformations for the given metamodel are obtained. Some works have

appeared recently in this direction, though they are still quite immature or badly

documented (see [158]). We plan to follow advances in this field in order to

integrate injection/extraction capabilities on M2DAT as soon as possible.

Conclusion 337

6.4.5 Improving the Development of Graphical Editors

Next sextions describe the two main directions that have been detected for

further work around graphical‘s editors development.

6.4.5.1 Automatic development of graphical editors for DSLs

As sections 4.3.3 and 5.2.2.3 stated, GMF is used to build the graphical

editors integrated in M2DAT. To that purpose, GMF is based on the definition of

a graphical model. It specifies the visual elements that will be used to represent

each metaclass from the metamodel that defines the abstract syntax of the DSL.

Besides, another model is defined to design the tooling while another model

connects the elements from the previous three models (metamodel, graphical and

tooling models).

However, it is expected that a graphical or tooling definition may work

equally well for several domains. For example, the UML class diagram has many

counterparts, all of which are strikingly similar in their basic appearance and

structure [120].

A simpler development process would be desirable, where not the

graphical definition, neither the correspondence with the abstract syntax have to

be defined. In this sense, we have already started to work on the provision of

tentative graphical and correspondence models derived directly from the

metamodel of the DSL (i.e. the abstract syntax definition). This way, a default

visual editor (based on boxes and arrows) could be generated once the metamodel

had been defined.

6.4.5.2 Improving graphical capabilities of M2DAT

The discussion around approaches for the development of graphical editors

of section 4.3.3 highlighted that GMF, though efficient, present some drawbacks,

mainly related with the look and feel of the diagrams. Besides, that section

confirmed that graphical editors developed useing JAVA Graph components

provide with more control over the result. This fact is derived from the generative

nature of GMF editors. For instance, the screen captures spread over this

dissertation serve to confirm that the graphical features of MIDAS-CASE

diagrammers were betther than M2DAT‘s, though they are much less useful.

Here, the direction for future research would be to combine graphical

capabilities of MIDAS-CASE with those from M2DAT. To that end, we need to

bring MIDAS-CASe models, persisted in row XML files, to the EMF platform. To

accomplish this task we will build technical bridges between MIDAS-CASE‘s

338 Juan M. Vara

grammarware and M2DAT‘s modelware following the approach applied by other

authors in previous works [44, 45]

This way, we aim at combining the graphical capabilities of JAVA Graph

components with that from the functionality provided by EMF in terms of

interoperability, etc. In addition, the synergy might work in both directions, since

M2DAT capabilities for handling models could be used from a MIDAS-CASE

look and feel.

6.4.6 Future works on the Context of M2DAT-DB

Finally, section 6.2 affirmed that M2DAT-DB is a complete result itself.

As any other research result, it lends some space for improvement and further

work. Next sub-section summarizes the main points in this sense.

 Extending M2DAT-DBN. M2DAT-DB aims at providing with a complete

framework supporting model-driven development of database schemas, so far

it support just OR and XML models. However, we plan to add support for the

relational model. Besides, we plan to add support for more DB solutions, like

SQL Server or MySQL. To that end, the SQL standard will be used as a pivot

model to move between products. Thereby, M2DAT-DB will bundle model

transformations to bridge each concrete product model with the standard

model and the other way round.

 Application of M2DAT-DB for computer science teaching. We have

already started to work in the use of M2DAT-DB for educational purposes.

The main directions for further work on this line would be:

o Model-Driven Engineering. M2DAT-DB is a complete framework that

supports all the common tasks related with implementing a MDSD

methodological proposal, like model transformation, model validation or

code generation. Hence, it will be used to show the students the heart of a

MDSD process. They will learn how to develop model transformations,

code generators, graphical editors, weaving models, etc.

o Logical Models. M2DAT-DB supports the object-relational model for

databases. Therefore, it will serve to introduce the students in the

distinction between a pure object-oriented model and a relational model,

as well as in the role of the Object-Relational model to bridge them.

o Standards VS Implementations. Finally, the ability to work both with

models compliant to the SQL standard (even generating SQL standard

Conclusion 339

code) and Oracle models will serve to show the difference between a

standard and its implementations.

Appendix A: Resumen en

Castellano

A Resumen en Castellano
Este apéndice ofrece un resumen extendido en castellano de la tesis

doctoral que se presenta en esta memoria.

En primer lugar se ofrece una panorámica general de las razones históricas

que han llevado a la realización de esta tesis con el objetivo de justificar e

identificar claramente los problemas de partida que pretendía atacar en el

momento de su realización. A continuación se exponen la hipótesis y principales

objetivos de esta tesis, para pasar a presentar la metodlogía seguida durante su

desarrollo y concluir cons sus principales aportaciones.

A.1 Antecedentes

A finales del 2000, una nueva forma de concebir el desarrollo de software

resultó en un gran grupo de siglas (MDE, MDSD, MDD, DSL, MIC, etc.) que, en

realidad, no eran sino distintas formas de referirse a formas de desarrollar software

siguiendo una misma aproximación: potenciar el papel de los modelos y las

actividades de modelado en cualquier etapa del desarrollo de software. Así, la

principal característica del nuevo paradigma de desarrollo, la Ingeniería Dirigida

por Modelos (IDM) pasa por centrarse en los modelos en lugar de en los

programas [41]. De hecho, la IDM es un paso natural en la tendencia histórica

hacia elevar el nivel de abstracción en el desarrollo de software. Cuando

aparecieron, los lenguajes de ensamblador, la programación estructurada o los

lenguajes orientados a objetos fueron pasos en la misma dirección.

Aunque los modelos habian sido utilizados tradicionalmente en el

desarrollo de software, hasta ahora habían desempeñado un papel eminentemente

documentativo y, en el mejor de los casos, podían llegar a utilizarse como entrada

para la generación de un esqueleto del código final (la herramienta Rational Rose

es el ejemplo perfecto de esta tendencia [173]). De este modo, los modelos eran

deshechados en cuanto se llegaba a la etapa de codificación y nunca se

actualizaban para reflejar los cambios realizados sobre el sistema.

Con la llegada de la IDM el panorama cambia drásticamente, ya que los

desarrolladores desplazan su atención del código a los modelos. Así, surge la

necesidad de definir modelos lo más precisos y completos posibles, que sean

capaces de especificar el sistema a desarrollar y capturar todos sus requisitos,

combinándolos con los detalles la plataforma sobre la que se desplegará. Para ello,

se parte de modelos de alto nivel de abstracción, que proporcionan detalladas

344 Juan M. Vara

especificaciones del sistema ovbiando detalles tecnológicos. Dichos modelos van

siendo refinados hasta alcanzar modelos de bajo nivel que puedan ser directamente

traducidos a código fuente.

En realidad, la idea no termina de ser realemente nueva, lo que en realidad

confiere un carácter más novedoso a la propuesta es la relevancia que adquiere la

automatización del proceso de desarrollo. De hecho, la única forma de hacer

realidad las promesas de la IDM en términos de desarrollos más rápidos y baratos

pasa por automatizar al máximo el proceso de desarrollo [21, 134]. Como

consecuencia, en los últimos años han aparecido numerosas herramientas para

soportar las tareas relacionadas con la IDM para automatizar cada una de las

tareas que implica poner en práctica un proceso de Desarrollo de Software

Dirigido por Modelos (DSDM). Así, se encuentran herramientas para definir y

utilizar nuevos lenguajes de modelado; herramientas o lenguajes para desarrollar

transformaciones de modelos; herramientas para asegurar que los modelos son

consistentes y correctos, etc. Cada una de estas herramientas soporta una tarea

concreta, es decir, proporciona sólo una parte de la funcionalidad que se necesita

para implementar un proceso completo de DSDM. Por ejemplo, el lenguaje de

transformación de modelos ATL [184], el más aceptado hasta la fecha, sería una

de estas herramientas. Aunque resulta muy potente para su cometido, no es

suficiente para desplegar un proceso de desarrollo completo. En el mejor de los

casos, se necesitaría de otro lenguaje o herramienta para definir los modelos que

ATL se encargará de transformar.

Por otro lado, el impacto de la IDM ha dado lugar a la aparición de

propuestas metodológicas de DSDM. Dichas metodologías se basan en la

definición y uso de nuevos lenguajes de modelado (bien de propósito general o de

propósito específico) para modelar y capturar, a distintos niveles de abstracción,

las diferentes partes del sistema a desarrollar. Como consecuencia, apareció un

nuevo grupo de herramientas cuyo objetivo era dar soporte a estas propuestas. Así,

las herramientas de soporte a metodologías de DSDM son entornos de

desarrollo para trabajar con el conjunto de modelos interrelacionados que la

metodología correspondiente define como necesarios para poder generar el código

final que implementa el sistema software. A modo de ejemplo podemos citar

ArgoUWE [195], la herramienta que soporta la metodología UWE [198], como

una de las herramientas más conocidas en esta categoría.

Los esfuerzos que los autores de estas metodologías dedicaron a construir

el soporte técnico para automatizarlas resultó en una serie de herramientas

aisladas, que proporcionaban soluciones ad-hoc. Su naturaleza cerrada y la total

ausencia de estándares cuando comenzaron a desarrollarse impidieron que se

Resumen en Castellano 345

beneficiasen de los avances tecnológicos y la funcionalidad que proporcionan las

herramientas para soportar tareas de IDM. Por ejemplo, en ausencia de lenguajes o

herramientas para el desarrollo de transformaciones de modelos, los autores

optaron por embeber las transformaciones en el código de la propia herramienta,

lo que iba claramente en contra de los principios de abstracción y modularidad que

rigen el desarrollo de software.

Por todo ello, existe la necesidad de construir nuevas herramientas de

soporte para metodologías de DSDM que integren la funcionalidad aislada que

propocionan las herramientas existentes para tareas de IDM. Es decir, se deben

utilizar las herramientas de soporte a tareas de IDM para construir entornos

integrados que implementen metodologías de DSDM.

Cómo construir dicho entorno? En primer lugar, definiendo una

arquitectura conceptual que se abstraiga por completo de los detalles técnicos. A

continuación, plasmando dicha arquitectura en un diseño técnico que identifique

los componentes tecnoloógicos a utilizar. Y finalmente, proporcionando una

implementación de referencia de dicho diseño técnico, para demostrar que es

viable y factible construir un entorno de desarrollo siguiendo la especificación y

cómo debe hacerse.

En este sentido, la pujanza del paradigma de la IDM ha resultado en una

tendencia clara hacia la construcción de este tipo de entornos integrados para dar

soporte a metodologías de DSDM. No obstante, tal y como muestra el Capítulo 2,

no existían este tipo de herramientas cuando abordamos la realización de esta

tesis. De hecho, las herramientas de soporte a metodologías de DSDM que

adolecían de los problemas comentados, están evolucionando hacia entornos

integrados y extensibles, como el que se presenta en esta tesis.

Además, el carácter novedoso de la IDM obliga a hacer especial hincapié

en algunos aspectos tradicionalmente relacionados con el desarrollo de

herramientas de soporte para tareas de Ingeniería del Software. Tanto la

extensibilidad como la inteoperabilidad y la posibilidad de personalizar el entorno

son más relevantes si caben cuando hablamos de construir el soporte para una

metodología de DSDM. De este modo, la herramienta deberá ser facilmente

extensible para responder con rapidez a la aparición de nuevos avances en el

campo. Por ejemplo, aunque la definición de la semántica de un lenguaje de

modelado o las especificaciones formales cobran cada día mayor aceptación como

una forma de soportar la simulación y ejecución de modelos [319], el soporte

tecnológico para estas tareas se encuentra todavía en fases muy iniciales. No

obstante, cualquier herramienta de soporte a una metodología de DSDM debe

346 Juan M. Vara

estar en condiciones de ser extendida para integrar con facilidad el soporte para las

tareas mencionadas, en cuanto éste alcance una estabilidad y grado de madurez

aceptables.

En el peor de los casos, si la herramienta no soporta una funcionalidad

concreta, pero existen otras herramientas que si lo hacen, la herramienta que dará

soporte a la metodología debería ser capaz de integrar dicha funcionalidad de

forma sencilla. Para ello, los modelos elaborados con la nueva herramienta

deberían poder ser facilmente exportados/importados a/desde la herramienta que

proporcione la funcionalidad deseada. Por lo tanto, la interoperabilidad se

convierte en otro de los requisitos clave para herramientas de soporte a

metodologías de DSDM.

Igualmente, aunque el objetivo de partida pasa por ser capaces de

automatizar el proceso de desarrollo completo propuesto por la metodología,

resultaría muy conveniente soportar un proceso de desarrollo que admitiera ciertos

puntos de variabilidad, de forma que el diseñador/desarrollador pudiera introducir

ciertas decisiones de diseño que dirigieran el resultado final [246]. Por lo tanto, se

necesita una forma de introducir dichas decisiones de diseño en el proceso de

desarrollo, sin reducir el nivel de automatización. Aparte de las decisiones de

diseño que ya se hayan recogido en los diferentes modelos, el único modo de

introducir decisiones de diseño en el proceso de desarrollo es soportar

transformaciones de modelos personalizables.

En este contexto, la tesis que se presenta aborda la especificación de un

entorno para el desarrollo semi-automático de Sistemas de Información Web

dirigido por modelos. Para ello, esta tesis presenta M2DAT (MIDAS MDA Tool),

una herramienta para el DSDM que sigue las propuestas metodológicas de

MIDAS, una metodología dirigida por modelos para el desarrollo de Sistemas de

Información Web (SIW).

Como parte de la propuesta, se define una arquitectura conceptual para la

construcción de entornos de DSDM. Dicha arquitectura es modular y dinámica,

para facilitar la integración de nuevas funcionalidades en forma de nuevos

módulos o subsistemas y soportará la introducción de decisiones de diseño que

dirijan la ejecución de las transformaciones de modelos embebidas en la

herramienta. Igualmente, se define una aproximación sistemática para la

construcción de nuevos módulos de acuerdo a la especificación realizada.

Así mismo, la arquitectura conceptual propuesta será plasmada en un

diseño técnico. Esta tarea implica una serie de decisiones de diseño a cerca de cuál

es la mejor aproximación y la mejor tecnología para cada tarea relacionada con la

Resumen en Castellano 347

IDM, y cómo debe utilizarse. Así, se realizan y justifican una serie de decisiones

tanto metodológicas como tecnológicas, como cuál es la mejor herramienta para

definir nuevos lenguajes de modelado; cuál es la mejor aproximación para

desarrollar transformaciones de modelos; el mejor lenguaje de entre aquellos que

sigan dicha aproximación, etc. Estas decisiones se basan en una completa revisión

de la tecnología existente, de acuerdo a una serie de criterios definidos según los

requisitos impuestos para la construcción de M2DAT (extensibilidad,

interoperabilidad, soporte a transformaciones personalizables, etc.). Como

resultado se obtiene una selección de tecnología que identifica la aproximación a

seguir para cada tarea, el componente tecnológico a utilizar y las decisiones de

diseño que guían el paso de la arquitectura conceptual al diseño técnico de la

herramienta.

Finalmente, como parte de esta tesis, se proporciona una implementación

de referencia para demostrar que la propuesta es factible, que puede ser utilizada

en la práctica y cómo debe hacerse [95]. En particular, se desarrolla M2DAT-DB

(MIDAS MDA Tool for DataBases), uno de los módulos de M2DAT. Dicho

módulo soporta el desarrollo dirigido por modelos de esquemas de BD modernas.

La construcción de M2DAT-DB permite mostrar que, tanto la especificación

conceptual como el diseño técnico propuestos, así como las decisiones

metodológicas y técnicas que permiten el paso de uno al otro, y el proceso de

desarrollo propuesto para la construcción de nuevos módulos, son apropiados para

implementar propuestas metodológicas de DSDM.

A.2 Objetivos

A continuación se exponen la hipótesis y principales objetivos de esta tesis.

La hipótesis formulada en esta tésis es que ―es factible proporcionar una

solución técnica para la construcción de un entorno que soporte el desarrollo

semi-automático dirigido por modelos de Sistemas de información Web, utilizando

las herramientas y componentes existentes a día de hoy en el contexto de la IDM‖

Por lo tanto, el objetivo principal de esta tesis, derivado directamente de la

hipótesis, es ―proporcionar una solución técnica para la construcción de un

entorno que soporte el desarrollo semi-automático dirigido por modelos de

Sistemas de información Web, utilizando las herramientas y componentes

existentes a día de hoy en el contexto de la IDM‖

Este objetivo se desglosa en una serie de objetivos parciales:

348 Juan M. Vara

O1. Análisis y evaluación de la tecnologñia existente (herramientas de soporte

para tareas de IDM) de cara a identificar las más apropiadas para construir

un entorno para soportar el desarrollo dirigido por modelos de SIWs. De

acuerdo a las tareas concretas que implica la construcción de dicho entorno,

podemos descomponer este objetivo como sigue:

O1.1. Análisis y evaluación de herramientas de (meta)modelado.

O1.2. Análisis y evaluación de motores de transformación de modelo-a-

modelo, haciendo especial hincapié en el soporte para la

introducción de decisiones de diseño.

O1.3. Análisis y evluación de motores de transformación modelo-a-

texto (también referidos como generadores de código).

O1.4. Análisis y evaluación de herramientas de soporte para el resto de

tareas relacionadas con la IDM, como desarrollo de editores

gráficos o validadores de modelos..

O2. Análisis y evaluación de entornos que soporten propuestas de DSDM.

O2.1. Analisis y evaluación de entornos para el desarrollo dirigido por

modelos de SIWs..

O2.2. Análisis y evaluación de entornos para el desarrollo dirigido por

modelos de esquemas de BD modernas (objeto-relacionales y

XML).

O3. Especificación de la arquitectura conceptual de M2DAT.

O4. Selección de tecnologías a emplear para construir M2DAT.

O5. Especificación del diseño técnico de M2DAT.

O6. Especificación del proceso de desarrollo para cada módulo de M2DAT.

O7. Validación del diseño técnico de M2DAT. Para ello, se plantean dos sub-

objetivos:

O7.1. Construcción de M2DAT-DB, uno de los módulos de M2DAT,

que actúa a modo de prueba de concepto para la propuesta

(arquitectura conceptual, diseño técnico, selección de tecnología y

proceso de desarrollo de nuevos módulos).

O7.2. Desarrollo de casos de estudio con M2DAT-DB.

Resumen en Castellano 349

A.3 Metodología

La diferente naturaleza de las Ingenierías respecto al resto de ciencias

empíricas y formales imposibilitan la aplicación directa de métodos clásicos a la

investigación en Ingeniería del Software. Así, el método de investigación que se

sigue en esta tesis está adaptado del propuesto en [223] para la investigación en

ingeniería del Software. Se basa en el método hipotético–deductivo de Bunge [67],

y se compone de varias etapas que, dada su genericidad, son aplicables a cualquier

tipo de investigación.

Tal y como muestra la Figura A-1, la definición del método de

investigación es un paso del propio método. Dicho pasa es necesario porque cada

proceso de investigación posee sus propias características. Por lo tanto, no hay un

método universal que pueda aplicarse a cualquier trabajo de investigación.

Determinación del
Problema

Hypótesis

Definicion del
Método de Trabajo

Resolución

Validación

Análisis de
Resultados y
Conclusiones

Redacción del
Informe Final

Nuevos
Problemas

Nuevo Cuerpo de Conocimiento

D

O

C

U

M

E

N

T

A

C

I

O

N

Problemas

Cuerpo de Conocimiento

Figura A-1. Método de Investigación

Dado que la fase más importante de dicho método es la de resolución y

validación, a continuación se proporciona una vista más amplia del proceso

seguido en esta fase, que en cierto modo es una adaptación del tradicional proceso

350 Juan M. Vara

en cáscada [300] y el Proceso Unificado de Rational [177]. La Figura A-2 muestra

una vista simplificada del proceso.

Cuerpo de
Conocimiento
MIDAS-CASE

ESPECIFICACIÓN ESPECIFICACIÓN

Trabajos &
Tecnología MDE

Metodología MIDAS

SO
LU

C
IÓ

N
V

A
LI

D
A

C
IÓ

N

1ST
IT

ER
AT

IO
N

Resolución

Validación

Requisitos
MIDAS-CASE

Arquitectura
Conceptual

M2DAT

DISEÑO / SELECCIÓN
de TECNOLOGÍA

2N
D

IT
ER

AT
IO

N

PRUEBAS

Casos de Estudio

CONSTRUCCIÓN

Prototipos
MIDAS-CASE

Arquitectura
MIDAS-CASE

DISEÑO

Casos de Estudio

PRUEBAS

M2DAT-DB

CONSTRUCCIÓN

Diseño Técnico
M2DAT

PRUEBA
de

CONCEPTO

Figura A-2. Fase de Resolución y Validación del Método de Investigación

Primera Iteración: desarrollo de MIDAS-CASE

Durante la fase de especificación de la primera iteración se revisan los

trabajos relacionados con herramientas CASE y la metodología MIDAS. El

objetivo es identificar las necesidades relacionadas con dar soporte a MIDAS y si

las herramientas existentes podían satisfacerlas. Dicha revisión conluye con la

decisión de construir un nuevo entorno para soportar la representación gráfica de

los modelos propuestos en MIDAS, el paso de unos a otros y la generación de

código a partir de dichos modelos. Además, se establece el uso de una BD XML

como repositorio de modelos. Igualmente se identifican los dos requisitos más

importantes que dicho entorno debía reunir: extensibilidad y modularidad.

La fase de diseño se relaciona fundamentalmente con la definición de la

arquitectura del nuevo entorno, de acuerdo a los requisitos establecidos durante la

fase de especificación. Además, se identifican los componentes tecnológicos a

utilizar y el proceso de desarrollo a seguir para construir cada módulo. La

principal salida de esta fase es la arquitectura de MIDAS-CASE, que combina la

arquitectura conceptual con el diseño técnico.

Resumen en Castellano 351

Para validar los resultados de la fase de diseño, se construyen dos

prototipos durante la fase de construcción: MIDAS-CASE4WS y MIDAS-

CASE4XS, que soportan, respectivamente, el modelado de Servicios Web y XML

Schemas con UML extendido y la serialización de dichos modelos en código final

(WSDL y XSD). Estos prototipos son la prueba de concepto para la

especificación de la arquitectura de MIDAS-CASE.

Finalmente, la fase de pruebas consiste en el desarrollo de una batería de

casos de estudio con los prototipos de MIDAS-CASE para evaluar la viabilidad y

utilidad de la propuesta, así como para mejorar la arquitectura y el proceso de

desarrollo de nuevos módulos definidos durante la fase de diseño.

Nótese que cada paso del proceso realimenta los anteriores. Por ejemplo,

los hallazgos y lecciones aprendidas obtenidos en la fase de construcción de

prototipos influyen en la fase de diseño de cara a refinar la arquitectura de la

herramienta.

Segunda Iteración: desarrollo de M2DAT

Tras concluir con el desarrollo de MIDAS-CASE se comienza una nueva

iteración con dos objetivos principales: considerar, estudiar e incorporar los

avances en el campo de la IDM y aprovechar las lecciones aprendidas durante la

primera iteración para solventar o paliar los principales problemas y deficiencias

encontrados en las herramientas que soportan propuestas metodológicas para el

DSDM.

Por lo tanto, durante la fase de especificación se realiza una revisión de la

tecnología existente para dar soporte a las tareas relacionadas con la IDM y de las

lecciones obtenidas del desarrollo de MIDAS-CASE. Una conclusión importante

pasa por separar la definición de la arquitectura del entorno de desarrollo, a alto

nivel, de su descripción técnica, a bajo nivel. Así, la salida principal de esta fase es

la arquitectura conceptual de M2DAT, la nueva versión de la herramienta de

soporte para MIDAS, y los conocimientos técnicos necesarios para abordar la fase

de diseño.

Durante la fase de diseño, la arquitectura conceptual se refina en un diseño

técnico de acuerdo al conocimiento adquirido de las revisiones de tecnología

realizadas durante la fase de especificación. Frente a la arquitectura de MIDAS-

CASE, M2DAT se define a partir de varias herramientas que soportan tareas

concretas relacionadas con la IDM sobre la plataforma Eclipse y más

concretamente, el Eclipse Modelling Framework (EMF) [66, 161]. El resultado es

un entorno muy fácilmente extensible, que puede integrar nuevas funcionalidades

352 Juan M. Vara

a medida que sean liberadas. Así mismo, se define el proceso de desarrollo para

nuevos módulos de acuerdo al diseño técnico de M2DAT.

Dicho diseño guía la construcción de M2DAT-DB, la prueba de

concepto para M2DAT, durante la fase de construcción. M2DAT-DB sirve como

implementación de referencia para probar y validar la viabilidad del diseño técnico

de M2DAT y del proceso de desarrollo de nuevos módulos. Al mismo tiempo,

M2DAT-DB sirve de guía sobre cómo seguir la especificación de M2DAT a la

hora de construir e integrar nuevos módulos en la herramienta.

Finalmente, una batería de casos de estudio llevados a cabo con M2DAT-

DB durante la fase de pruebas ayudan en el refinamiento de la propuesta. Por

ejemplo, la necesidad de disponer de transformaciones de modelos personalizables

se detectó durante el desarrollo de estos casos de estudio. Concecuentemente, el

diseño técnico de M2DAT y el proceso de desarrollo de nuevos módulos (en

particular de las transformaciones de modelos) fueron modificados de acuerdo a la

nueva necesidad.

A.4 Conclusiones

Esta tesis proporciona una serie de contribuciones, no sólo en el ámbito de

la investigación planteada en el punto de partida (la especificación de M2DAT),

sino también relacionadas con otros aspectos colaterales. Se resumen a

continuación.

Un completo análisis de las soluciones existentes para la construcción

de entornos que soporten metodologías para el desarrollo dirigido por

modelos de Sistemas de Información Web.

Todas las decisiones técnicas que se recogen en la especificación de

M2DAT han sido explicadas y justificadas a lo largo de esta tesis. No obstante, en

el camino hacia esas decisiones se ha realizado una completa revisión de la

tecnología existente en el campo de la IDM. Dicha revisión constituye en sí misma

una contribución relevante, dado que podría utilizarse para otros propósitos más

concretos.

De hecho, algunos de los entornos para soportar metodlogías de DSDM

revisados están siendo mejorados (o al menos dicha mejora se ha planificado) para

adaptarlos a los avances en el campo. Los hallazgos y el análisis proporcionados

en el estado del arte de esta tesis podrían ayudar a los investigadores responsables

de esos trabajos a la hora de realizar la selección de tecnología que mejor se

Resumen en Castellano 353

adapte a las necesidades particulares de su metodología, que no tienen por qué ser

exactamente las mismas que plantea M2DAT.

Por ejemplo, la forma en que dichos entornos soportan las

transformaciones de modelos es un caspecto susceptible de mejora en todos los

casos estudiados. En este sentido, esta tesis proporciona una serie de conclusiones

y lecciones aprendidas que ayudarán a incoporar las ventajas de la tecnología

actual a dichos entornos, como el uso de modelos de anotación o las ventajas de

usar una aproximación híbrida frente a una puramente declarativa o imperativa.

Especificación de un entorno para el desarrollo dirigido por modelos

de Sistemas de Información Web

La principal contribución de esta tesis ha sido la especificación de

M2DAT, un entorno abierto que soporta el desarrollo dirigido por modelos de

Sistemas de Información Web. Las principales aportaciones de M2DAT con

respecto a los trabajos existentes pasan por su naturaleza extensible e

interoperable y el soporte de transformaciones personalizables mediante modelos

de anotación.

Estas características contribuyen a facilitar la tarea de extender la

herramienta para que soporte nuevas funcionalidades. Siempre que MIDAS, la

metodología soportada por M2DAT, sea extendida para incluir un nuevo aspecto

en la arquitectura de MIDAS, se desarrollará un nuevo módulo de M2DAT que

soportará la extensión de la metodología. Además, los modelos que el nuevo

módulo soporte serán interoperables con los ya soportados sin necesidad de

realizar ningún esfuerzo adicional. Es decir, no será preciso construir puentes entre

espacios técnológicos [208], como sucedía hasta la fecha. De hecho, aunque a

priori todas las herramientas de modelado podrían considerarse en el mismo

espacio tecnológico, la práctica demuestra que esta afirmación no es del todo

cierta. Importar y exportar modelos desde una herramienta a otra implica moverse

entre distintos espacios tecnológicos, en general el de las gramáticas y el de los

modelos (grammarware y modelware). Esta tarea, a pesar de que existen

soluciones técnicas que ayudan a llevarla a cabo, suele implicar perdida de

semántica y resulta muy propensa a introducir errores. En cambio, cuando los

modelos se definen a partir de un metametamodelo común, el único artefacto

necesario para conectarlos es una transformación de modelos, y, opcionalmente,

una modelo de weaving para establecer la forma en qué llevarla a cabo.

Por otro lado, ninguno de los trabajos existentes ofrecía soporte para

transformaciones personalizables. De esta manera, cuando el proceso de

desarrollo propuesto por la metodología era completamente automatizado, la única

354 Juan M. Vara

forma de mantener algún control sobre el resulatdo final era modificar los modelos

de entrada. Incluso después de modificarlos, algunas de las transformaciones

incluidas en dichas herramientas no eran capaces de producir ciertas

construcciones en los modelos de salida. La úncia forma de hacerlo era modificar

manualmente los modelos de salida.

Frente a este comportamiento, las transformaciones de modelos incluidas

en M2DAT utilizan modelos de anotación para controlar la ejecución de la

transformación. Así, se pueden obtener diferentes modelos de salida a partir de un

mismo modelo de entrada sin más que modificar el modelo que contiene las

anotaciones. De esta forma se soporta la personalización del proceso de desarrollo

sin que ello perjudique el nivel de automatización. Además, en ausencia de

anotaciones, dichas transformaciones incorporan un comportamiento por defecto.

Una ventaja adicional es que, de esta manera, las decisiones de diseño son

guardadas y pueden ser recuperadas, consultadas y modificadas en cualquier

momento. Por último, el artefacto para guardar dichas decisiones es el más

adecuado en el contexto de la IDM: un modelo.

Finalmente, la especificación de M2DAT tambien comprende la definición

del proceso de desarrollo a seguir para construir nuevos módulos, así como la

implementación de referencia, M2DAT-DB, que constata que dicha especificación

es viable y ayuda a interpretarla.

Soporte para el desarrollo semi-automático dirigido por modelos de

esquemas de BD modernos.

Aunque el objetivo de desarrollar M2DAT-DB era fundamentalmente

proporcionar una prueba de concepto para la propuesta de M2DAT, M2DAT-DB

constituye en si mismo una herramienta completa para el desarrollo dirigido por

modelos de esquemas de BD modernas. Dado que el estado del arte ha servido

para constatar que a día de hoy no existen herramientas que soporten toda la

funcionalidad proporcionada por M2DAT-DB, podemos decir que ésta es en sí

misma una aportación relevante de la tesis.

M2DAT-DB proporciona un conjunto de herramientas para trabajar con

DSLs para el modelado de esquemas de BD Objeto-Relacionales, tanto para el

estándar SQL:2003, como para el producto comercial Oracle. Dichas herramientas

permiten generar el esquema de la BD a partir de un modelo conceptual de datos

representado con un diagrama de clases UML. Además, el proceso de generación

puede ser personalizado mediante la definición de un modelo de anotación que

recoja las decisiones de diseño que especifican cómo se quiere mapear un

elemento concreto del modelo conceptual. Igualmente, la herramienta incluye las

Resumen en Castellano 355

transformaciones para pasar de un modelo Obejto-Relacional conforme al estándar

a uno para Oracle y viceversa, así como editores gráficos para manejar los

modelos elaborados.

Finalmente, para completar el soporte al aspecto del contenido, M2DAT-

DB incluye también las facilidades para el desarrollo de esquemas XML siguiendo

la misma aproximación. Es decir, el modelo XML se obtiene automáticamente a

partir del modelo conceptual de datos y el proceso de generación deja espacio para

la personalización mediante modelos de anotación.

Appendix B: About Graph

Transformations

B About Graph Transformations
This sections aims at putting forward some commonalites on graph

transformations in order to help on the understanding of the reviewed works that

provide with a graph-based transformation language.

B.1 Graph-Based Model Transformation Languages

Graph transformation rules consist of a LHS graph pattern and a RHS

graph pattern. When applying a graph transformation rule, every match with the

left-hand-side graph pattern is replaced by the right-hand-side graph pattern. In

addition to the left-hand-side graph pattern, non-matching conditions can be

defined, e.g. negative conditions.

The graph patterns can be rendered in the concrete syntax of their

respective source or target language (e.g., in VIATRA) or in the MOF abstract

syntax. The latter is the way it is done in AGG and BOTL.

a

b

Figure B-1. UML simple model rendered in UML concrete syntax (a)

and in MOF abstract syntax (b)

360 Juan M. Vara

As Figure B-1 shows (retrieved from [98]), models expressed in the

concrete syntax are more familiar to developers working with a given modelling

language. Besides, for complex languages like UML, patterns in a concrete syntax

tend to be much more concise than patterns in the corresponding abstract syntax.

The kernel of some graph-based languages is defining triple graph

grammars (TGG), a particular type of graph-based transformation approach

introduced by Andy Schurr [313]. In addition to the graphs used to specify the

LHS and RHS of the rule, Triple Graph Grammar rules use a third sub-graph,

called correspondence graph. Its elements are linked to the source and target

elements located at the LHS and RHS. In essence, the correspondence graph holds

the tracing information of the transformation. A very simple example, taken from

[388], is shown in Figure B-2.

Figure B-2. Example of Triple Graph Grammar (TGG) rewriting rule

Besides, it is also very common to provide support for definition of

Negative Application Condition (NAC). NACs specify conditions that should not

be present in the host graph in order for the rule to be applied. Figure B-3, adapted

from [382], uses a simplified example to show the use of NAC rules. It is based on

the Pac Man game, commonly used in graph grammars literature. Pac Man can

move in two ways. It might go to a field that contains a marble. Then, the marble

disappears, Pac Man is located in the next field and increments his count of

marbles (Figure B-3 (a)). On the other hand, Pac Man next movement could be to

About Graph Transformations 361

a field with no marble in. This is a NAC, and it is represented as a crossed out

object (Figure B-3 (b)).

marbles: int = i

PacmanOID: PacMan

CurrentField: Field NextField: Field

marbles: int

MarbleOID: Marble

in

from to

in

marbles: int = i

PacmanOID: PacMan

CurrentField: Field NextField: Field

in

from to

marbles: int = i

PacmanOID: PacMan

CurrentField: Field NextField: Field

marbles: int

MarbleOID: Marble

in

from to

in

marbles: int = i + 1

PacmanOID: PacMan

CurrentField: Field NextField: Field

in

from to

a

b

PacMan movement eating

PacMan movement without eating

Figure B-3. Production rules for PACMAN game: (a) Pac Man movement eating

(b) Pac Man movement without eating

Finally, although many graph-based model transformation languages use a

visual notation for specifying the transformation, identifying graph-based

transformations with visual notations is a common mistake. In fact, many of them

support (just) textual notations, like VIATRA.

Appendix C: Text-to-Model

Transformations

C Text-to-Model Transformations
This section has been added at the time of finishing this dissertation in

order to cope with an emerging research field in the context of MDE, closely

related with the development of tools for MDSD: text to model transformations.

Since we plan to integrate support for this task in M2DAT, we have decided to

include a review of existing works in the field. This section summarizes our main

findings.

C.1 Text-to-Model Transformation approaches

Obtaining models from code is an area of increasing interest is. Indeed, the

Architecture Driven Modernization (ADM, http://adm.omg.org/) initiative from

the OMG is related to extending the modelling approach to the existing software

systems. It is a kind of reverse engineering whose first step should be producing

models from legacy code, also known as model injection, the opposite of code

generation (extraction). In contrast with model-to-text transformation languages,

the underlying objective of text-to-model transformation languages is the mapping

of concrete syntaxes to abstract syntaxes. To that purpose, these languages might

follow a grammar-based or a metamodel-based approach.

The former are focused on the definition of a context-free grammar [83] to

specify the concrete syntax of the language. The metamodel that defines the

abstract syntax is derived from the grammar, together with a textual editor (a

parser indeed) for conforming models. This approach have been traditionally

adopted to build compilers for programming languages and is currently adopted

by the Xtext [146] component of OpenArchitectureWare (see section 2.2.13).

On the other hand, metamodel-based approaches start from the metamodel

and provides with a (user-friendly) grammar language to define the grammar for

your DSL. Such language for grammars allows specifying a textual representation

for each concept of the metamodel. Doing so, you are defining the (textual)

concrete syntax of the DSL. From that, the framework generates textual editors for

the new DSL and even in some cases, like TEF [312], synchronically updated with

the corresponding visual editor

Whereas grammar-based approaches worked fine for compilers

development, they fail when it comes to MDE. Their main drawback is the

starting point. To specify a text-to-model transformation following a grammar-

based approach, you have to, first, define the grammar. Then, the metamodel is

366 Juan M. Vara

automatically derived from the grammar specification. This approach suffers of

the inability to create a custom metamodel. While it might be acceptable when

working with an isolated DSL, it is not a good practice when working with

interrelated DSLs, since the metamodels are to be the ports where model

transformation are anchorage to connect the DSLs. In fact, since you are defining

the concrete syntax before defining the abstract syntax, the generated metamodel

is in essence a high-level representation of the grammar, more than an abstraction

of the domain concepts you want your DSL to model.

As Markus Scheidgen argued in his blog [311], MDE changes the software

engineering scene and the way IDEs have to be developed. Before, those IDEs

were only tools to help on coding tasks. At present, they have to be

(meta)modelling frameworks providing with support for all types of model

processing tasks, such as analysis, validation, transformation, etc. In this context,

textual editors have to be developed in a different way. Existing frameworks

ignore that most DSLs contains non-context-free features that are described in the

corresponding metamodel. The starting point to develop a textual editor for a

given DSL should be the metamodel and not the grammar. From the metamodel,

you should specify the grammar, generate graphical and textual editors, etc.

We believe that bidirectional bidirectional mappings that supports both

model-to-text (extraction), and text-to-model transformations (injection) [255] are

the way to address this task. This approach eases the development of bidirectional

editors, supporting both injection (text-to-model) and extraction (model-to-text) of

models.

Working this way you get an extra contribution, that is the interesting one

for us. Along with the textual editor, injectors/extractors are generated. As far as

we know, only TCS [183] is providing (in an minimum reliable manner) with this

functionality and has been applied in several projects. Unfortunately, developing

TCS specifications is a challenging task and lacking of documentation.

Due to it is still an emerging field, we will not make an exhaustive

comparative here on works supporting some kind of text-to-model transformations

and we refer the reader to the first works comparing exiting works for this task

[158]. However, since we plan to integrate support for models extraction in

M2DAT, in the following we present the main features of existing languages to

specify model extraction processes and we will follow advances in the field in

order to integrate support for text-to-model transformations in M2DAT as soon as

possible.

Text-to-Model Transformations 367

C.2 Languages for bidirectional mapping of text to models

In the following we summarize the main features of the main text-to-model

transformation languages supporting bidirectional mapping of model-to-text and

text-to-model

TCS

The Textual Concrte Syntax (TCS, [183]) is an Eclipse/GMT component

that enables the specification of textual concrete syntaxes for DSLs by attaching

syntactic information to metamodels. With TCS, it is possible to parse (text-to-

model) and pretty-print (model-to-text) DSL sentences. Moreover, TCS provides

an Eclipse editor, which features: syntax highlighting, an outline, hyperlinks, and

hovers for every DSL which syntax is represented in TCS.

To that end, TCS provides with a DSL for the specification of the

correspondence between the metamodel and its textual representation. From that,

an ANTLR grammar together with a parser for this grammar is generated. Such

parser (also know as injector) takes as input a textual program of the DSL and

generates a model conforming to the DSL metamodel. In addition, TCS also

generates an extractor that provides with model-to-text capabilities (code

generation in fact).

TCS also has some limitations. Despite technical concerns, we might notice

that the mapping is too complex when the metamodel is far from the desired

syntax. For example it is currently impossible to create blank delimited or case

insensitive languages. Besides, there is not much documentation available and

coding TCS mappings is much more complex than ATL transformations.

Xtext

Xtext [124] is a language of the OpenArchitectureWare framework (see

section 2.2.13) that enables text-to-model transformations.

In contrast with TCS, that followed the metamodel-based approach, Xtext

follows the grammar-based approach. Hence, the metamodel is derived from a

Xtext grammar file that describes the syntax of the DSL. From the grammar

specification an ANTLR grammar and a Ecore metamodel are generated. The

generated metamodel corresponds to an AST specification for the DSL. Besides,

Xtext generates an Eclipse-based textual editor for the DSL.

The parser generated works as an injector that creates model elements from

textual specifications. Its main issue resides in the approach followed, since the

generated metamodel is basically an abstraction of the concrete syntax. To

368 Juan M. Vara

overcome this drawback the authors propose [146] to transform from the

generated metamodel into the intended target metamodel. That is, the model

transformation would translate a model of the concrete syntax to a model of the

abstract syntax.

At present, there is ongoing work to integrate both TCS and Xtext under

the Eclipse Textual Modelling Framework project

(http://www.eclipse.org/modeling/tmf/).

Sintaks/TCSSL

Sintaks [135, 255] uses bidirectional mapping-models to support both

model-to-text and text-to-model transformations (generators and parsers).

Thereby, it defines bridges between concrete (textual files) and abstract syntax

(models). Additionally, Sintaks allows generating automatically textual editors for

a model providing syntax highlighting. Sintaks is based onto the EMF repository.

Appendix D: Case Study

D Case Studiy
This Chapter presents the Case Study used all along Chapter 5 to show the

application of the reference implementation of M2DAT.

This Case Study is taken from [385] (p. 5). As mentioned before, using an

―external‖ case study prevent us from using ad-hoc models that might fit better to

our needs. The Online Movie Database (OMDB) is devised to manage information

about movies, actors, directors, play writers and movie related information. Users

can browse this information on the OMDB website and purchase products (i.e.

movie videos, DVDs, books, CDs, and other movie related merchandise). The

movie information includes the movie title, director, the official movie website,

genre, studio, short synopsis, and the cast (i.e. actors and the roles they play in the

movie). Each movie has up to 5 external editorial reviews, and unlimited number

of user reviews entered by users online. OMDB website offers products for sale

including movie videos and DVDs. Information about videos and DVDs includes

title, rating, list price, release date, and other relevant information. This situation

can be modelled using the UML Class Diagram shown in Figure D-1.

372 Juan M. Vara

Figure D-1. Conceptual Data Model for the OMDB Case Study

Using M2DAT-DB, such conceptual data model can be translated to an

ORDB schema conforming to the SQL:2003 standard, and ORDB Schema for

Oracle or an XML Schema. Such mapping could be driven by a set of annotations.

Since we will focus on the DSL for modelling ORDB schemas to show model

edition and validation capabilities in M2DAT, Figure D-2 shows the conceptual

model next to the correspondent annotation model for generating an ORDB model

for SQL:2003.

Case Study 373

Figure D-2. Annotation Model for the OMDB Case Study

Figure D-3 shows the resuling ORDB model for SQL:2003.

374 Juan M. Vara

Figure D-3. OR Model for the OMDB Case Study (Diagrammer)

As well, Figure D-4 shows the same model displayed in the improved EMF

tree-like editor.

Case Study 375

Figure D-4. OR Model for the OMDB Case Study (improved EMF tree-like editor)

Bibliography

E Bibliography

References

1. Acceleo. (2008). Acceleo: MDA generator - Home. Retrieved 16 October 2008, from

http://www.acceleo.org/pages/home/en.

2. Achilleos, A., Georgalas, N., & Yang, K. (2007). An Open Source Domain-Specific Tools

Framework to Support Model Driven Development of OSS. Paper presented at the European

Conference on MDA (ECMDA-FA 2007), Haiffa, Israel.

3. Achilleos, A., Kun, Y., Georgalas, N., & Azmoodech, M. (2008). Pervasive Service

Creation using a Model Driven Petri Net Based Approach. Paper presented at the

International Conference on Wireless Communications and Mobile Computing Conference.

IWCMC '08, Crete, Greece.

4. Acerbis, R., Bongio, A., Butti, S., Ceri, S., Ciapessoni, F., Conserva, C., et al. (2004).

WebRatio, an Innovative Technology for Web Application Development. Paper presented at

the Innternational Conference on Web Engineering (ICWE 2004), Munich, Germany.

5. Acerbis, R., Bongio, A., Brambilla, M. & Butti, S. (2007). WebRatio 5: An Eclipse-Based

CASE Tool for Engineering Web Applications, in Web Engineering, 2007, 501-505.

6. Acerbis, R., Bongio, A., Brambilla, M., Butti, S., Ceri, S. & Fraternali, P. (2008). Web

Applications Design and Development with WebML and WebRatio 5.0. In S. B.

Heidelberg (Ed.), Objects, Components, Models and Patterns. 46th International

Conference, TOOLS EUROPE 2008, Zurich, Switzerland, June 30 - July 4, 2008.

Proceedings (Vol. 11, pp. 392-411).

7. ACR-NEMA (2003). The DICOM Standard. http://medical.nema.org/.

8. Acuña, C. Minoli, M. Vara, J.M. Model Driven Development of Semantic Web Services

using Eclipse. 2009 Mexican International Conference on Computer Science, ENC'09.

Mexico City, Mexico. (Submitted).

9. Agrawal, A. (2003). Graph rewriting and transformation (GReAT): a solution for the model

integrated computing (MIC) bottleneck. Paper presented at the 18th IEEE International

Conference on Automated Software Engineering (ASE 2003) Montreal, Canada.

10. Alder, G. (2003). Design and Implementation of the JGraph Swing Component. Retrieved

August 15, 2003, from: www.jgraph.com.

11. Alder, G. (2003). The JGraph tutorial. Retrieved August 20, 2003 from: www.jgraph.com.

12. Amelunxen, C., Königs, A., Rötschke, T., & Schürr, A. (2006). MOFLON: A Standard-

Compliant Metamodelling Framework with Graph Transformations. Paper presented at the

Second European Conference on Model Driven Architecture – Foundations and

Applications, ECMDA-FA 2006 Bilbao, Spain.

13. Allilaire, F. Jouault, F. ATL Basic Examples and Patterns. Retrieved 8 January, 2009, from:

http://www.eclipse.org/m2m/atl/basicExamples_Patterns/.

14. Altova. (2008). XML Schema [Software]. Available from

http://www.altova.com/dev_portal_xml_schema.html.

15. Ambler, S. (2006). Comparing the Various Approaches to Modelling in Software

Development. Retrieved 23 August, 2007, from:

http://www.agilemodeling.com/essays/modelingApproaches.htm

16. Amelunxen, C., Knigs, A., Rtschke, T., & Schrr, A. (2006). MOFLON: A Standard-

Compliant Metamodelling Framework with Graph Transformations. Paper presented at the

Model Driven Architecture - Foundations and Applications: Second European Conference

(ECMDA-FA 2006), Bilbao, Spain.

17. AndroMDA. (2008). AndroMDA.org - Home. Retrieved 16 October 2008, from

http://www.andromda.org/

18. Apache Software Foundation (2006). The Apache Velocity Project. Retrieved June, 23,

2007, from: http://velocity.apache.org/

http://www.acceleo.org/pages/home/en
http://medical.nema.org/
http://www.jgraph.com/
http://www.jgraph.com/
http://www.altova.com/dev_portal_xml_schema.html
http://www.andromda.org/
http://velocity.apache.org/

380 Juan M. Vara

19. Arsenault, S. (2007). Contributing Actions to the Eclipse Workbench. Eclipse Corner

Articles, January, 2007. Retrieved from

http://www.eclipse.org/articles/article.php?file=Article-action-contribution/index.html.

20. ArcStyler 5.5, Interactive Objects Software GmbH (iO GmbH). Freiburg, Germany.

21. Atkinson, C., & Kuhne, T. (2003). Model-driven development: a metamodelling

foundation. IEEE Software, 20(5).

22. Atzeni, P. Ceri, S. Paraboschi, S. & Torlone, R. (1999). Database Systems. Concepts,

Languages and Architectures, McGraw-Hill.

23. Atzeni, P., Cappellari, P., Torlone, R., Bernstein, P., A., & Gianforme, G. (2008). Model-

independent schema translation. The VLDB Journal, 17(6), 1347-1370.

24. ATLANMOD. (2009). Metamodel Zoos. Retrieved, March 20, 2009, from

http://www.emn.fr/x-info/atlanmod/index.php/Zoos.

25. Arora, R., Chu, D., Demirezen, Z., Gray, J., Gulotta, J., Pedro, L., Sanchez, A. Sullivan, G.,

& Ximing Y. Sematics Group Work Result at the 8th OOPSLA Workshop on Domain-

Specific Modeling [PowerPoint Slides]. Retrieved December, 12, 2008 from

http://www.dsmforum.org/events/DSM08/Slides/Group_on_Semantics_for_DSL.ppt

26. Avison, D., Lan, F., Myers, M., Nielsen, A. (1999). Action Research. Communications of

the ACM, 42(1), 94-97.

27. Balasubramaniam, R., Curtis, S., Timothy, P., & Michael, E. (1997). Requirements

traceability: Theory and practice. Annals of Software Engineering, 3, 397-415.

28. Balogh, A., & Varro, D. (2006). Advanced model transformation language constructs in the

VIATRA2 framework. Paper presented at the ACM symposium on Applied computing (SAC

2006), Dijon, France.

29. Balser, M., Bäumler, S., Knapp, A., Reif, W., & Thums, A. (2004). Interactive Verification

of UML State Machines. In Formal Methods and Software Engineering (pp. 434-448).

30. Barbero, M., Jouault, F., & Bezivin, J. (2008). Model Driven Management of Complex

Systems: Implementing the Macroscope's Vision. Paper presented at the Engineering of

Computer Based Systems, 2008. ECBS 2008. 15th Annual IEEE International Conference

and Workshop on the Engineering of Computer Based Systems (ECBS), Belfast, UK.

31. Baresi, L., Garzotto, F., & Paolini, P. (2001). Extending UML for Modeling Web

Applications. Paper presented at the 34th Annual Hawaii International Conference on

System Sciences (HICSS-34), Island of Maui, Hawaii.

32. Baresi, L., Colazzo, S., & Mainetti, L. (2005). First experiences on constraining

consistency and adaptivity of W2000 models. Paper presented at 2005 ACM symposium on

Applied computing (SAC 2005), Santa Fe, Nuevo Mexico (USA).

33. Batini, C., Ceri, S., & Navathe, S. B. (1992). Conceptual Database Design: An Entity-

Relationship Approach. Addison-Wesley.

34. Beeler, G. W., & Gardner, D. (2006). A Requirements Primer. ACM Queue, 4(7), 22-26.

35. Bernstein, P A. (2003). Applying Model Management to Classical Meta Data Problems. In

First Biennial Conference on Innovative Data Systems Research, Asilomar, CA, USA.

36. Bernstein, P., A. , Halevy, A., Y., & Pottinger, R., A. (2000). A vision for management of

complex models. SIGMOD Records, 29(4), 55-63.

37. Bertino, E. & Marcos, E. Object Oriented Database Systems. In O. Díaz y M. Piattini

(Eds.), Advanced Databases: Technology and Design. Norwood, MA: Artech House, 2000.

38. Bex, G. J., Neven, F., & Bussche, J. V. d. (2004). DTDs versus XML schema: a practical

study. Paper presented at the 7th International Workshop on the Web and Databases:

colocated with ACM SIGMOD/PODS 2004 (WedDB04), Paris, France.

39. Bézivin, J. (2001). From Object Composition to Model Transformation with the MDA.

Paper presented at the 39th International Conference and Exhibition on Technology of

Object-Oriented Languages and Systems (TOOLS39), Washington DC, USA.

40. Bézivin, J., & Jouault, F. (2006, April, 2006). KM3: a DSL for metamodel specification.

Paper presented at the 8th IFIP International Conference on Formal Methods for Open

Object-Based Distributed Systems (FMOODS 2006), Bologna, Italy.

Bibliography 381

41. Bézivin, J. (2004). In search of a Basic Principle for Model Driven Engineering.

Novatica/Upgrade, V(2), 21-24.

42. Bézivin, J. (2005). On the unification power of models. Journal of Software and Systems

Modeling, 4(2), 171-188.

43. Bézivin, J., Joualt, F., Rosenthal, P., & Valduriez, P. (2005). Modeling in the large and

modeling in the small. Paper presented at the Model Driven Architecture, Europen MDA

Workshops: Foundations and Applications (MDA-FA: 2003-2004), Twente, The

Netherlands.

44. Bézivin, J., Hillairet, G., Jouault, F., Piers, W., & Kurtev, I. (2005). Bridging the MS/DSL

Tools and the Eclipse Modeling Framework. Paper presented at the OOPSLA2005

International Workshop on Software Factories, San Diego, USA.

45. Bézivin, J., Jouault, F., Brunette, C., Chevrel, R., & Kurtev, I. (2005). Bridging the Generic

Modeling Environment (GME) and the Eclipse Modeling Framework (EMF). Paper

presented at the OOPSLA2005 International Workshop on Best Practices for Model Driven

Software Development San Diego, California, USA.

46. Bézivin, J., Rumpe, B., Schürr, A., & Tratt, L. (2005). Mandatory Example Specification.

CFP of the Model Transformations in Practice Workshop at MoDELS 2005, Montego Bay,

Jamaica.

47. Bézivin, J. (2005). Some Lessons Learnt in the Building of a Model Engineering Platform.

Paper presented at the 4th Workshop in Software Model Engineering (WISME), Montego

Bay, Jamaica.

48. Bezivin, J., Jouault, F., Touzet, D. (2005). An introduction to the ATLAS Model

Management Architecture (LINA Research Report Nº05.01). Nantes: University of Nantes.

Retrieved June 20, 2007, from http://www.sciences.univ-nantes.fr/lina/atl/www/papers/RR-

LINA2005-01.pdf.

49. Bézivin, J., Büttner, F., Gogolla, M., Jouault, F., Kurtev, I., & Lindow, A. (2006). Model

Transformations? Transformation Models! Paper presented at the 9th International

Conference on Model Driven Engineering Languages and Systems, MoDELS 2006,

Genève, Italy.

50. Bezivin, J., Pierantonio, A. & Vallecillo, A. (2006). Special track on model transformation

(MT 2006). In Proceedings of the 2006 ACM symposium on Applied computing, Dijon

(France), 2006, pp. 1186-1187.

51. Bézivin, J., Bouzitouna, S., Del Fabro, M., Gervais, M. P., Jouault, F., Kolovos, D., et al.

(2006). A Canonical Scheme for Model Composition. Paper presented at the European

Conference on Model Driven Architecture - Foundations and Applications (ECMDA-

FA'06), Bilbao, Spain.

52. Bézivin, J., Vallecillo, A., García-Molina, J., & Rossi, G. (2008). MDA at the Age of

Seven: Past, Present and Future. UPGRADE, IX(2), 4-7.

53. Biermann, E., Ermel, C., Hurrelmann, J., & Ehrig, K. (2008). Flexible visualization of

automatic simulation based on structured graph transformation. Paper presented at the

IEEE Symposium on Visual Languages and Human-Centric Computing, 2008. VL/HCC

2008., Herrsching am Ammersee, Germany.

54. Bitton, D., DeWitt, D., J. , & Turbyfill, C. (1983). Benchmarking Database Systems A

Systematic Approach. Paper presented at the Proceedings of the 9th International

Conference on Very Large Data Bases (VLDB 1983), Florence, Italy.

55. Blanc, X., Gervais, M.-P., & Sriplakich, P. (2005). Model Bus: Towards the

Interoperability of Modelling Tools. Paper presented at the European MDA Workshop:

Foundations and Applications, MDAFA 2004, Linköping, Sweden.

56. Bloch, J. (2008). Effective JAVA (2nd. Edition): Prentice Hall.

57. Bohlen, M. (2006). QVT und Multi-Metamodell-Transformationen in MDA.

OBJEKTspektrum. Vol. 2 (March/April 2006). Translated in:

http://www.andromda.org/jira/secure/attachment/10744/bohlen_OS_02_06_k4.pdf.

58. Booch, G., Brown, A. W., Iyengar, S., Rumbaugh, J., & Selic, B. (2004). An MDA

Manifesto. Business Process Trends/MDA Journal.

http://www.sciences.univ-nantes.fr/lina/atl/www/papers/RR-LINA2005-01.pdf
http://www.sciences.univ-nantes.fr/lina/atl/www/papers/RR-LINA2005-01.pdf

382 Juan M. Vara

59. Borland. (2008). Software Architecture Design, Visual UML & Business Process Modeling

from Borland. Retrieved 16 October 2008, from

http://www.borland.com/us/products/together/index.html

60. Boronat, A., Carsí, J., & Ramos, I. (2006). Algebraic Specification of a Model

Transformation Engine. Paper presented at the Fundamental Approaches to Software

Engineering (FASE'06), Vienna, Austria.

61. Boronat, A. (2007). Ph. D Thesis. A formal framework for model management. Technical

University of Valencia, Valencia.

62. Braun, P., & Marschall, F. (2003). The Bi-directional Object-Oriented Transformation

Language (No. TUM-I0307). Munich, Germany: Technische UniversitätMünchen.

63. Brooks, F. P. (1995). The Mythical Man-Month: Essays on Software Engineering, 20th

Anniversary Edition: Addison-Wesley Professional.

64. Bruel, J-M. (ed.) (2006). Model Transformations in Practice Workshop. In Proceedings of

Satellite Events at the MoDELS 2005 Conference, LNCS, Vol. 3844 (Springer, 2006).

65. Brun, C. (2007). EMF Compare: One year later. Eclipse Summit Europe, Eclipse Modeling

Symposium. Ludwisburg, Germany. [PDF Document]. Retrieved from:

http://www.eclipsecon.org/summiteurope2007/presentations/ESE2007_EMFCompare.pdf,

May, 20, 2009.

66. Budinsky, F., Merks, E., & Steinberg, D. (2008). Eclipse Modeling Framework 2.0 (2nd

Edition): Addison-Wesley Professional.

67. Bunge, M. (1979). La Investigación Científica. Barcelona: Ariel.

68. Burmester, S., Giese, H., Niere, J., Tichy, M., Wadsack, J. P., Wagner, R., et al. (2004).

Tool integration at the meta-model level: the Fujaba approach. International Journal on

Software Tools for Technology Transfer (STTT), 6(3), 203-218.

69. Burstall, R. M., & John, D. (1977). A Transformation System for Developing Recursive

Programs. Journal of the ACM, 24(1), 44-67.

70. Buttner, F., & Gogolla, M. (2004). Realizing UML Metamodel Transformations with AGG,

In Proceedings of the Workshop on Graph Transformation and Visual Modelling

Techniques (GT-VMT 2004), Barcelona, Spain.

71. Cabot, J., & Teniente, E. (2006). Constraint Support in MDA Tools: A Survey. Paper

presented at the Second European Conference on Model Driven Architecture – Foundations

and Applications (ECMDA-FA 2006), Bilbao, Spain.

72. Cabot, J., Clarisó, R., Guerra, E., & de Lara, J. (2008). An Invariant-Based Method for the

Analysis of Declarative Model-to-Model Transformations. Paper presented at the 11th

International Conference on Model Driven Engineering Languages and Systems, MoDELS

2008, Toulouse, France.

73. Cáceres, P., Marcos, E., Vela, B. A MDA-Based Approach for Web Information System

Development, Proceedings of Workshop in Software Model Engineering.

74. Cáceres, P., De Castro, V., Vara, J. M., & Marcos, E. (2006, April 23 - 27, 2006). Model

Transformations for Hypertext Modeling on Web Information Systems. Paper presented at

the ACM Symposium on Applied computing (SAC), Dijon, France.

75. Cachero C., Melia S., Genero M., Poels G., Calero C. (2007). Towards Improving the

Navigability of Web Applications: A Model-Driven Approach, in European Journal of

Information Systems, 2007, Vol. 16, 420-447.

76. CARE Technoligies. (2009). OlivaNOVA [Software]. Available from http://www.care-

t.com/

77. Carlson, D. (2001). Modeling XML Vocabularies with UML, Part I, II & III. XML.com.

Retrieved from http://www.xml.com/pub/a/2001/08/22/uml.html.

78. Carlson, D. (2001). Modeling XML Applications with UML: Practical e-Business

Applications: Addison-Wesley Professional.

79. Ceri, S., Fraternali, P., Bongio, A., Brambilla, M., Comai, S., & Matera, M. (2002).

Designing Data-Intensive Web Applications: Morgan Kaufmann Publishers Inc.

80. Chamberlin, D. (1996). Using the New DB2: IBM's Object-Relational Database System:

Ap Professional.

http://www.borland.com/us/products/together/index.html
http://www.eclipsecon.org/summiteurope2007/presentations/ESE2007_EMFCompare.pdf
http://www.xml.com/pub/a/2001/08/22/uml.html

Bibliography 383

81. Chaudhri, A.B., Rashid, A. & Zicari, R. (2003). XML Data Management. Native XML and

XML-Enabled Database Systems: Addison-Wesley Professional.

82. Chen, P. P. 1994. The entity-relationship model—toward a unified view of data. ACM

Transactions on Database Systems, 1(1), 9-36.

83. Chomsky, N. (1956). Three models for the description of language. Information Theory,

IEEE Transactions, 2(3), 113-124.

84. Cicchetti, A., Ruscio, D. D., Eramo, R., & Pierantonio, A. (2008). Automating Co-evolution

in Model-Driven Engineering. Paper presented at the 12th International IEEE Enterprise

Distributed Object Computing Conference - EDOC 2008, München, Germany.

85. Clark T., Evans A., Sammut P., Willans J. (2004) An eXecutable metamodelling facility for

domain specific language design. In Proceedings of the 4th OOPSLA Workshop on

Domain-Specific Modeling, DSM‘04. Tolvanen, Finland.

86. Clark, T., Evans, A., Sammut, P., & Willans, J. (2008). Applied Metamodelling - A

Foundation for Language Driven Development (2nd Edition). Available from

http://itcentre.tvu.ac.uk/~clark/book.html

87. Clavel, M., Durán, F., Eker, S., Lincoln, P., Martí-Oliet, N., Meseguer, J., et al. (1999). The

Maude System. Paper presented at the 10th International Conference on Rewriting

Techniques and Applications, Trento, Italy.

88. Codagen Architect, Codagen Technologies Corp., Montreal, Canada.

89. Codd, E. F. (1983). A relational model of data for large shared data banks. Communications

of the ACM, 26(1), 64-69.

90. Cook, S., Jones, G., Kent, S., & Cameron Wills, A. (2007). Domain-Specific Development

with Visual Studio DSL Tools Addison-Wesley Professional.

91. Cook, S., & Kent, S. (2008). The Domain-Specific IDE. UPGRADE, IX(2), 17-21.

92. Computer Associates. AllFusion ERwin Data Modeler.

http://www.ca.com/us/products/product.aspx?id=260.

93. Corradini, A., Ehrig, H., Löwe, M., Montanari, U., & Padberg, J. (1996). The Category of

Typed Graph Grammars and its Adjunctions with Categories. Paper presented at the 5th

International Workshop on Graph Gramars and Their Application to Computer Science,

Williamsburg, VA, USA.

94. Csertan, G., Huszerl, G., Majzik, I., Pap, Z., Pataricza, A. & Varro, D. (2002). VIATRA —

Visual Automated Transformations for Formal Verification and Validation of UML Models.

In Proceedings of 17th IEEE International Conference on Automated Software Engineering

(ASE'02), IEEE Computer Society, Los Alamitos, CA, USA, 2002.

95. Curran, J. (2003). Conformance Testing: An Industry Perspective. Java Conformance

Testing Sun Microsystems.

96. Czarnecki, K., & Eisenecker, U. (1999). Components and Generative Programming. Paper

presented at the 7th European Software Engineering Conference / 7th ACM SIGSOFT

Symposium on the Foundations of Software Engineering — ESEC/FSE ‘99, Toulouse,

France.

97. Czarnecki, K., & Helsen, S. (2003). Classification of Model Transformation Approaches.

Paper presented at the 2nd OOPSLA Workshop on Generative Techniques in the Context of

MDA, Anaheim, USA.

98. Czarnecki, K., & Helsen, S. (2006). Feature-based survey of model transformation

approaches. IBM Systems Jorunal, 45(3), 621-645.

99. Czarnecki, K., Natahan foster, J., Hu, Z., Lämmel, R., Schürr, A. and Terwiligger, J. F.

Bidirectional Transformations: a cross-discipline perspective. GRACE meeting notes, state

of the art and outlook. Proceedings of the International Conference on Model-

Transformations (ICMT 2009). 29-30 June 2009, Zurich (Switzerland).

100. Dalci, E., Fong, E., & Goldfine, A. (2003). Requirements for GSC-IS Reference

Implementations: National Institute of Standards and Technology, Information Technology

Laboratory.

101. Damus, C. (2007). Implementing Model Integrity in EMF with MDT OCL. Eclipse Corner

Articles, February 9, 2007. Retrieved from

http://www.ca.com/us/products/product.aspx?id=260

384 Juan M. Vara

http://www.eclipse.org/articles/article.php?file=Article-EMF-Codegen-with-

OCL/index.html

102. Damus, C. W. (2008). Object Constraint Language. In OMG (Ed.), Symposium on Eclipse

Open Source Software and OMG Open Specifications. Ottawa, Ontario, Canada: OMG.

103. Davis, J. (2003). GME: the generic modeling environment. Paper presented at the

Companion of the 18th annual ACM SIGPLAN conference on Object-oriented

programming, systems, languages, and applications. OOPSLA '03, Anaheim, CA, USA.

104. De Castro, V., Marcos, E., & Cáceres, P. (2004). A User Service Oriented Method to Model

Web Information Systems. In WISE (Vol. 3306, pp. 41-52): Springer.

105. De Castro, V., Marcos, E., & Lopez Sanz, M. (2006). A model driven method for service

composition modelling: a case study. International Jorunal on Web Engineering

Technology, 2(4), 335-353.

106. De Castro, V., Vara, J. M., & Marcos, E. (2007). Model Transformation for Service-

Oriented Web Applications Development. Paper presented at the 3rd International

Workshop on Model-Driven on Web Engineering (MDWE 2007), Como, Italy.

107. De Castro, V., Vara, J. M., Herrmann, E., & Marcos, E. (2008). A Model Driven Approach

for the Alignment of Business and Information Systems Models. Paper presented at the

Proceedings of the 2008 Mexican International Conference on Computer Science, ENC'08.

Mexicali, Baja California, Mexico

108. De Castro, V., Vara, J. M., Herrmann, E., & Marcos, E. (2008, September 2008). From

Real Computational Independent Models to Information System Models: An MDE

approach. Paper presented at the 4th International Workshop on Model-Driven Web

Engineering (MDWE 2008), Toulouse, France.

109. De Lara, J., Vangheluwe, H. & Alfonseca, M. (2004). Meta-Modelling and Graph

Grammars for Multi-Paradigm Modelling in AToM3, Journal on Software and Systems

Modelling, Vol 3(3).

110. Den Han, J. (2008, June 11). MDA MDD MDE MDSD MDSE: help!. Retrieved from

http://www.theenterprisearchitect.eu/

111. Den Han, J. (2009, January 9). MDE - Model Driven Engineering - reference guide.

Retrieved from http://www.theenterprisearchitect.eu/

112. Diaz, P., Montero, S. and Aedo, I. (2005). Modelling Hypermedia and Web Applications:

the Ariadne Development Method, in Information Systems, Vol.30(8), 2005, 649-673.

113. Didonet Del Fabro, M., Bézivin, J., & Valduriez, P. (2006). Model-Driven Tool

Interoperability: An Application in Bug Tracking. Paper presented at the OTM

Confederated International Conferences, CoopIS, DOA, GADA, and ODBASE 2006,

Montpellier, France.

114. Didonet Del Fabro, M., Bézivin, J. & Valduriez P. (2006). Weaving Models with the Eclipse

AMW plugin. Eclipse Modeling Symposium, Eclipse Summit Europe, Esslingen, Alemania.

115. Didonet Del Fabro, M. (2007). Metadata management using model weaving and model

transformation. Ph.D. Thesis University of Nantes, Nantes, France.

116. Dijkstra, E.W. A Discipline of Programming. Englewood Cliffs, NJ: Prentice Hall, 1976.

117. Drake, M. (2003). Oracle XML DB White Paper. Oracle Corporation.

118. Dobing, B., & Parsons, J. (2006). How UML is used. Communications of the ACM, 49(5),

109-113.

119. Eckerson, Wayne W. Three Tier Client/Server Architecture: Achieving Scalability,

Performance, and Efficiency in Client Server Applications. Open Information Systems 10

(3), 1-20.

120. Eclipse Foundation. (2009). GMF Tutorial. Retrieved November, 2008, from:

http://wiki.eclipse.org/GMF_Tutorial.

121. Eckel, B. (1998). Thinking in JAVA (1
st
. Edition): Prentice Hall.

122. Efftinge, S., Völter, M., Haase, A., & Kolb, B. (2006). The Pragmatic Code Generator

Programmer. TheServerSide.com, September, 2006. Retrieved from

http://www.theserverside.com/tt/articles/article.tss?l=PragmaticGen.

http://www.eclipse.org/articles/article.php?file=Article-EMF-Codegen-with-OCL/index.html
http://www.eclipse.org/articles/article.php?file=Article-EMF-Codegen-with-OCL/index.html
http://www.theenterprisearchitect.eu/
http://www.theserverside.com/tt/articles/article.tss?l=PragmaticGen

Bibliography 385

123. Efftinge, S. (2006). openArchitectureWare 4.1 Xtend language reference. Retrieved 22

July, 2007, from http://www.eclipse.org/gmt/oaw/doc/4.1/r25_extendReference.pdf

124. Efftinge, S. (2006). openArchitectureWare 4.1 Xtext language reference. Retrieved 22 July,

2007, from http://www.eclipse.org/gmt/oaw/doc/4.1/r80_xtextReference.pdf

125. Efftinge, S., Friese, P., & Köhnlein, J. (2008). Best Practices for Model-Driven Software

Development. InfoQ. Retrieved from http://www.infoq.com/articles/model-driven-dev-best-

practices.

126. Ehrig, H., Engels, G., Kreowski, H.-J., Rozenberg, G. 1999. Handbook of Graph Grammars

and Computing by Graph Transformation.Vol(1). World Scientific.

127. eXcelon Corporation. Managing DXE. System Documentation Release 3.5. eXcelon

Corporation. Burlington. Retrieved from: www.excelon.corp.com, 2003.

128. EMC
2
Corporation. X-Hive/DB 8.0. http://www.x-hive.com/.

129. Engstrom, E., & Krueger, J. (2000). Building and rapidly evolving domain-specific tools

with DOME. Paper presented at the IEEE International Symposium on Computer-Aided

Control System Design. CACSD 2000, Anchorage, Alaska, USA

130. Estévez, A., Padrón, J., Sánchez Rebull, V., & Roda, J. L. (2006). ATC: A Low-Level Model

Transformation Language. Paper presented at the II International Workshop on Model-

Driven Enterprise Information Systems 2006 (MDEIS 2006) in 8th International

Conference on Enterprise Information Systems (ICEIS) 2006, Pahos, Chipre.

131. Favre, J. (2004). Towards a Basic Theory to Model Model Driven Engineering. Paper

presented at the Workshop on Software Model Engineering, WISME 2004, joint event with

UML2004, Lisbon, Portugal.

132. Ferrante, L. (1987). A comparison of the ISO working draft standard for SQL and a

commercial implementation of SQL. SIGSMALL/PC Notes, 13(3), 28-55.

133. Feuerlicht, G., Pokorný, J., & Richta, K. (2009). Object-Relational Database Design: Can

Your Application Benefit from SQL:2003? Paper presented at the 16th International

Conference on Information Systems Development (ISD2007), Galway, Ireland.

134. Flore, F. (2003). MDA: The Proof is in Automating Transformations between Models.

OptimalJ White Paper, pp. 1–4.

135. Fondemont, F. (2007). Concrete syntax definition for modeling languages. Ph.D. Thesis.

Ecole polytechnique fédérale de Lausanne EPFL, Lausanne.

136. Fons, J., Pelechano, V., Pastor, O., Valderas, P., Torres, V. (2007). Applying the OOWS

Model-Driven Approach for Developing Web Applications. The Internet Movie Database

Case Study, in Web Engineering: Modelling and Implementing Web Applications. Springer

Human-Computer Interaction Series. Rossi, G.; Pastor, O.; Schwabe, D.; Olsina, L. (Eds.),

2007.

137. Fowler, M. (2004). UML Distilled: A Brief Guide to the Standard Object Modeling

Language (3
rd

. Edition). Boston, MA: Addison-Wesley.

138. Fowler, M. (2005). Language Workbenches: The Killer-App for Domain Specific

Languages?. Retrieved from http://martinfowler.com/articles/languageWorkbench.html.

139. Fowler, M. (2005). Language Workbenches and Model-Driven Architecture. Retrieved

from http://martinfowler.com/articles/mdaLanguageWorkbench.html.

140. Fowler, M. (2009). Code Generation for Dummies. Methods and Tools, Spring 2009, 65-82.

141. France Telecom, F. (2008). SmartQVT - A QVT implementation. Retrieved 16 October

2008, from http://smartqvt.elibel.tm.fr/

142. France, R. B., Ghosh, S., Dinh-Trong, T., & Solberg, A. (2006). Model-driven development

using UML 2.0: promises and pitfalls. Computer, 39(2), 59-66.

143. Frankel, D. (2002). Model Driven Architecture: Applying MDA to Enterprise Computing. .

New York, USA: John Wiley & Sons.

144. French, W.L. & Bell, C.H. Jr. Desarrollo organizacional (5ª ed.). Naucalpán de Juárez,

México, Prentice-Hall, 1996.

145. Frederick, S., Dan, G., Greg, M., Luke, H., & Trevor, J. (2003). Compiling for template-

based run-time code generation. Jorunal of Functional Programming, 13(3), 677-708.

http://www.x-hive.com/
http://martinfowler.com/articles/languageWorkbench.html
http://smartqvt.elibel.tm.fr/

386 Juan M. Vara

146. Friese, P., Efftinge, S., & Köhnlein, J. (2008). Build your own textual DSL with Tools from

the Eclipse Modeling Project. Eclipse Corner Articles. Retrieved from

http://www.eclipse.org/articles/article.php?file=Article-BuildYourOwnDSL/

147. Fuentes, L. & Vallecillo, A. (2004). An introduction to UML profiles. UPGRADE,

European Journal for the Informatics Professional, 5(2):5-13.

148. Gamma, E., Helm, R., Johnson, R. & Vlissides, J. (1994). Design Patterns, Elements of

Reusable Object-Oriented Software: Addison-Wesley.

149. García, M. (2007, November, 28). What QVT for Eclipse has done to me. Message posted

to Eclipse M2M newsgroup (http://dev.eclipse.org/newslists/news.eclipse.modeling.m2m).

150. Garcia, M., & Sentosa, P. (2008). Generation of Eclipse-based IDEs for Custom DSLs.

Hamburg, Germany: Software Systems Institute (STS), Technische Universit at Hamburg-

Harburg.

151. Garzotto, F., Paolini, P., & Schwabe, D. (1993). HDM- a Model-Based Approach to

Hypertext Application Design. ACM Transaction On Database Systems, 11(1), 1-26.

152. GEMS Project. http://www.eclipse.org/gmt/gems/

153. Gerber, A., Lawley, M., Raymond, K., Steel, J., & Wood, A. (2002). Transformation: The

missing link of MDA. Graph Transformation: First International Conference, ICGT 2002,

90-105.

154. Gill, T., Gilliland-Swetland, A., & Baca, M. (2000). Introduction to Metadata: Pathways to

Digital Information. Los Angeles, USA: Getty Information Institute.

155. Glineur, Q. M2M/Relational QVT Language (QVTR). Retrieved March, 2009, from:

http://wiki.eclipse.org/M2M/Relational_QVT_Language_(QVTR).

156. Gómez, J., & Cachero, C. (2003). OO-H Method: extending UML to model web interfaces.

In Information modeling for internet applications (pp. 144-173): IGI Publishing.

157. Guttman, M., & Parodi, J. (2006). Real-Life MDA: Solving Business Problems with Model

Driven Architecture Morgan Kaufmann.

158. Goldschmidt, T., Becker, S., & Uhl, A. (2008). Classification of Concrete Textual Syntax

Mapping Approaches. Paper presented at the 4th European Conference on Model Driven

Architecture - Foundations and Applications, ECMDA-FA 2008, Berlin, Germany.

159. Gómez, J., Bia, A. & Parraga, A. (2005). Tool Support for Model-Driven Development of

Web Applications, in Web Information Systems Engineering (WISE 2005), 2005, 721-730.

160. Gonzalez-Perez, C., & Henderson-Sellers, B. (2007). Modelling software development

methodologies: A conceptual foundation. Journal of Systems and Software, 80(11), 1778-

1796.

161. Gronback, R. C. (2009). Eclipse Modeling Project: A Domain-Specific Language (DSL)

Toolkit: Addison-Wesley Professional.

162. Grose, T. J., Doney, G. C., & Brodsky, S. A. (2002). Mastering XMI: Java Programming

with XMI, XML, and UML: Wiley.

163. Grunske, L., Geiger, L., & Lawley, M. (2005). A Graphical Specification of Model

Transformations with Triple Graph Grammars. Paper presented at the First European

Conference on Model Driven Architecture – Foundations and Applications (ECMDA-FA

2005), Nuremberg, Germany.

164. Gurevich, Y. (2000). Sequential abstract-state machines capture sequential algorithms.

ACM Transactions on Computational Logic, 1(1), 77-111.

165. Guttman, M., & Parodi, J. (2006). Real-Life MDA: Solving Business Problems with Model

Driven Architecture Morgan Kaufmann.

166. Hailpern, B., & Tarr, P. (2006). Model-driven development: The good, the bad, and the

ugly. IBM Systems Journal, 45(3), 451-461.

167. Holt, R. C., Winter, A. and Schürr, A. (2000) GXL: Toward a Standard Exchange Format.

Seventh Working Conference on Reverse Engineering. IEEE Computer Society. Los

Alamitos, USA.

168. IBM Corporation (2004). DB2 9 pureXML..

169. IBM Corporation. (2004). Informix Dynamic Server. http://www-

01.ibm.com/software/data/informix/ids/

http://dev.eclipse.org/newslists/news.eclipse.modeling.m2m
http://www-01.ibm.com/software/data/informix/ids/
http://www-01.ibm.com/software/data/informix/ids/

Bibliography 387

170. IBM. (2004). IBM Model Transformation Framework 1.0.2 Programmer‘s Guide.

Retrieved, July 23, 2006, from: http://www.alphaworks.ibm.com/tech/mtf

171. IBM DB2 Universal Database. http://www-306.ibm.com/software/data/db2/

172. IBM. (2004). Emfatic. http://www.alphaworks.ibm.com/tech/emfatic. Retrieved, October

2006.

173. IBM. (2009). Rational Rose Product line. Retrieved 20 January, 2009, from: http://www-

01.ibm.com/software/awdtools/developer/rose/index.html

174. ikv++ technologies. (2008). medini QVT. Retrieved 16 October 2008, from

http://www.ikv.de/index.php?option=com_content&task=view&id=75&Itemid=77&lang=e

n.

175. IRISA (2009). Kermeta workbench: http://www.kermeta.org/.

176. ISO (International Standards Organization for Standardization) & IEC (International

Electrotechnical Commission) (2003). ISO/IEC 9075:2003 Information technology –

Database languages – SQL:2003.

177. Jacobson, I., Booch, G., & Rumbaugh, J. (1999). The Unified Software Development

Process Addison-Wesley Professional.

178. JBoss, a division of Red Hat. Hibernate. http://www.hibernate.org/

179. Jézéquel, J-M. Model Transformation Techniques. Rennes: France: IRISA-Universite de

Rennes. Retrieved December, 2007, from: http://modelware.inria.fr/rubrique21.html.

180. Jouault, F., Laarman, A., Allilaire, F. & Glineur, Q. (2005). Specification of the ATL

Virtual Machine. Retrieved 20 January, 2009, from:

http://www.eclipse.org/m2m/atl/doc/ATL_VMSpecification[v00.01].pdf

181. Jouault, F., & Bézivin, J. (2006). KM3: A DSL for Metamodel Specification. Paper

presented at the 8th IFIP WG 6.1 International Conference on Formal Methods for Open

Object-Based Distributed Systems, FMOODS 2006, Bologna, Italy.

182. Jouault, F., & Kurtev, I. (2006). On the architectural alignment of ATL and QVT. Paper

presented at the ACM symposium on Applied computing (SAC 2006), Dijon, France.

183. Jouault, F., Bezivin, J. and Kurtev, I. (2006). TCS: a DSL for the Specification of Textual

Concrete Syntaxes in Model Engineering. In: GPCE'06: Proceedings of the fifth

international conference on Generative programming and Component Engineering,

Portland, Oregon, USA, pages 249--254.

184. Jouault, F., & Kurtev, I. (2006). Transforming Models with ATL. In Satellite Events at the

MoDELS 2005 Conference (pp. 128-138).

185. Jouault, F. & Piers, W. (2009). ATL User Guide. Retrieved 15 January, 2009, from

http://wiki.eclipse.org/ATL/User_Guide.

186. Kalnins, A., Celms, E., & Sostaks, A. (2006). Model Transformation Approach Based on

MOLA. Paper presented at the Model Transformations in Practice Workshop - Satellite

Events at the MoDELS 2005 Conference, Montego Bay, Jamaica.

187. Kelly, S., Lyytinen, K., & Rossi, M. (1996). MetaEdit+ A fully configurable multi-user and

multi-tool CASE and CAME environment. In 8th International Conference on Advanced

Information Systems Engineering, CAiSE'96 (pp. 1-21). Heraklion, Crete: Springer.

188. Kelly, S. (2005, May 03). XMI, MOF and MetaEdit+. Retrieved from:

http://www.metacase.com/blogs/stevek/

189. Kelly, S., & Tolvanen, J.-P. (2008). Domain-Specific Modelling: Enabling Full Code

Generation: Wiley-IEEE Computer Society Press.

190. Kelly, S. (2008, September). DSM in the solution domain? [Msg 7]. Message posted to

http://www.linkedin.com/groups?home=&gid=138803&trk=anet_ug_hm

191. Kern, H. (2008). The Interchange of (Meta)Models between MetaEdit+ and Eclipse EMF.

Paper presented at the 8th ooPSLA Workshop on Domain-Specific Modelling at OOPSLA

2008, Birmingham, USA.

192. Klatt, B. (2007). Xpand: A Closer Look at the model2text Transformation Language.

Retrieved 10/16/2008, from http://www.bar54.de/publikationen.html.

193. Kleppe, A., Warmer, J., & Bast, W. (2003). MDA Explained: The Model Driven

Architecture: Practice and Promise: Addison-Wesley.

http://www-306.ibm.com/software/data/db2/
http://www.alphaworks.ibm.com/tech/emfatic
http://www.ikv.de/index.php?option=com_content&task=view&id=75&Itemid=77&lang=en
http://www.ikv.de/index.php?option=com_content&task=view&id=75&Itemid=77&lang=en
http://www.kermeta.org/
http://www.hibernate.org/
http://modelware.inria.fr/rubrique21.html
http://www.linkedin.com/groups?home=&gid=138803&trk=anet_ug_hm
http://www.bar54.de/publikationen.html

388 Juan M. Vara

194. Klimavicius, M., & Sukovskis, U. (2008). Applying MDA and universal data models for

data warehouse modeling. Paper presented at the Proceedings of the 10th WSEAS

International Conference on Automatic Control, Modelling & Simulation, Istanbul, Turkey.

195. Knapp, A., Koch, N., Moser, F., & Zhang, G. (2003). ArgoUWE: A Case Tool for Web

Applications. Paper presented at the First International Workshop on Engineering Methods

to Support Information Systems Evolution (EMSISE'03), Geneva, Switzerland.

196. Knap, A., Koch, N., Zhang, G. and Hassler, H.-M. (2004). Modeling Business Processes in

Web Applications with ArgoUWE, in – Proc of Int. Conf. Unified Modeling Language

(UML 2004), Springer LNCS 3273, 69-83.

197. Koch, N, Meliá, S. Moreno, N. Pelechano, V. Sanchez, F. & Vara, J.M. (2008). Model-

Driven Web Engineering, Novática-Upgrade Journal (English and Spanish), IX (2), ISSN

1684-5285, Council of European Professional Informatics Societies (CEPIS), April 2008.

198. Koch, N. (2001). Software Engineering for Adaptative Hypermedia Applications. PhD

Thesis, FAST Reihe Softwaretechnik Vol(12), Uni-Druck Publishing Company, Munich.

Germany.

199. Koch, N. (2006). Transformation Techniques in the Model-Driven Development Process of

UWE. In Workshop Proc. of the 6th Int. Conf. on Web Engineering (ICWE 2006), ACM

Vol. 155, Palo Alto, California, 2006.

200. Koch, N., Meliá, S., Moreno, N., Pelechano, V., Sánchez, F., & Vara, J. M. (2008). Model-

Driven Web Engineering. UPGRADE, IX(2), 40-45.

201. Kolovos, D., Paige, R., & Polack, F. (2006). Eclipse Development Tools for Epsilon,

Eclipse Summit Europe, Eclipse Modeling Symposium. Esslingen, Germany.

202. Kolovos, D., Paige, R., & Polack, F. (2006). The Epsilon Object Language (EOL). Paper

presented at the Model Driven Architecture - Foundations and Applications: Second

European Conference (ECMDA-FA 2006), Bilbao, Spain.

203. Kolovos, D., Paige, R., Rose, L., & Polack, F. (2008). The Epsilon Book. Retrieved 20

December, 2008, from:

http://epsilonlabs.svn.sourceforge.net/svnroot/epsilonlabs/org.eclipse.epsilon.book/Epsilon

Book.pdf

204. Königs, A., & Schürr, A. (2006). Tool Integration with Triple Graph Grammars - A Survey.

Electronic Notes in Theoretical Computer Science, 148(1), 113-150.

205. Kraus, A. (2008). Model Driven Software Engineering for Web Applications. Ph. D. Thesis.

Ludwig-Maximilians-University München, Munich.

206. Kroib, C. & Koch, N. (2008). UWE Metamodel and Profile: User Guide and Reference

(No. 0802). Munich, Germany: Programming and Software Engineering Unit (PST),

Institute for Informatics, LMU – Ludwig-Maximilians-Universität. Retrieved November 18,

2008, from http://www.pst.ifi.lmu.de/projekte/uwe/

207. Kulkarni, V. & Reddy, S. (2003). Separation of Concerns in Model-Driven Development.

IEEE Software, 20(5), 64-69.

208. Kurtev, I., Bezivin, J., & Aksit, M. (2002). Technological Spaces: An Initial Appraisal.

Paper presented at the Confederated International Conferences DOA, CoopIS and

ODBASE 2002, Industrial Track, Irvine, California, USA.

209. Kurtev, I. (2005). Adaptability of model transformations. Ph.D. Thesis. University of

Twente, Enschede. Retrieved from http://purl.org/utwente/50761.

210. Kurtev, I. (2008). State of the Art of QVT: A Model Transformation Language Standard.

Paper presented at the Third International Symposium on Applications of Graph

Transformations with Industrial Relevance, AGTIVE 2007 Kassel, Germany.

211. Lawley, M., & Steel, J. (2006). Practical Declarative Model Transformation with Tefkat. In

Satellite Events at the MoDELS 2005 Conference (pp. 139-150).

212. Lawley, M., & Raymon, K. (2007). Implementing a practical declarative logic-based model

transformation engine. Paper presented at the ACM symposium on Applied computing

2007 (SAC 2007), Seoul, Korea.

213. Landin, P. J. (1965). Correspondence between ALGOL 60 and Church's Lambda-notation:

Part I. Communications of the ACM, 8(2), 89-101.

http://www.pst.ifi.lmu.de/projekte/uwe/
http://purl.org/utwente/50761

Bibliography 389

214. Landin, P. J. (1965). Correspondence between ALGOL 60 and Church's Lambda-notations:

Part II. Communications of the ACM, 8(3), 158-167.

215. Langlois, B., Jitia, C. E., and Jouenne, E. (2007). DSL Classification. In Proceedings of the

7th OOPSLA Workshop on Domain-Specific Modeling.

216. Ledeczi, A., Maroti, M., Bakay, A., Karsai, G., Garrett, J., Thomason, C., et al. (2001). The

Generic Modeling Environment. Paper presented at the IEEE International Workshop on

Intelligent Signal Processing (WISP'2001), Budapest, Hungary.

217. Lima, F., & Schwabe, D. (2003). Modeling Applications for the Semantic Web Paper

presented at the International Conference on Web Engineering (ICWE 2003), Oviedo,

Spain.

218. Lin, Y., Zhang, J., & Gray, J. (2005). A Testing Framework for Model Transformations. In

Model-Driven Software Development (pp. 219-236): Springer.

219. Lin, Y., Strasunskas, D., Hakkarainen, S., Krogstie, J., & Solvberg, A. (2006). Semantic

Annotation Framework to Manage Semantic Heterogeneity of Process Models. Paper

presented at the 18th International Conference on Advanced Information Systems

Engineering (CAISE 2006), Luxembourg, Luxembourg.

220. LMU – Ludwig-Maximilians-Universität München Institute for Informatics Programming

and Software Engineering. MagicUWE – Reference. Retrieved 20 December, 2008, from

http://www.pst.ifi.lmu.de/projekte/uwe/toolMagicUWEReference.html.

221. Lopez Sanz, M., Acuña, C. J., Cuesta, C. E., & Marcos, E. (2008). Modelling of Service-

Oriented Architectures with UML. Electronic Notes in Theoretical Computer Science,

194(4), 23-37.

222. Lucas, F. J., & Toval, J. A. (2008). Model Transformations powered by Rewriting Logic.

Paper presented at the CAiSE Forum at CAiSE'08, Montpellier, France.

223. Marcos, E. & Marcos, A. (1998). An Aristotelian Approach to the Methodological

Research: a Method for Data Models Construction. In: Information Systems - The Next

Generation. L. Brooks and C. Kimble (Eds.). McGraw-Hill. 1998.

224. Marcos, E., Vela, B., & Cavero, J. (2004). A methodological approach for object-relational

database design using UML. Informatik - Forschung und Entwicklung, 18(3), 152-164.

225. Marcos, E., De Castro, V., Vela, B. (2004). Representing Web Services with UML: A Case

Study, presented at First International Conference on Service Oriented Computing

(ICSOC‘03), Trento, Italy.

226. Marcos, E., Vela, B., & Cavero, J. M. (2001). Extending UML for Object-Relational

Database Design. In UML 2001 - The Unified Modeling Language. Modeling Languages,

Concepts, and Tools. 4th International Conference, Toronto, Canada, October 2001,

Proceedings (Vol. 2185, pp. 225-239): Springer.

227. Marjan, M., Jan, H. & Anthony, M. S. (2005). When and how to develop domain-specific

languages. ACM Computer Surveys, 37(4), 316-344.

228. Marković, S., & Baar, T. (2008). Refactoring OCL annotated UML class diagrams.

Software and Systems Modeling, 7(1), 25-47.

229. Marschall, F., & Braun, P. (2003). Model Transformations for the MDA with BOTL. Paper

presented at the Workshop on Model Driven Architecture: Foundations and Applications.

MDAFA 2003., Enschede, The Netherlands.

230. Mayo Clinic. (2004) Analyze Software. http://www.mayo.edu/ bir/Software/ Analyze/

Analyze.html, 2004.

231. Mazón, J.-N., & Trujillo, J. (2008). An MDA approach for the development of data

warehouses. Decission Support Systems, 45(1), 41-58.

232. McTaggart, R. (1991). Principles of Participatory Action Research. Adult Education

Quarterly, 41(3).

233. Megginson Technologies Ltd. (2004). SAX. Retrieved July 30,2004, from:

http://www.saxproject.org/.

234. Meliá, S., Gómez J. & Serrano J.L. (2007). WebTE: MDA Transformation Engine for Web

Applications, in Proc. 7th Int. Conf. Web Engineering (ICWE 2007), Springer LCNS 4607,

Como, Italy.

http://www.mayo.edu/%20bir/Software/%20Analyze/%20Analyze.html
http://www.mayo.edu/%20bir/Software/%20Analyze/%20Analyze.html

390 Juan M. Vara

235. Meliá, S. & Gómez, J. (2006). The WebSA Approach: Applying Model-Driven

Engineering to Web Applications. Journal of Web Engineering, 5(2), 121–149.

236. Meliá, S., Gomez, J. (2006) UPT. A Graphical Transformation Language based on a UML

Profile. In: Proceedings of European Workshop on Milestones, Models and Mappings for

Model-Driven Architecture (3M4MDA 2006). 2nd European Conference on Model Driven

Architecture (EC-MDA 2006), Bilbao, Spain.

237. Meliá, S., & Gómez, J. (2005). Applying Transformations to Model Driven Development of

Web Applications. In S. B. Heidelberg (Ed.), ER 2005 Workshops: Perspectives in

Conceptual Modeling (Vol. 3770/2005, pp. 63-73).

238. Mellor, S., & Balcer, M. (2002). Executable UML: A Foundation for Model-Driven

Architecture. Indianapolis, IN: Addison-Wesley Professional.

239. Mellor, S., Scott, K., Uhl, A., & Weise, D. (2004). MDA Distilled. Paper presented at the

Advances in Object-Oriented Information Systems: OOIS 2002 Workshops, Montpellier,

France.

240. Mellor, S. (2006). Demystifying UML. Embedded Systems Design, 19(3), 22-35.

241. Mernik, M., Heering, J., & Sloane, A. M. (2005). When and how to develop domain-

specific languages. ACM Computer Surveys, 37(4), 316-344.

242. Meservy, T. O., & Fenstermacher, K. D. (2005). Transforming software development: an

MDA road map. Computer, 38(9), 52-58.

243. MetaCase. MetaEdit+ [Software]. Available at http://www.metacase.com/mep/.

244. Microsoft Corporation (2000). Active Server Pages. Retrieved from

http://msdn.microsoft.com/en-us/library/aa286483.aspx, October, 2007.

245. Microsoft Corporation. (2008). Microsoft SQL Server 2008.

http://www.microsoft.com/spain/sql/

246. Miller, J., Mukerji, J. (Eds.), MDA Guide Version 1.0, OMG Document - omg/2003-05-01.

247. MOFLON development team. MOFLON website, 2007. available ay

http://www.moflon.org.

248. Ministerio de Administraciones Públicas. Metrica III. Retrieved from:

http://www.csi.map.es/csi/metrica3/, February, 2008.

249. Molina, F., Lucas, F. J., Toval, J. A., Vara, J. M., Cáceres, P., & Marcos, E. (2008). Toward

Quality Web Information Systems Through Precise Model Driven Development. In C.

Calero, M. A. Moraga & M. Piattini (Eds.), Handbook of Research on Web Information

Systems Quality (pp. 344-363). Hershey PA, USA: Information Science Reference - IGI

Global.

250. Moore, B., Dean, D., Gerber, A., Wagenknecht, G., & Vanderheyden, P. (2004). Eclipse

Development using the Graphical Editing Framework and the Eclipse Modeling

Framework: IBM.COM.

251. Moreno, N., Fraternali, P., & Vallecillo, A. (2007). WebML modelling in UML. IET

Software, 1(3), 67-80.

252. Moreno, N., Romero, J., & Vallecillo, A. (2008). An overview of Model-Driven Web

Engineering and the MDA. In Web Engineering: Modelling and Implementing Web

Applications (pp. 353-382), London: Springer.

253. Moreno, N., & Vallecillo, A. (2008). Towards interoperable Web engineering methods.

Journal of American Society for Information Science and Technology, 59(7), 1073-1092..

254. Muller, P.-A., Fleurey, F., & Jézéquel, J.-M. (2005). Weaving Executability into Object-

Oriented Meta-languages. Paper presented at the 8th International Conference on Model

Driven Engineering Languages and Systems, MoDELS 2005, Montego Bay, Jamaica.

255. Muller, P.-A., Fleurey, F., Fondement, F., Hassenforder, M., Schneckenburger, R., Gérard,

S., et al. (2006). Model-Driven Analysis and Synthesis of Concrete Syntax. Paper presented

at the Model Driven Engineering Languages and Systems - MoDELS/UML 2006., Genova,

Italy.

256. Murzek, M., & Kramler, G. (2007). Business Process Model Transformation Issues - The

Top 7 Adversaries Encountered at Defining Model Transformations. Paper presented at the

International Conference on Enterprise Information Systems (ICEIS 2007), Milan, Italy.

http://msdn.microsoft.com/en-us/library/aa286483.aspx
http://www.moflon.org/
http://www.csi.map.es/csi/metrica3/

Bibliography 391

257. Musset, J. (2009). A standard alternative for code generation: Acceleo MTL. EclipseCON

2009, Santa Clara (CA), USA.

258. NetBeans. Metadata Repository (MDR) Project Home. Retrieved July 16, 2007, from:

http://mdr.netbeans.org/

259. NoMagic Inc. (2009). MagicDraw UML [Software]. Available from

http://www.magicdraw.com/.

260. Nunes, D. A., & Schwabe, D. (2006). Rapid prototyping of web applications combining

domain specific languages and model driven design. Paper presented at the 6th

International Conference on Web engineering (ICWE 2006), Palo Alto, California, USA.

261. Object Management Group (OMG). (2007). Business Process Model and Notation (BPMN)

2.0 RFP. OMG Document - BMI/2007-06-05.

262. Oldevik, J., Neple, T., Grønmo, R., Aagedal, J., & Berre, A.-J. (2005). Toward

Standardised Model to Text Transformations. In Model Driven Architecture – Foundations

and Applications (pp. 239-253).

263. OMG, The CWM Specification. OMG Document - ad/01-02-01, ad/01-02-02, ad/01-02-03.

264. OMG, Model Driven Architecture. A technical perspective. OMG document -ormsc/01-07-

01

265. OMG. The Meta Object Facility (MOF) Core Specification, Version 2.0. OMG Document -

formal/06-01-01

266. OMG, MOF Model to Text Transformation Language (MOFM2T), 1.0. OMG Document -

formal/08-01-16

267. OMG, MOF Model to Text Transformation Language. RFP. Retrieved from

http://www.omg.org/cgi-bin/doc?ad/04-04-07

268. OMG, Object Constraint Language Specification (OCL), version 2.0. OMG Document -

formal/2006-05-01

269. OMG. Software Process Engineering Meta-Model (SPEM), version 2.0. OMG Document -

formal/2008-04-01

270. OMG. UML 2.1.1 Formal Specification. OMG Document - formal/07-02-03.

271. OMG. UML Diagram Interchange, v1.0. OMG Document - formal/2006-04-04

272. OMG. UML 1.5 Formal Specification. OMG Document - formal/03-03-01.

273. OMG. MOF 2.0 Query/View/Transformation (QVT), V1.0. OMG Document - formal/08-

04-03.

274. OMG. MOF 2.0 Query/Views/Transformations RFP, OMG document ad/2002-04-10

(2002).

275. OMG - XML Metadata Interchange (XMI) specification V2.1.1. OMG Document -

formal/2007-12-01.

276. OMG. (2009). OMG Announces Model Interchange Working Group. Retrieved July, 20,

from http://www.omg.org/news/releases/pr2009/07-08-09.htm.

277. openArchitectureWare (2008). openArchitectureWare User guide (Version 4.3) Retrieved

February, 4, 2009, from

http://www.openarchitectureware.org/pub/documentation/4.3.1/openArchitectureWare-

4.3.1-Reference.pdf.

278. openMDX. (2008). openMDX - the leading open source MDA platform [Software].

Available at http://www.openmdx.org/

279. Oracle Corporation. Oracle XML DB. Technical White Paper. Retrieved from:

www.otn.com, January, 2003.

280. Oracle Corporation. Oracle10g. SQL Reference, 2000.

281. Oracle Corporation. (2008). Oracle Designer 10g Release 2. [Software] Available from

http://www.oracle.com/technology/products/designer/index.html

282. Oracle Corporation (2008). Oracle Database 11g [Software]. Available from

http://www.oracle.com/global/lad/database/index.html.

283. Oxygen (2008). Oxygen XML Editor [Software]. Available from

http://www.oxygenxml.com/xml_schema_editor.html.

http://www.magicdraw.com/
http://www.oxygenxml.com/xml_schema_editor.html

392 Juan M. Vara

284. Paiano, R., & Pandurino, A. (2004). WAPS: Web Application Prototyping System. Paper

presented at the International Conference on Web Engineering, ICWE 2004, Munich,

Germany.

285. Papazoglou, M., & van den Heuvel, W.-J. (2007). Service oriented architectures:

approaches, technologies and research issues. The VLDB Journal The International Journal

on Very Large Data Bases, 16(3), 389-415.

286. Parnas, D. L. (1972). On the Criteria To Be Used in Decomposing Systems into Modules.

Communications of the ACM, 15(12), 1053-1058.

287. Partsch, H., & Steinbrüggen, R. (1983). Program Transformation Systems. ACM Computing

Surveys, 15(3), 199-236.

288. Pastor, O., Hayes, F., & Bear, S. (1992). Oasis: An object-oriented specification language.

Paper presented at the 4th International Conference on Advanced Information Systems

Engineering - CAiSE'92, Manchester, UK.

289. Pastor, O., Insfrán, E., Pelechano, V., Romero, J., & Merseguer, J. (1997). OO-Method: An

OO software production environment combining conventional and formal methods. Paper

presented at the Conference on Advanced Information Systems Engineering, CAiSE'97,

Barcelona, Spain.

290. Patrascoiu, O. (2004). YATL:Yet Another Transformation Language - Reference Manual

Version 1.0. Kent, Great Britain: Computing Laboratory, University of Kent. Retrieved

from http://www.cs.kent.ac.uk/pubs/2004/1862

291. Philip, M., Schroeder, A., & Koch, N. (2008). MDD4SOA: Model-Driven Service

Orchestration. Paper presented at the 12th International IEEE Enterprise Distributed Object

Computing Conference - EDOC 2008, Munich, Germany.

292. PostgreSQL Global Development Group. PostgreSQL Database. http://www.postgresql.org/

293. Powell, A. (2004). Generate code with Eclipse's Java Emitter Templates. IBM

developerWorks.

294. Quest Software. TOAD (TOol for Application Developers) [Software]. Available from

http://www.toadsoft.com/

295. Ravi, M. & Sandeepan, B. (2003). XML schemas in Oracle XML DB. Paper presented at the

Proceedings of the 29th international conference on Very Large Data Bases (VLDB 2003),

BErling, Germany.

296. Reddy, S., Mulani, J., & Bahulkar, A. (2000). Adex - a meta modeling framework for

repository-centric systems building. Paper presented at the International Conference on

Advances in Data Management (COMAD-2000), Pune, India.

297. Robbins, J. E., & Redmiles, D. F. (2000). Cognitive support, UML adherence, and XMI

interchange in Argo/UML. Information and Software Technology, 42(2), 79-89.

298. Roldán, V., Sánchez-Barbudo, A., & Ávila-García, O. (2008). Overcoming the Difficulties

of Implementing a QVT Execution Solution. In OMG (Ed.), Symposium on Eclipse Open

Source Software and OMG Open Specifications. Ottawa, Ontario, Canada: OMG

Document: omg/08-06-47.

299. Romero, J. R., Rivera, J. E., Durán, F. & Vallecillo, A. (2007). Formal and Tool Support for

Model Driven Engineering with Maude. Journal of Object Technology, 6(9), 187-207.

300. Royce, W. W. (1987). Managing the development of large software systems: concepts and

techniques. Paper presented at the 9th international conference on Software Engineering,

Monterey, California, United States.

301. Ruby, S., Thomas, D., & Heinemier Hansson, D. (2009). Agile Web Development with

Rails (Third ed.): The Pragmatic Bookshelf.

302. Ruiz, M., Valderas, P. & Pelechano, V. (2007). Providing Methodological Support to

Incorporate Presentation Properties in the Development of Web Services. In E-Commerce

and Web Technologies: 8th International Conference, EC-Web 2007 (Vol. 4655/2007, pp.

139-148). Regensburg, Germany: Springer Berlin / Heidelberg.

303. Saavedra, R., H. , & Smith, A., J. (1996). Analysis of benchmark characteristics and

benchmark performance prediction. ACM Transactions on Computer Systems, 14(4), 344-

384.

http://www.cs.kent.ac.uk/pubs/2004/1862
http://www.postgresql.org/

Bibliography 393

304. Salay, R., Chechik, M., Easterbrook, S., Diskin, Z., McCormick, P., Nejati, S., et al. (2007).

An Eclipse-based tool framework for software model management. Paper presented at the

OOPSLA 2007 - Workshop on Eclipse Technology eXchange - Eclipse'07, Montreal,

Quebec, Canada.

305. Sánchez, V. (2008). Making a case for supporting a byte-code model transformation

approach. In OMG (Ed.), Symposium on Eclipse Open Source Software and OMG Open

Specifications. Ottawa, Ontario, Canada: OMG Document omg/08-06-48.

306. Sanchez-Barbudo, A., Sanchez, V., Roldán, V., Estévez, A., & Roda-García, J. L. (2008).

Providing an Open Virtual-Machine-based QVT Implementation. Paper presented at the V

Taller sobre Desarrollo de Software Dirigido por Modelos (DSDM 2008) in XII Jornadas

de Ingeniería del Software y Bases de Datos (JISBD 2008), Gijon, Spain.

307. Sánchez Cuadrado, J., García Molina, J., & Menarguez Tortosa, M. (2006). RubyTL: A

Practical, Extensible Transformation Language. Paper presented at the European

Conference on Model Driven Architecture - Foundations and Applications (ECMDA-FA

2006), Bilbao, Spain.

308. Sánchez Cuadrado, J., & García Molina, J. (2007). Building Domain-Specific Languages

for Model-Driven Development. IEEE Software, 24(5), 48-55.

309. Sánchez Cuadrado, J., & García Molina, J. (2008). Approaches for Model Transformation

Reuse: Factorization and Composition. Paper presented at the 1st International conference

on Theory and Practice of Model Transformations (ICMT 2008), Zurich, Switzerland.

310. Schauerhuber, A., Wimmer, M., & Kapsammer, E. (2006). Bridging existing Web modeling

languages to model-driven engineering: a metamodel for WebML. Paper presented at the

Second international workshop on model driven web engineering (MDWE'06) at the sixth

International Conference on Web engineering (ICWE), Palo Alto, California.

311. Scheidgen, M. (2007, 27 June). Problems for Textual Model Notations. Message posted to

http://metabubble.blogspot.com/.

312. Scheidgen, M. (2008). Textual Modelling Embedded into Graphical Modelling. Paper

presented at the 4th European Conference on Model Driven Architecture – Foundations and

Applications, ECMDA-FA 2008, Berlin, Germany.

313. Schürr, A. (1995). Specification of Graph Translators with Triple Graph Grammars. Paper

presented at the 20th International Workshop on Graph-Theoretic Concepts in Computer

Science (WG`94), Herrsching, Germany.

314. Schwabe, D., & Rossi, G. (1998). An Object Oriented Approach to Web-Based Application

Design. Theory and Practice of Object Systems, 4(4), 207-225.

315. Seidewitz, E. (2003). What models mean. IEEE Software, 20(5).

316. Selic, B. (2003). The pragmatics of Model-Driven development, IEEE Software, 20(5), 19-

25.

317. Selic, B. (2005) What’s new in UML 2.0?. IBM Rational Software. April, 2005.

318. Selic, B. (2008). MDA Manifestations. UPGRADE, IX(2), 12-16.

319. Selic, B. (2008). Personal reflections on automation, programming culture, and model-

based software engineering. Automated Software Engineering, 15(3), 379-391.

320. Sendall, S., & Kozaczynski, W. (2003). Model Transformation–the Heart and Soul of

Model-Driven Software Development. IEEE Software, 20(5), 42-45.

321. Skinner, C. (2008, June 25). DSL + UML = Pragmatic Modeling. Retrieved from

http://blogs.msdn.com/camerons/default.aspx.

322. Slack, S. E. (2008). The business analyst in model-driven architecture. IBM

developerWorks. Retrieved from

http://www.ibm.com/developerworks/architecture/library/ar-bamda/

323. Smolander, K., Lyytinen, K., Tahvanainen, V.-P., & Marttiin, P. (1991). MetaEdit— A

flexible graphical environment for methodology modelling. In Third International

Conference on Advanced Information Systems Engineering. CAISE'91 (pp. 168-193).

Trondheim, Norway: Springer.

324. Sodius. (2008). MDworkbench [Software] Available from http://www.mdworkbench.com/.

http://blogs.msdn.com/camerons/default.aspx

394 Juan M. Vara

325. Software AG. (2008). Tamino XML Server [Software]. Available from

http://www.softwareag.com/tamino/.

326. Solmi, R. (2008). The Whole Platform: a Language Workbench for Eclipse. On

EclipseCON 2008. Santa Clara, California (USA).

327. Sparx Systems. Enterprise Architect 7.1.

http://www.sparxsystems.com.au/products/ea/index.html

328. Stahl, T., Volter, M., & Czarnecki, K. (2006). Model-Driven Software Development:

Technology, Engineering, Management: John Wiley & Sons.

329. Steel, J., & Jézéquel, J.-M. (2007). On Model Typing. Journal of Software and Systems

Modeling (SoSyM), 6(4), 401-414.

330. Stevens, P. (2008). A Landscape of Bidirectional Model Transformations. Paper presented

at the International Summer School on Generative and Transformational Techniques in

Software Engineering II, GTTSE 2007, Braga, Portugal.

331. Stonebraker, M. & Brown, P. (1999). Object-Relational DBMSs. Tracking the Next Great

Wave. Morgan Kauffman.

332. Strommer, M., Murzek, M., & Wimmer, M. (2007). Applying Model Transformation By-

Example on Business Process Modeling Languages. Paper presented at the Advances in

Conceptual Modeling - Foundations and Applications. (ER 2007 Workshops), Auckland,

New Zealand.

333. StylusStudio (2008). XML Schema Tools [Software]. Available from

http://www.stylusstudio.com/xml_schema.html.

334. Sun Microsystems (1999). Java Server Pages Technology. Retrieved from

http://java.sun.com/products/jsp/, November 2007.

335. Sun Microsystems (2001). Core J2EE Patterns - Data Access Object. Retrieved 20

November, 2005, from

http://java.sun.com/blueprints/corej2eepatterns/Patterns/DataAccessObject.html.

336. Sun Microsystems. (2004). Javadoc 1.5.0. Retrieved June 2007, from

http://java.sun.com/j2se/javadoc/.

337. Sun Microsytems (2007). MySQL AB [Software]. Available from http://www.mysql.com/

338. Sun Microsystems. Java Metadata Interface (JMI) Specification. (June, 2002). Retrieved,

January, 2006, from: http://java.sun.com/products/jmi/index.jsp.

339. Szurszewski. J. (2003). We Have Lift-off: The Launching Framework in Eclipse. Eclipse

Corner Article. Retrieved 5 November, 2007, from: http://www.eclipse.org/articles/Article-

Launch-Framework/launch.html.

340. Tarr, P., Ossher, H., Harrison, W. & Sutton Jr, S. M. (1999). N degrees of separation:

Multi-dimensional separation of concerns. Paper presented at the 21st International

Conference on Software Engineering (ICSE 99), Los Angeles, California, United States.

341. Tikhomirov, A., & Shatali, A. (2008). Introduction to the Graphical Modeling Framework.

Tutorial at the EclipseCON 2008. Santa Clara, California.

342. Tratt, L. (2005). Model transformations and tool integration. Journal of Software and

Systems Modeling, 4(2), 112-122.

343. TRDCC. (2007). ModelMorf: a model transformer. Retrieved 16 October 2008, from

http://www.tcs-trddc.com/ModelMorf/index.htm

344. Uhl, A. (2008). Model-Driven Development in the Enterprise. IEEE Software, 25(1)

345. Utz, W., & Wolfgang, K. (2003). An analysis of XML database solutions for the

management of MPEG-7 media descriptions. ACM Computer Surveys, 35(4), 331-373.

346. Vallecillo, A. (2008). A Journey through the Secret Life of Models. Paper presented at the

Perspectives Workshop: Model Engineering of Complex Systems (MECS), Dagstuhl,

Germany.

347. Valverde, F., Valderas, P., Fons, J., & Pastor, O. (2007). A MDA-Based Environment for

Web Applications Development: From Conceptual Models to Code. Paper presented at the

6th International Workshop on Web-Oriented Software Technologies (IWWOST), Como,

Italy.

http://www.softwareag.com/tamino/
http://www.stylusstudio.com/xml_schema.html
http://java.sun.com/products/jsp/
http://java.sun.com/blueprints/corej2eepatterns/Patterns/DataAccessObject.html
http://www.mysql.com/
http://java.sun.com/products/jmi/index.jsp
http://www.tcs-trddc.com/ModelMorf/index.htm

Bibliography 395

348. Van Der Sluijs, K., Houben, G. J., Broekstra, J., & Casteleyn, S. (2006). Hera-S: Web

Design using Sesame. Paper presented at the 6th International Conference on Web

Engineering (ICWE'06), Palo Alto, California (USA).

349. Van Gorp, P. (2008). Model-Driven Development of Model Transformations. Paper

presented at the 4th International Conference on Graph Transformations ICGT 2008,

Leicester, United Kingdom.

350. Van Gorp, P., Keller, A., & Janssens, D. (2009). Transformation Language Integration

Based on Profiles and Higher Order Transformations. Paper presented at the First

International Conference on Software Language Engineering, SLE 2008, Toulouse, France.

351. Vanhooff, B., Ayed, D., & Berbers, Y. (2006). A Framework for Transformation Chain

Design Processes. Paper presented at the First European Workshop on Composition of

Model Transformations - CMT 2006; European Conference on Model Driven Architecture

(ECMDA-FA 2006), Bilbao, Spain.

352. Vara, J. M., Acuña, C. J., Marcos, E., & Lopez Sanz, M. (2004). Desarrollo de un Sistema

de Información web: una experiencia con Oracle XMLDB. CUORE. Círculo de Usuarios

de Oracle España, 27, 3-12.

353. Vara, J.M. De Castro, V., Marcos, E. (2005). WSDL Automatic Generation from UML

Models in a MDA Framework. International Journal of Web Services Practices, 1 (1-2), 1-

12.

354. Vara, J. M., Vela, B., & Marcos, E. (2006). Oracle XML DB como repositorio integrado

para herramientas CASE. Aplicación al desarrollo de MIDAS-CASE, una herramienta

MDA. Paper presented at the XVI Congreso Nacional Usuarios de Oracle (CUORE).

355. Vara, J. M., Vela, B., Cavero, J. M., & Marcos, E. (2007). Model Transformation for

Object-Relational Database development. SAC '07: Proceedings of the 2007 ACM

symposium on Applied computing, 1012-1019.

356. Vara, J.M., Didonet Del Fabro, M., Joualt, F. & Bezivin, J. (2008). Model Weaving Support

for Migrating Software Artifacts from AUTOSAR 2.0 to AUTOSAR 2.1. Int. Conf. on

Embedded Real Time Software (ERTS 2008), Toulose (France), 2008.

357. Vara, J. M., De Castro, V., Didonet Del Fabro, M., & Marcos, E. (2009). Using Weaving

Models to automate Model-Driven Web Engineering proposals. International Journal of

Computer Applications in Technology (To be published).

358. Vara, J. M., Vela, B., Bollati, V., & Marcos, E. (2009). Supporting Model-Driven

Development of Object-Relational Database Schemas: a Case Study Paper presented at the

ICMT2009 - International Conference on Model Transformation, Zurich, Switzerland.

359. Varró, D., & Pataricza, A. (2003). VPM: A visual, precise and multilevel metamodelling

framework for describing mathematical domains and UML (The Mathematics of

Metamodelling is Metamodelling Mathematics). Software and Systems Modeling, 2(3),

187-210.

360. Varró, D., & Pataricza, A. (2004). Generic and Meta-Transformations for Model

Transformation Engineering. Paper presented at the 7th International Conference on

Modelling Languages and Applications - UML 2004, Lisbon, Portugal.

361. Varro, G., Schur, A., & Varro, D. (2005). Benchmarking for Graph Transformation. Paper

presented at the IEEE Symposium on Visual Languages and Human-Centric Computing

2005, VL/HCC 2005, Dallas, USA.

362. Vdovjak, R., Frasincar, F., Houben, G. J., & Barna, P. (2003). Engineering semantic web

information systems in HERA. Journal of Web Engineering, 2(1-2), 3-26.

363. Vela, B. (2003). MIDAS/DB: A Model-Driven Development Methodology for the

structural dimension of Web Information Systems. University Rey Juan Carlos, MADRID.

364. Vela B., Marcos E. (2003). Extending UML to represent XML Schemas. The 15th

Conference On Advanced Information Systems Engineering. CAISE‘03 FORUM. Ed: J.

Eder, T. Welzer. Short Paper Proceedings. Klagenfurt/Velden (Austria). 16-20 June 2003.

365. Vela, B., Acuña, C. J., & Marcos, E. (2004). A Model Driven Approach for XML Database

Development. In Conceptual Modeling - ER 2004, 23rd International Conference on

Conceptual Modeling (Vol. 3288, pp. 780-794): Springer.

396 Juan M. Vara

366. Vela, B., Fernandez Medina, E., Marcos, E., & Piattini, M. (2006). Model driven

development of secure XML databases. ACM SIGMOD Record, 35(3), 22-27.

367. Verner, L. BPM: The Promise and the Challenge. Queue of ACM, 2(4). pp. 82-91

368. Völter, M. & Kolb, B. (2006). Best practices for model-to-text transformations, Eclipse

Summit Europe 2006 - Modelling Symposium. Esslingen, Germany.

369. Völter, M. (2006). openArchitectureWare a flexible Open Source platform for model-driven

software development. Position paper at Eclipse Technology eXchange workshop (eTX) at

ECOOP‘06, Nantes, France.

370. Völter, M. (2008). MD* Best Practices. Retrieved February 20, 2008, from

http://www.voelter.de.

371. Vojtisek, D., & Jézequél, J.-M. (2004). MTL and Umlaut NG - Engine and Framework for

Model Transformation. ERCIM News(58).

372. Wadswroth, Y. What is Participatory Action Research? Action Research International.

Recuperado de: http://www.scu.edu.au/schools/sawd/ari/ari-wadsworth.html, 2005.

373. Wagelaar, D. (2008). Composition Techniques for Rule-Based Model Transformation

Languages Paper presented at the 1st International conference on Theory and Practice of

Model Transformations (ICMT 2008), Zurich, Switzerland.

374. Warmer, J. & Kleppe, A. (2003). The Object Constraint Language: Getting your models

ready for MDA, 2
nd

. Edition. Addison Wesley.

375. Watson, A. (2008). A Brief History of MDA. UPGRADE, IX(2), 7-12.

376. Webratio. URL, http://www.webratio.com. Last time visited: 29th of January 2007.

377. Weis, T., Ulbrich, A. & Geihs, K. (2003). Model Metamorphosis. IEEE Software, 20(5),

46-51.

378. Westermann, U., & Lass, W. (2003). An Analysis of XML Database Solutions for the

Management of MPEG-7 Media Descriptions. ACM Computing Surveys, 35(4), 331-373.

379. Willink, E. D. (2008). On Challenges for a Graphical Transformation Notation and the

UMLX Approach. Electronic Notes in Theoretical Computer Science, 211, 171-179.

380. Wimmer, M., & Kramler, G. (2006). Bridging Grammarware and Modelware. Paper

presented at the Satellite Events at the MoDELS 2005 Conference, Montego Bay, Jamaica.

381. Winter, A., Kullbach, B. & Riediger, V. (2002). An Overview of the GXL Graph Exchange

Language. Paper presented at the Software Visualization, International Seminar, Dagstuhl

Castle, Germany.

382. W3C (1999). XML Path Language (XPath) Version 1.0. Retrieved from

http://www.w3.org/TR/xpath, December 2007.

383. W3C (2003). Web Services Description Language (WSDL) Version 1.2. Retrieved from:

http://www.w3.org/TR/wsdl12/, November, 2005.

384. W3C. (2004). XML Extensible Markup Language (XML) 1.0 (Third Edition). W3C

Recommendation. Bray, T., Paoli, J, Sperberg-McQu4een, C. M., Maler, E. and Yergeau F.

Retrieved from: http://www.w3.org/TR/2004/REC-xml-20040204/, 2004.

385. W3C XML Schema Working Group. (2001). XML Schema Parts 0-2:[Primer, Structures,

Datatypes]. W3C Recommendation. Retrieved from: http://www.w3.org/TR/xmlschema-0/,

http://www.w3.org/TR/xmlschema-1/ y http://www.w3.org/TR/xmlschema-2/, 2001.

386. W3C (2004). W3C Document Object Model. Retrieved July 30, 2006, from:

http://www.w3.org/DOM/.

387. W3C. (2004). RDF/XML Syntax Specification. Retrieved July 30, 2006, from:

http://www.w3.org/TR/2004/REC-rdf-syntax-grammar-20040210/

388. W3C. (2004). RDF Vocabulary Description Language 1.0: RDF Schema. Retrieved July

30, 2006, from: http://www.w3.org/TR/rdf-schema/

389. W3C. (2007). XSL Transformations (XSLT) Version 2.0. W3C Recommendation. Retrieved

December 12, 2008, from: http://www.w3.org/TR/xslt20/

390. W3C. (2008). Definition of the XML document type declaration from Extensible Markup

Language (XML) 1.0 (15th Edition). Retrieved December 12, 2008, from:

http://www.w3.org/TR/REC-xml/#dt-doctype.

http://www.voelter.de/
http://www.w3.org/TR/xpath
http://www.w3.org/TR/2000/REC-xml-20001006/
http://www.w3.org/TR/2000/REC-xml-20001006/
http://www.w3.org/TR/2000/REC-xml-20001006/
http://www.w3.org/DOM/

Bibliography 397

391. XMLmodeling.com (2008). hyperModel [Software]. Available from

http://xmlmodeling.com/

http://xmlmodeling.com/

Acronyms

F Acronyms

Table of Acronyms

ACRONYM DESCRIPTION

AMW ATLAS Model Weaver

AST Abstract Syntax Tree

ATL ATLAS Transformation Language

BNF Backus-Naur-Form

CASE Computer Aided Software Engineering

DB DataBase

DBMS DataBase Management System

DOM Document Object Model

DSL Domain Specific Language

DTD Document Type Definition

EMF Eclipse Modelling Framework

EMP Eclipse Modelling Project

GMF Generic Modeliing Framework

GPL General Purpose Language

GXL Graph eXchange Language

IDE Integrated Development Environtment

INRIA
Institut National de Recherche en Informatique et en

Automatique

JET Java Emitter Templates

JMI Java Metadata Interface

JSP Java Server Pages

LHS Left Hand Side

402 Juan M. Vara

ACRONYM DESCRIPTION

M2DAT MIDAS MDA Tool

M2DAT-DB MIDAS MDA Tool for DataBases

M2M Model to Model

M2T Model to Text

MBSE Model-Based Software Engineering

MDA Model-Driven Architecture

MDE Model-Driven Engineering

MDSD Model-Driven Software Development

MDWE Model-Driven Web Engineering

MOF Meta-Object Facility

MVC Model-View-Controller

NAC Negative Application Condition

OCL Object Constraint Language

OMG Object Management Group

OR Object-Relational

ORDB Object-Relational DataBase

PDM Platform Dependent Model

PIM Platform Independent Model

PSM Platform Specific Model

RDBMS Relational DataBase Management System

RDF Resource Description Framework

RDFS Resource Description Framework Schema

RHS Right Hand Side

SAX Simple API for XML

SOAP Simple Object Access Protocol

Acronyms 403

ACRONYM DESCRIPTION

SQL Structured Query Language

TGG Triple Graph Grammars

UI User Interface

UML Unified Modelling Language

QVT Query/View/Transformation

W3C World Wide Web Concortium

WSDL Web Services Description Language

XML eXtensible Markup Language

XSD XML Schema Definition

	INDEX
	List of Figures
	List of Tables
	1. Introduction
	Problem Statement and Approach
	Hypothesis and Objectives
	Research Context
	Research Projects and Stages

	Research Method
	Resolution and Validation Method
	First Iteration: MIDAS-CASE development
	Second Iteration: M2DAT development

	Thesis Outline

	2. State of the Art
	Previous Concepts
	MD* Acronyms
	On CASE Tools, Frameworks and Components
	Models and Metamodels
	Concrete Syntax, Abstract Syntax and Semantics
	Metamodelling Frameworks
	Model Transformation
	Weaving Models
	Code Generation
	Domain-Specific Modelling
	What Model-Driven Engineering is
	Model-Driven Architecture
	MOF
	UML
	XMI
	OCL
	QVT

	Eclipse
	The Eclipse Modelling Project
	The Eclipse Modelling Framework

	Tools supporting MDE tasks
	Evaluation Criteria
	AndroMDA
	ATOM3
	DOME
	DSL Tools
	Eclipse Modelling Framework
	EMFATIC
	GME
	Kermeta
	MetaEdit+
	MOFLON
	MOMENT
	openArchitectureWare
	TEF
	Whole Platform
	XMF-Mosaic
	Others
	Summary and Discussion

	Model-Transformation Languages
	Previous Works on Classifying Model Transformation proposals
	Model Transformation Approaches
	Evaluation Criteria

	Model-to-Model Transformation Languages
	AGG
	ATLAS Transformation Language
	ATOM3
	GReAT
	Kermeta
	MOFLON-FUJABA
	MOLA
	RubyTL
	Tefkat
	VIATRA
	QVT
	QVT-Relations Implementers
	QVT-Operational Mappings Implementers
	QVT Implementers Summary
	Others

	Model-to-Text Transformation Languages
	Acceleo
	Acceleo/MTL
	AndroMDA
	Java Emitter Templates
	MOFScript
	Xpand

	Summary & Discussion
	On Model-to-Model Transformation Languages
	On Model-to-Text transformation Languages

	Model-Driven Software Development Tools
	Evaluation Criteria
	Tools for Model-Driven Development of Web Information Systems
	ArgoUWE (MagicUWE)
	WebRatio
	WebTE
	OOWS Suite
	HyperDE
	Others

	Tools for (Model-Driven) Development of (Modern) DB Schemas
	Altova XML
	Oxygen XML Editor
	Stylus Studio 2008
	hyperModel
	Rational Rose Data Modeler
	Enterprise Architect
	ERwin
	Others

	Summary & Discussion
	On Tools supporting Model-Driven Development of Web Information Systems
	On Tools supporting Model-Driven Development of (Modern) Database Schemas

	3. 1st Iteration: MIDAS-CASE
	MIDAS-CASE: a stand-alone CASE tool for MDSD of WIS
	MIDAS-CASE Architecture
	Presentation
	Logic
	Parsers
	Transformation

	Persistence
	Using an XML Database as Models Repository

	MIDAS-CASE Prototypes
	Modelling Web Services with Extended UML
	WSDL Metamodel
	UML Profile for WSDL

	MIDAS-CASE4WS Case Study: a Web Service for validating e-mail addresses
	Distinguishing syntax from semantics

	Modelling XML Schemas with Extended UML
	XML Schema Metamodel
	UML Profile for XML Schema

	MIDAS-CASE4XS Case Study: a Web Information System for medical images management
	Code Generation

	Developing MIDAS-CASE: Technical Issues
	Presentation
	Logic and Persistence

	Adding more Functionality to MIDAS-CASE

	Lessons Learned
	User Interface Development
	XML Schema as (meta)modelling language
	Separating the Abstract Syntax from the Concrete Syntax
	UML Profiles became DSLs at the Time of Implementation
	Model-Transformation Language
	Separation of Concerns: Modularization

	4. Solution: M2DAT Architecture and Technical Design
	M2DAT Overview
	M2DAT Conceptual Architecture
	M2DAT Technical Design

	Modelling and Metamodelling
	UML Profiles
	DSLs
	Discussion
	Selecting a Metamodelling Framework: EMF
	Combining DSLs with UML Modelling
	Interoperability
	Extensibility

	Development of Graphical Editors
	JAVA Graph Components
	GMF
	Selecting a Technology to Develop Model Editors
	Compromise between development effort and result
	Interoperability
	On the relative relevance of diagrammers in MDSD

	Model Transformations: the Kernel of a MDSD process
	GPLs vs DSLs
	Selecting a Model-to-Model Transformation Approach: the Hybrid Approach
	Discarding less commonly adopted approaches
	Discarding Graph-Based approaches
	Discarding purely Declarative and Imperative approaches

	Selecting a Transformation Language: the ATLAS Transformation Language

	Introducing Design Decisions on Model Transformations
	Selecting an Approach to Drive Model Transformations: Annotation Models
	Selecting a Technology to Create Annotation models: AMW

	Code Generation: the last step in the MDSD process
	Selecting a Code Generation Approach
	Selecting a Model-to-Text Transformation Language: the MOFScript language

	Model Validation
	Selecting a Model Validation Approach
	Selecting a Model Validation Technology: EVL

	Development Process for M2DAT Modules
	Abstract Syntax Definition: using Ecore to define new Metamodels in M2DAT
	Concrete Syntax Definition: using EMF and GMF to develop Graphical Editors in M2DAT
	Model Transformations Development in M2DAT
	Using graph grammars to formalize model transformations
	Coding mapping rules with the ATL

	Improvement of Model Transformations: Introducing Design Decisions in M2DAT transformations
	ATLAS Model Weaver
	Using weaving models as annotation models on M2DAT

	Code Generation: model-to-text transformations in M2DAT
	Automatic Model Validation: supporting Model-Checking in M2DAT with EVL

	5. Validation: M2DAT-DB
	M2DAT-DB Overview
	M2DAT-DB architecture and capabilities
	Why we choose M2DAT-DB as a first M2DAT prototype

	Defining new DSLs in M2DAT
	Abstract Syntax Definition
	ORDB Metamodel for SQL:2003
	Modelling Primitive Types on Platform Specific Models

	Concrete Syntax Definition
	EMF Implementation
	Customizing EMF editors:
	GMF Implementation

	Model Transformations in M2DAT
	Common Scenarios
	One–to–One
	One–to–Many
	Many–to–One
	Many-to-Many
	One-to-One (multiple options)
	One–to–Many (multiple options)
	Many-to-One (multiple options)
	Many-to-Many (multiple options)

	Mapping of Primitive Data Types between PSM Models:
	Mapping Primitive Types in PIM2PSM transformations
	Mapping Primitive Types in PIM2PSM transformations

	Documenting ATL Transformations
	On the Development of Model Transformations
	Some generic reflections
	ATL vs QVT implementations

	Code Generation in M2DAT
	Using MOFScript for code generation purposes

	Validating models in M2DAT
	Integrating New Modules in M2DAT
	Developing an Integration plug-in
	Launching Model Transformations Programmatically
	Adding Graphical Support for launching Model Transformations
	Launch Configuration Types for M2DAT-DB model-to-model transformations
	Shortcut menus and Contributing Actions for M2DAT-DB model-to-text transformations

	6. Conclusion
	Analysis of Achievements
	Main Contributions
	Scientific Results
	Future Work
	Development of M2DAT Modules
	Traceability in Model Transformations
	Automatic development of Model Transformations, Metamodel Evolution and Model Co-Evolution
	Bidirectional Model-to-Text Transformations
	Improving the Development of Graphical Editors
	Automatic development of graphical editors for DSLs
	Improving graphical capabilities of M2DAT

	Future works on the Context of M2DAT-DB

	Appendixes
	Case Studiy
	Bibliography
	Text-to-Model Transformations
	Text-to-Model Transformation approaches
	Languages for bidirectional mapping of text to models

	Acronyms
	About Graph Transformations
	Graph-Based Model Transformation Languages

	Resumen en Castellano
	Metodología
	Conclusiones
	Objetivos
	Antecedentes

