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Dpto. de Arquitectura de Computadores y Ciencias de la Comunicación e Inteligencia

Artificial, bajo su dirección, el trabajo correspondiente a la tesis doctoral titulada:

Vehicle-centric coordination for urban road traffic management: A

market-based multiagent approach

Revisado el presente trabajo, estima que puede ser presentado al tribunal que ha

de juzgarlo. Y para que conste a efecto de lo establecido en la normativa reguladora

del tercer ciclo de la Universidad Rey Juan Carlos, autoriza su presentación.
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Abstract

Traffic congestion in urban road networks is a costly problem that affects all

major cities in developed countries. For example, the Texas Transportation Institute

estimated that traffic jams in the U.S. cost more than 78 billions dollars every year,

in fuel consumption and productivity loss [1].

To tackle this problem, it is possible i) to increase the capacity of the network,

adding more lanes or more roads, ii) to reduce the demand, restricting the access

to urban areas at specific hours or to specific vehicles, or iii) to improve the effi-

ciency of the existing network, by means of a widespread use so-called Intelligent

Transportation Systems [41].

In line with the recent advances in telematic infrastructures, the traffic control and

management problem has turned out to be a promising application field for multiagent

system technology [115]. Multiagent systems (MAS) are the ideal candidates for the

design and implementation of such systems, since many problems in this domain

are inherently distributed and the actors fit perfectly the paradigm of autonomous

agent [11].

In this thesis, several distributed, market-based, mechanisms have been studied

and applied to the management of a (future) urban road network, where intelligent

autonomous vehicles, governed by driver agents, interact with the infrastructure in

order to travel through the network. Starting from the reservation-based intersection

model proposed by Dresner and Stone in [35], this thesis studied how to implement a

computational economy where the driver agents must acquire the necessary reserva-

tions to cross the intersections that compose their routes, while the agents in charge

of managing the intersections (intersection managers) participate in the market as

suppliers of such reservations.

Two scenarios have been studied, one with a single intersection and one with

vii



viii Abstract

a network of intersections. In the first case, we have developed different policies to

control a reservation-based intersection, based on the adversarial queueing theory and

the combinatorial auction theory. In the second case, we have studied two different

models of computational economy to deal with the traffic assignment problem. The

first one, ECO+, is a cooperative model, where the intersection managers learn to

operate in the market to optimise a global profit measure for the society of intersection

managers and, indirectly, the travel time of the driver agents. The second one, ECO−,

is a competitive model, where the intersection managers compete with each other as

suppliers of the reservations that are traded in the market, aiming at reaching the

market equilibrium, that is, a situation where the amount of resources sought by

buyers (driver agents) is equal to the amount of resources produced by suppliers

(intersection managers). Finally, we combined the auction-based policy for traffic

control and the competitive model for traffic assignment into an adaptive, integrated,

strategy for full-fledged traffic management, ECO−CA.

In parallel to the theoretical design of the market-based mechanisms, in this thesis

we developed a simulation tool, calledM.I.T .E . (Multiagent Intelligent Transporta-

tion Environment), to evaluate the proposed mechanisms and to show how these

mechanisms affect the driver agents’ utility as well as the system utility. This simula-

tor implements two validated traffic flow models (the mesoscopic model of Schwerdt-

feger [89] and the microscopic model of Nagel and Schreckenberg [68]), and provide a

powerful tool that enables the simulation of thousands of vehicles with high precision.
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Chapter 1

Introduction

It doesn’t matter how beautiful your theory is,

it doesn’t matter how smart you are.

If it doesn’t agree with experiment, it’s wrong.

Richard P. Feynman

“Bob woke up quite early this morning, today is the first day of work at his new

company and he doesn’t want to be late. A quick coffee and he gets into his car. As

soon as he opens the car door, the dashboard quickly starts up, and his personal driver

agent is up and running. Equipped with voice recognition software, the agent is ready

to receive commands about the destination that Bob wants to reach. “125 Elm Street”,

Bob says. On the basis of Bob’s profile, the driver agent selects a route and shows

it to Bob on the dashboard. The route takes approximately 45 minutes to reach the

destination and is almost free, only 10 cents to cross an intersection that connects the

surrounding neighbourhoods with the downtown, near Oak Road. Usually Bob is not

in a hurry, but this time is different, he wants to make a good impression with his new

boss. Thus, using the touchscreen dashboard, he changes his profile for today and he

sets it to <BusinessMode>, increasing by 3 euros the money he is willing to spend for

this trip. The agent finds a new, faster and more expensive route, which takes only 25

minutes, and costs 2.5 euros, because it passes through a highly demanded intersection

1



2 Chapter 1: Introduction

Figure 1.1: Chevy Boss, winner of the Darpa Urban Challenge 2007

near the business district. Bob confirms the new route, and the driver agent starts the

car and gently drives out of the garage. While Bob takes a look at some documents

related to his new job position, the driver agent travels autonomously and smoothly

towards the destination, paying the travel fees to each intersection manager agent that

governs the intersection it passes through. The driver agent continuously consults the

information that it spread throughout the road infrastructure, and it detects that the

price of a previously quite expensive intersection has fallen. A quick replanning, and

a new route is set up: it takes 2 minutes more than the previous one, but for 1.8 euros

less, a good deal. The driver agent safely drives the car to the destination, 125 Elm

Street, and notifies Bob with a gentle “Destination reached” message.

The above story sounds far-fetched, but such a scene may be closer than we think.

Indeed, removing the human driver from the control loop by the use of autonomous

vehicles and the integration of these with the intelligent infrastructure can be con-

sidered the ultimate, long-term, goal of the set of systems and technologies grouped

under the name of Intelligent Transportation Systems (ITS) [41].

Autonomous vehicles are already a reality. For instance, two DARPA Grand Chal-
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lenge and one DARPA Urban Challenge1 have been hitherto held. This event, organ-

ised by the Defense Advanced Research Projects Agency (DARPA), required teams

to build an autonomous vehicle capable of driving in traffic, performing complex ma-

noeuvres such as merging, passing, parking and negotiating intersections. This event

can be considered as the first time autonomous vehicles have interacted with both

manned and unmanned vehicular traffic in an urban environment. An autonomous

vehicle is a vehicle that navigates and drives entirely on its own with no human driver

and no remote control. Through the use of various sensors and positioning systems,

the vehicle determines all the characteristics of its environment required to carry out

the task it has been assigned. An example of this kind of vehicles is Chevy Boss (fig-

ure 1.1), developed by the Carnegie Mellon University, winner of the DARPA Urban

Challenge 2007. It used GPS, sonar and laser guidance to avoid obstacles and even

negotiate intersections with other cars. Several car-makers expect the technology to

be affordable (and less obtrusive) in about a decade.

Another initiative that fosters this vision is the Vehicle Infrastructure Integration

(VII) initiative2, which promotes research and development of technologies that are

supposed to directly link road vehicles to their physical surroundings. The advantages

of such integration span from improved road safety to a more efficient operational use

of the transportation network. For example, Dresner and Stone in [35] introduced an

infrastructure facility that allows for the control of intersections (see figure 1.2). In

their model, an intersection is regulated by an intelligent agent (called intersection

manager) that assigns reservations of space slots inside the intersection to driver

agents that operate autonomous vehicles that intend to pass through the intersection.

Such an approach has shown, in a simulated environment, several advantages, because

it may drastically reduce delays with respect to traffic lights and it makes possible

the adoption of fine grained, vehicle-centric, control policies.

With a widespread use of ITS technologies, it is reasonable to expect that future

urban traffic control and management systems will reach a scale and a complexity

1http://www.darpa.mil/grandchallenge/index.asp

2http://www.intellidriveusa.org
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Figure 1.2: Autonomous intersection management

never seen before. The inherent distribution and the high degree of complexity allows

for a natural decomposition of such systems into agents that interact so as to achieve

their goals, selfishly as well as cooperatively. Therefore, (intelligent) traffic and trans-

portation scenarios are extraordinarily appealing for multiagent technology [8][10][11].

In this kind of system we can clearly distinguish two types of agents: from one side

we have the infrastructure agents, that is, entities that, provided with sensors and

computing power, aim to control the system to alleviate traffic congestion, speed up

the traffic flow and guarantee an overall quality of service; from the other side we have

the driver agents, that is, entities that control the vehicles on behalf of their owners,

make autonomous decisions about route choice and departure time selection, learn

from their past experiences and influence each other in both positive and negative

ways. In general, the system designer (or infrastructure designer) has control over the

former, so that they can be modelled at will in terms of actions space, goals, mental

attitude etc., while the latter cannot be directly controlled by the system designer.

Thus, if we take the perspective of the infrastructure agents, we realise that they face
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a very complex problem, since they aim at controlling a system that provides only

partial and noisy observations, with “weak” actuators in hand that are unable to

directly intervene in the driver agents behaviour. Furthermore, the “agentification”

of vehicles and infrastructure will make possible for next-generation integrated infras-

tructures to target vehicles individually, instead of whole flows of traffic as occur, for

instance, with traffic lights.

1.1 Objectives

The main objective of this thesis is studying distributed mechanisms for the con-

trol and management of a (future) urban road network, where intelligent autonomous

vehicles, controlled by driver agents, interact with the infrastructure in order to travel

on the links of the network. This main objective can be broken down into the follow-

ing, more specific, objectives:

1. This thesis is based on the reservation-based intersection control system pro-

posed by Dresner and Stone in [35]. Thus, the first step is performing an in

depth analysis of the aforementioned system for a single intersection, with the

aim of discovering potential flaws, trying to improve the efficiency of the inter-

section control strategy and enforcing new desirable properties. We will tackle

this task defining several new policies for the assignment of reservations to driver

agents, relying on the adversarial queueing theory (AQT) [16] and on the the-

ory of combinatorial auctions (CA) [59]. The policies based on AQT aim to

maximise the intersection throughput, while the auction-based policy focuses

on rewarding the driver agents that value the reservations the most.

2. Extending the model proposed by Dresner and Stone to a network of inter-

sections opens many new interesting questions, apart from considerably com-

plicating the scenario. To deal with this complexity, the traffic management

problem must be broken down into two sub-problems: traffic assignment and

traffic control. Traffic assignment can be seen as a resource allocation problem.

Due to the large scale of the system at hand, we need a distributed formulation
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and solution method. Therefore, it is very interesting to note that markets and

economies in general perform distributed resource allocation also in rather com-

plex environments. In fact, markets as a solution method to solve distributed

resource allocation problems have been applied to several systems [25][104].

Thus, market-based mechanisms can be used to design an efficient traffic assign-

ment system at urban level. The advantages of such an approach are multiple.

(a) The market dynamic provides the driver agents with incentives to explore

different alternatives for the route choice.

(b) The intersection managers, participating in and (eventually) ruling the

market, have more power to influence the driver agents behaviour.

(c) The pricing policies have different effects on different groups of driver

agents, so that it is possible to apply strategies tailored to different collec-

tives of driver agents.

(d) Reaching equilibrium prices enables the efficient allocation of the available

resources (i.e., the capacity of the urban network) among the driver agents.

(e) The market rules (and the way benefits are calculated) can be designed so

that the intersection managers, trying to maximise their benefits, “unin-

tentionally” optimise performance measures at system level, such as impact

of congestion, average travel time, etc.

3. In this context, computational markets for the traffic assignment can be built.

In these markets, the driver agents must acquire the reservations to pass through

the reservation-based intersections of the urban network. Since we have control,

as system designers, on the behaviour and the goals of the intersection managers,

these can be modelled as cooperative learning agents that learn which pricing

policy optimises a global profit function. Furthermore, modelling appropriately

the global profit function, it is possible to link the profit function with some

performance measures of the underlying road network, so that the intersection

managers, optimising the profit function, indirectly optimise the average travel

time of the population of driver agents.
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4. Markets in real environments are usually composed of agents that behave self-

ishly. Thus, another objective of this thesis is studying a competitive pricing

strategy of the intersection managers, based on the theory of general equilib-

rium. In this model, each intersection manager competes with all the others

for the supply of the resources that are traded, that is, the reservations at the

intersections. In this case, our objective as system designers is reaching the

market equilibrium, that is, a situation where the amount of resources sought

by buyers is equal to the amount of resources provided by suppliers, accounting

in this way for an efficient utilisation of the available resources.

5. Finally, another objective of this thesis is combining the traffic control policies

that have been studied in the single intersection scenario with the market models

for traffic assignment that have been studied in the network of intersections

scenario, in order to develop an adaptive, integrated, strategy for full-fledged

traffic management.

6. In order to evaluate the proposed mechanisms, a simulation tool is needed.

Thus, in parallel to the theoretical design of the aforementioned mechanisms,

the pros and cons of the traffic flow models proposed by the scientific community

must be analysed, in order to develop a simulator that fits our needs.

1.2 Structure of the thesis

This thesis is structured in the following way:

1. Chapter 2 revises the state of the art of the research fields to which this thesis

is related:

(a) the set of hardware and software technologies framed by the name Intelli-

gent Transportation Systems [41].

(b) the multiagent systems, with special emphasis on the topics of coordina-

tion, multiagent learning, mechanism design and the application of multi-

agent systems to traffic and transportation.
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2. Chapter 3 tackles the first objective of this thesis, analysing the reservation-

based mechanism for autonomous intersection control in the single intersection

scenario and evaluating different policies inspired by the adversarial queueing

theory and the combinatorial auction theory.

3. Chapter 4 tackles the other objectives of this thesis, introducing the cooperative

model and the competitive model for traffic assignment, as well as the integrated

strategy for traffic management. Furthermore, the simulation tool M.I.T .E .
is presented, describing the implemented traffic model and the implementation

details.

4. Finally, in chapter 5 we will describe the main conclusions of this thesis, the

publications that have been produced during the development of this work, as

well as some future research lines that are still open and deserve to be studied.



Chapter 2

State of the Art

Everything must justify its existence

before the judgement seat of Reason,

or give up existence.

Friedrich Engels

2.1 Intelligent Transportation Systems

The transport system plays a fundamental role in modern lives, and has a huge

impact on our economy, environment and lifestyle. Intelligent Transportation Systems

(ITS) [41] refer to the application of hardware and software technology to address and

alleviate transportation problems. Traffic congestion has been increasing worldwide

as a result of increased motorisation, urbanisation and population growth, causing

reduction of the efficiency of the transportation infrastructure and increasing travel

time, air pollution, and fuel consumption.

ITS encompasses the full scope of information technologies used in transportation,

including control, computation and communication, as well as algorithms, databases,

models and human interfaces. The emergence of these technologies as a new way

to find solutions for the transportation problems is relatively new. ITS benefits can

9
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be quantified in terms of reduction in crashes, reduction in delays and travel times,

as well as throughput increase. On the other hand, since many of the employed

technologies are still relatively new, difficulties arise to assess the economic impacts

of these technologies [13].

ITS includes a constellation of systems and, according to the U.S. department of

transportation [3], it can be grouped into two main sub-fields: Intelligent Infrastruc-

ture and Intelligent Vehicles.

2.1.1 Intelligent Infrastructure

Arterial Management Systems

Arterial management systems manage traffic along arterial roadways, employing

traffic detectors, traffic signals, and various means of communicating information to

travellers. These systems make use of information collected by traffic surveillance

devices, and provide important information about travel conditions to travellers via

technologies such as dynamic message signs (DMS) or highway advisory radio (HAR).

• Surveillance. Traffic surveillance refers to the detection technologies, such as

sensors or cameras, which aim at monitoring the traffic flow.

• Traffic Control. Traffic control systems on arterials optimise travel speeds and

provide transit signal priority and signal preemption for emergency vehicles, as

well as improve the safety of bicyclists and pedestrians.

– Traffic Signal Priority. Traffic signal priority systems use sensors to

detect approaching vehicles and alter signal timings to improve transit

performance (e.g., extending the duration of green signals for public trans-

portation vehicles).

– Emergency Vehicle Preemption. Emergency vehicle preemption sys-

tems use sensors to detect an approaching emergency vehicle in order to

provide it a green signal and so speed up its transit.



Chapter 2: State of the Art 11

– Adaptive Signal Control. Adaptive signal control systems coordinate

control of traffic signals, adjusting the lengths of signal phases based on

prevailing traffic conditions.

– Advanced Signal Systems. Advanced signal systems include coordi-

nated signal operations across neighbouring jurisdictions.

– Bicycle and Pedestrian. Pedestrian detectors, pedestrian activated

lighted crosswalks, specialised pedestrian signals, and bicycle-actuated sig-

nals can improve the safety of all road users at signalised intersections and

unsignalised crossings.

– Special Events. Arterial management systems can also smooth traffic

flow during special events with unique operating schemes, incorporating

elements such as special traffic signal operating plans, temporary lane re-

strictions, traveller guidance, and other measures.

• Lane Management. Lane management applications can promote the most

effective use of available capacity during emergency evacuations, incidents, con-

struction and a variety of other traffic and/or weather conditions.

– High Occupancy Vehicle (HOV) Facilities. HOV facilities serve to

increase the total number of people moved through a congested corridor by

offering two kinds of travel incentives: a substantial savings in travel time,

along with a reliable and predictable travel time. Sensors detecting the

traffic conditions support the use of dynamic message signs and moveable

barriers to control the operation of HOV facilities.

– Reversible Flow Lanes. Traffic sensors and lane control signs can be

used to implement reversible flow lanes allowing travel in the peak direction

during rush hours.

– Pricing. Traffic sensors, electronic payment, video, GPS, and automated

enforcement technologies can support the implementation of congestion

pricing strategies, varying the cost of transportation facilities based on

demand or the time of day.
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– Lane Control. Lane control signs, supported by surveillance and detec-

tion technologies, allow the temporary closure of lanes to avoid incidents

or construction on arterial roadways.

– Variable Speed Limits. Variable speed limit systems use sensors to

monitor prevailing traffic and/or weather conditions, posting appropriate

enforceable speed limits on dynamic message signs.

– Emergency Evacuation. Lane management applications such as re-

versible flow lanes and lane control can be used to support emergency

evacuations. Such plans can also involve the implementation of special

traffic signal timing plans, variable speed limits, and other measures.

• Parking Management. Parking management systems with information dis-

semination capabilities, most commonly deployed in urban centres or at modal

transfer points such as airports, monitor the availability of parking and dissem-

inate the information to drivers, reducing traveller frustration and congestion

associated with searching for parking.

• Information Dissemination. Advanced communications have improved the

dissemination of information to the travellers. Organisations operating ITS can

share information collected by detectors associated with arterial management

systems with road users. They are now able to receive relevant information

on location-specific traffic conditions in a number of ways, including dynamic

message signs (DMS), highway advisory radio (HAR), and in-vehicle signing (or

specialised information transmitted to individual vehicles).

• Enforcement. Automated enforcement systems, such as speed enforcement

and stop enforcement, improve safety, reduce aggressive driving, and assist in

the enforcement of traffic signal and speed compliance. Using photo or video

cameras, activated by detectors, they record vehicles travelling faster than the

speed limit or vehicles travelling through a red signal. Furthermore, enforcement

technologies can assist with the enforcement of high occupancy vehicle (HOV)
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restrictions. Enforcement personnel can trigger recording technology, such as

cameras, to record vehicles that violate traffic regulation.

Freeway Management Systems

Freeway management systems manage traffic along highways, employing traffic

surveillance systems, traffic control measures on freeway entrance ramps, such as

ramp meters and lane management applications. Advanced communications have

improved the dissemination of information to the travelling public. Motorists are

now able to receive relevant information on location-specific traffic conditions in a

number of ways, including dynamic message signs (DMS), highway advisory radio

(HAR), in-vehicle signing, or specialised information transmitted only to a specific

set of vehicles.

• Ramp Control. Traffic control measures on freeway entrance ramps, such as

ramp meters, can use sensor data to optimise freeway travel speeds and ramp

meter wait times.

– Ramp Metering. Traffic signals on freeway ramp meters alternate be-

tween red and green signals to control the flow of vehicles entering the

freeway. Metering rates can be altered based on freeway traffic conditions.

– Ramp Closures. Surveillance and control technologies can allow for the

temporary closure of freeway ramps to accommodate peak traffic condi-

tions or inclement weather conditions.

– Priority Access. Communication between ramp metering signal hard-

ware or ramp closure gates, and emergency or common vehicles can allow

priority access to these vehicles, providing a green signal or opening the

gates to allow for passage of the approaching vehicle.

– Ramp Meter Enforcement. Automated enforcement technologies can

assist with the enforcement of ramp metering compliance. Still or video

cameras, activated by detectors, can record vehicles travelling through a

red signal.
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• Special Event Transportation Management. Special event transportation

management systems can help control the impact of congestion at stadiums or

convention centres. In areas with frequent events, large changeable destination

signs or other lane control equipment can be installed. In areas with occasional

or one-time events, portable equipment can help smooth traffic flow.

Transit Management Systems

Transit ITS services include surveillance and communications, such as automated

vehicle location (AVL) systems, computer-aided dispatch (CAD) systems, and remote

vehicle and facility surveillance cameras, which enable transit agencies to improve

the operational efficiency, safety, and security of the nation’s public transportation

systems.

• Safety and Security. Advanced software and communications enable data as

well as voice to be transferred between transit management centres and vehicles

for increased safety and security, improved transit operations, and more efficient

fleet operations. Transit management centres can monitor in-vehicle and in-

terminal surveillance systems to improve quality or service and improve the

safety and security of passengers and operators.

– In-Vehicle Surveillance. Video cameras monitor the interior of buses

or cars. Wireless communication can make images available to transit

dispatch or transit management centres. Automatic vehicle location sys-

tems often incorporate silent alarm features, allowing operators to report

problems and vehicle location to dispatchers.

– Facility Surveillance. Video and audio surveillance technologies can be

deployed to enhance the security of train stations, bus depots, and transit

stops.

– Employee Credentialing. A variety of identification and access control

systems can help maintain the security of public transportation manage-

ment and support facilities.
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– Remote Disabling Systems. Vehicles in difficulty can be remotely shut-

down via wireless communication and control, typically from dispatch cen-

tres.

• Transportation Demand Management. Transportation demand manage-

ment service, such as ride sharing/matching, dynamic routing/scheduling, and

service coordination, increase public access to transit resources where coverage

is limited.

– Ride Sharing/Matching. Computer database and Internet technologies

can facilitate ride sharing (also called carpooling) matching services. Ride

sharing is when people travel together in one car rather than driving their

own cars, mostly used by people commuting to work.

– Dynamic Routing/Scheduling. Automatic vehicle location, combined

with dispatching and reservation technologies facilitate the implementation

of flexible public transportation routing and scheduling.

– Service Coordination. Vehicle monitoring and communication tech-

nologies facilitate the coordination of passenger transfers between vehicles

or transit systems.

• Fleet Management. Fleet management systems improve transit reliability

through implementation of automated vehicle location (AVL) and computer-

aided dispatch (CAD) systems which can reduce passenger wait times. These

systems may also be implemented with in-vehicle self-diagnostic equipment to

automatically alert maintenance personnel of potential problems.

– AVL/CAD. Automatic vehicle location (AVL) and computer aided dis-

patch (CAD) systems facilitate the management of transit operations, pro-

viding up-to-date information on vehicle locations to assist transit dis-

patchers as well as inform travellers of the bus status.

– Maintenance. Maintenance monitoring technologies allow for the auto-

matic collection and reporting of vehicle maintenance information. Infor-
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mation can be uploaded at the end of a run, or while in service via wireless

communication.

– Planning. A variety of technologies, including records from AVL/CAD

systems and automatic passenger counter systems, can assist in the plan-

ning of new and modified transit services.

• Information Dissemination. Transit agencies can disseminate both schedule

and system performance information to travellers through a variety of applica-

tions, in-vehicle, wayside, or in-terminal dynamic messages signs, as well as

the Internet or wireless devices. Information dissemination allows passengers

to confirm scheduling information, improve transfer coordination, and reduce

wait times. Electronic transit status information signs at bus stops help passen-

gers manage time, and on-board systems such as next-stop audio annunciators

help passengers in unfamiliar areas reach their destinations. Coordination with

regional or multi-modal traveller information efforts can also increase the avail-

ability of this transit schedule and system performance information.

Electronic Payment and Pricing

Electronic payment systems employ various communication and electronic tech-

nologies to facilitate commerce between travellers and transportation agencies, typ-

ically for the purpose of paying tolls and transit fares. Pricing refers to charging

motorists a fee or toll that varies with the level of demand or with the time of day.

• Toll Collection. Electronic toll collection (ETC) supports the collection of

payment at toll plazas using automated systems to increase the operational

efficiency and convenience of toll collection. Systems typically consist of vehicle-

mounted transponders identified by readers located in dedicated and/or mixed-

use lanes at toll plazas.

• Transit Fare Payment. Electronic transit fare payment systems, often en-

abled by smart card or magnetic stripe technologies, can provide increased con-

venience to customers and generate significant cost savings to transportation
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agencies by increasing the efficiency of money handling processes and improv-

ing administrative controls.

• Parking Fee Payment. Electronic parking fee payment systems can provide

benefits to parking facility operators, simplify payment for customers, and re-

duce congestion at entrances and exits to parking facilities. These payment

systems can be enabled by any of a variety of technologies including magnetic

stripe cards, smart cards, in-vehicle transponders, or vehicle-mounted bar-codes.

• Multi-use Payment. Multi-use payment systems can make transit payment

more convenient. Payment for bus, rail, and other public or private sector goods

and services can be made using transit fare cards at terminal gates, or on check-

out counters and phone booths of participating merchants located near transit

stations. Multi-use systems may also incorporate the ability to pay highway

tolls with the same card.

• Congestion Pricing. Congestion pricing, also known as value pricing, employs

the use of technologies to vary the cost to use a transportation facility or network

based on demand or the time of day. Pricing strategies include: variable priced

lanes, variable tolls on entire roadways or roadway segments, cordon charging,

area-wide charging and fast and intertwined regular (FAIR) lanes.

Traveller Information

Traveller information applications use a variety of technologies, including Internet

websites, telephone hotlines, television, radio, as well as other wireless devices such

as pagers and PDAs, to allow users to make more informed decisions regarding trip

departures, routes, and mode of travel. The shared information could be pre-trip, en-

route or tourism/special events-related. Information provided can include electronic

yellow pages as well as transit and parking availability.
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2.1.2 Intelligent Vehicles

Collision Avoidance Systems

To improve the ability of drivers to avoid accidents, vehicle-mounted collision

warning systems (CWS) continue to be tested and deployed. These applications use

a variety of sensors to monitor the vehicle’s surroundings and alert the driver of

conditions that could lead to a collision.

• Intersection Collision Warning. Intersection collision warning systems are

designed to detect and warn drivers of approaching traffic at high-speed inter-

sections.

• Obstacle Detection. Obstacle detection systems use vehicle-mounted sensors

to detect obstructions, such as other vehicles, road debris, or animals, in a

vehicle’s path and alert the driver.

• Lane Change Assistance. Lane-change warning systems have been deployed

to alert bus and truck drivers of vehicles, or obstructions, in adjacent lanes when

the driver prepares to change lanes

• Lane Departure Warning. Lane departure warning systems warn drivers

that their vehicle is unintentionally drifting out of the lane.

• Rollover Warning. Rollover warning systems notify drivers when they are

travelling too fast for an approaching curve, given their vehicles operating char-

acteristics.

• Road Departure Warning. Road departure warning systems have been

tested using machine vision and other in-vehicle systems to detect and alert

drivers of potentially unsafe lane-keeping practices and to keep drowsy drivers

from running off the road.

• Forward Collision Warning. In the application area of forward-collision

warning systems, microwave radar and machine vision technology help detect
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and avoid vehicle collisions. These systems typically use in-vehicle displays or

audible alerts to warn drivers of unsafe following distances. If a driver does

not properly apply brakes in a critical situation, some systems automatically

assume control and apply the brakes in an attempt to avoid a collision.

• Rear Impact Warning. Rear-impact warning systems use radar detection to

prevent accidents. A warning sign is activated on the rear of the vehicle to warn

tailgating drivers of imminent danger.

Driver Assistance Systems

Numerous intelligent vehicle technologies exist to assist the driver in operating

the vehicle safely. Systems are available to aid with navigation, while others, such as

vision enhancement and speed control systems, are intended to facilitate safe driving

during adverse conditions. Other systems assist with difficult driving tasks such as

transit and commercial vehicle docking.

• Navigation/Route Guidance. In-vehicle navigation systems with GPS tech-

nology may reduce driver error, increase safety, and save time by improving

driver’s decision in unfamiliar areas

• Driver Communication. Integrated driver communication systems enable

drivers and dispatchers to coordinate re-routing decisions on-the-fly and can

also save time, money and improve productivity.

• Vision Enhancement. In-vehicle vision enhancement improves visibility for

driving conditions involving reduced sight distance due to night driving, inade-

quate lighting, fog, drifting snow, or other inclement weather conditions.

• Object Detection. Object detection system warns the driver of an object

(front, side or back) that is on the path or adjacent to the path of the vehicle.

The most common application is for parking aids for passenger vehicles.
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• Adaptive Cruise Control. Adaptive cruise control systems maintain a driver

set speed without a lead vehicle, or a specified following time if there is a lead

vehicle and it is travelling slower than the set speed.

• Intelligent Speed Control. Intelligent speed control systems limit maximum

vehicle speed via a signal from the infrastructure to an equipped vehicle.

• Lane Keeping Assistance. Lane keeping assistance systems can make minor

steering corrections if the vehicle detects an imminent lane departure without

the use of a turn signal.

• Roll Stability Control. Roll stability control systems take corrective action,

such as throttle control or braking, when sensors detect that a vehicle is in a

potential rollover situation.

• Drowsy Driver Warning. Drowsy driver warning alerts the driver that he

or she is fatigued which may lead to lane departure or road departure.

• Precision Docking. Precision docking systems automate precise positioning

of vehicles at loading/unloading areas.

• Coupling/Decoupling. Intelligent cruise control, speed control, guidance and

steering systems which help transit operators link multiple buses or train cars

into trains each assist drivers with routine tasks that weight on driver workload.

• On-board Monitoring. On-board monitoring applications track and report

cargo condition, safety and security, and the mechanical condition of vehicles

equipped with in-vehicle diagnostics. This information can be presented to the

driver immediately, transmitted off-board, or stored. In the event of a crash

or near-crash, in-vehicle event data recorders can record vehicle performance

data and other input from video cameras or radar sensors to improve the post-

accident processing of data.
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Collision Notification Systems

In an effort to improve response times and save lives, collision notification systems

have been designed to detect and report the location and severity of incidents to

agencies and services responsible for coordinating appropriate emergency response

actions. These systems can be activated manually or automatically, with automatic

collision notification (ACN). Advanced systems may transmit information on the type

of crash, number of passengers, and the likelihood of injuries.

• Mayday/ACN. The typical Mayday/ACN application utilises location tech-

nology, wireless communication, and a third-party response centre to notify the

closest Public Safety Answering Point (PSAP) for emergency response

• Advanced ACN. Advanced collision notification systems use in-vehicle crash

sensors, GPS technology, and wireless communications systems to supply pub-

lic/private call centres with crash location information, and in some cases, the

number of injured passengers and the nature of their injuries.

Note that ITS includes many other systems and technologies [3], which are less

relevant in respect to the problem that this thesis tackle, such as Incident Man-

agement Systems, Emergency Management Systems, Crash Prevention and Safety

Systems, Roadway Operations and Maintenance Systems and Road Weather Man-

agement Systems.

2.2 Traffic control and assignment

According to Papageorgiou [75][76], most traffic control strategies fit the control

loop described in figure 2.1. The basic elements are: the physical traffic network

(and its model), the control devices (traffic signals, variable message signs, ramp

metering, etc.), the surveillance devices (loop detectors), the demand model and the

noise model (which can be detected by sensors or estimated). The key element in this

loop is the control strategy, whose task is to specify the control inputs in real time,

based on available measurements, estimations or predictions, in order to achieve the
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Figure 2.1: Traffic control loop [75][76]

pre-specified goals, such as the minimisation of total travel time. Techniques and

methods from control theory are applied in traffic control, although only to small

portions of the network (typically a single intersection), because, for big networks,

real-time control seems impossible [75]. Depending on the characteristics of the traffic

networks, the control problem can be classified as road traffic control and freeway

traffic control.

Road traffic control

Traffic lights at intersections are the major control measure in urban road net-

works. An intersection consists of a number of incoming links and the crossing area.

The incoming links are used by the corresponding traffic flows. Two traffic flows are

compatible if they can safely cross the intersection at the same time (otherwise they

are called antagonistic). A signal cycle is a repetition of the basic series of signal

combinations at an intersection, whose overall duration is called cycle time. A phase

is a part of the signal cycle, during which one set of flows can safely passes through



Chapter 2: State of the Art 23

Figure 2.2: Traffic lights signal cycle

the intersection (see figure 2.2).

The operation mode (and consequently its effect on the traffic flow) of a traffic

light is determined by the following three parameters:

1. Phase specification: for intersections with a complex geometry, the specification

of the optimal number and structure of phases is not trivial, and it can have a

great impact on the intersection’s capacity and efficiency.

2. Split time: is the green duration of each phase, as a portion of the cycle time

3. Cycle time: is the duration of the whole cycle. Longer cycle times typically

increase the intersection capacity because the proportion of the constant lost

times (between phases) becomes smaller. On the other hand, longer cycle times

may increase vehicle delays in under-saturated intersections due to longer wait-

ing times during the red phase.

Control strategies for road traffic control may be further classified in fixed-time

strategies and traffic-responsive (or actuated) strategies. Fixed-time strategies are

defined for a given time of the day (e.g., morning peak hour) and they are formulated

by off-line optimisation using historical data. Traffic-responsive strategies make use of

real-time measurements (with inductive loops) to calculate the suitable signal settings

in real time.

TRANSYT [80] is the most known and most frequently applied signal control

strategy, and it is often used as a reference method to test improvements enabled
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by real-time strategies. For given values of the decision variables (i.e., number of

splits, cycle time, etc.), the dynamic network model calculates the corresponding per-

formance index. A heuristic, hill-climbing, optimisation algorithm introduces small

changes to the decision variables and then the model is re-run, until a (local) optimum

is found. Of course the main drawback of this method is that the signal plans are

computed for a static situation, based on historical data. Unfortunately, demands

are not constant, even within a time of the day, and may vary at different days. In

other words, the signal plan is optimised for an average situation which never occurs

exactly.

Among the traffic-responsive signal control strategies, SCOOT [50] is the most

famous one, since it has been applied to over 150 cities in the United Kingdom and

elsewhere. SCOOT uses real-time traffic volume and occupancy measurements from

the upstream end of the network links, and then it runs, in a centralised control

computer, an optimisation algorithm similar to TRANSYT.

Freeway traffic control

A freeway is a type of road, usually divided into at least two lanes in each direction,

designed to enhance mobility through the elimination of intersections (regulated by

traffic lights or stop signs). Nevertheless, the rapid increase of traffic demand led to

increasingly severe congestion, during rush hours and due to incidents. Thus, the

freeway network capacity is strongly underutilised on a daily basis, due to the lack of

efficient traffic control systems, and ironically the nominal capacity that the network

offers is not available (due to congestion) exactly at the time it is most urgently

needed (during peak hours) [75].

In freeway networks, the control devices that are typically employed are:

• Ramp metering: is a device, usually a basic traffic light, that regulates the

access to the freeway, according to current traffic conditions.

• Link control: it comprises a number of possibilities including lane control, vari-

able speed limits, congestion warning, etc.
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• Driver information and guidance systems: this system can be implemented

either by variable message signs or via two-way communication with equipped

vehicles.

Traffic assignment

Traffic assignment refers to the problem of the distribution of traffic in a network,

considering demands between several locations, and the capacity of the network.

Assignment methods must consider the distribution of traffic in a network as well as

a set of constraints related to cost, time, and preferences of road users.

In normal situations, fixed direction signs at bifurcation nodes of the network

typically indicate the direction that is time-shortest (in absence of congestion). How-

ever, the travel time on many routes changes substantially due to traffic congestion

and alternative routes may become competitive. Drivers who have past experiences

with the traffic conditions in a network, such as commuters, usually optimise their

individual routes, thus leading to the user-equilibrium condition, first formulated by

Wardrop [106].

However, demand may change in a non-predictable way, due to changing envi-

ronmental conditions, exceptional events or accidents. This may lead to an under-

utilisation of the overall network’s capacity, whereby some links are heavily congested

while capacity reserves are available on alternative routes. Given the topological con-

straints, it is not possible to change the supply in a way which is flexible enough to

match the demand. Therefore, several kinds of traffic management systems, involving

both information broadcast as well as control and optimisation, must be employed.

For example, route guidance and driver information systems (RGDIS) may be em-

ployed to improve the network efficiency via direct or indirect recommendation of

alternative routes. These communication devices may be consulted by a potential

road user to make a rational decision regarding whether or not to carry out (or post-

pone) the intended trip, the choice of transport mode (car, bus, underground, etc.),

the departure time selection and the route choice. Although radio broadcasting ser-

vices and variable message signs have been in use for a long time, individual route
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guidance systems, using two-way communication between vehicles and infrastructure

and control centres, gain an increasing interest.

2.3 Economic models for resource allocation

Resource management refers to the activity of establishing a mutual agreement

between a resource producer and a resource consumer. This agreement specifies that

the provider must supply a resource that can be used by the consumer to perform

some tasks. Conventional resource management techniques are based on relatively

static and centralised models. One way to cope with the dynamism and the decen-

tralisation of certain complex environments is using market-based approaches, which

introduce money and pricing as the technique for coordination between consumers

and producers of resources. In this way decentralisation is provided by distributing

the decision-making process across users and resource suppliers.

There are many economic models to allocate resources among competing agents

(see figure 2.3). Commodity markets usually perform allocations of resources by

means of reaching some sort of equilibrium price. This can be done by bargaining [70],

in which the consumer and the supplier of the resource dispute the price which will be

paid and, eventually, come to an agreement, or by trading, in which several suppliers,

in competition with each other, set the prices to their resources to acquire as many

consumers as possible.

In auction markets, we can have two main classes of auctions: one-to-many or

many-to-many. In one-to-many auctions, one agent (the auctioneer) initiates the

auction protocol and several other agents (the bidders) place their bids. The English

auction, the Dutch auction and the Vickrey auction belong to this class. In many-

to-many auctions, several agents participate in the auction protocol as suppliers and

several other agents participate as bidders. The double auction is the most used

auction protocol for many-to-many auction. In a double auction potential buyers

submit their bids and potential sellers simultaneously submit their ask prices to an

auctioneer. The auctioneer chooses some price p that clears the market, and all the

suppliers who asked for less than p sell and all the bidders who bid more than p buy
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Figure 2.3: Economic models for resource allocation

at the price p. There are two types of double auctions: continuous double auctions

clear the market and match buyers and sellers as soon as a match is detected. A

periodic double auction instead collects bids over a specific interval of time and then

clears the market.

The properties of the aforementioned economic models are studied by a disci-

pline at the intersection between economics and game theory, called mechanism de-

sign [30][39][51][102]. Mechanism design can be viewed as reverse engineering of games

or, equivalently, as the art of designing the rules of a game to achieve a specific desired

outcome. The main focus of mechanism design is to design institutions or protocols

that satisfy certain desired objectives, assuming that the individual agents, interact-

ing through the institution, will act strategically and may hold private information

that is relevant to the decision at hand.
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Social choice function

Suppose that there are n agents, i ∈ [1, n]. Each agent i privately observes its

preferences over a set X , called the outcome set, which contains all the possible

outcomes that a social planner may choose from. The private preference of agent i is

condensed in the agent type θi ∈ Θi.

Given the agent type θi and an actual outcome x ∈ X , each agent can evaluate

“how good” this outcome is, according to a utility function ui : X × Θi → R. Each

agent is modelled as rational and intelligent, i.e., it tries to maximise its utility ui.

The agents types θ = [θi, . . . , θn] are drawn according to a probability distribution

φ ∈ P(Θ), where P(Θ) is the set of all the probability distributions over the set

Θ = Θ1 × · · · ×Θn. The probability distribution φ, the type sets Θ1,. . . ,Θn, and the

utility functions uis are common knowledge among the agents (still, each actual type

θi is known only by the agent i).

In this setting, the social planner faces the problem of mapping each possible

profile of the agents’ types θ = [θ1, . . . , θn] ∈ Θ = Θ1× · · · ×Θn to a collective choice

(or outcome) x ∈ X . This mapping is defined by a function f : Θ→ X , called social

choice function (SCF) [67].

Example: allocation of a single unit of an indivisible good. Consider a set

of n agents. One of them owns one unit of an indivisible good and is willing to trade

this good by means of money. Suppose that this trade is mediated by an independent

broker (i.e., the social planner). The problem for the broker is deciding which agent

to allocate the good to and how much money each agent must pay (or receive).

Outcome set X : the outcome set X is the set of vectors x = [y1 . . . yn t1 . . . tn],

where yi = 1 if the agent i receives the good, yi = 0 otherwise, and ti is the monetary

transfer received by the agent i (i.e., if ti < 0, agent i pays ti, if ti > 0, agent i receives

ti. The set of feasible alternatives is then

X =

{
[y1 . . . yn t1 . . . tn] | yi ∈ {0, 1}, ti ∈ R ∀i,

n∑
i=1

yi = 1,
n∑
i=1

ti ≤ 0

}
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Figure 2.4: Social choice function

Type set Θi: in this example, the type θi of an agent can be viewed as its

valuation of the good. We can take the set of possible valuations for agent i to be

Θi = [θi, θi] ⊂ R, where θi is the lowest valuation and θi is the highest valuation the

agent may have for the item.

Utility function u(·): the utility function of agent i can be given by

ui(x, θi) = ui([y1 . . . yn t1 . . . tn θi]) = θi · yi + ti

In other words, the utility is 0 if the agent does not get the item, otherwise it is

equal to the difference between its private valuation, θi, and the money it paid for

the good, ti.
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Social choice function f(·): The general structure of the social choice function

for this case is

f(θ) = [y1(θ) . . . yn(θ) t1(θ) . . . tn(θ)] ∀θ ∈ Θ

Mechanisms

Given the model described in section 2.3, the social planner faces two problems:

1. Preference Aggregation Problem: for a given type profile θ = [θ1 . . . θn] of

the agents, which outcome x ∈ X should be chosen?

2. Information Elicitation Problem: how do we extract the agent’s true type

θi, which is private information of agent i?

A mechanismM = ({Si}i∈[1,n], g(·)) is a collection of action sets {S1, . . . , Sn} and

an outcome function g : S → X , where S = S1 × · · · × Sn.

The set Si for each agent i describes the set of actions available to that agent.

Based on its actual type θi, each agent i will choose some action, say si ∈ Si. Once all

the agents have chosen their actions, the social planner uses this profile of the actions

s = [s1 . . . sn] to pick a social outcome x = g(s).

The trivial scheme of asking the agents to reveal their types becomes a special

case, called a direct revelation mechanism (DRM). Formally, D = ({Si}i∈[1,n], g(·))
where Si ≡ Θi ∀i and g(·) ≡ f(·).

After discovering the mechanism M chosen by the social planner, each agent i

starts making an analysis regarding which action si will result in the most favourable

outcome for agent i, and comes up with a strategy si : Θi → Si. This phenomenon

leads to a game among the agents. A mechanism M combined with possible types

of the agents Θ1, . . . ,Θn, probability density φ, and utility functions u1(·), . . . , un(·)
defines a game of incomplete information. Given that, the social planner now worries

about whether or not the outcome of the game matches the outcome of the social

choice function, that is if the mechanism implements the social function.
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A mechanism M implements the social choice function f(·) if there is a pure

strategy equilibrium s(·) = [s∗1(·) . . . s∗n(·)] of the game induced by M such that

g([s∗1(θ1) . . . s∗n(θn)]) ≡ f(θ1 . . . θn) ∀[θ1 . . . θn] ∈ Θ.

Properties of a SCF

We have seen that a mechanism provides a solution to both the problem of in-

formation elicitation and the problem of preferences aggregation if it can implement

the desired social choice function f(·). However, not all the SCFs are implementable.

Thus it is important to know which social choice function a social planner would

ideally prefer to be implemented. Note that a social planner would always like to use

a SCF which satisfies as many desirable properties from the perspective of fairness as

possible. The properties of a SCF which a social planner would ideally wish the SCF

to have are: ex-post efficiency, non-dictatorialship and incentive compatibility. Ex-

post efficiency means that the SCF always selects an outcome on the Pareto frontier,

non-dictatorialship means that no agent is a dictator, i.e., it always gets the highest

utility from the outcomes selected by the SCF, while incentive compatibility means

that revealing the true type θi is an equilibrium strategy for all the agents.

Given the properties described above, one would define a SCF that is ex-post

efficient, non-dictatorial and dominant strategy incentive compatible. Unfortunately,

according to the Gibbard-Satterthwaite impossibility theorem [42][87], such a SCF

does not exist. Still, there is a special and much studied class of environments, called

quasi-linear environments, where the Gibbard-Satterthwaite theorem does not hold

true. In a quasi-linear environment, an alternative x ∈ X is a vector of the form

x = [k t1 . . . tn], where k is an element of a closed and bounded set K and ti ∈ R is

the monetary transfer. If ti > 0, then agent i will receive the money and if ti < 0,

then agent i will pay the money. The system is assumed to be closed and that the n

agents have no outside source of funding, i.e.,
N∑
i=1

ti ≤ 0.

A social choice function in this quasi-linear environment takes the form f(θ) =

[k(θ) t1(θ) . . . tn(θ)], while the agent i’s utility function takes the form ui(x, θi) =

vi(k, θi) + mi + ti, where vi(k, θi) is the agent i’s valuation of choice k and mi is
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the initial endowment. This kind of social choice function is characterised by two

important properties, allocative efficiency and budget balance. An SCF is allocative

efficient if for every agents profile it selects the choice k that is most valued by all the

agents, while is budget balanced if the sum of the payments is zero.

According to [39], all the SCFs in quasi-linear environment are non-dictatorial.

Furthermore, allocative efficiency and budget balance imply ex-post efficiency, so that

in these kind of environments a social planner can focus only on choosing a SCF that

is incentive compatible.

2.4 Multiagent systems

The modern approach to artificial intelligence is based on the concept of agent.

An agent is an entity that can perceive its environment through sensors and act upon

that environment through actuators [85]. An agent is said to be rational if it always

tries to optimise an appropriate performance measure or utility function. Very rarely

are agents isolated systems. In many situations agents coexist and interact with
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each other, so that the system as a whole can be considered as a multiagent system

(MAS). Examples of such systems include software agents on the Internet, robotic

soccer agents or e-commerce agents.

2.4.1 Elements of a multiagent system

Agent design

If the agents of the system have been designed by different designers or they have

different capabilities, such agents are said to be heterogeneous. Agent heterogeneity

can affect all functional aspects of an agent, from perception to decision making. On

the contrary, agents that are designed in an identical way and have a priori the same

capabilities are said to be homogeneous. This distinction is not always clear, because

even agents with the same capabilities that implement different behaviours can also

be viewed heterogeneous.

Agent rationality

An autonomous agent must face the problem of optimal decision making, that is,

choosing the best possible action in every situation, given what it knows about the

world around it. An agent is said to be rational if it always selects an action that

optimises an appropriate performance measure, given what the agent knows so far.

The performance measure is typically defined by the designer of the agent and reflects

what the user expects from the agent in the task at hand.

Environment

Agents exists in an environment that can be either static or dynamic. Static

environments are easier to handle and allow for a more rigorous mathematical for-

mulation. Unfortunately, in a MAS, the mere presence of multiple agents makes the

environment appear dynamic from the point of view of a single agent. This can

often be problematic, for instance in the case of learning agents, where non-stable

behaviours (co-learning) may arise.
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Perception

The agent observes data that are spatially, temporally and semantically dis-

tributed, so that, in general, a single agent cannot access the full environment state.

This fact has various consequences in the decision making of the agents, because it

must determine which action has to be executed on the basis of a conditional proba-

bility distribution over possible environment states.

Control

The control in a MAS is typically decentralised, which means that there is no

central entity that gathers all the available information from each agent and then

decides what action each agent should take. The decision making of each agent

is usually autonomous, so that, in competitive settings, game-theoretic issues arise.

Furthermore, if the agents are cooperative, problems of coordination arise, to ensure

that the individual decisions of the agents result in good joint decisions for the group.

Knowledge

In a MAS, the knowledge that is available to each agent about the current en-

vironment state can differ substantially. For example, in a cooperative setting each

agent may know the available action set of the other agents, all agents may know (by

communication) their current perceptions, or they can infer the intentions of each

other based on some shared prior knowledge. On the other hand, in a competitive

setting an agent is typically unaware of the action set and current perceptions of

the competing agents. Nevertheless, in a MAS each agent should also consider the

knowledge of each other agent in its decision making.

Communication

Direct interaction is often associated with some form of communication. Com-

munication can be used, for instance, for coordination among cooperative agents or

for negotiation among competitive agents. MASs are sometimes characterised by
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indirect interaction, such in biological-inspired or stigmergic systems [12]. Commu-

nication raises issues related with protocols and languages to understand each other.

2.4.2 Coordination

The problem of coordination is the effort of governing the space of interaction

of a MAS [19]. In the case of a MAS with a common objective, coordination refers

to the activity of a group of agents that must find individual actions that result in

good joint decisions for the group. A distinguishing feature of a multiagent system is

the fact that the decision making of the agents can be distributed. This means that

there is not a central controller agent that decides what each agent must do at each

time-step, but each agent is autonomous and responsible for its own decisions. Such a

decentralised approach has the advantage of being efficient, due to the asynchronous

and parallel computation, and robust, in the sense that the functionality of the whole

system does not rely on a single agent. Nevertheless, in order for the agents to be able

to take their actions in a distributed fashion, appropriate coordination mechanisms

must be additionally developed. This is particularly true in the case of cooperative

agents that form a team, and through this team they make joint plans and pursue

common goals. In this case, coordination is needed to ensure that the agents do

not obstruct each other when taking actions, and moreover that these actions serve

the common goal. Coordination can also appear as an emergent phenomenon in a

population of competing and adaptive agents [17].

Several approaches that tackle this problem can be found in the literature, shaping

the interaction space either directly, by making assumptions on agent behaviours and

knowledge. For example, social conventions (or social laws) are used to constrain the

space of possible actions of the agents. Given that the convention has been established

and is common knowledge among agents, no agent can benefit from not respecting

it. For example, in [18], a general convention that achieves coordination in a large

class of systems is proposed. The convention assumes a unique ordering scheme of

joint actions that is common knowledge among agents. In a particular situation, each

agent first computes the optimal joint actions, and then selects the first joint action
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according to this ordering scheme.

Coordination laws can be also explicitly defined and embedded into a coordination

medium, such as a tuple centre, whose behaviour can be programmed by defining

reactions to the basic communication events [33]. Coordination by social conventions

relies on the assumption that an agent can compute all the optimal joint actions before

choosing a single one. However, computing these joint actions can be expensive when

the action sets of the agents are large. Therefore one would like to reduce the size

of the action sets first, so that the joint action selection is simplified. A natural way

to reduce the action sets is by assigning roles to the agents. In practical terms, if

an agent is assigned a role at a particular state, then some of the agents actions are

deactivated at this state.

From the point of view of an individual agent, the problem of coordination es-

sentially boils down to finding the sequence of actions that best achieves its goals.

This is a not trivial problem even in cooperative systems, because often each agent

has only partial knowledge of its environment and uncertainty about the effect of a

specific action. In this case, a solution to the coordination problem is learning to

select the best joint action that yields to the highest utility for the entire group of

agents.

2.4.3 Learning

In this section we describe the basic concepts, methods, notations and models for

sequential decision making in stochastic domains for both single-agent and multiagent

systems, with particular emphasis on cooperative multiagent reinforcement learning.

Sequential decision-making refers to the problem of an agent that repeatedly in-

teracts with its environment with the aim of optimising a performance metric based

on the rewards that it receives. Sequential decision-making is quite a difficult problem

for an agent, because actions may not be reversible or may have long-term effects,

the environment may not be completely observable or it may be non-stationary.

If the current situation of a sequential decision-making problem provides a com-

plete description of the past, and previous information is not relevant for making a
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decision, we say that the problem obeys the Markov property.

The sequential decision-making problem may be single-agent or multiagent. In

single-agent problems, the decision maker is unique and the environment only re-

sponds to the decision maker’s actions. In multiagent problems, there are several

agents that interact with the environment and in general the environment responds

to the joint actions of the group of agents. Having multiple agents interacting with

the environment and with each other causes severe consequences on the complexity of

the problem. In this chapter we focus on cooperative multiagent systems in which the

group of agents collaborates to make a collective decision and to achieve a common

goal.

Single-agent models

As stated earlier, a sequential decision-making problem refers to the problem of

an agent that repeatedly interacts with its environment with the aim of optimising

a performance metric based on the rewards that it receives. Usually the interaction
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with the environment consists of the following steps:

1. Environment observation: the agent observes the environment through its sen-

sors and perceives an observed state s. In general, the observed state s is not

the “true” state of the environment, because the agent’s sensors may be noisy

or because different states may be considered as the same observed state (alias-

ing). Nevertheless, the state s is the only information about the environment

that is relevant for the decision maker.

2. Action selection: based on the current perceived state s, the agent selects the

action that at that time is the “best” action that it may take, according to its

policy and its knowledge.

3. State transition: according to a stochastic transition model, which is a function

of the current state and the selected action, the environment transits to a new

state s′

4. Reward observation: after having transited to state s′, the environment provides

the agent with a feedback to evaluate the new situation, usually a real scalar

reward value.

Figure 2.6 shows the general structure of an agent interacting with its environment.

This process is broken down into three phases: sensing, deliberating, and acting. The

key issue of the decision-making problem is of course the deliberation phase, in which

the intelligence of the agent is implemented.

Environment. The environment is called stationary if the transition probability of

moving from state s to state s′ after executing action a does not change with time.

That is, the action executed by an agent always has the same probabilistic effect

on the environment. An environment is called non-stationary when the transition

probabilities change over time. In this section we focus on stationary environments.

The decision maker may eventually have at its disposal a model of the environ-

ment, which mimics the behaviour of the environment. In this case, the decision



Chapter 2: State of the Art 39

maker can use this model for planning, considering possible future situations before

they are actually experienced. On the other hand, if such model is not available, the

decision maker can only learn by interacting with the environment (trial and error).

Rewards. The goal of the decision maker is to select actions that optimise the

expected return Rt. If the sequential decision-making can be divided into episodes of

finite length, the expected return is defined as:

Rt = rt + rt+1 + rt+2 + · · ·+ rT =
T∑
k=t

rk (2.1)

After T steps, or when a goal state is reached, the episode ends and the system

resets to a starting state.

In continuous sequential decision-making, there are no goal states and the system

“lives” indefinitely. In this case the expected return is defined as:

Rt = rt + γ · rt+1 + γ2 · rt+2 + · · · =
∞∑
k=0

γkrt+k (2.2)

where γ ∈ [0, 1) is the discount rate. If γ = 0, the agent is “myopic” and it tries

to maximise only the immediate received reward. If γ > 0, the rewards received in

the near future are considered more valuable than the rewards received later.

Solution techniques. Given the environment state s, the agent must select an

action following its policy π. A deterministic policy is a function that maps the state

s to a single action a. A stochastic policy is a function that maps the current state s

to a probability distribution over all possible actions.

Optimising the expected returnRt is equivalent to computing an optimal policy π∗,

which for every possible state s returns the action a that maximises the performance

measure. If a model of the environment is not available, the most common technique

to find an optimal policy is reinforcement learning.

Q-learning is the most widely used reinforcement learning technique [108]. Using

Q-learning, the decision maker represents its policy π in terms of a special action-value

function, Q : S × A → R, which for a given state-action pair (s, a) ∈ S × A returns



40 Chapter 2: State of the Art

the expected future discounted reward that can be obtained. Thus, the objective of

the decision maker is to learn the optimal action-value function, Q∗(s, a).

Before learning has started, the action-value function Q returns an initial estimate,

chosen by the designer of the learning agent. Then the agent enters the main loop

depicted in figure 2.6. It observes the environment state s, it executes an action a,

and finally it observes the environment next state s′ and the reward r. The agent

uses these quantities to update the current action-value function, using the formula:

Q(s, a)←

old

estimate︷ ︸︸ ︷
Q(s, a) + α · [

expected discounted reward︷ ︸︸ ︷
r + γ ·maxb∈AQ(s′, b)−

old

estimate︷ ︸︸ ︷
Q(s, a) ] (2.3)

where γ is the discount rate, and α ∈ (0, 1] is the learning rate, which controls the

contribution of the new experience to the current estimate.

At each time-step, given the state s, the learning agent selects its next action

on the basis of the actual estimation of the action-value function. The simplest

action selection rule is to select the action with the highest estimated action value,

argmaxa∈AQ(s, a). This greedy strategy always exploits current knowledge and does

not spend time selecting apparently inferior actions to see if they might really be

better.

A simple alternative is to behave greedily most of the time, but, with small prob-

ability ε, selecting an action uniformly at random. This near-greedy rule is called

ε-greedy action selection. This ensures that all actions, and their effects, are experi-

enced, guaranteeing that the action-value function Q converge to the optimal Q∗ [109].

Although ε-greedy action selection is an effective technique of balancing exploration

and exploitation, one drawback is that when it explores it chooses equally among all

actions. This means that it is as likely to choose the worst-appearing action as well

as the next-to-best action. The obvious solution is selecting action a with a proba-

bility proportional to the estimated action value. The greedy action is still given the

highest selection probability, but all the others are ranked and weighted according to

their value estimates. This rule is called soft-max action selection. The most common
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soft-max method uses a Gibbs, or Boltzmann, distribution, where the probability of

choosing action a when in state s is given by:

P (a) =
eQ(s,a)/τ∑

b∈A

eQ(s,b)/τ
(2.4)

where τ is a positive parameter called temperature. High temperatures cause

the actions to be all (nearly) equiprobable (exploration). Low temperatures cause a

greater difference in selection probability for actions that differ in their value esti-

mates (exploitation). The main drawback is that is not easy to define high or low

temperatures in absolute terms, since τ is related to the order of magnitude of Q(s, a),

which may not be known a priori.

Multiagent models

If single-agent models were characterised by a unique decision maker interacting

with the environment, in a multiagent system (MAS) multiple agents are all executing

actions and influencing their environment [95][110][115].
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Although each agent observes its environment and selects actions individually

and autonomously, it is the resulting joint action which affects the environment and

produces the perceived reward (figure 2.7).

The multiagent setting has severe consequences on the complexity of the decision

making problem. The action space and the state space grow significantly in the

multiagent case. For instance, if the MAS is composed of N agents, each of them

with M actions to choose from, the size of the joint action space is MN (i.e., it scales

exponentially with the number of agents).

Environment. In the multiagent case the environment is no longer stationary, be-

cause the state transition probability as well as the perceived rewards depend on the

actions selected by the other agents. Dynamic environments are more challenging

than stationary environments since the same action can have very different effects.

Thus, tracking the best action to execute in every state becomes more difficult.

Furthermore, the problem of observing and identifying the current environment

state arises. Different agents may observe different parts of the environment, or the

same environment state may be mapped to different perceived states. In [79] are

defined four models of observability:

1. Individual observability. Every agent observes the same, complete environment

state.

2. Collective observability. Every agent observes a part of the environment state,

and the complete environment state is given by the combined observations of

all agents.

3. Collective partial observability. Every agent observes a part of the environment

state, but there are no assumptions about the combined observations of the

agents, which may or not coincide with the complete environment state.

4. Non-observability. The agents do not observe any aspect of the environment.
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Agent structure. Agents in a MAS may be either homogeneous or heterogeneous.

Homogeneous agents are usually constructed by the same designer, and they have

identical capabilities and goals. On the other hand, heterogeneous agents have differ-

ent capabilities and different goals, either because they are constructed by different

designers or because they fulfil different roles within the system.

Another important issue to consider is whether the different agents are cooperative

or competitive. Cooperative agents aim at solving the same decision-making problem

and they are willing to help each other to achieve this goal. On the other hand, the

agents may be selfish and only consider their own goals when acting. In the extreme,

the agents may be involved in a zero-sum situation so that they must actively oppose

other agents’ goals in order to achieve their own. This last case describes competitive

agent systems.

In this chapter we focus on cooperative multiagent learning systems. Cooperative

MAS are usually composed of homogeneous agents. Nevertheless, it could be possible

to have cooperative MASs of heterogeneous agents, as in robotic soccer. In this case,

the cooperation resides in the global reward function that the team of agents aims at

maximising.

Communication. The agent may improve their performance by sharing knowledge,

information and experiences [96], which can help agents with similar tasks to learn

faster and better. Agents may communicate in different ways, such as broadcasting

a message to all agents at once, directly sending a message to a specific agent using

direct communication, or using blackboard communication [110].

Rewards. In single-agent reinforcement learning, the goal of the agent is formalised

in terms of a special reward function. The reward function is the way to communicate

to the learning-agent what we, as agent designer, want it to achieve. It assigns a real

value to the last action executed by the agent, informing it about how good that

particular action was with respect to the goal to achieve.

When dealing with multiple cooperative learners, the designer is faced with the

task of dividing the reward of a joint action among the learners. This problem is
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called the credit assignment problem. Hence, in multiagent cooperative reinforcement

learning we can distinguish two levels of reward functions: the global reward and the

agent reward. The global reward is a signal that rates the usefulness of a full joint

action with respect to the global goal that the collective of learning agents pursues.

On the other hand, the agent reward is the signal that aims at rating the individual

agent action, i.e., the contribution of the individual agent to the global reward.

The simplest solution is to assign the whole global reward to each learner. In this

way, whenever a learner’s reward increases (resp. decreases), all learners’ rewards

increase (resp. decrease). Albeit simple, such an approach may not scale well to

increasingly difficult problems because the learners do not have sufficient feedback

tailored to their own specific actions [114]. In fact, the global reward is a “noisy”

signal, which may lead the learners to make wrong decisions.

The complementary solution is to reward each agent with its individual local

reward. Such rewards may lead to faster learning rates, but not necessarily to better

results (compared to rewarding the learners with the entire global reward [7]). It

may happen that agents do not have any rational incentive to help other agents,

and greedy behaviours may develop. Still, local rewards may speed up the learning

process, reducing the number of examples necessary for learning [5]. Other approaches

aim at providing the learning agents with more informative and less noisy signals,

using a Kalman filter to compute the true contribution to the global reward [20].

In general there is no general and definitive approach to dealing with the complex

problem of designing reward functions for collectives of agents. Still the theory of

COllective INtelligence (COIN) [114] gives some guidelines as to the design of agent

reward functions. In fact, an agent reward function should show factoredness and

learnability : an agent reward is meant to be factored if it is aligned with the global

reward (i.e., if the agent reward increases, the global reward does the same); further-

more, an agent reward should enable the agent to distinguish its contribution to the

global reward from that of the other agents. For example, if we rate the agent action

with the global reward, the agent reward function is trivially aligned, but is poorly

learnable. In fact, if an agent takes an action that actually improves the global re-

ward, while all the other agents take actions that worsen the global reward, the agent
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wrongly believes that its action was bad. Purely local agent reward functions are

usually less noisy and so highly learnable, but may not be necessarily aligned with

the global reward.

In [114] Wolpert and Tumer defined a fully factored and highly learnable agent

reward function, called the Wonderful Life Reward (WLR), defined as follows:

WLRj(x) = G(x)−G(x | xj ← cj) (2.5)

where x if the joint action, G(x) is the global reward derived from such joint

action, and G(x | xj ← cj) is the global reward evaluated under the joint action

where all the components of x affected by agent j are replaced by a constant factor

cj. If this constant is the null action, the WLR is equivalent to the global reward

minus the global reward that would have arisen if the agent j had been removed

from the system. Unfortunately the counterfactual term G(x | xj ← cj) is not always

possible to compute, specially if the function G does not have a know functional form.

Solution techniques. As in the single-agent case, the goal of a cooperative multi-

agent learning system is finding an optimal joint policy π∗, which for every possible

state s returns the joint action a that maximises the performance measure, that is,

the global reward function. Besides the similarities with the single-agent case, dif-

ficulties arise due to the decentralised nature of the problem. Each agent receives

observations and selects actions individually, but it is the resulting joint action that

influences the environment and generates the reward.

Besides the challenges inherited from single-agent learning (action space and state

space dimension, the exploration-exploitation trade-off), several new challenges arise

in the multiagent scenario, such as the difficulty of specifying a learning goal [92] and

the non-stationarity of the learning problem.

Given the complexity of the decision-making problem in the multiagent setting,

many techniques are available, which differ in the way the learning process is per-

formed by each agent, and which knowledge is available to each agent etc. Agents

may learn independently of the others, they could learn to solve a part of the whole
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learning task, or they can interact in a cooperative, negotiated search for a solution

of the learning task [111].

If the reward signal is the unique information that an agent has at its disposal, the

learning agents are called independent learners. Independent learners are unaware of

the existence of other agents, and only perceive the reward that is associated with each

joint action. Thus, independent learners must estimate the value of their individual

actions based solely on the rewards that they receive for their actions. On the other

hand, the learning-agents may be made aware of the actions of other agents, not only

the reward. In this case, the learning agents are called joint-action learners. Since a

joint-action learner can also perceive the actions of the others, it can maintain a model

of the strategy of other agents and choose its actions based on the other participants’

perceived strategy.

Joint-action learners may potentially make more informed decision, since they

somewhat predict what the other agents will do and behave accordingly. If each

agent is aware of the other agents and knows the entire joint action, it can model the

other agents strategy, for instance estimating the probability for agent j of executing

action aj when in state s:

P i
j (s, aj) =

c(aj)∑
bj∈Aj

c(bj)
(2.6)

where c(aj) counts the number of times agent i observed agent j taking action

when in state s. In [24] several heuristics are proposed to increase the learner’s Q-

values for the actions with a high likelihood of getting good rewards. In very large

domains with hundreds of agents, modelling all the other agents it is not computation-

ally viable. Another issue that may arise with joint-action learners is co-adaptation.

Since each agent model the others, the action selection is influenced by the perceived

strategy of the other agents, resulting in co-adaptation among the concurrent learn-

ing agents. Co-adaptation can drive the team towards suboptimal solutions because

agents tend to select those actions that are rewarded better, without any consider-

ation for how such actions may affect the search of their teammates. To counter
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balance this effect, agents should prefer actions that inform their teammates about

the structure of the joint search space in order to help them choose among various

available actions [74].

With the Team Q-learning algorithm [65], all the agents learn the same common

action-value function in parallel using the formula:

Q(s, a)← Q(s, a) + α · [r(s, a) + γ ·maxb∈AQ(s′,b)−Q(s, a)] (2.7)

where A is the joint action space, A = A1 × · · · × AN . The Team Q-learning

algorithm assumes that each agent perceives the same full environment state s and is

aware of the entire joint action a that the team of agents executes at each time-step.

Furthermore it assumes that the optimal joint actions are unique (which is rarely the

case), so as any coordination to break ties is unnecessary.

Similar to the Team Q-learning algorithm, the Distributed Q-learning algorithm [62]

solves the cooperative learning task without coordination. Each agent maintains a lo-

cal policy πi(s) and a local action-value function Qi(s, ai), which depends exclusively

on its own action. The local Q-values are updated only when the update leads to an

increase in the Q-value:

Qi(s, ai)← max[ Qi(s, ai), r(s, a) + γ ·maxb∈Ai
Qi(s

′, b) ] (2.8)

If the update leads to an improvement in the Q-values, the local policy πi(s) is

updated to the action ai which has improved the Q-value.

With the Independent Q-learning algorithm [24], each agent stores and updates an

individual action-value function Qi and the global action-value function Q is defined

as a linear combination of all individual contributions, Q(s, a) =
∑N

i=1Qi(s, ai). Each

local action-value function Qi is updated independently of the other agents using the

formula:

Qi(s, ai)← Qi(s, ai) + α · [ri(s, a) + γ ·maxbi∈A〉Qi(s
′, bi)−Qi(s, ai)] (2.9)

Although the learning agents are independent, they are coupled by the reward

function ri(s, a), which depends on the entire joint action a. Furthermore, the agents
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need to perceive the same full environment state s (collective observability) to suc-

cessfully update the local action-value function. The standard convergence proof for

Q-learning does not hold anymore, because the environment becomes non-stationary

from the perspective of the individual agent. Still, Q-learning is resilient to mod-

erate non-stationarity and this method has been applied successfully in multiple

cases [90][96].

All the solution methods for multiagent cooperative learning presented here as-

sume the exact and unique observation of the environment state, which in many

domains would be a strong assumption, due to, for instance, the spatial distribution

of the learning agents (e.g., robotic soccer). Some of them also need to know the en-

tire joint action exactly. Communication might help relax these strict requirements,

by providing a way for the agents to exchange needed data, like state observations

or portions of Q-values. Furthermore, many algorithms proposed in literature (either

for cooperative tasks or competitive ones), often use game-theoretic stateless tasks

to test the approach. Complex domains such as distributed control of dynamic pro-

cesses (traffic systems, power networks, sensor networks, etc.) are disregarded, so

that the application of these algorithms to real-life multiagent problems is still an

open question. For instance, scalability is the central concern for multiagent learn-

ing algorithms, because many of them require explicit tabular storage of the agents’

action-value functions, which limits the applicability of the algorithms to problems

with a relatively small number of discrete states, actions and agents. Also the prob-

lem of defining a learning goal is a difficult open issue. Usually goals are typically

formulated in terms of static games, while their extension to dynamic tasks is not

always clear or even possible. Stability and adaptation are two desired properties of

a good multiagent learning system, still they seem to be antithetical, so how to reach

both is not clear.

The importance of reward functions

Reward functions are crucial to a part of this thesis. So, in order to reach a better

understanding of behaviour of different reward functions for cooperative multiagent
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learning, we have performed several experiments, using a variant of the Minority

Game [4]. The problem is formulated as follows. Let be O a set of options where

each agent can choose from. At each time-step, an agent can choose only one option

Oj ∈ O. Depending on the number of agents that chose option Oj ∈ O, an option

reward ρi is calculated. The goal for the team of agents is maximising an aggregation

G of the option rewards.

Each agent is modelled as an independent learner, which updates its action-value

function using the formula:

Qi(Oj)← Qi(Oj) + α · [ ri −Qi(Oj) ] (2.10)

where α is the learning step, set to 0.5 in the experiments. The problem is an

iterated single-stage game, so that there is no notion of state. The reward ri depends

on the form of the aggregation G of the option rewards, and its functional form is

defined in the following experiments. Each learner uses the ε-greedy action selection

policy, with ε = 0.05.

Experiment 1. In the first experiment, the option reward ρi is calculated as:

ρi =

{
wi · ki · e−1 if ki ≤ ci

wi · ki · e−ki/ci otherwise
(2.11)

where wi is the weight (or desirability) of option Oi, ki is the number of agent that

chose option Oi, and ci is the option threshold. Basically, the option reward increases

with the number of agents if it does not exceed the threshold ci, and decreases if the

number of agents exceeds the threshold ci.

The goal G that we assign to the team of agents is maximising the function:

G =
∑
Oi∈O

ρi (2.12)

In the experiment, we simulate 500 agents and 9 available options. We set ci = 125

for every Oi ∈ O, and we use the vector of weights [1 5 10 15 20 15 10 5 1].
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Figure 2.8: The importance of reward functions: experiment 1

We evaluated 4 different agent reward functions, namely the local reward (LR),

the global reward (GR), the wonderful life reward (WLR) and the expected difference

reward (ExpDR).

The local reward LR is defined as the reward of the option that agent j chose.

Formally:

LRj = ρj (2.13)

Using the global reward GR as agent reward, each agent j is rewarded with the

value returned by the function G. Formally:

GRj = G =
9∑
i=1

ρi (2.14)

The wonderful life reward WLR is defined as the difference between the global

reward and the global reward that would have arisen if the agent j had been removed

from the system. Formally:
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WLRj = ρj(kj)− ρj(kj − 1) (2.15)

since agent j affects exclusively the reward of the option it chose, and removing

agent j from the system means evaluating the reward that would have been obtained

if option Oj had been selected by k − 1 agents.

Finally, the expected difference reward ExpDR is defined as the difference between

the expected global reward that agent j obtains when it selects option Oj and the

expected global reward:

ExpDRj = E[G | Oj]− E[G] (2.16)

Such expectation values can be calculated by averaging the global rewards that

an agent observes along the learning episodes, so that they become more and more

precise with time.

The average results of 1000 trials of the first experiment are plotted in figure 2.8.

We can clearly distinguish that the reward functions with global information (GR,

WLR, ExpDR) perform better than the reward function with strictly local informa-

tion (LR). Using LR, the global reward quickly increases but then converges to values

far away from the optimum. The behaviour of the agents that arises is clearly greedy

and poorly cooperative. Using WLR the global reward rapidly converges and settles

around a good value. This is because in this experiment the WLR contains much

information that each agent uses to drive its search for the best option to choose.

Using GR, the convergence is slower but in the end the agents are able to obtain a

global reward comparable of that obtained using WLR. The agent learns to cooper-

ate, but slower than with WLR, due to the bigger quantity of noise carried by the

reward signal. The best results are obtained using ExpDR: the convergence is fast as

with WLR and the agents maximise with more efficacy the global reward.

Experiment 2. In the second experiment, the option reward ρi is calculated as in

equation 2.11, but we change the goal that the team of agents pursues. In this exper-

iment we introduce a factor of equality between option rewards, so that those joint



52 Chapter 2: State of the Art

Figure 2.9: The importance of reward functions: experiment 2

actions that give rise to almost equal option rewards are highly rewarded. Formally:

G =

∑
Oi∈O

ρi

1 + σ
(2.17)

where σ is the standard deviation of the option rewards, defined as:

σ =

√√√√√∑
Oi∈O

(µ− ρi)2

N
(2.18)

where µ is the mean of the option rewards:

µ =
ρ1 + · · ·+ ρN

N
(2.19)

In the experiment, we simulate 500 agents and 9 available options as usual. The

threshold ci is set to 125 for every Oi ∈ O, and we use the vector of weights

[1 5 10 15 20 15 10 5 1]. Again we evaluated the local reward (LR), the global

reward (GR), the wonderful life reward (WLR) and the expected difference reward

(ExpDR).
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With the local reward, an agent is aware exclusively of the consequences of its

actions, so that the standard deviation σ that it perceives is always equal to 0. Thus,

the local reward is again defined as the reward of the option that agent j chose.

Formally:

LRj = ρj (2.20)

where ρj is the reward of the option selected by agent j.

Similarly, using the global reward as agent reward function, each agent j is re-

warded with the value returned by the objective function G. Formally:

GRj = G =

9∑
i=1

ρi

1 + σ
(2.21)

The wonderful life reward is defined as the difference between the value returned

by the objective function and the value returned by the objective function if we

remove agent j from the system. Removing j from the system affects not only the

sum of the option rewards, but also the standard deviation σ. Formally:

WLRj =

9∑
i=1

ρi

1 + σ
−

9∑
i=1

ρ̂i

1 + σ̂
(2.22)

where ρ̂i and σ̂ are the option rewards and the standard deviation when agent j

is removed from the system. Since agent j affects only the option it chooses, Oj, ρ̂i

is defined as:

ρ̂i =

{
ρi(ki − 1) if i = j

ρi(ki) otherwise
(2.23)

while σ̂ is defined as:

σ̂ =

√
(µ̂− ρ1)2 + · · ·+ (µ̂− ρj(kj − 1))2 + · · ·+ (µ̂− ρ9)2

9
(2.24)

where µ̂ is the mean of the option reward when agent j is removed from the

system:
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µ̂ =
ρ1 + · · ·+ ρj(kj − 1) + · · ·+ r9

9
(2.25)

Finally, the expected difference reward ExpDR is defined as usual as the difference

between the expected global reward that agent j obtains when it selects option Oj

and the expected global reward:

ExpDRj = E[G | Oj]− E[G] (2.26)

The average results of 1000 trials of the second experiment are plotted in fig-

ure 2.9. Once again, the LR is the worst performing reward function. The agents are

not able to jointly maximise the global reward, since it tends to decrease during the

learning of the agents, and also the initial improvement as in experiment 1 disappears.

Surprisingly, using WLR the agents perform quite a lot worse than in experiment 1.

The global reward basically remains constant over all the learning episodes, approxi-

mately equal to the global reward that can be obtained by a team of agents that act

randomly. The GR shows a similar dynamics as in experiment 1, characterised by a

slow convergence, while the ExpDR is again the best performing reward function.

Experiment 3. In the third experiment, the option reward ρi is calculated as:

ρi =

{
ki/N ki > 0

1 otherwise
(2.27)

where ki is the number of agent that chose option Oi, and N is the total number

of agents. The collective goal is defined by the function:

G =
∏
Oi∈O

ρi (2.28)

Given that ρi ∈ (0, 1], the global reward G is maximised when all the agents select

the same option. In the experiment we again simulate 500 agents and 9 available

options, evaluating the four agent reward functions, LR, GR, WLR and ExpDR. The

local reward LR is defined as the reward of the option that agent j chose. Formally:
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Figure 2.10: The importance of reward functions: experiment 3

LRj = ρj = kj/500 (2.29)

where kj is the number of agent that selected option Oj.

Using the global reward GR as agent reward, each agent j is rewarded with the

value returned by the function G. Formally:

GRj = G =
9∏
i=1

ρi (2.30)

The wonderful life reward WLR is defined as the difference between the global

reward and the global reward that would have arisen if the agent j had been removed

from the system. Formally:

WLRj = [ρj(kj)− ρj(kj − 1)] ·
9∏

i = 1

i 6= j

ρi (2.31)
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Finally, the agents calculate the expected difference reward ExpDR as the differ-

ence between the expected global reward that agent j obtains when it selects option

Oj and the expected global reward:

ExpDRj = E[G | Oj]− E[G] (2.32)

The average results of 1000 trials of the third experiment are plotted in figure 2.10.

Surprisingly, in this specific scenario all the reward functions that use global infor-

mation (GR, WLR, ExpDR) perform quite a lot worse than the reward function with

strictly local information (LR). If with GR, WLR and ExpDR, the agents are ba-

sically unable to agree on a single option, with LR they reach on average a global

reward of 0.5 (recall that 1 is the optimum). This is because the local information

is not only enough to drive the agents toward the selection of a common option, but

also it is less noisy, because it clearly distinguishes the “good” agents from the “bad”

agents. For instance, if N − 1 agents select the same option, while only one agent

selects a spare option, the N − 1 “good” agents are rewarded with N − 1/N ' 1,

while the “bad” agent is rewarded with 1/N ' 0. So that the former are incentivised

to confirm the selected option, while the latter is incentivised to change its previously

selected option and select another one. On the other hand, in the same situation the

GR would have rewarded all the agents with N − 1/N2 ' 1/N ' 0, which means

that the N −1 “good” agents would have observed the same low reward as the “bad”

agent, wrongly believing that the option they had chosen was bad.

2.5 MAS in traffic and transportation

To achieve the goals pursued by the Intelligent Transportation Systems (ITS)

there is an increasing need to understand, model, and govern such systems at both

the individual (micro) and the society (macro) level. Transportation systems may

contain thousands of autonomous entities that need to be controlled, raising signifi-

cant technical problems. The inherent distribution of problems in traffic management

and control, the high degree of complexity, and the fact that the actors in a traffic
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and transportation system (the driver, the pedestrian, the infrastructure component,

etc.) fit the concept of autonomous agent very well, allows for a natural break down

of the system into agents that interact so as to achieve their goals, selfishly as well

as cooperatively. Therefore, traffic and transportation scenarios are extraordinarily

appealing for multiagent technology [8][10][11].

Parunak [77] listed the characteristics of an ideal application suited for agent

technology:

• Modular. Each entity (agent) defines a set of state variables that is clearly

distinct from those of its environment, and it is possible to clearly identify the

boundary between the agent and the environment.

• Decentralised. The application can be broken down into self-contained and

decoupled software processes capable of performing useful tasks with a certain

degree of autonomy.

• Changeable. The structure of the application is dynamic and may change

quickly and frequently.

• Ill-structured. The knowledge of the application is not available when the

system is being designed.

• Complex. The system exhibits a large number of different behaviours which

may interact in sophisticated ways.

As most traffic and transportation logistics applications actually fit Parunak’s

characterisation rather well, this would suggest that agent technology indeed is a

promising approach for this area.

Problem space. Figure 2.11 shows how to organise the space of multiagent prob-

lems [103]. There are two dimensions: the x-dimension represents whether or not the

designer knows the agents’ decision-making function (δi), the y-dimension represents

whether or not the designer knows the mechanism (M) that maps the collective (or

joint) actions of the agents into an outcome.
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Figure 2.11: Space of all multiagent problems [103].

In the bottom left quadrant fall all the problems where the agents behaviour and

the outcome for a vector of actions is known to the designer. Since everything is

known, these problems are not so interesting from the multiagent perspective.

The bottom right quadrant represents the problems where the agent behaviour is

not known but the mechanism that generates the outcome of a collective action is

known. Distributed constraint optimisation and satisfaction problems [118] also reside

in this quadrant. In these problems, the designer defines a global utility function so

that, for a given joint action, it is possible to calculate the value of such global utility.

Thus, the designer must determine how the individual agents must behave (δi) in

order to maximise the global utility.

The top left quadrant represents systems where the agents’ behaviour is known,

so that the designer must define a mechanism that maps collective actions to a final

outcome. This kind of system is usually composed of selfish agents, which act to

maximise their utility: Problems that fall in this quadrant are, for instance, coalition
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formation [38] and task allocation [91].

Problems related with ITS fall between the top left and the top right quadrant.

In fact, the behaviour of the driver agents is not known a priori by the designer

(although some reasonable assumptions can be made), while the designer is free to

define and engineer the agents of the infrastructure. Still, at design time it is not

known which outcome will emerge from a collective action of both the driver agents

and the infrastructure agents, due to the complexity and large-scale of the problem.

ITS dimensions. According to [31], we can define the following dimensions of a

traffic and transportation application:

• Domain. The domain can be transport, traffic and terminal. Transport is the

activity of moving something between point A and point B by one or several

modes of transport. Traffic refers to the flow of different transports within a

network (air, road, rail etc.). Within a transport chain operated by different

modes, there are interfaces, referred to as terminals.

• Transport mode. There are five basic modes of transportation: road, rail, air,

water, and pipeline.

• Time horizon. Time horizon refers to at what stage in the decision-making

process the application is used. There are three levels of time perspective of

the decision-making process: strategic, tactical and operational level. Strategic

decision-making typically involves long-term decisions, tactical decision-making

deals with medium-term issues and operational decision-making refers to how

to actually do the work, i.e., short term issues.

• Usage. The applications can be classified as automation systems or decision-

support system (DSS) [99]. An automation system is a self-acting mechanism

that performs a required act in response to certain conditions. On the con-

trary, a decision-support system has an indirect impact on the decision-making,

since the user makes decisions by taking (or not) the suggested decision into

consideration.
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• Control, structure and attitude. The control performed by the agents can

be either centralised or distributed. The structure refers to the agents consti-

tuting the MAS, their roles, and the communication topology. The structure is

either static or dynamic. Finally, the agent attitude captures the behaviour of

agents, which is classified as either cooperative or selfish.

In this section, we will review the literature of multiagent applications in the road

traffic domain, with special emphasis on the reservation-based intersection control

mechanism proposed by Dresner and Stone [35]. We will highlight the following

application dimensions: time horizon, usage, control, structure and attitude. The

results with respect to these dimensions are summarised in table 2.1.

In [48], two multiagent systems, InTRY S and TRY SA2, which perform decision

support for real-time traffic management in the urban motorway network around

Barcelona are presented. Both systems make use of traffic management agents that

apply knowledge-based reasoning techniques to deal with local traffic problems. In

this work, two coordination mechanisms are employed, one centralised (InTRY S)

and one distributed (TRY SA2). The InTRY S system uses a special coordinator

agent endowed with knowledge on how to integrate local control strategies (proposed

by traffic control agents) into a coherent global plan for the whole traffic network. In

TRY SA2, spatial problem areas are controlled by autonomous, selfish, traffic agents

that coordinate using a mechanism called structural cooperation [73].

In [71] a design method for the construction of agent-based decision support sys-

tems (DSS) is presented. DSS are interesting in the traffic domain because they sup-

port the storage of large amounts of decision-relevant data and assist human operators

for tactical decision-making. The authors take advantage of multiagent technology

to construct the DSS, since multiagent systems reduce design complexity and also

support a dialogue-based stance on decision support interactions. Starting from a

generic organisational and communicative model for decision support environments,

the authors present an abstract architecture for multiagent DSS, composed of con-

nection agents (which provide data and execute actions), management agents (which

advise the human operators and explain the decisions they suggest), user interface
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agents and peripheral agents (which represent the support infrastructure for the DSS,

such as directory facilitators). The architecture has been instantiated for real-world

problems by means of two prototypes for transportation management.

In [22] a cooperative, hierarchical, multiagent system for real-time traffic signal

control is presented. The control problem is divided into various sub-problems, each of

them handled by an intelligent agent that applies fuzzy neural decision-making. The

multiagent system is hierarchical, since decisions made by lower-level agents are me-

diated by their respective higher-level agents. The multiagent architecture also adapt

itself to the dynamically changing problem domain, using an on-line reinforcement

learning process for each agent.

Adler et al. [2] explore the use of cooperative MAS to improve dynamic routing

and traffic management. From one side, real-time control over the transportation

network is performed by system operator agents. On the other, information service

providers aim at advising the drivers and distributing the traffic, resulting in a better

allocation of the network capacity. The agents involved use negotiation to seek a

more efficient route allocation.

In [36] is presented a hierarchical multiagent system that consists of several agents

that act locally, representing an intersection. These local traffic agents (LTAs) aim

to optimise the performance of their assigned intersection, under the supervision of a

coordinator traffic agent (CTA). Each LTA calculates the optimal local signal plan,

using a basic expert system, and sends it to the supervising CTA, which adjusts the

local plans it receives, taking into consideration the plans of the LTAs governing the

neighbouring intersection. Nevertheless, many details are not mentioned or discussed,

such as how the CTA adjusts the local plans or what a global solution in this case is.

In [101] a test bed for multiagent control systems in road traffic management

is presented. As the complexity of traffic control on a network grows, dividing the

coordination problem into smaller coherent sub-problems that can be solved with a

minimum of interaction becomes necessary. The work focuses on the development

of a test bed to evaluate different configurations and coordination mechanisms for a

traffic managing multiagent system.
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In [32] an approach based on swarm intelligence is proposed. Each intersection

behaves like a social insect that receives stimuli to perform or to change tasks (i.e.,

signal plans) from the vehicles in form of “pheromone”. Therefore the queued vehicles

may trigger some signal plan switching. Using the swarm approach, the system

behaves as well as a central decision support system, although the time needed to

converge to a stable coordination can be high.

In [54], traffic signal plans are coordinated through distributed constraint opti-

misation (DCOP), using cooperative mediation. The approach is intended to be a

compromise between totally autonomous coordination and the classical centralised

solution, like in TRANSYT [80] or SCOOT [50]. Each agent is assigned to one ore

more variables of the DCOP, which have inter-dependencies and conflicts (e.g., two

neighbouring intersections want to coordinate in different traffic directions.). A me-

diator agent is in charge of resolving these conflicts when they occur, recommending

values for variables associated with the agents involved in the mediation.

In [81], a multi-layered architecture is proposed. In the bottom layer, traffic

detectors sense changes in the traffic patterns and select appropriate signal plans

consequently. The upper layer deals with previously unknown situations by searching

for a signal plan based on off-line, evolutionary, optimisation.

In [6], history-based controllers gather knowledge about the trip plans of the

drivers and recent performance, in term of travel times. The authors base their

approach on the notion of historical fairness by allowing vehicles to store credits

they receive when waiting at red lights, and spend credits when passing through

intersections. The main drawback of such an approach is that drivers need to report

the average waiting time over all intersections at the end of its trip, in order to assess

the efficiency of the control.

In [58], multi-agent control and fuzzy inference are mixed to control a group of

phases. Each group is modelled as an agent that can set the lights of the group to

green when requested by traffic demand and when permitted by other agents. Thus,

agents need to negotiate about how to operate together. Agents exchange their local

traffic and control data to negotiate control decisions, which are to extend the green

time or to terminate it.
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In [28], a reinforcement learning system copes with the dynamism of the envi-

ronment by incrementally building new models. When the traffic pattern changes, a

new model is created and the learning in the new model starts. The changes in the

traffic pattern are estimated according to the types of transitions and rewards ob-

served. This means that the system models the flow patterns as non-stationary but

divided in stationary, separated, dynamics that do not need to be known a priori.

The creation of new models is controlled by a continuous evaluation of the prediction

errors generated by each partial model.

In [113], traffic light agents use reinforcement learning in order to minimise the

overall waiting time of vehicles in a small grid. Those agents learn a value function

that estimates expected waiting times of vehicles given different settings of traffic

lights. Value functions are also learnt to compute policies to select optimal routes

for vehicles. The traffic light agents can shift from red to green and opposite at each

time-step, although in the practice of traffic engineering changes are introduced only

in a smooth way.

In [94], a similar reinforcement learning-based method for controlling traffic lights

is presented. The traffic light agents learn to minimise the total travel time of all

vehicles in the network. The control objective is global, although actions are local

to the agents. The state of the learning task is represented as an aggregation of the

waiting times at the intersection of individual vehicles.

The work presented in [9] investigates the effect of co-adaptation between drivers

and traffic light agents, each having its own goal and learning algorithm. The objec-

tive of local traffic light agents is obviously to minimise queues around the intersection,

whilst the objective of drivers is to minimise their travel times. The control is done via

decentralised traffic signals. The traffic light agents use single agent Q-learning [108]

to learn the effectiveness of a signal plan. Results show that in general co-evolution

improves both travel time and occupancy, especially in large-scale situations.

In [69], heterogeneous groups of agents communicate to improve their learning

skills. Each agent controls an intersection in a certain area, using information from

several sources as learning input, and communicating with agents in the same area or

in different areas. The goal of each agent is formalised as a weighted sum of two terms,
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which represent the compromise between improving the individual performance at the

single intersection and the overall quality in the area. The work evaluates different

types of agents, such as evolutionary neural agents, Q-learning agents and heuristic

agents.

Reaching the equilibrium, as in the aforementioned learning-based approaches it

not the only goal that can be pursued. Adaptation, for instance, may improve traffic

flow as well. In [40], traffic lights self-organise by means of three methods, with

no direct communication between them. It is shown that the adaptation to traffic

conditions reduces waiting times and number of stopped vehicles.

Also Lämmer et al. [61] proposed a self-organising approach, inspired by the ob-

servation of self-organised oscillations of pedestrian flows at bottlenecks. The local in-

teractions between neighbouring traffic lights lead to emergent coordination patterns

such as “green waves” and achieve an efficient, decentralised traffic light control. The

self-organised control is a combination of two rules, one that aims at optimising the

flow and one that aim at stabilising it. Simulation results have shown a considerable

reduction not only of the average travel times, but also of their variation.

Reservation-based intersection control.

The reservation-based system proposed in [35] assumes the existence of two dif-

ferent kind of agents: intersection managers and driver agents. The intersection

manager controls the space of an intersection and schedules the transit of each vehi-

cle. The driver agent is the entity that autonomously operates the vehicle.

Each driver agent, when approaching the intersection, contacts the intersection

manager and requests a reservation to safely cross the intersection. Such a request

contains the necessary information to simulate the vehicle trajectory through the

intersection, such as the vehicle’s properties (vehicle’s ID, vehicle’s size, etc.) as well

as some properties of the proposed reservation (arrival time, arrival speed, arrival

lane, arrival road segment, type of turn, etc.). The intersection manager simulates

the vehicle trajectory through the intersection and informs the driver agent whether

or not its request is in conflict with the already confirmed reservations. If there is
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Time horizon Usage Control Structure Attitude

Strat. Tact. Op. Aut. DSS Centr. Distr. Stat. Dyn. Coop. Self.

Ossowski et. al. [71] X X X X X

Hernandez et. al. [48] X X X X X X X

Choy et. al. [22] X X X X X

Adler et. al. [2] X X X X X

France et. al. [36] X X X X X

Katwijk et. al. [101] X X X X X

Oliveira et. al. [32] X X X X X

Junges et. al. [54] X X X X X

Rochner et. al. [81] X X X X X X

Balan et. al. [6] X X X X X

Kosonen et. al. [58] X X X X X

Silva et. al. [28] X X X X X

Wiering et. al. [113] X X X X X

Steingrover et. al. [94] X X X X X

Bazzan et. al. [9] X X X X X

Nunes et. al. [69] X X X X X

Gershenson et. al. [40] X X X X X

Lammer et. al. [61] X X X X X

Dresner et. al. [35] X X X X X

Table 2.1: State-of-the-art with respect to ITS dimensions

no such conflict, the driver stores the reservation details and tries to meet them;

otherwise it may try again at a later time.

The reservation-based system gives also the possibility to the driver agent to

change the parameters of a confirmed reservation as well as to cancel a confirmed

reservation that it holds. For example, suppose that a driver agent realises that the

traffic conditions have slightly changed and that it will be a bit late at the intersection

with respect to the reserved arrival time. In this case the driver agent might change

the reservation parameters, trying to get a new updated reservation providing the

new, more accurate, arrival time.

Consider also the case that there is a crashed vehicle in front of the vehicle operated

by the driver agent. In this case, the reservation is useless for the driver agent, because

it will not be actually able to make use of it, so that the driver agent can cancel the

reservation and make a new one.



66 Chapter 2: State of the Art

Driver
agent

Intersection
manager

1: REQUEST check driver 
agent's ID

2: CONFIRMATION
[not has conflicts]

2: REJECTION
[has conflicts]

[has reservation]

remove 
reservation

[not has 
reservation]

check conflicts

Figure 2.12: Protocol: requesting a reservation

Vehicle-infrastructure protocol. The reservation-based system relies on a tight

integration between vehicles and intelligent infrastructure. The driver agent initiates

the protocol sending a REQUEST message (see figure 2.13). The message contains

the vehicle’s ID, the arrival time, the arrival speed, the lane occupied by the vehicle

in the road segment before the intersection and the type of turn.

The intersection manager, with the information contained in the REQUEST mes-

sage, simulates the vehicle trajectory, calculating the space needed by the vehicle

over time. If the transit does not have conflicts with the confirmed reservations, the

intersection manager replies with a CONFIRMATION message, which implies that

the driver agent accepts the reservation parameters. On the other hand, if the transit

is not feasible, the intersection manager replies with a REJECTION message.
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(request reservation

:sender D-3548

:receiver IM-05629

:content(

:arrival time 08:03:15

:arrival speed 23km/h

:lane 2

:type of turn LEFT

)

)

Figure 2.13: Example of a REQUEST message

One of the norms of the control mechanism is that a driver agent is allowed to

hold only one confirmed reservation at a particular intersection. If a driver agent

has a confirmed reservation but it wants to change or cancel it and make a new one

(e.g., with a more accurate arrival time), it simply starts again the reservation request

protocol, sending a REQUEST message with the desired parameters. When the in-

tersection manager receives the request, it firstly determines whether the driver agent

already has a confirmed reservation, using the driver agent’s ID. If so, the intersec-

tion manager implicitly assumes that the driver agent wants to replace the confirmed

reservation and make a new one, so that it removes the reservation stored in its in-

ternal database and evaluates the new one as in the original protocol (i.e., if the new

reservation request is feasible, then the intersection manager sends a CONFIRMA-

TION message, otherwise it sends a REJECTION message). Figure 2.12 summarises

the interaction protocol between driver agent and intersection manager.

Reservation distance. The protocol described above may generate deadlock, es-

pecially when many vehicles are approaching the intersection. Consider the following

scenario: a vehicle A, following a vehicle B, requests and obtains a reservation before

vehicle B. Vehicle B requests a reservation but it is rejected, due to conflicts with
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Figure 2.14: Example of a 4-links-3-lanes intersection

the reservation granted to vehicle A. Vehicle B, not holding a valid reservation to

safely cross the intersection, stops at the intersection, thus impeding vehicle A to use

its confirmed reservation and cross the intersection. To avoid (or at least minimise)

these deadlock situations, Dresner and Stone proposed the use of the reservation dis-

tance as a criterion for filtering out reservation requests that could generate deadlock

situations. Since the vehicles communicate the time at which they plan to arrive at

the intersection, as well as what their speed will be when they get there (quantities

which the vehicles have no incentive to misrepresent), it is possible to approximate a

vehicle’s distance from the intersection, given a reservation request by that vehicle.

This approximation, called the reservation distance, is va · (ta − t), where va is the

proposed arrival speed of the vehicle, ta is the proposed arrival time of the vehicle,
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and t is the current time. This approximation assumes the vehicle is maintaining a

constant speed. The reservation processing policy uses such approximation as follows.

For each lane i, the policy has a variable di, initialised to ∞. For each reservation

request r in lane i, the policy computes the reservation distance, d(r). If d(r) > di, r

is rejected. If, on the other hand, d(r) ≤ di, r is processed as normal. If r is rejected

after being processed as normal, di ← min(di, d(r)). Otherwise, di ←∞. While the

use of the reservation distance does not guarantee that vehicles only get reservations

if all vehicles in front of them already have reservations, it makes it more likely.

Model of the physical intersection. An intersection manager needs a model

of the physical intersection that it governs. Such model is used by the intersection

manager to simulate the vehicle trajectory and detect which parts of the intersection

are required at which time. Thus, an intersection is modelled as a grid of squared tiles,

whose size determines the intersection granularity. When an intersection manager

receives a request, it simulates the transit of the vehicle through the intersection

and determines which tiles are required at each time-step. If at least one of the

tiles, needed at a certain time-step t, has been already granted to another vehicle,

the request is rejected, otherwise it is granted to the requester. Depending on the

intersection granularity, a vehicle at a certain time-step may occupy one or more tiles.

Figure 2.14 shows an intersection with 4 incoming links, each of them with 3 lanes.

The granularity is set so that a vehicle occupies 15 tiles at each time-step. The arrows

shows the allowed trajectories for a vehicle that wants to turn left (dark-grey arrow),

go straight (mid-grey arrows) or turn right (light-grey arrow).

2.6 Discussion

The applications of MAS technology to road traffic analysed in this section is far

from being complete. Nevertheless we can extract some general trends, according to

the categories introduced at the beginning of the section.

As said before, the time perspective of the decision-making process of the applica-

tion may be strategic, tactical or operational (i.e., long-, medium- or short-term). All
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but one the revised applications work at the operational level, since they are directly

involved in the control strategy. This is a hint that multiagent system technology

is not suited, or at least is not employed, for strategic and tactical decision-making,

which is still a human activity. Multiagent-based microscopic simulation is probably

the MAS application that is more closely related to strategic and tactical decision-

making. Using simulators, traffic engineers may evaluate different strategies and have

an estimation of the impact of a strategic decision.

Two main uses have been outlined: automation systems or decision-support sys-

tems. All but two of the revised works are automation systems, denoting a greater

interest in this kind of application. One reason could be that operational decisions

are easier to automate than tactical or strategical ones. In fact, decision-support

systems deal with decisions on which human operators want to have the last say, and

furthermore they need to “explain” the suggested actions [72].

Regarding the control, all but three works perform a distributed control. Dis-

tributed control seems quite necessary in the road traffic domain, for scalability

reasons. Nevertheless, centralised traffic control systems like TRANSYT [80] or

SCOOT [50] work reasonably well.

Regarding the communication topology, the majority of the revised works assume

a static structure. This is a reasonable assumption because the control action is

usually performed by agents of the infrastructure (such as traffic lights), which does

not change so quickly.

In general, there is no “agreement” about the best mental attitude that the agents

should have in order to perform effectively as a whole. The automation system is com-

posed of agents that reside in the infrastructure, thus the designers of the system may

organise them to work cooperatively, defining the individual agents’ utility functions,

goals and policies. Nevertheless, one may purposely design the agents so that they

act selfishly, since optimising its own performance using only local information is a

more tractable problem for an agent. Thus, to ensure that some desired global prop-

erty emerges, the designer can shape the rules specifying the interactions between the

system’s agents, as occurs in mechanism design [30] or in self-organising systems [15].

Finally, all the applications of multiagent technology in the traffic domain that we



Chapter 2: State of the Art 71

Focus on driver modeling and simulation
  · driver decision making
  · driver behaviour
  · demand modeling

MAS = Infrastructure
Focus on control policy
  · isolated intersection
  · network of intersections

Drivers are "particles" of the traffic flow

MAS = Drivers

MAS = 
Drivers-Infrastructure

Integration

Figure 2.15: Agent-based approaches to ITS

have introduced in the previous section model the infrastructure and its components

(traffic lights, signals, sensors, etc.) as a multiagent system, while the drivers are

conceived as “particles” of a given traffic flow. Here the focus is on the control policies

employed by the infrastructure agents, specially at intersections. Still, other agent-

based applications conceive the drivers as the collective of agents whose behaviour

is to be modelled, to simulate driver decision processes such as the departure time

selection or the route choice [82].

Nevertheless, the continuous advances in software and hardware technologies will

make a tighter integration between vehicles and infrastructure possible(figure 2.15), to

take a step towards that future scenario described at the beginning of the introduction.

For example, the Vehicle Infrastructure Integration (VII)1 is an initiative that fosters

research and development of applications for a series of technologies directly linking

1http://www.intellidriveusa.org



72 Chapter 2: State of the Art

road vehicles to their physical surroundings. The first goal is improving road safety,

for example reducing rear-end collisions by tracking obstructions in front or behind

the vehicle and automatically applying brakes when needed. VII could also noticeably

improve the operational efficiency of a transportation network. As vehicles will be

linked together, the reaction times decrease and the gap between vehicles could be

reduced so that there is less empty space on the road. VII may use real-time traffic

data to provide accurate origin-destination studies to use in transportation forecasting

and traffic operations. Tolling is another prospect for VII technology as it could enable

roadways to be automatically tolled. Data could be collectively transmitted to road

users for in-vehicle display, outlining the lowest cost, shortest distance, and/or fastest

route to a destination on the basis of real-time conditions.

At the present time, cars can be equipped with features such as cruise control[52]

and autonomous steering [60]. Furthermore, there exist small-scale systems of au-

tonomous guided vehicles (AGV), for example in factory transport systems. If this

trend holds, one day fully autonomous vehicles will populate our road networks. In

this case, given that the system will have a variable (and possibly huge) number of

vehicles and an open infrastructure, central control such as in today’s AGV systems

will be impossible. Thus, an infrastructure such as that proposed by Dresner and

Stone [35] is more suitable to control and schedule the transit of AGVs. In their

model, an intersection is regulated by an intelligent agent that assigns reservations

of space slots inside the intersection to each autonomous vehicle intending to pass

through the intersection. Such an approach has demonstrated, in a simulated envi-

ronment, several advantages, because it may drastically reduce delays compared to

traffic lights and it makes possible the use of fine grained, vehicle-centric, control

policies.
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Single intersection

In theory, practice and theory are the same,

but in practice they differ.

Anonymous

In the intersection control mechanism proposed originally by Dresner and Stone

(see section 2.5), the intersection manager processes the incoming requests with a

first-come-first-served policy (FCFS). This means that if two vehicles send requests

that require the same space-time in the intersection, the vehicle that sends the request

first will obtain the reservation. This policy in extreme cases could result being quite

inefficient. Consider the case of a set of n vehicles, v1, v2, . . . , vn, such that v1’s request

has conflicts with every other vehicle, but that v2, . . . , vn do not have conflicts with

one another. If v1 sends its request first, it will be granted and all other vehicles’

requests will be rejected. On the other hand, if it sends its request last, the other

n− 1 vehicles will have their requests confirmed, whilst only v1 will have to wait.

A better request processing policy would be evaluating the whole set of n incoming

requests, in order to confirm as many requests as possible. This problem can be

formulated using the following graph-based formulation: be G(V , E) an undirected

graph, where V is the vertex set and E is the edge set. The vertex set V contains all

73
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Figure 3.1: Confirmed requests (light circle) using the FCFS policy (left) with respect

to the optimal solution (right)

the reservation requests to be processed. If two requests vi and vj conflict with one

another, an edge connecting vi and vj is added to E .

Figure 3.1 shows an example where 7 requests, labelled v1,. . . , v7 (the subscript

index represents the arrival order, the light color means that the request is confirmed,

the dark color means that the request is rejected), are processed using the FCFS policy

(left square). In this case, v1 is confirmed, v2 and v3 are rejected due to conflicts

with v1, v4 is confirmed, v5 is rejected for conflicts with v1, while v6 and v7 are

rejected for conflicts with v4. Thus, only 2 of 7 requests are confirmed. Nevertheless,

considering all the 7 requests as a whole, 4 of 7 requests could have been confirmed,

namely v2, v3, v6 and v7 (right square). With this formulation, finding the maximum

number of non-conflicting requests is equivalent to solving the maximum independent

set problem [93], which unfortunately is NP-hard.

In this chapter we analyse two different types of policies that an intersection

manager may use to process the incoming requests. The policies of the first type

are inspired by the research on adversarial queueing theory (AQT). The policies of
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the second type are based on the combinatorial auction (CA) theory. The chapter is

structured as follows: in section 3.1 we briefly introduce the custom simulator of a

single intersection that we used to perform the empirical evaluation; in section 3.2 we

detail the AQT-based policies and their performance; in section 3.3 we analyse the

auction-based policies; finally we discuss the experimental results in section 3.4.

3.1 Simulator

Traffic simulation tools are becoming fundamental in helping evaluate of new

traffic control strategies or assess the impact of infrastructure improvements. Traf-

fic simulation is a very active field, with many projects that are developed both in

academia as well as in commercial firms. Academic traffic simulation tools are usually

offered to the research community as open source software, although using them may

be quite complicated: proprietary file formats, scarce documentation and “program-

ming tricks” only known to the developers do not facilitate the use and the extension

of those software. Among them, MITSIMLab 1, developed at MIT, is probably the

best academic traffic simulator.

On the other hand, commercial traffic simulators come as full-fledged products,

with many features and functionalities, such as 3D visualisation, network modelling

editors, programming API and analysing tools. Still, apart from their price (that

is often around the ten thousands euros), they are hardly extensible to pursue spe-

cific researching goals. Among them, the most famous and slicker are AIMSUN2,

Paramics3, VISSIM4, TransModeler5 and Trafficware6.

Since we need a simple traffic simulator that emulates the traffic at a single inter-

1http://mit.edu/its/mitsimlab.html

2http://www.aimsun.com

3http://www.paramics-online.com

4http://www.ptvag.com

5http://www.caliper.com/TransModeler/default.htm

6http://www.trafficware.com
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Figure 3.2: Simulator of a single intersection

section, we decided to develop our own custom, microscopic, traffic simulator.

Microscopic model

The simulator is a microscopic, time-and-space-discrete, simulator, with simple

rules for acceleration and deceleration. The simulated area is modelled as a grid, and

subdivided in lanes. Each lane is 3m wide, and subdivided in 12 squared tiles of

0.25m each. Each vehicle is modelled as a rectangle of 8×16 tiles, or equivalently, as

a rectangle of 2m× 4m.

Each vehicle has a preferred speed ∈ [30, 50]km/h, which is assigned when the ve-

hicle is spawned inside the simulation using a normal distribution with mean 40km/h

and variance 5km/h.

The vehicle dynamic is regulated by the IDM car-following model [98]. The de-

cision of any driver agent to accelerate or to brake depends only on its own speed,

and on the speed of the vehicle immediately ahead of it. Specifically, the acceleration
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dv/dt of a given vehicle depends on its speed v, on the distance s to the front vehicle,

and on the velocity difference ∆v (positive when approaching)

dv

dt
= a ·

[
1−

(
v

vp

)
−
(
s∗

s

)2
]

(3.1)

where

s∗ = s0 +

(
v · T +

v ·∆v
2 ·
√
a · b

)
(3.2)

and a is the acceleration, b is the deceleration, v is the actual speed, vp is the

preferred speed, s0 is the minimum gap, T is the time headway.

The acceleration is divided into an acceleration towards the preferred speed on a

free road, and braking decelerations induced by the front vehicle. The acceleration

on a free road decreases from the initial acceleration a to 0 when approaching the

preferred speed vp.

The braking term is based on a comparison between the “preferred distance”

s∗, and the actual gap s with respect to the front vehicle. If the actual gap is

approximately equal to s∗, then the braking deceleration essentially compensates the

free acceleration part, so the resulting acceleration is nearly zero. This means that

s∗ corresponds to the gap when following other vehicles in steady traffic conditions.

In addition, s∗ increases dynamically when approaching slower vehicles and decreases

when the front vehicle is faster. As a consequence, the imposed deceleration increases

with decreasing distance to the front vehicle, increasing its own speed, and increasing

speed difference to the front vehicle. The aforementioned parameters were set to

vp = 50km/h, T = 1.5s, s0 = 2m, a = 0.3m/s2, b = 3m/s2.

The speed of a vehicle is updated every second, and its position, since the space

is discrete, is updated to the tile closest to the “real” new position in the continuous

space.
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Figure 3.3: Elements of the network in the AQT model

3.2 AQT-inspired policies

In the original version of the work by Dresner and Stone, the intersection manager

uses a simple FCFS policy to process the incoming requests. Still, other requests

processing policies, inspired by the research on adversarial queueing theory (AQT),

can be employed. The AQT [16] model has been used in recent years to study the

stability and performance of packet-switched networks. In this model, the arrival of

packets to the network (i.e., the traffic pattern) is controlled by an adversary that

defines, for each packet, the place and time in which the packet joins the system.

Each node in the network has a reception buffer for every incoming edge, an output

queue for every outgoing edge, and a packet dispatcher that dispatches each incoming

packet into the corresponding output queue (or removed, if this is the final node of

the packet), using a specific policy (see figure 3.3). Under these assumptions, the

stability of the network system is studied, where stability is the property that at any

time the maximum number of packets present in the system is bounded by a constant

that may depend on system parameters.

The packet processing of a packet dispatcher in the AQT model and the request
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processing of the intersection manager in the reservation-based control mechanism

share some similarities. In the same way a packet dispatcher decides which packet

from the reception buffer will be dispatched to the corresponding output queue, an

intersection manager may decide in which order a set of reservation requests must be

processed, assigning priorities to requests according to its scheduling policy. Taking

inspiration from the AQT model, we compared the FCFS policy with 4 universally

stable policies, namely longest-in-system (LIS), shortest-in-system (SIS), farthest-to-

go (FTG) and nearest-to-source (NTS). The LIS policy gives priority to the request

of the vehicle which joined the system earliest. The SIS policy gives priority to the

request of the vehicle which joined the system latest. The FTG policy gives priority

to the request of the vehicle which still has to traverse the longest path until reaching

its destination. The NTS policy gives priority to the request of the vehicle which is

closest to its origin, i.e., which has traversed the least of its whole route.

In order to implement these 4 policies, we need that a reservation request contain

the necessary additional information: the time stamp when the vehicle joined the

system, i.e., when it started to travel, an identifier of the origin location, and an

identifier of the destination location.

Experimental results In this scenario we simulate a single intersection with 4

incoming links of 3 lanes each (see figure 3.2). We simulate different traffic demands

by varying the expected number of vehicles (λ) that, for every O-D pair, are spawned

in an interval of 60 seconds. We spawned vehicles for a total time of 10 minutes.

Table 3.1 summarises the overall traffic demand for different values of λ. As a baseline,

we used an intersection regulated by traffic lights with 4 phases (one per incoming

link) of 30 seconds each (TL in the following figures and tables).

The metrics we used to evaluate the performance of the different policies were the

following:

Average delay (sec.) The average delay measures the increase in travel time

due to the presence of the intersection (be it either reservation-based or regulated

by traffic lights). It is measured running two types of simulation: in the first one,
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Expected vehicles per minute

per O-D pair (λ)

1 5 10 15 20 25 30

# of vehicles 29 136 285 438 633 716 832

Table 3.1: Traffic demands for a single intersection

the intersection is regulated by the control mechanism under evaluation and the

vehicles must obey the norms that the control mechanism imposes; in the second one,

the vehicles travel as if they could pass through the intersection unhindered. The

difference between the two average travel times gives us the average delay. Formally:

∑
i∈V

(tif − ti0) −
∑
i∈V

(t̂if − t̂i0)

N

where V is the set of vehicles, N is the number of vehicles, tif and ti0 are respectively

the time when vehicle i arrives at its destination and when it leaves its origin in the

simulation with the intersection regulated by a control mechanism, while t̂if and t̂i0

are respectively the time when vehicle i arrives at its destination and when it leaves

its origin if we make the vehicles cross the intersection unhindered.

Average queue time (sec.) The average queue time is the time spent by the

vehicles at the intersection queue of its corresponding lane. When the vehicle reaches

the front of the queue, it enters the intersection and passes through it. Note that the

queue time could be zero, if the queue is empty and the vehicle enters the intersection

directly. Formally:

∑
i∈V

(tiqf − t
i
q0

)

N

where V is the set of vehicles, N is the number of vehicles, tiqf is the time when

vehicle i leaves the queue of the intersection and tiq0 is the time when it enters the

queue of the intersection.
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Figure 3.4: Average delay

Average rejected requests (% of sent requests) The average rejected re-

quests is a metric that applies only to the reservation-based policies, and is measured

as the ratio between the rejected requests and the sent requests. Formally:

∑
i∈V

ri/si

N

where V is the set of vehicles, N is the number of vehicles, ri is the number of

rejected requests of vehicle i and si is the number of requests sent by vehicle i.

Figure 3.4 plots the average delay for different traffic demands (λ ∈ [1, 30]). In

general, all the reservation-based policies (FCFS, LIS, SIS, FTG, NTS) tend to behave

in the same manner, reducing the average delay by about 30% for low traffic demand

(λ ∈ [1, 15]) and 10% for greater traffic demand (λ ∈ [15, 30]). Still, when the traffic

demand reaches extreme values (around λ = 30), the performance of reservation-based

intersection converges to the performance of an intersection controlled by traffic lights.
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Figure 3.5: Average time in queue

In this extreme case, LIS is the best performing policy, with a reduction of 12% of

the average delay, compared to 2% of FCFS, 5% of NTS, 4% of FTG and −1% of SIS

(i.e., SIS actually increases the average delay with respect to TL).

Generally speaking, we can conclude that the reservation-based intersection out-

performs traffic lights particularly when the traffic demand is below a certain thresh-

old, because few requests are rejected and the majority of vehicles can pass through

the intersection without waiting for the corresponding green phase, as in intersections

controlled by traffic lights. Nonetheless, when the traffic density reaches the critical

value of λ = 30, the reservation-based intersection tends to show the same perfor-

mance of traffic lights, because the correct arrival time becomes harder to estimate,

so that many requests are cancelled and resubmitted. Although the experiments were

performed with a custom simulator that is different to that used in the original work

by Dresner and Stone [35], the above results seem consistent with the results that we

can find in that work. In fact, in [35] the reservation-based intersection with FCFS
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Figure 3.6: Average rejected requests

policy outperforms traffic lights when the traffic density is between 0 and 1 vehicle

per second, while the authors did not give any results for higher traffic demands. In

our experiments, the performance of a reservation-based intersection converges to the

performance of traffic lights when the expected number of vehicles (λ) is 30, which

corresponds to 1.38 vehicles per second, beyond the maximum value evaluated in [35].

Figure 3.5 plots the average time spent at the intersection queue. Two very

distinct dynamics can be seen here. With traffic lights, the time spent by the vehicles

at the intersection queue grows linearly with the traffic demand. On the other hand,

with a reservation-based intersection, the queue time settles around about 7 seconds,

whatever the policy in use.

This plot gives us an idea of the vehicle’s behaviour when approaching the two

different types of intersection. If the intersection is regulated by traffic lights, the

vehicle proceeds at the speed permitted by the traffic conditions and, once it reaches

the intersection proximity, if the traffic light is red it enters the intersection queue. In
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this way, the more the vehicles approaching the intersection, the longer the waiting

time at the intersection queue. With a reservation-based intersection the dynamic

of the vehicle approaching the intersection is different. If the vehicle holds a valid

reservation, it maintains its speed because a safe transit is guaranteed. On the other

hand, if it does not have such reservation, it reduces its speed and tries again. Thus

the collective behaviour is a slower, smoother, traffic flow through the intersection,

with little time spent at the intersection queue. Finally, we evaluated the reservation-

based policies (FCFS, LIS, SIS, FTG, NTS) in terms of average rejected requests (as

a percentage of the sent requests). Here, with rejected request, we refer to a request

that cannot be granted due to conflicts with the already confirmed reservations. Fig-

ure 3.6 plots the results for the different traffic demands under evaluation. With low

traffic demand, all the policies perform quite similarly, and the percentage of rejected

requests increases linearly with the number of vehicles approaching the intersection.

When the traffic demand reaches a critical point (around λ = 15), the percentage

of rejected requests tends to decrease with the traffic demand. The reason for this

counterintuitive trend is the effect of the reservation distance. As said in section 2.5,

the reservation distance is the maximum distance at which a driver agent is allowed

to request a reservation. Whenever a driver agent cannot get a reservation due to

conflicts with the existing ones, the reservation distance is updated to the distance

at which the driver agent requested the reservation. As the number of rejected re-

quests increases, the reservation distance tends to become smaller. With high traffic

demand, the effect of the reservation distance becomes predominant, filtering out the

majority of the reservation requests and processing only those of the nearest vehicles.

Since less requests are processed, less conflicts are detected, so that the percentage of

rejected requests decreases.

3.3 Auction-based policies

In the reservation-based mechanism, evaluating the incoming requests to grant

the associated reservations can be considered as the process of assigning resources

to agents that request them. This process can be driven not only by the principle
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of maximisation of the number of assigned resources, but also by the principle of

rewarding the agents that value the disputed resources the most. From this perspective,

all the policies introduced in the previous section are inspired by the first principle,

because there is no notion of a value of a reservation, while the second principle is

often one of the objectives of any auction mechanism. A similar objective underlies the

work by Schepperle and Bohm [88]. In their work it is the intersection manager that

initiates a Vickrey auction, offering the earliest time slot to the first vehicles that are

approaching the intersection on each lane. They assume that the intersection manager

is able to detect if a vehicle has other vehicles in front of it, in which case the vehicle

is excluded to participate in the auction. Furthermore, since the intersection manager

assigns the earliest time-slot with a non-combinatorial auction, only one bidder will

get a specific time-slot. However, it is possible for two reservation requests to share

the same time-slot and be non-conflicting at the same time, thus potentially reducing

the intersection throughput. For example, consider a 4-links-1-lane intersection. A

vehicle that will enter the intersection from the top link at time t, to exit from the its

right-hand link, and another vehicle that will enter the intersection from the bottom

link at time t, to exit from the its right-hand link, will share the time-slot t, but they

are not conflicting, since their trajectories do not intersect at all.

In this section, we introduce an auction-based policy to process the incoming re-

quests, formally specifying the auction design space (resources, bidding rules, clearing

policy etc.) and how the original protocol is modified.

3.3.1 Auctioned resources

The first step for the design of any auction is the definition of the resources (or

items) that are allocated through the auction itself. The nature of items determines

which type of auction can be employed to allocate them. For instance, if the items are

N single indivisible goods, then the auctioneer may allocate them with N consecutive

English open-outcry auctions [59].

In our scenario, the auctioned good is the use of the space inside the intersection

at a given time. According to the Dresner and Stone’s model, an intersection is
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Figure 3.7: Bundle of items defined by a reservation request.

modelled as a discrete matrix of space slots. S is the set of the intersection space

slots, S = {s1, s2, . . . , sm}, tnow is the actual time, and T (tnow) = {tnow + τ, ∀τ ∈ N}
is the set of (future) time-steps. The set of items that a bidder can bid for is the set

I = S × T (tnow).

Due to the nature of the items, a bidder is only interested in bundles of items

over the set I. In fact, a reservation request implicitly defines which space slots

at which time the driver agent needs in order to pass through the intersection (see

figure 3.7). Thus, the items must necessarily be allocated by a combinatorial auction.

Combinatorial auctions present many new challenges (computational and economic)

as compared to traditional auctions. The main computational problem is the winner

determination problem (WDP), that is, how to efficiently determine the allocation

once the bids have been submitted.
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(request reservation

:sender D-4888

:receiver IM-05402

:content(

:arrival time 18:03:15

:arrival speed 33km/h

:lane 1

:type of turn STRAIGHT

:bid 1.45 e

)

)

Figure 3.8: Example of a bid contained in a REQUEST message

3.3.2 Bidding rules

The bidding rules define the form of a valid bid accepted by the auction [116].

In our scenario, a bid over a bundle of items is implicitly defined by the reservation

request. Given the parameters arrival time, arrival speed, lane and type of turn, the

auctioneer (i.e., the intersection manager) is able to determine which space slots at

which time are needed. Thus, the additional parameter that a driver agent must

include in its reservation request is the value of its bid, i.e., the amount of money

that it is willing to pay for the requested reservation (see figure 3.8).

A bidder is allowed to withdraw its bid and submit a new one. In general some

dominance rules must hold between previous bids by the same bidder. For instance,

in the English open outcry auction, a new bid must beat the highest so far (perhaps

by a specified increment). In our scenario, the new bid must be greater than or

equal to the old one by the same bidder, guaranteeing a certain degree of incentive

compatibility. In fact, a bidder cannot acquire a reservation with a high-valued bid,

and then iteratively try to resubmit lower bids and gain the same reservation at a

lower price.
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1.n: SEND BID

1.1: SEND BID collect new bids

build bids set

solve WDP

2: CLEAR
[in winners set 
& no decommit]

2: CONFIRMATION
[in winners set]

2: REJECTION
[not in winners set]

2: DECOMMIT
[not in winners set]

  
  If a bid has been
  confirmed in some
  previous round and
  does not appear in 
  the winners set at 
  the current round,
  decommit it (if
  possible)

  
  The bids set is
  composed of the new 
  bids and the confirmed
  bids. If a bidder already 
  holds a confirmed bid,
  replace it with the new
  (if the bid value is
  greater or equal than
  the confirmed one's)

Figure 3.9: Auction protocol

3.3.3 Auction protocol

The auction proceeds as a continuous alternation of two phases: bids collection and

winner determination. The protocol (figure 3.9) starts with the auctioneer waiting

for bids for a certain amount of time. The incoming bids form the bids set. Then

the auctioneer executes the winner determination algorithm, and the winners set is

built. The auctioneer sends a CONFIRMATION message to all the bidders that

submitted the bids contained in the winners set, while a REJECTION message is

sent to the bidders that submitted the remaining bids. Then a new round begins,

and the auctioneer collects new incoming bids for a certain amount of time. Once

the new bids are collected, the bid set is built, as the union of the new bids and the
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previously confirmed (i.e., winning) bids7. Then the auctioneer executes the winner

determination algorithm and builds the winners set. For all the bids in the winners

set, the auctioneer sends a CONFIRMATION message to the respective bidder, unless

such confirmation has been already sent in a previous round. For all the other bids,

the auctioneer sends either a REJECTION message or a DECOMMIT message. The

DECOMMIT message is sent to the bidders whose bids have been confirmed in a

previous round, but at the present round they do not appear in the winners set. This

mechanism avoids the situation where some low-valued bids, in the winners set at

round N , impede the allocation of disputed reservations to some high-valued bid,

submitted at round N +K.

At the end of any round, the auctioneer sends a CLEAR message to the bidders

whose bids are in the winners set and cannot be decommitted (the condition that a bid

must satisfy in order to not be decommitted is introduced in the section below). The

bidders that receive a CLEAR message can take for granted its reservation. Notice

that, in general, for driver agents approaching an intersection it is rational to treat

their provisionally accepted bids as if they were cleared, as they can safely decelerate

in case of a DECOMMIT.

3.3.4 Winner determination algorithm

Since the auction must be performed in real-time, both the bid collection and the

winner determination phase must be time bounded, that is, they must occur within

a specific time window. This implies that optimal and complete algorithms for the

WDP, as those proposed by Leyton-Brown et. al. in [63] and by Sandholm in [86],

are not suited for this kind of auction. An algorithm with anytime properties is

needed, such as the stochastic local search proposed by Hoos et al. [49] that we have

adapted to our scenario in order to manage the decommitment of bids. The anytime

property make the solution improve with time, so that the more the time available

7Note that even a bidder that submitted a winning bid is allowed to resubmit a new bid, which
will replace the old one. This is because a driver agent might want to change its confirmed reservation
because, for instance, it realised that it is not able to actually use the confirmed reservation, due to
changing traffic conditions
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for execution, the better the solution it finds.

The algorithm starts initialising the set B containing all the bids (new ones and

confirmed ones). The winners set W is initialised to the empty set, while the set

C is initialised with all the confirmed bids that cannot be decommitted. A bid can

be decommitted if the driver agent that submitted the bid can safely decelerate and

reach zero speed before the arrival time at the intersection (which is contained in the

bid, see figure 3.8). This condition is determined as follows: va the arrival speed, b

a deceleration factor, and ta the arrival time at the intersection. The deceleration

equation is defined by v(t) = va − b · t = 0, thus, the vehicle can safely reach zero

speed before reaching the intersection if t = va/b < ta.

Once the initialisation has been concluded, the algorithm executes the main loop

for 1 sec. Within the main loop, a stochastic search is performed for a number of

steps equal to the number of bids ∈ B. The set A, which at every step contains

the candidate bids for the winners set, is initialised with the bids that cannot be

decommitted, C. Then, with probability wp (walk probability), a random bid is

selected from the set of bids that are not actually in the candidate winners set (B\A),

while, with probability 1−wp, the highest and the second highest bids are evaluated.

The highest bid is selected if its age (i.e., the number of steps since a bid was last

selected to be added to a candidate solution) is greater than or equal to the age of

the second highest. Otherwise, with probability np (novelty probability) the second

highest is selected, and with probability 1− np the highest is selected. Once the bid

b to be added to the candidate solution has been selected, the neighbourhood of b,

N (b), is evaluated. The neighbourhood of a bid b is defined by the set of bids over

bundles that share with b at least one item. If the neighbourhood N (b) does not

contain any bids that cannot be decommitted, the bid b is added to the candidate

solution A and all the neighbours of b are removed from A. Finally, if the value of

A (i.e., the sum of the bids ∈ A) is greater then the value of the best-so-far winners

set, W , the best solution found so far is updated.
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Algorithm 1 Winner determination algorithm
B ← allBids

W ← ∅
C ← notDecommitBids

start← currentT ime

while currentT ime− start < 1 sec do

A ← C
for step = 1 to |B| do

step← step+ 1

random← drawUniformDistribution[0− 1]

if random < wp then

b← selectRandomlyFromB \ A
else

highest← selectHighestFromB \ A
secondHighest← selectSecondHighestFromB \ A
if highest.age ≥ secondHighest.age then

b← highest

else

random← drawUniformDistribution[0− 1]

if random < np then

b← secondHighest

else

b← highest

end if

end if

end if

if N (b)
⋂
C = ∅ then

A ← A
⋃
{b} \ N (b)

if A.value >W.value then

W ← A
end if

end if

end for

end while
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Experimental results. To evaluate the auction-based policy, we simulated again a

single intersection with 4 incoming links of 3 lanes each (see figure 3.2). We generated

the same traffic demands of the experiments of section 3.2 (see table 3.1). As a

baseline, we used the reservation-based intersection with the FCFS policy.

The main goal of this set of experiments was to test whether or not the auction-

based policy enforces an inverse relation between money spent by the bidders and

delay. In other words, a bidder that is willing to bid high to acquire a reservation

should experience a lower travel time. A crucial aspect of these experiments is the

generation of the initial endowments of the driver agents. We performed two kinds of

experiment: in the first one, we generated an artificial population of bidders whose

initial endowment is uniformly distributed between (0, 2000] cents; in the second

experiment, we used a normal distribution with mean 100 cents and variance 25 cents

to draw the initial endowment. In this population, we inserted a set of driver agents,

which we used as floating cars to evaluate their delay, endowed with 10, 50, 100, 150,

200, 1000, 1500, 2000 and 10000 cents. Finally, we also evaluated the auction-based

policy with respect to the “usual” metrics, that is, the average delay and the average

rejected requests. For this last experiment, we used a population of driver agents

with normally distributed endowment (mean 100 and variance 25 cents). In all the

experiments, we set the walk probability wp and the novelty probability of the winner

determination algorithm to 0.15 and 0.5 respectively. These values have been selected

because they gave the best results in the original paper of Hoos et. al. [49] for the

same kind of auction (number of bidders, expected size of bundles) that we expected

in our simulated scenario.

Figure 3.10 plots (in logarithmic scale) the relation between travel time and bid

value for different values of λ, using initial endowments uniformly distributed between

(0, 2000]. The general trend is that only the driver agents that bid more than the

average bid (i.e., more than 1000 cents) experience a significant reduction of the

delay. This reduction goes from a 29% for low traffic demand (λ = 10) up to a

39% for high traffic demand (λ = 30). On the other hand, the “average bidders”

(i.e., those bidders whose bid falls in the (0, 1000] interval) do not experience any

significant delay reduction.
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(1) λ = 10 (2) λ = 20

(3) λ = 30

Figure 3.10: Bid-delay relation for various values of λ and uniformly distributed

endowments
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The uniform distribution we used in the aforementioned experiments is quite ques-

tionable. In fact, some studies noticed that the willingness to pay is usually normally

(or log-normally) distributed [47]. Figure 3.11 plots (in logarithmic scale) the relation

between travel time and bid value for different values of λ, using initial endowments

normally distributed with mean 100 and variance 25. The results are somewhat

similar to the former experiment. In fact, there is a sensible decrease of the delay

experienced by the driver agents which bid from 100 to 150 cents, that is, the 49.8%

of driver agents whose bid is greater than the mean bid. Still, such delay reduction

tends to settle for driver agents that bid more than 150 cents. Thus, having a po-

tentially infinite amount of money cannot guarantee zero delay, and if a driver agent

wants to minimise the delay, it must to make sure to belong to the “right” side of the

normal distribution of the driver agents’ endowment.

Figure 3.12 plots the average delay for different traffic demands (λ ∈ [1, 30]).

When traffic demand falls between 1 and 15 expected vehicles per minute (λ ∈ [1, 15]),

the performance of the combinatorial auction policy (CA) and the first-come-first-

served policy (FCFS) is approximately the same. Still, when traffic demand increases

(around λ ≥ 20), the CA policy performs worse than the FCFS, with a noticeable

increase of the average delay. This was somewhat expected, because the CA policy

aims to grant a reservation to the driver agent that values it the most, rather than

maximising the number of granted requests. Thus, a bid b, whose value is greater

than n bids that share some items with b, is likely to be selected in the winners set.

If so, only 1 vehicle will be allowed to transit, while n other vehicles will have to slow

down and try again. This fact is highlighted also by the average rejected requests

(figure 3.13). Since all the non-winning bids are rejected, the number of rejected

requests with the CA policy is up to four times greater than with the FCFS policy.
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(1) λ = 10 (2) λ = 20

(3) λ = 30

Figure 3.11: Bid-delay relation for various values of λ and normally distributed en-

dowments
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Figure 3.12: Average delay

Figure 3.13: Average rejected requests
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3.4 Discussion

As seen in the experimental results of section 3.2, the reservation-based intersec-

tion drastically reduces the average delay when the traffic demand is low: the vehicles

are able to cross the intersection unhindered, the time spent at the intersection queue

is almost constant, and the allocation capacity of the intersection is maximised.

Still, when the demand increases, the performance of reservation-based intersec-

tion converges to the performance of an intersection controlled by traffic lights. This

is because a reservation-based intersection is less robust than traffic lights and its

performance is very sensitive to traffic demand. When many vehicles are approach-

ing the intersection, the correct arrival time at the intersection becomes harder to

estimate and more sensitive to traffic variations, therefore many confirmed requests

are withdrawn by the vehicles, thus reducing the intersection throughput.

The reservation-based intersection also has an impact on the traffic flow pattern.

Although the average delay increases with the traffic density, the reservation-based

intersection drastically reduces the time spent by the vehicles at the intersection

queue, especially in worst case situations: the queue time with high traffic demand

(λ ∈ [20, 30]) is four times lower with the reservation-based intersection. These two

metrics suggest that a reservation-based intersection produces a slower, smoother, flow

through the intersection, where the vehicles spend less time stuck at the intersection.

Assessing if this kind of travelling is preferable for the drivers is not an easy task,

since each valuation of the quality of a journey is very private and hard to model

in simulation: some people are exclusively concerned with the travel time, others

(including the author of this thesis) prefer slightly longer routes if the journey is

smooth, with no queues, less acceleration/deceleration. Surely this type of travelling

is preferable from the environmental point of view, since travelling at a constant pace

helps to save fuel and reduce pollution.

Regarding the different reservation-based policies, the main result is that in spite of

its simple behaviour, the FCFS performs rather well in all the situations. Although in

theory FCFS could be quite inefficient in some extreme cases (such as that introduced

at the beginning of this chapter), in practice such extreme cases rarely occur. Thus,
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if we focus on improving the intersection efficiency, FCFS can be considered the best

choice, since it needs less information with respect to other policies: SIS and LIS

need to know when the vehicle joined the system, while NTS and FTG need the

information about where the vehicle is coming from and where is going to.

In this respect, it is interesting to analyse if the additional information that the

AQT-based policies need can be manipulated by malicious driver agents. Two poli-

cies, FTG and NTS, need spatial information, i.e., the identifier of the destination

(FTG) and the origin (NTS) locations. Such information can be provided exclusively

by the driver agent, because it is the only one that knows where it wants to go and

where it comes from. Consequently, malicious agents could exploit the policy, pro-

viding every intersection they contact with the farthest location from the intersection

they are approaching, in case of FTG, or the closest location to the intersection they

are approaching, in case of NTS. The other two policies, LIS and SIS, need temporal

information, i.e., the time stamp when the vehicle joined the system. In this case is

it possible to set up a mechanism to avoid manipulation by malicious agents. For

example, when the driver agent starts up, it has no time stamp, so the very first

reservation that it will request won’t have any time stamp. The intersection man-

ager, detecting that the request has no time stamp, could manage the request with

a default time stamp (e.g., the current time) and then it could “stamp” the driver

agent with this time stamp so that, for the rest of its journey, it will provide a good

approximation of the time when its joined the system. This fact makes the LIS policy

very interesting, because it can be implemented with not much more effort compared

to FCFS, it does not need extra information that can be manipulated by the driver

agent and, as shown in the above experiments, it performs better than the FCFS in

reducing delays and queue time, specially in high-load situations.

The principle of optimising the use of the available resources is not the unique

guiding principle of a traffic controller. In the real world, depending on the context

and their personal situation, drivers value the importance of travel times and delays

quite differently. Thus, it makes sense to elaborate control policies that are aware of

these different valuations and that reward the driver agents that value the disputed

resources the most. In this respect, we evaluated a control policy for reservation-
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Figure 3.14: Average reservation distance

based intersections that relies on an auction mechanism. With such a policy, driver

agents that bid high usually experience a great delay reduction (about 30% less with

respect to driver agents that submit low bids). However, since the objective of this

policy is not maximising the number of granted reservations, it pays a social costs, in

the form of greater average travel times.

It is also worth noting how it is possible that a driver agent, even with a theo-

retically infinite amount of money, cannot experience zero delay when approaching

an intersection. This is because a realistic traffic scenario is quite different from

“synthetic” auctions that have been set-up for benchmarking purposes [49]. The auc-

tions that arise in the traffic scenario are affected by the high level of dynamism,

uncertainty and noise intrinsic to the domain. For example, in high load situations,

the reservation distance plays an important role, since it filters out many potentially

winner bids coming from a greater distance (figure 3.14 plots the average reserva-

tion distance variation over time for different traffic demands). These wealthy driver
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λ

1 10 20 30

# of resubmitted bids 0.2 0.66 1.4 2.32

Table 3.2: Average resubmitted bids

agents cannot even participate in the auction and acquire a reservation, so that they

have no other choice other than to reach the reservation distance (thus increasing

their travel time).

The estimation of the arrival time also affects a lot the performance of the auction.

In fact, in high load situations, such estimation is much more noisy and uncertain, and

it is likely that a driver agent must resubmit a reservation request with the updated

arrival time (table 3.2 shows the average number of bids that each driver agent, which

holds a winner bid, resubmits as a result of a new estimation of the arrival time). In

this way, it is possible that an agent wins an auction at time t and then, due to a

new estimation of the arrival time, must resubmit its bid at time t+ ∆t. The bidders

that participate in the auction at time t+ ∆t are obviously different from those that

participate at time t, so there is no guarantee that the agent might win the auction

again.

Finally, we remark that our specific scenario limits the auction design space. For

example, open-outcry auctions (such as the English auction) are not time-bounded

(an auction ends when all the bidders stop raising their bids), which makes them

hardly applicable in a highly dynamic and safety-critical scenario such as intersec-

tion crossing. Furthermore, we addressed only the winner determination problem

of the combinatorial auction, while for the payments calculation we did not adopt

any sophisticated method. i.e., a winner pays a price that is exactly the bid that he

submitted. This, as any first-price payment mechanism, could in principle leads to

malicious behaviours, with driver agents that try to acquire reservations by submit-

ting bids that are lower than the real valuations they have. In single item auctions

it is computationally easy to set up an incentive compatible payment mechanism,

such as the second-price (or Vickrey) mechanism. In this kind of auction, the winner
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(which is simply the bidder who placed the highest bid) pays a price equal to the

second highest bid. In this way a bidder has no incentives to lie and to not submit

his real valuation of the good. In fact, if the bidder who has the highest valuation

submits a bid that is lower than his real valuation, but greater than the second high-

est, he still wins the auction but pays the same amount (i.e., the second highest bid)

that he would have paid if he had submitted the real valuation. On the contrary, if

the bid that he submits is too low, his bid becomes the second highest and he looses

the auction. Unfortunately, it is not straightforward to extend these mechanisms to

the combinatorial auctions, since they are computationally harder the single item

ones. As we have seen in section 3.3, even the winner determination is a NP-hard

problem, and so is any payment mechanism that is equivalent, from the incentive

compatibility point of view, to the Vickrey mechanism. In fact, the generalisation

of the Vickrey mechanism in the combinatorial world is the Vickrey-Clarke-Groves

(VCG) payment mechanism [23][45][102]. This mechanism charges each bidder the

harm they cause to the rest of the world, that is, a price equal to the total amount

better off everyone else would be if this bidder would have not participate in the auc-

tion. Although VCG mechanisms enforce dominant truth-revealing strategies, they

have many serious practical problems (non-existence of dominant strategy equilibria,

NP completeness, revenue deficiency, etc.) which make VCG mechanisms of limited

practical value [84].

Therefore, although a driver agent could potentially acquire a reservation by sub-

mitting a bid b̂ that is lower than its real valuation b, from a practical point of view

this affects exclusively the revenues that the auctioneer should gain if every bidder

was truth-telling, which is not our primary concern. Another possible weakness is the

fact that a bidder could start bidding lower than his real valuation and than raising

his bid if is not able to acquire it, thus leading to a communication overhead between

bidders and auctioneer. Still, only the bidders in the proximity of an intersection (and

within the reservation distance) are able to submit a bid, thus the number of bids

that the intersection manager may receive simultaneously is necessarily bounded.
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Chapter 4

Network of intersections

Never underestimate the bandwidth

of a station wagon full of tapes

hurtling down the highway.

Andrew S. Tanenbaum

In the previous chapter we analysed the performance of different policies that can

be applied to the management of a single intersection. If we focus on a network of

intersections, the scope of the management policy increases as well as the size and the

complexity of the management task. Thus, an integrated strategy is needed, which

acts not only on the traffic control, but also on the traffic assignment. Traffic as-

signment refers to the problem of the distribution of traffic in a network, considering

demands between several locations, and the capacity of the network. Traffic assign-

ment strategies aim at making easier the task of the traffic controllers, by means of a

better distribution of the traffic demand.

In this chapter, we first introduce the simulator that we will use to empirically

evaluate our models (section 4.1), as well as the model of driver agent that we use

in our simulations (section 4.2). In section 4.3, we will analyse how the policies

based on the adversarial queueing theory, which have been described in section 3.2,

perform at network level. Then, we will study two computational markets for the

103
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traffic assignment (section 4.4): in the first model, the intersection managers act as

cooperative learning agents that learn which pricing policy optimises a global profit

function and, indirectly, the average travel time of the population of driver agents;

in the second model, the intersection managers compete with each other for the

supply of the resources that are traded, i.e., the reservations at the intersections,

dynamically adapting the price of the reservations in order to match the supply with

the current demand. Finally, in section 4.5 we will propose an integrated market

model that combines the competitive mechanism of section 4.4, which deals with the

traffic assignment, with the auction-based policy of section 3.3, which acts on the

traffic control at intersection level.

4.1 M.I.T .E . - Multiagent Intelligent Transporta-

tion Environment

4.1.1 Desiderata

In developing a traffic simulator to pursue our researching goals, we aim to satisfy

the following list of properties.

Accuracy. Traffic is an emergent phenomenon, the result of the individual decisions

of drivers, traffic controllers and all the actors that are part of the system.

Agent-based modelling helps building simulated models with detailed, rich be-

haviours for individual entities. For our purposes, each agent of the system must

have a certain degree of autonomy (especially the driver agent) and it must be

possible to program their behaviour and decision making.

Integration with control systems. Borrowing the terminology of the theory of

control, the simulator must clearly separate the “plant” (i.e., the vehicles, the

road links, the intersections . . . ) from the control system, to enable experimen-

tation with different control mechanisms.

Large-scale simulation. In our research we focus on management mechanisms for
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(possibly) very large systems, with thousands of vehicles travelling through the

road network and dozens of infrastructure agents that aim to control the system.

The simulator must be able to simulate a great number of entities with high

accuracy and good computational performance.

Realistic dynamics. The simulator must employ validated traffic models to simu-

late the dynamics of the vehicles. Developing a new model of traffic is outside

the scope of this thesis (indeed, it could be a thesis topic), thus we will adopt

a validated model that we can find in literature.

Typically, traffic simulation models can be divided into two classes, depend-

ing on the granularity of the modelling of the traffic phenomena: macroscopic

and microscopic. Macroscopic models [29][107][119] represent the traffic with

macroscopic flow/density/speed functions, without taking into account individ-

ual decision making. The macro models are usually derived from fluid dynamics,

and they involve aggregate parameters such as traffic volume and average speed

on road links. Simulations based on macroscopic models have the advantage

that run-time can be fairly short, as the computation is based on aggregate,

abstract parameters. Macroscopic simulation can provide adequate results for

applications that do not require a high degree of accuracy in the results. Nev-

ertheless, more precise information about queues, flows, speeds and densities

than those that can be provided by a macroscopic simulation model is normally

required.

Microscopic models treat the traffic flow as the result of the interactions between

agents, representing the individual vehicle behaviour. A microscopic model usu-

ally includes a car-following model [68][98][112], a lane-changing model [97] and

other models for yielding and merging. A discretisation of time is normally used,

and at each time-step, behavioural choices are calculated and vehicles’ positions

updated as necessary. Microscopic simulation models are theoretically able to

provide such required level of accuracy, nevertheless they face several significant

obstacles. The first obstacle in microscopic traffic simulation is the complexity

of the models describing the drivers decisions. Driver’s behaviour is complex
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to model, and the models must be simplified in order to reduce the computa-

tional burden. This shortage of accurate models is probably the most significant

drawback of microscopic simulation. The increased complexity of modelling is

not compensated for by equally accurate results. Furthermore, due to the level

of detail inherent with microscopic simulation models, the computational re-

sources necessary to simulate a large urban area consisting of numerous streets

and roads is very high. Network geometry, topology, socio-demographic data,

trip data, historical data, etc. consume very large amounts of memory, as the

number of modelled network elements increases. Furthermore, the number of

concurrent vehicles that are in a network can be very large, and the memory and

CPU power required to be able to move all those vehicles is highly significant.

Mesoscopic traffic simulation is valid as intermediate solution between micro-

scopic and macroscopic models. Mesoscopic simulations can model the network

and the vehicle movements at the same level of detail of microscopic simulations.

However, because the driver behaviour is highly simplified and the vehicle dy-

namic is determined by macroscopic calculations, it is possible to model larger

areas and move more vehicles than it would be possible with a microscopic sim-

ulation. With mesoscopic traffic simulation, it is possible to provide results at a

level of significance close to those available with microscopic simulation, while

gaining in simulation speeds, reducing resource constraints, and simplifying the

modelling work.

4.1.2 Simulator

In order to empirically evaluate the different management mechanisms, we devel-

oped a custom traffic simulator called M.I.T .E ., which stands for Multiagent Intel-

ligent Transportation Environment. M.I.T .E . is a time-discrete hybrid mesoscopic-

microscopic simulator, based on two different models of traffic flow: DYNEMO, the

mesoscopic model by Thomas Schwerdtfeger [89], and the microscopic model by Kai

Nagel and Michael Schreckenberg [68]. The mesoscopic model simulates the traffic

flow on the road links, while the microscopic model simulates the traffic flow inside
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the intersections. We adopted this solution because the mesoscopic model allows us

to simulate large-scale systems, with thousands of vehicles moving in the road net-

work, while the microscopic model permits the implementation of fine-grained control

policies inside the intersections.

Mesoscopic model

DYNEMO [89] is a member of the Payne-Cremer [78] family of traffic flow mod-

els, which had previously been demonstrated to be suitable for the assessment of ITS

strategies [27]. The main characteristic is that the “atomic unit” of traffic flow is

the individual vehicle rather than the temporal and spatial aggregates used in macro-

scopic models. Still, the vehicle dynamic is governed by the average traffic density on

the link they traverse rather than the behaviour of other vehicles in the immediate

neighbourhood as in microscopic models.

Network representation. The network is divided into stretches with similar char-

acteristics (number of lanes, speed limits, etc.), which in turn are divided into sec-

tions of typically 500 meters length, for which constant traffic conditions are assumed.

The traffic condition on a section Si is defined by its traffic density ρi (expressed in

vehicles/km). A section is characterised by a relationship between density and mean

speed, Ui : ρ → R, and a distribution of speeds at free flow, Vi. Ui is called the

speed-density function and Vi is called the desired speed distribution.

Vehicle representation. A vehicle is described by its position within the section

where it is driving, xj ∈ [0, length(Si)], its speed, vj, and a parameter that defines

the proportion of vehicles with lower free flow speed, δj ∈ [0, 1]. The parameter δj

is used to determine the desired speed of the vehicle, vδj , given the section minimum

and maximum desired speed, umini and umaxi respectively.

Vehicle dynamic. A basic assumption of the model is that the individual speed of

vehicles in section Si, at a given traffic condition ρi, varies within the interval defined

by [ui, ui], where ui and ui are respectively the lower bound and the upper bound
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of the section mean speed ui. The individual speed of the vehicle in this interval

depends on its desired speed vδj , e.g. if vδj = umini , the vehicle will set its speed to

ui, whilst if vδj = umaxi , the vehicle will set its speed to ui.

Under this assumption, the reference speed of section Si for vehicle j is calculated

as:

ûi = ui +
vδj − umini

umaxi − umini

· (ui − ui) (4.1)

Given the reference speed of the section where vehicle j is driving, Si, and the

reference speed of the next section on the vehicle’s route, Si+1, a vehicle target speed

is computed as:

v̂j = (1− xj
length(Si)

) · ûi +
xj

length(Si)
· ûi+1 (4.2)

In other words, the influence of the next section’s reference speed on the new

speed of the vehicle grows as the vehicle approaches the end of its current section. In

the limit, the new target speed depends only on the average speed downstream when

the vehicle reaches the section boundary.

To compute ûi, it is necessary to define the lower and upper bounds of ui, namely

ui and ui. The lower bound is computed as:

ui =

 umini − umini − uopti

ρopti

· ρi if ρi < ρopti

ui if ρi ≥ ρopti

(4.3)

where ρopti is the density that maximises the traffic flow (φmaxi ), and uopti is the

corresponding mean speed.

The upper bound is computed as:

ui =

 ui −
umaxi − umini

E[Vi]− umini

· (ui − ui) if ρi < ρopti

ui if ρi ≥ ρopti

(4.4)

where E[Vi] is the expected value of the desired speed distribution Vi.
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Once the target speed has been computed, the vehicle speed at time t + ∆t is

updated using the following formula:

vt+∆t
j =


min

(
vδj , v

t
j + bmax ·

v̂j − vtj
umaxi

·∆t
)

if v̂j > vtj

max

(
v̂j , v

t
j + bmin ·

vtj − v̂j
umaxi

·∆t
)

if v̂j ≤ vtj

(4.5)

where bmin and bmax are the minimum and maximum possible acceleration factors

of a vehicle (set to −7 m/s2 and 4 m/s2 respectively).

Finally, given the new speed at time t+ ∆t, the vehicle’s position is updated to:

xt+∆t
j = xtj +

1

2
·
(
vtj + vt+∆t

j

)
·∆t (4.6)

If xt+∆t
j > length(Si), the vehicle enters the next section and the position is reset

to xt+∆t
j − length(Si).

Microscopic model

In 1992, Nagel and Schreckenberg proposed a stochastic traffic cellular automata

(TCA) model that was able to reproduce several characteristics of real-life traffic

flows, e.g., the spontaneous emergence of traffic jams. TCA models arise from the

discipline of statistical mechanics, having the goal of reproducing the correct macro-

scopic behaviour based on a minimal description of microscopic interactions. The

main advantage of TCAs is that they are efficient and fast performing when used in

computer simulations, due to their rather low accuracy on a microscopic scale.

The Nagel-Schreckenberg TCA model uses a rectangular lattice, with a cell size

of 7.5 meters for freeway traffic and 5 meters for urban traffic, and it comprises the

following three rules for the update of the vehicle position and speed:

R1: acceleration and braking

vi(t)← min {vi(t− 1) + 1, gsi
(t− 1), vmax}

where vi(t) is the speed at time t, vi(t− 1) is the speed at time t− 1, gsi
(t− 1) is

the spatial gap in front of the vehicle, and vmax is the maximum speed.
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R2: randomisation

ξ(t) < p⇒ vi(t)← max {0, vi(t)− 1}

where ξ(t) ∈ [0, 1) is a random number uniformly distributed and p ∈ [0, 1] is the

slowdown probability.

R3: vehicle movement

xi(t)← xi(t− 1) + vi(t)

where xi(t) and xi(t− 1) are the vehicle positions at time t and t− 1 respectively.

The TCA contains a rule for increasing the speed of a vehicle and braking to avoid

collisions (rule R1), as well as a rule for the the actual vehicle movement (rule R3).

However, the TCA also contains an additional rule R2, which introduces stochasticity

in the system. At each time-step t, a random number ξ(t) is drawn from a uniform

distribution. This number is then compared with a stochastic noise parameter p (the

slowdown probability); as a result, there is a probability of p that a vehicle will slow

down to vi(t) − 1 cells/time-step. The Nagel-Schreckenberg TCA model is called a

minimal model, in the sense that all these rules are necessary for mimicking the basic

features of real-life traffic flows.

Since we use the microscopic model exclusively for simulating the transit of vehicles

through a rather small area (e.g., an intersection with 4 incoming links of 3 lanes each

results into a 6×6 lattice), we further simplified the model assuming that the vehicles

cross the intersection at constant speed. Thus, we don’t apply either rule R1 or rule

R2, but we simply update the vehicle position inside the intersection using rule R3.

Network structure

The road network in M.I.T .E . is represented by a directed multi-graph that

consists of vertices and edges. There are two different types of vertices:

Section vertex. A section vertex is used to split the stretches into section of ∼ 500

meters length.



Chapter 4: Network of intersections 111

Stretch vertex. A stretch vertex is a point where where multiple traffic streams

join or diverge, such as intersections, as well as origins or destinations of traffic.

The edges represent the lanes of the links between such vertices, and are unidirec-

tional. This means that a street that links vertex A with vertex B, with three lanes

for each direction, is represented by 6 edges, 3 from A to B and 3 from B to A.

Each stretch vertex has a queue for each incoming edge, which is used as a buffer

area for the vehicles that must switch from the mesoscopic model to the microscopic

model. When the updated vehicle position xt+∆t
j becomes greater than the length of

the section where the vehicle is driving and the end of the section is connected to

a stretch vertex (see equation 4.6), the vehicle is put at the back of the queue. It

remains in the queue until it reaches the front, then it is placed in the first cell of the

lattice of the microscopic model. From then on its dynamic is simulated using the

Nagel-Schreckenberg model described in section 4.1.2. Figure 4.1 shows an example

of a network, with all the elements composing it.

Speed-density functions

A central element of the mesoscopic model is the speed-density function, i.e., the

relationship between density and mean speed of a section. This speed-density function

can take different forms. The oldest known formulation of a speed-density function

is by Greenshields [44]:

Ui(ρ) = ufreei ·
(

1− ρi
ρmaxi

)
(4.7)

where ρi is the density of section Si, u
free
i is the speed at free flow on that section,

and ρmaxi is the maximum density of that section. Since ufreei and ρmaxi are constants,

this leads to a linear relationship between speed and density.

Other important speed-density functions are by Greenberg [43]:

Ui(ρ) = uopti · ln
(
ρmaxi

ρi

)
(4.8)
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Figure 4.1: Network structure

where uopti the speed that maximises the traffic flow (vehicles per time unit that

leaves the section).

Underwood [100]:

Ui(ρ) = ufreei · e

0@− ρi

ρopti

1A
(4.9)

where ρopti is the density that maximises the traffic flow.

and Drake [34]:
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Ui(ρ) = ufreei · e

0@−1

2
·
 ρi
ρmaxi

!2
1A

(4.10)

In M.I.T .E . we used the same speed-density function used in DYNEMO[89]:

Ui(ρi) =



ufreei if ρi = 0

ufreei −

(
ufreei − uopti

ρopti

)
· ρi if 0 < ρi < ρopti

uopti if ρi = ρopti

φmaxi · ρopti

ρ2
i

if ρi > ρopti

(4.11)

where ufreei is the speed at free flow on section Si, ρ
opt
i is the density that maximises

the traffic flow, φmaxi , and uopti is the corresponding mean speed.

Traffic generation

The demand is represented by an Origin/Destination matrix, which specifies for

each time the trips (i.e., a pair of IDs of the origin and destination stretch vertices)

that must be generated and, for each trip, the driver agent that operates the vehicle.

The driver agent defines the behaviour of the vehicle with respect to the decision it

must face, such as the route choice. The Origin/Destination matrix is stored as a xml

file and loaded by the simulation engine before the simulation starts (see section 4.1.3).

Route choice

The route choice inM.I.T .E . is performed by the driver agent that operates the

vehicle. We can distinguish two phases: pre-trip route choice and route-replanning.

The pre-trip route choice is based on a pre-calculated set of known routes, with their

respective travel time at free flow and distance. The driver agent freely selects its

route, according to its utility function (see section 4.2 for more details about utility

functions and choice models of driver agents).

Once a driver agent has selected the initial route, it starts its journey, following

that particular route. Then it may reconsider the route it has selected in the pre-trip
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phase and eventually it may divert from its current path. This would happen for

example if information about an incident is received, or if the driver experiences an

excessive delay compared to the expected travel time. When and how the driver agent

applies the route-replanning depends on the driver agent itself and its behaviour.

Operational issues

M.I.T .E . is a discrete-time simulator, i.e., the state of the traffic is computed

at fixed time intervals, whose duration is a parameter of the simulator. From each

time-step to the next, the changes in the traffic state are calculated, i.e., the vehicles’

speed and position are updated, as well as the density and mean speed of the sections.

The space is continuous, in the mesoscopic part of the simulator, and discrete, in the

microscopic part of the simulator. That is, in a section Si, a vehicle can occupy every

position ∈ [0, length(Si)], while inside the stretch vertex lattice a vehicle occupies a

single cell.

Simulation inputs. M.I.T .E . needs the following inputs:

• Network description. This file contains a description of the topology of the

network, i.e., the vertices and the edges of the multi-graph.

Each vertex contains the following information:

– vertex ID

– longitude

– latitude

– class

– [intersection topology]

The class parameter refers to the Java class that implements the vertex be-

haviour, since a vertex may be, for example, an intersection stretch vertex

regulated by traffic lights that needs an agent that governs its behaviour (im-

plementing a signal plan). The intersection topology is optional and needed only
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if the vertex is an intersection stretch vertex. It defines the lattice topology of

the cellular automaton microscopic model, as well as how it must be integrated

into the road network.

Each edge contains the following information:

– edge ID

– source vertex ID

– target vertex ID

– class

– optimal flow

– optimal density

– maximum desired speed

– minimum desired speed

– road

The class parameter refers to the Java class that implements the speed-density

function (given the optimal flow, the optimal density and the maximum and

minimum desired speed).

• Origin/Destination file. This file contains the trips that must be generated for

the simulation.

• Simulation engine properties. This file contains some parameters needed by

the simulation engine, such as the time-step of the simulation, the refresh rate

of the visualisation, the initial time of the simulation, the number of shortest

routes that must be calculated before the simulation starts and the message

transmission delay of the vehicle-to-infrastructure communication.

The simulation engine calculates, for every origin-destination pair, two types of

shortest routes, using the free-flow travel time on the links (shortest travel time

route) and the distance of the path between origin and destination (shortest

distance route).
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Figure 4.2: Master file

The references of the necessary files can be passed to the simulator using a master

file to speed up the execution. Figure 4.2 shows the xml master file, containing the

network specification, the Origin/Destination file, and the simulation engine proper-

ties file.

Simulation outputs. M.I.T .E . generates different text files that can be used for

offline analysis.

• Vehicle metrics. This file contains the metrics of the simulated vehicles. This

file contains the following information for each vehicle trip:

– vehicle ID

– origin

– destination

– trip start time

– trip end time

– travel time

– covered distance

– average speed

– queue time

Before the simulation execution ends, to make the offline analysis easier, the

simulator calculates average and standard deviation of travel time, covered dis-

tance, average speed and queue time, grouped by origin-destination pair.
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• Network metrics. This file contains information related to the network, such as

density, traffic flow and average speed of sections over time. It can be used to

give different snapshots of the network during the simulated time.

4.1.3 Implementation

M.I.T .E . has been implemented in Java, thus ensuring that the simulator can be

executed on different platform (MS Windows, Linux and MacOS) without modifica-

tions. The program code come to more than 30 thousands lines, it has been designed

with the tool MagicDraw UML1, and developed with the Eclipse editor2. There are

no limits to the size of the networks that can be simulated, nor to the amount of ve-

hicles that can be simulated concurrently. A network with 300+ vertices and 1600+

edges, with 10000+ vehicles can be simulated quite a lot faster than real time on a

Pentium 1.7 GHz with 1 Gigabyte RAM under Linux.

Figure A.1 (see appendix A) shows the relations between the classes Mite, Simu-

lationEngine and RoadNetworkGui. Mite is the main class used to launch the simu-

lator, and serves as listener of the events generated by the SimulationEngine and the

RoadNetworkGui.

The SimulationEngine generates two types of event, one to notify that a simu-

lation time-step has been performed and one to notify that the simulation run has

terminated. Both event are processed by the Mite class: the former is used to refresh

the graphical user interface (GUI), updating vehicle positions, traffic densities etc.,

the latter is used to reset the GUI and make it ready for a new simulation.

The RoadNetworkGui generates 4 events, triggered when the user starts, pauses,

resumes or stops the simulation using the GUI buttons.

Figure A.2 (see appendix A) shows the components of the SimulationEngine. A

SimulationEngine uses a ODMatrix to store and retrieve the Trips that must be gen-

erated, and a DataCollector to gather the data generated by the VehicleAgents, which

drive the simulated vehicles, and by the SensorAgents, which are deployed throughout

1http://www.magicdraw.com

2http://www.eclipse.org
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the network to collect measurements related to the sections (density, traffic flow, av-

erage speed, etc.). The SimulationEngine triggers all the SimulationItems that must

be simulated and processes all the events that are generated by SimulationItems, such

as VehicleEvents, MessageEvents or SensorEvents.

The main loop of the SimulationEngine is shown in figure A.3 (see appendix A).

First, the SimulationEngine checks if the simulation run has finished. If so, the Sim-

ulationEngine is disposed. Otherwise, the SimulationEngine generates the scheduled

trips for the actual time, creating a vehicle for each trip, driven by a VehicleAgent.

Then, the SimulationEngine triggers all the SimulationItems to be executed (Vehi-

cleAgents, SensorAgents, TrafficLightAgents, etc.). Once all the SimulationItems have

executed their task, the SimulationEngine processes all the SimulationItemEvents

that have been generated during the execution of the SimulationItems, be they Ve-

hicleEvents, SensorEvents or MessageEvents. Finally, when all the SimulationIte-

mEvents have been consumed, the network state is updated and the clock is moved

forward, adding the time-step to the actual time.

Figure A.4 (see appendix A) shows the components of the RoadNetwork. A Road-

Network is composed of SectionEdges and RoadVertices. The latter can be Section-

Vertices or StretchVertices. A StretchVertex may implement an Intersection. In this

case the StretchVertex must be regulated by a control facility, such as traffic lights

(TrafficLightStretchVertex ) or reservation-based intersection (ReservationStretchVer-

tex ).

A RoadVertex has installed zero or more RoadVertexAgents, which may define the

behaviour of the control facility, in case of TrafficLightStretchVertex or Reservation-

StretchVertex, as well as take some measurements of the incoming sections connected

with the RoadVertex.

The BulletinBoard is a SimulationItem that can be used by RoadVertexAgents to

share information at global level as well as by the VehicleAgents to gather information

about the status of the RoadNetwork (e.g., notification of accidents).
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Figure 4.3: M.I.T .E . graphical user interface
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Graphical user interface Figure 4.3 shows the graphical user interface (GUI) of

M.I.T .E .. From the menu File, it is possible to load the files to run a simulation

(network specification, Origin/Destination matrix and simulation engine properties

separately or through a single master file).

In the bottom there is the control panel, with the buttons to start, pause, resume

and stop the simulation. The control panel also shows the simulation clock as well as

the number of vehicles that are actually travelling in the network.

In the centre, there is the network main view, which can be zoomed in/out using

the mouse wheel or the keyboard shortcuts. In the bottom right-hand corner, there is

the bird’s eye view of the entire network. By moving the white square, it is possible

to position the main view on the desired area. In the top right-hand corner, there

is the tab panel where it is possible to show some plots related with the sections

(density-flow relation and section density over time).

4.2 Driver agent model

The driver agent model defines the behaviour and the decision making of the

agent in charge of operating a vehicle. It is one of the most important components

of traffic simulation models, since the reliability of the simulation depends on the

realism of the underlying behavioural model. The specification of the model, and its

estimation using real-world data is a challenging task, which requires the application

of behavioural principles (e.g., aggressiveness, mental state, risk aversion) and econo-

metric techniques. In general, a driver model must take into consideration pre-trip

decision making as well as en-route behaviour. Pre-trip decision making refers to all

the choices that a human driver makes before starting the trip, such as the departure

time selection, the route choice and the transportation mode (i.e., public transport,

private vehicle, etc.). The en-route behaviour is related to the microscopic dynamic

of the driver, and it encompasses the car-following behaviour, the lane-changing be-

haviour and all the other aspects related to driving (safety distance, aggressiveness,

risk aversion, speed limits, etc.).

Defining a full-fledged driver model is outside the scope of this thesis, however,



Chapter 4: Network of intersections 121

we need a reasonably realistic driver model to run our simulations. The simulation

model in use is mesoscopic, therefore we do not focus on modelling a precise en-route

behaviour. Furthermore, we generate the traffic demand with pre-assigned depar-

ture time, in order to focus exclusively on the most important aspect of the pre-trip

decision making, the route choice. The route choice refers to the selection of the

most preferred path between origin and destination, and it is a central aspect of the

discrete choice models [14]. Discrete choice models have played an important role in

transportation modelling over the last few years. In order to develop models that cap-

ture how individuals are making choices, four modelling aspects must be considered,

namely the decision-maker, the alternatives, the attributes and the decision rules.

Decision maker

The decision-maker is the individual that makes decisions, according to his/her

characteristics. The model may take into consideration several characteristics, or

attributes, of the individual, such as age, gender, income, and even eye color or social

security number. In our model, the decision makers are the driver agents, and we

assume that they are homogeneous, in the sense that we do not group them by any

characteristic or attribute.

Alternatives

The alternatives determine what the possible options of the decision-maker are.

Analysing the choice of an individual requires the knowledge of what has been chosen,

but also of what has not been chosen. The set containing these alternatives, called the

choice-set, must be characterised. The choice-set may be continuous or discrete. In a

continuous choice-set, the alternatives are defined by some constraints and cannot be

enumerated. A discrete choice-set contains a finite number of alternatives that can

be explicitly listed. Two concepts of a discrete choice-set may be further considered:

the universal choice-set and the reduced choice-set. The universal choice-set contains

all the potential alternatives in the context of the application. The reduced choice-set

is the subset of the universal choice-set considered by a particular individual. In our
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model, the reduced choice-set of a driver agent is composed of a certain number3 of

available routes that connect the origin with the destination of the driver agent. We

refer to this reduced choice-set with C = {ρ1, ρ2, . . . , ρm}.

Attributes

The attributes identify the important characteristics of each potential alternative

that the decision-maker is taking into account to make his/her decision. In our

model, the alternatives are routes, which are potentially characterised by several

attributes (travel time, travel speed, type of roads, fuel and tyre consumption, etc.).

Furthermore, if some economic model is applied as a traffic control mechanism (as

in section 3.3), a route ρi could be characterised also by an additional monetary cost

factor, which models the fact that a driver agent must acquire a resource that is no

more freely assigned (i.e., the reservations at intersections).

Decision rule

The decision rule describes the process used by the decision-maker to reach his/her

choice. Two main theories on decision rules are considered here, namely the neoclas-

sical economic theory and the multinomial logit model.

• Neoclassical economic theory. The neoclassical economic theory assumes that

each decision-maker is able to compare two alternatives a and b in the choice-set

C using a preference-indifference operator �. If a � b, the decision-maker either

prefers a to b, or is indifferent. Since the choice-set C is finite and preference-

indifference operator has the properties of reflexivity, transitivity and compa-

rability, the existence of an alternative, a∗, which is preferred to all of them is

guaranteed. Because of the three properties listed above, there exists a function

U : C → R (4.12)

such that

3The number of available options is set as a simulation parameter, as explained in section 4.1.2
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a � b⇔ U(a) ≥ U(b) ∀a, b ∈ C (4.13)

is guaranteed. Therefore, the alternative a∗ that is preferred to all of the alter-

natives in C is

a∗ = argmaxa∈CU(a) (4.14)

In summary, making a choice is equivalent to assigning a value, called utility, to

each alternative and selecting the alternative a∗ associated with the highest util-

ity. The concept of utility associated with the alternatives plays an important

role in the context of discrete choice models, although the neoclassical economic

theory has the limitations that does not consider some level of uncertainty.

• Multinomial logit model. Multinomial logit model is a random utility model

that assumes, as neoclassical economic theory, that the decision-maker has a

perfect discrimination capability. However, the analyst of the system is sup-

posed to have incomplete information and, therefore, uncertainty must be taken

into account. Thus, making a choice is equivalent to assigning an utility value

to each alternative and a probability that an alternative is chosen. Using the

multinomial logit model, the probability that an individual chooses alternative

a within the choice-set C is P (a) = eU(a)/
∑

k∈C e
U(k).

Utility of alternatives

Both decision rules described above, the neoclassical economic theory and the

multinomial logit model, are based on the concept of utility of the alternatives. In

general the alternatives are characterised by multiple attributes, so that the utility

of an alternative is the output of a multi-attribute utility function. Multi-attribute

Utility Theory(MAUT) [55] studies the aggregation of different criteria into a single

utility function.

Be C = {a1, a2, . . . , am} the set of alternatives, X = {x1, x2, . . . , xn} the set of

attributes, and W = {w1, w2, . . . , wn} the set of the weights of each attribute. The
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weight wi reflects the relative importance of attribute xi and is assumed to be positive.

The weights of the attributes are usually determined on subjective basis, representing

the opinion of the single decision maker.

Keeney and Raiffa [55] demonstrated that, if the attributes are mutually utility

independent, then the multi-attribute utility function U can be expressed as follows:

U =
n∑
i=1

wiui +

w

n∑
i = 1

j > i

wiwjuiuj +

w2

n∑
i = 1

j > i

k > j

wiwjwkuiujuk + . . . +

wn−1w1w2 · · · wnu1u2 · · · un

(4.15)

where ui = ui(aj) ∈ [0, 1] represents the utility value of alternative aj with respect

to the attribute xi and w is a scaling constant that must satisfy the normalising

constraint 1 + w =
n∏
i=1

(1 + wwi).

If
∑n

i=1wi = 1, then w = 0 and the Keeney and Raiffa function collapses to the

following linear form:

U =
n∑
i=1

wi · ui (4.16)

In all the experiments of this chapter, we rely on the neoclassical economic theory

to model the decision making process of the driver agent, which always selects the

route with the highest utility value.
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Figure 4.4: Network of intersections

4.3 AQT-inspired policies

In section 3.2, we analysed, in a scenario with a single intersection, the perfor-

mance of different policies for the processing of the incoming reservation requests,

inspired by the adversarial queueing theory (AQT). In this section, we recreate a

scenario of an entire network of intersections (figure 4.4). We defined several lo-

cations that serve as origins and destinations for the traffic demand. The vehi-

cles that commute from/to locations ∈ O = {O1, O2, O3, O4, O5, O6, O7} form the

traffic under evaluation. The vehicles that commute from/to locations ∈ N =

{N1, N2, N3, N4, N5, N6, N7, N8, N9, N10} serve to add “noise” and to populate the

network more realistically. We aimed at recreating a typical morning peak, with 2

different traffic demands, namely low and high (the total number of vehicles for the

2 traffic demands are summarised in table 4.1 and figure 4.5).

The metrics we used to evaluate the performance of the different policies for a
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Figure 4.5: Low and high traffic demand

given O-D pair (o, d), with o, d ∈ O, was the average delay (min.). Formally:

N∑
i=1

(tif − ti0) −
N∑
i=1

(t̂if − t̂i0)

N

where N is the number of vehicles, tif and ti0 are respectively the time when vehicle

i arrives at its destination and when it leaves its origin in the simulation with the

intersection regulated by a control mechanism, while t̂if and t̂i0 are respectively the

time when vehicle i arrives at its destination and when it leaves its origin if we make

the vehicles pass through the intersection unhindered.

To have a more global view of the performance of a single policy, we also calculated

the average delay per covered km. Formally:
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Traffic density

low high

# of vehicles 3986 11601

Table 4.1: Traffic demands for scenario 2

∑
(o,d)∈OD

avgDelay(o, d)/||(o, d)||

||OD||
where OD is the set of all the O-D pairs (o, d), avgDelay(o, d) is the average delay

of the given O-D pair, ||(o, d)|| is the length of the route from o to d, and ||OD|| is

the number of O-D pairs in the set OD.

We are also interested in calculating the average delay per crossed intersection.

Formally: ∑
(o,d)∈OD

avgDelay(o, d)/intersections(o, d)

||OD||
where intersections(o, d) is the number of intersections of the route from o to d.

Experimental results

Low traffic demand. We first evaluated the reservation-based policies (first-

come-first-served, FCFS, longest-in-system, LIS, shortest-in-system, SIS, farthest-to-

go, FTG, nearest-to-source, NTS) and the intersection regulated by traffic lights (TL)

under conditions of low traffic demand, with almost 4 thousands vehicles commuting

through the road network. The average delays for each O-D pair are summarised in

table 4.4 and in figure 4.6. For each O-D pair, we highlighted the lowest delay, to

have a snapshot of which policy performs the best for a specific O-D pair.

At first glance, it seems confirmed that, as in the case of a single intersection,

TL is the policy that introduces more delay for low traffic demand. This confirms

the results of the single intersection scenario: the reservation-based intersection with
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Figure 4.6: Average delay for low traffic demand

a good policy takes advantage of low traffic demands, drastically reducing the delay

compared to traffic lights. With traffic lights it is possible for a vehicle to be stopped

by a red light even if there are no vehicles on the link which has the green phase.

Whereas, with a reservation-based intersection, few vehicles mean few reservations

that are rejected, so that the transit speeds up.

To assess the overall performance of each policy, we rely on the average delay

per covered km and the average delay per crossed intersection. Table 4.2 shows the

average delay per covered km and the relative delay (where 100 is the best policy).

When the traffic demand is low, the FTG policy performs the best, with 5.02 seconds

of delay per covered km. Also FCFS performs quite well, with 5.27 seconds of delay

per covered km, while LIS, SIS and NTS perform similarly and slightly worse than

FTG. It is evident that with 12.54 seconds of delay per covered km, the intersection

regulated by traffic lights performs the worst with low traffic demand.

Regarding the average delay per crossed intersection (table 4.3), the results are
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Table 4.2: Average delay per covered km (low traffic demand)

Average delay (sec/km) stdev. Relative delay

TL 12.54 4.21 249.75

FCFS 5.27 2.70 104.96

LIS 5.54 3.37 110.29

SIS 5.44 2.91 108.23

FTG 5.02 2.62 100.00

NTS 5.51 3.42 109.78

Table 4.3: Average delay per crossed intersection (low traffic demand)

Average delay (sec/intersection) stdev. Relative delay

TL 41.26 10.05 254.92

FCFS 17.00 7.23 105.05

LIS 17.67 9.84 109.18

SIS 17.37 7.66 107.29

FTG 16.19 7.17 100.00

NTS 17.47 9.01 107.94

again similar. The FTG policy is the policy that causes least delay, 16.19 seconds

per intersection, less than half that of TL. With traffic lights, a vehicle is delayed by

41.26 seconds when it passes through each intersection that makes up its route, with

respect to the 16− 17 seconds of a reservation-based intersection.
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Table 4.4: Average delay with low traffic demand (min.)

Destination

Origin O1 O2 O3 O4 O5 O6 O7

TL - 1.47 3.11 3.97 6.56 3.31 1.64

FCFS - 0.71 0.84 1.30 2.58 1.15 0.61

LIS - 0.36 0.55 1.74 2.80 0.64 0.72

O1

SIS - 0.42 1.25 1.57 2.68 1.13 0.59

FTG - 0.69 0.61 1.33 2.87 0.75 0.61

NTS - 0.36 0.94 1.58 3.00 0.87 0.62

TL 1.78 - 2.32 3.54 5.19 6.75 3.61

FCFS 0.82 - 0.79 1.19 1.79 2.35 1.18

LIS 0.52 - 0.49 1.12 2.16 2.10 1.05

O2

SIS 0.60 - 0.53 1.24 1.61 2.21 1.36

FTG 0.68 - 0.58 1.05 1.87 1.95 1.02

NTS 0.58 - 0.78 1.03 1.64 2.16 1.03

TL 2.61 1.53 - 1.31 3.72 4.64 6.60

FCFS 0.56 0.02 - 0.54 1.95 1.57 2.40

LIS 0.28 0.01 - 0.61 1.92 1.96 2.75

O3

SIS 0.72 0.10 - 0.37 1.69 1.43 2.57

FTG 0.38 0.08 - 0.69 1.73 1.41 2.50

NTS 0.31 0.05 - 0.73 1.75 1.38 2.59
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TL 4.54 3.18 1.31 - 2.37 4.15 5.21

FCFS 2.75 2.10 1.28 - 1.14 1.34 1.96

LIS 3.36 2.51 1.42 - 1.58 1.72 1.81

O4

SIS 2.93 2.41 1.22 - 0.93 1.54 1.88

FTG 2.11 1.89 1.29 - 1.12 1.35 1.78

NTS 2.97 2.32 1.21 - 0.96 1.68 2.03

TL 5.90 4.07 2.80 1.52 - 2.43 4.13

FCFS 3.46 2.10 2.12 0.48 - 0.57 1.14

LIS 4.21 2.66 2.37 0.47 - 0.63 1.69

O5

SIS 3.87 2.62 2.21 0.36 - 0.82 1.65

FTG 3.39 2.07 2.17 0.39 - 0.68 1.68

NTS 4.10 2.90 2.65 0.41 - 0.55 1.60

TL 2.53 4.94 4.36 3.07 2.19 - 2.24

FCFS 1.44 3.12 2.82 1.28 0.42 - 0.98

LIS 1.44 2.83 2.87 1.24 0.53 - 0.89

O6

SIS 1.04 3.96 2.77 1.21 0.49 - 0.93

FTG 1.27 3.07 2.60 1.11 0.62 - 0.93

NTS 1.27 4.46 3.36 1.17 0.48 - 0.92

TL 1.92 3.41 5.23 4.56 3.34 1.59 -

FCFS 0.98 1.20 3.09 1.77 0.86 0.30 -

LIS 1.14 0.88 3.05 2.00 0.77 0 -

O7

SIS 1.48 1.65 2.95 1.94 0.92 0.08 -

FTG 0.96 1.22 2.63 1.63 1.02 0.10 -

NTS 1.03 1.57 3.27 1.69 0.59 0.06 -
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Figure 4.7: Average delay for high traffic demand

High traffic demand. Finally, we evaluated the reservation-based policies in

a situation of high traffic demand, with more than 11 thousands vehicles travelling

through the road network. The average delays for each O-D pair are summarised in

table 4.7 and in figure 4.7. With high traffic demand, it is evident how the performance

of the two types of intersection becomes similar.

To assess which policy is the best at reducing delays, we rely again on the average

delay per covered km (table 4.5) and average delay per crossed intersection (table 4.6).

When the traffic demand is high, the performance of the reservation-based intersection

converges to that of an intersection controlled by traffic lights. LIS is the best policy,

with 62.15 seconds of delay per covered km. The other reservation-based policies

(FTG, SIS, NTS, FCFS) perform slightly better than traffic lights, with about 63−66

seconds of delay per covered km. It is interesting to notice how TL has the lowest

standard deviation. This is a hint that as demand increases, the performance of a

reservation-based intersection becomes more volatile: in some parts of the network
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Table 4.5: Average delay per covered km (high traffic demand)

Average delay (sec/km) stdev. Relative delay

TL 66.39 35.84 106.83

FCFS 64.88 46.33 104.39

LIS 62.15 43.33 100.00

SIS 63.34 43.25 101.92

FTG 63.86 45.40 102.75

NTS 66.17 46.34 106.46

the transit can be sped up, while in other parts it may slow down the transit even

more than traffic lights, whose behaviour is more predictable and stable. If we look at

the average delay per crossed intersection, the results are similar. All the reservation-

based policies perform similarly and slightly better than traffic lights. LIS is again

the best one, with 195.28 seconds of delay per crossed intersection, 17.87 seconds less

than traffic lights. All the other reservation-based intersections are 4% to 5% worse

than LIS.

Similarly to the experimental results described in section 3.2, the reservation-

based intersection considerably speeds-up the traffic flow if the arrival rate of vehicles

does not exceed its management capability. Thus, keeping the arrival rate at the

intersection low is crucial for the performance of a reservation-based policy. In fact,

in these cases it is on average 2 times more efficient than an intersection controlled by

traffic lights. Furthermore, if we look at the different AQT-based policies that have

been tested, we notice that they show an improvement on the FCFS policy, even if

this improvement is not so significant from a practical point of view. For example,

for high traffic demand, the FCFS average delay per intersection is 8 seconds greater

than the LIS one, which is hardly a noticeable improvement from the perspective of

the driver. If improving the throughput of a reservation-based intersection with more

sophisticated policies is hard, we must explore other ways to make the reservation-

based intersections more efficient. For this reason, we claim that the distribution of

vehicles in the network is the crucial problem that must be tackled.
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Table 4.6: Average delay per crossed intersection (high traffic demand)

Average delay (sec/intersection) stdev. Relative delay

TL 213.15 101.29 109.15

FCFS 203.65 132.87 104.29

LIS 195.28 124.15 100.00

SIS 198.51 122.84 101.65

FTG 200.75 130.06 102.80

NTS 206.85 131.82 105.92

Table 4.7: Average delay with high traffic demand (min.)

Destination

Origin O1 O2 O3 O4 O5 O6 O7

TL - 6.62 22.69 35.20 39.66 12.88 1.36

FCFS - 4.30 18.89 27.39 34.69 6.84 0.32

LIS - 4.69 19.92 27.32 33.42 6.13 0.32

O1

SIS - 3.66 18.54 25.22 31.99 6.33 0.29

FTG - 5.47 19.26 26.50 34.67 6.11 0.33

NTS - 4.42 20.46 27.45 35.76 6.06 0.43

TL 2.67 - 16.62 28.07 32.47 36.44 4.78

FCFS 0.89 - 15.16 22.62 28.68 30.01 1.43

LIS 0.76 - 15.38 22.52 28.23 30.34 1.67

O2

SIS 0.86 - 14.00 20.32 25.35 29.92 1.70

FTG 0.92 - 15.14 21.86 28.41 29.13 1.47

NTS 0.86 - 15.50 21.87 28.56 32.33 1.80

TL 8.02 6.98 - 12.96 18.45 23.71 33.29

FCFS 0.96 0.06 - 9.70 16.16 17.89 23.13

LIS 0.76 0.02 - 9.59 16.05 19.92 21.46

O3

SIS 0.89 0.0 - 8.22 12.91 20.70 30.64

FTG 0.85 0.06 - 8.93 14.95 19.04 21.68

NTS 0.94 0.07 - 9.46 15.62 21.51 25.78
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TL 16.68 15.27 6.91 - 5.89 12.25 23.56

FCFS 20.38 19.93 13.81 - 7.03 10.93 16.16

LIS 20.71 19.96 14.79 - 6.80 10.88 13.90

O4

SIS 18.31 17.52 13.56 - 6.90 14.13 25.28

FTG 17.59 20.76 16.64 - 6.81 12.42 15.97

NTS 20.78 19.76 13.86 - 6.54 13.08 18.84

TL 20.75 21.92 13.21 5.26 - 6.53 17.18

FCFS 28.99 28.89 23.49 4.50 - 4.81 10.32

LIS 26.48 26.11 22.89 4.39 - 5.66 9.02

O5

SIS 27.71 29.39 22.94 4.30 - 5.51 15.56

FTG 25.86 29.27 27.28 4.87 - 5.82 10.03

NTS 30.35 33.00 24.85 4.57 - 6.06 12.33

TL 11.85 36.39 29.66 24.08 21.54 - 10.51

FCFS 8.75 53.34 45.93 28.43 23.21 - 7.62

LIS 8.11 49.71 43.82 25.66 21.15 - 6.97

O6

SIS 8.56 49.82 43.10 26.68 21.64 - 7.04

FTG 5.12 51.80 46.19 26.26 21.77 - 6.77

NTS 6.69 53.96 45.61 27.36 22.84 - 5.48

TL 1.97 9.26 39.55 34.55 33.57 9.20 -

FCFS 1.35 5.96 53.24 36.18 33.62 3.88 -

LIS 1.20 4.81 49.37 31.08 29.87 3.77 -

O7

SIS 1.36 5.74 48.68 32.82 31.04 4.37 -

FTG 1.36 7.07 51.34 32.01 30.35 4.02 -

NTS 1.30 7.31 52.05 33.97 32.58 3.70 -
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4.4 Computational economies for traffic assignment

There is great interest in developing models to efficiently allocate space in a ur-

ban road network and thus relieve congestion. Most of the work in the literature uses

static transportation models for analysis, which significantly underestimate network

congestion levels in traffic networks. Dynamic traffic assignment models have at-

tracted recent attention, due to their ability to account for time-varying properties of

traffic flow [53], although these formulations generally lead to extremely complicated

solution procedures. Nevertheless, progress has been made using techniques such as

simulation for solving large networks [66], with the great advantage that agent-based,

adaptive, pricing models can be applied.

In the following sections, we will present two different computational economies

that can be applied to solve the traffic assignment problem. The first one, ECO+, is

a cooperative economy that tackles the problem from the equilibrium perspective. In

fact, we applied multiagent reinforcement learning techniques to dynamically coor-

dinate the intersection managers’ pricing policies with the aim of converging to the

optimal joint policy.

The second one, ECO−, is a competitive economy that tackles the problem from

the adaptation perspective. In this economy, the intersection managers act as com-

petitors that strive to sell the resources they supply (i.e., the reservations), thus

dynamically adapting their prices in response to the current demand.

4.4.1 ECO+: a cooperative economy for for traffic assignment

In this section, we present ECO+, a cooperative economy for networks of reservation-

based intersections. We started from Dresner and Stone’s work [35] and assume the

existence of an advanced traffic management infrastructure that allows for reservation-

based intersection control. In ECO+, driver agents trade with the intersection man-

agers in a virtual marketplace, purchasing reservations to cross intersections when

travelling through the urban road network. We apply multiagent reinforcement learn-

ing techniques to dynamically coordinate the intersection managers’ pricing policies
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with the aim of optimising a common objective.

This section is organised as follows. We first define the infrastructure model

that we take for granted, we then introduce the economic model of the market that is

established between driver agents and intersection managers as well as the behavioural

model of the intersection manager. Finally we perform an experimental evaluation of

the model.

Infrastructure model

We assume that the agents in the future urban road management scenario that

we envision will have the following capabilities:

• Infrastructure-to-infrastructure communication. Intersection managers

are able to communicate with each other. This assumption is reasonable, be-

cause for example already existing fibre-optic connections along certain main

urban roads could be used.

• Vehicle-to-infrastructure communication. Driver agents can communi-

cate with the intersection managers in their proximity. Such proximity-based

communication is already in use in different elements of today’s traffic infras-

tructures. We assume that in general a driver agent is able to communicate

with the forthcoming intersection on its route, and eventually also with the

neighbours of such intersection.

• Payment system. A trusted payment system is available, allowing driver

agents to securely transfer money to intersection managers when required. Such

mechanisms are already in use in today’s toll roads.

• Price index board. We assume that driver agents can be provided with the

current prices of the intersections of the urban road network. For instance, each

intersection manager can publish the price of the reservations it sells on a price

index board, accessible to the driver agents. Also this assumption is reasonable
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and technically feasible. For instance, the New York Stock Exchange4 indexes

approximately 8500 stocks, whose price variations are spread worldwide in terms

of seconds to guarantee the same information to all the operators. The city of

Madrid has 1314 intersections regulated by traffic lights. We claim that setting

up such price index board is already feasible with the current technologies.

Market model

In such a setting, in order to design the rules of the marketplace, it is essential

to specify the regulations that govern the interactions between a driver agent and a

single intersection manager. Such regulations need to specify how successful deals

are made and what happens if something goes wrong (e.g., when a reservations needs

to be withdrawn, or when a driver agent arrives at an intersection without a valid

reservation).

• Purchasing a reservation when approaching the intersection.

A driver agent is able to purchase reservations from the intersection managers

in its proximity, while intersection managers apply the simple FCFS policy de-

scribed in the previous chapter to honour reservation requests. To purchase a

reservation when approaching the intersection, a driver agent “calls-ahead” the

intersection manager and provides the necessary data to simulate its transit (see

section 2.5 for more details about how the reservation-based system works). A

driver agent is uniquely identified by a vehicle ID, so that at each intersection

a driver agent may hold only one reservation. If the request cannot be satis-

fied, due to conflicts with the already confirmed reservations, the intersection

manager refuses the reservation request. Otherwise, it sends a confirmation

message to the driver agent, which includes the price of the reservation that

will be charged when it makes use of the reservation, i.e., during the crossing.

We assume that when a driver agent requests a reservation, it is aware of its

price, consulting the price index board, still a driver agent is free to withdraw

4http://www.nyse.com
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(request reservation

:sender D-3548

:receiver IM-05629

:content(

:arrival time 08:03:15

:arrival speed 23km/h

:lane 2

:type of turn LEFT

:queued true

)

Figure 4.8: Augmented REQUEST message

a purchased reservation (see below). When the driver actually arrives at the

intersection, the driver agent is charged with the contracted price and it safely

crosses the intersection.

• Receiving a reservation when queued at the intersection.

If a driver agent does not hold a valid reservation, when it reaches the edge of

the intersection it must stop. In this case, it is entitled to purchase a reservation

specifying that it is queued at the intersection. We augmented the REQUEST

message adding a new boolean field, :queued (see figure 4.8). If true, the

requester specifies that it is queued at the intersection, and in this case it is

entitled to receive a reservation for free. We assume that the road infrastructure

provides intersection managers with a way to actually confirm that a vehicle is

stopped at the intersection, for example using cameras with plate recognition.

Such systems are used nowadays to control the access by non-authorised users

to restricted areas, such as historical city centres or bus/taxi lanes.

• Withdrawing a reservation.

When a driver agent purchases a reservation, it tries to meet the reservation

constraints, especially the arrival time. If it realises that these cannot be met,
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due for example to changing traffic conditions, it can withdraw the reserva-

tion. Giving the driver agents the possibility of freely withdrawing a previously

acquired reservation is crucial for the efficiency of the reservation-based inter-

section control system. Otherwise, the driver agents would have incentives to

purchase a reservation only when they are extremely sure of the arrival time,

i.e., when it is close to the intersection, thus negatively affecting the intersection

throughput.

Intersection manager model

As said in section 2.4, in a multiagent system the agents can be cooperative or

competitive. In cooperative systems, the agents pursue a common goal. Such systems

are characterised by the fact that the designers of the multiagent system are free to

design the agents at will. The agents can be built with extensive knowledge of the

system and they can expect benevolent intentions from other agents. Still, designing

a cooperative multiagent system to have good emergent behaviour is not an easy

task, due to issues to cope with, such as the credit assignment and the impact of co-

adaptation. In contrast to cooperative multiagent systems, agents in a competitive

setting have non-aligned goals, and individual agents seek only to maximise their own

gains.

ECO+ is a cooperative economy, because the intersection managers, being part of

the infrastructure, can be programmed to work as a team in a cooperative economy.

Strictly speaking, a cooperative economy would be a cartel, where the intersection

managers agree to set the highest possible price. Still, as market designer we take

advantage of the market mechanisms as a tool to produce a good and fair traffic system

(i.e., a system with less congestion, lower travel times, etc.). In this kind of economy,

we model the intersection managers from the point of view of effective teamwork,

aiming at i) discovering the effect of a specific price vector and ii) coordinating their

prices in order to maximise the global profit.

In ECO+, the intersection managers trade with the driver agents the reservations

of the intersections they manage. Thus, the action space of an intersection manager
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is formed by the prices that a reservation may be valued. Formally, for the generic

intersection manager i, the actions space Ai is:

Ai =
{
p0
i , p

1
i , . . . , p

m
i

}
(4.17)

where p0
i < p1

i < · · · < pmi , and p0
i is the minimum price and pmi is the maximum

price of a reservation.

The central design issue in ECO+ is the profit function of the intersection man-

agers, whose maximisation represents their goal. Such profit function is modelled

with the aim of penalising congested as well as unused intersections. The profit func-

tion of intersection manager i is defined as the difference between the revenues, Ri,

and the costs, Ci.

The revenues are:

Ri = pi ·N (4.18)

where pi is the price of a reservation and N is the total number of sold reservations.

Regarding the costs, an intersection manager does not face real “production”

costs, so that the cost factor should be 0. In this setting, the winning strategy for

every intersection manager is to sell the reservations at the maximum price in order to

maximise the global profit. Nevertheless, we are market designers that aim to model

the market rules to enforce some desired properties of the underlying traffic system,

such as less congestion and lower travel times.

For this reason, we model a cost term in the following way. When an intersection

manager sells a reservation to a driver agent that is queued at the intersection, we

enforce that the price charged to the driver agent is 0. This is equivalent to penalising

the intersection manager with a cost penalty ci, equal to the entire price of the

reservation, pi, for each reservation sold to a driver agent that is queued at the

intersection. The cost function is so defined as:

Ci = ci ·Nq = pi ·Nq (4.19)
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where Nq is the number of reservations sold to driver agents that are queued at

the intersection.

Given the revenues of equation 4.18 and the costs of equation 4.19, the profit is

defined as:

Pi = Ri − Ci = pi ·N − pi ·Nq = pi ·Na (4.20)

given that N = Na + Nq, where Na is the number of reservations sold to driver

agents that are approaching the intersection.

Evaluating ECO+

The following section describes the multiagent reinforcement learning problem

that we aim at solving, detailing the environment model, the reward functions and

the learning method.

Environment. In a reinforcement learning problem, the learner interacts with the

environment, which provides the learner with feedback information (reward and state

transition), in response to the learner actions. In a multiagent reinforcement learn-

ing problem, the environment responds to the joint action of the learning agents.

The simplest environment that we can model is a stateless environment, i.e., an en-

vironment that can be in one single state. In this setting, the environment is like

a repeated single-stage game [37]. In these games, the learning agents are rewarded

on the basis of their joint actions. In each round of the game, every agent chooses

an action. These actions are executed simultaneously and the a global reward signal

that corresponds to the joint action is broadcast to all agents.

In the following experiments, we model the environment as a repeated single-stage

game. The intersection managers jointly select an action among those available.

Such joint action produces a reward signal that is received by all the intersection

managers, which use this information to update their policies. The goal is to enable

the intersection managers to learn the optimal joint action, according to their goals.
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Reward functions. As said in section 2.4.3, in multiagent cooperative reinforce-

ment learning we can distinguish two levels of reward functions: the global reward and

the agent reward. The global reward is a signal that rates the usefulness of a joint

action with respect to the global goal that the collective of learning agents pursues.

The agent reward is the signal that aims at rating the individual agent action, i.e.,

the contribution of the agent to the global reward. In ECO+ we use the following

global reward:

G(p) =
∑
i

Pi(p) (4.21)

where p is the joint action (i.e., the price vector) and Pi(p) is the profit of the

intersection manager i (see equation 4.20).

We evaluate two different agent reward functions, namely the Local Reward (LR)

and the Expected Difference Reward (ExpDR). The LR rewards the learning agent

with its local term of the summatory of equation 4.21. Formally:

LRi(p) = Pi(p) (4.22)

The ExpDR rewards the learning agent with the difference between the expected

global reward and the expected global reward when the agent i’s action, pi, is set to

a specific value pji ∈ Ai. Formally:

ExpDRi(p) = E
[
G(p | pi = pji ∈ Ai)

]
− E [G(p)] (4.23)

where E [G(p)] is the expected global reward and E
[
G(p | pi = pji ∈ Ai)

]
is the

expected global reward when the intersection manager i applies price pji . Such expec-

tation values can be calculated by averaging the global rewards that an agent observes

over the learning episodes, so that they become more and more precise with time.

Learning method. To learn in a distributed and coordinated fashion which price

vector leads to the best system performance we use independent Q-learning [24] with

immediate rewards and ε-greedy action selection [108]. Each agent maintains a Q-

value for each of its actions. The Q-value provides an estimate of the usefulness of
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performing this action in the next iteration of the game and these values are updated

after each iteration of the game according to the reward received for the action.

After having taken action pji , the intersection manager agent updates its action-value

function estimation as follows:

Qt+1
i (pji ) = Qt

i(p
j
i ) + α · [rt(p)−Qt

i(p
j
i )] (4.24)

where Qt
i(p

j
i ) is the estimation (at time t) of the usefulness of setting price pji to

the reservations sold by intersection manager i, α ∈ (0, 1] is the learning rate, p is

the joint action, i.e., the price vector [p1 p2 . . . pn], and rt(p) is the reward received

by intersection manager i, which in general depends on the full joint action p.

Each intersection manager selects a random action with probability ε ∈ (0, 1), and

the greedy action (i.e., the action with highest Q-value) with probability 1− ε.

Driver agent model. As said in section 4.2, the driver agent model must define

a multi-attribute utility function that rates the available routes in the choice set C
as well as a decision rule. Given that the traffic system is regulated by a market

mechanism, the driver agent must take into consideration different aspects of a route

to determine its utility value. In these experiments, we model the driver multi-

attribute utility function as a 2-attributes function:

U(ρi) = wTT · uTT (ρi) + wK · uK(ρi) (4.25)

where U(ρi) is the utility of route ρi, uTT (ρi) is the normalised utility of route ρi

against the estimated travel time attribute, uK(ρi) is the normalised utility of route

ρi against the reservations cost attribute, wTT is the weight of the estimated travel

time attribute and wK is the weight of the reservations cost attribute.

Basically, if wTT = 1, the driver agent utility only considers the estimated travel

time attribute (i.e., it prefers the shortest route, no matter the price of the reserva-

tions), if wK = 1, the driver agent utility only considers the reservations cost attribute

(i.e., it prefers the cheapest route, no matter the travel time), while for every other
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combination of the weights wTT and wk the driver agent considers the trade-off be-

tween estimated travel time and reservations cost.

Since the higher the utility values uTT and uK , the better the alternative ρi, these

functions are defined as:

uTT (ρi) =
MTT − TT (ρi)

MTT −mTT

(4.26)

uK(ρi) =
MK −K(ρi)

MK −mK

(4.27)

where TT (ρi) is the estimated travel time of route ρi, K(ρi) is the reservations

cost of route ri, MTT = maxρi∈CTT (ρi), mTT = minρi∈CTT (ρi), MK = maxρi∈CK(ρi)

and mK = minρi∈CK(ρi)

Once the utility of the alternative routes ρ1, . . . , ρk has been computed, the driver

agent must choose one of the alternatives. As said in section 4.2, such choice may

be probabilistic, according to the multinomial logit function, or deterministic. In the

following experiments, we model the driver agent as a deterministic utility maximiser,

that always selects the route with the highest utility value.

Experimental results. The first experiment simulates a simple network of 22 in-

tersections (figure 4.9). We simulate a main traffic flow along the North-South axis,

and a secondary traffic flow along the West-East axis. The traffic flow along the

North-South axis is approximately 8 times more intense than that along the West-

East axis. Table 4.8 summarises the traffic demand, 1051 vehicles generated in an

interval of 20 minutes. A generation of the traffic demand corresponds to a single-

stage of the game, and we call it learning episode. At the end of the learning episode

(i.e., when all the vehicles have reached their destination), each agent computes the

agent reward, updates its Q-table and selects the next action (i.e., the price of the

reservations it sells) according to the ε-greedy action selection policy. Then the same

traffic demand is generated again and the process continues for 100 learning episodes.

Single Q-learning works with discrete action spaces, so for each intersection man-

ager we set the following action space:
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Figure 4.9: Network for the evaluation of ECO+

Ai =
{
p0
i , p

0
i + 10, p0

i + 20, . . . , pmi − 10, pmi
}

(4.28)

The minimum price p0
i was set to 0, while the maximum price was set to 100. We

assume that these quantities are cents of euros, so that the price range spans from 0

to 1 euro. Given that a single intersection manager has in total 11 actions, there are

2111 possible joint actions.

Regarding the update rule of the Q-values (equation 4.24), we set the learning

rate α to 0.1, while the probability ε of the ε-greedy action selection policy is set to

0.5 and reduced geometrically every 10 learning episodes.

For the driver agent model, we set the parameter wTT = 1 − wK and we sample

wTT using a normal distribution with mean 0.5 and variance 0.25. Since the prices

of the reservations are changed at the end of the learning episode, i.e., when all the
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O-D pair

N1 − S1 N1 − S2 N2 − S1 N2 − S2 E −W W − E
# of vehicles 213 211 207 227 96 97

Table 4.8: Traffic demands for the evaluation of ECO+

driver agents have reached their destination, a driver agent does not need to change

“on-the-fly” the route it selected at the beginning of its trip.

The metric we used to evaluate the performance of the intersection managers in

ECO+ was the global reward (equation 4.21) that they get during the learning. To

assess the effect of this learning on the population of driver agents, we also measured

the average travel time of the vehicles and how it varies during the learning episodes.

We divided the driver agents into two groups: those travelling along the North-South

axis (marked with N-S in the plots), and those travelling along the West-East axis

(marked with W-E in the plots).

Figure 4.10 plots the global profit using the ExpDR reward function. The intersec-

tion managers converge to a price vector that generates a global profit of about 3600

euros, which is approximately 21% of the theoretically highest global profit (16816

euros, obtained if all the 1051 driver agents passes through the 16 intersections that

are selling reservations, and paying the highest possible price, i.e., 1 euro).

Nevertheless it is interesting to see the effect of this profit maximisation on the

average travel time of the driver agents. If the intersection managers try to maximise

the profit, they indirectly influence the driver agent decision making, thus affecting

the selected route and consequently the travel time. For the vehicles that travel

along the West-East axis, the travel time is basically the same in all the learning

episodes, thus being insensitive to the learning activity of the intersection managers.

Still, the average travel time of the vehicles travelling along the North-South axis is

highly affected by the cooperative learning of the intersection managers, and falls from

approximately 34 minutes to 23 minutes at the end of the learning. The cooperative

economy provides the driver agents with incentives to explore alternatives to the

shortest path, according to their utility function. This alleviates the congestion that
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Figure 4.10: Global profit and average travel time using ExpDR

may arise and, consequently, decreases the travel times, due to a better allocation of

the road network resource.

Figure 4.11 plots the global profit generated by the intersection managers using

the LR reward function. The dynamic is quite different from that in figure 4.10. The

collective of intersection managers converges to a price vector that generates a global

profit of about 2800 euros, 22% less than when they use the ExpDR. Also the average

travel time of the vehicles travelling along the North-South axis is quite a lot higher

at the end of the learning, 30 minutes versus 23 minutes, while the average travel time

of the vehicles travelling along the West-East axis is again insensitive to the learning

performed by the intersection managers. Figure 4.12 compares the ExpDR and the

LR. The LR converges more quickly but settles around lower values of the global

profit compared to the ExpDR. Furthermore, the average travel time at the end of

the learning is 25% higher compared to the average travel time that is obtained when

the intersection managers use ExpDR, 25 minutes versus 20 minutes. Nevertheless,

the LR has the advantage that it needs less information to be computed, since each

intersection manager is able to compute it locally, without communication with the
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Figure 4.11: Global profit and average travel time using LR

other intersection managers.

A different profit function. In the experiments described above, the goal pur-

sued by the team of intersection managers was the maximisation of the global profit,

expressed as the sum of the local profits gained by each intersection manager. This

sum is unbounded, because it depends on the number of vehicles that are travelling

through the urban road network. Thus, this reward function does not fulfil the nec-

essary condition that assures the convergence of the action-value function Q to the

optimal one Q∗ [108].

A different (and hopefully better) reward function is the marginal profit. The

marginal profit, MPi, is calculated as the difference between the marginal revenue,

MRi, and the marginal cost, MCi.

The marginal revenue is defined as:

MRi =
dTR

dN
(4.29)

where TR is the total revenue and N is the total number of sold reservations.
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Figure 4.12: Comparison between ExpDR and LR

Basically the marginal revenue is the revenue increase that an intersection manager

has for every reservation that it sells. Given that the total revenue is the product

between the price of a reservation and the number of sold reservations, equation 4.29

becomes:

MRi =
d(pi ·N)

dN
= N · dpi

dN
+ pi ·

dN

dN
(4.30)

where pi is the price of a reservation. Since in our modelling the price pi does not

change with the number of sold reservations N ,
dpi
dN

= 0, and equation 4.30 becomes:

MRi = pi ·
dN

dN
= pi (4.31)

As said before, we introduce a cost term to penalise congested intersections. This

term, ci, is applied to all the reservation sold to driver agents that are queued at the

intersection. The marginal cost is thus defined as:

MCi =
dTC

dN
=
d(ci ·Nq)

dN
= ci ·

dNq

dN
+Nq ·

dci
dN

(4.32)
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where TC is the total cost, ci is the cost factor, Nq is the number of reservations

sold to driver agents that are queued at the intersection, and N is the total number

of sold reservations.

Given that the cost factor ci does not change with the number of sold reservations

N ,
dci
dN

= 0, and equation 4.32 becomes:

MCi = ci ·
dNq

dN
= ci ·

Nq

N
(4.33)

Given the marginal revenue of equation 4.31 and the marginal cost of equa-

tion 4.33, the marginal profit is defined as:

MPi = MRi −MCi = pi − ci ·
Nq

N
=
N · pi −Nq · pi

N
= pi ·

Na

(Na +Nq)
= (4.34)

if we set ci = pi and given that N = Na + Nq, where Na is the number of

reservations sold to driver agents that are approaching the intersection.

The evaluation is performed using the same setting described above, with excep-

tion of the global reward and the agent reward functions. Given the new (marginal)

profit function, the global reward becomes:

G(p) =
∑
i

MPi(p) (4.35)

where p is the joint action (i.e., the price vector) and MPi(p) is the marginal

profit of the intersection manager i.

The two agent reward functions under evaluation, namely the Local Reward (LR)

and the Expected Difference Reward (ExpDR), now becomes:

LRi(p) = MPi(p) (4.36)

and

ExpDRi(p) = E
[
G(p | pi = pji ∈ Ai)

]
− E [G(p)] (4.37)

Using the marginal profit to compute the reward function has the advantage that

the reward will be bounded, so the necessary condition that assures the convergence
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of the action-value function Q to the optimal one Q∗ is fulfilled. In fact, the marginal

profit MPi(p) varies between 0 (when Na = 0, that is, when all the driver agents

purchase a reservation when they are queued at the intersection), and pi (when Nq =

0, that is, when all the driver agents purchase a reservation when they are approaching

the intersection).

Figure 4.13 plots the global marginal profit using the ExpDR reward function.

The dynamic shows that the intersection managers converge to a price vector that

generates a global marginal profit of about 8.6 euros, which is approximately the

53% of the theoretically highest global marginal profit (16 euros, i.e., 1 euro per

intersection manager, excluding the intersections N1, N2, S1, S2, W , E).

It is again interesting to see the effect of this profit maximisation on the aver-

age travel time of the driver agents. If the intersection managers try to maximise

the marginal profit, they indirectly influence the driver agent decision making, thus

affecting the selected route and consequently the travel time. For the vehicles that

travel along the West-East axis, the travel time is basically the same in all the learning

episodes, thus being insensitive to the learning activity of the intersection managers.

Still, the average travel time of the vehicles travelling along the North-South axis

is highly affected by the cooperative learning of the intersection managers, and falls

from approximately 30 minutes to 23 minutes at the end of the learning, which is a

result somewhat similar to that of the previous experiments.

What is very different from the previous experiments is the performance of the

local reward LR. Figure 4.14 plots the global marginal profit using the LR reward

function. The dynamic is very similar to that in figure 4.13. The collective of inter-

section managers converges to a price vector that generates a global marginal profit

of about 8.8 euros. This implies that the average travel time of the vehicles travelling

along the North-South axis decreases to approximately 23 minutes at the end of the

learning, while the average travel time of the vehicles travelling along the West-East

axis is basically the same in all the learning episodes.

Figure 4.15 provides a comparison between the ExpDR and the LR. The LR

converges more quickly and settles at the same global marginal profit with respect to

the ExpDR, and both have the effect of reducing the average travel time. Since LR
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Figure 4.13: Global reward and average travel time using ExpDR

needs less information to be computed (each intersection manager is able to compute

it locally, without communication with the other intersection managers), under the

marginal profit modelling it is clearly the best option.

The above experiments are a clear clue the market is modelled in a way that

it enforces an inverse relationship between the maximisation of the global marginal

profit, pursued by the intersection managers, and average travel time, experienced by

the driver agents. This relationship holds only in high-load situations, e.g., for the

traffic flow along the North-South axis, whilst for low traffic demands the market does

not beneficially affect the driver agents. This fact is very related to non functional

aspects of the traffic system, i.e., the quality of service. It seems unfair to charge

driver agents when the demand is low, for example during the night.

Another interesting aspect to be analysed is not only how well the intersection

managers learn, but also what they learn, i.e, the prices applied by the intersection

managers and the marginal profit of each of them (figure 4.16 and 4.17). Although the

macroscopic results, using the two different reward functions, show the same dynamic,

the learnt price vector is quite different. At first glance, it is evident that, using



154 Chapter 4: Network of intersections

Figure 4.14: Global reward marginal and average travel time using LR

ExpDR, the prices are in general higher than when using LR, 0.74 euros when using

ExpDR versus 0.66 euros when using LR. If we look at the individual performance

of each intersection manager, we notice that using ExpDR, some intersections have

a marginal profit of 0 although they have a price greater than 0. On the contrary,

using LR every intersection manager is able to generate a marginal profit, although

small in some cases. This means that for the intersection managers that use ExpDR,

given equation 4.34, either Na = 0 or Nq � Na. In other words, either they are

unused and do not sell reservations (Na = 0), or they sell reservations exclusively to

driver agents queued at the intersection (Nq � Na). The former is more likely since,

for instance, intersections I5 and I6 have a marginal profit equal to 0 (using ExpDR)

and since they do not lay on the shortest route is quite probable that they were not

able to attract a quota of driver agents and divert them from the shortest route. In

fact, the sub-path N1-I1-I2, which is part of the shortest route between N1 and S2,

has the same price using the two reward functions, 1.4 euros. On the other hand,

the alternative path N1-I6-I5-I2 is more expensive using ExpDR (2.03 euros) and less

expensive using LR (1.21 euros). With ExpDR the intersection managers that govern
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Figure 4.15: Comparison between ExpDR and LR

I5 and I6 learn a price that makes the longer sub-path N1-I6-I5-I2 more expensive

than the shorter one, N1-I1-I2, so that no driver agents select that sub-path and a

part of the road network remains unused. With LR, the intersection managers that

govern I5 and I6, aiming to gain some marginal profit, attract the driver agents that

are more concerned with low prices, and they create a sub-path that, albeit longer,

is cheaper than the shortest one.

To pay or not to pay? In all the experiments described above, we modelled the

driver agent as if it was always willing to pay a certain amount of money for its

trip. Still, the possibility of travelling without paying for the reservations must be

considered in the experimental scenario. In fact, a certain quota of driver agents could

be interested in the possibility of travelling without any additional cost derived from

the reservations. This kind of driver agent, which we call non-payer driver agents,

has no incentives to divert from the route with the estimated shortest travel time, so

that they consider only this attribute of a route ρ when they must choose the route to

follow. To evaluate the impact of this kind of driver agent on the system functioning,
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Figure 4.16: Average price vector Figure 4.17: Average marginal profit

we set up a new experimental configuration. Similarly to the experimental setup

described in section 4.4.1, the intersection managers use the LR to maximise the

global marginal profit. We evaluated three different scenarios, with an increasing

percentage of non-payer driver agents. The metric we used to evaluate the effect

of the presence of non-payer driver agents is the average travel time (min.) of the

vehicles travelling along the North-South axis. The average travel time is measured

at the end of the learning performed by the intersection managers.

In general, the average travel time of the non-payer driver agent is higher than that

of the payer driver agents (figure 4.18). This is because a non-payer driver agent, when

approaching an intersection, reduces its speed until reaching the intersection queue,

while a payer driver agent with a purchased reservation can maintain its speed. If the

number of non-payer driver agents is 10% of the total, the average travel time of these

settles at around 42 minutes to cover the distance between origin and destination,

while the payer driver agents experience an average travel time of about 23 minutes.

If the number of non-payer driver agents increases to 30% of the total, the average

travel time grows by up to 65 minutes, while the average travel time of the payer

driver agents is about 25 minutes. Finally, if the non-payer driver agents represent

the 60% of the population of vehicles, the average travel time for this kind of driver
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Figure 4.18: Average travel time for different percentages of non-payer driver agents

agents increases a lot and settles around 173 minutes, while the payer driver agents

again basically experience the same quality of service, with an average travel time of

about 23 minutes.

The intersection managers have some difficulties in maximising the marginal profit,

due to the driver agents that slow down at the intersections in order to have a reserva-

tion for free. These driver agents are insensitive to the intersection manager actions,

therefore these have a lot of costs that they cannot avoid. Figures 4.19 and 4.20 show

the marginal profit obtained by the intersection managers at the end of the learning.

As the number of non-payer driver agents increases, the global marginal profit de-

creases, falling from around 8 euros to around 3 euros. If we look at the individual

performance of each intersection manager, we can see how the marginal profit of each

intersection manager shrinks with the increase of non-payer driver agents.

From these results, it is evident that the new market rules heavily affect the

performance of the system: the driver agents now have incentives to save money, thus

they slow down at the intersections and, depending on the number of agents who

behave in the same way, may cause severe problems to the stability of the system. A
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Figure 4.19: Global marginal profit for different percentages of non-payer driver agents

priori it is difficult to estimate the percentage of driver agents that are not willing to

pay, so that it is difficult to predict how well the system may perform. For instance, if

only a 10% of the driver agents do not pay, the system is still quite resilient, and also

the non-payer driver agents experience a good enough quality of service. On the other

hand, if more than 30% of the driver agents “boycott” the market, the performance

of the system is severely affected.

The good news is that the payer driver agents always have a far better quality

of service with respect to the non-payer driver agents, an important characteristic to

foster the acceptance of the mechanism and give incentives to driver agents to join

the market looking for a good deal.

4.4.2 ECO−: a competitive economy for traffic assignment

In this section, we present ECO−, a competitive economy for networks of reservation-

based intersections. Again, we rely on Dresner and Stone’s work [35] and we as-

sume the availability of an advanced traffic management infrastructure that allows

for reservation-based intersection control. As in the cooperative economy scenario, in
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Figure 4.20: Average marginal profit for different percentages of non-payer driver

agents

ECO− driver agents trade with the intersection managers in a virtual marketplace,

purchasing reservations to cross intersections when they travel through the urban

road network. Still, in contrast to the cooperative economy scenario, we designed

the intersection managers as competitors that strive to sell the resources they supply,

that is, the reservations. Each intersection manager applies a pricing policy which is

founded on the general equilibrium theory [105]. The general market equilibrium is

a situation where the amount of resources sought by buyers is equal to the amount

of resources produced by suppliers.

This section is organised as follows. We first introduce our assumptions about

the infrastructure that we take for granted, and the economic model of the market

that is established between driver agents and intersection managers. Then we define

the structure and the behavioural model of the intersection managers. Finally we

perform an evaluation of the model.

Infrastructure model

To implement the competitive economy, we rely on the same infrastructure model

defined in ECO+. A communication medium that enables infrastructure-to-infrastructure
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communication and vehicle-to-infrastructure communication exists. We also assume

that an electronic payment system is available, as well as a price index board where

the prices of reservations are published.

Market model

The rules of the marketplace are essentially those defined for ECO+. The driver

agent can purchase a reservation when it is approaching the intersection or it can

receive a reservation when it is queued at the intersection. Additionally, if it holds a

confirmed reservation but it realises that it cannot be at the intersection at the time

defined in the reservation confirmation, it is authorised to withdraw the reservation.

Intersection manager model

In a competitive multiagent system the individual agents are assumed to behave

selfishly, competing with each other to maximise their private utility. Nevertheless,

this does not necessarily lead the system to perform poorly from a global point of

view. Mechanism design [30], for instance, studies how to define the protocols that

rule the interaction between agents in such a way that some desirable properties

emerge, e.g., an efficient allocation of resource.

In ECO−, each intersection manager competes with all the others for the supply of

the resource they trade, i.e., the reservations. Our goal as market designers is to reach

the general market equilibrium [105], a situation where the amount of resources sought

by buyers is equal to the amount of resources produced by suppliers. A condition

for the existence of such equilibrium is that the utility functions of the buyers must

satisfy the gross substitutes condition (GS). Informally, the GS condition states that

when the price of one good goes up, demand for another good should not go down.

More formally, let be Ω the set of items that compose the economy and p ∈ RΩ a

price vector that assigns a price for each item ∈ Ω. Be u : 2Ω → R a utility function

on Ω, which assigns a value to each bundle X ⊂ Ω. With each utility function u we

associate the net utility function v : 2Ω ×Rm → R, which is defined by
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v(X ,p) = u(X )− p(X )

where p(X ) =
∑
x∈X

px.

For any utility function u, the demand correspondence D : RΩ → 2Ω is defined

by:

D(p) = argmaxX∈Ωv(X ,p)

As introduced in Kelso and Crawford [56], u satisfies the GS condition if for any

two price vectors p and q such that q ≥ p, and any X ∈ D(p), exists Y ∈ D(q) such

that {x ∈ X | px = qx} ⊂ Y .

The price vector p∗ that corresponds to the general market equilibrium is in

general computed through a walrasian auction [21][26], which involves a set of buyers

B and a set of suppliers J . At time t, each buyer b ∈ B notifies to the suppliers the

quantity of resources it is willing to buy, given the actual price vector pt. With this

information, each supplier j ∈ J computes the difference between the demand for

the resource it produces, dj, and the supply of such resource, sj. If there is excess

supply (sj > dj), the prices are lowered, whilst if there is excess demand (dj > sj)

the prices are raised. The new price vector pt+1 is communicated to the buyers that

iteratively compute the new demand. No transactions take place at disequilibrium

prices, and the process continues until the equilibrium price is reached, that is, when

dj = sj ∀j ∈ J . Only at that point the transactions take place and the resources are

transferred from the suppliers to the buyers by means of money.

In ECO−, the buyers are the driver agents, the suppliers are the intersection man-

agers, and the traded resources are the reservations. More precisely, an intersection

manager sells reservations to the driver agents that want to cross the intersection

j coming from one of the incoming links. Let be Lj the set of incoming links of

intersection j. For each incoming link lh ∈ Lj, the intersection manager defines the

following variables:

• Current price ptj(lh): is the price applied by the intersection manager j to the

reservations sold to the driver agents that comes from the incoming link lh.
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• Total demand dtj(lh | ptj(lh)): represents the total demand for the reservations

from the incoming link lh that the intersection manager j observes at time t,

given the current price ptj(lh). It is given by the number of vehicles that want

to cross intersection j coming from link lh at time t.

• Supply sj(lh): defines the reservations supplied by the intersection manager j

for the incoming link lh. It is a constant and represents the number of vehicles

crossing intersection j coming from link lh at time t that intersection manager

j is willing to serve.

• Excess demand ztj(lh | ptj(lh)): it is given by the difference between the total

demand at time t and the supply, ztj(lh | ptj(lh)) = dtj(lh | ptj(lh))− sj(lh).

Given the set of all intersection managers that are operating in the market, J ,

we define the price vector p as the vector of the prices applied by each intersection

manager j ∈ J for the reservations sold to the driver agents that comes from the

incoming link lh ∈ Lj. In compact notation:

p = [ pj(lh) ] ∀j ∈ J , ∀lh ∈ Lj (4.38)

The market in ECO− is said to be in equilibrium at price vector p∗ if ztj(lh | p∗j(lh)) =

0 ∀j ∈ J , ∀lh ∈ Lj, that is, if the demand and the supply are mapped by the price

vector p∗.

To implement the walrasian auction described at the beginning of this section,

each buyer (i.e., driver agent) should communicate to the suppliers (i.e., intersection

managers) the route that it is willing to choose, given the current price vector pt. With

this information, each intersection manager j computes the demand dtj(lh | ptj(lh)) as

well as the excess demand ztj(lh | ptj(lh)), ∀lh ∈ Lj. Then, each intersection manager

j adjusts the prices ptj(lh) for all the incoming links lh ∈ Lj, lowering them if there

is excess supply ( ztj(lh | ptj(lh)) < 0 ) and raising them if there is excess demand

( ztj(lh | ptj(lh)) > 0 ). The new price vector pt+1 is communicated to the driver

agents that iteratively choose their new desired route, on the basis of the new price

vector pt+1. Once the equilibrium price p∗ is computed, the trading transactions take
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Algorithm 2 Intersection manager price update
t← 0

for all lh ∈ Lj do

ptj(lh)← ε

sj(lh)← initialV alue

end for

while true do

for all lh ∈ Lj do

dtj(lh)← evaluateDemand

ztj(lh)← dtj(lh)− sj(lh)

ptj(lh)← ptj(lh) + ptj(lh) ·
ztj(lh)

sj(lh)
end for

t← t+ 1

end while

place and each driver agent buys the required reservations at the intersections that

lay on its route.

The walrasian auction relies on quite strong assumptions, which make a direct

implementation in the traffic domain hard. For instance, the set of buyers is assumed

to be fixed during the auction, which means for the traffic domain that new driver

agents may not join an auction until it ends. Also the fact that no transactions

can take place at disequilibrium prices is a strong assumption for the traffic domain:

it is unreasonable for all the driver agents to wait to reach the equilibrium before

choosing the desired route and starting to travel. Finally, given the infrastructure

model described in section 4.4.1, a driver agent is actually able to transfer money to

an intersection manager when it is spatially close to it, that is, when it is already

travelling along its desired route.

Thus we implement a market that aims at reaching the general equilibrium such as

the walrasian auction, but that works on a continuous basis, with driver agents that

join and leave the market dynamically, and with transactions that take place at every

moment. To reach the general equilibrium, each intersection manager applies the
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price update strategy sketched in algorithm 2. At time t, each intersection manager

j computes independently the excess demand ztj(lh | ptj(lh)) and updates the price

ptj(lh) using the formula [21][105]:

pt+1
j (lh)← max

[
ε, ptj(lh) + ptj(lh) ·

ztj(lh | ptj(lh))
sj(lh)

]
(4.39)

where ε is the minimum price and sj(lh) is the supply of the intersection manager

j for the incoming link lh. The definition of ε and sj(lh) is a design decision that

may affect the functioning of the market: i) ε is the minimum price that an intersec-

tion manager charges for the reservations that it sells, and ii) sj(lh) is the number

of vehicles above which the intersection manager considers that there is an excess

demand and it starts raising prices. In ECO+ we saw how the cooperative economy

charged the driver agents of the minority flow, although these did not experience any

increase in quality of service. Thus, we claim that driver agents that travel through

road network links with low demand shall not incur in any costs. For this reason,

we chose ε = 0. To define the supply sj(lh), we rely on the fundamental diagram of

traffic flow [64]. Let ρopt be the density that maximises the traffic flow on link lh (see

figure 4.21). We chose sj(lh) = 0.5 · ρopt · ||lh||, where ||lh|| is the length of link lh.

In other words, the intersection manager considers that there is an excess demand

for capacity coming from link lh when the density on that link reaches 50% of the

optimal density.

Evaluating ECO−

Driver agent model. We use the same driver model that we used in ECO+. The

driver multi-attribute utility function is defined as a 2-attribute function:

U(ρi) = wTT · uTT (ρi) + wK · uK(ρi) (4.40)

where wTT is the weight of the estimated travel time attribute, wK is the weight

of the reservations cost attribute, uTT (ρi) and uK(ρi) are the normalised utilities of

route ρi against the estimated travel time attribute and the reservation cost attribute

respectively. These utilities are defined by:
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Figure 4.21: Fundamental diagram of traffic flow

uTT (ρi) =
MTT − TT (ρi)

MTT −mTT

(4.41)

uK(ρi) =
MK −K(ρi)

MK −mK

(4.42)

where TT (ρi) is the estimated travel time of route ρi, K(ρi) is the reservations cost

of route ρi, MTT = maxρi∈CTT (ρi), mTT = minρi∈CTT (ρi), MK = maxρi∈CK(ρi) and

mK = minρi∈CK(ρi). Once the utility of the alternative routes ρ1, . . . , ρk has been

computed, the driver agent always selects the route with the highest utility value.

This utility function satisfies the GS condition. As said before, the GS condition

informally states that when the price of one good goes up, demand for another good

should not go down. Consider the following simplified case, with two goods, i.e., two

available routes, ρ1 and ρ2. Suppose that TT (ρ1) = 10 and TT (ρ2) = 20 and that

wTT = 0.3 and wK = 0.7. The functional form of U(ρ1), for different values of K(ρ2),

is depicted in figure 4.22. If the price of route ρ2 increases, for example from 1 to 2,

the U(ρ1) increases as well, so that the demand for route ρ1 should not go down. In

fact, more driver agents will prefer the route ρ1, that becomes more attractive due to

the price increase of route ρ2.
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Figure 4.22: Driver agent utility function and the GS condition

Experimental results. Although our work does not depend on the underlying road

network, we chose a (simplified) topology of the urban road network of the city of

Madrid (see figure 4.23) for our empirical evaluation rather than an unrealistic, lattice-

like, network. The network is characterised by several freeways that connect the

downtown with the surroundings and a ring road. Each big dark vertex in figure 4.23,

if it connects three or more links, is modelled as a reservation-based intersection. We

aimed at recreating a typical morning peak scenario, with more than 11 thousands

vehicles that depart within a time window of 50 minutes. The vehicles that travel

from and to 7 destinations outside the city (marked with O1 up to O7 in figure 4.23)

form the traffic under evaluation.

For the driver agent model, we set the parameter wTT = 1 − wK and we sample

wTT using a normal distribution with mean 0.5 and variance 0.25. Since the prices

of the reservations changes dynamically, a driver agent may change “on-the-fly” the

route it selected at the beginning of its journey, therefore reacting to the market

fluctuations.

To evaluate ECO− we used two different types of metrics, one related to the

vehicles and one related to the network. The network-related metric was the den-
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Figure 4.23: Network used to evaluate ECO−

sity variations in correspondence of 7 critical intersections (marked with c1 . . . c7 in

figure 4.23), which connect the freeways going downtown with the ring road. The

vehicle-related metrics are the average travel time and the moving average travel

time, all grouped by the origin-destination (O-D) pair.

• Average travel time (for a given O-D pair):∑
i

TT (ρi)/N

where TT (ρi) is the real travel time experienced by the driver agent i on its

selected route ρi and N is the total number of driver agents for the given O-D

pair.

• Moving average travel time (for a given O-D pair): this metric is intended to

measure how the average travel time evolves during the simulation. This metric
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is initialised to 0 and calculated as follows: once a driver agent i concludes its

trip, the travel time TT (ρi) is computed and the moving average travel time

TT avg is updated with the formula

TT avg = TT avg + (TT (ρi)− TT avg)/(n+ 1)

where n is the number of driver agents that have completed their trips so far.

The evaluation is performed by running the simulator with two different config-

urations: in the first one, the intersections are governed by intersection managers

that compete in the market for the supply of the reservations; in the second one,

the intersections are governed by intersection managers that only regulate the transit

with the usual FCFS policy. In the following tables and figures we refer to the two

configurations with the abbreviations ECO− and FCFS.

Network-related metrics. An important metric that is used to evaluate the

effects of the trading activity between driver agents and intersection managers is the

density variation over time in correspondence of the critical intersections c1 to c7.

The plots of the results are shown in figure 4.24. In general, the density tends

to be lower in the competitive economy compared with the system regulated only by

FCFS intersection managers. At the least demanded intersections c1, c2 and c7 (where

the density is below the optimal one) there is no substantial difference between ECO−

and FCFS. These critical intersections are less demanded due to the topology of the

network. In fact, less origins (also far-between) are located in the northern part (O1,

O2 and O7).

At the critical intersections c3, c4 and c6, the vehicles density when the intersection

managers apply the price update strategy defined by ECO− is always below the density

when the network is regulated by simple FCFS intersection managers, especially in

the case of intersections c4 and c6 where the density exceeds the optimal one to a

small extent and for a limited period of time.

At intersection c5, the density when ECO− is running has a higher peak around

9 : 30, but the density then later starts to exceed the optimal density and begins to
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fall below the optimal density earlier. To assess which of the two scenarios, ECO− or

FCFS, is preferable, we calculated the integral of the density curves, measured in the

interval when the curve is above the optimal density, formally:

∫ t2

t1

δECO−(t)dt

∫ t2

t1

δFCFS(t)dt (4.43)

where δECO− and δFCFS are the density functions, t1 = min( t | δECO−(t) >

ρopt, t | δFCFS(t) > ρopt ) and t2 = max( t | δECO−(t) < ρopt, t | δFCFS(t) > ρopt ).

This metric is lower when the reservations are allocated through the competitive

economy (70.24 vehicles · h/km versus 105.07 vehicles · h/km).

Thus, we can conclude that the competitive economy generates a better balanced

network, since the price fluctuations force the demand to change towards less ex-

pensive intersections. Such fluctuations contribute to create a system in dynamic

equilibrium by a matter of uneven development, where unused intersections become

cheaper while congested ones become very expensive.

Vehicle-related metrics. Table 4.9 shows the average travel time of the driver

agents, according to their origin-destination pairs, when the reservations are allocated

through the competitive market (ECO−) and when they are granted with the usual

FCFS policy. The competitive economy generates a net reduction of the average travel

time for 30 of 42 origin-destination pairs. Such reduction is in general noteworthy for

the busiest routes, such as those that connect O6 and O7 with O3 and O4. The plots of

the moving average travel time are shown in figure B.1 (see appendix B). These plots

show how the average travel time of the driver agents of a given origin-destination

pair evolves during the simulation. It is noticeable that for the aforementioned 30

of 42 origin-destination pairs the moving average travel time of ECO− is lower than

that of FCFS, especially when the road network reaches saturation levels.
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(1) Intersection c1 (2) Intersection c2

(3) Intersection c3 (4) Intersection c4

(5) Intersection c5 (6) Intersection c6

(7) Intersection c7

Figure 4.24: Density in the critical intersections under evaluation
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Table 4.9: Average travel time (min): ECO− vs. FCFS

Destination

O1 O2 O3 O4 O5 O6 O7

Origin

ECO− - 12.08 19.58 26.69 30.75 21.17 14.13
O1 FCFS - 11.98 22.88 35.13 43.56 21.35 13.82

ECO− 11.25 - 14.16 19.01 23.72 24.00 20.88
O2 FCFS 10.14 - 16.50 25.86 31.04 38.09 19.50

ECO− 15.57 10.79 - 9.18 13.98 18.54 24.95
O3 FCFS 13.34 9.75 - 12.21 17.63 23.68 31.73

ECO− 24.79 20.39 11.61 - 8.20 14.34 21.66
O4 FCFS 26.94 22.58 13.91 - 10.04 15.73 22.74

ECO− 26.80 22.82 16.29 7.47 - 11.10 19.46
O5 FCFS 32.16 30.61 21.53 8.83 - 10.77 17.65

ECO− 23.16 27.30 25.30 16.39 12.12 - 16.58
O6 FCFS 22.51 57.00 41.05 24.68 19.02 - 13.73

ECO− 15.04 23.51 31.67 24.44 19.11 11.69 -
O7 FCFS 14.30 23.25 56.42 34.99 31.23 11.99 -
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4.5 ECO−CA: an integrated computational economy

for traffic assignment and control

In section 3.3, we introduced an auction-based policy for the control of a single

intersection. The experimental results showed that this policy was quite effective in

allocating the reservations to the driver agents that value them the most. Bidders

who bid high usually experience a great reduction in delay (about 30% less). Still,

this policy on its own showed a couple of drawbacks. First, it fosters the attainment

of a user optimum rather than a global one, therefore it pays a social price, in the

form of greater average delay for the entire population of driver agents. Furthermore,

it is possible that even wealthy driver agents, in high-load situations, could not get

a reservation, due to the decreasing reservation distance or due to driver agents in

front of them that does not want to allocate a lot of money to acquire a reservation.

For this reason, if we focus on an urban road network, an integrated strategy is

needed, which acts not only on the traffic control, but also on the traffic assignment.

Traffic assignment strategies aim at making the task of the traffic controllers easier,

by means of a better distribution of the traffic demand. In this section we introduce

ECO−CA, an integrated computational economy for traffic assignment and control,

which combines the adaptive traffic assignment strategy ECO− with the auction-

based control policy described in section 3.3.

From the market perspective, the intersection manager is the supplier of the reser-

vations that are allocated through the combinatorial auction. Thus, it may control

the reserve price of the auctioned reservations. In auction terminology, the reserve

price is the minimum price at which the intersection manager is willing to sell. De-

pending on the intersection usage, it may apply pricing strategies and raise (or lower)

the reservation price. We model each intersection manager in such a way that they

compete for the driver agents as in ECO−, raising the reserve price in case of in-

creasing demand or lowering it in case of decreasing demand. The pricing strategy

is founded on the general market equilibrium theory [21][26][105]. The adaptive and

concurrent pricing strategy applied by the intersection managers are in charge of
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computing in a distributed way the price vector p∗ that corresponds to the general

market equilibrium.

The computation of p∗ is performed as in ECO−. Let be Lj the set of incoming

links of intersection j. For each incoming link lh ∈ Lj, the intersection manager

defines the current reserve price ptj(lh), the total demand dtj(lh | ptj(lh)), the supply

sj(lh) and the excess demand ztj(lh | ptj(lh)). Each intersection manager applies the

reserve price update strategy sketched in algorithm 2. At time t, each intersection

manager j computes, independently from each other, the excess demand ztj(lh | ptj(lh))
and updates the price ptj(lh) using the formula [21][105]:

pt+1
j (lh)← max

[
ε, ptj(lh) + ptj(lh) ·

ztj(lh | ptj(lh))
sj(lh)

]
(4.44)

where ε is the minimum reserve price and sj(lh) is the number of driver agents

that the intersection manager j wants to participate in each auction. We set ε and

sj(lh) as in ECO−, that is, the minimum reserve price (ε) is set to 0 (driver agents

that travel on network links with low demand shall incur the lowest costs as possible)

and the number of vehicles above which the intersection manager considers that there

is an excess demand (sj(lh)) is set to 50% of the optimal density.

Evaluating ECO−CA

Driver agent model. The driver model that we used in the empirical evaluation

is slightly different from that used in ECO−. In this model, each driver agent holds a

private valuation of the bids that it is willing to submit to pass through the intersec-

tions of its chosen route, defined by the variable bi. Given the monetary constraint,

the driver agent selects the most preferred route ρ∗, taking into consideration the

estimated travel time associated with the route. A route ρ is modelled as an ordered

list of links, ρ = [l1 . . . lM ], each of them characterised by two attributes, namely

travel time at free flow

TT (lk) =
||lk||

vmax(lk)
(4.45)

and reserve price
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K(lk) =

{
ptj(lk) if lk ∈ Lj
0 otherwise

(4.46)

where ||lk|| is the length of link lk, vmax(lk) is the maximum allowed speed on link

lk, and ptj(lk) is the reserve price set by the intersection manager j that governs the

intersection to which the link lk is connected. The summatory over all the links of ρ

gives the travel time at free flow of the entire route ρ:

TT (ρ) =
M∑
k=1

TT (lk) (4.47)

Given bi, the driver agent builds the choice-set C, formed by those routes whose

intersections have a reserve price lower than the bid bi:

C = {ρ1, . . . , ρN | K(lk) ≤ bi ∀lk ∈ ρx} (4.48)

Once the choice-set is built, the driver agent selects the shortest route ρ∗ =

argminρ∈CTT (ρ). Since the reserve prices change with time, the driver agents may

react to the price fluctuations and rearrange its route on-the-fly.

Experimental results. To evaluate ECO−CA we again recreated a typical morning

peak scenario, using the same network topology of figure 4.23. Each big dark vertex

in figure 4.23, if it connects three or more links, is modelled again as a reservation-

based intersection, whose intersection manager applies the reserve price update strat-

egy detailed in this section and assigns reservations to the driver agents using the

auction-based policy described in section 3.3. We are interested in two different types

of properties. From one side we must evaluate whether or not the integrated manage-

ment policy (traffic control+traffic assignment) guarantees lower delays to the driver

agents that submit higher bids (user optimum). For this purpose, we calculate the

average (percent) increase of the vehicles’ travel times, defined as

TT reali − TT lower bound

TT lower bound
(4.49)
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Figure 4.25: Relation between normalised delay and bid

with TT reali being the observed travel time for vehicle i from an origin to a desti-

nation, and TT lower bound the travel time from the same origin to the same destination

if the vehicle could cross each intersection unhindered5. For simplicity, we refer to

the percent increase of the travel time with the term normalised delay.

From the other side, we would set up a system that is fair to the entire population

of driver agents, guaranteeing lower average delays (global optimum). Thus, we

compared our integrated policy with networks of intersections governed by the first-

come-first-served control policy without assignment6. The aim is to evaluate the

global performance (in terms of average travel time) of the sophisticated ECO−CA
policy compared to the rather simple FCFS policy, and to detect any potential social

cost of ECO−CA, similar to the one reported in section 3.3.

Figure 4.25 plots the relation between bid value and normalised delay of the

5This ratio enables us to aggregate the results of driver agents even though they have different
origins and/or destinations.

6We assume that in this case the driver agents choose the shortest route from their origin to their
destination.
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Figure 4.26: Overall average travel time

population of driver agents. As in the experiments of section 3.3, it is possible to

appreciate an inverse relation between these two quantities: the driver agents that

submit bids between 150 and 200 cents reduce the delay by about 50% compared to

those which bid less than 50 cents.

Table 4.10 shows the average travel time of the driver agents, according to their

origin-destination pairs, when the intersection managers use the ECO−CA policy and

when the reservations are granted with the usual FCFS policy. With ECO−CA, there is

a net reduction of the average travel time for 29 of 42 origin-destination pairs. Such

reduction is in general noteworthy for the busiest routes, such as those that connect

O6 and O7 with O3 and O4. The plots of the moving average travel time are shown

in figure C.1 (see appendix C).

Finally, figure 4.26 plots the evolution of the overall average travel time. This

plot shows how the average travel time of the entire population of driver agents

evolves during the simulation. This overall average travel time is calculated as in

section 4.4.2. In the beginning, the average travel time is similar for both control

policies, but as the number of driver agents that populate the network (i.e., its load)
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increases, it grows significantly faster with the FCFS than with the ECO−CA policy.

This is due to the fact that the higher the network load, the more relevant the

different reserve prices: with the ECO−CA policy, more drivers choose a route through

less expensive intersections, thus leading to less demand at “bottleneck” intersections.

There are two consequences: (1) in line with the results of section 3.3 (figure 3.12),

lower demand leads to a lower “social cost” of the auction-based policy with respect to

FCFS at intersection level; and (2) a more homogeneous distribution of vehicles over

the network leads to a better use of network resources, and thus to lower average travel

times. Our experiments show that, in general, the gains obtained by (2) outweigh the

overhead introduced by (1) with respect to social welfare (i.e., average travel time). In

summary, the fluctuations of the reserve prices act on the traffic assignment, forcing

the demand to change towards less expensive intersections and generating a system in

dynamic equilibrium where the unused intersections become cheaper while the high

demanded ones become very expensive. At the same time, the traffic control policy

rewards the driver agents that value the reservations the most, who experience lower

delays.
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Table 4.10: Average travel time (min): ECO−CA vs. FCFS

Destination

O1 O2 O3 O4 O5 O6 O7

Origin

ECO−CA - 12.10 13.76 24.00 27.27 22.61 13.82
O1 FCFS - 11.98 22.88 35.13 43.56 21.35 13.82

ECO−CA 11.06 - 10.90 19.01 23.97 25.87 21.00
O2 FCFS 10.14 - 16.50 25.86 31.04 38.09 19.50

ECO−CA 14.95 12.85 - 9.18 13.53 19.03 27.90
O3 FCFS 13.34 9.75 - 12.21 17.63 23.68 31.73

ECO−CA 19.73 18.29 10.01 - 7.13 13.11 23.30
O4 FCFS 26.94 22.58 13.91 - 10.04 15.73 22.74

ECO−CA 25.04 20.74 12.07 7.47 - 10.05 21.36
O5 FCFS 32.16 30.61 21.53 8.83 - 10.77 17.65

ECO−CA 24.46 27.24 16.33 16.39 10.35 - 14.16
O6 FCFS 22.51 57.00 41.05 24.68 19.02 - 13.73

ECO−CA 14.82 23.93 20.09 27.53 16.92 12.37 -
O7 FCFS 14.30 23.25 56.42 34.99 31.23 11.99 -
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4.6 Discussion

In this chapter we extended the scenario evaluated in chapter 3 from a single

intersection to a network of intersections. In this new setting, the complexity that

a management policy must deal with increases considerably, since the problems that

are raised by the underlying system are distributed, characterised by a great level of

uncertainty, and intrinsically dynamic.

The first approach was evaluating how the policies inspired by the adversarial

queueing theory, formulated in section 3.2, perform at the network level. Looking

at the different AQT-based policies that have been tested, we noticed that although

they show an improvement on the FCFS policy, they do not improve (from a practical

point of view) the intersection’s throughput so significantly. This was a hint that, if

the scope of the problem moves from a single intersection to a network of intersec-

tions, we probably cannot expect great improvements even from more sophisticated

policies. This is because in a network, an intersection manager is not uncoupled

anymore, and it has influence on/it is influenced by the other intersection managers

in the network. For instance, it is possible for several intersection managers to be

very effective in increasing the throughput of their own intersections, causing serious

problems for another intersection manager downstream, which must deal with a great

traffic demand that is superior to its management capability.

For this reason, we focused on defining mechanisms that act on the traffic as-

signment, i.e., the distribution of the vehicles in the network. Traffic assignment

mechanisms aim at making the task of the traffic controllers easier, by means of a

better distribution of the traffic demand and an improved allocation of the network

capacity. We tackled this problem from a market-based perspective, using markets

as a way to design an efficient traffic assignment strategy. The advantages of such

an approach are many. In fact, the market dynamic provides the driver agents with

incentives to explore different alternatives for the route choice. Furthermore, the in-

tersection managers, participating in and (eventually) ruling the market, have more

power to influence the driver agents behaviour.

We studied two different computational economies. In the first one ECO+, we
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tackled the problem from the profit maximisation perspective. We applied multiagent

reinforcement learning techniques to make the intersection managers dynamically

coordinate their pricing policies with the aim of converging on the optimal joint

policy. The experimental evaluation showed that the intersection managers, striving

to maximise a profit function, indirectly influence the driver agent decision making

and “unintentionally” minimise the average travel time. We compared two different

agent reward functions, one with a global scope (ExpDR) and one with a local

scope (LR). The LR performed worse than ExpDR in maximising the global profit,

whereas it considerably improved its performance in maximising the global marginal

profit. The fact that a purely local reward behaves as well as a global one could

appear surprising. Still, in a cooperative multiagent learning problem, the most

important aspect of an agent reward function is not the scope (local or global) but the

quantity of information it carries. One may think that a global signal is intrinsically

more informative than a local signal, but it is not always the case, because global

information carries a lot of noise as well. For example, the gross national product of

a nation (global scope) is a signal that does not provide useful information to firms

that want to know how well they performed in the market, while the previous year

balance sheet (local scope) clearly carries much more information. A noisy agent

reward function that does not rate the true contribution of an agent could make it

act badly, since the signal it receives adds an uninformative bias. Differently to the

profit Pi, the marginal profit MPi is bounded between 0 and pi, so that all marginal

profit that an agent receives at the end of an episode is highly informative: if it is

close to 0, the feedback is clearly negative, while if it is close to pi, the feedback is

clearly positive, because pi is the highest reward the agent can receive.

Furthermore, a global feedback signal could incentivise “lazy” agent behaviours.

In the experiments we noticed how with ExpDR several agents do not provide any

contribution to the global marginal profit, while with LR all the agents were motivated

to contribute to the global marginal profit. This happened due to the nature of the

two reward functions: with ExpDR, each intersection manager is rewarded with a

team-wide information, so that although a particular intersection manager does not

perform well, if globally the entire collective has a good performance, it is rewarded
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positively; using LR, the reward is strictly local, therefore each intersection manager

strives to increase its own marginal profit, being in this way more proactive in respect

to the collective task.

Another interesting issue that arose was the effect of giving the possibility to the

driver agent to travel for free through the urban road network, if it stops at every

intersection it encounters on its route. The experiments showed that the non-payer

driver agent does not see its travel time dramatically increased if only a small portion

of the population of driver agents behaves in the same way. This fact represents an

interesting decision making problem for an individually rational agent. In fact, it

is a sort of Minority Game [4]: not paying becomes interesting if few agents (the

minority) decide to behave in the same way, while if many agents do the same, the

agent utility is quickly reduced. The idea behind the minority game is the study

of how many agents may reach a collective solution to a problem by adapting to

expectations about the future of all the other agents. In such a problem, a complete

steady state in the collective of agents is impossible, since agents keep changing and

adapting their strategies in a quest for a non-existing equilibrium. Furthermore, the

collective of agents is heterogeneous, since they have different ways to tackle available

information about the game and convert it into expectations about future. Let’s

consider a hypothetical scenario where a set of driver agents must decide to travel

either as a non-payer or as a payer. We take the perspective of the generic driver agent

a. We can expect that a, like the majority of the driver agents, without any extra

information has incentives for saving money and so behaving as a non-payer. The

collective decision create congestion, due to mutual interactions, so that a observes

high travel times. After some iterations, a may make an “exploratory” move and

become a payer, so experiencing low travel times. Driver agent a keeps being a payer,

and observing the behaviour of the other agents it may infer that the majority of the

driver agents did the same and switched their behaviours to payer driver agent. But

at this point, if the majority of the driver agents are payers, being again a non-payer

becomes attractive, because now there are few non-payer agents. It is evident that a

steady state or equilibrium in such a game is quite impossible to reach.

In the second computational economy, ECO−, we tackled the traffic assignment
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problem from the adaptation perspective. We modelled the intersection managers as

competitors that strive to sell the reservations they supply, thus dynamically adapting

their prices in response to the current demand. The experimental evaluation showed

how this competitive economy generated a more balanced network, since the price

fluctuations forced the demand to change towards less expensive intersections. The

main advantage of ECO− compared to ECO+ is that it overcomes the necessary

assumptions and the limitations that all learning-based approaches suffer, such as

the stationarity of the environment or the reduction of both action and state spaces

to make the problem tractable. Although learning-based approaches can be able to

cope with long-term effects of actions, they usually need many interactions with the

environment to discover such long-term effects. On the other hand, adaptive and

reactive strategies seem more suitable when the problem at hand is highly dynamic

and uncertain.

For this reason, we chose ECO− as the underlying traffic assignment mechanism

for our integrated strategy, which we called ECO−CA. This strategy combined an

adaptive reserve-price update policy, which dealt with the traffic assignment, with

the auction-based control policy that had been designed for the single intersection

scenario, which acted on traffic control at intersection level. The experiments showed

that the adaptive policy for traffic assignment made the auction-based traffic control

policy perform better than FCFS for even high traffic demand, overcoming the main

drawback of this policy, i.e., greater average travel times. This was due to the fact

that the higher the network load, the more relevant the different reserve prices. In

fact, the fluctuations of the reserve prices generated a system in dynamic equilibrium,

where unused intersections became cheaper while the high demanded ones became

very expensive. If the demand at particularly disputed intersections is lowered by the

reserve price fluctuations, also the “social cost” of the auction-based control policy

is lowered (at intersection level). Thus, a more homogeneous distribution of vehicles

over the network leads to a better use of network resources, and thus to lower average

travel times. The experiments showed that, in general, the gains obtained by a better

distribution of demand outweigh the overhead introduced by the auction-based control

policy with respect to social welfare (i.e., average travel time). In this way, the entire
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population of driver agents was rewarded with lower average travel times and, at the

same time, the traffic control policy enforced an inverse relation between bid value

and delay, rewarding the driver agents that valued the reservations the most with

lower delays.
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Chapter 5

Conclusions

I do not fear death.

I had been dead for billions

and billions of years before I was born

and I have not suffered

the slightest inconvenience from it.

Mark Twain

In this thesis we studied distributed mechanisms for the control and management

of a (future) urban road network, where intelligent autonomous vehicles, controlled

by driver agents, interact with the infrastructure in order to travel on the links of the

network. In this last chapter we summarise and discuss the main contributions, and

we propose some future lines of work.

5.1 Contributions

The first objective, pursued in chapter 3, was the analysis of the reservation-

based intersection control system proposed by Dresner and Stone in [35]. The aim of

this analysis was understanding the functioning of this control facility, and discovering

185
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potential niches to improve the intersection throughput. We analysed the performance

of policies, grounded on the adversarial queueing theory (AQT), which can be used

to assign reservations to driver agents. From the experimental results, we noticed

that they show a statistically significant improvement on the original policy proposed

by Dresner and Stone (first-come-first-served, FCFS). Nevertheless, this improvement

was not so significant from a practical point of view. Although in theory FCFS could

be very inefficient in some extreme cases, in practice such extreme cases are evidently

rare. For this reason, we focused on studying a policy that might enforce different and

new properties of the reservation-based intersection control system. We relied on the

theory of combinatorial auctions (CA) [59] to model the mechanism that regulates the

assignment of reservations to the driver agents. From the empirical experimentation,

we discovered that the combinatorial auction-based policy guarantees lower delay to

those driver agents that value their time the most, i.e., those that submit higher

bids. On the other hand, this new policy showed that it paid a social cost, in term of

greater average delays, specially when the traffic demand is high. This was somewhat

expected, because the auction-based policy aims at granting a reservation to the

driver agent that values it the most, rather than maximising the number of granted

request.

The second objective of this thesis was to go beyond the single intersection setting,

and extending the reservation-based model to a network of intersections. The new

setting opened many new interesting questions, apart from considerably complicating

the scenario. We realised that a traffic assignment strategy could make the task of a

traffic control policy easier, by better distributing the traffic flow in the network. We

studied two different traffic assignment strategies, relying on market-based methods as

a solution method to solve the problem. We developed two different economic models.

The first one, ECO+, was a cooperative economy that tackled the problem from the

profit maximisation perspective. The intersection managers have been modelled as

cooperative learning agents that collaboratively learn which price vector optimises a

global profit function. Modelling the profit functions in the proper way, we discovered

that the intersection managers, maximising their profit, indirectly optimise also the

average travel time of the population of driver agents.
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The second economic model, ECO−, was a competitive economy that tackled the

problem from the adaptation perspective. In this economy, the intersection behaved

selfishly, competing with all the others for the supply of the reservations at the in-

tersections. In this case, our objective as system designers was to reach the market

equilibrium, that is, a situation where the amount of resources sought by buyers is

equal to the amount of resources provided by suppliers. The experimental evaluation

showed that in this way the available resources are efficiently allocated to the driver

agents, generating a better balanced network, since the price fluctuations forced the

demand to change towards less expensive intersections. Furthermore, ECO− overcame

some limitations that all learning-based approaches suffer, including ECO+, such as

the stationarity of the environment or the need of reducing action and state spaces

to make the problem tractable.

For this reason we chose the competitive model as traffic assignment mechanism

to be combined with the auction-based policy for traffic control, in order to develop

an adaptive, integrated, strategy for full-fledged traffic management, which we called

ECO−CA. The demand-response pricing policy acts on the traffic assignment, adapting

the reserve price (i.e., the minimum price at which the intersection manager is willing

to sell) and generating a system in dynamic equilibrium, where unused intersections

become cheaper while highly demanded ones become very expensive. If the demand

at particularly disputed intersections is lowered by the reserve price fluctuations, also

the social cost of the auction-based control policy is lowered (at intersection level).

Thus, a more homogeneous distribution of vehicles over the network leads to a better

use of network resources, and thus to lower average travel times. In this way, the

entire population of driver agents is rewarded by lower average travel times and, at

the same time, the traffic control policy enforces an inverse relation between bid value

and delay, rewarding the driver agents that value the reservations the most with lower

delays.

In order to evaluate all the proposed models, we developed a simulation tool, called

M.I.T .E .. We analysed the pros and cons of the different traffic flow models that

we found in literature, and we opted to implement a hybrid mesoscopic-microscopic

simulator. The simulation tool integrates the mesoscopic model by Thomas Schw-
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erdtfeger [89] to model the traffic flow along the road links, and the microscopic

model by Kai Nagel and Michael Schreckenberg [68] to model the traffic flow inside

the intersections. We adopted this solution because the mesoscopic model allowed us

to simulate large-scale systems, with thousands of vehicles moving within the road

network, while the microscopic model permitted the implementation of fine-grained

control policies inside the intersections.

5.2 Future work

This doctoral thesis is not exempt from limitations, such as the assumptions we

relied on, or the type of experimental analysis that we did. From one side, it is

true that our model, to be applicable, needs a very advanced, agent-based, urban

road traffic infrastructure, populated by autonomous vehicles that interact with the

infrastructure. Although this is not the reality we live in, we claim that it is not so

far-fetched as one may think. Many people worldwide are working to make a scenario

of autonomous vehicles integrated with the infrastructure a reality, such as those

involved in the DARPA Urban Challenge and the Vehicle Infrastructure Integration.

Furthermore, there is an increasing interest in developing control and management

systems that, taking advantage of the “agentification” of vehicles and infrastructure,

act on individual vehicles rather than on flows, such as the work by Dresner and

Stone in [35] or the work by Schepperle and Bohm [88].

Furthermore, we remark that as researchers on distributed artificial intelligence

(and not traffic engineers), we put forward a user-centric analysis of the proposed

mechanisms, having in mind as final goal the quality of service perceived by the

drivers (travel times, delays, spent money, etc.), and not focusing on other issues

such as sizing of transportation facilities or saturation flows analysis of intersections.

Starting from the work developed in this doctoral thesis, we identified possible

future lines of research that we can follow.

Economic models. In this work, two economic models have been implemented and

evaluated, that is, trading and one-to-many (combinatorial) auctions. Nevertheless,
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other economic models are viable and implementable in our scenario. For example, the

market could be regulated by a continuous double auctions, where many sellers (i.e.,

the intersection managers), place their sell-bids, and many buyers (i.e., the driver

agents) submit their buy-bids, and the market continuously clears when a match

between sell-bids and buy-bids is found. Also, bargaining could be easily implemented

in our scenario, with driver agents and intersection managers negotiating and agreeing

on a price that is acceptable to both parties.

Driver models. This thesis did not focus on developing a sophisticated driver agent

model, thus we implemented a rather simple driver agent model. The only decision

it had to make was about the route choice. The route choice is modelled as a utility

maximisation problem: the agent evaluates the possible alternatives in its choice set

and selects the one that maximises its utility measure.

In order to be more realistic and capture the inherent complexity of urban traffic

systems, it is important to extend and enrich the driver behavioural model. For ex-

ample, the driver agent could be implemented as a two layer decision maker as in [83],

where a reactive, rule-based, layer make short-term decisions about car-following and

lane-changing, and a cognitive, BDI-style, layer is in charge of making the more

complex decisions such as route choice and departure time selection. Furthermore,

another characteristic of human drivers that need to be implemented is learning from

experience. Human drivers implicitly use historical information and past experiences

to update the likelihood of selecting a specific route at a certain time. For example

in [57], the driver agents make probabilistic decisions about route choice, and peri-

odically update the probability of selecting a specific route according to the rewards

(i.e., the inverse of the travel time) it has obtained so far selecting that route.

Vehicle-to-vehicle communication. In all the scenarios that have been evaluated

in this thesis, only interactions between the vehicles and the infrastructure take place.

Thus, no collaboration at all is possible between vehicles. Nevertheless, vehicle-to-

vehicle communication is receiving great attention from the scientific and engineering

community [117]. In the context of this work, vehicle-to-vehicle communication could
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be used to enrich the action space of a driver agent. For example, consider this

situation: a wealthy driver agent is in a hurry but it is travelling behind a vehicle

that does not want to allocate a lot of money to acquire a reservation. In this case, the

willingness of the wealthy driver agent to bid a lot of money is not effective, because it

will be impossible to actually make use of the reservation that it can potentially gain

in the auction. If vehicle-to-vehicle communication is enabled, the wealthy driver

agent could help the driver agent in front of it to get a reservation, subsidising it

with a quantity of money that could be enough to get a reservation, as in [88], or

forming a coalition with it to submit a joint bid. Research on platoon formation

could also be relevant to this respect [46]. In fact, synchronising vehicle movements

by communicating speed variations and lane changing could dramatically increase

roads capacity and reduce the size and impact of traffic congestion1.

1http://www.path.berkeley.edu/PATH/Research/demos
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M.I.T .E . UML diagrams

Figure A.1: MITE class diagram
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Figure A.2: SimulationEngine class diagram
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Figure A.3: SimulationEngine activity diagram
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Figure A.4: RoadNetwork class diagram
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ECO−: vehicle metrics

(1) Moving average travel time O1-O2 (2) Moving average travel time O1-O3
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(3) Moving average travel time O1-O4 (4) Moving average travel time O1-O5

(5) Moving average travel time O1-O6 (6) Moving average travel time O1-O7

(7) Moving average travel time O2-O1 (8) Moving average travel time O2-O3



Appendix B: ECO−: vehicle metrics 197

(9) Moving average travel time O2-O4 (10) Moving average travel time O2-O5

(11) Moving average travel time O2-O6 (12) Moving average travel time O2-O7

(13) Moving average travel time O3-O1 (14) Moving average travel time O3-O2



198 Appendix B: ECO−: vehicle metrics

(15) Moving average travel time O3-O4 (16) Moving average travel time O3-O5

(17) Moving average travel time O3-O6 (18) Moving average travel time O3-O7

(19) Moving average travel time O4-O1 (20) Moving average travel time O4-O2
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(21) Moving average travel time O4-O3 (22) Moving average travel time O4-O5

(23) Moving average travel time O4-O6 (24) Moving average travel time O4-O7

(25) Moving average travel time O5-O1 (26) Moving average travel time O5-O2
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(27) Moving average travel time O5-O3 (28) Moving average travel time O5-O4

(29) Moving average travel time O5-O6 (30) Moving average travel time O5-O7

(31) Moving average travel time O6-O1 (32) Moving average travel time O6-O2
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(33) Moving average travel time O6-O3 (34) Moving average travel time O6-O4

(35) Moving average travel time O6-O5 (36) Moving average travel time O6-O7

(37) Moving average travel time O7-O1 (38) Moving average travel time O7-O2
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(39) Moving average travel time O7-O3 (40) Moving average travel time O7-O4

(41) Moving average travel time O7-O5 (42) Moving average travel time O7-O6

Figure B.1: Moving average travel time, grouped by origin-destination, for ECO−
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ECO−CA: vehicle metrics

(1) Moving average travel time O1-O2 (2) Moving average travel time O1-O3
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(3) Moving average travel time O1-O4 (4) Moving average travel time O1-O5

(5) Moving average travel time O1-O6 (6) Moving average travel time O1-O7

(7) Moving average travel time O2-O1 (8) Moving average travel time O2-O3
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(9) Moving average travel time O2-O4 (10) Moving average travel time O2-O5

(11) Moving average travel time O2-O6 (12) Moving average travel time O2-O7

(13) Moving average travel time O3-O1 (14) Moving average travel time O3-O2
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(15) Moving average travel time O3-O4 (16) Moving average travel time O3-O5

(17) Moving average travel time O3-O6 (18) Moving average travel time O3-O7

(19) Moving average travel time O4-O1 (20) Moving average travel time O4-O2
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(21) Moving average travel time O4-O3 (22) Moving average travel time O4-O5

(23) Moving average travel time O4-O6 (24) Moving average travel time O4-O7

(25) Moving average travel time O5-O1 (26) Moving average travel time O5-O2
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(27) Moving average travel time O5-O3 (28) Moving average travel time O5-O4

(29) Moving average travel time O5-O6 (30) Moving average travel time O5-O7

(31) Moving average travel time O6-O1 (32) Moving average travel time O6-O2
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(33) Moving average travel time O6-O3 (34) Moving average travel time O6-O4

(35) Moving average travel time O6-O5 (36) Moving average travel time O6-O7

(37) Moving average travel time O7-O1 (38) Moving average travel time O7-O2
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(39) Moving average travel time O7-O3 (40) Moving average travel time O7-O4

(41) Moving average travel time O7-O5 (42) Moving average travel time O7-O6

Figure C.1: Moving average travel time, grouped by origin-destination, for ECO−CA



Appendix D

Publications derived from the

thesis

If knowledge can create problems
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Resumen en castellano

Talk is cheap, show me the code.

Linus Torvalds

Introducción

“Juan se ha levantado muy temprano esta mañana. Hoy es su primer d́ıa de tra-

bajo y no quiere llegar tarde. Un café rápido y ya está en el coche. Tan pronto como

abre la puerta, la pantalla central se enciende y su driver agent arranca. Equipado con

software de reconocimiento de voz, el agente está listo para recibir comandos acerca

del sitio de destino. “Calle Ferrocarril 6”, dice Juan a su driver agent. Basándose

en el perfil de Juan, el driver agent selecciona una ruta y la muestra en la pantalla.

Se tardará unos 45 minutos para llegar a destinación, por un precio muy barato,

sólo 10 céntimos para cruzar un cruce que conecta los barrios periféricos con el cen-

tro de la ciudad. Normalmente Juan no tiene prisa, pero esta vez es diferente, quiere

causar una buena impresión con su nuevo jefe. Usando la pantalla táctil, Juan cambia

su perfil para el d́ıa de hoy y selecciona la modalidad <BusinessMode>, incremen-

tando de 3 euros la cantidad de dinero que está dispuesto a pagar por su desplaza-

miento. El driver agent encuentra una nueva ruta mucho más rápida, que tarda
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Figure E.1: Chevy Boss, el ganador del DARPA Urban Challenge 2007

sólo 25 minutos y cuesta 2.5 euros, visto que transita por un cruce muy demandado

cerca del distrito financiero. Juan acepta la nueva ruta y el driver agent arranca el

coche y cuidadosamente sale del garaje. Mientras que Juan ojea algunos documentos

de trabajo, el driver agent autónomamente conduce el coche siguiendo la ruta selec-

cionada y pagando automáticamente los intersection managers que regulan las cruces

que atraviesa. El driver agent continuamente consulta las fuentes de información que

están diseminadas en la infraestructura y detecta que el precio de un cruce, ante-

riormente muy alto, ha bajado repentinamente. El driver agent replanifica la ruta:

ahora se tardará 2 minutos más que antes, pero por 1.8 euros menos, un buen trato.

El driver agent conduce el coche hasta el destino seleccionado, Calle Ferrocarril 6, y

notifica a Juan con un mensaje de “Destino alcanzado”.

La historia anterior parece una escena de una peĺıcula de ciencia ficción, pero una

escena de este tipo puede que esté más cerca de lo que podamos pensar. De hecho,

remover el factor humano en la conducción, por medio de veh́ıculos autónomos y de

la integración de éstos con la infraestructura inteligente, se puede considerar como el

objetivo final de aquel conjunto de sistemas agrupados bajo el nombre de Sistemas



Appendix E: Resumen en castellano 215

Inteligentes de Transporte.

Los veh́ıculos autónomos ya son una realidad. Hasta ahora, se han celebrado dos

DARPA Grand Challenge y un DARPA Urban Challenge1. Los equipos que partici-

pan en este evento, organizado por el agencia de defensa americana (Defense Advanced

Research Projects Agency), tienen que construir un veh́ıculo autónomo capaz de con-

ducir en el tráfico urbano, realizando complejas maniobras como adelantar y aparcar.

En el DARPA Urban Challenge veh́ıculos autónomos han interaccionado, por primera

vez en la historia, con otros veh́ıculos autónomos y también con veh́ıculos conducidos

por humanos en un entorno urbano. Un veh́ıculo autónomo es un veh́ıculo capaz de

desplazarse autónomamente, sin intervención humana ni control remoto, utilizando

varios sensores (sonar, láser) y sistemas de posicionamiento (GPS) para determinar

las caracteŕısticas de su entorno y actuar en consecuencia. Un ejemplo de este tipo de

veh́ıculo es Chevy Boss (figura E.1), desarrollado por la universidad Carnegie Mellon,

ganador de la edición 2007 del DARPA Urban Challenge. Muchos productores de

coches estiman que este tipo de tecnoloǵıas será económicamente más asequible y

estéticamente más discreta en una década.

Otra iniciativa que fomenta la investigación para hacer realidad esta visión es

la Vehicle Infrastructure Integration (VII)2. Esta iniciativa impulsa el desarrollo de

tecnoloǵıas para integrar los veh́ıculos con la infraestructura urbana, y aśı aumentar

la seguridad y la eficiencia de las redes de tráfico urbanas. Por ejemplo, Dresner y

Stone en [35] proponen una infraestructura basada en agentes para el control de los

cruces. En su modelo, un cruce está gobernado por un agente inteligente (intersection

manager) que asigna reservas de espacio dentro del cruce a los veh́ıculos autónomos

que se aproximan a él (véase figura E.2). Este enfoque ha demostrado, en un entorno

simulado, varias ventajas, porque puede drásticamente reducir el tiempo de desplaza-

miento de los veh́ıculos con respecto a un tradicional semáforo y permite la aplicación

de póliticas de control centradas en los veh́ıculos individuales en vez que en los flujos

de veh́ıculos.

1http://www.darpa.mil/grandchallenge/index.asp

2http://www.intellidriveusa.org
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Figure E.2: Gestión de cruce reservation-based

Las aplicaciones que emergen con la introducción de estas tecnoloǵıas serán sis-

temas abiertos, distribuidos, a gran escala y compuestos por muchas entidades autónomas.

La intŕınseca distribución y el elevado grado de complejidad hacen que la natural

descomposición de dichos sistemas sea en términos de agentes autónomos que inter-

accionan entre si [8][10][11]. En este tipo de sistemas podemos claramente distinguir

dos categoŕıas de agente: por un lado tenemos los agentes de la infraestructura, es

decir, entidades que intentan controlar el sistema para mejorar su eficiencia, reducir

las congestiones y agilizar el flujo de tráfico; por otro lado tenemos los agentes que

representan los veh́ıculos, es decir, entidades que conducen los veh́ıculos de manera

autónoma, toman decisiones por cuenta del usuario humano acerca de la ruta a seguir

y la hora de salida, y aprenden de las experiencias pasadas. En general, el diseñador

del sistema tiene control sobre los agentes de la infraestructura, y por lo tanto puede

modelar sus espacios de acciones, objetivos, actitud mental (cooperativa o egóısta)

etc. Por otro lado el diseñador del sistema no tiene control directo sobre los agentes

que representan los veh́ıculos. Por lo tanto la tarea a la cual se enfrentan los agentes
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de la infraestructura es muy compleja, porque intentan controlar un sistema que les

proporciona observaciones parciales a través de actuadores que pueden condicionar

sólo de manera indirecta el comportamiento y las acciones de los agentes que repre-

sentan los veh́ıculos.

Objetivos

En esta tesis doctoral se propone estudiar mecanismos distribuidos para la gestión

y el control de una (futura) red de carreteras urbanas, donde veh́ıculos inteligentes,

gobernados por driver agents, interaccionan con la infraestructura para poder de-

splazarse. Este objetivo principal se puede descomponer en los siguientes sub-objetivos:

1. Esta tesis se basa en el sistema reservation-based para el control de los cruces

propuesto por Dresner y Stone en [35]. Por lo tanto, el primer objetivo es un

análisis detallado de dicho sistema, para evaluar el rendimiento y potenciales

posibilidades de mejora en caso de un único cruce. Esta tarea se llevará a cabo

desde dos perspectivas distintas: por un lado nos basaremos en la teoŕıa de

colas (adversarial queueing theory, AQT) [16] para elaborar diferentes poĺıticas

de gestión del cruce que maximicen la eficiencia del cruce; por otro lado nos

basaremos en la teoŕıa de las subastas combinatorias (combinatorial auctions,

CA) [59] para modelar el mecanismo que regula la asignación de las reservas

llevada a cabo por los intersection managers, de manera que los driver agents

que más valoran las reservas sean recompensados con menores tiempos de de-

splazamiento.

2. Otro objetivo de esta tesis doctoral es extender el modelo propuesto por Dresner

y Stone a una red de cruces. Este nuevo escenario pone nuevas e interesantes

cuestiones, además de complicar sensiblemente el problema. Para tratar esta

complejidad, descomponemos el problema de gestión del tráfico urbano en dos

sub-problemas: asignación de tráfico y control de tráfico. La asignación de

tráfico se puede ver como un problema de asignación de recursos y, dada la escala

del sistema, necesita una formulación y un método de solución distribuido. Es
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muy interesante notar como los mercados y las economı́as en general consiguen

resolver el problema de asignación de recursos en entornos bastante complejos.

De hecho, los mercados como método de solución de problemas de asignación

de recursos ya han sido aplicados a muchos sistemas [25][104].

Por esta razón, se pueden aplicar mecanismos basados en los mercados para el

diseño de un eficiente sistema de asignación de tráfico urbano. Las ventajas de

este enfoque son múltiples:

(a) La dinámica del mercado proporciona a los driver agents incentivos para

explorar alternativas a la hora de seleccionar la ruta a seguir.

(b) Los intersection managers, participando en el mercado y (eventualmente)

regulándolo, tienen más poder para influenciar el comportamiento de los

driver agents.

(c) Las poĺıticas de precios tienen diferentes efectos sobre diferentes grupos de

driver agents, por lo tanto es posible aplicar poĺıticas de precios adaptadas

a diferentes colectivos de driver agents.

(d) Alcanzar el equilibrio de mercado permite una asignación y una repartición

eficiente de los recursos del sistema, es decir, la capacidad de la red, entre

los driver agents.

(e) Las normas que regulan el mercado (y como se calculan los beneficios) se

pueden diseñar de manera que los intersection managers, intentando maxi-

mizar sus beneficios, “involuntariamente” maximicen medidas de rendimiento

del sistema subyacente, es decir, menos congestiones y menores tiempos de

desplazamiento.

3. En este contexto, desarrollaremos un mercado computacional donde los driver

agents tienen que adquirir las reservas necesarias para atravesar los cruces

reservation-based que encuentran en sus rutas. Como dicho antes, en calidad

de diseñadores del sistema, tenemos control sobre el comportamiento de los in-

tersection managers, y también tenemos la libertad de diseñar los protocolos
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de interacción entre éstos y los driver agents. De este modo, modelaremos los

intersection managers como agentes cooperativos que aprenden qué poĺıtica de

precios optimiza una función de beneficio global. Modelando oportunamente

cómo se calculan los beneficios, los intersection managers que maximizan la

función de beneficio global indirectamente optimizan el tiempo de desplaza-

miento promedio del conjunto de driver agents.

4. Los mercados en los entornos reales suelen estar compuestos por agentes que

se comportan de manera egóısta. Otro objetivo de esta tesis doctoral es estu-

diar un modelo de comportamiento competitivo de los intersection managers,

basado en la teoŕıa del equilibrio general. En este modelo, los intersection man-

agers compiten en el mercado para proveer a los driver agents los recursos que

“producen”, es decir, las reservas para atravesar los cruces que controlan. En

este caso, nuestro objetivo como diseñadores del sistema es alcanzar el equilib-

rio de mercado, es decir, una situación donde la demanda de recursos de los

compradores (driver agents) es igual a la cantidad de recursos proporcionados

por los proveedores (intersection managers).

5. Finalmente, otro objetivo de esta tesis doctoral es combinar las poĺıticas de

control de tráfico que se han estudiado en el caso de un único cruce con los

modelos de mercado que se han estudiado en el caso de una red de cruces, con

el objetivo de proporcionar una estrategia adaptativa e integrada para la gestión

del tráfico urbano.

6. Paralelamente al diseño teórico de los mecanismos basados en el mercado, en

esta tesis se desarrollará una herramienta para experimentar y evaluar los dis-

tintos mecanismos, mostrando la influencia de dichos mecanismos tanto sobre

la utilidad de los driver agents (p.e., tiempo de desplazamiento) como sobre

la utilidad global del sistema. Se analizarán las ventajas y desventajas de los

modelos de flujo de tráfico propuestos en literatura, para luego desarrollar un

simulador que se adapte a nuestras necesidades.
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Estructura de la tesis

Esta tesis doctoral se estructura de la siguiente manera:

1. El caṕıtulo 2 repasa el estado del arte de lo campos de investigación relacionados

con esta tesis:

(a) el conjunto de tecnoloǵıas hardware y software agrupadas bajo el nombre

de Sistemas Inteligentes de Transporte [41].

(b) los sistemas multiagente, con especial énfasis en los temas de coordinación,

aprendizaje multiagente, diseño de mecanismos y la aplicación de los sis-

temas multiagente en el dominio del tráfico y transporte.

2. El caṕıtulo 3 aborda el primer objetivo de esta tesis, analizando el mecanismo

reservation-based para el control de cruces en el caso de un único cruce, evalu-

ando diferentes poĺıticas de gestión y asignación de las reservas, inspiradas en

la teoŕıa de colas y en la teoŕıa de las subastas combinatorias.

3. El caṕıtulo 4 aborda los otros objetivos de esta tesis, introduciendo el modelo

cooperativo y el modelo competitivo para la asignación de tráfico. Además, se

describe el modelo conceptual y la implementación de la herramienta de simu-

lación desarrollada, llamada M.I.T .E . (Multiagent Intelligent Transportation

Environment).

4. Finalmente, en el caṕıtulo 5 se detallan las conclusiones principales de esta tesis,

las publicaciones que han surgido a lo largo del desarrollo de este trabajo, aśı

como algunas ĺıneas de trabajo futuras.

Conclusiones

En esta tesis doctoral se han estudiado mecanismos distribuidos para la gestión

y el control de una (futura) red de carreteras urbanas, donde veh́ıculos inteligentes,
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gobernados por driver agents, interaccionan con la infraestructura para poder de-

splazarse. A continuación se resumen y comentan las principales aportaciones y se

proponen algunas ĺıneas de investigación futuras.

Contribuciones

El primer objetivo fue un análisis y extensión del sistema reservation-based de con-

trol de cruces propuesto por Dresner y Stone en [35]. Hemos analizado el rendimiento

de varias poĺıticas de asignación de las reservas basadas en la teoŕıa de colas. Los

resultados experimentales han demostrados una mejora estad́ısticamente significativa

respecto a la poĺıtica original first-come-first-served (FCFS) propuesta por Dresner

y Stone, aunque esta mejora no sea probablemente tan significativa desde un punto

de vista práctico. Aunque en teoŕıa FCFS puede ser muy ineficiente en algunos ca-

sos extremos, en práctica dichos casos extremos son evidentemente raros. Por esta

razón, hemos enfocado nuestro análisis en el estudio de poĺıticas que puedan hacer

surgir nuevas propiedades deseadas del sistema reservation-based de control de cruces.

Basándonos en la teoŕıa de las subastas combinatorias [59], hemos definido una nueva

poĺıtica que regula la asignación de las reservas a los driver agents. Los resultados de

la evaluación emṕırica han demostrados que la poĺıtica basada en las subastas com-

binatorias garantiza tiempos de desplazamiento menores para los driver agents que

valoran más su tiempo, es decir, aquellos que someten las pujas más altas. Por otro

lado, esta nueva poĺıtica demostró que sufre un coste social, en términos de mayores

tiempos de desplazamiento promedios, especialmente cuando la intensidad de tráfico

es alta. Este efecto era de esperar, porque la poĺıtica basada en las subastas combi-

natorias tiene como objetivo asignar una reserva al driver agent que paga más por

ella, en vez que maximizar el número de reservas asignadas.

El segundo objetivo fue ir más allá del escenario con un único cruce, y extender el

modelo reservation-based para una red de cruces. El nuevo escenario supuso nuevas

e interesantes cuestiones, además de complicar sensiblemente el problema. Partiendo

de la consideración que una estrategia de asignación de tráfico puede facilitar la

tarea de una poĺıtica de control, a través de una mejor distribución del flujo de
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tráfico en la red, hemos estudiados dos diferentes enfoques para la asignación de

tráfico. Hemos modelado este problema como un problema de asignación de recursos,

utilizando mecanismos basados en los mercados como método de solución. Hemos

desarrollado dos distintos modelos económicos. El primero, ECO+, es un modelo

cooperativo que aborda el problema desde la perspectiva de la maximización de los

beneficios. Los agentes de la infraestructura (intersection managers) actúan como

agentes cooperativos que aprenden conjuntamente qué vector de precios optimiza una

función de beneficio global. Modelando dicha función de beneficio global de manera

oportuna, hemos conseguido que los intersection managers indirectamente optimicen

el tiempo de desplazamiento promedio del conjunto de driver agents.

El segundo modelo de mercado, ECO−, es un modelo competitivo que aborda

el problema desde la perspectiva de la adaptación. En este modelo, los intersection

managers actúan de manera egóısta, compitiendo el uno con el otro para el suministro

de las reservas. En este caso nuestro objetivo como diseñadores del sistema fue

alcanzar el equilibrio de mercado, es decir, una situación en la cual la cantidad de

recursos demandadas por los compradores (driver agents) es igual a la cantidad de

recursos proporcionados por los proveedores (intersection managers). La evaluación

emṕırica demostró que a través de este mecanismo se consigue una asignación eficiente

de los recursos disponibles, y que el sistema resultante se adapta dinámicamente a las

variaciones de la demanda de recursos. Además, ECO− supera las limitaciones que

todo enfoque basado en aprendizaje tiene, incluido ECO+, tal como la estacionariedad

del entorno o la necesidad de reducir espacio de estados y de acciones para que el

problema sea tratable.

Por esta razón, elegimos el modelo competitivo como mecanismo base de asig-

nación de tráfico, para luego combinarlo con la poĺıtica de control basada en las sub-

astas combinatorias y obtener una estrategia integrada y adaptativa para la gestión de

tráfico, que hemos llamado ECO−CA. La poĺıtica de precios actúa en la distribución del

tráfico en la red de carreteras, adaptando el reserve price (es decir, el precio mı́nimo al

cual el intersection manager está dispuesto a subastar las reservas) y aśı generando

un sistema en equilibrio dinámico, donde cruces sin usar se vuelven más baratos,

mientras que los cruces más demandados se vuelven más caros. Si la demanda en cor-
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respondencia de un cruce muy concurrido baja por efecto de las fluctuaciones de los

precios, también el coste social (en cada cruce) introducido por la poĺıtica de control

basada en subastas disminuye. De esta manera, una distribución más homogénea de

los veh́ıculos en la red conlleva un uso mejor de los recursos de la red, y por lo tanto

el conjunto entero de driver agents es premiado con menores tiempos de desplaza-

miento. Al mismo tiempo, la poĺıtica de control basada en subastas combinatorias

premia los driver agents que valoran más las reservas, que por lo tanto experimentan

menores tiempos de desplazamiento.

Para evaluar todos los modelos y mecanismos teóricos que hemos definido, se

ha desarrollado una herramienta de simulación, llamada M.I.T .E .. Después de

analizar las ventajas y desventajas de los diferentes modelos de flujo de tráfico que se

pueden encontrar en literatura, hemos optado por implementar un simulador h́ıbrido

mesoscópico-microscópico. El simulador integra el modelo mesoscópico de Thomas

Schwerdtfeger [89] con el modelo microscópico de Kai Nagel y Michael Schrecken-

berg [68]. El primero se ocupa de simular el flujo de tráfico en las carreteras, mien-

tras que el segundo simula el flujo de tráfico dentro del cruce. Hemos optado por esta

solución porque el modelo mesoscópico nos permite simular sistemas a gran escala,

compuestos por miles de veh́ıculos, mientras que el modelo microscópico nos permite

simular con buena precisión y fiabilidad el flujo de tráfico dentro del cruce.

Ĺınes de investigación futuras

Esta tesis doctoral no está exenta de posibles limitaciones, como las suposiciones

que hemos hecho acerca de la infraestructura o el tipo de análisis experimental que

hemos hecho. Por un lado, es verdad que nuestro modelo necesita una infraestruc-

tura basada en agentes muy avanzada, donde veh́ıculos autónomos interaccionan con

agentes que residen en la infraestructura. Aunque esta no sea la realidad actual,

pensamos que este futuro no esté tan lejos como se podŕıa pensar. Muchos investi-

gadores en todo el mundo trabajan para hacer realidad un escenario donde veh́ıculos

autónomos interaccionan con otros veh́ıculos autónomos y con la infraestructura, tal

como aquellos involucrados en el DARPA Urban Challenge y en la Vehicle Infras-
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tructure Integration Initiative. Además, hay un gran interés en desarrollar sistemas

de control y gestión que, aprovechando de la “agentificación” de los veh́ıculos y de

la infraestructura, actúan sobre los veh́ıculos individualmente en vez de flujos de

veh́ıculos, como el trabajo de Dresner y Stone en [35] o el trabajo de Schepperle y

Bohm en [88].

Además, como investigadores en inteligencia artificial distribuida (y no ingenieros

de tráfico), hemos analizado los mecanismos propuestos desde la perspectiva del

usuario humano, teniendo como objetivo final la calidad de servicio percibida por

el conductor (tiempos de desplazamiento, demoras, dinero gastado, etc.), y no nos

hemos centrado en otras cuestiones como el dimensionamiento de la infraestructura

de transporte o el análisis de los flujos de saturación en los cruces.

A partir del trabajo desarrollado en esta tesis doctoral ha surgido un conjunto de

posibles ĺıneas de investigación futuras en las que profundizar.

Modelos económicos. En este trabajo, dos modelos económicos han sido diseñados

y evaluados, es decir, el trading y las subastas combinatorias one-to-many. Sin em-

bargo, en nuestro escenario se podŕıan implementar otros modelos económicos. Por

ejemplo, el mercado podŕıa estar regulado por subastas dobles continuas (continu-

ous double auctions), donde muchos vendedores (los intersection managers) someten

pujas para vender, y muchos compradores (los driver agents) someten pujas para com-

prar, y el mercado se equilibra continuamente cuando se establece un match entre

pujas para vender y pujas para comprar. También se podŕıan implementar mecan-

ismos de regateo, donde los driver agents y los intersection managers negocian y

acuerdan un precio aceptable para ambas partes.

Modelos del driver agent. Entre los objetivos de esta tesis no se encuentra el

desarrollo de modelos sofisticados de driver agent, aśı que el modelo que se implementó

fue bastante sencillo. La única decisión que el agente tiene que tomar se refiere a la

selección de la ruta a seguir. Esta decisión se ha modelado como un problema de

maximización de una función de utilidad: el agente evalúa las posibles alternativas

y selecciona aquella que maximiza su utilidad (p.e., aquella con menor tiempo de
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desplazamiento estimado).

Para capturar la complejidad intŕınseca de los sistemas de tráfico, es importante

extender y enriquecer el modelo de comportamiento del driver agent. Por ejemplo, la

toma de decisión del driver agent se podŕıa modelar a través de dos capas [83], una

reactiva para las decisiones a corto plazo (p.e., cambiar de carril), y una cognitiva

para las decisiones más complejas como la selección de la ruta a seguir o la hora

de salida. Además, otra caracteŕıstica de los conductores humanos que se debeŕıa

implementar es el proceso de aprendizaje. Los conductores humanos impĺıcitamente

usan las informaciones históricas y las experiencias pasadas para actualizar la prob-

abilidad de seleccionar una ruta especifica a una hora determinada. Por ejemplo,

en [57] los driver agents toman decisiones probabiĺısticas acerca de la ruta a seguir,

y periódicamente actualizan las probabilidades asociadas con las rutas disponibles de

acuerdo con las recompensas (es decir, el inverso del tiempo de desplazamiento) que

ha obtenido a lo largo de su vida.

Comunicación veh́ıculo a veh́ıculo. En todos los escenarios que han sido evalua-

dos en esta tesis doctoral, sólo hay interacción entre los veh́ıculos y la infraestructura.

De este modo, no es posible para los veh́ıculos colaborar y ponerse de acuerdo para

intentar disminuir sus tiempos de desplazamiento. Sin embargo, la comunicación

veh́ıculo a veh́ıculo está recibiendo gran atención por la comunidad cient́ıfica e in-

genieril [117]. En nuestro escenario, la comunicación veh́ıculo a veh́ıculo se podŕıa

emplear para enriquecer el espacio de acciones de los driver agents. Por ejemplo,

vamos a considerar esta situación: el driver agent A tiene mucha prisa y estaŕıa dis-

puesto a pagar un buen precio para adquirir una reserva, pero se encuentra detrás del

driver agent B que no está dispuesto a pagar mucho para adquirir una reserva. En

este caso, aunque el driver agent A consiga adquirir una reserva, seŕıa imposible para

él utilizarla, porque se encontraŕıa bloqueado por el driver agent B. Si fuera posible

para los veh́ıculos comunicarse, el driver agent A podŕıa ayudar el driver agent B a

conseguir una reserva, subvencionándolo con una cantidad de dinero suficiente para

conseguir una reserva, como se propone en el trabajo de Schepperle [88]. Además la

comunicación veh́ıculo a veh́ıculo se podŕıa utilizar para sincronizar los movimientos
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de los veh́ıculos, comunicando variaciones de velocidad y cambios de carril, y aśı crear

pelotones de veh́ıculos, que potencialmente pueden incrementar mucho la capacidad

de las carreteras y reducir las congestiones3.

3http://www.path.berkeley.edu/PATH/Research/demos
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proach for selection of signal plans in urban scenarios. In Proceedings of the 4th
International Workshop on Ant Colony Optimization and Swarm Intelligence,
volume 3172 of Lecture Notes in Computer Science, pages 416–417. Springer,
2004.



230 References

[33] E. Denti and A. Omicini. An architecture for tuple-based coordination of multi-
agent systems. Software: Practice and Experience, 29(12):1103–1121, 1999.

[34] J. S. Drake, J. L. Schofer, and A. D. May. A statistical analysis of speed-density
hypotheses. Highway Research Record, 156:53–87, 1967.

[35] K. Dresner and P. Stone. A multiagent approach to autonomous intersection
management. Journal of Artificial Intelligence Research, 31:591–656, 2008.

[36] J. France and A. A. Ghorbani. A multiagent system for optimizing urban traffic.
In Proceedings of the IEEE/WIC International Conference on Intelligent Agent
Technology, pages 411–414, 2003.

[37] D. Fudenberg and D. K. Levine. The Theory of Learning in Games. MIT Press,
1998.

[38] W. A. Gamson. A theory of coalition formation. American Sociological Review,
26:373–382, 1961.

[39] D. Garg, Y. Narahari, and S. Gujar. Foundations of mechanism design: A
tutorial part 1-key concepts and classical results. Sadhana, 33:83–130, 2008.

[40] C. Gershenson. Self-organizing traffic lights. Complex Systems, 16:29–53, 2005.

[41] S. Ghosh and T. Lee. Intelligent Transportation Systems: New Principles and
Architectures. CRC, 2000.

[42] A. Gibbard. Manipulation of voting schemes. Econometrica, 41:587–601, 1973.

[43] H. Greenberg. An analysis of traffic flow. Operations Research, 7:79–85, 1959.

[44] B. D. Greenshields. A study in highway capacity. Highway Research Board
Proceedings, 14:448–477, 1935.

[45] T. Groves. Incentives in teams. Econometrica, 41:617–631, 1973.

[46] S. Halle and B. Chaib-draa. Collaborative driving system based on multia-
gent modelling and simulations. Transportation Research Part C - Emerging
Technologies, 13:591–656, 2005.

[47] D. A. Hensher and C. Sullivan. Willingness to pay for road curviness and road
type. Transportation Research Part D - Transport and Environment, 8:139–155,
2003.

[48] J. Hernández, S. Ossowski, and A. Garćıa-Serrano. Multiagent architectures
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[84] M. H. Rothkopf. Thirteen reasons why the vickrey-clarke-groves process is not
practical. Operations Research, 55(2):191–197, 2007.

[85] S. J. Russell and P. Norvig. Artificial Intelligence: a Modern Approach. Prentice
Hall, 2003. 2nd edition.

[86] T. Sandholm. Algorithm for optimal winner determination in combinatorial
auctions. Artificial Intelligence, pages 1–54, 2002.



234 References

[87] M. A. Satterthwaite. Strategy-proofness and arrow’s conditions: Existence and
correspondence theorem for voting procedure and social welfare functions. J.
Econ. Theory, 10:187–217, 1975.

[88] H. Schepperle and K. Bohm. Agent-based traffic control using auctions. In
Cooperative Information Agents XI, volume 4676 of Lecture Notes in Computer
Science, pages 119–133. Springer, 2007.

[89] T. Schwerdtfeger. Dynemo: A model for the simulation of traffic flow in mo-
torway networks. In Proceedings of the 9th International Symposium on Trans-
portation and Traffic Theory, pages 65–87. VNU Science Press, 1984.

[90] S. Sen, M. Sekaran, and J. Hale. Learning to coordinate without sharing in-
formation. In Proceedings of the 20th National Conference on Artificial Intelli-
gence, pages 426–431. AAAI Press, 1994.

[91] O. Shehory and S. Kraus. Methods for task allocation via agent coalition for-
mation. Artificial Intelligence, 101(1-2):165–200, 1998.

[92] Y. Shoham, R. Powers, and T. Grenager. If multi-agent learning is the answer,
what is the question? Journal of Artificial Intelligence, 171(7):365–377, 2007.

[93] S. Skiena. Maximum independent set. Implementing Discrete Mathematics:
Combinatorics and Graph Theory with Mathematica, pages 218–219, 1990.

[94] M. Steingrover, R. Schouten, S. Peelen, E. Nijhuis, and B. Bakker. Reinforce-
ment learning of traffic light controllers adapting to traffic congestion. In Pro-
ceedings of the 17th Belgium-Netherlands Conference on Artificial Intelligence,
pages 216–223, 2005.

[95] K. Sycara. Multiagent systems. AI Magazine, 19:79–92, 1998.

[96] M. Tan. Multi-agent reinforcement learning: Independent vs. cooperative
agents. In Proceedings of the 10th International Conference on Machine Learn-
ing, pages 330–337. Morgan Kaufmann, 1993.

[97] M. Treiber and D. Helbing. Realistische mikrosimulation von straßenverkehr mit
einem einfachen modell. In D. Tavangarian and R. Grützner, editors, Proceed-
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Birkhäuser, 2005.

[102] W. Vickrey. Counterspeculation, auctions, and competitive sealed tenders. J.
Finance, 16:8–37, 1961.

[103] J. M. Vidal, P. Buhler, and H. Goradia. The past and future of multiagent
systems. In AAMAS Workshop on Teaching Multi-Agent Systems, 2004.

[104] H. Voos and L. Litz. Market-based optimal control: a general introduction. In
Proceedings of the American Control Conference, volume 5, pages 3398–3402,
2000.
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