
 

 

Universidad Rey Juan Carlos 

Escuela Técnica Superior de Ingeniería Informática  

Departamento de Lenguajes y Sistemas Informáticos II 

 

ArchiMeDeS: A Service-Oriented Framework 

for Model-Driven Development of Software 

Architectures 

 

 

Doctoral Thesis 
by Marcos López Sanz 

 

 

Thesis Supervisor: Dr. Esperanza Marcos Martínez 

Thesis Co-Advisor: Dr. Carlos E. Cuesta Quintero 

 

February 2011 

 





 

 

 

 

 

 

 

 

 

 

La Dra. Dª. Esperanza Marcos Martínez, Catedrática de Universidad, y el 

Dr. D. Carlos E. Cuesta Quintero, Profesor Titular Interino, ambos del 

Departamento de Lenguajes y Sistemas Informáticos II de la Universidad Rey 

Juan Carlos de Madrid, directora y co-director, respectivamente, de la Tesis 

Doctoral: ―ArchiMeDeS: A SERVICE-ORIENTED FRAMEWORK FOR 

MODEL-DRIVEN DEVELOPMENT OF SOFTWARE ARCHITECTURES‖ 

realizada por el doctorando D. Marcos López Sanz, 

 

 

HACEN CONSTAR QUE: 

 

Esta tesis doctoral reúne los requisitos para su defensa y aprobación. 

 

En Madrid, a 25 de febrero de 2011 

 

 

 

 

 

Fdo.: Esperanza Marcos Martínez Fdo.: Carlos E. Cuesta Quintero 

 





 

 

 

 

 

 

Entia non sunt multiplicanda praeter necessitatem 1 

 (William of Ockham, c. 1288 – c. 1348) 

 

 

 

 

Quod est inferius, est sicut quod est superius,  

et quod est superius est sicut quod est inferius,  

ad perpetranda miracula rei unius 2 

(Tabula Smaragdina, Hermes Trismegistus) 

 

                                                

 

1 Entities must not be multiplied beyond necessity. 

2 That which is below is as that which is above, and that which is above is as that which is 

below, to perform the miracles of the one thing. 





 RESUMEN   I 

 

RESUMEN 

La dependencia de la industria en las tecnologías de la información se ha 

acentuado en los últimos años conforme lo han hecho sus necesidades de buscar 

nuevas fórmulas de negocio. Esto se debe, principalmente, a un cambio de 

tendencia hacia nuevos modelos de negocio basados en la externalización o el 

posicionamiento online. Desde el ámbito de las tecnologías de la información han 

surgido nuevos paradigmas de computación e iniciativas de desarrollo con el fin 

de ayudar en estos nuevos escenarios. La principal línea de actuación se centra en 

ofrecer una solución para conseguir un alineamiento entre las entidades 

involucradas en la provisión de servicios de negocio y aquellas tecnologías y 

plataformas que soporten sus requisitos de negocio. En este sentido, dos 

iniciativas han demostrado ser de gran ayuda: la aproximación MDA, como 

forma de abordar la especificación de metodologías y estrategias de desarrollo de 

software, y la orientación a servicios, como paradigma de computación. En los 

últimos años estos dos elementos han constituido la base de multitud de iniciativas 

de investigación, proyectos y propuestas enfocadas a solucionar el problema 

citado anteriormente. Por otro lado, la Arquitectura, como artefacto central de 

cualquier solución software, se considera, por lo general, el elemento adecuado 

sobre el que los principios de la orientación a servicios pueden aplicarse mejor. De 

igual forma, en los últimos años el uso de estrategias dirigidas por modelos para 

su especificación constituye una aproximación que se ha demostrado válida dentro 

del área de investigación de las arquitecturas software. 

Esta Tesis se centra en agrupar los tres aspectos mencionados con 

anterioridad: tiene como objetivo la definición de un marco dirigido por 

modelos para la especificación de arquitecturas software que tengan como 

base los principios de la orientación a servicios. El marco descrito, bajo el 

nombre de ArchiMeDeS, representa una solución coherente para definir 

arquitecturas que reduce el salto existente entre las configuraciones de alto nivel 

de un sistema, entendido desde un punto de vista organizativo y de negocio, y su 

representación de bajo nivel, donde los aspectos tecnológicos determinan el 

aspecto final del sistema ofreciendo un soporte tecnológico a los procesos de 

negocio y restricciones aplicables previamente identificados. 

Para alcanzar este objetivo, ArchiMeDeS presenta una solución integrada 

que sigue los principios de MDA para la especificación de arquitecturas software. 

Consecuentemente, y siguiendo la separación en niveles de abstracción promovida 



II   MARCOS LÓPEZ SANZ 

 

por MDA, se han creado varios DSLs para la representación de Arquitecturas 

Software: un DSL a nivel PIM que permite la especificación conceptual de 

arquitecturas basadas en servicios y diferentes DSLs en el nivel PSM. El 

modelado específico de la plataforma (PSM) ha sido dividido en dos subniveles 

con el fin de reflejar, separadamente, los aspectos comunes a cualquier plataforma 

de servicios por un lado y, por otro lado, las particularidades de las tecnologías 

concretas de servicios, para lo cual se ha definido un DSL para cada aproximación 

tecnológica escogida.  

La diferenciación en niveles PIM y PSM para la especificación de la 

arquitectura permite aislar las características más abstractas y conceptuales de la 

arquitectura del sistema (nivel PIM) de aquellos aspectos específicos de la 

plataforma de ejecución o tecnología de implementación del sistema (nivel PSM). 

Además, el modelado a diferentes niveles de abstracción permite la inclusión de 

información adicional referida a decisiones arquitectónicas tanto en uno como en 

otro nivel. A nivel PIM, por ejemplo, se incorpora en los modelos arquitectónicos 

información referente a la utilización de estilos arquitectónicos. Asimismo, y 

como se ha indicado anteriormente, el nivel PSM se ha dividido en dos subniveles: 

PDM, que congrega todos aquellos conceptos que comparten las plataformas de 

ejecución de servicios: y TDM, que contendrá extensiones a este modelo PDM 

particularizadas con las características concretas de las tecnologías de servicios 

basadas en  Servicios Web, Servicios Grid y Servicios REST. 

En cada caso, tanto a nivel PIM como PSM, se han detallado la semántica 

(entendida como el conjunto de conceptos que definen la sintaxis abstracta del 

lenguaje) y la sintaxis concreta. Para la semántica, los conceptos utilizados son 

aquéllos provenientes del paradigma SOC. Como consecuencia directa, las 

arquitecturas software modeladas se convierten en artefactos orientados a 

servicios, beneficiándose de esta manera de sus propiedades a la hora de 

representar las características estructurales de soluciones software que soporten 

procesos de negocio concretos. Para llegar a tal fin, los conceptos han sido 

definidos dentro de metamodelos que permiten la definición de modelos 

arquitectónicos de servicios. Por otro lado, la sintaxis concreta de cada uno de los 

DSL definidos se basa en el uso de UML como notación gráfica. El fin último es 

proveer a cada DSL de una notación específica, adaptable, fácil de comprender a 

simple vista y que esté ampliamente extendida y aceptada como notación para 

representar artefactos software. Además, la utilización de UML permite apoyarse 

en sus capacidades de extensión para la definición de modelos gráficos 

personalizados mediante perfiles UML. 



 RESUMEN   III 

 

Con el fin de mejorar los modelos arquitectónicos e incorporar información 

adicional (como la que puede aportar la selección de un estilo arquitectónico 

determinado), se ha definido un conjunto de transformaciones entre modelos. 

Por un lado, se ha definido un proceso de fusión entre los modelos de nivel PIM y 

aquéllos conteniendo la información sobre estilos arquitectónicos. Para ello se han 

utilizado modelos de weaving y transformaciones definidas en ATL. Por otro lado,  

y con el fin de adaptar la información arquitectónica conceptual recogida a nivel 

PIM a las peculiaridades de las plataformas de servicios, se han definido reglas de 

transformación, también con ATL, entre los metamodelos de nivel PIM y cada 

uno de los metamodelos definidos a nivel PSM para las plataformas anteriormente 

citadas. 

Además de la definición de los metamodelos a diferente nivel de 

abstracción (PIM, PDM, TDM) y de transformaciones entre ellos (PIM-a-PIM, 

PIM-a-PDM/PIM-a-TDM), se ha definido un conjunto de herramientas de 

modelado como parte de ArchiMeDeS. Este conjunto de herramientas permiten la 

edición gráfica de los modelos arquitectónicos, la validación de los mismos de 

acuerdo a sus correspondientes metamodelos y la ejecución de las 

transformaciones de modelos definidas entre ellos. Para su implementación se ha 

utilizado Eclipse como plataforma de desarrollo. Además, se han utilizado 

diversas extensiones, específicas para el desarrollo dirigido por modelos en 

Eclipse, tales como EMF, GMF o aquéllas que soportan la definición y ejecución 

de transformaciones de modelos en ATL. En conjunción con estas extensiones se 

han utilizado también otros entornos de modelado especializados en la definición 

de procesos de weaving (como AMW). Finalmente, ArchiMeDeS ha sido validado 

y refinado mediante su aplicación a la especificación de la arquitectura de 

diferentes casos de estudio: un sistema para la gestión de imágenes médicas, una 

pasarela para el envío de SMS y la emulación de una situación de juego concreta 

en un partido de baloncesto como metáfora para el estudio de coreografías de 

servicios. 

 





 ABSTRACT   V 

 

ABSTRACT 

The reliance of companies on IT has been rocketed in parallel to their 

search towards new business models. This is mainly due to the diversification of 

businesses towards new formulas based on externalization or online positioning. 

To assist in this scenario, new computing paradigms and development initiatives 

have come up. The main line of attack to give support to all the needs detected by 

companies focuses on providing with a solution to the alignment between the 

entities involved in business service provisioning and the technologies and 

platforms that support their business requirements. In this direction, two 

initiatives have proved to be of great help: the MDA approach, as a way to tackle 

modern software development strategies and methodologies; and the SOC 

paradigm, as computing paradigm. In the last few years these two elements have 

been part of a myriad of research initiatives, projects and proposals targeting the 

abovementioned problem. In that sense, the Architecture, as central artefact of 

any software solution, is considered, by and large, as the adequate element of 

choice over which the principles of service-orientation may take big advantage. 

Similarly, the use of model-driven approaches for its specification constitutes an 

improvement that has been proved valid among the Software Architecture 

research area in the last few years. 

This Doctoral Thesis is devoted to put together the previous three aspects: 

it aims at the definition of a framework for the Model-Driven specification of 

Software Architectures that use the concepts behind the Service-Orientation 

for its definition. The framework described, named ArchiMeDeS, represents a 

coherent solution for architecting the existing gap between high-level 

configuration of a system, describing the business entities and relationships 

required by the system solution, and its low-level representation, where the 

technological aspects determine the final shape of the system providing technical 

support to the previously identified business processes and constraints. 

To reach that goal, ArchiMeDeS presents an integrated solution that 

follows the MDA approach for the specification of Software Architectures. 

Accordingly, and following the separation in abstraction levels fostered by MDA, 

several DSLs for representing Software Architectures have been created: a 

DSL at PIM level, allowing for the specification of conceptual service 

architectures, and different DSLs at PSM level. The platform specific modelling 

(PSM) has been divided in two in order to reflect, separately, the commonalities of 



VI   MARCOS LÓPEZ SANZ 

 

service platforms and also the particularities of concrete service technologies, for 

which an independent DSL has been designed regarding each technological 

chosen approach. 

The differentiation in PIM and PSM levels for architecture specification 

allows the isolation of the conceptual features of the system architecture (at PIM 

level) from those specific of a concrete execution platform or implementation 

technology (at PSM level). In addition, modelling at different abstraction levels 

allows the inclusion of additional information within the models. In the case of 

ArchiMeDeS, it allows adding information from design decisions into PIM models 

in the form of architectural styles. Moreover, and as it was pointed out 

previously, the PSM level has been divided in two different sublevels: PDM 

(Platform Dependent Model), which gathers all the concepts that the target 

service-oriented platforms have in common; and TDM (Technology Dependent 

Model), which will comprise extensions to the PDM DSL adapted to the features 

of the service technologies based on Web Services, Grid Services and REST 

Services. 

In each case, either at PIM or PSM level, both the semantics (set of 

concepts building up the abstract syntax) and the concrete syntax have been 

defined. For the semantics, the concepts used are those contained within the SOC 

paradigm. As a consequence, the Software Architectures modelled are 

transformed into Service-Oriented artefacts, thus taking advantage of its features 

to represent the structural characteristics of a software solution supporting the 

required business processes. To do so, the concepts are gathered in metamodels 

that allow the definition of service-oriented architectural models. On the other 

hand, the concrete syntax of each DSL is represented by means of a UML-based 

notation. The goal is to provide with a specific, adaptable and widely accepted 

notation for the representation of software artefacts. Moreover, by using UML it is 

possible to benefit from its extension mechanisms for the definition of 

personalized graphical models through the definition of UML profiles. 

With the purpose of improving the architectural models and being able to 

include additional information (such as that of architectural styles), several model 

transformations have been defined. On the one hand, a merge process between 

PIM models and that of the architectural styles have been defined. For that aim, 

weaving models and ATL transformation rules are used. On the other hand, and in 

order to adapt the architectural information gathered in PIM models to the 

particularities of service platforms, transformation rules have been specified, also 

with ATL, between the PIM metamodel and every metamodel of the PSM level 

for each of the abovementioned service platforms. 



 ABSTRACT   VII 

 

Apart from the definition of metamodels at different abstraction levels 

(PIM, PDM, TDM) and transformations among them (PIM-to-PIM, PIM-to-

PDM/PIM-to-TDM), the ArchiMeDeS framework includes a set of modelling 

tools.  This toolkit allows the graphical editing of models, the validation of 

their conformance according to their metamodels and also the execution of 

the transformations among models. This toolkit is based on the features offered 

by the Eclipse platform. Additionally, some extensions for that platform, 

specifically created for modelling purposes with Eclipse, such as EMF or GMF or 

those supporting the definition and execution of model transformations in ATL 

have been used. Together with these extensions, the ArchiMeDeS toolkit makes 

use of other specialized modelling frameworks, such as AMW, for the definition 

of weaving processes.  

Finally, the ArchiMeDeS framework has been validated and refined by 

means of its application to the architectural specification of several case 

studies: a system for the medical digital image management, a gateway for 

sending SMS and the emulation of a concrete game situation in basketball used to 

study service coordination based on choreographies. 

 





 ACKNOWLEDGEMENTS   IX 

 

ACKNOWLEDGEMENTS 

I would like to express my sincere gratitude and thankfulness towards my 

supervisor, Esperanza Marcos, for her continuous support and wonderful pieces of 

advice given since I began researching and working with her, not only in the scope 

of the Thesis but also in other aspects of my academic career at the URJC. At your 

side I have learned many lessons about professionalism, partnership, perseverance 

and, of course, life. Thanks for your patience and immeasurable guidance. To my 

co-advisor, Carlos E. Cuesta, acknowledge him those marvellous moments 

discussing, arguing, talking endlessly… no time was wasted at all when thinking 

and rethinking even about the minor detail or topics that were sometimes 

completely unrelated . Thanks for being there and become my friend in hard 

times.  

I would also like to acknowledge Prof. Flavio Oquendo, leader of the 

VALORIA research group, for allowing me to work at his valuable side. I would 

also like to give special thanks to Zawar Qayyum, for let me sharing with him 

those moments I spent there, researching side to side at Vannes. 

I take this opportunity to express my profound sense of gratitude and 

respect to all those who helped me throughout the duration of making this 

dissertation. To the members of the Kybele group, the present and the gone ones. 

In particular, to Juancho and Vero, who perfectly understood the stress of writing 

and working with the Thesis as they have recently suffered the same process. To 

Valeria, for her perpetual joyfulness and guidance in services and case studies. To 

Diana, my office partner and the most optimistic person I know. To Belén, 

Paloma, Josemari, Javier, your expertise has always been an example to follow. 

To Feliu, Elisa, Iván, Álvaro, and other fellows without whom this Thesis would 

never have been possible. 

I acknowledge the effort of those PFC students who have contributed 

significantly to my work. Like José Manuel Arévalo, that helped me with Web 

Services and other related technologies; Juan Manuel Ramón, for its dedication 

and patience with the Grid platform; Santiago Moronta, for his priceless help with 

the toolkit implementation. Let these paragraphs serve to recognize all your 

efforts. 

 

 



X   MARCOS LÓPEZ SANZ 

 

I also give thanks to my family. To my parents, Pedro Pablo and Pilar, for 

being the source of all my scientific curiosity and model to follow in life. To my 

brother, Rubén, for being there whenever I need. To my grandparents, wherever 

they are, for all the good things and moments we lived together.  

Finally, if there has been a reason to start, stop and follow during all these 

years it has been you, Erika. My life wouldn‘t be the same without having known 

you, now long time ago, in a cold summer night. People need religion, love, health 

and other things to live and survive… I have you. Thanks for being my life 

companion. 

 

 

En primer lugar, me gustaría expresar mi más sincera gratitud y 

reconocimiento hacia mi directora de Tesis, Esperanza Marcos, por su continuo 

apoyo y los valiosos consejos recibidos desde que empecé a investigar y a trabajar 

a su lado, no sólo a nivel intelectual sino también en otros aspectos de mi carrera 

académica dentro de la URJC. A tu lado, he aprendido incontables lecciones 

acerca de la profesionalidad, el compañerismo, el tesón y, por supuesto, la vida. 

Gracias por tu paciencia y tu inestimable guía durante estos años. A mi co-

director, Carlos E. Cuesta, agradecerle esos momentos maravillosos que hemos 

pasado discutiendo, debatiendo, cuestionando cualquier cosa, hablando 

interminablemente… no considero perdido ni un solo segundo hablando contigo, 

pensando y repensando hasta el más ínfimo detalle que nos poníamos a repasar, 

incluso en aquellas veces que tratábamos temas que nada tenían que ver con la 

Tesis . Gracias por estar ahí y convertirte en mi amigo en los momentos más 

difíciles. 

Quiero mostrar mi agradecimiento al Profesor Flavio Oquendo, director del 

grupo de investigación VALORIA, por permitirme trabajar a su lado. También me 

gustaría dar especialmente las gracias a Zawar Qayyum, por compartir aquellos 

momentos que pasé en Vannes investigando codo con codo con él. 

Aprovecho esta oportunidad para expresar mi más profundo sentido de 

gratitud y respeto a todos aquellos que me han ayudado durante todo el tiempo de 

la Tesis. A los miembros de Kybele, los actuales y los que lo fueron en el pasado. 

En particular a Juancho y a Vero, con los que me siento especialmente 

identificado pues sé que pasaron por los mismos momentos difíciles de la Tesis no 

hace demasiado tiempo. Su experiencia y consejos me han servido para llevar a 

cabo esta labor. A Valeria por su perenne alegría y sus conocimientos de servicios 

y apoyo en la parte de casos de estudio. A Diana, mi compañera de despacho, sin 

cuyo optimismo perpetuo no habría podido continuar. A Belén, Paloma, Josemari, 



 ACKNOWLEDGEMENTS   XI 

 

Javier, vuestra experiencia siempre ha sido un ejemplo a seguir. A Feliu, Elisa, 

Iván y otros compañeros de trabajo sin los cuales esta Tesis tampoco habría sido 

posible. 

Agradezco enormemente el esfuerzo de todos los proyectandos que han 

contribuido significativamente al trabajo que aquí presento. Estudiantes como José 

Manuel Arévalo, que me ayudó con los Servicios Web y otras tecnologías 

relacionadas; a Juan Manuel Ramón, por su dedicación y paciencia con la 

plataforma Grid; a Santiago Moronta, por su inestimable ayuda con la 

implementación de la herramienta. Que estos párrafos sirvan para reconocer todos 

vuestros esfuerzos. 

Quiero igualmente dar las gracias a toda mi familia. A mis padres, Pedro 

Pablo y Pilar, por ser el origen de mi curiosidad científica y el modelo a seguir en 

la vida. A mi hermano, Rubén, porque sé que está ahí cuando le necesito. A mis 

abuelos, dondequiera que estén, gracias por los buenos ratos que compartimos 

juntos. 

Y, finalmente, si ha habido una sola razón para empezar, parar y proseguir 

durante todos estos años, esa has sido tú, Erika. Mi vida no sería lo mismo sin 

haberte conocido, ahora ya hace mucho tiempo, en una fría noche de verano. La 

gente necesita religiones, amor, salud y otras cosas para vivir y sobrevivir… yo te 

tengo a ti. Gracias por ser mi compañera en la vida. 

 

 

 

 





 TABLE OF CONTENTS   XIII 

 

TABLE OF CONTENTS 

RESUMEN ............................................................................................................. I 

ABSTRACT .......................................................................................................... V 

ACKNOWLEDGEMENTS ............................................................................... IX 

TABLE OF CONTENTS ................................................................................ XIII 

LIST OF FIGURES ......................................................................................... XIX 

LIST OF TABLES ........................................................................................ XXIII 

1. CHAPTER 1: INTRODUCTION ................................................................ 1 

1.1 MOTIVATION .......................................................................................... 3 

1.1.1 Model-Driven Development to tackle new Software Engineering 

needs 4 

1.1.2 The Service-Oriented Paradigm as Computational Foundation of 

Novel Engineering Processes ......................................................................... 6 

1.1.3 The Role of Software Architecture in Service-Oriented Model-

Driven Development ....................................................................................... 8 

1.2 HYPOTHESIS AND RESEARCH OBJECTIVES .............................................. 9 

1.3 RESEARCH CONTEXT ............................................................................ 12 

1.3.1 Methodological Research Scope ...................................................... 13 

1.3.2 Related Research Projects ............................................................... 16 

1.3.3 External Research Stay .................................................................... 18 

1.4 RESEARCH METHOD ............................................................................. 18 

1.4.1 The Resolution and Validation stage ............................................... 20 

1.5 STRUCTURE OF THE DISSERTATION ...................................................... 22 

2. CHAPTER 2: STATE OF THE ART ....................................................... 25 

2.1 EVALUATION CRITERIA ........................................................................ 27 



XIV   MARCOS LÓPEZ SANZ 

 

2.1.1 Issues related to Model-Driven Engineering ................................... 27 

2.1.2 Issues related to Service-Orientation .............................................. 30 

2.1.3 Issues related to Software Architecture ........................................... 32 

2.1.4 Summary of the evaluation criteria ................................................. 33 

2.2 RELATED WORKS AND RESEARCH INITIATIVES .................................... 34 

2.2.1 Using a Service-Oriented Approach for Software Architecture ...... 35 

2.2.1.1 SOA-Reference Model and SOA-Reference Architecture of OASIS 36 

2.2.1.2 NEXOF-RA: the SOA Reference Architecture of NESSI ................. 38 

2.2.1.3 The Web Service Architecture of the W3C ....................................... 40 

2.2.1.4 The case of REST Web Services ....................................................... 41 

2.2.1.5 SOA from the perspective of the Community of Grid Computing .... 42 

2.2.1.6 The Service Component Architecture from the Open SOA 

Collaboration ........................................................................................................ 44 

2.2.1.7 The Reference Architecture of The Open Group .............................. 45 

2.2.1.8 Summary ........................................................................................... 47 

2.2.2 Using a Model-Driven Approach for Software Architecture ........... 49 

2.2.2.1 ATRIUM / PRISMA ......................................................................... 49 

2.2.2.2 Mattsson et al. ................................................................................... 50 

2.2.2.3 Mikkonen et al. ................................................................................. 51 

2.2.2.4 Perovich et al. .................................................................................... 52 

2.2.2.5 COSA ................................................................................................ 53 

2.2.2.6 DUALLY .......................................................................................... 53 

2.2.2.7 Mansurov et al. .................................................................................. 53 

2.2.2.8 ArchMDE .......................................................................................... 54 

2.2.2.9 Summary ........................................................................................... 54 

2.2.3 Using both a Model-Driven Approach and Service-Orientation for 

Software Architecture ................................................................................... 56 

2.2.3.1 SeCSE Project ................................................................................... 56 

2.2.3.2 PLASTIC Project .............................................................................. 58 

2.2.3.3 Project SENSORIA ........................................................................... 58 

2.2.3.4 SOMA-ME: the proposal of IBM ..................................................... 59 

2.2.3.5 Other relevant works ......................................................................... 60 

2.2.3.6 Summary ........................................................................................... 61 



 TABLE OF CONTENTS   XV 

 

2.3 CONCLUDING REMARKS ....................................................................... 63 

3. CHAPTER 3: THE ARCHIMEDES FRAMEWORK ............................ 65 

3.1 GENERAL APPROACH AND FRAMEWORK DEVELOPMENT STRATEGY ... 67 

3.1.1 Using Service Orientation as a Foundation for Software 

Architectures ................................................................................................. 67 

3.1.2 Using the MDA Approach for Software Architecture Development 70 

3.1.3 Selecting the approach for Software Architecture Modelling ......... 73 

3.1.3.1 Representing Software Architectures using UML profiles ................ 73 

3.1.3.2 Creating DSLs for Modelling Software Architectures ...................... 74 

3.1.3.3 Discussion: The Hybrid Approach .................................................... 76 

3.1.4 Selecting a Tool Support and Modelling Environment .................... 78 

3.1.5 Selecting the Target Platform for Service Architecture Modelling . 80 

3.2 MODELLING ARCHITECTURES WITH ARCHIMEDES .............................. 83 

3.2.1 PIM Architectural Specification ...................................................... 84 

3.2.1.1 Abstract Syntax ................................................................................. 85 

3.2.1.2 Concrete Syntax ................................................................................ 95 

3.2.1.3 PIM DSL Summary ........................................................................... 96 

3.2.2 PSM Architectural Specification ..................................................... 97 

3.2.2.1 PDM Abstract Syntax ........................................................................ 98 

3.2.2.2 TDM Abstract Syntax: Web Services.............................................. 104 

3.2.2.3 TDM Abstract Syntax: Grid Services .............................................. 110 

3.2.2.4 TDM Abstract Syntax: REST Services ........................................... 113 

3.2.2.5 Concrete Syntax .............................................................................. 117 

3.2.2.6 PSM DSLs Summary ...................................................................... 119 

3.2.3 Modelling DSL Transformations ................................................... 121 

3.2.3.1 A Taxonomy of Model Transformations ......................................... 121 

3.2.3.2 PIM-to-PSM Transformations ......................................................... 126 

3.2.3.3 PIM-to-PIM Transformations .......................................................... 135 

3.3 ARCHIMEDES AS PART OF AN ARCHITECTURE-CENTRIC MODEL-

DRIVEN METHODOLOGICAL FRAMEWORK ........................................................ 142 

3.3.1 Information Sources for Architectural Modelling ......................... 143 

3.3.1.1 Sources for PIM Architectural Modelling ....................................... 143 



XVI   MARCOS LÓPEZ SANZ 

 

3.3.1.2 Sources for PSM Architectural Modelling ...................................... 144 

3.3.2 Influence of Architectural Modelling over Other Development 

Concerns ..................................................................................................... 145 

3.4 CONCLUDING REMARKS ..................................................................... 146 

4. CHAPTER 4: THE ARCHIMEDES TOOLKIT ................................... 149 

4.1 TOOLKIT DESIGN STRATEGY AND ARCHITECTURE ............................. 151 

4.1.1 Conceptual Design ........................................................................ 152 

4.1.2 Technical Design ........................................................................... 154 

4.2 MODULE IMPLEMENTATION ............................................................... 156 

4.2.1 Modules for the Definition of the Abstract Syntax ......................... 157 

4.2.1.1 Metamodel Implementation with EMF ........................................... 158 

4.2.2 Modules for the Definition of the Concrete Syntax ........................ 161 

4.2.2.1 Graphical Support with GMF .......................................................... 162 

4.2.3 Modules for Model Transformation............................................... 164 

4.2.3.1 Implementation of PIM-to-PSM transformations with ATL ........... 164 

4.2.3.2 Implementation of PIM-to-PIM transformations in AMW ............. 167 

4.3 CONCLUDING REMARKS ..................................................................... 172 

5. CHAPTER 5: VALIDATION ................................................................. 173 

5.1 USING ARCHIMEDES FOR ARCHITECTING THE GESIMED SYSTEM .. 176 

5.1.1 Background of the GESiMED system ............................................ 176 

5.1.2 GESiMED PIM Architecture ......................................................... 180 

5.1.2.1 Modelling Service Providers ........................................................... 182 

5.1.2.2 Modelling Services and Service properties ..................................... 182 

5.1.2.3 Modelling Service Contracts ........................................................... 183 

5.1.2.4 Modelling Service Composition: Orchestration .............................. 184 

5.1.2.5 Modelling Architectural Style Superimposition .............................. 185 

5.1.3 GESiMED PSM Architecture ........................................................ 188 

5.1.3.1 GESiMED PDM Architecture ......................................................... 189 

5.1.3.2 GESiMED TDM Architecture: Web Services ................................. 192 

5.1.3.3 GESiMED TDM Architecture: Grid Services ................................. 193 

5.1.3.4 GESiMED TDM Architecture: REST Services ............................... 194 



 TABLE OF CONTENTS   XVII 

 

5.2 USING ARCHIMEDES FOR ARCHITECTING A BASKETBALL GAME 

SETTING ........................................................................................................... 195 

5.2.1 Background on the simulated Basketball Game Setting ................ 196 

5.2.2 Modelling Service Composition: Choreographies ......................... 196 

5.3 USING ARCHIMEDES FOR ARCHITECTING A SMPP GATEWAY .......... 198 

5.3.1 Background on the SMPP gateway system .................................... 199 

5.3.2 Representation of Services and Service Operations in π-ADL ...... 201 

5.3.3 Representation of Service Contracts in π-ADL .............................. 202 

5.3.4 Representation of Service Composition in π-ADL ......................... 204 

5.4 CONCLUDING REMARKS ..................................................................... 205 

6. CHAPTER 6: CONCLUSIONS AND FUTURE WORKS ................... 207 

6.1 ANALYSIS OF ACHIEVEMENTS ............................................................ 209 

6.2 MAIN CONTRIBUTIONS ....................................................................... 213 

6.3 SCIENTIFIC RESULTS ........................................................................... 217 

6.4 FUTURE WORKS AND OPEN RESEARCH LINES .................................... 221 

APPENDIX A. RESUMEN EN CASTELLANO........................................ 225 

A.1 ANTECEDENTES ........................................................................................ 227 

A.2 OBJETIVOS ................................................................................................ 233 

A.3 METODOLOGÍA .......................................................................................... 235 

A.4 CONCLUSIONES ......................................................................................... 239 

APPENDIX B. BIBLIOGRAPHY AND ONLINE RESOURCES ........... 243 

BIBLIOGRAPHY ................................................................................................ 245 

APPENDIX C. ACRONYMS ....................................................................... 261 

TABLE OF ACRONYMS ..................................................................................... 263 

 





 LIST OF FIGURES   XIX 

 

LIST OF FIGURES 

FIGURE 1-1. VISUAL REPRESENTATION OF THE MIDAS MODEL ARCHITECTURE ... 14 

FIGURE 1-2. OVERVIEW OF THE RESEARCH METHOD. ............................................ 19 

FIGURE 1-3. OPERATIONALIZATION OF THE ‗RESOLUTION AND VALIDATION‘ 

RESEARCH STAGE. ......................................................................................... 20 

FIGURE 1-4. ANATOMY OF THE PROPOSAL IN RELATION TO THE STRUCTURE OF THE 

DISSERTATION. .............................................................................................. 22 

FIGURE 2-1. RELATIONSHIP BETWEEN RELEVANT SOA OPEN TECHNICAL 

PRODUCTS. .................................................................................................... 47 

FIGURE 3-1. TARGET SERVICE-ORIENTED PLATFORMS OF CHOICE. ........................ 82 

FIGURE 3-2. GLOBAL OVERVIEW OF THE ARCHIMEDES FRAMEWORK. .................. 83 

FIGURE 3-3. METAMODEL ASSOCIATED TO THE PIM DSL FOR SOFTWARE 

ARCHITECTURES. ........................................................................................... 86 

FIGURE 3-4. UML PROFILE FOR THE PIM DSL. ..................................................... 95 

FIGURE 3-5. SERVICE-ORIENTED CORE METAMODEL AT THE PDM ABSTRACTION 

LEVEL. ......................................................................................................... 100 

FIGURE 3-6. CONCEPTS FOR MODELLING WEB SERVICES AT TDM ABSTRACTION 

LEVEL. ......................................................................................................... 106 

FIGURE 3-7. CONCEPTS FOR MODELLING GRID SERVICES AT TDM ABSTRACTION 

LEVEL. ......................................................................................................... 111 

FIGURE 3-8. CONCEPTS FOR MODELLING REST SERVICES AT TDM ABSTRACTION 

LEVEL .......................................................................................................... 115 

FIGURE 3-9. PROFILES FOR THE PSM DSL IN THE ARCHIMEDES FRAMEWORK. .. 117 

FIGURE 3-10. UML PROFILE CORRESPONDING TO THE PDM DSL FOR SERVICE-

ORIENTED PLATFORMS. ............................................................................... 117 

FIGURE 3-11. UML PROFILE FOR MODELLING WEB SERVICES. ............................ 118 

FIGURE 3-12. UML PROFILE FOR MODELLING GRID SERVICES............................. 118 

FIGURE 3-13. UML PROFILE FOR MODELLING REST SERVICES. .......................... 118 



XX   MARCOS LÓPEZ SANZ 

 

FIGURE 3-14. OVERVIEW OF A GENERIC MODEL TRANSFORMATION PROCESS. ..... 122 

FIGURE 3-15. ARCHITECTURAL STYLES METAMODEL. ......................................... 137 

FIGURE 3-16. STRATEGY TO SUPERIMPOSE ARCHITECTURAL STYLES ON PIM 

MODELS. ...................................................................................................... 140 

FIGURE 3-17. PROCESS FOR WEAVING ARCHITECTURAL STYLES AND 

ARCHITECTURAL MODELS. ......................................................................... 141 

FIGURE 3-18. INFLUENCES ON THE PIM ARCHITECTURAL MODEL. ....................... 144 

FIGURE 3-19. INFLUENCES ON THE PDM/TDM ARCHITECTURAL MODELS. ......... 145 

FIGURE 4-1. ARCHIMEDES TOOLKIT CONCEPTUAL ARCHITECTURE. .................... 153 

FIGURE 4-2. ARCHIMEDES TOOLKIT TECHNICAL DESIGN. ................................... 154 

FIGURE 4-3. ECORE BASIC STRUCTURE (METAMODEL EXCERPT). ......................... 159 

FIGURE 4-4. RELATIONSHIP BETWEEN .GENMODEL AND .ECORE MODELS. ........... 160 

FIGURE 4-5. OVERVIEW OF THE GENERATION PROCESS OF EMF-BASED EDITORS.160 

FIGURE 4-6. DEPENDENCIES BETWEEN A GENERATED GRAPHICAL EDITOR, THE GMF 

RUNTIME, EMF, GEF, AND THE ECLIPSE PLATFORM. ................................. 162 

FIGURE 4-7.OVERVIEW OF THE GMF DEVELOPMENT PROCESS. ........................... 162 

FIGURE 4-8.PIM MODEL ASSOCIATED TO A TRANSFORMATION RULE. .................. 165 

FIGURE 4-9.PSM MODEL ASSOCIATED TO A TRANSFORMATION RULE. ................. 166 

FIGURE 4-10. ATL CODE ASSOCIATED TO A TRANSFORMATION RULE. ................. 167 

FIGURE 4-11. IMPLEMENTATION OF ARCHITECTURAL STYLES SUPERIMPOSITION 

USING WEAVING MODELS AND ATL TRANSFORMATIONS. ........................... 168 

FIGURE 4-12. AMW ANNOTATION METAMODEL. ................................................ 169 

FIGURE 4-13. EXCERPT OF ATL CODE ALLOWING TO OBTAIN ‗ENRICHED PIM 

ARCHITECTURAL MODELS‘. ......................................................................... 171 

FIGURE 5-1. OVERVIEW OF THE GESIMED WORKING ENVIRONMENT. ................ 177 

FIGURE 5-2. GESIMED VALUE MODEL. ............................................................... 179 

FIGURE 5-3. GESIMED BUSINESS PROCESS MODEL. ............................................ 179 

FIGURE 5-4. GESIMED PIM ARCHITECTURAL MODELLING WITH THE 

ARCHIMEDES TOOLKIT (PARTIAL MODEL). ................................................. 180 

FIGURE 5-5. GESIMED PIM ARCHITECTURAL MODEL. ....................................... 181 

FIGURE 5-6. SERVICE PROVIDERS INVOLVED IN THE GESIMED CASE STUDY. ..... 182 



 LIST OF FIGURES   XXI 

 

FIGURE 5-7. MODELLING SERVICE TYPES, SERVICES AND OPERATIONS. ............... 183 

FIGURE 5-8. PART OF THE GESIMED MODEL ARCHITECTURE SHOWING A SERVICE 

CONTRACT. .................................................................................................. 183 

FIGURE 5-9. SERVICE COMPOSITION MODELLING IN GESIMED: ORCHESTRATION.

 .................................................................................................................... 184 

FIGURE 5-10. SAMPLE ARCHITECTURAL STYLE MODELS. ..................................... 185 

FIGURE 5-11. DEFINITION OF THE AMW ANNOTATION MODEL. ........................... 186 

FIGURE 5-12. DIFFERENCES BETWEEN RESULTING ‗ENRICHED‘ MODELS. ............ 187 

FIGURE 5-13. SAMPLE TRANSFORMATION OF AN ORIGINAL PIM ARCHITECTURAL 

MODEL INTO AN ENRICHED PIM ARCHITECTURAL MODEL. .......................... 188 

FIGURE 5-14. PDM MODELLING OF THE GESIMED SYSTEM. .............................. 190 

FIGURE 5-15. TDM MODELLING OF GESIMED: WEB SERVICES, RESOURCES AND 

SERVICE AGENTS. ....................................................................................... 192 

FIGURE 5-16. TDM MODELLING OF GESIMED: WEB SERVICE CONTRACTS AND 

INTERFACES. ................................................................................................ 193 

FIGURE 5-17. TDM MODELLING OF GESIMED: GRID SERVICE AND GRID 

RESOURCE. .................................................................................................. 193 

FIGURE 5-18. TDM MODELLING OF GESIMED: REST SERVICE, AGENT AND 

RESOURCE. .................................................................................................. 194 

FIGURE 5-19. PIM COMPOSITION EXAMPLE: CHOREOGRAPHY. ............................. 197 

FIGURE 5-20. ROLES MODELLED AS COLLABORATION IN A PICK&ROLL SETTING.

 .................................................................................................................... 198 

FIGURE 5-21. PIM ARCHITECTURAL MODEL OF THE SMPP CASE STUDY. ............. 200 

FIGURE 5-22. SPECIFICATION OF A SERVICE WITH Π-ADL. .................................. 201 

FIGURE 5-23. PARTIAL SPECIFICATION OF A SERVICE CONTRACT WITH Π-ADL. . 203 

FIGURE 5-24. EXAMPLE OF A DYNAMIC CONNECTOR WITH Π-ADL. ..................... 204 

FIGURE 5-25. SAMPLE SERVICE COMPOSITION WITH Π-ADL. ............................... 205 

FIGURE A-1.ESQUEMA  DEL MÉTODO DE INVESTIGACIÓN. ................................... 236 

FIGURE A-2.VISTA GENERAL DE LA FASE DE ‗RESOLUCIÓN Y VALIDACIÓN‘. ...... 238 

 





 LIST OF TABLES   XXIII 

 

LIST OF TABLES 

TABLE 1.1. OUTLINE OF ACADEMIC STAGES, RELATED RESEARCH PROJECTS AND 

STAYS. ........................................................................................................... 12 

TABLE 2.1. SUMMARY OF FEATURES AND VALUES USED IN THE STATE-OF-THE-ART.

 ...................................................................................................................... 34 

TABLE 2.2. SUMMARY OF WORKS USING SERVICE-ORIENTATION FOR SOFTWARE 

ARCHITECTURE. ............................................................................................ 48 

TABLE 2.3. SUMMARY OF WORKS USING AN MDD APPROACH FOR SOFTWARE 

ARCHITECTURE. ............................................................................................ 55 

TABLE 2.4. SUMMARY OF WORKS USING BOTH MDD AND SERVICE-ORIENTATION 

FOR SOFTWARE ARCHITECTURE. ................................................................... 62 

TABLE 3.1.COMPARISON OF MODELLING APPROACHES FOR SOFTWARE 

ARCHITECTURE SPECIFICATION. .................................................................... 78 

TABLE 3.2. SUMMARY OF CONCEPTS AND STEREOTYPES OF THE PIM DSL. ........... 96 

TABLE 3.3. CONCEPTS AND STEREOTYPES OF THE PDM DSL. ............................. 119 

TABLE 3.4. CONCEPTS AND STEREOTYPES OF THE TDM DSL FOR WEB SERVICES.

 .................................................................................................................... 120 

TABLE 3.5. CONCEPTS AND STEREOTYPES OF THE TDM DSL FOR GRID SERVICES.

 .................................................................................................................... 120 

TABLE 3.6.CONCEPTS AND STEREOTYPES OF THE TDM DSL FOR REST SERVICES.

 .................................................................................................................... 120 

TABLE 3.7.ARCHITECTURAL RELEVANCE OF THE KINDS OF TRANSFORMATIONS 

CONSIDERED. ............................................................................................... 124 

TABLE 3.8. MAPPING GUIDELINES FROM PIM TO PDM. ....................................... 130 

TABLE 3.9. MAPPING GUIDELINES FROM PIM TO TDM: WEB SERVICES. ............. 132 

TABLE 3.10. MAPPING GUIDELINES FROM PIM TO TDM: GRID SERVICES. .......... 133 

TABLE 3.11. MAPPING GUIDELINES FROM PIM TO TDM: REST SERVICES. ......... 134 

TABLE 5.1. ACTIONS ASSOCIATED TO EACH PLAYER IN PICK AND ROLL. ............. 196 





 

 

 

1. CHAPTER 1: introduction 

Chapter 1: 

Introduction 
 





 INTRODUCTION   3 

 

The work comprised in this Doctoral Thesis tackles the development of 

Software Architectures from a Service-Oriented perspective and using a Model-

Driven approach. To face this issue, it is proposed to develop a modelling 

framework allowing the specification of Software Architectures built upon the 

principles of the Service-Oriented Computing paradigm (SOC, [182]) and 

following the Model-Driven Architecture (MDA, [171]) proposal.  

This section describes the motivation that leads to present this Doctoral 

Thesis, the direction followed to address the challenges posed as well as the main 

hypothesis and objectives that this work aims to cover. Later in this chapter, the 

research framework, in which the presented work is framed, and the research 

method used are also explained in detail. This introductive chapter ends with the 

depiction of the global structure of the current dissertation. 

1.1 Motivation  

It is widely recognized that during the last decades information 

technologies have impregnated the inner structures of businesses. The direct 

consequence has arrived in the form of a dangerous dependency acquired by 

companies on information systems. This dependence refers not only to hardware 

resources and utilities but also, and possibly more importantly, to an increasing 

reliance on software systems. The evolution of software technologies, in that 

sense, has steered a bidirectional influence between businesses and software. 

Perhaps the most clarifying example is the Internet global network understood as 

source and target of knowledge and resources. On the one hand, it has rocketed the 

coming up of a new wave of enterprises and companies based completely on the 

Web and related online facilities. On the other hand, it has posed many 

technological challenges (enhanced performance, high availability, optimal 

scalability, standardization needs, integration environments, etc.) that IT 

researchers are required to solve efficiently to support new business models. This 

shift of attention towards the online universe implies, from the point of view of 

software research, the necessity to design not only new software solutions but also 

the specification of novel development methodologies, execution platforms, 

support tools and design and management strategies that, by and large, differ from 

the traditional ones. The Internet establishes developing conditions in which 

current engineering techniques are inappropriate or, at least, not enough to deal 

with the new needs. Moreover, in an era of economical adjustment, it is important 

that the research approaches defined for that context may spread easily to other 

environments, somehow away from the Web, thus increasing the importance of 



4   MARCOS LÓPEZ SANZ 

 

relying on the key aspects of IT (think about Software Architecture for example) 

easing the development of highly flexible solutions. 

This PhD dissertation is devoted to cover part of these issues leaning on 

three main pillars: the Model-Driven Development approach, to face the recent 

software engineering needs; the Service-Oriented Computing paradigm, to gather 

all the concepts used within the new business styles and as technological 

foundation; and last but not least, the Software Architecture, as core artefact 

during the development of information systems.   

Next subsections try to explain in detail the main reasons that have 

motivated their selection, outlining the research scope in which this Thesis is 

framed. 

1.1.1 Model-Driven Development to tackle new Software 

Engineering needs 

History of Software Engineering shows that the existence of concrete 

strategies, processes and methodologies to develop software solutions ends up in 

an improvement of aspects such as quality, maintenance, robustness, scalability, 

etc. [193]. Traditionally, Software Engineering techniques have been based on the 

conceptualization of the system features to be developed, abstracting both the 

context of the solution and its environment. With that premise in mind, it seems 

quite obvious to think that the strategy to follow, in order to give the right solution 

to the challenges posed by current business trends, should be also aligned with that 

approach. In that sense, the use of diagrammatic reasoning, i.e. through the 

specification of models, for the whole software lifecycle, seems to be the right 

path to follow to settle down the principles of modern Software Engineering.  

During the last years, the Model-Driven Development (MDD) approach 

[94] has grown in importance to currently become one of the most successful 

strategies for the development of new generation information systems. Although 

the possibility to represent the characteristics of a system with models and 

diagrams is known since the beginning of Software Engineering, the establishment 

of several levels of models, from different points of view and, more specifically, 

the ability to define transformation rules applied to models, are considered to be 

among the main reasons of its today success. In addition, the concepts behind the 

definition of Domain-Specific Languages (DSLs) associated to those models also 

convert the MDD approach in a handy alternative for conducting Software 

Engineering nowadays. 

Among the multiple existing proposals founded on the model-driven 

principles there is one that stands out over the others. The Model-Driven 



 INTRODUCTION   5 

 

Architecture (MDA) initiative, released by the OMG Consortium in 2001 [171], 

has attracted the attention of both academic research groups and enterprise 

research divisions. This is easily corroborated by the large amount of initiatives 

that have appeared in the last few years following this approach. MDA, apart from 

considering the model as the main artefact in the definition of software 

development processes, suggests a separation of types of models grouped in 

different abstraction levels. These levels range from the modelling of concerns 

related to the business aspect of the system under development (Computation 

Independent Model, CIM) to those models gathering all the technological aspects 

of the system implementation (Platform Specific Model, PSM). However, the 

main contribution of the MDA proposal to the system development field does not 

lie solely in this model classification but, more importantly, on the possibility of 

defining (semi-)automatic transformations among the concepts specified in 

metamodels. These metamodels are models that describe the concepts used in the 

models that conform to them [200]. Transformation rules facilitate, in that sense, a 

much easier progression in system development. Eventually, models that are 

closer to the implementation level must serve as origin of the system source code, 

which should be obtained from these models automatically (or, at least, semi-

automatically). 

Despite the well-known benefits of using the MDA proposal, several 

deficiencies have been detected lately. Recent works [136][150] argue that one of 

the main drawbacks of MDA is the lack of a precise definition of the role the 

architectural viewpoint must play. In its foundational specification, there is no 

explicit mention to the Architecture within the model structure of an MDA-based 

development process. Many of the current methods and methodologies following 

the MDA approach avoid modelling explicitly the architectural aspect of the 

system. They mix the topological design of the system (structure in the form of 

components, connectors and relations among them) with the definition of its 

functionalities (behaviour given to each of the elements playing a concrete role 

during the execution of the system itself) [16][95]. Moreover, it is worth 

mentioning that the lack of a precise specification of the Architecture, as 

independent model within the model architecture, constraints the flexibility of the 

development process itself. An illustrative example can be found in the application 

of different architectural styles as a way to cope with environments in which 

changes in business requirements occur frequently. Knowing the benefits of 

applying architectural styles during the design and development of software [208] 

not including the architectural models in that process obliges to fix, by default, a 

concrete architectural style. In spite of the advantages of the MDA proposal, this 



6   MARCOS LÓPEZ SANZ 

 

circumstance is considered as a strong restriction when building software solutions 

able to evolve in order to adapt themselves to new requirements or to changes in 

the system environment.  

All this given, MDA represents the first pillar of the current Thesis 

from a dual point of view: a) it will be considered as the engineering approach of 

choice for a framework to specify Software Architectures; and b) the process of 

specification of the Software Architecture itself will serve to fill in the gap of 

current MDA-based methodologies, by covering the architectural viewpoint of the 

Software development process. 

1.1.2 The Service-Oriented Paradigm as Computational 

Foundation of Novel Engineering Processes 

The need for developing systems that adapt (or, ideally, self-adapt) to 

changes in the requirements is much noticeable when having a look at the 

direction the global Economy has taken in the last few years. The externalization 

and fragmentation of the industrial processes has favoured the adoption of 

business models based on Services, understood as independent economical entities 

with a business value and functional asset for both the enterprise and the end 

consumer [114]. As a consequence, it has evidenced the need for describing 

software development processes supporting the whole software lifecycle with that 

business background, in which developing software systems whose structure and 

behaviour is susceptible to change, is crucial. In that context, MDD approaches 

have proved to provide a way to create adequate processes based on those 

requirements, aligning the modelling of the changing business needs with current 

technologies. However, in order to address these new development process types 

and needs, an appropriate underlying computing paradigm should be used. From a 

technological point of view, that new business model has had a direct response in 

the form of the Service-Oriented Computing (SOC) paradigm [4][182] and its 

related standards and languages [165][236]. By using the principles of SOC it is 

possible to create loosely-coupled and dynamic systems that adapt perfectly to the 

forthcoming business needs. 

However, the correspondence between higher-level services (as integral 

parts of a financial and economical procedure) and their implementation by means 

of current service technologies is not easy and requires a transformation process 

that is far from being trivial. Nowadays, the SOC paradigm represents an 

important change in which software is analyzed (for example due to the need of 

including business dependencies, constraints and policies), designed (the 

numerous existent standards, for instance, implies the selection of the most 



 INTRODUCTION   7 

 

appropriate for each solution), built (for example, the restrictions posed by 

execution platforms of choice affect the technological support), deployed (because 

of the inherent need for synchronism in distributed environments) and used (the 

concepts behind SOC must coexist with other technological approaches). All of 

this has led researchers and developers to rethink the development techniques used 

to construct information systems based on this paradigm. In that sense, model-

driven approaches again (and the MDA proposal in particular), help to fill in the 

existing gap between the business services specifications and the development of 

service-oriented information systems.  

The use of development approaches based on models (MDD) together with 

the SOC paradigm has long proved to be valuable in the last few years. The high 

number of European projects devoted to that topic [62][62], in which many of the 

biggest worldwide enterprises have been involved, supports this statement. As it 

has been previously explained, MDA is a proposal in which the model is 

considered as the main software artefact during the software development process. 

The definition of several models grouped in different abstraction levels and the 

specification of model transformation rules convert this approach in one of the 

best alternatives when deciding the way service-oriented software solutions should 

be developed. Indeed, because of the existence of a hierarchical model 

specification, the use of MDA eases the transition from high-level services to their 

technological counterparts, besides facilitating platform migration and enhancing 

the system adaptability. 

The way of organizing the infrastructures and applications in a set of 

interactive services is usually known as Service-Oriented Architecture (SOA) 

[59]. Due to its dynamic and loosely coupled nature, the application of the SOC 

paradigm to software development has a direct impact in the architectural aspect. 

It is not only necessary to define the topological structure of the system and its 

constituent elements, its inner composition structures and existent relationships, 

but also how it evolves throughout its entire lifecycle.  

The SOC paradigm, and its architectural complement, SOA, represent 

the second pillar that supports this Thesis. These aspects are considered, again, 

dually: a) SOC is used as foundational basis of the models of the Architecture, 

which means that the concept around which the architectural models are built is 

the service; and, as direct consequence of the latter, b) the architectures specified 

allow the modelling of systems that use service-oriented technologies as target 

platforms. However, since the research work is also framed in MDA, which 

advocates for a separation of models in levels according to the inclusion or 

avoidance of the platform characteristics on them, the defined framework should 



8   MARCOS LÓPEZ SANZ 

 

be capable to support the selection of any kind of platform and technology as 

target and not only those based on services.  

1.1.3 The Role of Software Architecture in Service-Oriented 

Model-Driven Development 

As can be extracted from the previous subsections, in both MDA and SOA, 

the Software Architecture plays a key role. In the case of SOA, the Architecture is 

viewed as a way to structure, organize and show the behaviour and evolution of a 

service-oriented system. In the case of MDA, on the contrary, it is considered as a 

container artefact and descriptor of the root components of a system and, 

therefore, of the elements appearing in the models defined during the development 

process. The Software Architecture, understood as the fundamental organization 

of a system embodied in its components, the relations among them and its 

environment and the principles governing its design and evolution [208] 

represents, consequently, the nexus between the current model-driven 

methodological trends and the technological approaches that conforms the basis of 

the future information systems. 

The concepts behind the specification of Software Architectures can be 

perfectly aligned with the use of SOA and MDA for system development. On the 

one hand, the specification of service architectures in a MDA-based environment 

allow for the separation of the structure of the system from other system concerns, 

such as storage strategies, interface definition and even from the modelling of the 

functionality of the system in the form of specific behavioural models. By 

following MDA, the Architecture specification can be designed without being 

affected by the constraints imposed by the platforms, standards or technologies 

used to implement the specified Architecture (when working at PIM level of 

abstraction). The separation in abstraction levels also allows for the establishment 

of different service design strategies or architectural styles separately, besides 

facilitating the migration of the system to a different target platform (not service-

oriented) when needed. 

On the other hand, Software Architecture modelling is important due to the 

role the architectural models might play within an MDA-based development 

methodology. Traditionally, the Architecture has been given a central role in 

software development processes. The Unified Development Process [99], for 

example, base its development cycle in the definition of several phases in which 

the system is built throughout the iterative specification of the architecture, thus 

playing a central role. In an MDA-based methodological framework, the role 

given to the architectural models is also essential. In that case, since the 



 INTRODUCTION   9 

 

Architecture specification is not an isolated part of the system, the influence of the 

Architecture should spread to the rest of the models. The elements specified in the 

architectural model decide what other models must be created and what elements 

inside models should be included. The content of the architectural models, as a 

result, guides the steps to be accomplished when building the system. Software 

development processes and methodologies that follow this approach are known as 

architecture-centric [150]. 

To sum up, Software Architecture represents the third and final pillar 

of the current Thesis, being the driving and steering concept of the whole 

research work. Because of that, all the research efforts and results described in the 

current dissertation are aimed, ultimately, at allowing the specification of the 

Software Architecture of information systems. 

1.2 Hypothesis and Research Objectives 

The hypothesis formulated in this Thesis is that ―it is possible to develop 

service-oriented software architectures using a model-driven approach in which 

the notion of service acts as main concept of both the architecture specified and 

the development process itself”. 

The main objective of the presented Thesis, derived directly from the 

previous hypothesis, is, therefore: to specify a framework for modelling software 

architectures in which the specification of the architecture is obtained following a 

model-driven process (based on the MDA proposal) and in which the concepts of 

the service-oriented paradigm act as foundation for the elements found in the 

architecture. The latter aspect implies, necessarily, that the models will allow, at 

least, the definition of architectures of service-oriented systems. However, the 

desirable features of the framework go beyond and include:  

 That the software architectures specified may refer to any kind of system, 

not only those implemented using service-oriented technologies. To reach 

that goal, the framework must support the representation of system 

architectures independently of its implementation language, computing 

paradigm or execution platform. 

 That the architectural framework to be defined allows the inclusion of 

well-known design decisions in the form of architectural styles. To do so, 

and knowing that the framework will follow a model-driven approach, 

architectural styles and common design patterns must be represented by 

means of models. 



10   MARCOS LÓPEZ SANZ 

 

 That the framework must consider the subsequent integration of the 

architectural models as part of a semi-automatic generation process of 

software architectures by means of the corresponding tools. 

 

Taking into account the previous requirements and desired features, in 

order to achieve the objective marked for this Thesis, the next partial objectives 

are set: 

Obj. 1.- Analysis and evaluation of previous research works and initiatives 

related to the topic of the Thesis. Having noted that the Doctoral Thesis leans 

on three clearly identified areas of concern within the Software development 

field, this objective can be split as follows:  

Obj. 1.1. Detailed study of current initiatives in the scope of MDD 

focusing on their proposals for the specification of Software 

Architectures and the development of Service-Oriented software 

solutions. 

Obj. 1.2. Detailed study of current proposals for the development of 

Service-Oriented Architectures, with a special interest in their 

management of the architectural viewpoint. 

Obj. 1.3. Analysis of the features defining the Service-Oriented 

Computing paradigm that may be of use to build the system 

Architecture, including: service composition and coordination, service 

standards, service contracts and constraints, service interfaces, etc. 

Obj. 2.- Specification of a conceptual view of Software Architectures using 

Services. To do so, a definition of a DSL for Service Architectures at PIM 

level will have to be given. To reach this objective, several sub-objectives 

must be accomplished: 

Obj. 2.1. Definition of a PIM metamodel whose basic elements refer to 

all the relevant concepts of the SOC paradigm thus comprising the 

semantic of the DSL at this level. 

Obj. 2.2. Definition of a metamodel allowing the specification of 

architectural styles. 

Obj. 2.3. Definition of the syntactic notation for the previous 

metamodels in UML (UML profile). 

Obj. 3.- Specification of the modelling elements needed to represent the 

particularities of target execution platforms within architectural models. That 

entails providing with a definition of the corresponding PSM DSLs for the 

specification of Service Architectures. To achieve that, the subsequent sub-

objectives are marked: 



 INTRODUCTION   11 

 

Obj. 3.1. Definition of a PDM (Platform Dependent Model) metamodel 

containing the common elements needed to describe the architecture of 

a service-oriented software solution independently of the target 

service-oriented execution platform and/or technology. This will serve 

as foundation for a DSL for Software Architectures at this level of 

abstraction. 

Obj. 3.2. Definition of metamodel at the TDM (Technology Dependent 

Model) abstraction level supporting the representation of software 

architectures regarding, at least, the next implementation platforms: 

Web Services (using W3C standards [236]), REST services ([69]) and 

Grid Services (using the Globus Toolkit platform [72]).  

Obj. 3.3. Definition of the syntactic notation for the previous 

metamodels in UML (UML profile) so it completes all the DSLs at the 

PSM level. 

Obj. 4.- Specification of model transformation rules between different 

abstraction levels and within the same abstraction level to include 

architectural design decisions in the form of architectural styles. To do so, the 

following subobjectives are defined: 

Obj. 4.1. Definition of transformation rules from PIM models to 

concrete PSM models (either PDM or TDM). 

Obj. 4.2. Definition of transformation rules that enable the 

superimposition of architectural styles in PIM models. 

Obj. 5.- Creation of a toolkit supporting the creation and editing of 

architectural models and the transformations defined among them. To carry 

out this objective, it will be split as follows: 

Obj. 5.1. Definition of a modelling toolkit supporting model edition 

and model conformance verification according to the DSLs defined. 

Obj. 5.2. Inclusion of graphical modelling support to the previous 

modelling tool based on the concrete syntax (UML profiles) defined 

for the DSLs specified.  

Obj. 5.3. Implementation of a tool supporting the execution of 

transformation rules, either at the same abstraction level (PIM-to-PIM) 

or from one level to another (PIM-to-PDM/PIM-to-TDM). 

 

 

Obj. 6.- Validation of the architectural framework and toolkit by means of 

their application to several case studies:  



12   MARCOS LÓPEZ SANZ 

 

Obj. 6.1. Evaluation of the proposal throughout the architectural 

specification of different case studies with the aim of testing the whole 

architectural framework. The target implementation technologies 

should be based on Web Service technologies (W3C standards), REST 

Services and the Grid Computing platform (Globus Toolkit). 

Obj. 6.2. Validation of the the specified modelling toolkit and the 

model transformations environment to check their reliability to support 

the framework defined. This will be accomplished in conjunction with 

the previous subobjective as the architectural models of the previous 

case studies will be modelled using that toolkit. 

1.3 Research Context 

The research work of this Thesis has been undertaken in the Kybele 

Research Group of the Rey Juan Carlos University (URJC). Part of the research 

effort has been performed during a stay in an external research centre, the 

ARCHLog Research Group of the University of South Brittany (France) for a 

period of four months. Moreover, this work has been carried out within the scope 

of several research projects. Both the associated projects and the external stay are 

depicted in Table 1.1. 

Table 1.1. Outline of Academic Stages, Related Research Projects and Stays.  

A
ca

d
em

ic
 S

ta
g

es
 

P
re

-

d
o

ct
o

ra
l 

Doctoral period 

G
ra

d
 s

tu
d

en
t 

st
ag

e 

P
h

D
 C

o
u

rs
es

 

R
es

ea
rc

h
  

C
o

u
rs

es
 

PhD Thesis research stage 

R
es

ea
rc

h
 

P
ro

je
ct

s 

2005 2006 2007 2008 2009 2010 

DAWIS                     

    GOLD         

                MODEL- CAOS 
            IASOMM        

R
es

ea
rc

h
 

S
ta

ys
 

           

F
ra

n
ce

 

            



 INTRODUCTION   13 

 

Next subsections describe in detail, first, the research scope that served as 

methodological basis for the proposal; then the main research projects in which 

this work is framed and, finally, the stay of the PhD student in an external research 

centre.  

1.3.1 Methodological Research Scope 

The three pillars mentioned in Section 1.1 are required to serve as 

constituent parts of a framework for the specification of Service-Oriented 

Software Architectures following an MDA-based approach as it has been defined 

in the hypothesis of the Thesis. However, although this framework will be created 

to be used independently, it does not represent an isolated research effort. Quite 

the opposite, this framework intended to take a prominent place in the definition 

of MIDAS, a concrete methodological framework for the development of 

information systems [228] and that somehow was the focus of the projects related 

to the current Doctoral Thesis.  

MIDAS suggests following a model architecture based on the principles of 

the MDA proposal for the development of information systems. This model 

architecture is defined upon a multidimensional basis (see Figure 1-1) that spreads 

through several abstraction levels and concerns of the system development 

lifecycle. For each dimension or development concern, the models and elements 

inside models are considered, together with the transformation rules between 

models and the influence of each model to the rest of models of the MIDAS 

structure. Within the development process architectural models acquire a special 

interest since the Architecture is considered as the guiding aspect of the whole 

process. 

As explained before, MIDAS proposes a model architecture that can be 

seen from different points of view, each of them focused on a particular aspect of 

the software development lifecycle: 

 Vertical dimension. First classification of models comes directly from 

the MDA proposal, which defines three abstraction levels: Computation 

Independent Models (CIM), Platform Independent Models (PIM) and 

Platform Specific Models (PSM). This dimension allows the evolution 

throughout the system development process by means of the specification 

of successive models. It starts from the modelling of concepts associated 

to the problem domain (gathered in CIM models) to the system 

representation taking into account the specific features of the 

implementation technology or target platform (by defining the PSM 

models). 



14   MARCOS LÓPEZ SANZ 

 

 

 

Figure 1-1. Visual representation of the MIDAS Model Architecture 

 Core models: Software Architecture. Architectural models are placed 

in the middle of the model architecture as it is considered the aspect 

guiding the entire development process. The Architecture specifies 

characteristics of an information system that do not affect only to a 

concrete aspect of the system but to many of them. Information in the 

architectural models aids to identify the elements that should be modelled 

and even has influence on whether some models may be created or not. 

The definition of the development process is currently under discussion 

and will be left for ongoing research works. 

 Inner models layer. The development of a software system inevitably 

needs the definition of particular issues regarding its constituent features. 

To do so, models in this layer are organized according to the different 

concerns that may be involved in the system. In that sense, this layer 

includes the modelling of Content (Storage, system data models), 

Behaviour (models depicting the system functionality) and Interaction 

(User Interface, such as the hypertext modelling in Web applications). 

 Additional models layer. MIDAS supports the definition of other 

additional aspects such as Semantics, which defines the concrete 

vocabularies and meanings of the concepts and terms used in every other 



 INTRODUCTION   15 

 

model; or the modelling of Quality aspects and attributes. Each of these 

aspects has its own set of models associated. 

 Tool. In order to give support to the MIDAS methodological framework, 

for each of the abstraction levels or development concerns a toolset for 

graphical design, transformation execution and code generation is 

defined. 

The architectural aspect is one of the MIDAS concerns that still needed to 

be specified. The modelling of the Architecture within MIDAS not only describes 

the structure of the system, that is, its constituent elements and relations among 

them, but also it is supposed to become the vertebral aspect of the entire 

development method. This feature transforms MIDAS into an architecture-centric 

methodological framework (ACMDA in fact) [136], in which the elements 

specified in the architectural model have a direct influence over the rest of the 

models created as the development of the system evolves. The information 

gathered in the architecture models is needed for both deciding what elements 

must be present in other models and establishing and clarifying the relation among 

those elements and the design constraints to be taken into account depending on 

the desired kind of solution to build. 

The proposal presented in this dissertation will help to fill in the gap of the 

architectural modelling within MIDAS. Given that the SOC paradigm and the 

MDA approach have been chosen to specify the Software Architecture, it is 

compulsory to define models that allow the representation, at different levels of 

abstraction, the main elements that form the architectural solution. This aspect 

includes the identification of the computational components realizing the system 

functionality (services), the potential relations among them (service contracts 

acting as connectors), their grade of specialization (service types) and, specially, 

their grouping in order to create composite elements, taking into account the 

different coordination means among services as composition strategy. 

Additionally, it is necessary to bear in mind aspects such as the representation of 

the dynamism inherent to any system in execution, its evolution during its 

lifecycle, the adaptation mechanisms to the conditions of the environments and the 

possibility to apply well-known organization strategies in the form of architectural 

styles. All of this leads to establish, accurately, the corresponding models and 

metamodels in order to specify the Architecture of a service-oriented system. 

These models will range from the description of the Architecture at a 

conceptual level, agnostic of the platform chosen to execute the system, together 

with a mechanism to include different architectural styles; to the representation of 

the architecture taking into account the technologies and implementation 



16   MARCOS LÓPEZ SANZ 

 

platforms that will have a direct influence on some of the design decisions of the 

software solution. 

Because the framework to be defined is based on the MDA principles, the 

development of tools supporting the graphical specification of models is highly 

encouraged. Another important aspect that should be noted is that these tools must 

also support the execution of transformation rules from model to model. The 

existence of a toolkit for the framework becomes clear in the moment that it is 

required to validate not only the correction of the models themselves but also 

maintain their consistency and coherence during the transformation of the models 

that occurs throughout the entire development process of the Architecture. 

1.3.2 Related Research Projects 

The work presented in this dissertation has been carried out mainly within 

the scope of three research projects: DAWIS, GOLD and MODEL-CAOS. 

DAWIS [TIC 2002-04050-C02-01], financed by the Ministry of Science 

and Technology of Spain, was a coordinated project accomplished jointly between 

the Rey Juan Carlos University and the Polytechnic of Madrid that was carried out 

from 2002 to 2005. The objectives of this project included: a) the definition of a 

generic architecture for the integration of digital files on the Web; b) the 

systematic and semi-automatic development of Web portals to access in an 

integrated way to multiple digital libraries. In the context of this project, the 

author of this dissertation worked as granted student in the development of the 

architecture of a Web portal that allowed the management of medical digital 

images based on services. 

GOLD [TIN2005-00010], financed by the Ministry of Education and 

Science of Spain, was carried out from 2005 to 2008, and continued the research 

efforts accomplished in DAWIS. This project was focused on defining a model-

driven approach (MDA-based in fact) for the systematization of the development 

of information systems, having a special look at those related with the 

management of medical digital images. To achieve that, GOLD had, as main 

objective, the development of a platform for the development of Web Information 

Systems (WIS). This platform was used to create an online information system for 

the management of digital medical images. The work of the author of this 

dissertation in the context of this project was the integration of the Software 

Architecture in the MDA model architecture of MIDAS. The case study of 

medical images was continued and refined in order to include the previous 

concerns. 



 INTRODUCTION   17 

 

MODEL-CAOS [TIN2008-03582], financed by the Ministry of Science 

and Innovation of Spain, started in 2009 and will last for three years, until the end 

of 2011. The main objective of this project is the specification of a framework for 

the semi-automatic development of information systems with a special attention to 

the use of SOC as foundational paradigm. This last project inherits the work done 

in the previous projects and updates it by including the last trends in the 

development of information systems, such as the service-oriented paradigm, with 

an emphasis in the architectural aspect as central artefact guiding the 

methodological process. In the context of this project, the author of this 

dissertation continues refining the integration of the architectural aspect (now fully 

service-oriented) within the MIDAS methodological framework, conferring it 

ACMDA features. 

Moreover, during the research accomplished within the scope of these 

projects, an additional project, whose main goal was directly aligned with the 

main topics of the current Thesis, was carried out: IASOMM [URJC-CM-2007-

CET-1555], co-funded by the Rey Juan Carlos University and the Regional 

Government of Madrid. This project started in January, 2008 and ended in 

February, 2009. The global objective of this project was the definition of a 

conceptual and methodological framework for the architecture-centric and model-

driven development of software systems, focusing specifically on system 

integration. The basic structure of the framework was centred in the definition of 

service-oriented architectures and, in order to simplify the process, it described a 

multidimensional approach leading to a framework for invasive computing.  

In the scope of these projects, several Doctoral Theses have been 

successfully defended [36][228]. Among them, the one that has more relevance in 

the context of the current Thesis is the Doctoral Thesis defended by María Valeria 

de Castro [44]. The main topic of that Thesis was the modelling of the 

behavioural concern within the MIDAS methodological framework (presented in 

the preceding subsection). Moreover, a method for the service-oriented 

development of information systems was specifically defined. The inclusion of 

orthogonal aspects in MIDAS, such as the Architecture or the Semantics, made 

obvious a research effort about these aspects and their relation with the 

methodological framework. As a result, the Semantic aspect was the main topic of 

the Doctoral Thesis of César J. Acuña [2], in which a detailed study of the 

influence of the semantics to the development of Web Service platforms was 

carried out, that is, focusing on Semantic Web Services. 

It is important to remark in this point that there is a Thesis recently 

presented (by Juan Manuel Vara [227]) dedicated to the definition of the toolkit 



18   MARCOS LÓPEZ SANZ 

 

support and the technological strategy of MIDAS. In the current Thesis, some of 

the results and tools defined by J. M. Vara are used to create concrete modules for 

the architecture modelling tool and its specification. From a technological point of 

view regarding tool support, this Thesis leans directly on his research experience 

and outputs. Because of that, in the current Thesis, the justifications of the 

technological decisions taken to develop the tool (ATL as transformation 

language, Eclipse as execution platform, weaving models to annotate models, etc.) 

and the full explanation behind choosing DSLs for the architecture instead of 

merely UML profiles will not be the subject of an in deep analysis. In the sections 

in which these aspects need a further explanation, the corresponding references to 

the work of J. M. Vara will be accordingly indicated. 

To conclude and as it has been explained before, the current Doctoral 

Thesis is focused on the development of a framework for architectural 

specification. Though initially conceived as the source for modelling the 

Architectural aspect of MIDAS, the proposed framework has gone beyond the 

scope of MIDAS and can be considered as an independent framework.  

1.3.3 External Research Stay 

A significant part of the research carried out to achieve the goals of this 

Doctoral Thesis was done during a 14-weeks stay (from September, 2007 to 

December, 2007) working in the ARCHLog Research Group (VALORIA 

Laboratory) of the University of South Brittany (Vannes – France). This group is 

specialist in the specification of formal approaches for software architectures and 

development processes based on the service-oriented paradigm.  

During that period of time, and under the advice of Prof. Flavio Oquendo, 

head of the ARCHLog group, several joint tasks were completed in relation to the 

modelling of service-oriented architectures using the π-ADL language. The 

collaboration with this research group resulted in a joint publication [124] in the 

scope of the 2
nd

 European Conference on Software Architectures (ECSA). 

1.4 Research Method 

The diverse nature of Engineering disciplines, among those considered 

empirical and formal, does not allow to directly apply classical research 

approaches to Software Engineering. 

The research method used in this Thesis comprises an adaptation of the one 

defined by Marcos & Marcos [137] for investigation in the scope of Software 

Engineering. This method is based on the hypothetic-deductive one by Bunge [32] 

which is comprised of several steps, sufficiently general, to be applied to any kind 



 INTRODUCTION   19 

 

of research activity. The main stages of the research process followed to complete 

the current Doctoral Thesis are depicted in Figure 1.2. 

Problem Statement

Hypothesis

Working Method Definition

Resolution

Validation

Results Analysis and Conclusions

Thesis Dissertation Writing

D
o

cu
m

en
ta

ti
o

n

Body of 
Knowledge

Problems

New Body of 
Knowledge

New Problems

 

Figure 1-2. Overview of the Research Method. 

The ‗Body of Knowledge‘ in which the Thesis is framed, gathers the issues 

stated in the introduction of this dissertation. It acts as a preamble for the research 

process and covers all the terms that the three pillars mentioned previously entail. 

From that context, the identification of common problems that may be solved 

using the principles of MDE, the foundation of Service-Orientation and the role an 

architectural description may play within the building of a modern, efficient and 

useful software solution lead to precisely define the problem to be solved 

(‗Problem Statement‘ stage) from which a ‗Hypothesis‘ is formulated as starting 

point of the research work. 

As it can be seen in Figure 1.2, the definition of the method is considered 

as another step within the method used. This is a necessary aspect due to the 

adaptability of the method to different contexts. Each research project has its own 

intrinsic features and thus there is not a universal method to be applied to every 

kind of research. In the context of the current Thesis, the research phase 



20   MARCOS LÓPEZ SANZ 

 

corresponding to the ‗Resolution and Validation‘ step is of great interest as it 

represents the core of the research work. A deeper explanation of this stage and 

the working approach used are detailed in next subsection.  

Once a proposal is derived from the previous research stages, it is the time 

to analyze the results obtained as a consequence of the application of that proposal 

to concrete scenarios (‗Results analysis and Conclusions‘ stage). These analysis 

tasks serve as hotbed for the elicitation of some conclusions from the work 

accomplished. Next step is to gather all this research experience in a final Thesis 

dissertation.  

Though the final step of the research process may be embodied in the task 

of writing the Thesis dissertation, any research activity establishes a new body of 

knowledge that is formed by incorporating all the research artefacts as part of it. 

This newly created situation derives new problems that may be the object of future 

research tasks and initiatives. 

1.4.1 The Resolution and Validation stage 

The method followed in this Doctoral Thesis for the ‗Resolution and 

Validation‘ stage conforms to an incremental and iterative process model. This 

research stage iterates in the refinement of the elements defining the proposal and 

increments it by completing the shown tasks. Moreover, each task provides a 

feedback to some of the other related tasks. A graphical overview of the process 

can be seen in Figure 1-3. 

Resolution

Validation

Design

Specification

Implementation

Testing

Design

Specification

Implementation

Testing

Design

Specification

Implementation

Testing

PIM-level
DSL

PSM-level
DSL

M2M
Transformations

Technical
Design

Technical
Design

Technical
Design

Case Study Case Study Case Study

 

Figure 1-3. Operationalization of the „Resolution and Validation‟ research stage. 

As it can be observed, this stage is itself comprised of several phases or 

steps divided into several consecutive iterations. The first iteration centres its 



 INTRODUCTION   21 

 

attention in the definition of the part of the proposed framework supporting the 

modelling of the conceptual view of a Software Architecture, that is, at the PIM 

level of the MDA approach. The second, in turn, is dedicated to provide with a 

PSM view of the architectural models. The third one deals with the establishment 

and implementation of the rules that allow to perform model-to-model 

transformations (M2M Transformations in Figure 1-3). Although these three 

iterations are described here as being sequential, in many stages of the research 

they have been intertwined. In addition, some other aspects needed to fully 

complete the framework proposed in this Doctoral Thesis are considered during 

the research process. 

Zooming into each of the iterations, the ‗Specification‟ step is focused on 

the definition of the aspects and foundational features needed to build up different 

DSLs for architectures and the theoretical aspects that support the framework 

proposed using services and at different abstraction levels. 

After an initial outline of the metamodels that allow the specification of 

software architectures, it is necessary to refine the previous models and languages 

as well as progress into a validation of these elements. These tasks are 

accomplished following two complementary directions. On the first one, the 

framework is required to be supported by a graphical tool that eases the creation of 

architectural models (‗Technical design‟). This tool serves both as graphical 

modelling environment and support for model transformation execution; besides, 

it allows validating the conformance of the models and the transformation rules. 

The design process and its subsequent implementation are also intermediate steps 

considered in every iteration. The tool itself can be considered as a proof-of-

concept for the DSLs defined, as it permits the establishment, execution and 

checking of language rules and restrictions over models.  

On the other side, the feasibility of the proposed framework and its real 

applicability is tested throughout its use both in concrete scenarios of real-world 

case studies, such as a system for the medical image management or a gateway for 

sending SMS; and simulated ones, such as the use of a sport metaphor for service 

composition modelling. 

To sum up, the three aforementioned steps, DSL Specification, Tool 

Design and Implementation and Testing with case studies, do not represent a 

straightforward process, but an iterative one in which the information flows back 

and forth to improve each of the research steps.  



22   MARCOS LÓPEZ SANZ 

 

1.5 Structure of the Dissertation 

In order to have a better comprehension of the structure of the dissertation 

in relation to the work accomplished, Figure 1-4 dissects the anatomy of the 

proposal into its constituent parts and elements created for its completion. 

Associated to each building block there is a reference to the chapter or subsection 

in which the issue is fully explained. 

Transform.
Rules

Graphical
Modelling

Transform.
Support

Textual
Modelling

EMF-based plug-in

Chapter
5

Chapter
4

Semantics

Notation

Chapter
3

Case Studies

GESIMED (Grid/WS/REST)

PIM + Arch. Styles

GMF-based plug-in

ATL/AMW-based Plugins

GESIMED

TDM Service
Metamodels

(WS, Grid, REST) 

PDM Service
Metamodel

SMPP Basket

EMF-based plug-ins

GMF-based plug-in

PIM2PDM PIM2TDM

D
SL

 D
ef

in
it

io
n

Tr
an

sf
.Th

e
A

rc
h

iM
eD

eS
 

Fr
am

ew
o

rk
Th

e
A

rc
h

iM
eD

eS
 

To
o

lk
it

V
al

id
at

io
n

Chapter
2

MDD/MDA  +  SOC/SOA  +  Softw. Arch.

MDD/MDA  +  Softw. Arch. 

SOC/SOA  +  Softw. Arch.

St
at

e
o

f 
th

e
A

rt

PDM Profile TDM ProfilesPIM UML Profile

Arch. Style Metamodel

PIM Service Metamodel

 

Figure 1-4. Anatomy of the proposal in relation to the structure of the 

dissertation. 

All in all, the remainder of this Thesis dissertation is organized in the 

following chapters: 

 Chapter 2. State of the Art. Presents a detailed study and analysis of 

related works and research initiatives regarding to: a) using a model-

driven approach; b) using the service-oriented paradigm as basis; c) the 

role played by the software architecture. 



 INTRODUCTION   23 

 

 Chapter 3. The ArchiMeDeS Framework. Explains thoroughly the 

foundations and main features of a framework for the model-driven 

development of service-oriented architectures: ArchiMeDeS. This chapter 

includes the specification of the metamodels needed for the description of 

the Architecture at different abstraction levels, the transformation rules 

allowing the transition from one model to another and the inclusion of 

architectural style characteristics into the architectural models. 

 Chapter 4. The ArchiMeDeS Toolkit. The chapter shows the 

development process a tool supporting the previous DSLs and model 

transformation defined previously.  

 Chapter 5. Validation. This chapter is devoted to present the validation 

means used and results obtained to verify the legitimacy of the presented 

framework. In it, a full case study is developed following the proposal 

and using the toolkit created. In addition, other complementary partial 

case studies are used to cover the aspects not considered by the previous 

one.  

 Chapter 6. Conclusions and Future Works. In this chapter the main 

conclusions are established starting from an analysis of achievements 

together with the future research lines derived from the work of this 

Thesis. Additionally, the contrasted results are presented in the form of 

the articles and paper published as result of this research work. 

 Appendices. The last sections of the current dissertation include: 

o A summary of the content of the Thesis dissertation in 

Spanish. 

o The bibliography and literature consulted in this Doctoral 

Thesis together with other resources found online. 

o A list of acronyms used throughout the entire dissertation. 

 





 

 

 

2. CHAPTER 2: State of the Art 

Chapter 2: 

State of the Art 





 STATE OF THE ART   27 

 

This Chapter presents a study on the state of the art in the research areas 

covered by this Doctoral Thesis. It is considered as a fundamental part of the 

dissertation as it helps to recognize the contributions that the Thesis may add to 

the existent knowledge in the scientific area of influence and to position the 

proposal among others. 

With that premise in mind, firstly, it is compulsory to accurately define a 

coherent classification criterion so it is possible to analyze all the relevant works 

that may have an influence in the scope of the Doctoral Thesis presented. 

Therefore, Section 2.1 comprises the set of concepts that allow the evaluation of 

each related research initiative regarding Service-Orientation, Model-Driven 

Engineering and Software Architectures.  

After that, Section 2.2 proceeds to apply those criteria to the works that are 

somehow related to the use of, at least, two of the three abovementioned areas. 

Since the research fields affected do not represent isolated areas within Software 

Engineering, the works analyzed will be mainly those taking advantage of more 

that one of the topics. For example, those that benefit from applying model-driven 

techniques for architecture specification or those focusing on the architectural 

features of the service-oriented paradigm. Obviously, the biggest interest will be 

put on those works considering the three areas at a time. 

Finally, this Chapter will end up drawing some of conclusions reached 

from the analysis done. 

2.1 Evaluation Criteria 

As already stated, the classification criteria used for analyzing the current 

state of the art must include the features that characterize the core subjects of this 

Thesis: Service-Orientation, Model-Driven Engineering and Software 

Architecture specification. In the following, and for every area, it is given: a short 

introduction to the topic, the features used to analyze them and the values that will 

be assigned to each feature.  

2.1.1 Issues related to Model-Driven Engineering 

Beyond the initial hype of Model-Driven Engineering, this discipline has 

evolved to becoming one of the most widely accepted development approaches in 

Software Engineering. As a result, a number of initiatives have emerged in this 

field during the last years. However, the advent of so many proposals turned out in 

a myriad of acronyms to refer to the same approach. Different authors use 

different names to refer to (more or less) the same thing. Thus, it is possible to talk 

about Model-Driven Software Development [215] (MDSD), Model-Driven 



28   MARCOS LÓPEZ SANZ 

 

Development [93] (MDD), Model-Driven Engineering [21] (MDE), Model-Based 

Software Engineering [203] (MBSE), Model-Driven Architecture [79] (MDA) and 

so on. For the sake of clarity, in this dissertation the acronym MDD will be used 

as common term for all of them, referring, specifically, to proposals whose main 

and central element of the Software Engineering is the model. The consideration 

of MDA will be maintained separately in order to differentiate the proposal of the 

OMG from the rest. 

The aspects to bear in mind for the evaluation of proposals and research 

initiatives that somehow relate to MDD, considering the main goal of the current 

Thesis, include the next ones: 

 Role given to the Architecture within a development process. Recent 

works [136][150] have shown that model-driven proposals, and more 

precisely those involving the MDA approach, leave aside the specific 

modelling of the system architecture; either avoiding its explicit 

specification or considering it as an independent artefact to be modelled 

without a direct correlation with the rest of the system models. Since the 

decisions posed over the architecture usually affect to the components 

implementing any system, the role given to the architectural modelling 

represent a key aspect when observing and evaluating the related works 

found in the bibliography. 

The values that will be used for this feature will be:  

o Not considered [N]. Assigned to those model-driven initiatives 

that do not provide with a specific model for the system 

architecture, including the architectural information 

(topological, evolutionary or dynamic) within other models. 

o Modelled as an independent artefact [IA]. For initiatives that 

consider software architecture modelling as an independent 

process without any correlation to the development of other 

concerns of the system. 

o Positioned as central artefact (architecture-centric approach) 

[AC]. This value will locate initiatives considering the 

architectural model as the guiding aspect of the system 

development process, having an influence on other modelling 

concerns. 

 Modelling approach. As stated along this document, the central building 

blocks in MDD are models. These models must be specified using a 

concrete language or notation following precise construction rules. 



 STATE OF THE ART   29 

 

Consequently, any model-driven proposal is commonly based on the 

definition of new modelling languages according to the concepts to 

include in the models. To that end, different approaches may be followed. 

The different alternatives that will serve as values for evaluating this 

feature will be: 

o Definition of DSLs (Domain Specific Languages) [DSL]. As a 

way to support the modelling approach based on the definition 

of metamodels containing all the concepts, relationships, 

constraints and rules needed to create domain models. It entails 

the creation, from scratch, of all the elements needed for a 

complete language specification (including the notation). The 

use of ADLs (Architecture Description Languages) is 

understood as a concrete type of DSLs for the specification of 

software architectures. 

o Definition of UML extensions via UML Profiles [UML]. This 

alternative is used by some initiatives taking advantage of the 

extension mechanisms provided by UML for modelling 

purposes. They benefit from the widespread that UML has 

gained but rely greatly on the constraints and features of the host 

language.  

o Hybrid approach [Hyb]. The last option is to step at a medium 

point between the previous alternatives, by defining metamodels 

collecting the semantics of the models but using a well-known 

notation such as UML for the specification of the concrete 

syntax of the language. 

 Support for modelling tools. In the scope of MDD, the availability of 

toolkits becomes particularly necessary for several reasons: the need for 

conformance between the models created and the corresponding 

metamodels, the obvious benefit of using visual tools for the creation of 

models or the possibility to automate possible transformations of the 

models are among those reasons.  

The existence of toolkits associated to development processes 

and methodological frameworks also helps to classify and evaluate the 

different proposals found in the bibliography. The logical values used in 

this case will be YES and NO, depending on whether the initiative under 

study considers the development of tooling support or not. In affirmative 

cases, the focus rely on their coverage of several desirable capabilities 



30   MARCOS LÓPEZ SANZ 

 

including extensibility of the tool implementation, support for meta-

modelling, support for model transformation and conformance validation, 

generation of editors for terminal models (create ad-hoc editors from 

metamodels), standardization, interoperability, etc. For that aim, the 

underlying technology or platform will be of special interest. Known the 

widespread of the Eclipse platform [93] in that context, those initiatives 

using this framework will be clearly identified and separated from those 

programming a toolkit from scratch. 

 Definition of model transformations. One of the most promising 

features that have accompanied the evolution of MDD is the possibility to 

define rules for automating the translation of these models into code, 

generate documentation or even obtain other models. Through the 

specification and subsequent execution of transformation rules between 

models it is possible to evolve in the process of Architecture 

development, thus assuring a higher level of quality and expecting a 

minor number of errors during the Architecture lifecycle. 

The values to consider when analyzing model transformation 

concerns will be YES or NO; however, for affirmative answers, the 

analysis will reflect also the transformation strategy followed: 

o Not considered [N]. Used for those model-driven initiatives not 

considering model transformations as part of their proposals. 

o Model transformations definition [Y (strategy/language)]. It will 

be used for initiatives that positively define model 

transformations. Inside this category of proposals, it is possible 

to go one step beyond and specify the transformation strategy 

applied to models: supported by languages such as QVT [171] 

or ATL [104], by means of graph transformations or in other 

languages specific for a concrete methodological framework 

(such as IOM for the UML4SOA framework [142]). 

2.1.2 Issues related to Service-Orientation 

In the last years, several proposals have come up, with different goals and 

from different points of view, which tackle the problem of system development 

using a service-oriented perspective. The number of related initiatives is quite high 

because, among other reasons, the current interest shown by companies and 

standardization consortiums on this topic. Among all of them, this work of 

Doctoral Thesis focuses on those having a special look at the specification of the 

architectural aspect as a way of going beyond the technological scope and 



 STATE OF THE ART   31 

 

extending the region of influence of the service-oriented paradigm. The following 

features are used to evaluate the degree of influence that the architectural aspect 

has inside the analyzed proposals. 

 Strategy for service composition. One of the main features that 

distinguish the SOC paradigm from other computing paradigms, such as 

Object-Orientation or Component-Based Software Engineering (CBSE), 

is the way the fundamental building blocks of the paradigm are combined 

to create compound structures. Service composition represents a shift in 

the way architectural elements are composed. In the SOC paradigm, 

services are coordinated rather than composed. Since services are 

understood as independent computational entities that must always 

maintain that independency all over their entire lifecycle, so they have to 

preserve this feature even in the case they take part in service groupings. 

The coordination strategies for services can be divided into two: 

orchestrations and choreographies.  

About service composition, the analysis of the bibliography shows 

that research initiatives tackle this aspect of the SOC paradigm from 

different approaches. Accordingly, the values used to classify them are: 

o Service-Oriented coordination scheme [Orch.][Chor.][Both]. 

Most service-oriented initiatives consider some coordination 

strategy, either if it is based on orchestrations, choreographies or 

both. 

o Component-based composition means [CB]. This value will be 

assigned to initiatives using services from a component-based 

point of view, thus failing to take advantage of the service 

coordination means. These initiatives adapt the traditional 

component and connector scheme for the specification of 

service-oriented architectures. 

o Not explicit [N]. There are very few cases in which service 

composition is not explicitly considered; however, they must be 

included within the evaluation of the state of the art.  

 Abstraction level at which services are considered. It is a reality that 

the SOC paradigm has broken the technological barrier and has 

impregnated other levels, away from the implementation one. Because of 

that evolution, various related works in this context are devoted to 

reconcile the points of view of the concept of service [169]. In that sense, 

many proposals focused on the definition of phases, stages and tasks 



32   MARCOS LÓPEZ SANZ 

 

needed to perform to cover the gap between one abstraction level and 

another have appeared recently. In that case, the values assigned to that 

feature will comprise one to three values, depending on the levels 

considered, among the following: 

o Business level [B]. Proposals that work in this level are aimed at 

representing services as key part of the definition of business 

processes, understood both as product and as describing tool.  

o Technological or implementation level [T]. The origins of the 

SOC paradigm are set in the implementation level, and thus 

proposals that put their focus of attention on the use of 

standards, languages, and implementation alternatives should be 

taken into account.  

o Architectural level [A]. Under this category rest intermediate 

approaches that cope with the representation of service systems 

at a more conceptual level in which the concepts behind the 

SOC paradigm are defined without any interference of the 

underlying implementation platform of choice. 

2.1.3 Issues related to Software Architecture 

Since the main goal of the current Thesis is the definition of a framework 

for the model-driven specification of software architectures, it becomes critical the 

analysis of the existent proposals that somehow consider the architectural view 

within their work. For that, the definition of the state of the art, in relation to the 

architectural aspect, must pay a special attention to those aspects needed for the 

correct and complete specification of a Software Architecture.  

 Base paradigm of the Architecture. Every Architecture specification is 

built upon a set of elements that interact with each other and the 

environment. However, the type of elements, their semantics and the 

principles that guide the design and evolution of the Architecture can 

follow several paradigms leading to different design strategies. For that 

reason, it is common to find that Architecture specifications appear 

associated to adjectives such as ‗Object-Oriented‘, ‗Component-Based‘, 

‗Agent-Based‘ or ‗Service-Oriented‘ focusing on the concepts of object, 

component, agent or service, respectively, to outline the system 

Architecture. In the scope of the current Thesis those initiatives 

modelling the Architecture using SOC as foundational paradigm are of 

interest. Related research works will later be classified using those 

concepts as possible values for this criterion with the following values: 



 STATE OF THE ART   33 

 

Aspect-Oriented Paradigm [AS], Object-Oriented Paradigm [OO], 

Service-Oriented Paradigm [SO], Component-Based Paradigm [CB]. 

 Support for architectural rationale. In order to analyze the support for 

organizational patterns at the architectural level, the analysis of the 

initiatives considered in the bibliography must include the traditional 

architectural styles [208]. However, and due to the change in the trends 

of software development and needs, several other patterns have come up 

associated to the Service-Oriented paradigm [35]. The support for all 

these new architectural styles or, more properly, architectural design 

strategies or decisions, are also aspects that facilitate the evaluation of 

the current proposals related to the topics of this Thesis. The values used 

for this feature will be:  

o Architectural styles [AS]. This value will be assigned to those 

initiatives considering the definition of ways to include 

traditional architectural styles as part of their proposal. 

o Explicit design decisions [DD]. Used for those initiatives 

centred in the development of architectures and considering the 

definition of specific design decisions as part of them, but not 

identified as architectural styles. This situation is quite common 

among service-oriented initiatives and so they will be 

specifically marked. 

o Not considered [N]. If no reference to the inclusion of 

architectural decisions is made as part of the initiative this value 

will be given. 

2.1.4 Summary of the evaluation criteria 

Table 2.1 collects all the features and possible values that will be used to 

evaluate the most relevant initiatives and proposals in the scope of the topics of 

the current Thesis. 

 

 

 

 

 

 

 

 

 



34   MARCOS LÓPEZ SANZ 

 

 

Table 2.1. Summary of features and values used in the state-of-the-art. 

Feature Value Description 
Corresponding 

Acronyms 

MODEL-DRIVEN ENGINEERING 

Role given to the 

Architecture 

Not considered, Independent artefact, 

Architecture-centric 
N / IA / AC 

Modelling Approach DSL, UML extension, Hybrid DSL / UML / Hyb. 

Tool Support Yes [platform] / No Y [platform] / N 

Model 

Transformations 
Yes [strategy/language] / No Y [strategy/language]/N 

SERVICE-ORIENTATION 

Service Composition 

Scheme 

Orchestration, Choreography, Both, 

Component-Based, Not explicit 

Orch. / Chor. / Both / 

CB / N 

Abstraction Level Business, Architectural, Technology B / A / T 

SOFTWARE ARCHITECTURE  

Base Paradigm 
Aspect-Oriented, Component-Based, 

Object-Oriented, Service-Oriented 
AS / CB / OO / SO 

Architectural 

Rationale 

Architectural Styles, Explicit Design 

Decisions, Not considered 
AS / DD / N 

2.2 Related Works and Research Initiatives 

The three main topics covered by this Thesis (Model-Driven Engineering, 

Service-Orientation and Software Architecture) have a great incidence within the 

scope of current Software Engineering research. In order to select and evaluate 

those initiatives, proposals or works that may have a significant influence on the 

work presented in this dissertation, this subsection classify them according to the 

covering degree of the aforementioned topics. This way, the proposals evaluated 

in the survey will necessarily consider the following: 

 A Service-Oriented approach for Software Architectures (Section 2.2.1). 

This category will comprise the consortiums, companies and proposals 

releasing standards, models and other artefacts aiming at the specification 

of Software Architectures using services. 

 A Model-Driven approach for Software Architectures (Section 2.2.2). 

This category, in turn, will gather all the relevant proposals that tackle 

Software Architecture specification using MDD principles.  

 A Model-Driven and Service-Oriented approach for Software 

Architecture (Section 2.2.3). That is, the intersection of the three pillars 



 STATE OF THE ART   35 

 

of this Doctoral Thesis and that will be of special interest in order to 

position the proposal among them. 

Works focusing only on SOC (or SOA) and MDD (or MDA) will not be 

included in the study since the spirit of this Thesis is the definition of a framework 

for the specification of the architectural view of a software solution, not a software 

system as a whole. Their interests rely, normally, on the definition of service-

oriented solutions using a model-driven approach without realizing the importance 

of defining explicitly the system Architecture as independent element. As a 

consequence, those works in which the specification of the (role of the) 

Architecture is avoided [1][154] or, at least, mixed with the definition of the 

functionality of the system, will be left aside from that analysis. The same 

criterion has been applied to works exclusively centred in only one of the issues. 

2.2.1 Using a Service-Oriented Approach for Software 

Architecture 

The Service-Oriented Computing paradigm represents a step forward in 

comparison to other widely accepted paradigms such as object-orientation, aspect-

orientation or component-based software engineering. Similarly to agent-based 

approaches, its principles refer to entities understood from a higher abstraction 

level, not constrained to the programming level but to computing entities with an 

existence that is independent from the platform or implementation technology. 

Since its origins it has demonstrated its capabilities for quick evolution and spread 

to other scopes. It is based on entities that work, in essence, in highly dynamic 

distributed environments in which the critical aspect does not lie within the 

concrete programming of the computing elements participating in the system. On 

the contrary, the SOC paradigm prioritizes their interrelation, the means of 

communication established, the message exchange patterns performed, the 

availability of the resources associated to each service and the policies and 

restrictions applied in every task execution. Due to all this features, the importance 

of service-orientated systems rely greatly on their topological structure, built upon 

individual identifiable services, and their behaviour and evolution during its entire 

lifecycle. This means that the Architecture of Service-Oriented systems and 

applications represents one of the core aspects to be taken into account when 

trying to develop solutions based on the SOC paradigm.  

The architectural perspective of service-oriented systems is widely known 

as SOA (Service-Oriented Architecture)[59][127][165]. However, the precise 

definition of this term varies depending on the aspect or research field in which 



36   MARCOS LÓPEZ SANZ 

 

this concept is used. In the context of this Thesis, the term SOA will be considered 

as a collection of interacting services building up a system Software Architecture. 

Since SOA is considered one of the key aspects in relation to the SOC 

paradigm, many organizations and consortiums are dedicated to the definition of 

any of the numerous aspects of the SOA universe. For instance, they define 

reference models and reference architectures for SOA, standard languages for 

services, try to specify layers and protocol stacks that are used to implement this 

paradigm, etc. In the next subsections, the work accomplished by several of these 

organizations is analyzed in detail. It includes: the Reference Architecture and 

Reference Model for SOA by OASIS, the Reference Architecture of NESSI, Web 

Service Architecture of the W3C with a brief look at the REST way of building 

SOA, the approach of Grid Computing and the efforts of the OGF in that 

direction, the Service Component Architecture of the Open SOA Collaboration 

organization, the Reference model of The Open Group, and some other 

independent works that tackle SOA as a new architectural style or as a way to fix 

some design decisions during the development of service-based systems. 

2.2.1.1 SOA-Reference Model and SOA-Reference Architecture of 

OASIS 

The Organization for the Advancement of Structured Information 

Standards (OASIS) is a non-profit, international consortium that drives the 

development, convergence and adoption of e-business standards. Their 

standardization efforts include the definition widely-accepted standards in the 

fields of Web services, security, business transactions, supply chains and 

interoperability within and between marketplaces [166]. 

Some of the activities performed by the OASIS consortium include the 

definition of languages, models and reference architectures for SOA. Among 

them, and with the objective of this Thesis in mind, two documents related to the 

architectural viewpoint of SOC clearly stand out: a Reference Model for Service-

Oriented Architectures (OASIS SOA-RM), established as standard in October 

2006 [165]; and, a Reference Architecture for SOA (OASIS SOA-RA), published 

as public review draft in April 2008.  

The OASIS SOA-RM defines an abstract framework for understanding 

significant entities and relationships between them within a service-oriented 

environment, and for the development of consistent standards or specifications 

supporting that environment. Since it is a ―Reference Model‖, it defines the 

essence of SOA from a high level without giving any particular solution to the 

problems that may arise when specifying concrete architectures following this 

approach.  



 STATE OF THE ART   37 

 

OASIS SOA-RM presents a unified vocabulary of concepts, axioms and 

relationships within the scope of the SOC paradigm. It acts as base support for the 

development of reference architectures and, therefore, concrete service-oriented 

architectures that use those concepts of the reference model and follow the 

abstract solution provided by reference architectures and architectural patterns 

designed for that aim in particular.  

This standard starts from the definition of the term SOA, as it is understood 

by the OASIS consortium: a paradigm for organizing and utilizing distributed 

capabilities that may be under the control of different ownership domains. From 

that premise, RM-SOA establishes the fundamental principles that any 

architecture (or reference architecture, in general) based on services must have: 

visibility, interaction and effect. Visibility refers to the possibility to see the 

capabilities offered by some entity by any other entity with needs to be fulfilled. 

Interaction introduces the idea of realizing the exploit of those capabilities 

publicly shown by means of one-to-one communications. Finally, (real world) 

effects are understood as the result of an interaction. From all these premises arises 

the conception of the term service as the mechanism by which needs and 

capabilities are brought together, using a prescribed interface and exercised 

consistently with constraints and policies as specified by the service description. 

The reference model is completed with the description of three more side-

concepts needed to consistently define a service-oriented architecture: Contracts 

and Policies, presenting the conditions of use established in an agreement needed 

to achieve for two services to communicate each other; Execution Context, that 

comprises all the implementation requirements and features that drive the 

interactions between services; and a Service Description, considered as one of the 

main hallmarks of SOA, it gathers all the information from the service acting as 

starting point of agreement and basis of any possible interaction with the service 

described. Since the reference model is not tied to any technology, implementation 

standard, protocol or under any concrete prescribed architectural decision, the 

aspects included in this Service Description may vary from one implementation to 

another. It usually includes the description of the service interface, information 

about the behaviour model behind the service interaction, semantics used by the 

service and in message exchanges, data about reachability of the service and, of 

course, about the functionality provided by the service described. 

In summary, the OASIS Reference Model for Service-Oriented 

Architecture is a standard that establishes the main assumptions that an application 

of the SOC paradigm in concrete distributed environments should make in order to 

be considered a true SOA-based application. It is important to remark that this 



38   MARCOS LÓPEZ SANZ 

 

standard does not mention, in any case, how services must be composed 

(architectural composability) or how a service-oriented system may respond to 

changes in the environment (architectural dynamism). In addition, it does not 

reference what additional architectural elements (apart from services) should be 

needed to fulfil the requirements of SOA-based systems. 

To cover these issues, the OASIS consortium released in April 2008 a 

document (not defined as standard) specifying their vision of what any service-

oriented architecture should include, that is, a reference architecture description 

for SOA. This reference architecture is based on three main views of a SOA 

Architecture: Business via Services, which captures what SOA means for people 

using it to conduct their businesses; Realizing Service Oriented Architectures, that 

focuses on the infrastructural elements that are needed to support the construction 

of SOA-based systems; and Owning Service-Oriented Architectures, that 

addresses the issues involved in owning a SOA as opposed to using one or 

building one. 

All in all, OASIS‘ SOA-RA and SOA-RM understand the architecture of a 

software system from the concepts of the SOC paradigm, do not consider the 

modelling of architectural styles or design decisions related to service 

configurations and identify both service composition means (orchestrations and 

choreographies) from a conceptual point of view without interference of 

technological details. 

2.2.1.2 NEXOF-RA: the SOA Reference Architecture of NESSI  

Within the scope of the 7
th

 Framework Programme of the European 

Community [62] there is a project devoted to establish and standardize the aspects 

that any architecture based on services should comply with, that is, their goal is to 

define accurately a reference architecture for SOA. This Project is named 

NEXOF-RA [160] and is driven by the Networked European Software and 

Services Initiative (NESSI), a European Technology Platform dedicated to 

investigation in Software and Services.  

NEXOF-RA (NEXOF Reference Architecture) project is the first step in the 

process of building NEXOF, a generic open platform for creating and delivering 

applications enabling the creation of service based ecosystems where service 

providers and third parties easy collaborate. Still a work in progress (the project 

will last until 2012), NEXOF-RA main results will be the Reference Architecture 

for NEXOF, a proof of concept to validate this architecture and a roadmap for the 

adoption of NEXOF as a whole. As it is an ongoing work most of the elements 

that appear in the Reference Architecture structure are still under development. 



 STATE OF THE ART   39 

 

However, the master guidelines for the specification of the NEXOF-RA are fully 

defined. 

NEXOF-RA focuses on the architecture of a service-based software system 

infrastructure. It is provided in the form of a construction kit that guides the 

construction of specific SOA infrastructure architectures. The construction kit 

consists of a set of building blocks implementing architectural patterns. These 

architectural patterns, in turn, are related to a conceptual architecture model. To do 

so, the NEXOF-RA Model [164] captures the relevant entities and concepts on a 

conceptual level as well as their dependencies that constitute such a service-

oriented system. In addition, the NEXOF-RA Model fosters the communication 

about the relevant elements on a higher abstraction level.  

NEXOF-RA understands as service ―an action performed by one entity 

(provider) that matches a request of another (requesting entity), according to the 

interpretation of the latter‖. From this definition, NEXOF-RA starts to define a 

―Service Compliant Reference Architecture‖ by defining the characteristics that a 

Service Architecture should have in order to be able to interact under the 

environments defined in NEXOF. These Compliant Platforms (as they are named 

in the NEXOF-RA definition) conserve and share the features of openness, 

expandability, federation and interoperability that the NESSI consortium aims to 

foster with its definition of NEXOF-RA. It is necessary to explain that a 

―platform‖ from the point of view of NEXOF can be divided into software 

platforms (the operating systems), hardware platforms (the physical resources and 

devices executing the software platforms) and service platforms, understood as the 

software needed to fully execute a service (or a set of services) together with all 

the support it should need to provide dynamism and scalability, policy control and 

security enhancement. It is under this conception of platform that the efforts of 

NEXOF try to develop the NEXOF-RA rules for compliant infrastructures and 

platform compatibility. 

All this concerns refer to a very simplistic view of the SOA world based on 

the existence of three main elements: a service provider, a service requester and a 

service registrar. The relation among these three elements is broadly known as 

―the SOA triangle‖. From the description of each of them, emerge the 

specification of message exchange, service composition, service discovery and 

service monitoring (or management), concepts that are used within the proposal 

described in this dissertation. 

About the evaluation of NEXOF-RA and its corresponding model, this 

initiative also use services as foundational element at a conceptual level. However, 

it understands service composition in a traditional way, without explicitly 



40   MARCOS LÓPEZ SANZ 

 

including the support for service orchestrations or choreographies. A remarkable 

aspect of NEXOF-RA is that it considers the inclusion of architectural styles as a 

key aspect of the architecture specification process. 

2.2.1.3 The Web Service Architecture of the W3C 

The World Wide Web Consortium (W3C) develops interoperable 

technologies to make the Web a robust, scalable and adaptive infrastructure for a 

world of information. W3C long term goals for the Web include: Universal access 

to the Web for all people of culture, education, material resources, etc.; a Semantic 

Web that permits each user to make the best use of the resources available on the 

Web; a Web of trust, with careful consideration for the novel legal, commercial 

and social issues raised by its associated technologies.  

This consortium publishes many of the implementation standard languages 

that may be used when aiming at the development of service-oriented systems. 

However, this subsection focuses in the specification of the Web Service 

Architecture (WSA) as, from the point of view of the W3C, the right model that 

any service-oriented implementation should consider. Although it is not said 

explicitly, the languages delivered by the W3C in relation to the SOC paradigm, 

comply with the vision of WSA and support different aspects of that architectural 

model.  

WSA is intended to provide a common definition of a Web service, 

understood as a software application identified by a URI, whose interfaces and 

binding are capable of being defined, described and discovered by XML artefacts 

and supports direct interactions with other software applications using XML 

based messages via Internet-based protocols. The WSA provides a conceptual 

model and context for understanding Web Services and the relationships between 

the components of this model. The Architecture does not attempt to specify how 

Web Services are implemented, and imposes no restriction on how Web Services 

might be combined. The WSA describes both the minimal characteristics that are 

needed by many, but not all, Web Services. Moreover, it identifies those global 

elements of the global Web Services network that are required in order to ensure 

interoperability between Web Services. 

The document describes both a reference model and a reference 

architecture. The WSA meta- model is comprised of four different models (see 

[233] for more details): Message Oriented model, Service Oriented model, 

Resource Oriented model and Policy model. In addition, it describes both the 

common functionalities of a Web-Service based SOA and a common scenario for 

using Web Services. Regarding the topics of this dissertation, models gathering 



 STATE OF THE ART   41 

 

the main concepts of interest are the Service Oriented model and the Resource 

model.  

The Service Oriented Model focuses on aspects of service, actions, roles, 

agents among others. The primary purpose of this model is to explicate the 

relationships between an agent (understood as any person or organization making 

use or managing a Web Service) and the services it provides or request. This 

model is built on the Message Oriented Model but its focus is on action rather than 

message. The meta-data associated to the service takes a prominent role since it 

allows the description of the semantics and means of interaction behind a Web 

Service. Moreover, the Service Oriented Model allows the interpretation of 

message requests for actions and as responses to those requests. Furthermore, it 

allows an interpretation of the different aspects of messages to be expressed in 

terms of different expectations, in well understood ways, of the different parts of 

the message: in effect, and incremental and layered approach to service (such as 

the one followed by the Web Service specification) is possible using well 

understood headers. The set of standards and languages delivered by the W3C 

aims at the specification of many of the aforementioned layers included in 

message headers and service descriptions. 

The Resource Oriented Model focuses on resources that exist and have 

owners. This model is adopted from the Web Architecture concept of resource. A 

resource is defined to be anything that can have a unique identifier (a URI). This 

architecture is only concerned with those resources that have a name, may have 

reasonable representations and which can be said to be owned. Resources are 

intrinsically related to services since any service is considered as a resource, the 

difference between them relies on the existence of a well-known and described 

interface that can be used to access a service; a resource, as isolated entity, must 

be accessed trough the use of a concrete service. 

To sum up, although WSA conceals many aspects of SOA, it focuses 

mainly on the conceptual modelling of elements that will be technologically 

supported by the standards delivered by the W3C. It does not make any reference 

to the support for architectural styles or design decisions and the only composition 

mean mentioned is that of orchestrations. 

2.2.1.4 The case of REST Web Services 

In his PhD Thesis, Roy Fielding [69] proposed to constrain the vision of 

WSA based on Web Services in order to achieve more reliable Web applications. 

His proposal is known as Representational State Transfer (REST) and has spread 

as a concrete way to implement Web Services. The REST Web is the subset of the 

WWW (based on the HTTP protocol) in which agents provide uniform interface 



42   MARCOS LÓPEZ SANZ 

 

semantics –essentially reduced to the create, retrieve, update and delete operations 

related to a Web Service– rather than arbitrary or application-specific interfaces, 

and manipulate resources only by the exchange of representations. Furthermore, 

REST interactions are stateless, in the sense that the meaning of a message does 

not depend on the state of the conversation. 

The set of constraints imposed by the REST architecture include: 

 Application state and functionality are abstracted into resources. 

 Every resource is uniquely addressable using Uniform Resource 

Identifiers (URI). 

 All resources share a uniform interface for the transfer of state between 

client and resource, consisting of: 

o A constrained set of well-defined operations. 

o A constrained set of content types. 

 A protocol which is: client-server, stateless, cacheable and layered. 

Since the specification of this proposal Web Services are frequently 

divided into REST-compliant Web Services (namely RESTful Web Services) and 

arbitrary Web Services, in which the service may expose an arbitrary set of 

operations. Any Web Service violating the above mentioned constraints is 

considered as not being a true ―RESTful Web Service‖. 

The interest in this proposal is supported mainly for the great acceptance 

that has achieved within the Web Service development community, but, more 

importantly, by the fact that this approach can be viewed as a concrete 

architectural style that should be taken into account in the moment of defining 

architectural style models to include within any Service-Oriented Architecture. 

Another reason to bear in mind REST services is the fact that the technological 

support for this kind of services does not rely on the existence of specific 

architectural elements (such as WSDL interface descriptions of Web Services). 

2.2.1.5 SOA from the perspective of the Community of Grid 

Computing  

According to Foster et al. [75], the paradigm of Grid Computing aims at 

solving the problem of coordinated resource sharing and problem solving in 

dynamic, multi-institutional virtual organizations. This definition comes from the 

late 90s when the importance of specifying new technological solutions for the 

emerging needs of enterprises relying on distributed technologies arose. From that 

time, the concepts behind the Grid Computing have evolved to prevail as 

foundational base for the creation of distributed environments based on services. 

Current grid environments are built upon the existence of a middleware allowing 



 STATE OF THE ART   43 

 

to access to sharing pools of network-distributed resources to deliver any kind of 

applications and services seamlessly. 

Among the different research groups and organizations dealing with the 

principles that must guide the development of Grid solutions the one that is 

traditionally considered as the de facto consortium for the establishment of best 

practices and standards for the Grid is the Open Grid Forum (OGF). The OGF 

consortium was formed from the merging of the Global Grid Forum (GGF) and 

the Enterprise Grid Alliance (EGA) in 2006. GGF had a rich history and 

established international presence within the academic and research communities 

along with a growing participation from industry. EGA, in turn, was a consortium 

focused on developing and promoting enterprise grid solutions.  

The main goal of OGF is to accelerate grid adoption to enable business 

value and scientific discovery by providing an open forum for grid innovation and 

developing open standards for grid software interoperability. OGF provides an 

open forum that brings together key individuals and organizations from the grid 

community to align requirements; identify and remove barriers; workshop best 

practices that will expedite grid adoption.  

Inherited from the works accomplished by the GGF, OGF has continued to 

refine and develop the specification of the Open Grid Services Architecture 

(OGSA) [76], a framework for distributed system integration, virtualization and 

management that includes the definition of a core set of interfaces, behaviours, 

resource models and bindings to build grid environments. 

OGF has embraced OGSA as the blueprint for standards-based grid 

computing. ‗Open‘ refers to the process used to develop standards that achieve 

interoperability. ‗Grid‘ is concerned with the integration, virtualization, and 

management of services and resources in a distributed, heterogeneous 

environment. It is ‗Service-Oriented‘ because it delivers functionality as loosely 

coupled, interacting services aligned with industry-accepted Web service 

standards. The ‗Architecture‘ defines the components, their organizations and 

interactions and the design philosophy used. OGSA-WG is developing the 

architecture and its constituent specifications and profiles in collaboration with a 

number of fellow working groups. 

OGSA defines a set of services that must be present in any grid middleware 

to guarantee the correct and complete use and management of a Grid environment 

thus maintaining an acceptable quality of service level. In that sense, in the OGSA 

specification, there are groups of services dedicated to manage security, to execute 

jobs in resources of the grid, to manage data and resources and even to control and 



44   MARCOS LÓPEZ SANZ 

 

monitor the status of the grid environment itself (see [72] for an overview of the 

OGSA layered architecture and scope of influence within a system).  

As it can be seen, OGSA is devoted to define what service must be present 

in a distributed environment in which several services offer different capabilities 

in order to serve as basis for other upper level tasks. In that sense, the OGSA 

vision of SOA is mainly focused on how these middleware serves communicate 

and relate to each other, relying on well-established standards and languages for 

the implementation of those services.  

2.2.1.6 The Service Component Architecture from the Open SOA 

Collaboration  

The Open SOA Collaboration (OSOA) represents an informal group of 

industry leaders that share a common interest: defining a language-neutral 

programming model that meets the needs of enterprise developers who are 

developing software that exploits SOA characteristics and benefits. The OSOA 

Collaboration is not a standards body; it is a set of vendors who wish to innovate 

rapidly in the development of this programming model and to deliver 

specifications to the community for implementation. One of their central working 

areas is the definition of the Service Component Architecture (SCA) [179].  

SCA is a set of specifications which describe a model for building 

applications and systems using a Service-Oriented Architecture. SCA provides a 

programming model for building applications and systems based on a Service 

Oriented Architecture but using a componentization of the business logic.  

SCA encourages a SOA organization of business application code based on 

components that implement business logic, which offer their capabilities through 

service-oriented interfaces called services and which consume functions offered 

by other components through service-oriented interfaces, called references. SCA 

divides up the steps in building a service-oriented application into two major parts: 

 The implementation of components which provide services and consume 

other services 

 The assembly of sets of components to build business applications, 

through the wiring of references to services. 

The idea behind the SCA initiative is that business functions are provided 

as a series of components offering their capabilities through service-oriented 

interfaces, which are assembled together to create solutions that serve a particular 

business need. These composite applications can contain both new services 

created specifically for the application and also business function from existing 

systems and applications, reused as part of the composition. SCA provides a 

model both for the composition of services and for the creation of service 



 STATE OF THE ART   45 

 

components, including the reuse of existing application function within SCA 

compositions.  

In addition, SCA is a model that aims to encompass a wide range of 

technologies for service components and for the access methods which are used to 

connect them.  For components, this includes not only different programming 

languages, but also frameworks and environments commonly used with those 

languages. For access methods, SCA compositions allow for the use of various 

communication and service access technologies that are in common use, 

including, for example, Web services, Messaging systems and Remote Procedure 

Calls (RPC). 

This initiative marks a milestone within the proposals trying to standardize 

the concepts and features of SOA and its implementation. SCA is the main 

representative mixing the CBSE scope with that of services. This situation allows 

taking advantage of all the works that consider the architecture specification from 

a component-based point of view including architectural styles, platforms and 

technologies, etc. 

2.2.1.7 The Reference Architecture of The Open Group 

The Open Group is a vendor-neutral and technology-neutral consortium, 

whose main role is to capture, understand, and address current and emerging 

requirements, establish policies and share best practices; to facilitate 

interoperability, develop consensus and evolve and integrate specifications and 

Open Source technologies; to offer a comprehensive set of services to enhance the 

operational efficiency of consortia; and to operate a industry‘s certification 

service. Its main goal can be framed in the works that try to enable access to 

integrated information within and between enterprises based on open standards 

and global interoperability. 

The works by The Open Group in the field of services and service-

orientation covers many aspects of the SOC paradigm, including the definition of 

SOA Ontologies, SOA Governance Frameworks or Service Integration Maturity 

Models. The interest placed in this consortium is centred in their SOA Reference 

Architecture [220]. 

Like other proposals for the definition of a reference architecture for SOA, 

the point of view of The Open Group is intended to support the understanding and 

implementation of common systems, industry, enterprise and solution 

architectures leveraging the principles of a SOA. These aspects are materialized in 

the form of their SOA Reference Architecture. In particular, it provides the basis, 

for a system Architecture but aiming at the enterprise point of view, so an 



46   MARCOS LÓPEZ SANZ 

 

enterprise architect can use that template or blueprint as a standard that will be 

instantiated during each individual project or solution that is being developed. 

This SOA Reference Architecture is designed to support different kinds of 

scenarios including those involving consumer organizations, assisting and guiding 

them in the design and implementation of a SOA by providing a concrete basis for 

evaluating and making architectural and design decisions; vendors, allowing them 

to map their specific products to the service architectural models; and other 

standard bodies and other projects from The Open Group, so they can rely on a 

concrete context of common SOA understanding model against they can map their 

related works.  

According to that SOA Reference Architecture, SOA is an architectural 

style that supports service orientation as a way of thinking in terms of services and 

service-based development and the outcomes of services. A service, in turn, is a 

logical representation of a repeatable business activity that has a specified 

outcome (e.g., check customer credit; provide weather data, consolidate drilling 

reports), self-contained that may be composed of other services and that is viewed 

as a ―black box‖ to consumers of the service. 

For the Open Group, the SOA architectural style has the following 

distinctive features: 

 It is based on the design of the services –mirroring real-world business 

activities– comprising enterprise (or inter-enterprise) business processes. 

 Service representation utilizes business descriptions to provide context 

(i.e., business process, goal, rule, policy, service interface, and service 

component) and implements services using service orchestration. 

 It places unique requirements on the infrastructure – it is recommended 

that implementations use open standards to realize interoperability and 

location transparency. 

 Implementations are environment-specific – they are constrained or 

enabled by context and must be described within that context. 

 It requires strong governance of service representation and 

implementation 

Apart from defining 9 interconnected layers, The Open Group does not 

mention in their current works any reference to how services must be created or 

assigned to each of the layers. Moreover, there is no allusion to the Software 

Architecture as key artefact in the development of service-oriented systems but as 

a viewpoint of the topological structure that a system of this kind must have. Since 

their proposal is framed in the group of reference architectures for SOA, the Open 

Group does not give any particular solution or approach to development processes 



 STATE OF THE ART   47 

 

based on services, only a common understanding of the SOC terms for the 

enterprise. 

2.2.1.8 Summary 

Previous subsections have tried to analyze the current and past situation on 

what a Service-Oriented system should include and how to represent and model 

the architecture of this kind of systems from the point of view of several consortia, 

collaboration groups and organizations. In this big and entangled picture it is 

important to point out the efforts that have recently come up from three of those 

institutions: OASIS, OMG and The Open Group. Seeing that all of them, basically 

where addressing the task of specifying a complete reference architecture for 

SOA. In [169] these three organizations propose to join their efforts in order to 

reach to a consensus for a common vocabulary in the scope of Service-Orientation 

in general and in the field of specifying the elements contained within a SOA 

environment in particular. Figure 2-1, extracted from [82], shows a global view of 

the relationships among the different initiatives of these consortia. Collaboration is 

also been successful between the OASIS consortium and some W3C working 

groups. 

 

Figure 2-1. Relationship between relevant SOA Open Technical Products. 

Table 2.2 shows a summary of the initiatives evaluated in previous 

subsections according to the criteria established in Section 2.1. This table also 

includes the decisions taken in the proposed framework (ArchiMeDeS) regarding 

service-orientation and software architecture specification. All the concepts 

defined by all the analyzed consortiums will be considered in order to define the 

foundational features of the ArchiMeDeS framework either at a conceptual level or 

at a more technological one. 



48   MARCOS LÓPEZ SANZ 

 

Table 2.2. Summary of works using Service-Orientation for Software Architecture. 
S

O
F

T
W

. A
R

C
H

IT
E

C
T

U
R

E
 

B
a

se
 P

a
ra

d
ig

m
 

S
O

 

S
O

 

S
O

 

S
O

 

C
B

 

S
O

 

S
O

 

S
O

 

A
rc

h
it

ec
tu

ra
l 

ra
ti

o
n

a
le

 

N
 

A
S

 

N
 

D
D

 

A
S

 

N
 

D
D

 

A
S

 

S
E

R
V

IC
E
-O

R
IE

N
T

A
T

IO
N

 

S
er

vi
ce

 

co
m

p
o

si
ti

o
n
 

B
o

th
 

C
B

 

O
rc

h
. 

N
 

C
B

 

O
rc

h
. 

N
 

B
o

th
 

A
b

st
ra

ct
io

n
 

le
ve

l 

A
 

A
 

T
 

T
 

A
 

T
 

B
 /

 A
 

A
 /

 T
 

S
O

A
 

R
ep

re
se

n
ta

ti
o
n
 

N
o

n
e 

U
M

L
 

W
eb

 S
td

. 

N
o

n
e 

A
d

-h
o

c 

N
o

n
e 

N
o

n
e 

U
M

L
 

 

R
A

 /
 R

M
 

(O
A

S
IS

) 

N
E

X
O

F
-R

A
 

(N
E

S
S

I)
 

W
S

A
  

(W
3

C
) 

R
E

S
T

 

(F
ie

ld
in

g
) 

S
C

A
 

(O
p

en
 S

O
A

) 

O
G

S
A

 

(O
G

F
) 

S
O

A
-R

A
  

 

(O
p

en
 G

ro
u

p
) 

A
rc

h
iM

eD
eS

 

  

 

 

 

 

 



 STATE OF THE ART   49 

 

2.2.2 Using a Model-Driven Approach for Software Architecture 

When putting together the principles behind the Model-Driven approach as 

software development approach and Software Architecture as key artefact of a 

system and its influence in the development process, there are several different 

points of view that can be taken under study. First, it is possible to analyze and 

understand how the specification of concrete Architectural models may affect to a 

Model-Driven development process, that is, as it was explained in the previous 

criteria subsection, answer questions such as what is the role given to Architecture 

within the context of an MDD process? Do exist there a common consensus of the 

Architecture as guiding model? Which should be the real influence of the 

Architecture in MDA? Second, just the opposite, it is possible to view the 

influence of both issues from the perspective of Software Architecture 

development, that is, analyze how the definition of model sets or the use of a 

MDD process can help or ease the specification of Architectures. Again, the 

questions to answer would include: is there any proposal taking advantage of the 

benefits (if any) of following a MDD process for that aim? Are models used to 

cover any other concept associated to the definition of Software Architectures 

(such as architectural knowledge representation or architectural style definition)? 

This subsection is devoted to decipher the ideas behind initiatives of the latter case 

(as explained in the objectives of this Thesis); however, these proposals 

sometimes are framed in wider research efforts covering partly the first issue that, 

in the case of the current work, is also of interest as side research effort (see 

section 1.2 for objectives details).  

To answer the questions that arise in the model-driven development of 

Software Architectures, it is important to note that, to the best of our knowledge, 

there are not many initiatives that involve both concepts in a consistent way and 

simultaneously. Some of these proposals are analyzed in the following 

subsections. 

2.2.2.1 ATRIUM / PRISMA  

One of the best representatives among the existent proposals on Model-

Driven specification of Software Architectures is the work done by Navarro [158] 

and the ATRIUM (Architecture Traced from RequIrements applying a Unified 

Methodology) methodology [156]. ATRIUM is a methodological design 

framework for the concurrent definition of Requirements and Software 

Architecture, defining the automatic/semiautomatic support for traceability 

throughout its application. It follows an MDD approach so that every stage of the 

software development process is described by establishing clearly its associated 

metamodels along with forward and backwards traceability links among them. 



50   MARCOS LÓPEZ SANZ 

 

The goal of this work is to obtain a proto-architecture of the system instantiating 

the PRISMA Architectural Model [186] using Aspect-Orientation as base 

paradigm of the Architecture.  

PRISMA focuses on the definition of architectural metamodels for the 

definition of software architectures using an aspect-oriented approach for that aim. 

Additionally, it also follows an MDD approach with tools supporting the 

methodology and defining architecture evolution by means of defining model-to-

model transformation at the metamodel level. 

Both ATRIUM and PRISMA have a toolset associated allowing the 

graphical design, validation and transformation of each model in their 

specification called MORPHEUS [156]. Their transformations are based on the 

standard QVT specification by the OMG. These works put a special interest in the 

definition of the principles that leads to the specification of every Software 

Architecture, that is, the architectural knowledge. This aspect converts ATRIUM 

in a proposal centred in modelling both the design rationale and the design 

decisions taken by the involved stakeholders, being all these concepts supported 

by the MORPHEUS tool.  

Regarding the criteria explained previously, after analyzing these two joint 

initiatives, it is possible to state that: the base paradigm of the architecture is 

aspect-orientation; they follow a model-driven development process for the 

specification and evolution (via QVT model transformations) of the architecture in 

which the architecture model plays a central role. The support for architectural 

styles represents an inherent feature of this framework. In addition, it is supported 

by a toolkit based on the Eclipse platform. Though they define its own language 

for architecture description, it uses UML as graphical notation. 

2.2.2.2 Mattsson et al. 

The work by Mattsson et al. [139] aims also at the definition of a process 

for the specification of architectural design rules using MDD techniques. Again, 

the use of models is not focused on the definition of the architecture itself but on 

the inclusion of design rules within the specification of the architecture during an 

MDD process (not used for the architecture but for the development of the 

system). This last issue does not imply that in their proposal the architecture is not 

modelled, but that the architectural model does not evolve together with the 

system. The architecture follows an independent development process (using a 

product-line approach) that ends-up in a document describing the main features of 

the system architecture. Authors defend that using models to represent the 

requirements and design of the architecture is a good approach, but lack to give 

specific rules to do so. However, although stating that this should be the way to do 



 STATE OF THE ART   51 

 

so in a MDD context, they finally create a textual document with the architecture 

specification with its own syntax and semantics. The role given to the architecture 

is, in that proposal, similar to that given in other development processes such as 

the Unified Development Process [99]: they highlight the importance of 

architectural modelling without specifying a concrete model-driven associated 

process. In the end, the proposal by Mattsson et al. admits their inability to model 

architectural design rules, and as a consequence, the Architecture. However, it 

represents one of the few efforts for modelling architectural design decisions using 

MDD techniques.  

Works trying to align MDD and Software Architecture are more likely 

concerned with modelling architectural rules, design decisions or the architectural 

rationale that leads to specify the architecture in a concrete manner rather than 

with the discussion of how to create a specific process for the specification of the 

architecture through models. In that research line there are some other related 

works trying to reason about the modelling of architectural knowledge such as the 

ones by Tyree and Akerman [5] or Tang, Babar et al. [217] focused on defining 

ontologies supporting the concepts of that architectural knowledge; there are also 

works centred on giving tool support for that architectural reasoning such as 

EAGLE [64]. 

2.2.2.3 Mikkonen et al. 

However, one aspect associated to architectural design decisions and 

rationale is the definition and inclusion of architectural styles within software 

architecture. Architectural styles define the rules and vocabulary specific for a 

common structural and behavioural organization of the system [208]. They have a 

special interest for the current Thesis as they affect the architectural models of the 

system. In that direction, works like the one by Mikkonen et al. [150] have had an 

important influence in the research accomplished in the current Doctoral Thesis. 

They discuss the role of architectural styles in the context of MDA proposing to 

add a specific model to gather all the information related to architectural styles 

(both vocabulary and constraints as structural pattern elements), called 

Architecture Specific Model (ASM). This model results from the merging of the 

PIM-level models and a concrete model containing the features of the architectural 

styles (as roles attached to model elements). As a result, they place this ASM 

model between the PIM models and the PSM models, obtained by merging both 

the ASM model and the information of the target platform. The PIM-to-ASM 

transformation is done semi-automatically by following a process based on name 

matching. In addition, since they decide to base model-to-model transformations 

in the use of patterns in transformation processes, it obliges the architect to mark 



52   MARCOS LÓPEZ SANZ 

 

which elements in the architecture take which role indicated in the architectural 

style. The strategy followed as modelling approach in this initiative is not clearly 

stated. However, it seems that they inherit the concepts of UML as notation for 

their models without explicitly defining a comprehensive set of concepts for their 

proposal, since they use Object-Orientation as base paradigm, but not a UML 

profile. However, for the representation of the architecture they define a formal 

language named DisCo, a sort of DSL for architecture specification. As for tool 

support, they use an ad-hoc tool based on C++ for modelling and transformation 

execution. They explicitly state that they follow an architecture-centric software 

development process. 

2.2.2.4 Perovich et al. 

Other relevant work dealing with the use of MDA for the development of 

Software Architectures is that of Perovich et al. [186]. They start from a 

separation of architectural views [197] that is modelled throughout the progressive 

incorporation of quality and functional attributes obtained from the initial 

requirements specification. Since their proposal is based on the MDA approach, 

they sequentially define, first, Computation Independent models for the 

architecture (Computation Independent Architecture – CIA); from that models 

they incorporate the information of well-known patterns, tactics and perspectives 

to the architecture models so it is possible to obtain models of the architecture 

from a Platform Independent perspective (Platform Independent Architecture – 

PIA); to finally reach the bottom-most level of the architecture (Platform Specific 

Architecture – PSA) by means of including platform-specific patterns, frameworks 

and information form COTS (Commercial Off-The-Shelf) components into the 

architectural model. The method for Architecture specification proposed by 

Perovich et al. uses a notation based in UML but without describing which 

concrete elements are included in each model. The evolution of the architecture 

description through the MDA process is achieved by means of ATL 

transformations. As explained in their proposal, both design decisions and design 

rationale behind each architectural concern included in their models is 

encapsulated in the transformation rules used for model-to-model transformation. 

The inclusion of architectural styles is not defined explicitly, but its usage may be 

extracted from the “tactics and pattern” inclusion in their PIA models. In 

addition, their proposal is partly supported by an Eclipse-based prototype toolkit 

allowing graphical modelling and model transformation, though it is, at the 

moment of writing the current state of the art, an ongoing research work. 



 STATE OF THE ART   53 

 

2.2.2.5 COSA 

A similar approach to that of Perovich et al. is followed in the research 

works described by Alti et al. [7] that aim at the integration of graphical ADL 

representations using UML profiles and model transformations in the context of a 

MDA-based framework. Their proposal, named COSA (Component-Object based 

Software Architecture) starts from the definition of a meta-model at the PIM level 

of MDA that gathers all the concepts of a component-and-connector traditional 

architecture and its correspondent UML profile. From the models that conform to 

that meta-model they allow the transition to platform specific models (PSM-level) 

by means of the definition of several ATL transformation rules. They support 

these transformations in a set of plug-ins based on the IBM Rational Software 

Modeller for Eclipse 3.1 for both the modelling and transformation steps of 

architecture development. They explicitly state that their work does not include 

any support for the inclusion of architectural style aspects within their model-

driven process. 

2.2.2.6 DUALLY 

Another viewpoint for taking advantage of a model-driven approach for the 

specification of Software Architectures is that followed in the proposal by Di 

Ruscio et al. [52]. They start from the premise that, in order to adequately analyze 

and describe the Architecture of a system, it is possible to follow a notation based 

on UML. Their proposal is based on the creation of a framework, named 

DUALLY [98], that allows the specification of Software Architectures following a 

component-and-connector approach. Inside this framework they have defined a 

UML profile for model notation (though defining the core architectural concepts 

using a formal ADL, also called DUALLY), a tool for graphical modelling 

support and a development process for Software specification and evolution. 

DUALLY serves as a way to describe what to model (the core architectural 

elements) and how to model (via their profile). The framework is completed by a 

set of mechanisms to extend and adapt the core component-based models of 

DUALLY to new domains [130]. For that aim, their proposal is accompanied by a 

rigorous set of model transformations based on Abstract State Machines, as a 

formal and flexible platform on which basing a solution for model 

transformations. They also use ATL in order to weave the different models during 

these transformations.  

2.2.2.7 Mansurov et al. 

The proposals described in the previous subsections follow a top-down 

approach for the description of Software Architectures. However, there are other 



54   MARCOS LÓPEZ SANZ 

 

proposals that take the opposite path: building a coherent representation of the 

Architecture of a system starting from existing code and using a Model-Driven 

approach. That is the case of Mansurov et al. [134], that propose a method for the 

evolution of existing software assets [134] by means of following the next 

principles: i) extracting an Architecture Model from code; ii) achieving the 

sufficient level of abstraction by composition and Architecture Refactoring; and 

iii) proactive enforcement of architecture integrity to build a managed architecture 

(Software Architecture is considered to be managed when the organization 

understands the up-to-date, precise and quantifiable situation of the components, 

their dependencies and configurations [36]). By following an architecture-centric 

approach, they manage to extract MDA‘s PSM and PIM models from existing 

code. They achieve that by using reverse engineering tools that, at least from their 

experience, allow obtaining a component-based representation of the system under 

analysis. The scope in which this work is framed (enterprises needing to change 

existing applications) enforce the idea of using a systematic approach based on 

models that permit the modification and refactoring of a system by means of back 

an forth automatic transformations. The base paradigm used for the architecture is 

based on components and connectors  

2.2.2.8 ArchMDE 

ArchMDE [57] is another proposal tackling the model-driven development 

of software architectures. It is based on the use of a component-based 

specification of the architecture but taking into account a specific model of the 

hardware counterpart of the system and also including information from potential 

architectural styles applicable to the architecture design. Authors propose a 

complete architecture-centric process based on the use of QVT model 

transformations for the evolution of the architectural models. No reference is done 

about the tool support of that proposal.  

2.2.2.9 Summary 

Table 2.3 shows a summary of the aforementioned works in comparison 

with the proposal of the current Thesis. In it, together with the summary of the 

previously analyzed works, the proposal of this Thesis (ArchiMeDeS) is outlined 

with the choices done regarding model-driven engineering of software 

architectures. 

 

 

 

 



 STATE OF THE ART   55 

 

Table 2.3. Summary of works using an MDD approach for Software Architecture. 
S

O
F

T
W

A
R

E
  
A

R
C

H
IT

E
C

T
U

R
E
 

B
a

se
 

P
a

ra
d
ig

m
 

A
O

 

C
B

 

O
O

 

O
O

 

C
B

 

C
B

 

O
O

 

C
B

 

S
O

 

A
rc

h
it

ec
tu

ra
l 

 

R
a

ti
o
n

a
le

 

D
D

 

D
D

 

A
S

 

A
S

 

N
 

N
 

N
 

A
S

 

A
S

 

M
O

D
E

L
-D

R
IV

E
N

 E
N

G
IN

E
E

R
IN

G
 

M
o
d

el
li

n
g

 

A
p

p
ro

a
ch

 

H
y

b
. 

D
S

L
 

D
S

L
 

U
M

L
 

U
M

L
 

H
y

b
. 

U
M

L
 

D
S

L
 

H
y

b
. 

A
rc

h
it

ec
tu

re
  

R
o

le
 

A
C

 

IA
 

A
C

 

IA
 

IA
 

IA
 

A
C

 

A
C

 

A
C

 

T
o

o
l 

su
p
p

o
rt

 

Y
 [

E
cl

ip
se

] 

N
 

Y
 [

ad
-h

o
c]

 

Y
 [

E
cl

ip
se

] 

Y
 [

E
cl

ip
se

] 

Y
 [

ad
-h

o
c]

 

Y
 [

ad
-h

o
c]

 

N
 

Y
 [

E
cl

ip
se

] 

M
o
d

el
 t

ra
n

sf
o

rm
a

ti
o
n

s 

Y
 [

Q
V

T
] 

N
 

Y
 [

p
at

te
rn

 m
at

ch
in

g
] 

Y
 [

A
T

L
] 

Y
 [

IB
M

 R
S

M
] 

Y
 [

A
S

M
 /

 A
T

L
] 

Y
 [

co
d

e 
an

al
y

si
s]

 

Y
 [

Q
V

T
] 

Y
 [

A
T

L
] 

 

A
T

R
IU

M
 /

 

P
R

IS
M

A
 

M
a

tt
so

n
  

 e
t 

a
l.

 

M
ik

k
o
n

en
 e

t 
a
l.

 

P
er

o
v

ic
h

  
 e

t 
a

l.
 

C
O

S
A

 

D
U

A
L

L
Y

 

M
a

n
su

ro
v

 e
t 

a
l.

 

A
rc

h
M

D
E

 

A
rc

h
iM

eD
eS

 



56   MARCOS LÓPEZ SANZ 

 

2.2.3 Using both a Model-Driven Approach and Service-

Orientation for Software Architecture 

Previous sections have shown a brief analysis of ongoing and past works 

that somehow deal with two of the topics of the current Thesis. However, none of 

them consider the task of specifying Software Architectures using the principles of 

the model-driven approach for its development and the concepts of service-

orientation as basis for the elements contained in the Architecture altogether. This 

subsection presents the study of existing works that take into account these three 

aspects simultaneously. In it, the criteria explained in section 2.1 is used to 

analyze their main features, their advantages and drawbacks and their relation to 

the proposed framework. Although most of them refer to research efforts in the 

scope of European projects, next subsections also include some others coming 

from the industry or research groups that also work in these topics. 

In the case of European Projects, it is significant to remark the importance 

and influence of the EU Funding activities in the field of Information and 

Communication Technologies (ICT) and, more specifically, the support for 

research efforts in the scope of service-orientation. Since the 5
th

 edition of the 

Framework Programme (FP) the number of projects related to manage and 

improve the understanding, acceptance and spread of service-orientation, in all its 

forms, has been increased greatly, counting more than 50 projects related to that 

topic in the last edition
1
 (7

th
 Framework Programme 2007-2013). This subsection 

includes the analysis of those projects whose progress best fit with the proposal of 

the current Thesis: SeCSE, PLASTIC, SENSORIA and a brief remark on NESSI-

2010 (the main assets are mentioned in section 2.2.2.2). This subsection ends with 

the analysis of the works accomplished by IBM in this field and some other 

independent research efforts in this direction. 

2.2.3.1 SeCSE Project 

Started in 2002 as one of the numerous projects of the 6
th

 Framework 

Programme (FP6, [62]), the main goal of SeCSE [13] is to create methods, tools 

and techniques for system integrators and service providers and to support the 

cost-effective development and use of dependable services and service-centric 

applications. The approach to achieve this goal is based on four different 

complementary areas: Service Engineering, Service Discovery, Service Delivery 

                                                

 

1 Project search at ISTWeb: http://cordis.europa.eu/ist/st/projects.htm 



 STATE OF THE ART   57 

 

and Service-Centric System Engineering. The topics that may have relevance 

according to the topics of the current Thesis fall into the Service-Centric System 

Engineering section of the SeCSE project. This project includes the specification 

of a system Software Architecture based on a conceptual model defining all the 

concepts behind a service-oriented view of a system. This conceptual model acts 

both as starting point for the specification of a global view of the architecture and 

as common vocabulary supporting the rest of research works accomplished in this 

project.  

As in any SOA-related research initiative, all the terms of the SeCSE 

conceptual model revolve around the service concept. Among the features of the 

SeCSE project about this concept there is one that stands out: it clearly identifies 

that a service must be understood differently according to the domain where it is 

used. In addition, the SeCSE project remarks the importance of identifying the 

stakeholders that come into relation with the services appearing in a service-

oriented system.  

About service composition, the SeCSE project focuses its interest in giving 

a full support for the definition of complex service environments. To get that, 

SeCSe states that there are three critical aspects to consider when dealing with 

service composition: management of the service state (statefulness vs. 

statelessness), compositeness (simple vs. composed) and, more importantly, the 

influence that the selection of a concrete architectural style (design strategy for the 

service composition) may have on the composition [41]. This aspect converts 

SeCSE in one of the few research initiatives including architectural styles as 

constituent part of the service architecture modelling.  

To support the specification of service composition, SeCSE defines a 

language based on two different views of the composition: The service interaction 

view, which describes the service roles that participate in the composition and the 

way these roles interact (interaction model) and the service process view, which 

describes the composition from the view point of a specific role in the 

composition. Both models are based on the definition of XML documents shared 

by the participant services on the composition. 

Another important aspect in the SeCSE project is the specification and 

performance of service discovery. In SeCSE three different ways of service 

discovery are proposed: they call early discovery to the inclusion of new services 

in the service specification during the elicitation of system requirements; 

secondly, at design time (what they call Architecture-time discovery); and, thirdly, 

all the processes and artefacts needed to allow the discovering of services when 

the system is running. 



58   MARCOS LÓPEZ SANZ 

 

2.2.3.2 PLASTIC Project 

Similarly to the efforts of SeCSE for defining a common vocabulary for 

services, the PLASTIC Project [190] (also part of the FP6) aims at providing tools 

and methodologies to develop service-based applications that are adaptable to the 

context and able to offer the best tradeoffs between offered Quality of Service 

(QoS) from the platform and required QoS from users. The interest of this project 

was mainly focused on developing a software development environment enabling 

the rigorous development of SLA and resource-aware services, which may be 

deployed on the various networked nodes, including handheld devices 

In order to achieve its goals, the PLASTIC project uses both service-

orientation and CBSE as base paradigms to build a layered platform infrastructure. 

On the one hand, the service layer supports the abstract description of high level 

functionalities (providing a uniform interface), manages QoS aspects and allows 

for the dynamic composition of services according to user needs. On the other 

hand, the component layer represents the computing environment for networked 

services that is able to manage the lifecycle of the software components while 

delivering functionalities for a resource from anywhere in the network [14]. 

It is important to highlight that the PLASTIC project puts a special interest 

in the management of the context of the system. The PLASTIC proposal include 

aspects that allow respecting the QoS requests made by the consumer being the 

context the aspect that drives the component adaptation to the run-time 

environment.  

Both SeCSE and PLASTIC use UML 2.0 and have created tools (based on 

the Eclipse framework) for the creation of graphical representations of the 

artefacts they propose to use to build service-oriented software systems. These 

tools include model editors, non-functional analysis tools and code generation 

tools. 

2.2.3.3 Project SENSORIA 

The SENSORIA Project is probably one of the research efforts that best 

suits the topics of the current Thesis. As part of the 7
th

 Framework Programme, the 

SENSORIA Project aims at the development of a novel comprehensive approach 

to the engineering of software systems for service-oriented architectures where 

foundational theories, techniques and methods are fully integrated in a pragmatic 

software engineering approach. This project ranges from the definition of formal 

languages to accurately describe service-oriented architectures (SENSORIA 

Reference Model Language – SRML) [68], graphical DSL languages supporting 

the graphical representation of service-oriented architectures using extensions of 

UML (UML4SOA), CASE tools [141], etc. 



 STATE OF THE ART   59 

 

On the foundational basis of the models delivered by SENSORIA about 

service-orientation, they fall into the category of the works that use the SCA 

vision of the SOC paradigm to build service-oriented systems. Starting with the 

definition of UML profiles for SOA [16][95], the SENSORIA project has 

specified a complete language (UML4SOA) allowing the description of service-

oriented architecture based on components and that supports the specification of 

complex relationships among services based on service composition. However, 

that language only supports orchestrations, leaving aside the specification of 

service choreographies.  

Transformations between the different architectural models are achieved by 

the execution of automatic graph transformations, which are also used to validate 

the architectural models [88]. 

The inclusion of architectural styles, is encoded (consisting of the class 

diagram of the style, a set of graph transformation rules capturing the dynamic 

behaviour and the model instance for the business application) into a transition 

system using model-checking techniques. Business application scenarios are 

formalized using a set of reachability properties and an ulterior validation using 

simulation over the obtained models [16]. 

The use of Model-driven techniques applied over the models defined with 

the profile to generate automatically executable code allow to get BPEL [10][109] 

code as for orchestrations, and to executable languages such as Jolie or Java.  

2.2.3.4 SOMA-ME: the proposal of IBM 

From the enterprise world, the works accomplished by IBM in the area of 

using Model-Driven techniques for the development of service-oriented software 

architectures present a complete vision supported by development methods, 

conceptual models, tools and practical experiences. 

IBM‘s proposal is materialized in the form of SOMA-ME, a platform for 

the model-driven design of SOA solutions. It follows a model-driven approach to 

transform high-level business specifications to executable code implementing the 

standards related to Web services technologies. 

In order to advance in the definition of a service-oriented system, SOMA-

ME proposes to execute model-to-model transformations of different kinds: 

Refactoring transformations (to perform changes within a model according to 

different criteria), pure model-to-model transformations (to convert some model 

specification into a different one according to some external information flow) and 

model-to-code transformations (to generate executable code from a model). The 

strategy followed by IBM to perform these transformations is to use an extension 

of the Rational Software Architect tool (RSA). It is important to remark that this 



60   MARCOS LÓPEZ SANZ 

 

process generates not only new models or code, but also some documentation 

related to the transformation performed. [12]. 

The support for architectural styles is an aspect greatly taken into account 

in the research accomplished by IBM in this field. Their proposal includes 

methods and techniques to include SOA design patterns obtained from their 

experience with service-oriented technologies. Additionally, there are works that 

model not only the architectural styles but also both the design decisions behind 

the selection of those styles and the decisions placed over the Software 

Architecture under development [244]. 

Service composition in the IBM proposal is tackled as part of a wider effort 

for service integration (Service-Oriented Integration - SOI). As a consequence, 

service composition is not reduced to supporting the modelling of orchestrations 

and choreographies, but it includes the different trends that currently exist when 

deploying a service-oriented service in which there exist several services trying to 

perform a concrete behaviour. In that sense, the concepts of orchestration and 

choreography are reduced to implementation concerns depending greatly on the 

technology used. At a more conceptual level, the IBM proposal is based on a 

layered view of the Architecture very similar to that of the OASIS consortium 

(IBM is one of the participants in that consortium). 

2.2.3.5 Other relevant works 

There are other individual works that worth to mention regarding the 

model-driven specification of service-oriented software architectures. This is the 

case of the work by Zhang et al. [243] that, just like the SCA proposal, considers 

the modelling of software architectures founded on the conception of service 

components as first-class modelling entities. Regarding other architectural 

specification concerns, they do not tackle the possibility of modelling architectural 

styles or design decisions, which represents, as it was justified previously in this 

chapter, an important aspect in service-oriented modelling environments. The 

notation used for their proposal is based on the use of UML profiling techniques 

comprising all the main identifiable concepts of the SOC paradigm. In that 

context, service composition is managed through the specification of concrete 

elements supporting the modelling of service choreographies. No further reference 

is done on the modelling of orchestrations, the tool support of their proposal or the 

inclusion of model transformations (they uniquely work at a conceptual 

abstraction modelling level).  

The works by Zdun et al. [242], in turn, can be considered as a much 

evolved proposal according to the criteria established for this state of the art. They 

define a DSL for SOA together with a set of UML2 profiles in order to be used as 



 STATE OF THE ART   61 

 

part of a process-driven integration of services based on the MDD principles. In 

that context, they use a hybrid approach for service-oriented architecture 

specification. With that aim, they use activity diagrams, class diagrams and 

component diagrams in order to support the modelling of business processes, 

message flows and software architecture specification. They claim to use an 

underlying formal approach for their models based on FCL (Fuzzy Control 

Language). Moreover, they defend the use of tools supporting their development 

process; however, they lack of additional information of what concrete MDE tool 

could be used to support their proposal. About the inclusion of design rationale in 

their models, they defend the use of high-level patterns in workflows that provide 

guidance on how to assemble the workflow patterns within their models. 

2.2.3.6 Summary 

As can be extracted from the previous subsections, there are not many 

proposals that aim at the development of Software Architectures using a model-

driven approach (and MDA in particular) and relying on the concepts of the SOC 

paradigm (using service as foundational concepts for architecture specification). 

Table 2.4 shows a brief review of what the main projects analyzed offer in the 

field of research covered by this Thesis. Additionally, this table shows the 

decisions taken in the proposal of this Thesis (ArchiMeDeS) regarding a model-

driven and service-oriented approach for software architecture specification. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



62   MARCOS LÓPEZ SANZ 

 

Table 2.4. Summary of works using both MDD and Service-Orientation for 

Software Architecture. 

S
O

F
T

W
A

R
E

 A
R

C
H

IT
E

C
T

U
R

E
 

B
a

se
 

P
a

ra
d
ig

m
 

S
O

 

S
O

 

S
O

 

C
B

 

C
B

 

O
O

 /
 C

B
 

S
O

 

A
rc

h
. 

R
a

ti
o
n

a
le

 

D
D

 

A
S

 

D
D

 

D
D

 

N
 

D
D

 

A
S

 

S
E

R
V

IC
E
-O

R
IE

N
T

A
T

IO
N

 

S
er

vi
ce

 

C
o

m
p

o
si

ti
o
n
 

O
rc

h
. 

O
rc

h
. 

O
rc

h
. 

B
o

th
 

C
h

o
r 

O
rc

h
. 

B
o

th
 

A
b

st
r.

 

L
ev

el
 

A
 

T
 

T
 

B
 /

 A
 /

 T
 

A
 

A
 /

 T
 

A
 /

 T
 

M
O

D
E

L
-D

R
IV

E
N

  
E

N
G

IN
E

E
R

IN
G

 

A
rc

h
. 

R
o

le
 

IA
 

IA
 

IA
 

IA
 

N
 

IA
 

A
C

 

M
o
d

el
li

n
g

 

A
p

p
ro

a
ch

 

U
M

L
 

H
y

b
 

U
M

L
 

D
S

L
 

U
M

L
 

H
y

b
. 

H
y

b
 

T
o

o
l 

S
u

p
p

o
rt

 

Y
 [

E
cl

ip
se

] 

Y
 [

E
cl

ip
se

] 

N
 

Y
 [

R
S

A
  

p
lu

g
in

] 

N
 

Y
 [

ad
-h

o
c]

 

Y
 [

E
cl

ip
se

] 

M
o
d

el
 

T
ra

n
sf

o
rm

a
ti

o
n

s 

Y
 [

G
ra

p
h

 t
ra

n
sf

.]
 

Y
 [

G
ra

p
h

 t
ra

n
sf

.]
 

Y
 [

G
ra

p
h

 t
ra

n
sf

.]
 

Y
 [

W
S

X
] 

N
 

N
 

Y
 [

A
T

L
] 

 

S
E

C
S

E
 

S
E

N
S

O
R

IA
 

P
L

A
S

T
IC

 

S
O

M
A

-M
E

 

(I
B

M
) 

Z
h

a
n

g
 e

t 
a

l.
 

Z
d

u
n

 e
t 

a
l.

 

A
rc

h
iM

eD
eS

 



 STATE OF THE ART   63 

 

2.3 Concluding Remarks 

This Chapter has focused on how some essential aspects of Model-Driven 

Engineering and Service-Orientation are addressed by existing consortia, 

companies and academia for Software Architecture specification. For that 

purpose, a coherent set of evaluation criteria was described to analyze them. 

The accomplished evaluation determined that most of the proposals 

providing an architectural approach to service-orientation were related to the 

definition of reference architectures or reference models. However, it has been 

detected that most of them do not meet all of the defined criteria.  

For example, concerning compositionality, few proposals support all kinds 

of service composition. Similarly, when considering information about design 

decisions, not many of them are able to superimpose architectural styles. In 

addition, most of them consider the definition of the architecture only at one 

abstraction level (business, technological or conceptual) thus constraining the 

flexibility of their architectural developments.  

Also, it is quite rare to find full-fledged proposals that tackle Software 

Architecture specification from a Model-Driven perspective and using the 

principles of Service Orientation. Most of the works analyzed belong either to 

projects in the European Framework Programme or to some efforts from big 

companies. Nevertheless, the synergies among these three perspectives have not 

been fully exploited yet. As a result, none of them cover all the features expected 

in that context, as shown by the evaluation in Section 2.2.3. 

Finally, the analysis of model-driven proposals for software architecture 

specification has shown a tendency towards the use of a hybrid approach as the 

more adequate choice for that purpose. Hence, the proposal in this Thesis has been 

also designed using this approach. 

The ArchiMeDeS framework, presented in this dissertation, aims at 

covering all these issues by offering a modelling framework which supports, 

among other features, the architectural specification of any kind of service 

composition (both orchestration and choreographies) and also at any abstraction 

level. Besides, it grants the possibility of superimposing architectural style 

information to architectural models. The objective of this Doctoral Work is to 

provide with a complete framework that fill in some gaps detected in the state of 

the art regarding the aspects listed in Section 2.1. By using a hybrid approach, 

ArchiMeDeS benefits from both a UML notation and the independence of creating 

a DSL for specific goals. Besides, it provides tool support for modelling and 

model transformation purposes, thus bringing all the advantages of the MDE 

approach to service-oriented software architecture specification. 





 

 

 

3. CHAPTER 3: The ArchiMeDeS Framework  

Chapter 3: 

The ArchiMeDeS Framework 





 THE ARCHIMEDES FRAMEWORK   67 

 

Having analyzed some of the most relevant works in the research fields 

related to the topics of this Thesis, it is time to present a detailed vision of the 

proposal outlined by this Doctoral Thesis: ArchiMeDeS, a framework for the 

specification of Software Architectures following a Model-Driven approach and 

using Services and the Service-Oriented paradigm as semantic basis for the 

architectural models.  

In order to make a clear description of ArchiMeDeS, this chapter is 

structured in four sections. The first one starts establishing the decisions taken to 

build up the framework, their implications and the strategy issued in order to 

successfully create the aforementioned framework. Next, second section puts the 

focus on the description of ArchiMeDeS as modelling environment for Service 

Architecture specification. That segment of the dissertation exposes the arguments 

that allow solving the issues posed in the hypothesis of this Doctoral Thesis by 

means of describing several DSLs for that purpose. The last section will serve 

both to show how the framework can be integrated in a concrete development 

methodology and how it drives the associated model-driven development process. 

To finish, the final section wraps up some concluding remarks about the proposal. 

3.1 General Approach and Framework Development Strategy 

Before diving into the explanation of the constituent features that define 

ArchiMeDeS, it is important to clearly set some premises and assumptions that 

have lead to its development. The issues to discuss include: the reasons behind the 

choice of Service-Orientation for the description of Software Architectures, the 

role that MDA may play within the scope of Architecture specification and an 

introductory discussion on the convenience of defining specific DSLs based on 

models for the development of Software Architectures. 

3.1.1 Using Service Orientation as a Foundation for Software 

Architectures  

The definition given for the Architecture in the previous chapter states that 

it is developed upon the enumeration, classification and connection of different 

building blocks compiled under the name ―components‖. The term ―component‖ is 

used there as an architectural element that encapsulates a set of related functions 

(or data). However, the specification of Software Architectures is commonly 

based on the use of a concrete paradigm providing the semantic basis for the 

concepts used within the Software Architecture.  

The modern age of Software Architecture (i.e. the developments made 

during the 90s and onwards) came up within the context of a component-oriented 



68   MARCOS LÓPEZ SANZ 

 

culture. Therefore, even though architectural components are not exactly like 

implementation level components, there are obvious parallels between them. 

Regarding that, the CBSE (Component-Based Software Engineering) [216] 

paradigm can be considered as a close conceptual relative of ‗traditional‘ software 

architecture specification. 

The CBSE paradigm puts the emphasis on the decomposition of the 

engineered system and aims at realizing software reuse by developing systems 

combining both pre-existent software artefacts and newly created ones. Though 

the largely known advantages of using this paradigm for Software Architecture 

specification and the many languages, tools and implementations associated to it, 

there are noteworthy drawbacks that suggest using a different approach to build 

and describe modern Software Architectures. Among them, the one that probably 

stands out more clearly is the tight coupling that is established when creating 

composite architectural configurations [119]. This issue constrains the flexibility 

and adaptability of developed systems, a desired circumstance in current 

implementations required by modern business processes and needs. 

Of course, there are also other possibilities that may serve for the purpose 

of defining Software Architectures. Classes as defined by the Object-Oriented 

paradigm [199] or Aspects in the Aspect-Oriented paradigm [107] may be used 

too. The interest of this dissertation is centred in the Service-Oriented paradigm 

and the concept of Service in particular. 

Accordingly, in this dissertation it is proposed to use the concept of Service 

and its related paradigm, SOC [181], as the conceptual cornerstone for 

architectural definition. The reasons for that decision are listed in the following: 

 The SOC paradigm can be understood as an improvement of CBSE. 

At the core of architecture specification, services can offer the same 

capabilities as components. They represent computational entities within 

the system that may be interconnected, offer an interface that exposes the 

ways of communicating with it and may be composed to define complex 

structures following established rules and behaviours. Furthermore, 

services may help to overcome the problem of creating flexible software 

solutions. These building blocks are considered, in any environment or at 

any abstraction level, as autonomous entities whose capabilities can be 

accessed independently their occasional participation in a composite 

structure. Thus they can be perfectly suitable as a base for architectural 

definition. 

 Describing service architectures eases the alignment of technology 

with business models. As stated previously, current trends in Software 



 THE ARCHIMEDES FRAMEWORK   69 

 

Engineering tend to align high level descriptions of business processes 

(derived from using BPM [230] approaches and techniques for instance) 

and needs with the software solutions that are developed to support them 

[114][59]. Because of that, an architectural description based upon 

principles and concepts that are closer to that high-level definition may 

aid to build more accurate solutions. In addition, the evolution of 

technologies into more distributed environments establishes that current 

service-based technologies may be applied more easily when 

understanding the system from a service-oriented perspective. 

 Service-Orientation implicitly involves the definition of complex 

connection elements. As businesses become more complex, so does the 

relation among the participants of their business processes. With the 

externalization of these processes as part of a company market strategy to 

improve its revenues, the reliance on distributed technologies has become 

a crucial aspect. In terms of the Architecture providing support to that 

situation, this issue is transformed into a need for incorporating complex 

information policies and trading rules that must be specified when 

designing the Software Architecture. Since its origin, the Service-

Oriented paradigm has incorporated ways of dealing with complex 

communication means and connection constraints in the form of service 

contracts. Due to this feature, the use of Service-Orientation for 

Architecture specification represents a step forward over precedent 

approaches.  

 Services have the capability to remain independent while 

participating in composite structures. Though it was mentioned 

previously, it is important to remark the fact that service orientation 

offers an added value to traditional architecture representations based on 

components in the way composite elements are created. Due to its loosely 

coupled nature, core elements of the paradigm (services) act differently to 

components, being considered as independent entities even when they 

take part in a composition. In addition, service composition is based upon 

the definition of organizational schemes easier to adapt to business 

strategies than other alternatives. These composition or coordination 

schemes are materialized in the form of orchestrations and 

choreographies. 

 Service-Oriented Architectures deal intrinsically with architectural 

dynamism. Another change detected in current business trends is the 

high variability of the elements that are consumed for obtaining a desired 



70   MARCOS LÓPEZ SANZ 

 

result (product). With the partition of businesses and business processes 

in sequences of tasks to be performed by external entities, the need for 

adaptation to market needs and tight costs requires a level of 

organizational dynamism that is also reflected in the computational 

resources associated to those processes. In terms of architectural 

configurations supporting these flexible scenarios, it has become almost 

mandatory that the whole software solution count with an adequate level 

of flexibility and element exchangeability (plus the need for service 

discoverability). These features foster a loose coupling between 

architectural elements which is an aspect deeply bound in the foundations 

of Service-Orientation from its beginnings. 

3.1.2 Using the MDA Approach for Software Architecture 

Development 

The definition of what Software Architecture is, or should be, may vary 

depending on the field in which this term is referenced. Following the definition 

given by the IEEE [96], it refers to ―the fundamental organization of a system, 

embodied in its components, their relationships to each other and the 

environment, and the principles governing its design and evolution‖. According to 

that definition, the Architecture must contain information about both structural 

and behavioural features of a system and its environment. The accuracy of such 

information, its inner components and attributes and the rationale that lead to 

establish a concrete architectural configuration represent some of the key aspects 

of any software development. Being the Architecture the artefact that gathers all 

this features, it is clear that the process that leads to its specification must be 

carefully observed. 

In order to give a proper description of the Architecture many approaches 

can be followed [39]. Some initiatives address the specification of the Architecture 

using a formal approach. This way, concrete languages are defined to encompass 

either the architectural design or the associated design decisions (or both). These 

languages, namely ADLs (Architecture Description Languages), may be used to 

describe either general purpose architectures or may refer to specific domains. 

Independently of their scope, the describable semantic and features granted to the 

Architecture are obtained as a consequence of a precise grammar and vocabulary 

[146]. It is widely accepted that the use of formal languages ends in architectural 

specifications that enable and ease the analysis of architectural properties such as 

completeness, consistency or ambiguity of the architectural designs [188]. 

However, the direct use of formal methods during the development process may 



 THE ARCHIMEDES FRAMEWORK   71 

 

drastically affect to the timing of the development process itself. Not only for the 

intrinsic restrictions or constraints posed by the use of formal languages but also 

for the training needed in the use of those languages [193]. 

In the last few years, however, Software Engineering has shifted its 

attention to techniques, methods and methodologies in which the system 

specification does not rely on architectural formalisms but on modelling 

approaches [215]. In that sense, the abstraction level required is closer to the 

architect‘s idea of Software Architecture for the system and may not deviate its 

attention with the use of a complex grammar, tightly tied to strong rules with, 

occasionally, a concrete and restrictive syntax. The advantage of using models for 

the specification of architectures arises, among other reasons, due to the 

possibility of separating the different views of a system, either structural, 

functional, presentational, behavioural or whichever be the point of view used. 

Though these ideas have been present in the Software Engineering literature for 

several years, it has been in the last few years when they have reach a sufficient 

level of maturity to impregnate some areas of the Software Engineering field, 

being the Software Architecture one of the most favoured areas [204]. 

It is important to remark here the difference between the terms 

architectural model and model architecture: 

 In the context of MDD, the term model architecture refers to the 

structure of the set of models we are dealing with during an MDD 

process, and it can also be used to refer to the set of models itself. The 

model architecture is not the generic definition of the structure provided 

by the MDD definition (in fact, it would refer, for instance, to the 

distinction between PIM and PSM models provided by the MDA 

approach), but the concrete set of models we are dealing with at every 

step and every moment during the MDSD process. 

 In contrast, the term architectural model refers to the model containing a 

concrete specification of the system architecture. The reasoning can be 

seen as follows: the architecture is an abstraction of the structure of a 

system, therefore an abstract entity. But this entity can be made concrete 

by means of an explicit representation, which is also informally referred 

to as ―the‖ architecture; but it has also the classic name of architectural 

description, usually provided in terms of an Architecture Description 

Language (ADL). Of course, an ADL is just a particular kind of domain-

specific language which provides a certain model of the system. 

Therefore, the architectural description is also the architectural model of 

the system.  



72   MARCOS LÓPEZ SANZ 

 

As it was reflected in the state-of-the-art section of this Thesis dissertation, 

several initiatives have come up using the principles behind model-driven 

developments to reach a coherent view of the system architecture [133][150]. The 

framework proposed in this dissertation also follows that approach, and, being 

more specific, the MDA approach. 

To justify the use of the MDA approach for the specification of Software 

Architectures, the next reasons can be given: 

 It is possible to specify Architectures with models. A model is used to 

represent an abstraction of the reality. In the context of Software, it can 

be used to represent any aspect of a system in which a set of terms define 

accurately some of its features. Regarding the Architecture, it is possible 

to properly model the ―components and their relationships‖ that build up 

a system architecture as stated in the aforementioned definition. 

 It makes easier the identification of architectural features by 

following an approach based on abstraction levels. MDA defends the 

definition of sets of models depending on their abstraction level. The 

level of abstraction given to the architectural representation of a system 

may range from a global, generic and agnostic view of the system to a 

more specific one in which implementation or platform dues are 

included. Consequently, it is possible to state that the MDA can be used 

to represent different stages in the evolution of the architecture model. In 

addition, by having separate models, both model and design reuse is also 

encouraged. 

 It aids to materialize and relate different architectural views. The use 

of model-driven techniques for system development and the possibility to 

define inter-model relationships and transformations among them 

encourages a specialization of the models reflecting different aspects of 

the system (architectural views). The architectural model may be seen as 

a perspective orthogonal to the development of other concerns during the 

development of a software system [136]. By having a specific model for 

the Architecture (and, in fact, also a model architecture), the information 

gathered in that model can help to maintain the interrelation among the 

data collected by models supporting other concerns. In addition, the 

architectural model itself can focus, for instance, either on the structural 

or the behavioural view of the system independently, thus avoiding the 

interference of other system features (non-functional requirements, 

implementation of data persistence and data structures, system 

deployment, etc).  



 THE ARCHIMEDES FRAMEWORK   73 

 

 There exists an emerging community dedicated to the creation of 

supporting tools for modelling approaches. Finally, it is possible to 

take advantage of existing modelling tools that allow not only the 

graphical design of models but also checking its conformance to 

metamodels, the transformation to other representational views and even 

obtaining executable code specification for a further use. 

3.1.3 Selecting the approach for Software Architecture Modelling 

Previous sections have analyzed the reasons behind the selection of MDA 

and the Service-Oriented paradigm for Software Architecture specification. 

However, as the work is framed within a MDE research context, the strategy for 

the specification of architectural models is in itself a key aspect that needs a clear 

answer.  

Architectural modelling can be tackled following two different approaches. 

It can be done either by using an existent modelling language (such as UML) 

and extending it or it is possible to completely design a new language for 

specifying Software Architectures. The former alternative is known to end up in 

the definition of UML profiles. The latter, in turn, would require defining the 

corresponding grammar and vocabulary together with an associated notation 

(almost) from scratch. In the following paragraphs both alternatives are presented 

together with a discussion on them in order to justify the final approach adopted: a 

hybrid solution based on the creation of a new DSL with a UML-based notation. 

3.1.3.1 Representing Software Architectures using UML profiles 

The UML language has long proved its potential to represent almost any 

view of the system needed during the software lifecycle. Through the specification 

of different types of diagrams, containing both static and dynamic information, the 

use of UML has spread to impregnate many areas of Software Engineering. One 

of the reasons behind this success is its adaptability to represent concepts and 

features of specific domains thanks to the extensibility means provided. In that 

sense, the term UML Profile is used to define a package containing model 

elements that have been customized for a specific domain or purpose using 

extension mechanisms, such as stereotypes, tagged definitions and constraints 

[175].  

A UML Profile usually contains a set of stereotypes that extend the 

meaning of the core elements of the superstructure of the UML Standard. These 

derived concepts serve to create a new corpus of terms that may be useful to 

define the principles of specific domains. By defining a particular group of 



74   MARCOS LÓPEZ SANZ 

 

stereotypes it is possible to build a DSL to be used in those particular domains 

instead of using the general concepts of UML. 

New stereotypes are created in a way that they extend, restrict or override 

the meaning of an existing UML meta-class over which the stereotype is used, 

together with associated attributes (representing tags for tagged values), operations 

and constraints. The profiling mechanism proposed by the last version of UML 

(2.1) allows the specification of several views of the same model by the 

simultaneous use of different profiles on a common base UML model. 

Obviously, the stereotypes must complement the information gathered in the 

model and be non-excluding. Taking as example the information represented with 

a class diagram it would be possible to use a UML profile that add performance 

information to the model while using, in the same model, information about 

security aspects. Both added-values could be analyzed independently by a tool 

aware of the characteristics of any of the profiles used. In addition, and due to the 

independency required from the UML Profiles applied, it would be possible to 

hide or show the information given by one or another profile without affecting the 

underlying UML model in any way. 

The use of UML profiles for the specification of concrete software issues 

may take advantage of the numerous tools and expertise that have flourished 

since its conception. Most of the current tools that support UML modelling allow 

the specification of customized stereotypes and thus make them available to be 

used over concrete diagrams. 

In subsequent revisions of UML, the notion of profile has been refined in 

order to provide more structure and precision to the definition of stereotypes and 

tagged values. Thus, the UML2.0 infrastructure and superstructure specifications 

have carried this further, by defining it as a specific meta-modelling technique. 

Stereotypes are specific meta-classes, tagged values are standard meta-attributes, 

and profiles are specific kinds of packages [175]. 

It is worth mentioning that the first MDE methodological proposals 

adopted UML profiles as modelling language. Since UML was the de facto 

graphical modelling language of choice, they opted for extending it to support the 

abstractions considered in their proposals. For instance, the most recognised 

proposals for Web Engineering, like UWE [110], MIDAS [35] or OO-H [88] were 

(initially) based on the use of UML profiles.  

3.1.3.2 Creating DSLs for Modelling Software Architectures  

In the field of Software Engineering, a Domain-Specific Language (DSL) 

is a specification or programming language dedicated to a particular problem 

domain, a particular problem representation technique, and/or a particular solution 



 THE ARCHIMEDES FRAMEWORK   75 

 

technique. The concept isn't new—special-purpose languages and all kinds of 

modelling/specification languages have always existed, but the term has become 

more popular due to the rise of domain-specific modelling. 

The opposite to this kind of languages is: 

 A general-purpose programming language, such as C or Java, 

 Or a general-purpose modelling language such as the Unified Modeling 

Language (UML). 

Therefore, DSLs are languages tailored to a specific application domain. 

They offer substantial gains in expressiveness and ease of use compared with 

general-purpose languages (GPLs), such as UML, in their domain of application 

[138]. In other words, while a DSL is designed to solve a delimited set of 

problems, GPLs are supposed to be useful for much more generic tasks and thus 

they cross multiple application domains. Also, a GPL aims to provide with a way 

to represent abstractions from any particular domain. A given DSL provides 

means for expressing concepts derived from a well defined and well-scoped 

domain of interest [104], such as the ADLs in the context of Software 

Architecture specification. Furthermore, the rules of the domain can be included 

into the language as constraints, disallowing the specification of illegal or 

incorrect models. Examples of DSLs range from the Structured Query Language 

(SQL) [99] to the regular expression language used in Linux utilities such as sed 

or awk. 

Since the architecture field of research uses its own set of concepts, 

restrictions and features, it can be therefore considered as a whole and complete 

domain In that sense, the use of DSLs can be also traced within the Software 

Architecture research field. In that area of interest, specific languages for 

architecture description have been defined under the acronym ADL 

(Architecture Description Languages) [146]. There are a vast number of 

languages that, from one point of view or another, have tried to support the 

representation of software architectures. Among them it is worth to mention Acme 

[83] (developed by CMU), AADL [66](standardized by SAE), C2 SADL [146] 

(developed by the University of California-Irvine), Darwin [129] (developed by 

the Imperial College of London), Wright [6] (developed also by CMU), π-ADL 

[180] or PiLaR [43]; even using a MDE approach for that aim like [52]. Having a 

closer look at the elements that build up the previous languages, it is clear how 

they define a grammar based on components and connectors, provide with a 

strategy to represent architectural configurations and, so they can be considered as 

truly usable and useful, some of those initiatives are accompanied by a more or 

less complete tool support. 



76   MARCOS LÓPEZ SANZ 

 

3.1.3.3 Discussion: The Hybrid Approach 

The preferred strategy for modelling Software Architectures, upon which 

the current Thesis rests, has been reached by gathering a consensus between the 

use of both UML and the definition of a new DSL: the idea is to create a new 

DSL containing the relevant concepts for architecture description (based on 

the SOC paradigm) and give a UML graphical notation for that DSL (by 

defining the corresponding set of stereotypes for UML in a UML profile). This is 

what will be understood as hybrid approach from now onwards.  

Although in the beginning there was a notable trend towards extending 

UML as a way to define new DSLs, a close analysis of the evolution of initiatives 

in the field reported that some years later UML profiles were not taking off. As a 

matter of fact, quite a lot of methodological proposals based on MDE were 

initially based on UML profiles. However, when researchers started to develop the 

technical support for their proposals, drawbacks such as inheritance of undesired 

features from UML or the inclusion of distracting elements in the models, became 

more apparent. As a result, those proposals, originally based on the use of UML 

profiles, moved towards the use of DSLs. This is the case of the already referred 

MIDAS or UWE. We can find even works that use UML profiles as a formal way 

of specifying their proposal, but uses MOF-based DSLs to deploy them [143]. 

Because of the fact that the core concepts of the architecture are founded 

on the principles of the SOC paradigm, the use of any general modelling language 

may not be suitable for that aim. Hence, from an inner perspective, the creation of 

a DSL for modelling service-oriented software architectures appears more obvious 

instead of the option of extending the UML concepts through a UML profile. 

Following this strategy, the core principles of the SOC paradigm are 

maintained without any semantic interference of the underlying description 

language. To maintain this independency and isolation, the newly created DSL 

will be based on MOF, a standard language for specifying metamodels, i.e. a 

meta-metamodel language.  

An additional reason to choose the DSL approach for architecture 

modelling can be analyzed from the perspective of model management. According 

to the OMG, the organization behind the standardization of UML, UML models 

can be made persistent (i.e. stored) by using the XMI standard [176]. However, 

analyzing the current tools and initiatives that give support to this language, it is 

significant that, though trying to cope with a standard specification, each of them 

uses a different version of XMI. This poses an additional challenge when trying to 

deal with UML models from start as it interferes in the interoperability usually 

marketed by UML. The use of a DSL for the architectural models overcomes this 



 THE ARCHIMEDES FRAMEWORK   77 

 

problem since it is possible to manage model persistence in personalized XML 

formats without depending on current XMI implementations. 

This situation about the storage of the models leads to discuss the 

convenience of using one or another toolkit supporting the architectural 

modelling. Due to the relevance of this aspect in the current Doctoral Thesis, this 

aspect it will be further analyzed in the next subsection.  

Despite all the benefits of using a DSL at the low level of the architectural 

specification (for semantic foundations), at a higher level of modelling (practical 

use of models) the preferred approach may differ. Since the purpose of 

ArchiMeDeS is to provide with a framework easing the specification of 

architectures, the DSL itself needs to be accompanied by a well-known graphical 

notation and an appropriate modelling environment. The use of UML for 

modelling purposes is widely spread so it makes sense that the graphical 

notation of choice be UML. In that sense, the direct definition of a UML profile 

would have eased that part of the framework creation but, as stated before, would 

have kept some undesired features associated with UML. The solution to that 

stage of the architecture modelling steps on the creation of an UML profile that 

provides with a UML-based notation to the DSL created. 

All things considered, the hybrid approach can be seen from two different 

viewpoints. At the inner level of specification, the plan to obey is to start defining 

the intrinsic characteristics of the DSLs for Software Architecture with services. 

At a higher level of specification and after the metamodel has been refined, to port 

these concepts into the UML notation by defining concrete stereotypes and tagged 

values to be used in different UML diagrams.  

To sum up, Table 3.1 shows a comparison between the approaches 

analyzed for Software Architecture modelling. 

 

 

 

 

 

 

 

 

 

 

 



78   MARCOS LÓPEZ SANZ 

 

Table 3.1.Comparison of modelling approaches for Software Architecture 

specification. 

 
MODELLING WITH  

UML PROFILES 

MODELLING BASED 

ON DSL 

HYBRID 

MODELLING 

Graphical 

notation 
UML-based Not predefined UML-based 

Tool support UML-based tools Ad-hoc tools Ad-hoc tools 

Suitability for 

architecture 
Same as UML Adequate Adequate 

Semantic 

independence 
Low High High 

Expressiveness 

for SOC 
Not defined Adequate Adequate 

Ease of use Well-known New knowledge Hybrid 

Acceptance Widespread Increasing Increasing 

Ease of 

creation 
Easy Complex Complex 

Model storage XMI-based Model persistence  Model persistence 

3.1.4 Selecting a Tool Support and Modelling Environment  

From the previous subsection it can be extracted that the supporting 

modelling framework must cope with the definition of the features of customized 

DSLs and give support to a visual representation with UML. As any other 

language, the DSL with the foundations of service architectures must include two 

different syntaxes: abstract syntax and concrete syntax [104].  

 The abstract syntax contains the vocabulary (concepts) and relations 

among the terms in that vocabulary. Since the aim of the DSL is used to 

define models, and the proposed framework is based on the MDA 

approach, the abstract syntax will be represented trough the specification 

of MOF-based metamodels compiling all the DSL terms.  

 The concrete syntax, in turn, is the way models are depicted and visually 

(or textually) specified. In the scope of the current Thesis, and again 

following the standards related to the MDA approach for modelling, the 

concrete syntax is set upon the use of extensions of the UML language. 

Hence, the corresponding UML extension elements are confined into 

UML profiles containing the needed stereotypes that fully correspond 

with the terms of the aforementioned metamodels.  



 THE ARCHIMEDES FRAMEWORK   79 

 

The goal of reducing the complexity of the architecting process explicitly 

requires the definition of a tool. As stated before, it is highly recommendable to 

provide with a set of tools that ease not only the modelling process but also that 

may serve as validation and model-checking tool. This way, it is possible to 

ensure the coherence and conformance of the created models to the principles 

governing the DSL created.  

A deep analysis of the convenience of using concrete tools and a further 

discussion of what would be the most adequate for the scope of MIDAS was 

largely considered in the PhD Thesis of J. M. Vara [227]. As a consequence, this 

work will inherit its conclusions and, therefore, select the outcomes provided by 

the Eclipse Modelling Project (EMP) [93] as main support framework to achieve 

the goals of the current Thesis. Next paragraphs briefly explain the key aspects 

that motivate its selection and preference over other modelling environments. 

With the spread of MDE ideas and principles, the number of related 

technologies and supporting tools has proliferated greatly. Many software 

companies and research groups are considering the development of their own tool 

for supporting their own MDE method (following the MDA, Software Factories, 

Product Lines, Generative Programming of whatever other more specific model-

driven proposal). Facilities provided in the context of the Eclipse Modelling 

Framework (EMF) and other DSL frameworks, like the Generic Modelling 

Environment (GME) or the DSL Tools of Microsoft, have shifted the focus from 

simple UML-based drawing approaches to more complex MOF-based modelling 

and metamodelling ones. 

In the context of EMP several facilities have come up to aid developers in 

the tasks surrounding a model-driven process: EMF for metamodel specifications, 

meta-editors like GMF, transformation engines like ATL or VIATRA, code 

generators like MOFScript, etc. As a consequence, model engineering proposals 

are developing their tools as Eclipse plug-ins, like the OOWS suite [224] and 

M2DAT [227], or at least, upgrading or re-defining them to be ―Eclipse 

compliant‖, like WebRatio [238] or ArgoUWE [110]. This dissertation follows 

also this approach. The details have been included as part of Chapter 4. 

Other reason for having chosen Eclipse as tooling support is that the DSLs 

proposed in ArchiMeDeS can be represented easily using Ecore models (the 

Eclipse version of the MOF standard) within the Eclipse modelling framework as 

it will be shown later on. 



80   MARCOS LÓPEZ SANZ 

 

3.1.5 Selecting the Target Platform for Service Architecture 

Modelling 

The last decision to point out before starting to explain the main contents of 

the ArchiMeDeS framework is the establishment of the target platforms that will 

be used at the lower levels of the architectural modelling, that is, at the PSM level 

of the MDA proposal. The platforms of choice will be those supporting the 

technologies of Web Services, REST-compliant Web Services and Grid 

Services.  

To justify this choice is important to have a look at the evolution of 

MIDAS, the methodological framework in which ArchiMeDeS is framed. 

Originally conceived as a methodology for the development of WIS (Web 

Information Systems), MIDAS has evolved towards a more service-oriented 

methodological viewpoint [36]. From that perspective, the target implementation 

platforms have broadened its scope ranging from Web-based to other technologies 

and platforms in which services play a prominent role. ArchiMeDeS, as integral 

part of MIDAS, aims at covering the gap of the architecture modelling within that 

framework. For this reason, the initial implementation platforms to consider 

should be those using a service-oriented approach. Since the modelling 

approach followed by MIDAS, and also by ArchiMeDeS, is the MDA proposal, 

the target platforms will be contemplated at the PSM level of abstraction. It is at 

that level where the features of the concrete implementation alternatives have a 

direct influence on the architectural models.  

It is important to remark here that, because of being based on the MDA 

approach, though the architectural modelling at this level (PSM) follows a service-

oriented approach, the target platform may not be based on a service-oriented 

technology or, being so, have a service-oriented basis but not follow any of the 

current service technologies. As it will be shown later on this dissertation, this 

issue will be favoured by the fact of separating the PSM level in two: an upper 

level with the commonalities of any service-oriented platform (PDM) and a lower 

one gathering the particular features of service technologies. In that sense, it is key 

factor to differentiate the paradigm used within the models and the target platform 

represented with those models: Web Services, REST Services and Grid Services 

To be more precise in this platform addressing it is important to mention 

the success that Web Services have gained within the enterprise. Its 

interoperability capabilities, the promotion in the use of standards, the number of 

programming languages providing primitives for its support or the fact that 

communications among services are performed over the HTTP transfer protocol 



 THE ARCHIMEDES FRAMEWORK   81 

 

are some of the numerous benefits that have given rise to the consideration of Web 

Services as technology of choice.  

Once ArchiMeDeS has the capacity to represent the architecture of Web 

Services, in order to expand the number of platforms supported, several other 

existent alternatives may be considered. In parallel with the development of Web 

Service standards, some variations of their principles have been suggested to 

either overcome some of the drawbacks detected or increase the functionalities 

initially drawn for that technology.  

The first additional platform can be identified reading directly the Web 

Service standards delivered by the W3C. In them, the consortium offers a vision 

of Web Services in which ―two major classes of web services can be identified: 

REST-compliant Web services, in which the primary purpose of the service is to 

manipulate XML representations of Web resources using a uniform set of 

„stateless‟ operations; and arbitrary Web services
1
, in which the service may 

expose an arbitrary set of operations‖ [236]. According to this definition, the 

support for REST services [69] must be included within any proposal trying to 

drive the architectural modelling of a service-oriented platform (based on Web 

Services). In the corresponding section it will be studied in detail whether the 

support for this kind of services requires a modification of the DSL for Web 

Services or not. 

Among the benefits usually given to REST-compliant services are: the use 

of a stateless client/server protocol, a set of well-defined operations applied over 

all kinds of resources, a universal syntax for accessing to resources (based on their 

URI) and the reliance on hypermedia as the engine of application state (through 

the use of XML or HTML to represent it). 

Another view of how service-orientation could be deployed and 

implemented can be traced in the principles behind the Grid Computing paradigm 

and the ideas of Grid Services usage. From the beginning of the Grid Computing 

it has fostered the creation of Virtual Organizations with the aim of being capable 

of creating distributed environments in which use of shared resources can be used 

to reach a common goal [75]. With that aim, the Grid community shifted their 

attention from low-level ad-hoc implementations to the use of services, widely 

known as Grid Services [178]. This way, they could connect distant loosely 

coupled, heterogeneous and geographically dispersed resources acting in concert 

                                                

 

1 These „arbitrary Web services‟ refer to the standard conception of Web Services. 



82   MARCOS LÓPEZ SANZ 

 

to perform very large tasks. The definition of OGSA and WSRF, as normative 

architectural definitions of what a Grid should be and include; and the 

specification of standard languages such as WS-Resource or WS-Management, 

have contributed to the success of Grid Computing.  

In the end, the Grid Computing field of research has tended to constitute an 

alternative to massive distributed computing using services as preferred low-level 

technology. Moreover, in the last years it has served as basis for other upcoming 

initiatives such as the Cloud Computing, being the consideration of the on-demand 

term the main distinction among both initiatives. 

The main difference between standard Web Services and the conception of 

service done by the Grid Computing paradigm lays in the definition of the concept 

of resource. In a Grid environment, a special interest is placed on the 

incorporation and management of the state to both the communication means and 

the implementation of the service itself. This distance from the Web Service 

standard has motivated the definition of concrete languages to support that 

paradigm (such as WS-Resource [91]). In addition, the idea of Virtual 

Organizations fostered by the Grid Computing paradigm represent a concept not 

initially considered by traditional Web Service platforms or those based on REST 

services. Other distinguishable features include the importance of enabling 

resource virtualization or on-demand provisioning [192]. 

To recapitulate, the target platforms to be modelled at the PSM level are set 

to Web Services, REST-compliant services and Grid Services. Figure 3-1 shows 

an overview of the targeted service-oriented platforms. 

Web Services

REST-Services

Grid Services

• Architectural specification: WSA
• Interoperability capabilities
• High number of related languages
• HTTP as communication protocol

• Architectural specification: REST
• Stateless client/server protocol
• Well-defined operations
• Universal syntax
• State: use of hypermedia (XML/HTML)

• Architectural specification: OGSA/WSRF
• Statefulness and resource sharing
• Resource virtualization

• On-demand provisioning

Target 
Service-Oriented

Platforms

 

Figure 3-1. Target Service-Oriented platforms of choice. 



 THE ARCHIMEDES FRAMEWORK   83 

 

The implications of developing software solutions with Web, REST and 

Grid Services are the starting point to build up service architectures at the PSM 

level. However, from that premise, it will be possible to grow and extend the 

architectural modelling to other related platforms. The ultimate goal is to build a 

DSL at the PSM-level general enough for modelling not only service-oriented 

technologies but any kind of execution platform. Further support for other 

platforms and technologies will be more clearly specified in the Future Works 

section later in this dissertation.  

3.2 Modelling Architectures with ArchiMeDeS  

Previous section has stated the design decisions taken for approaching the 

development of ArchiMeDeS as Service-Oriented Framework for the Model-

Driven specification of Software Architectures. Recalling the ideas, it is founded 

upon the definition of DSLs following the principles of MDA and SOC, it 

provides a UML-based graphical notation for that DSLs and focuses its attention 

on Web Services, REST-compliant services and Grid Services at the 

implementation level. Figure 3-2 shows a global overview of the metamodels 

defined for each abstraction level as well as the proposed model-to-model 

transformations. 

ArchiMeDeS
global 
overview

PSM

Service-Oriented
Conceptual DSL

PIM

uses

extends

results

Archictectural
Style DSL

Service-Oriented
Platform DSL

PIM2PIM
Transformation

Rules

PDM

TDM
Web Service

DSL
Grid Service

DSL
REST Service

DSL

PIM2PDM
Transformation Rules

PIM2TDM
Transformation Rules

 

Figure 3-2. Global overview of the ArchiMeDeS framework. 

It is important to highlight here the explicit model separation done at the 

PSM level. This level has been divided into PDM (Platform Dependent Models) 

and TDM (Technology Dependent Models). Reasons for that division are 

summarized in the following: 



84   MARCOS LÓPEZ SANZ 

 

 PDM models collect all the commonalities that all service-oriented 

technologies may share. This way it is possible to provide a common 

model vision that is, in essence, complete and independent from the 

underlying service technology, thus facilitating platform migration. 

 Additionally, the separation in two different levels also fosters the 

extensibility of PDM models, so it is possible to support other service-

oriented platforms somehow away from current service technologies.  

 Finally, the constant evolution of the underlying service technologies has 

derived in a series of changes in their related implementation language 

and standards. By and large, these changes have not affected to the basic 

principles of these platforms. To illustrate this, it is possible to look at the 

Web Service standards evolution in the last years, to observe the 

evolution of Grid platforms from OGSI [177] to WSRF [91], or the 

coming up of REST services as a different service technological 

approach. Despite these changes, the underlying principles of service-

oriented platforms have remained (almost) unaltered. The PDM model is, 

therefore, the same, independently of whether the TDM is modelled, for 

instance, to represent past OGSI Grid architectures or the current WSRF-

based Grid approaches. 

 

The following subsections describe the elements needed to harness the 

architectural modelling process with services. Sections 3.2.2 and 3.2.3 describe 

the abstract syntax and semantics for both PIM and PSM levels respectively. At 

the end of each of these specifications, the graphical notation for each DSL using 

a UML profiling technique is exposed as concrete syntax. Finally, Section 3.2.4 

gathers all the model to model transformations defined within the ArchiMeDeS 

framework. It is worth to mention that the transformations do not only refer to the 

evolution of the architectural specification from PIM to PSM (section 3.2.4.2) but 

also to the inclusion of architectural styles as PIM-to-PIM model transformations 

(section 3.2.4.1) as part of the PIM modelling process. 

3.2.1 PIM Architectural Specification 

If the definition of Software Architecture [208] is merged with the MDA 

modelling conception at the PIM level of abstraction [170], the result is a 

conceptual representation of a system that comprises all the components that 

build up the software solution without any implementation implication or 

restriction, identifying just the building blocks, their attributes and the 



 THE ARCHIMEDES FRAMEWORK   85 

 

characteristics defining the relations established among them. Having that 

premise in mind, in the following, a complete DSL for that aim is presented. 

To model the system architecture with this DSL, several sources of 

information have to be taken into account. As it will be later explained (Section 

3.3), this information is primarily obtained, among other sources, from 

behavioural models defined as an independent concern of the related 

methodological framework [49]. However, it is important to remark that the 

architectural model comprises mainly structural information about the system. 

3.2.1.1 Abstract Syntax 

The first aspect of the PIM level DSL to describe is its abstract syntax, in 

which the underlying semantic is defined by means of describing the concepts 

supported and the relationships among them. When using a MDSD approach for 

creating DSLs, the most common way of representing those concepts is by means 

of a metamodel plus a set of restrictions obtained from the analysis of the domain 

[171]. Accordingly, the metamodel that contains all the concepts for the service-

oriented architectural DSL at PIM level can be seen in Figure 3-3. After it is 

clearly explained, the restrictions that apply are stated. 

3.2.1.1.1 Service Providers 

Generally speaking, a Service-Oriented Software Architecture is built 

upon independent entities which provide and manage services. Because of the fact 

that service-orientation is widely used as a way to integrate enterprise 

applications, the existence of these providers is justified by the necessity to project 

the business organizations involved in those processes into the architecture model. 

These providers act as service containers in charge of presenting the services 

contained to the world. In comparison with traditional architecture descriptions, 

these elements could be considered as the service equivalent to the package 

concept but without the implication of requiring an explicit interface definition. 

A closer study of these days‘ business trends shows that a software 

solution does not represent an isolated piece of software. When observing the 

structure of the business context in which a system is normally placed, external 

required software entities may emerge so that it is possible to perform specific 

tasks involved in the business processes. As a consequence, these outer entities 

must be somehow reflected in the architectural description, together with the way 

an inner element of the system communicates with it. 

 

 



86   MARCOS LÓPEZ SANZ 

 

 

Figure 3-3. Metamodel associated to the PIM DSL for Software Architectures. 



 THE ARCHIMEDES FRAMEWORK   87 

 

Taking this dichotomy under consideration, service providers can be 

classified in two main groups:  

 Inner service providers (innerProvider in the metamodel), which are 

internal organizations to the system designed. They can be also 

understood as the part of the software solution whose inner elements are 

being designed in detail.  

 Outer service providers (outerProvider in the metamodel), which are 

identified as external entities containing services which collaborate with 

the system to perform a specific task of value for the system but which 

are not under its control or whose internal structure is not known or 

valuable for the development of the current architecture model. 

The relationship between two service providers appears in the moment 

that a business need arises and the services involved in its resolution belong to 

each of them. The existence of a potential communication is understood as a 

business dependency between communicating providers. Because the 

interconnected elements represent business entities, the relation among them is 

understood as a ‗business contract‘ (bussinessContract in the metamodel) that 

represents a sort of communication between the services belonging to the 

providers. The content of a business contract is understood as the set of service 

contracts that can be signed between those services. 

This element can be found in the bibliography under several other names 

(with slight differences in concept or role) such as container [4], service manager 

[114], market-maker, service aggregator or service provider [181], context [242] 

or service owner [51]. 

3.2.1.1.2 Service Description: Identity, Operations and Roles.  

According to the SOC principles [181], services support the 

functionalities offered by the system and derived from both the requirements 

stated by the user and the information gathered in the upper-level models. The 

vision of the service concept in ArchiMeDeS, at the PIM level, is aligned with that 

of the OASIS reference model for services [165]. A service is, therefore, the 

atomic artefact, within the architectural model, that allows the practical support 

for the system features and business processes identified in higher abstraction 

layers during the development process. In addition, services are understood as 

computational entities in charge of a resource (whichever its nature or features be: 

data storage, statefulness, processing capabilities, etc.) and which offer access to 

that resource in the form of a well-known interface.  



88   MARCOS LÓPEZ SANZ 

 

The main elements that allow the description of a service at the PIM level 

of abstraction are: a unique identifier, named SERVID; a set of operations, 

exposing the functionality associated to the service; and the possibility to define a 

subset of these operations to be used under concrete conditions, i.e. a service role. 

With these three elements it is enough to clearly model a service within a concrete 

architectural configuration. Next, these properties are explained in detail: 

 SERVID property. Due to the fact that a service has to be searched, 

located and reached, it must be identified. This is accomplished by 

defining the SERVID property as part of the service description. That 

property allows placing a service within an architectural configuration 

and, therefore, to identify a service univocally within a SOA environment 

represented with the PIM-level model.  

Another reason to include an identifier inside the definition of a PIM 

model is that the architectural model represents instances of services 

(and not ‗classes‘ as in usual object-oriented approaches in which class 

diagrams are used). At a lower level this identifier will be transformed in 

a concrete address or implemented identifier. 

To enforce this idea of modelling service instances, the concept of 

service can be further analyzed from two different perspectives: from a 

global point of view and from a more concrete and detailed one. From a 

concrete point of view, the idea is to represent the actual services that 

entail the functionalities offered. This way, they must be considered and 

clearly identified as individual services (hence talking about ‗service 

instances‘). This issue is gathered in the metamodel of the DSL under the 

service concept. From a more general or global point of view, in turn, it 

should be needed to model the functionality that is expected to be 

provided by some service in the architectural configuration, without 

identifying a concrete service exemplar. In that context, it is possible to 

use the term service type (ServiceType in the metamodel) to gather all 

the operations any potential service occurrence may provide. 

 Service operations are considered as atomic functionalities, offered by a 

service, that collaborate to build a joint description of the service. 

Moreover, they represent the only way of interacting with a service as 

they outline its interface. Their properties include their name and the 

eventual parameter(s) and/or returned value(s) they may need to fulfil 

its functionality. 

It is important to note the distinction between operation types 

depending on its synchronicity. In asynchronous operations 



 THE ARCHIMEDES FRAMEWORK   89 

 

(AsynchronousOp in the metamodel) the requester of the operation does 

not wait for the answer or return value (if any). In turn, in synchronous 

operations (SynchronousOp in the metamodel) the requester will wait for 

the answer or return value (that should always exist). The reason behind 

identifying the synchronicity of an operation is related to the influence it 

may have in the moment of defining the information flow associated to 

the tasks needed to perform a business process.  

 Service role. When a service acts following a concrete role, its base 

behaviour is modified to adapt to the context in which the service 

participates. In that sense, the service offers a subgroup of the operations 

initially defined in its service type. That is, a service may be able to 

perform a certain set of operations, but it is only able to provide some of 

them according to the assigned role in a certain moment. To reflect that 

feature within the architectural model, a service role will be comprised by 

an identifying name and a subset of the operations that the service 

playing that role is able to perform. 

At this point, it is worth to note how the concept of service as 

building block of the architecture is modelled separately from the roles 

played in a concrete architectural configuration. In that sense, service 

roles could be easily paired with the traditional idea of interface as it 

exposes the set of operations that conforms the external view of a service 

and which are the only available ways to communicate with the service 

when acting following that role. This aspect is further explained in the 

moment of considering the composition means among services within the 

architecture. 

3.2.1.1.3 Service Interaction: Contracts and Interaction Patterns.  

The main difference between the concept of service (as understood within 

the ArchiMeDeS framework and the SOC paradigm in general) and other 

architectural paradigms (Object-Orientation, CBSE, Aspect-Orientation, etc.) 

relies on how interaction is achieved among architectural elements. First, observe 

the fact that services are consumed by interacting agents instead of being 

instantiated or encapsulated to reach a concrete goal. Second, instead of using 

method invocation on an object reference, service orientation shifts the 

conversation to that of message passing (though not explicitly considered at this 

level of abstraction). Finally, interaction is based on the tacit agreement to act in a 

concrete manner gathered under a contract signed by the participant services. To 

include these features in the architectural models, this part of the dissertation is 



90   MARCOS LÓPEZ SANZ 

 

focused on the definition of the concepts related to service interaction: service 

contracts and interaction patterns.  

 Service contracts. Services relate, communicate and interact with each 

other according to agreed contracts [59] (represented by ServiceContract 

in the metamodel). In the architectural description of the service models, 

these ‗contracts‘ are understood as connectors, specifying point-to-point 

relationships between the services that ‗sign‘ those contracts. 

Accordingly, these contracts serve to specify the adhering conditions 

under which contracted services agree to communicate. Contracted 

services take the roles of provider and consumer depending on whether 

the contractor is the one offering the functionality or the consumer of it. 

Observing the traditional architectural conception of ‗connector‘ 

[208], these contracts might also specify the channel used to 

communicate and exchange messages; however, at the abstraction level 

that service-oriented PIM models represent, the inclusion of this aspect in 

the DSL would force the specification of a concrete standard or 

technological support mean. Therefore, as it is considered to be platform-

dependent information, it will be consigned to the PSM level of 

abstraction. Nevertheless, the main properties of a contract, apart from its 

name, are the interaction patterns gathering all the allowed interactions 

among service contractors. Policies and other aspects related to the 

support for non-functional requirements within the architectural models 

(QoS, security, etc.) have been left out intentionally in the development 

of the current Doctoral Thesis and will be subject of future research 

efforts. 

Finally, service contracts must be understood as the concrete 

conditions under which the business contracts specified among service 

providers take place. 

 Interaction Patterns. These interactions are defined as pairs ‗operation 

name-interaction kind‘; being the former element a reference to the set of 

operations offered by the provider service and the latter the kind of 

exchange pattern that will be followed when using that operation. Since 

service-orientation is based on the idea of service consumption as the way 

to access the functionalities provided by a service, the number of service 

contracts established among two services will depend on the business 

interest each service has in order to fulfil its assigned responsibility. For 

example, if two services need to access to the operations of the other, two 

contracts will be signed, each of them exposing the available operations 



 THE ARCHIMEDES FRAMEWORK   91 

 

and interaction pattern needed to consume the operations offered by one 

and another service.  

An important aspect to comment is the fact that, though in most 

architectural configurations services will expose and sign a single 

contract with each service desiring to use the facilities provided, the DSL 

created has enough flexibility to support configurations in which services 

sign different contracts. In those situations, the number of available 

operations agreed or the exchange pattern agreed may vary depending on 

the service contractors or even, when contracting the same service 

consumer, during the lifetime of the system. 

The kinds of patterns for message exchange are reduced to four 

alternatives. ‗One-way‘, in which no response is expected when an 

operation request is made; ‗Query/Response‘, in which there is an explicit 

answer to the operation requested (note that it can be sent either 

synchronously or asynchronously); ‗Dialogue‘, in which the concrete 

protocol can be complex and, therefore, it should be accompanied by an 

additional state machine; and, finally, ‗Choreography‘ which will be used 

in scenarios where several services agree to collaborate to reach a 

common goal (see service compositions for more details about 

choreography modelling).  

This explicit behavioural description in the form of interaction 

patterns must be respected by both requesting and providing services. 

3.2.1.1.4 Service Composition: Orchestrations and Choreographies.  

As it has been stated previously in this dissertation, a feature that 

considerably differentiates SOA from other architectural alternatives is the way 

elements are composed. Composition within SOA is accomplished by means of an 

interactive collaboration among its participants. These collaborations are not tied 

to a single way of composition by direct interface-to-interface connection as it 

happens in a typical CBSD configuration; in contrast, it is possible for several 

services to build a complex interaction scheme based on different criteria without 

constraining the independence of the composed elements. This aspect is a great 

advantage when developing hybrid architectures in which services can participate 

in different parts of a system. Another distinctive aspect of service composition is 

that the compound element can be seen as a new service available in the system 

environment, thus allowing to scale the system functionality by aggregating 

(―composing‖) these services into larger composite applications, and making the 

outputs available for consumption by any business user. 



92   MARCOS LÓPEZ SANZ 

 

The classification of service composition alternatives (identified under the 

CompositeServ element in the metamodel) is done according to the coordination 

scheme used to build up the composition. In that sense it is possible to define 

service orchestrations and service choreographies. The modelling of any of 

these two kinds of composition establishes different levels of detail that can be 

used when developing architectural models. In that sense, it will be possible to 

model an element, identified as a composite, comprising the capabilities that may 

provide as service or it could be feasible to model the inner structure of the 

composite by identifying the participant services.  

 Orchestration. This kind of coordination is founded upon the idea of 

having a special service in charge of directing the whole compound 

element. This special service (marked as OrchestratorServ in the 

metamodel) knows the flow of service consumptions that must be done in 

order to accomplish the functionality desired. In that sense, the 

orchestrator service acts as the enactor of a workflow by means of a 

coordinated interaction with other services. 

 Choreography. The other possible way of combining the capabilities 

provided by each service with the aim of reaching a desired asset is by 

considering an interacting environment among equivalent services. This 

―equivalence‖ means that there is no service mastering over any other or 

directing the flow of information. The evolution in the system 

architecture is accomplished by the changed produced in the roles played 

by each participant. 

Recalling the principles behind the PIM DSL defined by the 

ArchiMeDeS framework, it is important to remark that, when talking 

about element compositionality, the models defined with that DSL 

represent only structural information (concrete elements building up the 

system) and reflect the structural consequences in the architecture that 

may imply the participation of an element in one or another compound 

structure. In the case of service choreographies the architectural influence 

is reflected in the behaviour performed by the participating services. In 

particular, it affects to the operations they provide in each moment and, 

hence, the role played.  

The operations that a service provides in each moment are defined as 

part of the role that a service plays within the context of a choreography. 

As it was explained previously, a service role represents the interface 

offered by a service comprising the available functionalities to be used 

when using that concrete interface. 



 THE ARCHIMEDES FRAMEWORK   93 

 

3.2.1.1.5 Service Taxonomy: Information, Interaction, Processing and 

Orchestration variants. 

The principles behind service-orientation clearly set the service as central 

artefact around which any other concerns revolve independently of the nature of 

the service (service contracts, operations, composition, etc.). However, from the 

architectural point of view, a more detailed classification is recommended to ease 

the identification of the responsibilities each service may have to realize the 

business processes the systems aims to cover. An additional reason to reflect 

service variants within the architectural models is that, at the PIM level of 

abstraction, developers already know which will be the main function of a service 

as part of the software solution. These ‗knowledge‘ is architectonically understood 

as a design decision agnostic of the underlying technology or platform and, 

therefore, it might be included as part of the PIM DSL. Finally, the identification 

of several sorts of services facilitates the specification of what elements are 

needed at lower levels of the architecture, that is, by discriminating the purpose of 

a service at the PIM level it is possible to know which elements must be present at 

the PSM-level modelling of the system architecture. 

At this point, there are four clear variants that can be identified in a service-

oriented architectural specification: information, interaction, processing and 

orchestration. In the PIM DSL defined by ArchiMeDeS all these variants are 

associated to a service in the form of a feature (variant in the metamodel) 

comprising one or more of these values. A brief explanation of these variations is 

presented in the following. 

 Information. A service whose main purpose is to serve as access point to 

stored information, independently of the storage strategy chosen, will 

have assigned the information value to the variant attribute. 

 Interaction. Services may also serve as boundaries of the system. In that 

sense, services will be identified with the interaction value. These kinds 

of services usually expose special behaviours depending on the external 

element that wants to take advantage of the functionalities provided by 

the service. For example, when the external actor is a human being, the 

service responding to its needs may require complex interaction means 

(based on dialogues) either synchronously or asynchronously.  

 Processing. Other kind of service that may be easily identified is that in 

charge of performing information processing.   

 Orchestration. Finally, an important service variant within the 

architectural model is that in charge of handling the flow of the business 

process defined for the system.  



94   MARCOS LÓPEZ SANZ 

 

By identifying different service variants at PIM level we support the 

automation process advocated by the MDA approach as it will be easier to 

separate them when describing what services belong to the platform (services 

performing communication tasks) or to upper implementation levels (discovery 

services), which of them will be comprised of a physical resource granting the 

access to a service (for example a Web interface allowing to access a concrete 

Web Service), or even the contrary, a service with the capability to access a 

physical resource (for instance when a service acts as the access point to a storage 

facility). 

3.2.1.1.6 Domain restrictions  

Apart from defining a service metamodel for software architectures, the 

creation of a DSL is completed with the enumeration of a set of restrictions that 

may apply when using the DSL. These constraints are summarized in the 

following: 

 Operation names that are paired with interaction patterns in a service 

contract must appear as operations defined by the service type of the 

service acting as provider in that service contract. 

 Services taking part in a choreography must explicitly define what 

service roles play within that choreography. 

 To give a complete vision of the architectural model, it is possible to 

define state machines diagrams associated to each interaction defined as 

‗Dialogue‘. 

 Contracts established within choreographies contain interaction patterns 

for all the operations that offer the service types involved. The exchange 

pattern for each operation is defined, by default, as Choreography. 

3.2.1.1.7 Additional considerations  

 On the modelling of pre- and post-conditions. It is possible that for 

two services to communicate they fulfil some pre- or post- conditions 

related, for instance, to non-functional requirements. In the context of this 

Thesis these clauses have not been included; however, they could be 

easily represented as restrictions associated to the serviceContract 

element and using OCL for its description. 

 On the modelling of messages. Messages, in the scope of the DSL 

presented, would represent the communication item exchanged between 

services. Each message (or, more properly, message type) should be 

related to a service contract. The most important feature of messages is 



 THE ARCHIMEDES FRAMEWORK   95 

 

that they have to be understood by both the emitter and receiver services, 

so the attributes of this concept should include references to the ontology 

model or semantic constraints involved in the message. 

Although the semantics associated to the message exchange appear 

in the architecture model (in the form of an interaction pattern), the 

message format does not. The format of a message is an issue that 

depends mostly on the implementation technology and so it should be 

modelled in the correspondent PSM-level models.  

 On the modelling of service state. Though many of the references found 

in the bibliography understand services as stateless entities 

[59][114][127], this is an aspect that depends mostly on the service 

implementation technology and so, at PIM level, no reference on the state 

should be modelled explicitly (as part of the service description). 

3.2.1.2 Concrete Syntax 

Once the terms that conform the semantics of the DSL that allow modelling 

the Architecture at the PIM level of abstraction have been exposed, it is time to 

provide a way to give a visual notation that ease the use of that DSL. As it was 

discussed in section 3.2.1, the option selected is the definition of a UML profile 

containing a set of stereotypes that permit the use of UML as base graphical 

notation for the DSL. To illustrate this, Figure 3-4 shows a UML 2.0 profile 

diagram with the corresponding stereotypes. It shows the actual details of the 

profile, joining each stereotype with its meta-class using the extension notation 

(filled arrow head). 

«stereotype»

InnerProvider

«stereotype»

OuterProvider
«stereotype»

BusinessContract

«metaclass»

Package

«metaclass»

Classifier

<<profile>>

PIM DSL

«stereotype»

IP

«metaclass»

Attribute

«stereotype»

Choreography

«stereotype»

ServiceType

«metaclass»

Operation

«stereotype»

AsOp
«stereotype»

SOp

«stereotype»

Orchestration

«stereotype»

ServiceContract

«stereotype»

service

«stereotype»

ServRole

«metaclass»

ConnectableElement

 

Figure 3-4. UML Profile for the PIM DSL. 



96   MARCOS LÓPEZ SANZ 

 

The UML diagram chosen to represent the architectural model is the Class 

diagram. The main reason behind this decision is that it allows representing a 

static view of the system whereas composing a structural perspective of the 

system. The stereotypes defined have associated the closest concept that may be 

found in the UML metamodel.  

3.2.1.3 PIM DSL Summary 

Table 3.2 shows a summary of the terms that build up the DSL created for 

modelling Software Architectures at the PIM abstraction level. In that table it is 

depicted the concept, the associated semantics and the graphical stereotype used to 

represent it with UML. In addition, the derived meta-class used and any restriction 

posed over the concept are depicted. 

Table 3.2. Summary of concepts and stereotypes of the PIM DSL. 

CONCEPT SEMANTICS 

NOTATION RESTRICTIONS 

BASE UML 

METACLASS 
STEREOTYPE  

Service 

Provider 

Representation 

of a business 

organization 

Package --- --- 

Inner 

Provider 

Service Provider 

controlled by 

the system 

Package <<InnerProvider>> --- 

Outer 

Provider 

External 

provider of 

services 

Package <<OuterProvider>> --- 

Business 

Contract 

Business 

relationship 

among providers 

Package 
<<businessContract>

> 
--- 

Service Type 

Global 

description of a 

service 

Classifier <<ServiceType>> --- 

Service 

Subset of the 

system 

functionality 

Classifier <<service>> 
Must have a 

SERVID 

Service 

Contract 

Agreed contract 

among services  
Classifier <<ServiceContract>> --- 

Service 

Operation 

Atomic 

functionality 

provided by a 

service 

Operation --- --- 

Synchronous 

Operation 

Operation. The 

consumer waits 

for the response 

of the operation 

Operation <<SOp>> --- 



 THE ARCHIMEDES FRAMEWORK   97 

 

CONCEPT SEMANTICS 

NOTATION RESTRICTIONS 

BASE UML 

METACLASS 
STEREOTYPE  

Asynchronous 

Operation 

Operation. The 

consumer does 

not wait for the 

response of the 

operation 

Operation <<AsOp>> --- 

Interaction 

Pattern 

Pair operation 

name-exchange 

pattern. 

Indicates how 

an operation is 

consumed 

Attribute <<IP>> 

The operation 

name must 

belong to the 

provider 

service 

Service Role 

Subset of the 

functionality 

that played by a 

service.  

Connectable

Element 
<<ServiceRole>> 

Define a 

subset of 

operations 

Composite 

Service 

Aggregation of 

services 
Classifier --- --- 

Orchestration 

Composite 

Service. A 

service governs 

the information 

flow in the 

composition 

Classifier <<Orchestration>> 

Must contain 

an 

Orchestrator 

Choreography 

Aggregation of 

services in 

which none 

masters over 

another 

Classifier <<Choreography>> --- 

3.2.2 PSM Architectural Specification 

Models at the PSM abstraction level, as described in the MDA proposal 

[170], should reflect aspects related to a concrete technological platform (i.e. the 

influence of using a specific programming language, features of communication 

layers, the use of a database or an concrete implementation framework, etc.) and 

closer to the final coding of the system. The number of platforms currently 

available entails that any modelling initiative for that level must be able to cope 

with the potential diversity of implementation alternatives. 

In the case of the ArchiMeDeS framework, at this level of abstraction, a 

DSL for modelling software architectures using services is encouraged, as it was 

discussed at the beginning of the current chapter. To reach that goal, different 

platform aspects that may affect the architectural configuration of service-oriented 

solutions should be taken into account. For instance, the technological standards 

followed (e.g. WSDL, WADL, WSRF, SOAP, etc.) or the execution environment 



98   MARCOS LÓPEZ SANZ 

 

(single computer, clusters of workstations, network of distributed resources, etc.) 

supporting the system under development.  

Regarding the topics of this Thesis a special mention should be made on 

some of the most spread approaches that foster the use of services as underlying 

supporting platform. In particular, some of the currently most relevant service 

platforms should be taken into account: the Web Service platform (through the 

support for both the WSA initiative [228] and REST-compliant services [69]) and 

Grid Computing platforms (following the OGSA initiative [178]). Next 

subsections cover the definition of a DSL for modelling architectures of these 

service-aware platforms. 

Though these platforms define and treat the architectural elements 

differently, a common set of concepts can be extracted. This leads to the creation 

of a base metamodel that can be used as kernel for any service-oriented platform 

as it is explained in section 3.2.2.1. As a direct consequence, the PSM level of the 

MDA architecture is divided in two separate levels: PDM (Platform Dependent 

Model), which gathers all the concepts that the target service-oriented platforms 

have in common, that is, a DSL with a ‗core‘ metamodel; and TDM (Technology 

Dependent Model), which will comprise an extensions to the PDM DSL adapted 

to the features of the three technologies chosen, i.e., Web Services, Grid Services 

and REST Services. 

After the PDM DSL is specified, three extensions at the TDM level are 

presented corresponding to the support for architecting with Web Services (section 

3.2.2.2), Grid Services (section 3.2.2.3) and REST-compliant services (section 

3.2.2.4). Afterwards, the concrete syntax is presented in the same way as it was 

made for the PIM level, indicating accurately the concepts used for each 

technology. 

3.2.2.1 PDM Abstract Syntax 

To detect the architectural commonalities shared between different service 

platforms, some premises about the nature of this kind of environments should be 

stated: 

 The environment in which services are executed is inherently distributed 

and, thus, concepts such as ‗public interface‘ (participating elements do 

not see the internal workings, implementation details, or resource 

representations of other elements), ‗communication mean‘ (the channel 

used for the communication among services sets up an exchanging 

protocol) or ‗executing agent‘ (distributed environments connect 

computational elements in charge of executing the services) play a 

prominent role in service-oriented architectures.  



 THE ARCHIMEDES FRAMEWORK   99 

 

 Communication among services is based on message exchanges. This 

implies that both the exchange protocol and the format in which 

messages are delivered represent a key aspect of service interaction. 

Though not interfering in the structure of the system configuration, this 

information may be helpful when obtaining the final coding of the 

system. 

 Functionalities offered by services refer to the control of a resource for 

which they act as interface and access mean [59]. That resource can be 

either a physical storage resource (file, database, etc.) or a more ‗ethereal‘ 

one in the sense that it may refer to a processing functionality or the 

persistence of a state between invocations. Likewise, resources may 

allow act as entry points for the use of services within architectural 

configurations. 

 Basic features of services include the fact of being publishable, 

discoverable and reachable. As a direct consequence, they must offer a 

well-known interface and, therefore, the concept of ‗location‘ is 

mandatory. 

All these aspects represent information from the implementation 

environment that have an influence over the system architecture, and thus modify 

the semantics that were gathered at the PIM level models. Having all these issues 

in mind, and after studying the initiatives WSA (for Web Services), OGSA (for 

Grid Services) and the principles of REST (for REST-compliant services), it is 

possible to provide a coherent description of a set of common concepts that allow 

building up a DSL for modelling the PDM level of the architecture: service 

agents, resources, services and service contracts. These concepts can be seen in 

the metamodel shown in Figure 3-5. Afterwards, they are further explained 

together with their properties and attributes.  

3.2.2.1.1 Service Agents: supporting infrastructure for services and 

resources. 

Services and resources in a service-oriented environment must be executed 

and managed by some physical entity. At higher levels, this responsibility fell on 

the business organizations identified in the business context and reflected, 

accordingly, in the PIM architectural model. At lower levels, in contrast, this job 

is accomplished by physical entities globally known as service agents [228]. 

 

 



100   MARCOS LÓPEZ SANZ 

 

 

Figure 3-5. Service-Oriented Core Metamodel at the PDM abstraction level. 



 THE ARCHIMEDES FRAMEWORK   101 

 

Service agents may be understood as the elements that serve as the factual 

executing substrate of the services implemented over it. This concept allows the 

encapsulation of many of the concerns needed for service consumers to access to a 

desired and concrete service with regard to service discovery, security credentials, 

intelligent caching of time-sensitive data (e.g. token for a concrete message 

pattern), as well as invocations of the service of course.  

Architectonically speaking, service agents may be paired with the concepts 

of node or server, in the sense of acting as deploying infrastructure over which 

services are executed and resources are positioned. The main difference with those 

elements is that the identification of service agents within architectural models 

may not refer uniquely to hardware components but, in contrast and from the point 

of view of the ArchiMeDeS framework, they may also represent software artefacts 

allowing for the performance of the tasks provided by a service under its charge. 

Essentially, when an application needs to use functionality provided in a 

service, a service agent manages the semantics of communicating with that 

particular service. For example, the business components of a retail application 

could use a service agent to manage communication with the credit card 

authorization service, and use a second service agent to handle conversations with 

the courier service. Service agents isolate the particularities of calling diverse 

services from applications, and can provide additional services, such as basic 

mapping between the format of the data exposed by the service and the format 

your application requires.  

Properties of service agents include, apart from its name, the identification 

of what services and resources are under the responsibility of the managing 

service agent. 

3.2.2.1.2 Resources: identifiable architectural entities. 

According to RFC 2396 [19], a resource can be anything that has identity. 

This general definition covers any electronic entity that may be computationally 

described, managed and accessed [228]. Therefore, it is possible to identify as 

resources elements such as a Web page, an image, a text file or a database storing 

information, but also a processing facility, a computing platform (in the sense of 

an execution substrate) or any software artefact usable by any external entity in 

order to obtain a value derived from its interaction with the resource. Following 

that definition it is easily acceptable the consideration of any service 

implementation (based on whichever the current service-related technology be 

used) as a special kind of resource.  



102   MARCOS LÓPEZ SANZ 

 

From that conception it is possible to derive the properties that a resource 

has: a description (in the form of meta-information about the resource and its 

attributes and capabilities), a location (a piece of information that allows its 

addressing and discovery) and, of course, a name, allowing to identify it uniquely 

within the architectural configuration. Depending on the technology or paradigm 

used to implement the resource all these distinguishable properties will be defined 

jointly (think of a REST-compliant service for example) or separately in different 

software elements (e.g. a URL plus a WSDL for the description of a Web 

Service). 

3.2.2.1.3 Services: active architectural elements.  

As it has been pointed out previously, a service, at a lower abstraction 

level, is a special kind of resource. Consequently, it inherits all its properties; 

however, it differs from a resource in its purpose as part of a software solution. A 

service may be clearly distinguished due to the fact that it acts as an active entity 

in charge of performing a specific function in its context, either on its own or 

jointly with a specific resource. This way, a service represents a piece of software 

that performs part of a business task clearly defined and implemented over a 

concrete platform.  

About the possible relationships between services and resources it is 

important to remark that there are situations in which the consumption of the 

functionalities offered by a service requires the previous use of a resource (for 

example when a Web page allows the access to a specific Web Service). The 

existence of this kind of contexts requires an explicit description of the 

relationships allowed between resources and services: 

 From service to resource. Access may take many forms, including 

retrieving a representation of the resource, adding or modifying a 

representation of the resource (in some cases may change the actual state 

of the resource if the submitted representations are interpreted as 

instructions to that end), and deleting some or all representations of the 

resource (which in some cases may result in the deletion of the resource 

itself). In the DSL, these particularities are reflected in the form of a 

dependency, named ‗control‘ established as a property of service 

elements. 

 From resources to services. In these cases, since resources are 

considered to be ‗passive‘ elements within the architecture, these 

elements will provide only a standard way of referencing and accessing 

the capabilities defined by the service (e.g. a link to the service entry 



 THE ARCHIMEDES FRAMEWORK   103 

 

point or URL). To that end, the access means will depend mostly on the 

service implementation technology and the agent in charge of managing 

the resource (i.e. interpreting the information inside the resource for 

accessing the service, for example, the factual invocation of a URL found 

in a HTML Web page addressing a concrete Web Service). In the core 

PDM DSL, these particularities are reflected in the form of a ‗use‘ 

association established between resources and services and following that 

direction. 

All things considered, the relationship between services and resources may 

be classified from two different points of view: services in charge of allowing the 

access to a concrete resource (a database for example) or static resources allowing 

the access to a service (such a Web Page that acting as interactive interface to 

access the features provided by a service). Additionally, services may act as 

independent entities whose assigned task does not entail any interaction with a 

resource. 

Apart from the properties derived from the condition of being resources, 

services, as architectural elements, must define another concrete property: a well-

known interface, which represents the boundary of a service alike the resource 

description element, with the difference that, in the case of a service, a service 

interface contains a description of the offered operations. 

3.2.2.1.4 Service contracts: defining architectural interaction. 

Interaction in service-oriented environments is accomplished by the active 

elements, that is, among services, through the exchange of messages (i.e. tokens of 

information). The conditions under which messages are exchanged are defined in 

an agreement signed by the contractor services. The architectural element that 

defines all these conditions is known as service contract.  

At the PIM level of abstraction, a service contract represented the 

conditions under which some client could use the operations defined by a service. 

At the PDM level, in turn, these conditions may define not only the message 

interaction pattern but, more consistently, the protocol used to encode the 

communication process, the message format used or the concrete interface of the 

provider service that will be able to use the consumer. This situation can be easily 

tracked within platforms such as Web services (where a WSDL file includes both 

the message exchange pattern and a reference to the scheme that messages follow, 

apart from defining the interface of the service itself) and Grid Services (where 

standards such as WS-Addressing [232] or WS-Coordination/WS-Transaction 

[32][34] allow the definition of the interconnection conditions at a given moment). 



104   MARCOS LÓPEZ SANZ 

 

Apart from identifying the contractors, relevant attributes of service 

contracts include the definition of the technology or standard used in the message 

coding (for example, when implementing with Web Services, the contract should 

clearly indicate that the SOAP protocol will be used) and the message exchange 

pattern (MEP) that will be followed. At PDM level, the values assigned for those 

will retain the values defined for the PIM level since the concrete interaction 

pattern depends greatly on the language used for describing the service contract.  

3.2.2.1.5 On service types and its architectural relevance. 

Services at the PDM level refer to computational entities that have their 

own responsibility and capabilities within the system scope but, apart from the 

implementation technology, do not differ architectonically from any other service 

in the system. Accordingly, the kinds of services identified at the PIM level 

(Information, Interaction, Processing and Orchestration) are justified by the need 

for the identification of element patterns within the architecture at the PSM level.  

That means, for example, that when modelling an information service at 

the PIM level of abstraction, at the PSM-level there will exist a service in charge 

of allowing the retrieval of the information related to of a persistent resource 

(independently of the form it has, whether it is a ‗logical‘ state or a table in a 

database) or, focusing on the boundaries of a system, that if the PIM-level model 

reflects the existence of an interaction service, the PSM-level counterpart will 

include a static resource granting the use of the capabilities provided by a service. 

3.2.2.1.6 On service composition. 

Composition of services at this level of abstraction depends greatly on the 

technology chosen to develop the composition. Further comments on composition 

means will be tackled in deep in next subsections since there are different 

languages defined to implement composition strategies based on orchestration 

(BPEL, BPEL4People) or choreographies (WS-CDL, WS-CAF, WS-CF, etc.) 

3.2.2.2 TDM Abstract Syntax: Web Services 

In order to properly define a DSL for service-oriented platforms, the PDM 

metamodel presented previously must be concreted to some of the most spread 

platforms that are used nowadays having a special emphasis on the technologies 

used. Under the Web Service concept lays a technology that has reached the inner 

structures of companies and that has been pointed out as one of the most 

promising technologies for the implementation of software solutions within the 

enterprise [114]. Behind this technology there is a myriad of languages and 

standards defined to optimize its usage [236]. The W3C is the consortium that 



 THE ARCHIMEDES FRAMEWORK   105 

 

leads this standardization initiative and which is under charge of developing those 

specifications. 

Focusing on the architectural viewpoint, the W3C is also responsible for 

deploying the WSA initiative, a proposal for the definition of both the functional 

components and the relationships among them that may arise within in an 

environment of this kind [228]. In addition, since the WSA specification 

recommends the use of WSDL for the description of Web Services, the WSDL 

specification will be used as basis to properly define each of the architectural 

properties building up the PSM level of the ArchiMeDeS proposal for Web 

Service Architectures,. 

It is important to remark that this subsection does not pretend to give a 

deep explanation of the WSA standard (as it can be consulted in [228]) nor the 

WSDL standard, but, in contrast, an approach on how these specifications fit 

within the ArchiMeDeS framework in the form of an extension for the core 

metamodel that allows specifying software architectures at this abstraction level.  

The metamodel of the extension for the WSA proposal can be seen in 

Figure 3-6. It also shows the relationships defined between them and 

corresponding elements of the core metamodel. In the following, as it was done 

with the PIM-level version of the DSL, these concepts will be clearly explained 

and exemplified with the Web Service implementation of the GESiMED system. 

3.2.2.2.1 Resource (WSResource) 

Although resources, in general, can be almost anything, the WSA 

architecture is only concerned with those resources that are relevant to Web 

services and therefore have some additional characteristics. In particular, they 

incorporate the concepts of ownership and control: a resource that appears in this 

architecture is a ‗thing‘ that has a name, may have reasonable representations 

(resource descriptions) and which can be said to be owned. The ownership of a 

resource is critically connected with the right to set policy on the resource (not 

contemplated within the scope of this Doctoral Thesis). The control property, in 

turn, refers to the service agent that is in charge of managing the resource and 

rules the policies that govern its access. It may correspond with the owner of the 

service or not.  

 

 

 



106   MARCOS LÓPEZ SANZ 

 

(f
ro

m
P

D
M

 M
et

a
m

o
d

e
l)

W
e

b
 S

e
rv

ic
e

M
et

a
m

o
d

e
l

P
D

M

T
D

M

 

 Figure 3-6. Concepts for modelling Web Services at TDM abstraction level. 



 THE ARCHIMEDES FRAMEWORK   107 

 

In accordance to what was defined in the core metamodel of the PDM 

level, the WSA specification avoids making any explicit reference to the 

activeness role of that resource, relegating it to the concept of Web Service. It is 

worth to mention that the Web Service element is also considered to be a special 

kind of resource as it shares the same descriptive properties: name, location and 

description. However, in either a WSResource or a Web Service, these properties 

are specialized to comply with the standards of the W3C, as follows: 

 The location property identified in the kernel version of the DSL 

becomes a URL, allowing the addressing of the resource. 

 The name property (inherited from a resource) becomes the URN as it is 

defined in RFC2141 (―URN Syntax‖). 

 The description property remains unaltered just like it was defined in the 

core metamodel. 

3.2.2.2.2 Web Service (WSService) 

The main concept of the WSA specification is the Web Service. According 

to WSA it is an abstract resource that represents a capability of performing tasks 

that represents a coherent functionality from the point of view of provider entities 

and requester entities. This element inherits, in the ArchiMeDeS proposal, directly 

from the Service concept of the core metamodel, sharing all its properties and 

associated relationships with other elements. Since a Web service is considered to 

be a kind of resource in WSA, so it will inherit its properties from the 

WSResource.  

The description of a service, as it is understood by the WSA, is a set of 

documents that serve to describe what a service is and which is the information 

that allows communicating with him. In that sense, and so it is described in the 

WSA standard, the service description is matched with the union of the service 

interface and a semantic description of the abstract functionality provided by the 

service. The current extension for Web Services does not include any kind of 

architectural support for semantic descriptions. As it was explained in the 

introduction, this end was the subject of a previous PhD Work by Cesar Acuña [2] 

though no integration has been done to date. 

3.2.2.2.3 Service Interface (WSInterface) 

As it is defined in the WSA specification, the interface of a service is the 

abstract boundary that a service exposes. It defines the types of messages and the 

message exchange patterns that are involved in interacting with the service, 

together with any conditions implied by those messages. The definition of 



108   MARCOS LÓPEZ SANZ 

 

exchange patterns inside the interface implies the definition of the conditions 

under which a service allows communications, thus making reference to the 

service contract it may establish with potential service consumers. As a 

consequence, in the DSL definition, the service interface element keeps a 

reference to the corresponding service contract. Further details on this element are 

specified next. 

However, that definition of interface does not include the set of operations 

through which the service receives invocations and offers its functionalities. In 

contrast, the language recommended by WSA for the description of a Web Service 

(WSDL) already includes explicitly the definition of the operations offered by a 

service
2
. 

Due to this semantic inconsistency between WSA and WSDL, in the 

extension proposed for modelling architectures of Web Service-based 

environments, the concept of service operation is preferred to be part of the 

service interface architectural element leaving the specification of the message 

exchange patterns to the service contract element.  

3.2.2.2.4 Service Contract 

As it happened to the service operations, no explicit reference to the service 

contract is made inside the description of the WSA proposal. However, current 

implementations of Web Services [103][114][214] consider that the service 

contract, signed between a service and any potential clients that may take 

advantage of the functionalities offered by it, relies in the acceptance of the 

features and constraints defined as part of the service interface. That is, inside the 

WSDL document that is publicized showing the ways a service may use to interact 

with another. More complex contracts may be signed in environments not relying 

tightly to the W3C standards and proposals. In that sense, the service contract may 

appear mandatory after a handshake process is done between requester and 

provider. 

Since this service contract inherits its properties from the core metamodel, 

it defines the message exchange pattern indicating the handshake protocol that 

                                                

 

2 In WSDL, the service interface is defined under the <<portType>> element of WSDL 

1.1 and under the <<interface>> element in a WSDL 2.0 document. It contains a 

description of the operations that can be used and the input/output messages that will be 

used with each operation. 



 THE ARCHIMEDES FRAMEWORK   109 

 

agreed by both the consumer of the service and the provider
3
. However, in case of 

using the standards recommended by the W3C (i.e. WSDL), the allowed exchange 

patterns are reduced to 8 possibilities (according to the version 2.0 of that 

specification [234]): 

 In-only: Here a service operation only receives an inbound message, but 

does not reply. This MEP cannot use a fault. When referred to by an 

operation's pattern attribute, it has the value 

"http://www.w3.org/ns/wsdl/in-only". 

 Robust In-only: Identical to In-only, except that this type of MEP can 

trigger a fault. When referred to by an operation's pattern attribute, it has 

the value "http://www.w3.org/ns/wsdl/robust-in-only". 

 In-Out: Identical to the request-response of WSDL 1.1. A fault here 

replaces the out message. When referred to by an operation's pattern 

attribute, it has the value "http://www.w3.org/ns/wsdl/in-out". 

 In-Optional Out: Similar to In-Out, except that the out message is 

optional. When referred to by an operation's pattern attribute, it has the 

value "http://www.w3.org/ns/wsdl/in-opt-out". 

 Out-Only: The service operation produces an out-only message, and 

cannot trigger a fault. When referred to by an operation's pattern attribute, 

it has the value "http://www.w3.org/ns/wsdl/out-only". 

 Robust Out-Only: Similar to Out-Only, except that this type of MEP can 

trigger a fault. When referred to by an operation's pattern attribute, it has 

the value "http://www.w3.org/ns/wsdl/robust-out-only". 

 Out-In: Identical to the solicit-response of WSDL 1.1. An operation 

sends a request and then waits for a response. Here the <output> would 

be defined before the <input>.When referred to by an operation's pattern 

attribute, it has the value "http://www.w3.org/ns/wsdl/out-only". 

 Out-Optional In: The service produces an out message first, which may 

optionally be followed by an inbound response. When referred to by an 

operation's pattern attribute, it has the value 

"http://www.w3.org/ns/wsdl/out-opt-in". 

                                                

 

3 In WSDL, contract features and constraints (message exchange protocol and transport 

mean) for each service operation interface are described inside the <<binding>> 

element of the WSDL document. 



110   MARCOS LÓPEZ SANZ 

 

All this variants will be used within the architectural model to fill in the 

patternType value of the MessageExchangePattern element from the core 

metamodel.  

3.2.2.2.5 Service role (WSRole) 

The service role played by a service refers to the performance of 

choreographic interactions among services using some of the standard languages 

defined for that aim by the W3C. These standards for choreographies are far from 

being stable and much discussion remains alive within the Web Service 

community ([17], [89], [153], [181]). To reach the objective defined in this Thesis; 

this element is included so as to identify the subset of operations used by a service 

when participating in a complex choreography. 

In contrast, the WSA gives a different point of view of this term, defining it 

as the relevant abstract set of tasks provided by a person or organization offering 

a service. This definition is at a higher abstraction level than the one given 

previously since it refers to the tasks offered by a service owner instead of 

assigning that responsibility to the service itself. For the sake of usability, in this 

concrete case, the concept of service role adopted will be the one explained in the 

previous paragraph due to the current trends in choreography languages and in 

order to maintain the coherence with the PIM architectural modelling.  

3.2.2.3 TDM Abstract Syntax: Grid Services 

In order to be able to model Grid-based architectures, the Grid Service 

metamodel will extend the concepts gathered by the Web Service DSL since the 

foundations of the Grid Computing paradigm are currently based on the Web 

Service technology. 

The actual use of Grid Services as stateful Web Services (see section 2.1.8 

for more details) and its particularities serves as main reason to propose a concrete 

extension of the PDM metamodel for service-oriented architectures. Therefore, in 

the following, the concepts identified within the Architecture of Grid 

environments (as defined in both the OGSA Architecture [76] and the WSRF 

specification [91]) based on Grid Services are described in detail. To have a global 

overview of these concepts and how they relate to the Web Service metamodel 

defined previously Figure 3-7 shows that extension. 

 

 

 

 



 THE ARCHIMEDES FRAMEWORK   111 

 

G
ri

d
Se

rv
ic

e
M

et
am

od
el

(f
ro

m
P

D
M

 M
et

am
od

el
)

P
D

M

TD
M

 

Figure 3-7. Concepts for modelling Grid Services at TDM abstraction level. 



112   MARCOS LÓPEZ SANZ 

 

3.2.2.3.1 Grid Services 

A Grid service is a Web service that works in a Grid environment. Taking 

into consideration the fundamentals of Grid Computing about enabling virtual 

organizations based on services, it is appropriate to state that a Grid Service is a 

Web service that ―virtualizes‖ the use of any element present in the Grid 

environment and that allows to access to any facility managed in the Grid [76]. 

That means that a Grid Service knows how to access to any resource that is 

virtualized so it is possible to be used by any client connected to the distributed 

Grid system. In that sense, the architectural properties of a Grid service are exactly 

the same that were defined previously for Web Services and so they will the 

relationships and features.  

The only remarkable difference between a standard Web Service and a 

Grid Service can be found in the moment of communicating with the service to 

access a concrete resource of the Grid. In order to properly locate a Grid resource, 

the communication with a Grid service will be include an endpoint reference, 

which is a pair of address-resource identifier where the address element 

corresponds to the URI (URL plus URN) of the Web Service and the resource 

identifier allows to uniquely identify a resource within the Grid and that is 

controlled by the previous Web Service. This resource identifier, in turn, is 

described according to the WS-Resource standard and includes a set of port types 

for querying and modifying the state of that resource. The resource addressed 

using the WS-Resource may refer to a physical resource (a file or a database) or a 

more ‗ethereal‘ one, in the sense of maintaining the value of a temporal variable 

between invocations to the Grid Service. It is compulsory to know the existence of 

this naming scheme in Grid service environments although it is not explicitly 

included in the architectural model.  

The use of Endpoints within Grid environments is encapsulated inside the 

messages that Web services in Grid environments exchange so they have no 

influence on the architectural configuration or the architectural model at this level. 

3.2.2.3.2 Grid Resources 

A Grid resource is anything that can be virtualized within the scope of a 

Grid environment and that has some specific properties. Within the ArchiMeDeS 

framework, a Grid resource represents the same concept as a WS-Resource as it is 

defined by OASIS [91]. The architectural element has been assigned a different 

name since the Web Service extension already defines the concept of 

WSResource. 



 THE ARCHIMEDES FRAMEWORK   113 

 

3.2.2.4 TDM Abstract Syntax: REST Services 

Other important platform that has arisen as an alternative to Web Services 

can be found in the form of the REST (Representational State Transfer) 

technologies. Though it can be considered as a restriction to the vision of the 

WSA initiative, it uses many of its principles but relying only on standard 

operations of the HTTP protocol [70]. It is also related to Grid Computing since 

both Grid Services and RESTful services aim to give a solution to the 

management of the state within service-oriented environments. 

Analyzing its initial definition given by Roy Fielding in its Thesis 

dissertation [69], REST can be understood either at the same level as SOAP (as a 

protocol over the HTTP communication protocol), as a way of formatting the 

messages and the access means to an existing web service or as an architectural 

style (as it happens with SOA itself) [127]. The importance gained by REST is 

that it is entirely focused on the Web and thus its capabilities are constrained to 

that environment. Web Services, in turn, can be placed in other more local 

environments not necessarily placed over HTTP. 

According to Fielding, the architectural elements that build up a REST 

architecture are: Data elements (resources and representations), Connectors 

(managers of network communications) and Components (primarily service 

agents). To fully comprehend the REST initiative it is necessary to fix some 

premises [185]: 

 Resource identification via URIs. A RESTful Web Service exposes a 

set of resources which identify the targets of the interaction with its 

clients. Resources are identified by URIs (which is in accordance to the 

definition given in the core PSM metamodel of ArchiMeDeS) 

 Uniform interfaces. Resources are manipulated using a fixed set of 

operations due to the fact of relying on the HTTP protocol: PUT, GET, 

POST and DELETE. These operations are the only means of interaction 

with the exposed resources. 

 Self-descriptive messages. Resources are decoupled from their 

representation so their content can be accessed in a variety of formats 

(e.g. HTML, XML, JPG, plain text, PDF, other MIME types, etc.). 

 Stateful interaction via hyperlinks. Every interaction with a resource is 

stateless (the HTTP protocol itself is stateless) and, therefore, request 

messages should be self-contained. That means that, in order to operate 

with a resource (either to modify it or continue a previous interaction) the 

invocation must contain all the information needed. 



114   MARCOS LÓPEZ SANZ 

 

 Implementation agnosticism. REST ignores the details of component 

implementation and protocol syntax in order to focus on the roles of 

components, the constraints upon their interaction with other 

components, and their interpretation of significant data elements. 

Taking into account the features of the REST initiative, the extension 

proposed for modelling REST services at the PSM-level of abstraction defines the 

following elements: RESTAgent, RESTService, RESTResource and 

RESTContract, being all four specializations of the ServiceAgent, Web Service, 

WSResource and ServiceContract from the core metamodel and the Web service 

extensions previously specified. These elements are gathered in a metamodel that 

can be seen in Figure 3-8.  

3.2.2.4.1 RESTAgents. 

REST Agents are Service Agents whose main purpose is to know what 

‗piece of code‘ (i.e. RESTService) should be executed when a request to a 

concrete URL is made. This URL will be a reference to a specific RESTResource 

under the control of a RESTService (that ‗piece of code‘ mentioned previously). 

Architectural properties are the same as the ones defined for Service 

Agents in the core metamodel. However, an additional element supporting this 

concept has been included in the current extension for the sake of clarity in 

architectural models of REST-based configurations. This way it is possible to 

clearly differentiate those service agents that are capable of executing the 

corresponding REST service when an operation for a REST resource is received 

by the REST agent. 

3.2.2.4.2 REST Services 

REST Services are the computational entities that actually respond to client 

request that desire to access to a resource. These kinds of services are portions of 

code (e.g. Java classes) that are executed by a REST Agent and have the right to 

act over the resource depending on the type of operation requested. 

From the architectural point of view, the main difference of REST services 

with Web Services is that, although both have a name, a location (an URL) and 

can be described, REST services do not need the existence of an explicit interface 

exposing the offered operations (they are always the same). As it will be explained 

later on, the service contract is also standardized requiring only the specification 

of the message exchange pattern used with each of the predefined operations.  

 

 



 THE ARCHIMEDES FRAMEWORK   115 

 

 

P
D

M

TD
M

(f
ro

m
P

D
M

 M
e

ta
m

o
d

e
l)

R
ES

T 
Se

rv
ic

e
M

et
am

od
el

 

Figure 3-8. Concepts for modelling REST Services at TDM abstraction level 



116   MARCOS LÓPEZ SANZ 

 

3.2.2.4.3 REST Resources 

As it happened with the Grid Computing paradigm, in REST-based 

environments, resources are understood as any kind of information that can be 

named (a document or image, a temporary value asked to a service, a collection of 

other resources, etc.). However, from the REST point of view, a resource is a 

conceptual mapping to a set of entities (a generic description of the resource, i.e. a 

resource representation, hence the name REST) and not the entity that 

corresponds to the mapping at any particular point of time (that is, the values or 

state of a resource in a specific moment).   

Within the architectural model, a REST resource will be an element clearly 

identified (as any other resource in service-oriented environments) and will 

comprise a coherent description of the resource itself. Since no standard is 

recommended in the REST specification for the description of the resource 

properties, the extension proposed do not include any explicit reference to that 

properties as it already happened in the case of extension for Grid-based 

environments. 

3.2.2.4.4 REST contracts 

REST services represent a special case when considering the establishment 

of access conditions from consumer services to providers. REST services are built 

upon the use of the HTTP protocol as underlying layer for communications and 

thus it is that protocol the one imposing the conditions under which the contractors 

may communicate. In this kind of environments, the generally adopted contract is 

named uniform contract [183]. It appears as consequence of the standardization 

of the operations needed to access a service (or, more properly, a resource) and 

that consists on the description of the URI defining the resource and the standard 

operation accompanying the resource. In that sense, the behaviour is implicit, 

since there is no contract that governs the behaviour of each URI-identified 

resource, hence transferring the constraints of the use and governance issues of the 

resource to the management of the resource itself. 

The influence of this kind of contract is translated into the architectural 

model by defining a concrete unique element named RESTContract establishing 

the standard conditions of REST contracts. That is, that the operations will be the 

ones aforementioned (PUT, GET, POST and DELETE) corresponding to the 

creation, retrieval, updating and erasure of (the state of) a resource.  

The options for message exchange patterns are shared with the ones 

defined for Web Services (i.e. the ones defined by WSDL 2.0) since WSDL 2.0 

support the definition of Web Services in the REST way [131]. 



 THE ARCHIMEDES FRAMEWORK   117 

 

3.2.2.5 Concrete Syntax 

Since the PSM-level of the DSL for Software architectures in ArchiMeDeS 

is divided according to different technological platforms, so it will the UML 

profile that serves as concrete syntax for that DSL using UML. To illustrate this,  

Figure 3-9 shows a diagram with the relationships established among the 

profiles for this level of abstraction.  

«profile»

TDM DSL: 

REST Services

«profile»

TDM DSL: 

Web Service

«profile»

TDM DSL:

Grid Service

«imports»

«profile»

PDM DSL

«imports»

«imports»

ArchiMeDeS Modelling Framework – PSM Profiles

 

Figure 3-9. Profiles for the PSM DSL in the ArchiMeDeS framework. 

The UML diagram chosen to represent the architectural model is, likewise 

at PIM level, the Class diagram. The stereotypes defined for any PSM profile 

have also associated the closest concept that may be found in the UML 

metamodel. Following illustrations expose these stereotypes defined for each 

extension of the PDM metamodel for service-oriented technologies to be used 

within the TDM abstraction level of the model architecture. 

<<profile>>

PDM DSL

«stereotype»

ServiceAgent

«stereotype»

controls

«metaclass»

Dependency

«metaclass»

Classifier

«stereotype»

Service

«stereotype»

ServiceContract

«stereotype»

ServiceInterface

«metaclass»

Attribute

«stereotype»

MEP

«stereotype»

uses

«metaclase»

Operation

«stereotype»

ServOp

«stereotype»

Resource

 

Figure 3-10. UML profile corresponding to the PDM DSL for Service-Oriented 

platforms. 



118   MARCOS LÓPEZ SANZ 

 

<<profile>>

TDM DSL: Web Services 

«stereotype»

WSResource

«metaclass»

Classifier

«stereotype»

WSRole

«stereotype»

WebService

«stereotype»

WSInterface

 

Figure 3-11. UML profile for modelling Web Services. 

<<profile>>

TDM DSL: Grid Services

«stereotype»

GridResource

«metaclass»

Classifier

«stereotype»

GridService

«metaclass»

Attribute

«stereotype»

RP

 

Figure 3-12. UML profile for modelling Grid Services. 

<<profile>>

TDM DSL: REST Service

«stereotype»

RESTResource

«metaclass»

Classifier

«stereotype»

RESTService

«stereotype»

RESTAgent

 

Figure 3-13. UML profile for modelling REST Services. 

 

 



 THE ARCHIMEDES FRAMEWORK   119 

 

3.2.2.6 PSM DSLs Summary 

This sections aims to present a summary of the concepts and stereotypes 

defined for each DSL proposed at the PSM level of the MDA architecture. Since 

this level has been subdivided in two levels, the summary will present a table for 

each of the DSLs proposed. Each table depicts the concept, the associated 

semantics and the graphical stereotype used to represent it with UML. In addition, 

the derived meta-class used and any restriction posed over the concept are 

depicted. This way, Table 3.3 shows a summary of the terms that build up the 

DSL created for modelling Software Architectures at the PDM abstraction level 

and Tables 3.4, 3.5 and 3.6 the corresponding elements of each technology chosen 

for the TDM abstraction level.  

Table 3.3. Concepts and stereotypes of the PDM DSL. 

CONCEPT SEMANTICS 

NOTATION 

RESTRICTIONS BASE UML 

META-CLASS 
STEREOTYPE 

Service 

Agent 

Supporting 

substrate of 

services and 

resources 

Classifier <<ServiceAgent>> --- 

Resource 

Passive 

element of the 

architecture 

Classifier <<Resource>> 

Must have a 

location. 

Description is 

optional. 

Service 

Performs part 

of the system 

functionality 

Classifier <<Service>> 

Must define at 

least one 

interface 

Service 

Operation 

Atomic 

functionality 

provided by a 

service 

Operation <<ServOp>> --- 

Service 

Interface 

Subsets the 

service 

functionalities 

Classifier <<ServiceInterface>> 

May contain a 

reference to a 

service contract 

Service 

Contract 

Agreed 

communicatin

g conditions 

among service 

entities 

Classifier <<ServiceContract>> 

Must define the 

message 

exchange 

pattern 

Message 

Exchange 

Pattern 

Indicates the 

way a service 

operation must 

be consumed 

& interaction 

protocol 

Attribute <<MEP>> --- 



120   MARCOS LÓPEZ SANZ 

 

Table 3.4. Concepts and stereotypes of the TDM DSL for Web Services. 

CONCEPT SEMANTICS 

NOTATION 

RESTRICTIONS BASE UML 

META-CLASS 
STEREOTYPE 

Web 

Service 

Service defined 

according to the 

WSA 

Classifier <<WebService>> 

Must define both 

a URL and a 

URN 

WS 

Resource 

Passive element 

controlled by a 

service agent 

Classifier <<WSResource>> 

Must be clearly 

related to a 

service agent 

WS 

Interface 

Interface 

defined 

according to 

WSDL 

Classifier <<WSInterface>> 
Must define a 

service contract 

WS Role 

Subset of the 

service 

functionalities 

Classifier <<WSRole>> --- 

Table 3.5. Concepts and stereotypes of the TDM DSL for Grid Services. 

CONCEPT SEMANTICS 

NOTATION 

RESTRICTIONS BASE UML 

META-CLASS 
STEREOTYPE 

Grid 

Service 

Stateful service 

virtualizing a 

Grid Resource  

Classifier <<GridService>> 

Must be related to 

at least one 

resource 

Grid 

Resource 

Virtualized 

element in a Grid 

environment 

Classifier <<GridResource>> 

Must have a set of 

Resource 

Properties 

Resource 

Property 

Defines part of 

the attributes of a 

Grid Resource 

Attribute <<RP>> --- 

Table 3.6.Concepts and stereotypes of the TDM DSL for REST Services. 

CONCEPT SEMANTICS 

NOTATION 

RESTRICTIONS BASE UML 

META-CLASS 
STEREOTYPE 

REST 

Agent 

Agent executing a 

REST service 

depending on a 

RESTResource  

Classifier <<RESTAgent>> --- 

REST 

Service 

Service that 

responds to the 

standard HTTP 

operations 

Classifier <<RESTService>> --- 

REST 

Resource 

Resource that can 

export its actual 

state as required by 

a REST service 

Classifier <<RESTResource>> --- 



 THE ARCHIMEDES FRAMEWORK   121 

 

3.2.3 Modelling DSL Transformations 

ArchiMeDeS has been conceived as a model-driven framework and thus it 

follows an approach based on MDE principles. For that reason, the specification 

of model transformations allowing the automation of model evolution is highly 

recommended. This subsection is devoted to explain the model transformations 

that are included in ArchiMeDeS as part of its model-driven strategy for 

architecture specification. These transformations are defined in order to a) be able 

to obtain a concrete PSM representation of the architecture from its corresponding 

PIM model (PIM-to-PSM transformations); and, b) improve the semantic 

information gathered in the architectural models through the use of architectural 

styles (PIM-to-PIM transformations).  

For that purpose, next subsections define, first, an introduction on model 

transformations and the kinds of transformations considered regarding the outline 

of the DSLs defined; next, the set of transformations needed to advance from PIM 

architectural models to those at the PSM level of a specific service-oriented 

platform and, finally, the process to include architectural styles information into 

the PIM architectural model. 

3.2.3.1 A Taxonomy of Model Transformations 

Just like every program conforms to the grammar of its respective 

programming language, each model conforms to a metamodel. The metamodel 

describes the various kinds of elements that can be included in a model and the 

way they are arranged, related and constrained. A model that is valid according to 

the corresponding metamodel is said to conform to the metamodel, just as a 

program can be syntactically correct according to the respective programming 

language.  

Nevertheless, working with multiple, interrelated models requires  a 

significant effort to accomplish some tasks related with model management, such 

as refinement, consistency checking, refactoring, etc. Many of these activities can 

be performed as automated processes, which take one or more source models as 

input and produce one or more target models as output, following a set of 

transformation rules. In the context of MDE this process is known as model 

transformation [206].  

Model transformation is defined at the metamodel level, i.e. it maps 

elements from an input (source) to the output (target) metamodel. Consequently, 

it can be used to generate an output model from any set of models conforming to 

the input metamodel. In other words, the model transformation program works for 

any model that conforms to the input metamodel. An overview of a generic model 

transformation process can be seen in Figure 3-14. 



122   MARCOS LÓPEZ SANZ 

 

Meta-Metamodel
(MMM)

Metamodel A
(MMa)

Model A
(Ma)

Model Transformation (Mab)

Model Transformation
Metamodel

(MMt)

Metamodel B 
(MMb)

conforms to

uses

Model B
(Mb)

Model Transformation Engine

source target

rules

 

Figure 3-14. Overview of a generic model transformation process. 

The root of a transformation process is the meta-metamodel (MMM). It 

provides the architect with a set of basic abstractions that allow defining new 

metamodels. Next, the source and target metamodels are defined by instantiating 

the abstractions provided by the meta-metamodel. They are said to conform to the 

meta-metamodel. Finally, the model transformation engine executes the Mab 

model transformation to map a model Ma into another model Mb. To do so, Mab 

specifies a set of rules that encodes the relationships between the elements from 

the MMa and MMb metamodels. So, it can be used to generate an output model 

from any set of models conforming to the input metamodel. In other words, the 

model transformation program works for any model defined according to the input 

metamodel. 

Note that if the set of rules and constraints that drives the construction of a 

model transformation is defined in a metamodel (MMt), any model transformation 

will be expressed as a model conforming to that metamodel. Expressing model 

transformations as models (so-called transformation models) makes possible 

manipulating them by means of other transformations. This provides with several 

advantages. For instance, any model transformation can be the input or output of 

another model transformation. In addition, it is possible to compose 

transformation models as the composition of any other type of models [23], to 

deploy metamodel evolution and model co-evolution techniques [38], define 

chains of model transformations [225], reuse exiting model transformations [201], 

etc. 



 THE ARCHIMEDES FRAMEWORK   123 

 

In order to define what model transformations are relevant in the context of 

the ArchiMeDeS framework, firstly, it is compulsory to have a close look to 

existing model transformation kinds and analyze which is the one that best suits to 

the features defined for the presented proposal. To achieve that, this exposition 

will make use of the model transformation taxonomy defined by Mens et al. [146].  

According to that taxonomy, model transformations can be classified 

according to different criteria. Here, the focus is put on the language influence of 

the source and target models and their abstraction level in which they are defined: 

 Endogenous transformations (rephrasing) vs. exogenous 

transformations (translation). This criterion refers to the language used 

for the source model and the target model. In the case the language is the 

same, the transformation is considered as a rephrasing. In the case of 

being different, the transformation is said to be a translation.  

Regarding the model transformations considered in ArchiMeDeS, 

those transformations that aim to include architectural style information 

in PIM models will be understood as endogenous transformations, since 

the source model (PIM architectural model) and the target model 

(Enriched PIM architectural model) are described using the same DSL 

and, therefore, conform to the same metamodel. On the contrary, PIM-to-

PSM transformations (either to PDM or TDM models) will be considered 

as exogenous transformations since, although using a service-oriented 

semantic foundation, source and target DSLs are different. 

 Horizontal vs. vertical transformations. This classification criterion 

makes reference to the abstraction level in which the transformations take 

place. This way, it is possible to define horizontal transformations when 

source and target models are comprised within the same abstraction level 

and vertical transformations when they belong to different abstraction 

levels. In the case of ArchiMeDeS, since the proposal follows the MDA 

approach, PIM-to-PIM transformations will be managed as horizontal 

transformations and PIM-to-PSM, in turn, will be considered as vertical 

ones. 

 

In summary, model transformations within ArchiMeDeS are clearly defined 

in two groups: PIM-to-PIM transformations, horizontal and based on a 

rephrasing of the elements modelled; and PIM-to-PSM (either PIM-to-PDM or 

PIM-to-TDM), vertical and with the aim of achieving a language migration. 

 



124   MARCOS LÓPEZ SANZ 

 

In order to gain a full comprehension of the transformation processes that 

are defined as part of the ArchiMeDeS framework, it is necessary to study the 

kinds of transformations that may take place in model transformations and their 

application over service-oriented architectural models. For that aim, Table 3.7 

shows a summary of the kinds of transformations considered and an example of 

their application regarding the transformations modelled and their architectural 

relevance in that context. 

Table 3.7.Architectural relevance of the kinds of transformations considered. 

CARDINALITY MEANING 

PIM-TO-PIM 

TRANSFORMATIONS 

PIM-TO-PSM 

TRANSFORMATIONS 

ARCH. 

RELEVANCE 
EXAMPLE 

ARCH. 

RELEVANCE 
EXAMPLE 

1  1 
Simple  

mapping 
NO --- YES 

Service 

(processing) to 

GridService 

1  N Decomposition YES 

Service Type 

to Service + 

Service Type 

YES 

Service 

(information) to 

Service + 

Resource 

N  1 Merge YES --- 4 YES 

Service + 

ServContract to 

WSInterface 

N  M Composition YES 

Service + 

Component to 

Service +  

ServiceRole 

NO --- 

 

Model transformations can be further classified depending on the 

cardinality of the transformations accomplished, that is, depending on the number 

of source elements required by the transformation and the target elements obtained 

as a result. This way, the possible combinations are the ones reflected in Table 3.7. 

 One to One transformations (1  1). This scenario refers to those 

situations in which there is a one-to-one correspondence between a meta-

class from the source metamodel and another from the target one. When 

                                                

 

4 This alternative does make sense from an architectural point of view but it will not happen 

within the proposed framework. 



 THE ARCHIMEDES FRAMEWORK   125 

 

modelling PIM-to-PSM transformations this is the most common 

situation and many examples can be found. On the contrary, when 

performing PIM-to-PIM transformations, this scenario will not occur 

since, as it will be explained later, the objective is to populate the PIM 

architectural model with information coming from the architectural style 

model by means of ―annotating‖ the source model with Service Roles, not 

changing or modifying the original element. 

 One to Many transformations (1  N). In this case, the scenario refers 

to situations in which the source element transforms into more than one 

element in the target model. An illustrative example can be found in 

PIM-to-PSM transformations where, from a conceptual Service identified 

with the information variant in the PIM model, a tuple Service-Resource 

is obtained as a result in the PDM model. When superimposing 

architectural style information to PIM models, the example arises in the 

moment of having to decompose a service instance (or a ServiceType) 

into both a service instance and the corresponding ServiceType. This 

occurs because, on the one hand, the Service Role will be defined as part 

of the Service Type (since it comprises a subset of the functionality 

provided by it) and, on the other hand, Service Roles are exclusively 

played by service instances, thus needing the existence of both elements. 

 Many to One (N  1). This scenario takes place when an element in the 

target model is created from the information contained in more than one 

source element. That is the case, for instance, of a WSInterface at the 

Web Service TDM model that needs information from both a Service and 

a Service Contract of the source PIM model. Although no similar 

situation can be extracted from the defined PIM-to-PIM model 

transformations regarding architectural style superimposition, merge 

transformations may occur in the moment of modelling situations in 

which a new element needs to be created from the information contained 

in different source elements. This case would be handled as if it were a 

Many-to-many transformation and, accordingly, the transformation 

strategy will be that explained next.  

 Many to Many (N  M). Finally, this scenario occurs when from 

several elements of the source model need to be transformed into more 

than one element in the target model. This is the approach that will be 

mainly followed in PIM-to-PIM transformations. From the information 

collected in both PIM architectural model and the model with the 

architectural style information (that is, from more than one source 



126   MARCOS LÓPEZ SANZ 

 

element) the transformation will result in (actually: merge), at least, two 

elements in the target Enriched PIM architectural model (a Service and a 

Service role). The approach for that kind of transformations is to manage 

them as a composition of simpler situations. 

3.2.3.2 PIM-to-PSM Transformations 

So far, this dissertation has discussed how to manage abstraction levels 

separately. Previous sections dealt with modelling the architecture of a software 

system using a concrete service-oriented point of view, either at the PIM 

abstraction level (including, or not, information from architectural styles) or a 

more platform dependent level, whichever the technology of choice used. 

However, in order to consider ArchiMeDeS as a model-driven framework for 

architecture specification, it is compulsory to provide means for (semi-) 

automatically transferring the information gathered at conceptual levels into 

specific technological approaches via model transformations. 

Accordingly, the next step towards the completion of ArchiMeDeS is the 

definition of vertical model transformations that will help to translate the models 

defined with such DSLs. To that end, it is necessary to specify and implement the 

mapping rules that compose each model transformation. The rules defined for that 

aim are based on basic transformations (see Section 3.2.3.1), for more complex 

mappings supplementary information would be required. This additional 

information would come from the modelling of other development concerns 

(behaviour, interface, storage, etc.) and from architectural decisions not 

considered in the scope of this Doctoral Thesis (design rationale, patterns, 

templates, etc.). 

In order to define PIM-to-PSM transformations it is necessary to take into 

account the separation in two levels that has been defined for modelling 

architectures at the PSM level. Accordingly, different model transformations have 

been defined from PIM to PDM and from PIM to each of the TDM DSLs. 

Reasons for this decision can be summarized in the following: 

 PDM and TDM models share the same abstraction level (PSM) with the 

only difference of minor technological features included as part of the 

TDM models. In some scenarios and counting with an adequate tool 

support, it would be enough to have a PDM version of the architecture in 

order to obtain the source code of a software solution. 

 TDM DSLs are considered as ―extensions‖ to the information modelled 

at PDM level. In fact, TDM models describe the particularities of the 

architectural models according to the implementation of PDM models 

depending on the target technology. 



 THE ARCHIMEDES FRAMEWORK   127 

 

 Obviously, all the architectural information modelled in PDM models is 

reflected in TDM models. In many cases, the information of PDM 

models is seamlessly modelled at TDM level. 

 PSM architectural models can be understood to be comprised by either 

PDM models exclusively; or as the union of PDM models plus the 

particularization of some elements according to the chosen TDM. 

 

Regarding how model transformations should be defined, the MDA guide 

[151] stated that ―the mapping description may be in natural language, an 

algorithm in an action language, or a model in a mapping language‖ (p. 24). This 

way, model transformations will be described in two parts: 

 First, the possible mappings between models are defined using natural 

language. They will be structured by collecting them in a set of rules, 

expressed in natural language. This first part is explained in the 

following, indicating which are the corresponding elements of each PSM-

level DSL that can be obtained from elements specified at the PIM-level 

DSL.  

 Second, the resulting transformation rules are implemented using ATL. 

This second part will be explained as part of the tool created to support 

the ArchiMeDeS framework. Since it is considered an implementation 

issue, this explanation has been delayed to section 4.2. 

The target platforms available at PSM depend on the target abstraction 

level. This way, it will be possible to evolve the architecture to a nonspecific 

service-oriented platform (via transformation rules for the PDM level) or to the 

ones corresponding to the technologies defined at TDM level: Web Services, Grid 

Services and REST. The definition of transformation rules from PDM models to 

any of the TDM modes have been left for ongoing work. 

3.2.3.2.1 Mapping Rules from PIM to PDM 

 The PIM-level DSL defined previously can be used to obtain different 

target PDM architectural models. The definition of the translation of the concepts 

found in the former DSL will be translated, firstly, into the concepts present in the 

PDM DSL: 

 Transformation of Service Providers. Organizational entities modelled 

at the PIM level (Service Providers) will be mapped to Service Agents in 

charge of executing and managing the access to specific services. The 

name property will be transferred from one element to the other. 



128   MARCOS LÓPEZ SANZ 

 

The identification of inner and outer providers has a business 

meaning and does not have a direct influence on the technological 

elements identified at the lower level of the architecture. In turn, that 

differentiation will have an influence on other parts of the development 

methodology: for example, it will determine, to some extent, if services 

directly depending on them will need a concrete coding task or not. 

 Transformation of Services and Service Types. Services and service 

types will be transformed in technological resources as part of the PDM 

architectural model. However, since resources can be specialized 

according to their activeness (in resources or services), the mapping of 

these elements is not trivial.  

The concrete mapping will depend on the value assigned to the 

variant property of the source service (or Service Type). As it was pointed 

out in the moment of defining the PIM DSL, services may be classified in 

Interaction, Information, Processing or Orchestration services. Their 

particular mapping is the following: 

o Information Services. Information services were defined as services 

allowing the access to a specific resource. This way, source services 

with this variant will be transformed into a pair Service-Resource in 

which a ‗control‘ association must be created in the target model 

from the service to the resource. 

o Interaction Services. This kind of services, in contrast, needs a 

resource to act as entry point for its offered capabilities. In that 

sense, the transformation that will take place will generate a pair 

Resource-Service in which a ‗use‘ association is included in the 

model indicating the relationship established between them (from 

resource to service). 

o Processing Services. In this case, the mapping is a one-to-one 

transformation in the sense that a sole service element can be 

automatically created as part of the target model. 

o Orchestration Services. As in the previous case, the identification 

of this kind of services will generate a unique service in the target 

architectural model. As it happened with the identification of inner 

and outer providers, the specification of an orchestration service aids 

to fulfil other tasks of the methodological framework (specifically, 

the behavioural modelling tasks). 



 THE ARCHIMEDES FRAMEWORK   129 

 

In any of the previous cases the name property of the newly 

generated elements will take its value from the corresponding property of 

the source element. In the cases where the transformation may generate 

more than one element, the implementation of the transformation 

includes a modification of the resulting elements by adding a suffix to the 

source value (such as “_resource” or “_service” for the created 

resources and services respectively). 

The SERVID property is an artificial element created to uniquely 

identify a service within a PIM architectural model. In that sense, there is 

no direct correlation between that property and the location or description 

properties that elements at the PDM contain. In the case of ArchiMeDeS 

framework, the option chosen has been to map the value of the SERVID 

property to the description target property so this information is not lost. 

 Transformation of Service Operations. The capabilities that a service 

provides will be directly mapped to PDM service operations since there is 

no semantic difference when evolving from the conceptual level to a 

more technological one. Associated properties and types for each 

operation element will also remain the same. As it will be later indicated, 

a more significant divergence will occur when transforming the PIM-

level model into a concrete extension of the TDM level of the model 

architecture. 

 Transformation of Service Roles. Service roles gather the piece of 

functionality that a conceptual service offers in a concrete moment. In 

that sense, the equivalent at a platform specific level is the service 

interface element. Consequently, the information put on the service role 

element will be transferred to a service interface including its name and 

the set of operations associated to it. 

 Transformation of Service Contracts. As it was explained in section 

3.2.3.1, service contracts at PDM also represent the conditions under 

which some consumer may use the operations offered by a service. In 

that sense, the service contract element of the PIM will be seamlessly 

transformed into a service contract at PDM.  

The Interaction pattern property that service contracts own will be 

used to populate the Message Exchange Pattern property in the target 

platform. Consequently, the patternType attribute will receive its value 

from the origin exchangePattern attribute. 

 



130   MARCOS LÓPEZ SANZ 

 

Some particularities on this transformation depend greatly on the target 

platform and technology defined for the PSM abstraction level and thus they will 

be specified in its corresponding subsection of the TDM sublevel. However, apart 

from the mappings defined for the structural elements and properties that may 

appear in every PIM architectural model, the associations that they may maintain 

among them will also be transformed once the target elements are obtained. Table 

3.8 shows a summary of all the previous transformations from PIM to PDM. 

 

 

Table 3.8. Mapping guidelines from PIM to PDM. 

SOURCE MODEL: PIM TARGET MODEL: PDM 
OBSERVATIONS 

Element Properties Target Element 
Properties & 

 value assigned 

Service 

Provider 

name Service Agent  name = name 

Business contracts 

are eluded at 

technological 

level 

Inner 

Provider 

Outer 

Provider 

Service 

Type 

Variant = 

Information 

Service 
name =  

name + ‗_service‘ 
New ‗controls‟ 

association from 

service to 

resource 
Resource 

name =  

name + ‗_resource‘ 

Variant = 

Interaction 

Service 
name =  

name + ‗_service‘ 
New ‗use‟ 

association from 

resource  to 

service 
Resource 

name =  

name + ‗_resource‘ 

Variant = 

Processing 
Service name = name --- 

Variant = 

Orchestration 
Service name = name --- 

Service 

name Service name = name 
Mappings defined 

for Service Types 

due to variants are 

also applied to 

Services 
SERVID Service 

description =  

SERVID 

Service  

Contract 
name 

Service 

Contract 
name = name 

Links to service 

Consumer and 

Provider are 

mapped without 

variation 

Interaction  

Pattern 
interactionKind 

Message  

Exchange  

Pattern 

patternType =  

interactionKind 

Other existing 

patterns will be 

manually assigned 



 THE ARCHIMEDES FRAMEWORK   131 

 

SOURCE MODEL: PIM TARGET MODEL: PDM 
OBSERVATIONS 

Element Properties Target Element 
Properties & 

 value assigned 

Service  

Operation 
name 

Service  

Operation 
name = name 

Parameters and 

Return Values are 

also mapped 

Synch.  

Operation 
--- 

Synch.  

Operation 
--- 

Asynch.  

Operation 
--- 

Asynch. 

Operation 
--- 

Service 

Role 
name 

Service Role 
name =  

name + ‗_role‘ 
Operations from 

PIM model are 

assigned to PDM 

roles or interfaces 
Service 

Interface 

name =  

name + ‗_interface‘ 

3.2.3.2.2 Mapping Rules from PIM to TDM: Web Services 

Since the Web Service Extension defined extends the concepts of the PSM-

Core DSL, the transformations that will be explained in the following refer to 

those elements that need a particular modelling or that modify the already 

explained standard transformation to the PDM DSL. It is important to note that not 

all the features supported by the DSL created can be obtained from the 

information that the PIM architectural model provides. Aspects such as the URL 

or the ownership of the service or the concrete MEP that will be defined inside a 

service contract are among them.  

 Services become WSResources and WebServices. Some of the few 

transformations that can be automated when selecting the Web Service 

Extension as target DSL, refer to the identification of which elements 

will become WSResources and/or WebServices depending on the value 

assigned to the variant attribute of the source service (as it was mentioned 

in previous section). 

 Pattern Types assigned by default. To ease the transformation of service 

contracts, this part of the ArchiMeDeS framework assigns, by default, the 

next correspondences between the values of the kind of interaction 

defined for each part of the InteractionPattern and the WSDL20_MEP 

values: One-Way to InOnly and Query-Response  to InOut. 

The other two patterns (Dialogue and Choreography) entail an 

interaction logic that will be encapsulated in the logic of either consumer 

and provider services (or both) so there won‘t be any reflection of these 

patterns in the TDM architectural model. 



132   MARCOS LÓPEZ SANZ 

 

 Service Roles and Service Interfaces. Within the WSA specification, the 

concepts of Role and Interface refer to the partial functionalities a service 

may offer. Accordingly, as it happened with the transformation to the 

PDM, the ServiceRole defined at PIM level will be mapped to two 

elements: WSRole and WSInterface. Obviously, the name assigned to 

these elements will have attached a suffix (―_role‖ or ―_interface‖) in 

order to clearly differentiate them within the architectural model. The 

corresponding associations with the rest of the elements of the model will 

be assigned in accordance. 

Table 3.9 shows up a summary of the mapping transformations from PIM 

to the Web Service version of the TDM abstraction level. 

Table 3.9. Mapping guidelines from PIM to TDM: Web Services. 

SOURCE MODEL: PIM TARGET MODEL: TDM WEB SERVICES 
OBSERVATIONS 

Element Properties Target Element 
Properties & 

 value assigned 

Service 

Type 

Variant = 

Information 

WebService 
name =  

name + ‗_service‘ 
New ‗controls‟ 

association from 

service to 

resource 
WSResource 

name =  

name + ‗_resource‘ 

Variant = 

Interaction 

WebService 
name =  

name + ‗_service‘ 
New ‗use‟ 

association from 

resource  to 

service 
WSResource 

name =  

name + ‗_resource‘ 

Variant = 

Processing 
WebService name = name --- 

Variant = 

Orchestration 
WebService name = name --- 

Service 

name WebService name = name 
Mappings defined 

for Service Types 

due to variants are 

also applied to 

Services 
SERVID WebService 

description =  

SERVID 

Interaction  

Pattern 

interactionKind 

= One-Way 
Message  

Exchange  

Pattern 

WSDL20_MEP =  

InOnly 
Other existing 

patterns will be 

manually assigned interactionKind 

= Req.-Resp. 

WSDL20_MEP =  

InOut 

Service 

Role 
name 

WSRole 
name =  

name + ‗_role‘ 
Operations from 

PIM model are 

assigned to TDM 

roles or interfaces WSInterface 
name =  

name + ‗_interface‘ 

 



 THE ARCHIMEDES FRAMEWORK   133 

 

3.2.3.2.3 Mapping Rules from PIM to TDM: Grid Services 

As it happened with the mappings from PIM to the TDM Web Service 

extension, the automation of the transformations to Grid Service TDM models are 

mainly covered by the transformations defined for the PDM. The main significant 

differences come in the definition of mapping rules from Services and Service 

Types to the matching GridServices and GridResources. These transformations 

will take place according to the variant attribute of the source service/service type 

from the PIM model. Modelling of Grid properties cannot be extracted from the 

information collected in PIM architectural models.   

Table 3.10 shows a summary of the mapping transformations from PIM to 

the Grid Service version of the TDM abstraction level. 

Table 3.10. Mapping guidelines from PIM to TDM: Grid Services. 

SOURCE MODEL: PIM TARGET MODEL: TDM GRID SERVICES 
OBSERVATIONS 

Element Properties Target Element 
Properties & 

 value assigned 

Service 

Type 

Variant = 

Information 

GridService 
name =  

name + ‗_service‘ 
New ‗controls‟ 

association from 

service to 

resource 
GridResource 

name =  

name + ‗_resource‘ 

Variant = 

Interaction 

GridService 
name =  

name + ‗_service‘ 
New ‗use‟ 

association from 

resource  to 

service 
GridResource 

name =  

name + ‗_resource‘ 

Variant = 

Processing 
GridService name = name --- 

Variant = 

Orchestration 
GridService name = name --- 

Service 

name GridService name = name 
Mappings defined 

for Service Types 

due to variants are 

also applied to 

Services 
SERVID GridService 

description =  

SERVID 

3.2.3.2.4 Mapping Rules from PIM to TDM: REST Services 

In order to provide with a coherent set of mapping rules to evolve from a 

PIM architectural model to one supporting the features of REST Services it is 

important to take into account the restrictions imposed by this technological 

platform. This way, the following model transformations can be defined: 

 

 



134   MARCOS LÓPEZ SANZ 

 

 Transformation of Services and Service Types. Services and service 

types will be transformed in RESTServices and RESTResources (if any) 

as in the case of previous Extensions: depending on the value of the 

variant attribute. 

 Transformation of Service Agents. As it was explained in section 

3.2.3.4, RESTAgents in charge of executing and managing RESTServices 

and RESTResources are clearly identified in the architectural model at the 

PSM level. This way, a specific mapping rule allowing the 

transformation from ServiceProvider to RESTAgent is included within 

this part of the ArchiMeDeS framework. 

Table 3.11. Mapping guidelines from PIM to TDM: REST Services. 

SOURCE MODEL: PIM TARGET MODEL: TDM REST SERVICES 
OBSERVATIONS 

Element Properties Target Element 
Properties & 

 value assigned 

Service 

Provider 

name RESTAgent  name = name 

Business contracts 

are eluded at 

technological 

level 

Inner 

Provider 

Outer 

Provider 

Service 

Type 

Variant = 

Information 

RESTService 
name =  

name + ‗_service‘ 
New ‗controls‟ 

association from 

service to 

resource 
RESTResource 

name =  

name + ‗_resource‘ 

Variant = 

Interaction 

RESTService 
name =  

name + ‗_service‘ 
New ‗use‟ 

association from 

resource  to 

service 
RESTResource 

name =  

name + ‗_resource‘ 

Variant = 

Processing 
RESTService name = name --- 

Variant = 

Orchestration 
RESTService name = name --- 

Service 

name RESTService name = name 
Mappings defined 

for Service Types 

due to variants are 

also applied to 

Services 
SERVID RESTService 

description =  

SERVID 

 

 

 



 THE ARCHIMEDES FRAMEWORK   135 

 

3.2.3.3 PIM-to-PIM Transformations  

Design decisions are an important issue to bear in mind when specifying 

software architectures, not only due to the need for reusing existing components 

but also because of restrictions imposed by the business process itself (for 

example due to organizational restrictions of the company). These particularities 

have a direct effect on the system architecture since they affect the way 

architectural elements may relate and communicate to each other. A way of 

dealing with these issues is by explicitly considering them inside the architectural 

model at a conceptual level, independently from the platform of choice. To do so, 

it is possible to take advantage of the already defined architectural models at PIM 

level to collect any potential design decision. If specified in the form of a concrete 

vocabulary, constraints and rationale, these design features compose what 

traditionally has been recognized as architectural style [208]. The process for 

including architectural style features in the architecture is known as 

superimposition [105]. 

Since the ArchiMeDeS framework follows a MDE approach, it is proposed 

to use model-driven techniques to automate the superimposition of architectural 

style information to the already specified service-oriented PIM models. The 

increase of automation comes mainly from the fact that the step from the original 

architectural model to the ‗enriched‘ one is may be partially performed by using 

executable model transformations. More specifically, the solution proposed is 

based on two concepts from the MDE domain: model transformation and model 

weaving. This way, the problem stated previously is translated into a model 

engineering problem and, therefore, it is possible to benefit from existing tools in 

the field of MDE to solve it.  

3.2.3.3.1 Development Strategy 

As it has been referred before, the solution introduced to drive the merging 

(‗weaving‟) process for including the features of architectural styles into service-

oriented architectural models is based on the idea of modelling architectural 

styles plus the use of weaving models [126]. 

When using SOC as architectural paradigm of choice, the adopted strategy 

relies on the concept of service role, understood as the definition of the subset of 

functionality that a service may provide in a concrete moment. Using a sport 

metaphor, if players could be represented as services, where their functionalities 

include both attacking and defending capabilities, the role played in each moment 

(playmaker, blocker, defender, assistant, etc.) would constrain the actions a player 

might perform at each moment (see Section 5.3 for more details on this example). 



136   MARCOS LÓPEZ SANZ 

 

As it can be extracted from previous sections, service roles may act as the 

main behaviour enactors in a service-oriented architecture; however, on the 

contrary to other paradigms, those roles do not represent architectural elements but 

the set of attributes or operations a service can offer/use in each moment. By using 

an approach based on the use of service roles, it is possible to allow the separation 

of concerns needed to set, on the one hand, the architectural elements present in a 

system configuration (services, service contracts and so on) and, on the other 

hand, the architectural vocabulary and restrictions that have to be fulfilled by 

means of defining the allowed functionalities provided by services at concrete 

moments (via the specification of the corresponding service roles). 

The architectural model defined at PIM level (see section 3.2.1) is already 

based in SOA. Therefore, there is no need for defining special processes to include 

current service-oriented design strategies [59]. As a consequence, the efforts must 

point at including traditional architectural styles into service-oriented architectural 

models. This end is introduced in the next subsection. 

3.2.3.3.2 Traditional Architectural Style Modelling in ArchiMeDeS 

Any software artefact found in the context of MDE is considered as a 

model and the set of constraints directing its definition as a metamodel [203]. This 

means that the architectural style must be a model or part of it. As it was stated at 

the beginning of this dissertation, the vocabulary used to describe an architectural 

style can be understood from a component-and-connector point of view. 

Consequently, an architectural style can be represented as a model conforming to 

a metamodel specifying the component-and-connector scheme concepts. For that 

reason, it is possible to state that the definition of a generic component-based 

metamodel serves to model any kind of traditional architectural style following 

a component and connector scheme. Figure 3-15 shows this metamodel. 



 THE ARCHIMEDES FRAMEWORK   137 

 

 

Figure 3-15. Architectural styles metamodel. 

3.2.3.3.3 Definition of Architectural Styles within Service-Oriented 

Architectures 

To add the information defined in an architectural style into a service-

oriented model of the architecture it is compulsory to define how both its concrete 

vocabulary, constraints and design rationale fit in the concepts of the SOC 

paradigm.  

 Vocabulary definition. As it has been stated previously, services act as 

independent entities capable of participating simultaneously in multiple 

service compositions. The functionality associated to a service is 

embodied in the operations it offers to other entities. In order to assign a 

precise behaviour while maintaining its independence, elements 

identified by the architectural style must be placed on a concept 

associated to a service, but not directly over it. The strategy to follow in 

order to achieve this is to restrict the available operations of a service by 

allowing only those that match the behaviour imposed by the 

architectural style. The only feature of the service which affects to its 



138   MARCOS LÓPEZ SANZ 

 

behaviour (the portion of functionality it may offer at a given moment) 

without modifying its semantics (the potential capabilities it has as 

computational entity) is the concept of service role as it was explained 

before. 

The features given to components or connectors defined by an 

architectural style are, therefore, applied through the definition of roles 

associated to services within an architectural model. By following this 

approach the independence of the services is maintained but allowing for 

the specification of common behaviours and structures in concrete 

scenarios according to the vocabulary specified in any architectural style. 

This approach can be used to superimpose traditional architectural styles 

on the architectural model while preserving the capability of using 

current SOA design patterns. 

Due to the fact that ArchiMeDeS follows a MDA approach, the 

vocabulary of the architectural style can be represented by means of a 

concrete model that will be merged (weaved) with the architectural model 

of the system. This merging transformation will produce an architectural 

model where each service has been assigned a service role according to 

the vocabulary and restrictions collected in the architectural style model. 

It is important to remark here that not all traditional architectural 

styles can be mapped to a component-and-connector scheme. Therefore, 

in many cases, connectors will be defined implicitly as a set of 

functionality derived from the application of a concrete vocabulary to a 

specific service-oriented model. As an example, if taking into account the 

layered architectural style, the identified components will be the layers. 

The element assimilated to connectors will be the interface provided by 

all the elements belonging to the same layer. This issue can be modelled 

either by creating a new modelling element adopting this behaviour or it 

can be understood as a connector created implicitly by contextual 

reflection [147] deduced from the behaviour portrayed by the individual 

components.  

 Constraint definition. Constraints in an architectural style refer not only 

to which element can be connected to which other, that is, constraints 

about architectural topology (e.g. in a pipe & filter scheme, filters must 

connect to each other by means of pipes) but also refer to the protocol 

that should be used to communicate through the communication channels 

(e.g. in a event based scheme the architectural components are notified 

only if they are subscribed to a specific event). So, in the case of service-



 THE ARCHIMEDES FRAMEWORK   139 

 

oriented architectures we face a double challenge: to constrain the 

allowed communications among services and to establish a way to 

enforce the communications following a concrete pattern. 

In SOA, communication between services is accomplished through 

the establishment of different service contracts understood as the agreed 

conditions (for example, the message exchange pattern for each 

provided/consumed operation) under which the communication will take 

place. In order to restrict the allowed interactions, a service-oriented 

architectural model following a specific architectural style must properly 

check the established contracts among services, or more specifically, 

among the roles played by the contracted services. 

In order to include the constraints imposed by the architectural style 

in the architectural model, those restrictions must be placed as model 

checking operations during the merge between both models or in a 

separate process afterwards.  

According to the capabilities assigned to the model transformations, 

three different approaches can be followed: model checking notifying 

style infractions, style checking with suggestions for style conformance, 

and dynamic reconfiguration (modifying the architectural configuration 

during the transformation process) of the architecture in order to comply 

with the architectural style restrictions. However, in order to be able to 

process those constraints, the information about the behaviour of the 

system is needed in this point. It is important to remark here that this 

aspect is currently an ongoing work. 

 Design rationale. This concern is also one of the cornerstones of 

architectural specification as it refers to modelling the reasons behind 

making an architectural design decision. Although this aspect is beyond 

the main objectives marked for the current Thesis, there exist some works 

in this line [30][188][158] including some of the ones analyzed in the 

state-of-the-art chapter [160]. 

3.2.3.3.4 Process for Weaving Architectural Styles into Service-Oriented 

Architectural Models 

Previous subsections have presented the way traditional styles are modelled 

within ArchiMeDeS (using a generic DSL for that aim) and how these concepts 

will be supported in the service-oriented architectural models (via the use of 

service roles). Now, it is the time to specify how both elements, together with the 

use of a PIM architectural model, can result in an annotated architectural model 



140   MARCOS LÓPEZ SANZ 

 

containing the architectural style information. This model is considered as an 

―enriched‖ PIM architectural model since it prepares the model to further 

refinements at lower levels (PSM). In them, the modelling of architectural design 

strategies may pave the way to concrete implementations with services (such as 

service mashups based on service coordination).  

The generic strategy to follow to obtain this ―Enriched PIM architectural 

model‖ can be seen in Figure 3-16. It is remarkable the fact that the resulting 

model is also defined with the proposed PIM DSL and so it must conform to its 

metamodel. 

Generation of 
Enriched PIM 
Architectural
Model

PIM Architectural
Metamodel

Architectural Style 
Metamodel

Architectural Style 
Model

Enriched PIM 
Arch. Model

PIM Architectural
Model

<<conforms to>> <<conforms to>>

 

Figure 3-16. Strategy to superimpose architectural styles on PIM models. 

In the context of ArchiMeDeS it is proposed to use a weaving model to 

capture the architect decisions on how the selected architectural style has to be 

applied over the service-oriented PIM architectural model. In fact, since a 

particular architectural style might be applied in different ways over a given PIM 

model, it is mandatory to indicate the way that architectural style is particularly 

considered for that architectural model. For example, given the pipe and filters 

architectural style and given a concrete PIM model, each service might act either 

as a pipe or as a filter. Thus, when superimposing the pipes and filters style over 

the PIM model, it is compulsory to state clearly which services will act as pipes 

and which as filters. Once it has been decided, the next step is to obtain the final 

‗Enriched PIM model’ from the information gathered in the original PIM model, 

that from the architectural style model and, finally, that personalized mapping 

from elements in both models. All this given, the process for including the 

features of an architectural style in a service-oriented architectural model can be 

seen in Figure 3-17. 



 THE ARCHIMEDES FRAMEWORK   141 

 

PIM to PIM
Weaving
Process

Architectural
Metamodel

PIM

PIM2PIM
Weaving Metamodel

conforms to

uses

PIM2PIM
Weaving Model

Architectural Style 
Metamodel

Arch. Style Model

Enriched PIM 
Arch. Model

PIM Arch. Model

 

Figure 3-17. Process for Weaving Architectural Styles and Architectural Models. 

As it has been pointed out before, the resulting model is an enriched 

Service-Oriented PIM architectural model (‗Enriched PIM Arch. Model‘ in the 

previous figure) where each service has been assigned a role, according to the 

chosen architectural style. Since the roles that a service instance may play depend 

on the operations its service type defines can play those roles, the resulting 

enriched PIM model will observe:  

a) That service roles corresponding to the vocabulary of the architectural 

style will be necessarily associated to a service type. If this service type 

does not exist, the transformation process will compulsory create them.  

b) That service roles will be played exclusively by service instances (and 

not service type elements). If the annotated elements in the weaving model 

are service types, the transformation process will mandatory create them 

and associate both the corresponding service role and the generic service 

type with all the features of the original service instance. 

To sum up, in the context of the proposal presented in this dissertation, the 

option chosen for superimposing architectural styles in architectural models has 

been to separate the management of the architectural style vocabulary from its 

style constraints. The former is encoded in the architectural style metamodel. The 

later, although it is a work still in progress and has not been included as part of the 

Doctoral Work, should be encoded in the model transformation. Once the 

‗Enriched PIM architectural model‘ has been obtained, one may want to check if 

that model conforms to such restrictions. Given that here it is proposed to follow 

and apply model-driven techniques, this checking process would also need to be 

encoded in a model transformation, whose output will be one of three possibilities: 



142   MARCOS LÓPEZ SANZ 

 

a) a kind of report about the conformance of the Enriched PIM model obtained to 

the chosen architectural style; b) a set of suggested element modifications to the 

output model; or, c) an automatic reconfiguration of the architecture in order to 

comply with the constraints defined by the architectural style and according to the 

weaving model.  

3.3 ArchiMeDeS as part of an Architecture-Centric Model-

Driven methodological framework 

One of the main objectives of the current dissertation is to present 

ArchiMeDeS as model-driven framework for the specification of software 

architectures. However, although the research was initiated as part of a much 

wider effort for software development (the MIDAS methodological framework 

[228]), ArchiMeDeS also aims to be considered as a complete and independent 

framework capable to be adapted to any other MDA-based development 

methodology. To overcome this challenge, and once the semantics and syntax of 

the DSLs allowing the definition of software architectures have been presented, it 

is time to explain the role of ArchiMeDeS in a concrete MDA-based development 

context. It will serve to show how the architecture may play a central role within 

the specific model architecture, thus defining an architecture-centric development 

process.  

More specifically, this section is devoted to explain the relationships 

established between the ArchiMeDeS framework and the elements defined by the 

MIDAS methodological framework for software development. To start, as it was 

clearly stated in the introduction, MIDAS is a methodological framework whose 

main features can be summarized in the use of a model-driven approach for 

software development and whose model architecture is divided into several 

abstraction levels and concern layers. One of these layers is the one dedicated to 

the specification of the system architecture and the object of this Doctoral Thesis.  

As stated above, the purpose of the current section is to show the 

dependencies and influences that the constituent elements of the ArchiMeDeS 

framework may have over other parts of MIDAS and vice-versa. In particular, the 

sources of information that the architectural models may have from upper 

abstraction levels (i.e. from models at the CIM level) and the needs for 

behavioural modelling that the architectural models may cover. 

In addition, since the architectural layer is considered to be the driving 

aspect for the whole methodological framework, next subsections will also try to 

clarify how the elements that appear in the architecture (and its relationships) 



 THE ARCHIMEDES FRAMEWORK   143 

 

helps deciding which models and elements inside models should be created during 

a system development process within MIDAS. 

3.3.1 Information Sources for Architectural Modelling 

Throughout the entire dissertation, the architectural models specified have 

been placed either at a conceptual level of abstraction (PIM level) or at a more 

technological one (either PDM or TDM) according to the MDA proposal. The 

analysis of the sources of information for the specified architectural models, in the 

scope of MIDAS, should be divided, therefore, in two parts: first the origins of the 

PIM models and, next, the ones that allow completing the PSM level models. 

3.3.1.1 Sources for PIM Architectural Modelling  

The information that is needed to specify the architectural models from a 

conceptual point of view, like the one represented at PIM level, comes mainly 

from the CIM level. According to the MDA proposal, it represents ―a view of a 

system from the computation independent viewpoint. (…) A CIM is a model of a 

system that shows the system in the environment in which it will operate, and thus 

it helps in presenting exactly what the system is expected to do‖ [170]. Such model 

usually includes is sometimes a domain model or a business model that gather the 

requirements of the system describing the situation in which the system will be 

used. Within the scope of MIDAS, this abstraction level defines two separated 

models:  

 A Value Model that allows the specification of those value objects 

(goods, money or services) that are created and provided by any of the 

members that intervene in a business (business stakeholders), as well as 

the business members that are interested in those value objects. The 

exchange of value objects between each business member is also 

modelled. 

 A Business Process Model that is used to understand and describe the 

business processes related to the environment in which the system will be 

used. This model identifies the business services that will be offered to 

end consumers or users of the information system under development. 

Apart from these two models, in some contexts, it should be recommendable to 

define an additional model: a domain model, comprising the vocabulary and key 

concepts of the problem domain. This model may be needed to verify and validate 

the understanding of the problem domain among various stakeholders. Regarding 

its influence on the architectural modelling, the concepts depicted in that model 

may be used to extract the vocabulary used to name every element of the 

architectural model. 



144   MARCOS LÓPEZ SANZ 

 

From the analysis of both Value and Business Process models, it is possible 

to identify what Service Providers, either inner or outer, might be modelled as part 

of the PIM architectural model, and so the Business Contracts that should be 

established to communicate them. In addition, by knowing the dependency paths 

represented in the Value model it is possible to identify the needs of the final user 

of the system. The idea is that these needs will generate business services for 

supporting those necessities. Once the business services that the system will 

support are selected, it is possible to identify the Services (or Service Types) that 

will be present in the PIM architectural model. The conditions under which these 

services communicate (that is, the features of the Service Contracts established 

among them) can be derived from the Business Process model according to the 

business activities and tasks described. Figure 3-16 resumes these influences on 

the PIM architectural model. 

MIDAS Methodological Framework

ArchiMeDeS
PIM

CIM

(Service providers,
Services,

Service Types)

Value Model
Business Process

Model

PIM Architectural
Model

(Services
Service Types,

Service contracts)

 

Figure 3-18. Influences on the PIM architectural model. 

3.3.1.2 Sources for PSM Architectural Modelling 

The main source of information for the PSM is the PIM model of the 

architecture. In that sense, the execution of the transformations defined for that 

aim facilitates to obtain a prototype of the PSM architectural model, either at PDM 

or TDM levels depending on whether the concrete service technology has been 

chosen or not. However, there are some features that cannot be obtained directly 

from that model. To overcome these flaws it is possible to look at the behavioural 

models defined in the MIDAS framework. The process for obtaining these 

behavioural models is known as SOD-M [45]. Figure 3-17 resumes these 

influences on the PSM architectural model 



 THE ARCHIMEDES FRAMEWORK   145 

 

MIDAS Methodological Framework

SOD-MArchiMeDeS

PIM

PSM

PIM2PSM
Transformation Rules

PDM/TDM 
Architectural Models

PIM Architectural
Model

Use Case 
Model

Extended Use 
Case Model

Service Process
Model

Service
Composition Model

Extended Service
Composition Model

Web Service
Interface Model

A
rc

h
it

e
ct

u
re

B
e

h
av

io
u

r

 

Figure 3-19. Influences on the PDM/TDM architectural models. 

3.3.2 Influence of Architectural Modelling over Other 

Development Concerns 

As stated previously, the ArchiMeDeS framework also aims to provide a 

way to convert MDD methodologies into Architecture-Centric MDD 

methodologies, that is, driving the development process throughout the 

information gathered in architectural models. Since it would require an in depth 

analysis of the features and characteristics of any current model-driven 

methodology, this dissertation will only cover the steps needed to be able to 

consider MIDAS as an ACMDD methodological framework. In that context, the 

architecture is said to drive the development process and thus it has a key 

influence over other tasks and models that take part in MIDAS. Though it is still a 

work in progress subject of strong research efforts, some clues in that direction 

will be explained in the following: 

 Influence on the Storage concern. The content concern in MIDAS 

refers to models that collect the persistent information of the system 

under development. For that reason, if the architectural model includes 

the specification of resources it will almost certainly mean that a data 

model is needed, either as a conceptual model (at PIM level) or as a 

logical one (PSM). 

 Influence on the Behavioural concern. The influence of the behavioural 

concern over the architectural models has been pointed out in the 

previous subsection. From the other point of view, some decisions that 

are taken during the SOD-M modelling process require information from 

the architectural aspect. An example can be seen in the moment of 



146   MARCOS LÓPEZ SANZ 

 

creating the Extended Service Composition Model that needs to identify 

the possibility of communication between two or more services. This 

information is collected in the architectural model by means of 

established service contracts. 

 Influence on the Interface concern. The modelling of the interface 

concern in MIDAS includes the specification of navigational and 

fragments models [35]. As it happened with the storage concern, the 

interface concern will need a concrete modelling activity when the 

architectural model includes interaction services.  

It is important to remark that the detection of modelling activities in any of 

the development concerns of MIDAS is not only a matter of the existence of one 

or another element within the architectural models. In contrast, it can be seen as a 

consequence of the consideration of the architecture as a crosscutting aspect 

during the development process. In fact, in ArchiMeDeS, the architecture is a 

high-level description of the system which guides the rest of the development 

process and plays the central role in the MIDAS model architecture. In fact, the 

proposed architecture viewpoint is the ―map‖ to provide the structure of the model 

architecture, deciding which views (‗concerns‟) are instantiated and which of 

them are not.  

3.4 Concluding Remarks 

Previous sections have shown the features and main characteristics of the 

ArchiMeDeS framework. To do so, a set of DSLs for service architectures has 

been defined. As the framework follows the principles of the MDA approach for 

the development of software architectures, the corresponding PIM and PSM level 

metamodels have been described, both at the PIM level of abstraction and the 

PSM one. For the latter, three different target service platforms have been chosen: 

Web Services, Grid Services and REST services.  

To that end, both the abstract syntax (semantics) and concrete syntax 

(notation) of the DSLs have been completely specified. Conversely, the 

transformations from models of one abstraction level to the others have been also 

specified. 

In order to provide the architectural models with design flexibility, the 

support for the inclusion of architectural styles has been explained, both for 

traditional architectural styles and for those coming from the current design 

strategies with the SOA approach. 

In addition to the description of the inner elements and features of the 

ArchiMeDeS framework, it has been explained in detail the importance of that 



 THE ARCHIMEDES FRAMEWORK   147 

 

framework within the scope of a broader methodological framework for software 

development as it is MIDAS. The influence of other models defined within 

MIDAS has been depicted, taking special care on the information flow that arises 

between the behavioural models of MIDAS and those of the architecture. 

The completeness and validity of the DSL, the correctness of the models, 

the implementation of the transformations and its feasibility as framework for the 

specification of software architectures using a service-oriented and model-driven 

approach will be the main topic of the next chapter. 





 

 

 

4. CHAPTER 4: THE ARCHIMEDES TOOLKIT 

Chapter 4: 

The ArchiMeDeS Toolkit 





 THE ARCHIMEDES TOOLKIT   151 

 

The development of modelling toolkits plays a prominent role within 

model-driven engineering approaches [204]. Thus, the implementation of a toolkit 

associated to the DSLs and model transformations defined in the previous chapter 

represents an additional feature towards considering ArchiMeDeS as complete 

framework for software architecture specification. Counting with a toolkit for that 

aim provides, among others, the following features: 

 It provides support for the creation and editing of models with ease. 

 It represents a valid strategy for verifying the coherence and 

consistency of elements and relationships modelled. This is possible 

due to the fact that metamodels gather the syntactic rules that DSLs 

define and that models must obey. A common feature of modelling 

environments is conformance verification. 

 It allows defining a common implementation for the DSLs and 

adopting it as reference implementation, granting a degree of 

interoperability with other proposals in the field of MDE. 

 It offers support for transformation rule implementation and 

execution. The tasks of verifying the conformance of the resulting 

models can be automated but, again, it does not mean that the semantic 

associated to the transformation is appropriate. This task has to be 

accomplished by hand as part of the research work. 

 

The following subsections will explain, first, the strategy followed to 

design the toolkit by focusing on the design decisions taken. Once the architecture 

of the toolkit is clearly defined, the subsequent section will focus on the 

development of the individual modules. It will comprise: the creation of a plug-in 

for managing the abstract syntax of each DSLs separately (including that for 

architectural style modelling); the implementation of a plug-in supporting their 

concrete syntax by defining the graphical notation for each DSL; and, the 

implementation of the model transformations and the creation of a weaving 

environment for the superimposition of architectural styles on PIM models.  

4.1 Toolkit Design Strategy and Architecture  

The strategy followed to build the ArchiMeDeS toolkit is based on the 

guidelines defined for M2DAT [227], a technical solution for the model-driven 

development of Web Information Systems. Accordingly, the development of a 

toolkit supporting the ArchiMeDeS proposal is divided in two steps. The idea is; 

firstly, to establish the architecture of the toolkit, that is, its conceptual design. 

Afterwards, a more technical design is undertaken, were concrete technologies, 



152   MARCOS LÓPEZ SANZ 

 

languages and platforms are used to implement the former conceptual architecture. 

In addition, it is worth to mention that the toolkit development process follows an 

iterative and incremental approach so it has been possible to update the toolkit in 

parallel with the definition of the DSL proposed by ArchiMeDeS. 

4.1.1 Conceptual Design 

The ArchiMeDeS toolkit is comprised of a set of modules, one for each 

DSL defined by the ArchiMeDeS proposal to specify Software Architectures using 

services. Since each model is defined using a DSL (insights on the motivation 

behind this decision were given along the previous chapter), the toolkit to develop 

will be understood as a kind of workbench allowing to work with those DSLs 

independently. For that purpose, each part of the tool provides with the 

functionality needed to handle models corresponding to any DSL, like model 

editing or conformance. 

The conceptual architecture of the toolkit (shown in Figure 4-1) has been 

defined following a traditional layered approach [183]. Within the scope of MDE, 

separation of concerns allows for distinguishing the presentation of each model 

from the model itself [117] and so it will be reflected in the architecture of the 

toolkit. Though it will be later shown how this is semi-automatically provided by 

EMF [29] (and thus inherently supported in the ArchiMeDeS toolkit when 

introducing its technical design) it is possible at this point to conceptually 

establish the contents of each tier.  

The presentation tier includes the editors (whether they are diagrammers 

or tree-like) to work with each type of model supported by the toolkit. This tier 

will define, accordingly, the interfaces allowing to edit, create, manage, etc. the 

models for architecture modelling with services, either at PIM or PSM abstraction 

level. However, since the ArchiMeDeS framework also allows for the definition of 

an architectural style to be superimposed with a service-oriented architectural 

model, this feature will be also part of the interface set. In addition, this tier will 

also comprise a specific interface to execute model transformations, to include the 

information from the transformation rules defined for either evolving from the 

PIM abstraction level to the PDM DSL or to any of the TDM DSLs defined. 



 THE ARCHIMEDES TOOLKIT   153 

 

ArchiMeDeS
Toolkit:
Conceptual
Architecture

PIM Architecture
Modelling
InterfaceP

re
se

n
ta

ti
o

n

Architectural
Style Modelling

Interface

PIM2PIM 
Model

Weaving
Interface

P
IM

-l
e

ve
l

M
e

ta
-m

o
d

e
l

PSM Architectural
Modelling

PIM2PSM 
Transformation

Interface

Lo
g

ic

Model Processor

P
SM

-l
e

ve
l

M
e

ta
-m

o
d

e
ls

P
IM

2P
SM

 
M

e
ta

-m
o

d
e

l

P
er

si
st

en
ce

PSM Architecture
Modelling
Interfaces

P
IM

-l
e

ve
l

M
o

d
e

l

P
SM

-l
e

ve
l

M
o

d
e

ls

A
rc

h
. S

ty
le

M
e

ta
-m

o
d

e
l

A
rc

h
. S

ty
le

M
o

d
e

l

PIM Architectural
Modelling

Architectural Style
Modelling

P
IM

2P
SM

 
M

e
ta

-m
o

d
e

l

Model Merge &Transformation

P
IM

2P
SM

 
M

e
ta

-m
o

d
e

l

P
IM

2P
SM

 
M

e
ta

-m
o

d
e

l

 

Figure 4-1. ArchiMeDeS toolkit conceptual architecture. 

The logic tier, in turn, will be responsible of handling both the models and 

the potential execution of transformations among them. The ArchiMeDeS 

framework defines several related DSLs that should be integrated. To manage the 

architectural specification in models, this tier will need to include the actual 

representation of these DSLs in the form of metamodels and be able to handle 

models that conforms them. Moreover, it needs adding support for, at least, model 

transformations to connect the different DSLs and, due to possible variations on 

the architectural design, it is considered to supply with model weaving 

capabilities. In addition, the capabilities that a DSL workbench should support 

consist not only in a graphical editor or model generation capabilities. From now 

onwards, the term model processing will be used to refer to all these tasks, 

following the idea expressed in [227], to refer to all the tasks related with model 

handling. As a result, the module comprising all these functionalities will be called 

model processor(s) which will be the main element inside the logic tier.  

Finally, models should be somehow stored for a later management. The 

persistence tier of the ArchiMeDeS toolkit is a file system that incorporates 

traditional versioning policies. The use of more complex storage systems (such as 

XML Databases) is eventually discarded since, at the moment, it just brings 

complexity to the development of the toolkit. 

The following section details how this conceptual architecture is mapped 

into a technical design using concrete languages and technologies. 



154   MARCOS LÓPEZ SANZ 

 

4.1.2 Technical Design 

Once the conceptual architecture of the toolkit supporting the ArchiMeDeS 

framework features has been defined, the next logical step is to select the 

approaches and technologies to be used in order to obtain a complete specification 

of the toolkit. That means that, for each model operation, it is necessary to select 

the existing tool or component supporting such task that best suits the 

ArchiMeDeS needs. To provide with a brief overview on this selection of 

technology, Figure 4-2 shows the main components used to deploy the modules to 

support DSLs and model transformations. At this point it is important to note that 

each component and the decision to use it will be described and justified in the 

following subsections.  

 

ArchiMeDeS
Toolkit:
Technical
Design

Lo
g

ic
P

er
si

st
en

ce

Model Processor

Abstract Syntax

Metamodel
definition

Model
definition

ModelWeaving
Engine (AMW)

ModelTransformation
Engine

P
re

se
n

ta
ti

o
n

Concrete Syntax

Tree-like
Modelling

GraphicalModelling
(UML-based)

ModelWeaving
(AMW)

Version control & storage

 

Figure 4-2. ArchiMeDeS toolkit technical design. 

As it can be seen, the interfaces that were identified in the conceptual 

architecture as comprising the presentation tier, will contain the concrete syntax of 

the DSLs (either using a tree-like or UML-based working layout with EMF or 

GMF respectively) and the environment needed to specify model transformations 

and its personalization (via the ATL/AMW environment). 

The idea is that it is at this presentation tier where the concrete syntax of 

the DSLs defined within the ArchiMeDeS framework come to play. Though EMF 

offers a common interface for creating and editing models using a tree-like 



 THE ARCHIMEDES TOOLKIT   155 

 

structure, to provide with more user-friendly graphical features to work with the 

architectural models it is necessary to support means for handling nodes, edges, 

arrows and boxes comprising the UML notation proposed for each DSL. This is 

accomplished by means of using another widely know extension of the Eclipse 

platform: GMF, built on top of the EMF infrastructure.  

The abstract syntax of the DSLs proposed is specified using the features 

offered also by the EMF, which provides with a programmatic outline to the 

aforementioned metamodels. The result of the creation of the metamodels using 

EMF is a set of .ecore files that contain the XML code corresponding to the 

semantics expressed in the metamodels. The XML follows a structure specified in 

the EMF core metamodel, that is, the metamodel expressed with EMF acts as a 

model following the EMF metamodel capabilities. By means of creating an EMF-

based representation of the metamodels the Eclipse framework allows to build up 

a plug-in for the Eclipse platform that permits the edition of architectural models 

that conform the ArchiMeDeS DSL metamodels. 

With the EMF framework it is possible to specify, using an XML-based 

schema, the metamodels that correspond to the PIM DSL, the PSM DSLs and the 

DSL that allows defining the architectural styles. 

This abstract syntax is used as input or output in any model processing 

task. Thus, the lower level of the toolkit is comprised of the model processor. 

Apart from the kernel of the Eclipse platform, it embeds all the modules allowing 

to perform several operations related to model management:  

 Model transformations are developed making use of the ATL language 

and its corresponding execution plug-in. The rules defined to evolve from 

PIM architectural models to a target PSM platform are implemented and 

executed using a specific plug-in for the Eclipse platform. 

 Model annotation is supported as a way towards introducing design 

decisions into architectural models, i.e. merging architectural styles with 

conceptual architecture models, without reducing the level of automation. 

The module for model weaving support is based on the ATLAS Model 

Weaver environment (AMW) [54]. This way it is possible to define 

weaving models that are used as annotation models that drive the 

merging process. Those models plus the weaving models that link them 

are later processed by ATL model transformations. 

Finally, the persistence tier is developed using a traditional versioning 

system. In particular, it uses an application of the Subversion [190] system adapted 

to work as a plug-in for the Eclipse workbench named Subclipse.  



156   MARCOS LÓPEZ SANZ 

 

All in all, the developed toolkit represents a framework that integrates 

some tools supporting each specific modelling task in order to obtain an efficient 

toolkit. The modularization that has been accomplished by using the Eclipse 

platform also favours the inclusion of future refinements of ArchiMeDeS. 

4.2 Module Implementation 

Previous sections defined the architecture of the toolkit either form an 

abstract point of view or focusing on specific technologies. Accordingly, in order 

to build the toolkit itself, a number of modules should be implemented following a 

coherent development process. The process followed is an adaptation of the one 

presented in [227]. To illustrate it, Figure 4-3 outlines the main steps given, tasks 

performed, derived artefacts and technologies used in each case.  

The process can be divided into four main tasks: 

1. Abstract syntax definition. The first step is to define the abstract 

syntax of every DSL that the ArchiMeDeS framework proposes. This 

implies that it will be necessary to implement the metamodels that 

correspond to the PIM level, the PDM metamodel and the TDM 

metamodels of each target platforms (Web Services, Grid Services and 

REST services). At the PIM level, also the generic metamodel used to 

represent any architectural style model is defined. To get all these 

artefacts, the EMF plug-in for Eclipse is used in terms of an .ecore file 

for each DSL. 

2. Concrete syntax definition. For each metamodel developed a 

concrete syntax is provided. This way, it is possible to work with a 

graphical interface allowing to manage the models created conforming 

the previous metamodels. The EMF used for the abstract syntax 

definition already offers an initial tree-like modelling environment; 

however, since the final idea is to ease the architecting process with 

models, the graphical notation (UML-based) that was defined within 

the ArchiMeDeS framework is put into practice. For that aim, the GMF 

Eclipse extension is used to support the use of the UML profiles 

defined within the ArchiMeDeS proposal. On the contrary, for easing 

the transformation process, the concrete definition of the weaving 

models will be defined by means of the capabilities provided by the 

AMW framework. 

3. Definition of model transformations. The third step requires the 

implementation of the transformation rules that link the different 

metamodels, either at different abstraction levels (PIM to PSM) or at 



 THE ARCHIMEDES TOOLKIT   157 

 

the same level (to include the architectural style features into the PIM-

level architecture model). For each transformation set the tasks to 

accomplish include: 

a. The definition of the transformation rules in natural language 

(see section 3.3 for this content). 

b. The translation of these rules to the ATL language so it is 

possible to implement them with the corresponding Eclipse 

plug-in. 

The development of each step is explained in detail putting a special 

emphasis on the artefacts obtained as output of each activity in the following. 

4.2.1 Modules for the Definition of the Abstract Syntax 

Recalling the methodological decision taken for the development of 

ArchiMeDeS, it was argued in favour of following a hybrid approach, combining 

the specification of DSLs with a UML-based notation for modelling service-

oriented architectures. Accordingly, the technology of choice to implement the 

proposal should focus on the definition of DSLs but, also, to support UML 

modelling. That circumstance is one of the first points in favour of using the 

Eclipse Modelling Framework (EMF) environment of the EMP. According to the 

Eclipse Website
1
 EMF is a modelling framework and code generation facility for 

building tools and other applications based on a structured data model. From a 

model specification described in XMI, EMF provides tools and runtime support to 

produce a set of Java classes for the model, a set of adapter classes that enable 

viewing and command-based editing of the model, and a basic editor. Models can 

be specified using annotated Java, XML documents, or modelling tools like 

Rational Rose, then imported into EMF. Most important of all, EMF provides the 

foundation for interoperability with other EMF-based tools and applications. Other 

features of EMF can be pointed out: 

1. Combined support for DSL specification and UML modelling. 

EMF is a DSL toolkit [29] that supports UML modelling since the 

EMP includes the UML2 sub-project, an EMF-based implementation 

of the UML2 standard [175]. The DSLs are developed over the same 

meta-metamodel that the UML2 sub-project. Since the meta-

metamodel is the same, it is possible to bridge the gap that may exist 

                                                

 

1 Eclipse Website: http://www.eclipse.org/ 



158   MARCOS LÓPEZ SANZ 

 

between the architectural (meta-)models and those of the UML 

Standard [ref]. Thus easing the tasks for providing support for having a 

UML-based modelling process of service-oriented architectures.  

2. Interoperability. The development of a toolkit as reference 

implementation of a proposal should not be constraint to a concrete 

scope. It should allow, at least, model exchange so it is possible to 

bridge the gap that traditionally has been detected between the 

standards and theoretical solutions and the actual implementations 

[24]. The tendency is to agree in a common implementation 

sufficiently close to the standard and implement it as reference 

implementation for model exchangeability. Currently, most of the 

initiatives performing tooling activities develop their prototypes using 

EMF as metamodelling framework. Accordingly, the selection of EMF 

for implementing the ArchiMeDeS toolkit leverages the level of 

interoperability so it is possible to import/export other EMF works 

within the ArchiMeDeS framework. 

3. Extensibility. The ArchiMeDeS proposal is not a closed framework 

and its features have evolved since its initial conception. In the future 

it is also likely to scale to adopt (and adapt) other architectural 

concerns. In that sense, having a tool support that can be extended to 

support new capabilities is a mandatory requirement. In that context, 

both EMF and the Eclipse platforms also seem to be adequate 

solutions for that aim. Indeed, Eclipse is conceived as an extensible 

framework that provides with the basic infrastructure to be extended 

and was thought to that end. Likewise, EMF itself is also an open 

framework that is permanently evolving and incorporating emerging 

technologies. 

4.2.1.1 Metamodel Implementation with EMF 

Metamodels containing the concepts of each DSLs defined as part of the 

ArchiMeDeS framework has been implemented with EMF. In particular, the 

metamodels implemented include: 

 PIM architectural metamodel. 

 PDM architectural metamodel. 

 TDM architectural metamodel for Web Services. 

 TDM architectural metamodel for Grid Services. 

 TDM architectural metamodel for REST Services. 

 Architectural style metamodel. 



 THE ARCHIMEDES TOOLKIT   159 

 

Since the development process of the modules supporting any of the 

previous metamodels is analogous, from now onwards, the explanation will focus 

on the implementation of the PIM metamodel module to illustrate that process. 

In essence, EMF can be thought as a highly efficient Java implementation 

of a core subset of the MOF API [172]. EMF provides a kernel structure of a 

meta-model description, named Ecore. Ecore is a simplified implementation of 

EMOF (Essential MOF) that generates a file with .ecore extension where each of 

the meta-classes specified in the metamodel is implemented, with the particularity 

of being self-descriptive. The basic structure in Ecore can be seen in Figure 4-3. 

 

Figure 4-3. Ecore basic structure (metamodel excerpt). 

 EClass represents a modelled class. 

 EAttribute represents a modelled attribute in a modelled class. 

 EReference represents one end of an association between classes.   

 EDataType represents the type of an attribute. 

 

Using the basic structure of Ecore, it is possible to define any desired 

structured model. Every metamodel is, therefore, implemented in terms of Ecore, 

the meta-meta-language of EMF. It is important to note here that, due to the XML 

basis over which .ecore files are built, any metamodel defined with Ecore must 

have a root element. This can be seen in Figures 3-3, 3-5, 3-6, 3-7, 3-8 and 3-15 

where their content shows a root element painted in black. In the PIM metamodel, 

for example, the root element has been named ―PIM_Architecture‖. 

The .ecore file, which represents a metamodel based on EMF (i.e., the 

abstract syntax of the DSL defined), will be used as source file by the EMF 

environment for the generation of a simple tree-like model editor. This editor 

represents the starting point for the creation of models conforming to the 

aforementioned metamodel. However, in order to provide with a proper model 

editor, it is necessary to define several additional models codifying the 

relationships between the meta-concepts of the metamodel and the elements they 



160   MARCOS LÓPEZ SANZ 

 

represent. The most important among them is the genmodel model, known as the 

generating model. This model is compulsory for generating the code 

corresponding to the desired model editor. To illustrate the differences among the 

.ecore and the .genmodel files, Figure 4-4 shows the relationships among the 

information stored by each file. This separation of the genmodel from the base 

model has the advantage of maintaining the Ecore metamodel unaltered and 

independent from any relevant information needed for the code generation of the 

model editor.  

a_metamodel.genmodel a_metamodel.ecore

GenClass

GenFeature GenFeature

EClass

EAttribute EAttribute

 

Figure 4-4. Relationship between .genmodel and .ecore models. 

Figure 4-5 illustrates all the relationships established among all the 

elements generated as part of the generation of a model editor. The objective of 

each generated code can be thought as follows: the model code file allows to 

access to the metamodel (Ecore), to create models conforming to the metamodel 

and serializing/deserializing tasks. This model code is used by both the edit code 

files and the editor code files for relating the aforementioned functionalities with a 

graphical interface. These last elements provide with a default interface (tree-like) 

for model editing and management conforming to the metamodel initially defined.  

Abstract
syntax Source files

Generated code files

Java Model

derives
Ecore Model

Java Edit Java Editor

Genmodel

uses uses

ArchiMeDeS_PIM.ecore

My_PIM.xmi

conforms to

 

Figure 4-5. Overview of the generation process of EMF-based editors. 



 THE ARCHIMEDES TOOLKIT   161 

 

In summary, the procedure of code generation is: the Ecore model is 

mapped to a Genmodel; after that, the Genmodel will be used to generate code 

resulting in three different files (model, edit and editor). The final outcome is a 

tree-like Java-based editor, enough simple and complete to specify models 

conforming to a given metamodel. This way, it is possible to count with basic 

editors for each DSL defined in this Doctoral Thesis. 

4.2.2 Modules for the Definition of the Concrete Syntax 

As it has been stated previously, once the abstract syntax of the DSLs has 

been implemented using Eclipse, it is recommended (but not compulsory) to 

provide the tool with the support for using a graphical notation, thus easing the 

creation of the models by means of a more intuitive interface better than the tree-

like option. For that aim, and similarly to the development work accomplished for 

the abstract syntax of the DSL defined, the concrete syntax of the DSLs created 

within the ArchiMeDeS framework will take advantage of another extension for 

the Eclipse platform: in that case, the Graphical Modelling Framework (GMF) 

Project [221] and its corresponding plug-in for the Eclipse workbench. This plug-

in allows the creation of an upper-level abstraction layer for the metamodels 

defined in EMF. In the case of the ArchiMeDeS framework, a concrete GMF 

extension is created to give support to the UML profile stereotypes for both the 

PIM level and the PSM levels of the DSL language for service architectures.  

GMF provides a generative component and runtime infrastructure for 

developing graphical editors based on EMF and GEF (Graphical Editing 

Framework, [156]. Figure 4-6 shows the dependencies between those Eclipse 

components.   

Any GMF editor depends on the GMF runtime and uses the EMF, GEF and 

Eclipse platform. Before the advent of GMF, an Eclipse model editor was 

developed by binding the EMF model with the GEF view by hand-coding. GMF 

undertakes this task replacing the coding by modelling to provide an easier way to 

develop graphical editors using GEF and an underlying EMF model [161].  

The underlying idea is that a set of models serve to define the concrete 

visual syntax of the DSL and collect the correspondences between the EMF model 

(the abstract syntax) and the graphical elements. From such models, GMF 

generate the code that implements the graphical editor in the form of an Eclipse 

plug-in. 

 

 



162   MARCOS LÓPEZ SANZ 

 

 

Figure 4-6. Dependencies between a generated graphical editor, the GMF 

Runtime, EMF, GEF, and the Eclipse Platform
2
. 

4.2.2.1 Graphical Support with GMF 

The development process for granting a graphical interface for the 

ArchiMeDeS toolkit is depicted on Figure 4-7, detailing the different models that 

you should define to build a GMF editor. 

 

Concrete
syntax

First Step: 
Create source files

Second step:
Model Merge into Mapping
model

Domain Model

Diagram
Mapping

Model

Graphical
Model

.ecore

Tooling Model

.gmfgraph

.gmfmap.gmftool

Third Step:
Generate diagram editor

Generator
Model

.gmfmgen

Graphical
modelling

editor

 

Figure 4-7.Overview of the GMF development process. 

 

                                                

 

2 Retrieved from http://www.eclipse.org/articles/Article-Introducing-GMF/ article.html 

http://www.eclipse.org/articles/Article-Introducing-GMF/%20article.html


 THE ARCHIMEDES TOOLKIT   163 

 

 The domain model: this is the Ecore metamodel used to define the 

abstract syntax of the given DSL. It defines the non-graphical 

information managed by the editor.  

 The graphical definition model: this model defines the graphical 

elements to be displayed in the editor. 

 The tooling definition model: it establishes the widgets that compose 

the user interface of the editor. In essence, it defines the tool palette. 

 The mapping model: finally, this model links the previous models 

together. Graphical and tooling elements are linked with their 

corresponding elements form the domain model. In other works, it 

bridges the abstract syntax of the DSL with the concrete (visual) syntax 

plus the widgets to add each different modelling element to the diagram. 

GMF tries to simplify the tasks of defining these models by providing with 

wizards that drive the user on the process to define each one. In addition, a 

tentative mapping model is automatically generated. It is a first attempt to match 

domain, graphical and tooling models. From that initial mapping, the user has the 

right to modify the mappings identified as needed. 

Once the previous models have been defined, GMF generates a new model, 

known as generator model. This model encodes implementation details that will 

drive the generation of the final plug-in that implements the graphical editor. 

This way, the main features of GMF are reutilization of the graphical 

definition for different domains and applications and automatic generation of the 

graphical editor: on the one hand, since the only connection between the domain 

concepts and its graphical representation is the mapping model, the only thing to 

do is to modify the mapping model to reuse the graphical abstractions already 

defined for any other domain. On the other hand, GMF applies MDE techniques. 

The diagrammer is automatically generated from a set of models applying model 

transformations. Actually, until recently, they were not proper model 

transformations since JET was used to generate the diagrammer code. As a result, 

GMF can be considered a perfect example of MDSD. 

Finally, if the default capabilities of a GMF editor satisfy the user, it is not 

necessary to touch a single line of code since the whole process is automatic. 

However, it is still possible to modify the generated code to obtain a different look 

and feel for the editor or to add/modify the capabilities provided by GMF. 

This entire process has been applied to the creation of a graphical interface 

for each DSL as part of the ArchiMeDeS toolkit. 



164   MARCOS LÓPEZ SANZ 

 

4.2.3 Modules for Model Transformation 

The advantage of using a model-driven process for the specification of 

service architectures relies also on the provision of support for automatic model 

conversion. It the context of ArchiMeDeS it is achieved from one abstraction level 

to another trough the execution of both predefined model transformations and 

personalized changes to the models. In order to achieve this feature, the 

transformation rules specified in Section 3.3 are defined in ATL and included into 

a concrete module as part of the toolkit.  

At this point, the implementation of the ArchiMeDeS toolkit faces two 

different challenges: a) to prepare the toolkit for the support of automatic 

transformation PIM models into their PSM counterpart depending on the concrete 

target platform; and, b) to have the ability of weaving architectural style models 

into consistent PIM models. 

4.2.3.1 Implementation of PIM-to-PSM transformations with ATL  

As it was pointed out previously, the implementation of model 

transformation is accomplished by making use of the facilities provided by the 

ATL (ATLAS Transformation Language) [55] and its implementation over the 

Eclipse platform [54].  

ATL is a model transformation language and toolkit that provides ways to 

produce a set of target models from a set of source models. Developed within the 

Eclipse platform, the ATL Integrated Environment comprises a number of 

standard development facilities (syntax highlighting, debugger, editor, etc.) that 

eases the development of ATL transformations. It is mainly based on the OCL 

standard and it supports both the declarative and imperative approach, although 

the declarative one is the recommended. 

Mappings are implemented in ATL by defining a set of rules: each rule 

specifies a source pattern and a target pattern, both of them at metamodel level. 

Once the ATL transformation is executed, the ATL engine establishes matching 

between the source pattern and the source model. Then for each matching, the 

target pattern is instantiated in the target model, replacing the matching found in 

the source model.  

In contrast with most existing languages, ATL allows for rule inheritance 

and provides both implicit and explicit scheduling. The implicit scheduling is 

supported by the imperative constructions of ATL. When the transformation starts, 

the algorithm starts with calling a rule that is designated as an entry point and may 

call further rules. After completing this first phase, the transformation engine 

automatically checks for matches on the source patterns and executes the 

corresponding rules. Finally, it executes a designated exit point. Explicit 



 THE ARCHIMEDES TOOLKIT   165 

 

scheduling is supported by the ability to call a rule from within the imperative 

block of another rule. ATL transformation descriptions are transformed to 

instructions for the ATL Virtual Machine, which executes the transformations. 

This is analogous to Java and the Java Virtual Machine.  

4.2.3.1.1 Implementation of ATL rules using the MeTAGeM framework 

In order to create the ATL code corresponding to the PIM to PSM 

transformation rules, the MeTAGeM [26] framework for model transformation 

specification has been used. For that purpose, MeTAGeM describes an ATL 

generation process based on a MDA approach for each transformation rule. To 

illustrate this process, the transformation rule that will be used for that aim is the 

one that allows transforming a Service (with the attribute variant set to 

‗information‟) defined as part of the PIM architectural model into two elements of 

the PDM level, a Resource and a Service elements joined by a ‗controls‟ 

association. The illustrative example is applicable to any kind of transformation 

defined within ArchiMeDeS. The development process is comprised of four steps: 

 Definition of the transformation at PIM level. The first step is to 

conceptually define the mapping rule by identifying the cardinality of the 

rule, i.e., selecting the kind of transformation to create. For that aim, 

MeTAGeM obliges to select both the source metamodel and the target 

metamodels. Afterwards, it is necessary to specify the kind of 

transformation. In the selected example it will be ‗one to many‘. Once it 

is done, it is the moment of indicating the source and target elements 

involved in the transformation. Figure 4-8 shows the result of this step. 

 

 

Figure 4-8.PIM model associated to a transformation rule. 

 



166   MARCOS LÓPEZ SANZ 

 

 Definition of a PSM transformation model. The second step entails the 

modelling of the desired transformation using a specific hybrid language 

as previous step for the code generation in a concrete transformation 

language. Figure 4-9 shows the modelling of the selected transformation 

rule using MeTAGeM. Please note that this model is independent of the 

transformation language and that, if it were the case, it could be possible 

to select a transformation language different from ATL. 

 

 

Figure 4-9.PSM model associated to a transformation rule. 

 Definition of the ATL model. The third step is automatically generated 

from the previous PSM model. The MeTAGeM toolkit allows for the 

application of the concrete features of the ATL language to the previous 

hybrid model. The result is an .ecore model corresponding to the ATL 

model for the selected transformation rule.  

 Generation and edition of the ATL code. The final step is also 

automatically generated. The MeTAGeM toolkit allows the generation of 

the ATL code associated to the selected transformation rule. Since there 

are particularities not solved with this automatic generation process, the 

tool also allows for the manual edition of the rule. Figure 4-10 shows the 

piece of ATL code that corresponds to the final coding associated to the 

selected transformation rule. 



 THE ARCHIMEDES TOOLKIT   167 

 

-- @atlcompiler atl2006 

module PIM2PDM; 

create PDM_model : PDM from PIM_model : PIM; 

 

-- Comments -> This is a MatchedRule: Service2ResourcesService ->  

rule Service2ResourcesService { 

  from 

    service_in : PIM!Service (service_in.Variant = 'Information') 

  to 

    resource_out : PDM!Resource ( 

      name <- service_in.name + '_resource'  

    ), 

    service_out : PDM!Service ( 

      name <- service_in.name +'_service', 

      controlledResource <- resource_out 

    ) 

  -- ActionBlock:  

  do {} 

} 

Figure 4-10. ATL code associated to a transformation rule. 

As it can be seen, the MeTAGeM framework provides with an intuitive 

development process for the (semi-)automatic generation of ATL code 

corresponding to the transformation rules defined as part of the ArchiMeDeS 

framework. Accordingly, this process has been applied to implement all the 

transformation rules defined to evolve from a view of the system architecture at 

PIM level to a concrete PSM architectural model depending on the service target 

platform of choice (see Tables 3-7, 3-8, 3-9 and 3-10 for a complete listing of 

these rules. 

4.2.3.2 Implementation of PIM-to-PIM transformations in AMW 

The superimposition of architectural styles in PIM models cannot be 

accomplished through an automatic transformation process since the description 

of the role played of each architectural element regarding a concrete architectural 

style is a design decision that uniquely depends on the architect‘s criterion. 

Therefore, PIM architectural models need to be annotated by hand with the 

features of the architectural styles and, as a result, a personalized transformation 

process must be accomplished based on a combination of the following: 

 A manual mapping of the concepts defined as part of the architectural 

style vocabulary to services and service types existing in a PIM 

architectural model. This will be done by creating an annotation model 



168   MARCOS LÓPEZ SANZ 

 

that links (annotates) the services with the desired concept of the 

architectural style. 

 An automatic generation of the ‗Enriched PIM architectural model‘. A 

set of transformation rules will be defined taking as input models the PIM 

architectural model, the architectural style model and the previous 

annotation model. The execution of these rules will result in a service 

role assignation as part of the final ‗Enriched PIM architectural model‘. 

Figure 4-11 depicts the role of these annotation models in the scope of the 

weaving process defined. This figure extends the theoretical exposition of the 

weaving process outlined in section 3.2.3.3.4 taking into account the technologies 

used to implement the associated toolkit. 

 

PIM to PIM
Weaving
Process

PIM

conforms to

uses
Enriched PIM 
Arch. Model

AMW Core Weaving
Metamodel

PIM+AS+AMW
ATL Rules

AMW Annotation Model

source
(PIM) source (AMW)

source
(AS)

target

Arch. Style ModelPIM Arch. Model

PIM Architectural
Metamodel

AMW Annotation
Metamodel

Architectural Style 
Metamodel

 

Figure 4-11. Implementation of architectural styles superimposition using 

weaving models and ATL transformations. 

First step: manual annotation of PIM models 

 

The first step of the superimposition process is to define the associations 

between the source PIM architectural model and the model with the concrete 

architectural style to be used. For that aim, AMW weaving models can be used as 

annotation models.  

 

 



 THE ARCHIMEDES TOOLKIT   169 

 

For every PIM architectural model and every Architectural style model 

(‗PIM Arch. Model‘ and ‗Arch. Style Model‘ in Figure 4-11) a weaving model 

(‗AMW Annotation Model‘) is defined conforming to an annotation metamodel. 

Such weaving model contains a set of annotations understood as links between the 

elements of both source models.  

The creation and handling of weaving models relies on the ATLAS Model 

Weaver (AMW). The model weaver workbench provides a set of standard 

facilities for the management of weaving models and metamodels [53]. Moreover, 

it supports an extension mechanism based on a Core Weaving Metamodel [55] that 

contains a set of abstract classes to represent information about links between 

model elements (see the upper part of Figure 4-12).  

Normally, the classes from the Core Weaving Metamodel are extended to 

define new weaving metamodels for specific contexts. This is due to the fact that 

all the classes defined in that metamodel are abstract classes and thus cannot be 

directly instantiated. The extension used to implement the support for architectural 

style superimposition within ArchiMeDeS is shown in Figure 4-12. Note that the 

Core Weaving Metamodel is depicted on the upper part of the figure whereas the 

extension is depicted at the bottom. 

 

 

Figure 4-12. AMW Annotation Metamodel. 

According to that metamodel, an annotation model includes a single-valued 

reference to the AnnotatedModel plus a set of annotation objects. Each annotation 

contains a single-valued reference to the model element plus a list of properties. 

The properties have an identification key and the corresponding value. The 



170   MARCOS LÓPEZ SANZ 

 

AnnotatedModelElement class acts as the proxy for the linked/annotated elements. 

That is, each record is merely a set of key-value pairs.  

Once it is possible to define personalized annotation metamodels (see 

Section 5.2.2.5 for some examples on the creation of these models), next step is 

using it to define the links between the PIM architectural model and the 

Architectural style model thus creating a personalized superimposition of the 

architectural style over the modelled architecture. 

 

Second step: obtaining the Enriched PIM architectural model automatically 

The second step is to combine the information of three models: PIM 

architectural model, Architectural style model, and Model weaving model. They 

represent the information needed to execute an automatic transformation that 

appends to the target PIM model the corresponding service role elements. 

Consequently, the target model (‗Enriched PIM Architectural Model‘) is 

generated from both the source models and the weaving model. Figure 4-14 shows 

and excerpt of the definition of this ATL transformations rules. An example of the 

result of the execution of these rules is given in Section 5.2.2.5. Moreover, the 

described superimposition process allows obtaining different target models from 

the very same source PIM architectural model just by modifying the 

annotation/weaving model and/or the architectural style model.  

The final model of the two-step process described above only takes into 

account the vocabulary of the architectural style modelled, thus creating an 

element organization (service instance annotation with roles) depending on the 

chosen architectural style. At this moment, the version of the toolkit presented in 

this dissertation only considers that element organization; however, a second 

version is in progress in which the architectural elements that currently are 

considered implicitly (see explanation in Section ) will be explicitly created in this 

second step of architectural style superimposition. This extent will need a 

modification of the architectural style metamodel in order to specialize the 

constraints that are considered as part of the architectural style model (in that case 

it should be needed the addition of another element with the features of the 

potential element to be included as part of the resulting architectural model). 

 

 

 

 

 

 



 THE ARCHIMEDES TOOLKIT   171 

 

module PIMEnricher; -- Module Template 

create OUT : ArchiMeDeS_PIM refining PIM : ArchiMeDeS_PIM, style : Architectural_Style, 

amw : AMW; 

 

-- Given an object from the woven model, it returns the Link referring to that object in 

-- the weaving model 

helper context OclAny def: getLink() : AMW!WLink =  

 AMW!WLinkEnd.allInstances()->asSequence()->select(aux | aux.element.ref =  

               self.__xmiID__) ->first().refImmediateComposite(); 

 

helper context OclAny def: hasLink() : Boolean = (not self.getLink().oclIsUndefined()); 

helper def: Connectors: Sequence(Architectural_Style!Connector) = 

 Architectural_Style!Connector.allInstancesFrom('style'); 

helper def: Components: Sequence(Architectural_Style!Component) = 

 Architectural_Style!Component.allInstancesFrom('style'); 

(...) 

rule ServiceType2ServiceType { 

   from  

st : ArchiMeDeS_PIM!ServiceType(st.hasLink().debug(st.name + ' has link:' )) 

   to st_out : ArchiMeDeS_PIM!Service ( instances <- s ), 

         s : ArchiMeDeS_PIM!Service (  

      name <- st.name + '_instance',  

                    playedRole <- role ),  

 role : ArchiMeDeS_PIM!ServiceRole ( name <- st.getLink().getRole()) 

} 

Figure 4-13. Excerpt of ATL code allowing to obtain „Enriched PIM architectural 

models‟. 

In addition, in order to offer a full support for architectural style modelling, 

superimposition and validation it would be necessary to provide with means to 

evaluate the resulting PIM model. To do so, it would be necessary to perform a 

validation process in which the modelled constraints could be used to derive some 

kind of output regarding the correctness of the modelled architecture. As it was 

pointed out in Section 3.2.3.3, this is an issue left as open research line to explore 

in the near future.  

However, at this point of the dissertation, it is possible to assert that the 

moment in which implement a tool support for that validation process will be 

immediately after obtaining the ‗Enriched PIM Model‘. This way, it could be 

possible to separate the annotation process from the validation one, thus, without 

affecting to that functionality. This checking process would be also encoded in 

model transformation, whose output will be any of the possibilities mentioned in 

Section 3.2.3.3. 



172   MARCOS LÓPEZ SANZ 

 

4.3 Concluding Remarks 

This Chapter has shown the development of a toolkit supporting the 

modelling tasks that associated to the ArchiMeDeS framework. Accordingly, this 

toolkit allows for the edition of architectural models at both PIM and PSM levels, 

the (semi-)automatic transformation of PIM models into PSM models and the 

obtaining of enriched PIM models by means of the superimposition of 

architectural style features on them. The resulting toolkit has been developed over 

the Eclipse platform and using some of the most currently used extensions to 

cover the modelling needs (EMF, GMF, AMW). Because of that, the toolkit can 

be easily extended with new modules and features derived from the updating of 

the ArchiMeDeS framework. 

Although the toolkit created covers all the modelling needs defined in the 

ArchiMeDeS framework, it could be the subject of many improvements regarding 

interface refinements, definition of wizards for easing the modelling tasks or 

upgrading of the base functionality with new modules supporting architectural 

style validation or integrating the modelling of other concerns from the software 

development process. 

 



 

 

 

5. CHAPTER 5: Validation 

Chapter 5: 

Validation 





 VALIDATION   175 

 

Previous chapters described the inner features of the ArchiMeDeS 

framework, portraying its contents in the form of several DSLs and 

transformations among them, and the development of a supporting modelling 

toolkit. This Chapter is dedicated to validate both the proposal and the toolkit 

developed as part of the ArchiMeDeS framework.  

As it was mentioned in the introduction of this dissertation, the 

investigation process follows an approach founded on the use of case studies 

[241]. Accordingly, the validation of the ArchiMeDeS framework (and the toolkit 

supporting its principles), is accomplished by using it to specify the 

architecture of several case studies. The content of each case study and its 

purpose is listed next: 

 The GESiMED system. This system represents a real-world case study 

based on the development of an information system for the management 

of digital medical images [96]. This case study is used to check the 

feasibility of using ArchiMeDeS to architect a full case study at either 

PIM or PSM levels of the proposal and using any of the target service-

oriented implementation platforms (Web Services, REST Services and 

Grid Services). This case study will be also used to show an example of 

the model transformations defined within ArchiMeDeS and the 

corresponding modules of the modelling toolkit. The use of both the 

ArchiMeDeS framework and its associated toolkit for that case study is 

comprised in Section 5.2. 

 The Pick & Roll strategy as a simulation of a basketball game setting. 

The features of the GESiMED system do not allow the validation of the 

ArchiMeDeS framework for modelling service choreographies. In order 

to fill in this gap, the simulation of a basketball game setting (selecting 

the Pick & Roll strategy in particular [167]) is used. This way it is 

possible to show an example on the usage of the ArchiMeDeS capabilities 

to model this kind of service coordination schemes. The architectural 

modelling of this case study is explained in Section 5.3. 

 A SMPP gateway. This case study is based on the architecting of a 

gateway for massively sending SMS texts using the SMPP (Short 

Message Peer-to-peer Protocol) protocol. For that aim, the architecture 

of the SMPP gateway will be, first, modelled using the ArchiMeDeS PIM 

DSL for that aim, and, second, represented using the π-ADL architectural 

description language [180]. This is made with the purpose of showing 

that the presented DSL is defined at the right abstraction level as required 

for an adequate architectural description language. By doing so, it is 



176   MARCOS LÓPEZ SANZ 

 

possible to check that the initial PIM description (made using the 

corresponding ArchiMeDeS DSL) is comparable to a standard 

architectural description using a formal ADL. The development of this 

case study with ArchiMeDeS and π-ADL is comprised in Section 5.4. 

 

The ArchiMeDeS framework brings together three different concerns from 

Software Engineering: it uses a Model-Driven approach as strategy to follow for 

architectural specification; it establishes Service-Orientation as main semantic 

source for the elements specified in architectural models and it considers Software 

Architecture as the driving aspect for the development processes. The purpose of 

this chapter is to validate all these features and their synergies by means of the 

aforementioned case studies. 

5.1 Using ArchiMeDeS for Architecting the GESiMED System 

The main case study used to validate (and refine) ArchiMeDeS is the 

architecture specification of the GESiMED system. Initially conceived and 

implemented as a Web Information System [96] it was lately transformed into a 

service-oriented solution to cover new needs and broaden its usage to new scopes 

of research. The ArchiMeDeS framework was used to help in the development of 

the service-oriented version of GESiMED.  

5.1.1 Background of the GESiMED system 

Developed in conjunction with the GTEBIM (Grupo de Tecnología 

Electrónica, Bioingeniería e Imagen Médica), a research group from the Rey Juan 

Carlos University, GESiMED allows the creation and maintenance of scientific 

studies for the research in neuroscience [3]. It was designed to give support to the 

investigation activities of neurologists, neuroradiologists and other professionals 

related to that area of the medicine. Additionally, the system is also used by 

researchers administering the GESiMED system as part of the LAIM (Laboratorio 

de Análisis de Imágenes Médicas) laboratory of the URJC, where it has been 

physically deployed. 

The initial objective of the system was to offer to these neuroscientists a 

database for the storage of medical images accessible through the web, over which 

it would be possible to launch several types of queries and normalized processes. 

This would permit these researchers to perform the processing and analysis of the 

stored images and whose results would be also stored in the same database so that 

they could be consulted in ongoing and future studies. A general overview of this 

scenario can be seen in Figure 5-1. 



 VALIDATION   177 

 

Medical Image
Database

Neuroscience
Researchers

Medical Image
Researchers

Internet LAIM Laboratory

Medical Image Storage 
& Retrieval Service

Medical Image 
Processing Service

Medical Image 
Visualization Service

 

Figure 5-1. Overview of the GESiMED working environment. 

To gain a complete understanding about the GESiMED system a proper 

description of the business processes it supports is given next. It has to be taken 

into account that, in that context, business processes are initially defined as a set of 

functionalities that are offered to the users of the system: 

 Storage and Retrieval of Digital Medical Images. The main asset of 

GESiMED is the efficient management of digital medical images. The 

database of the system is built upon a huge set of medical images and the 

results of their processing using specific algorithms. The interest on these 

images does not rely on them as isolated image entities but on several 

other pieces of information associated to them. This information includes 

the research study which is being performed, the individuals that 

participate in that study, their grouping rationale and the concrete image 

retrieval tasks that are performed over them.  

 Processing and Result management of Digital Medical Images. 

Through the GESiMED system, researchers in neuroscience may perform 

different types of image processing, such as analysis or segmentation. In 

order to accomplish the task required, the researcher may want to select a 

concrete set of images, launch the desired algorithm over the images and, 

finally, store the results of the image processing. 

 Medical Image Visualization. Associated to the retrieval of the medical 

images, researchers may perform visualization processes over the stored 

data. These visualization processes may consist on tasks such as image 

reconstruction (transformation from 2D to 3D visualization) or 

multimodal image visualization that includes the obtaining of the 

functional view of the image set or the anatomical view of that same 

image set. 



178   MARCOS LÓPEZ SANZ 

 

In addition to these business services provided by GESiMED, the features 

of the system require that other external services, also belonging to the business 

domain of the system, exist in order to give a complete support to the 

functionalities needed as part of the research activities of neuroscientists. These 

extra business services include the payment of an established fee from the 

external neuroscientists to the LAIM laboratory for the use of GESiMED and 

obtaining the images from specialized equipment operated by image experts 

(e.g. radiologists) installed in the clinical centres in which individuals participating 

in the studies are subject to the image acquisition tasks. 

In order to provide a more formal view of the GESiMED capabilities, and 

according to the specification done in [45], it is possible to define all the high-

level services offered by GESiMED using two models: a value model and a 

business process model. This way it is possible to obtain a visual outlook of the 

business processes supported by the system taking into account the values offered 

to each of the actors involved in the scope of the system (value model) and the 

business processes consequently associated to them in which the system 

participates (business model). The definition of a domain model, comprising the 

vocabulary and key concepts of the problem domain has been deliberately omitted 

since none of the terms needed to understand the scope of GESiMED are novel or 

difficult to understand. 

The value model corresponding to the GESiMED system can be seen in 

Figure 5-2. The notation used is e3value [86]. In that model, the LAIM Laboratory 

is identified as an actor and both the medical centres and the neuroscientists as 

segments of the market, being the researchers in neuroscience considered as the 

final consumer of the business. Together with that information, the model shows, 

as value activities, the services offered by the LAIM Laboratory since it expects to 

get revenue from the performance of the business processes it offers. In 

accordance with the description given at the beginning of this subsection the value 

activities are: the ―Medical Image Storage and Retrieval Service‖ (MIS&RServ 

for short), the ―Medical Image Processing Service‖ (MIPServ for short) and the 

―Medical Image Visualization Service‖ (MIVServ for short). The value objects 

exchanged between the different actors participating can be summed up in 

―images‖, ―image processing result‖, the ―access and query of images‖, the 

―result of visualizing the images‖ and the ―fee‖. 

Another aspect gathered in the value model is the identification of 

dependency paths, marked in the illustration as (a), (b), (c) and (d). These paths 

show the different working needs of neuroscientists and represent the starting 

points of the several dependency paths. These paths can be understood as follows: 



 VALIDATION   179 

 

first, neuroscience researchers need to obtain the images provided by the clinical 

centres (path (a)). Once images have been acquired, neuroscientists ask the LAIM 

laboratory for the processing or visualization of the images. So, when a process is 

required (path (b)), researchers provide the images and pay the corresponding fee, 

obtaining, in return, the result of the process selected. Images provided by the 

neuroscientist are delivered to the MIS&RServ service from where the MIPServ 

service recovers them in exchange of the processing result. Similarly to that path, 

there exists another one related to the image visualization (path (c)). Finally, 

neuroscientists may perform any kind of query over the database. The 

MIS&RServ is the service in charge of this responsibility which, in return, 

receives the payment of the service performed (path (d)). 

 

Figure 5-2. GESiMED value model. 

Figure 5-3 shows, in turn, the business process model associated to the 

GESiMED system. This model shows a set of activities that may perform any of 

the neuroscientists as part of their research work. In that sense, researchers must 

obtain, prior to anything, the images either asking for its acquisition to the medical 

centres or querying the system‘s database. Once the images are retrieved, 

researchers may ask for its processing to several centres, such as the LAIM 

laboratory. 

Ask for Image Acquisition 

to Clinical Centres

Obtain Images from 

Specialized Databases

Perform Image Processing
Analyze & Store 

Processing Results

 

Figure 5-3. GESiMED business process model. 



180   MARCOS LÓPEZ SANZ 

 

5.1.2 GESiMED PIM Architecture 

The knowledge about the domain of GESiMED and the business 

processes in which the system is framed serve as inputs to specify the PIM 

architecture of the GESiMED system. The creation of this model and its 

conformance validation has been done using the ArchiMeDeS toolkit. Figure 5-4 

shows a snapshot of the toolkit in the moment of creating the PIM architectural 

model of the GESiMED system. 

 

 

Figure 5-4. GESiMED PIM architectural modelling with the ArchiMeDeS toolkit 

(partial model). 

The whole PIM model in UML can be seen in Figure 5-5. For the sake of 

clarity some elements has been omitted (service providers, business contracts and 

some interaction patterns in service contracts). To better exemplify the use of 

ArchiMeDeS for modelling software architectures, the explanation on the 

modelling of the case study will discuss each type of element separately. 

 



 VALIDATION   181 

 

S
E

R
V

ID
 =

 0
0

0
1

«
s
e

rv
ic

e
»

P
ro

c
e

s
s

in
g

 S
e

rv
ic

e
_

A

«
A

S
O

p
»

 o
b

ta
in

3
D

Im
a

g
e
()

«
S

O
p

»
 n

o
rm

a
liz

e
Im

a
g

e
()

«
S

O
p

»
 a

n
a

liz
e

Im
a

g
e
()

«
S

O
p

»
 o

b
ta

in
M

e
ta

d
a

ta
()

v
a

ri
a

n
t 
=

 P
ro

c
e

s
s
in

g

«
S

e
rv

ic
e

T
y
p

e
»

P
ro

c
e

s
s

in
g

 S
e

rv
ic

e

S
E

R
V

ID
 =

 0
0

0
2

«
s
e

rv
ic

e
»

P
ro

c
e

s
s

in
g

 S
e

rv
ic

e
_

B

«
in

s
ta

n
c
e

»

«
in

s
ta

n
c
e

»

«
IP

»
 g

e
tS

tu
d

y
In

fo
 =

 Q
u

e
ry

_
R

e
s
p

o
n

s
e

«
IP

»
 g

e
tT

ri
a

lI
n

fo
 =

 D
ia

lo
g

u
e

«
IP

»
 s

e
tS

tu
d

y
In

fo
 =

 O
n

e
W

a
y

«
IP

»
 s

e
tT

ri
a

lI
n

fo
 =

 O
n

e
W

a
y

«
S

e
rv

ic
e

C
o

n
tr

a
c
t»

F
E

2
L

o
c

a
lS

to
ra

g
e

«
S

O
p

»
 g

e
tI
m

a
g

e
D

IC
O

M
()

«
S

O
p

»
 g

e
tM

e
ta

In
fo

D
IC

O
M

()

«
S

O
p

»
 c

re
a

te
D

IC
O

M
()

v
a

ri
a

n
t 
=

 P
ro

c
e

s
s
in

g

«
S

e
rv

ic
e

T
y
p

e
»

F
o

rm
a

tM
a

p
p

e
r

«
A

S
O

p
»

 c
re

a
te

S
tu

d
y
()

«
S

O
p

»
 g

e
tS

tu
d

y
In

fo
()

«
S

O
p

»
 u

p
lo

a
d

Im
a

g
e

S
e

t(
)

S
E

R
V

ID
 =

 0
0

0
5

v
a

ri
a

n
t 
=

 O
rc

h
e

s
tr

a
to

r

«
s
e

rv
ic

e
»

S
tu

d
y

M
a

n
a

g
e

r

«
IP

»
 s

e
tS

tu
d

y
In

fo
 =

 Q
u

e
ry

_
R

e
s
p

o
n

s
e

«
S

e
rv

ic
e

C
o

n
tr

a
c
t»

S
tu

d
y

M
n

g
2

R
IM

«
S

O
p

»
 g

e
tS

tu
d

y
In

fo
()

«
S

O
p

»
 g

e
tT

ri
a

lI
n

fo
()

«
A

S
O

p
»

 s
e

tS
tu

d
y
In

fo
()

«
A

S
O

p
»

 s
e

tT
ri
a

lI
n

fo
()

v
a

ri
a

n
t 
=

 O
rc

h
e

s
tr

a
to

r

«
S

e
rv

ic
e

T
y
p

e
»

R
e

s
e

a
rc

h
In

fo
M

a
n

a
g

e
r

«
A

S
O

p
»

 s
to

re
Im

a
g

e
()

«
S

O
p

»
 r

e
tr

ie
v
e

Im
a

g
e

()

«
S

O
p

»
 g

e
tI
m

a
g

e
ID

()

v
a

ri
a

n
t 
=

 I
n

fo
rm

a
ti
o

n

«
S

e
rv

ic
e

T
y
p

e
»

S
e

c
u

re
S

to
ra

g
e

«
IP

»
 s

e
tS

tu
d

y
In

fo
 =

 O
n

e
W

a
y

«
IP

»
 s

e
tT

ri
a

lI
n

fo
 =

 O
n

e
W

a
y

«
S

e
rv

ic
e

C
o

n
tr

a
c
t»

S
M

2
L

o
c

a
lS

to
ra

g
e

«
A

S
O

p
»

 s
e

tL
a

n
g

u
a

g
e

()

«
S

O
p

»
 l
o

g
in

()

«
A

S
O

p
»

 u
p

lo
a

d
Im

a
g

e
s
()

«
S

O
p

»
 r

e
tr

ie
v
e

S
tu

d
y
()

«
A

S
O

p
»

 p
ro

c
e

s
s
Im

a
g

e
s
()

v
a

ri
a

n
t 
=

 I
n

te
ra

c
ti
o

n

«
S

e
rv

ic
e

T
y
p

e
»

F
ro

n
tE

n
d

«
IP

»
 p

ro
c
e

s
s
Im

a
g

e
S

e
t 

=
 O

n
e

_
W

a
y

«
IP

»
 r

e
tr

ie
v
e

Im
a

g
e

V
is

u
a

liz
a

ti
o

n
 =

 Q
u

e
ry

_
R

e
s
p

o
n

s
e

«
IP

»
 g

e
tP

ro
c
e

s
s
in

g
R

e
s
u

lt
s
 =

 Q
u

e
ry

_
R

e
s
p

o
n

s
e

«
IP

»
 g

e
tR

e
s
e

a
rc

h
S

ta
ts

 =
 Q

u
e

ry
_

R
e

s
p

o
n

s
e

«
S

e
rv

ic
e

C
o

n
tr

a
c
t»

F
E

2
R

M
c
o

n
s
u

m
e

r

p
ro

v
id

e
r

«
IP

»
 c

re
a

te
S

tu
d

y
 =

 O
n

e
_

W
a

y

«
IP

»
 g

e
tS

tu
d

y
In

fo
 =

 Q
u

e
ry

_
R

e
s
p

o
n

s
e

«
IP

»
 u

p
lo

a
d

Im
a

g
e

S
e

t 
=

 D
ia

lo
g

u
e

«
S

e
rv

ic
e

C
o

n
tr

a
c
t»

F
E

2
S

tu
d

y
M

n
g

c
o

n
s
u

m
e

r

p
ro

v
id

e
r

p
ro

v
id

e
r

c
o

n
s
u

m
e

r

p
ro

v
id

e
r

«
A

S
O

p
»

 c
re

a
te

E
n

ti
ty

()

«
S

O
p

»
 g

e
tE

n
ti
ty

()

«
A

S
O

p
»

 s
e

tE
n

ti
ty

()

«
A

S
O

p
»

 d
e

le
te

E
n

ti
ty

()

v
a

ri
a

n
t 
=

 I
n

fo
rm

a
ti
o

n

«
S

e
rv

ic
e

T
y
p

e
»

L
o

c
a

lS
to

ra
g

e

c
o

n
s
u

m
e

r

p
ro

v
id

e
r

c
o

n
s
u

m
e

r «
IP

»
 v

e
ri
fy

C
re

d
e

n
ti
a

ls
 =

 Q
u

e
ry

_
R

e
s
p

o
n

s
e

«
S

e
rv

ic
e

C
o

n
tr

a
c
t»

F
E

2
C

re
d

e
n

ti
a

ls

c
o

n
s
u

m
e

r

c
o

n
s
u

m
e

r

«
IP

»
 p

a
y
F

e
e

 =
 Q

u
e

ry
_

R
e

s
p

o
n

s
e

«
S

e
rv

ic
e

C
o

n
tr

a
c
t»

F
E

2
B

a
n

k

«
S

O
p

»
 v

e
ri
fy

C
re

d
e

n
ti
a

ls
()

«
A

S
O

p
»

 c
re

a
te

C
re

d
e

n
ti
a

ls
()

v
a

ri
a

n
t 
=

 I
n

fo
rm

a
ti
o

n

«
S

e
rv

ic
e

T
y
p

e
»

C
re

d
e

n
ti

a
ls

M
a

n
a

g
e

r

«
A

S
O

p
»

 p
a

y
F

e
e

()

v
a

ri
a

n
t 

=
 P

ro
c
e

s
s
in

g

«
S

e
rv

ic
e

T
y
p

e
»

P
a

y
m

e
n

tG
a

te
w

a
y

p
ro

v
id

e
r

p
ro

v
id

e
r

p
ro

v
id

e
r

c
o

n
s
u

m
e

r

«
IP

»
 s

to
re

Im
a

g
e

 =
 D

ia
lo

g
u

e

«
S

e
rv

ic
e

C
o

n
tr

a
c
t»

S
tu

d
y

M
n

g
2

S
e

c
S

to
ra

g
e

c
o

n
s
u

m
e

r

«
IP

»
 g

e
tI
m

a
g

e
D

IC
O

M
 =

 Q
u

e
ry

_
R

e
s
p

o
n

s
e

«
IP

»
 g

e
tM

e
ta

In
fo

D
IC

O
M

 =
 Q

u
e

ry
_

R
e

s
p

o
n

s
e

«
S

e
rv

ic
e

C
o

n
tr

a
c
t»

S
tu

d
y

M
n

g
2

M
a

p
p

e
r

p
ro

v
id

e
r

p
ro

v
id

e
r

«
IP

»
 o

b
ta

in
3

D
Im

a
g

e
 =

 D
ia

lo
g

u
e

«
IP

»
 n

o
rm

a
liz

e
Im

a
g

e
 =

 Q
u

e
ry

_
R

e
s
p

o
n

s
e

«
IP

»
 a

n
a

ly
z
e

Im
a

g
e

 =
 Q

u
e

ry
_

R
e

s
p

o
n

s
e

«
S

e
rv

ic
e

C
o

n
tr

a
c
t»

R
M

2
P

ro
c

e
s

s
A

«
IP

»
 o

b
ta

in
3

D
Im

a
g

e
 =

 D
ia

lo
g

u
e

«
IP

»
 n

o
rm

a
liz

e
Im

a
g

e
 =

 Q
u

e
ry

_
R

e
s
p

o
n

s
e

«
IP

»
 a

n
a

ly
z
e

Im
a

g
e

 =
 Q

u
e

ry
_

R
e

s
p

o
n

s
e

«
S

e
rv

ic
e

C
o

n
tr

a
c
t»

R
M

2
P

ro
c

e
s

s
B

p
ro

v
id

e
r

c
o

n
s
u

m
e

r

c
o

n
s
u

m
e

r

 

Figure 5-5. GESiMED PIM architectural model. 



182   MARCOS LÓPEZ SANZ 

 

5.1.2.1 Modelling Service Providers 

To illustrate how these organization elements are positioned in reality, 

Figure 5-6 depicts the main business entities as service providers that can be 

identified in the context of the GESiMED system. In it, it is possible to recognize, 

as outer service providers, the Bank System provider, the Secure Storage provider 

and the Massive Image Processing provider. Because of the fact that the 

GESiMED system acts as the unique business operator managing the system under 

development, the only inner provider will be that representing the institution 

(URJC LAIM Laboratory provider) in charge of the services implemented and 

deployed.  

«innerProvider»

URJC LAIM 

Laboratory

«innerProvider»

URJC_Processing

«businessContract»

URJC_SecureStorage

«businessContract»

URJC_Bank

«outerProvider»

Massive Image 

Processing System

«outerProvider»

Secure Storage 

System

«outerProvider»

Bank System

 

Figure 5-6. Service providers involved in the GESiMED case study. 

5.1.2.2 Modelling Services and Service properties 

Once the business entities of GESiMED have been identified, it is possible 

to explode the contents of each provider by identifying their constituent services. 

This way, it is possible to model not only the service types that may be identifiable 

in the context of GESiMED, but also, the concrete service instances that must be 

present in order to correctly achieve the behaviour expected for the system. To 

give an example, Figure 5-7 depicts some services that belong to the Massive 

Image Processing outer provider. This figure shows two instances of the services 

that have the ability to process the digital medical images and provide operations 

that allow executing several algorithms on them, either individually or over a set 

of them to extract a concrete result. Note how the model reflects a design decision 

of including two identified instances that will compulsory take part in the 

enactment of the functionalities expected from the system. 



 VALIDATION   183 

 

SERVID = 0001

«service»

ProcessingService_0001

«ASOp» obtain3DImage()

«SOp» normalizeImage()

«SOp» analyzeImage()

variant = Processing

«ServiceType»

ProcessingService

SERVID = 0002

«service»

ProcessingService_0002

«instance»«instance»

 

Figure 5-7. Modelling service types, services and operations. 

5.1.2.3 Modelling Service Contracts 

Figure 5-8 shows a contract established between two services of the 

GESiMED system. In that case, it depicts the relationship established among a 

general service type named FrontEnd and another one in charge of administering 

the information related to information of the clinical studies managed internally to 

the GESiMED system, named StudyManager. The model does not reflect, as a 

consequence of a design decision, whether they are sole instances or, on the 

contrary, various elements in the form of different service instances. The contract 

established shows the interacting rules that must be observed when a potential 

FrontEnd service instance wants to take advantage of the functionalities provided 

by a StudyManager service. Note how the definition of an operation as 

synchronous (e.g. uploadImageSet) does not entail that the interaction pattern 

must be of the Query-Response type as it would be thinkable in a first moment. 

According to the information gathered from the business scope of the system, to 

store the images related to a medical trial it is necessary to define a set of 

dependent variables that obliges to carry out a complex interaction process (not 

specified here for the sake of simplicity).  

«ASOp» createStudy()

«SOp» getStudyInfo()

«SOp» uploadImageSet()

«ASOp» createTrial()

«SOp» getTrialInfo()

«ASOp» setProcessingResults()

SERVID = 0005

variant = Orchestrator

«service»

StudyManager

«IP» createStudy = OneWay

«IP» getStudyInfo = QueryResponse

«IP» uploadImageSet = Dialogue

«ServiceContract»

FE2StudyMng

«ASOp» setLanguage()

«SOp» login()

«ASOp» uploadImages()

«SOp» retrieveStudy()

«ASOp» processImages()

variant = Interaction

«ServiceType»

FrontEnd

 

Figure 5-8. Part of the GESiMED model architecture showing a service contract. 



184   MARCOS LÓPEZ SANZ 

 

5.1.2.4 Modelling Service Composition: Orchestration 

In the context of GESiMED, the processes associated to its functionality 

only require the specification of service compositions based on an orchestration 

scheme (choreographies will be exemplified within the modelling of a different 

proof of concept later on this chapter). To illustrate this kind of composition, it is 

possible to observe how the GESiMED system deals with the storage of the 

information that is initially uploaded by neuroscience researchers. These 

researchers normally obtain medical digital images in files coded in the DICOM 

format [162] which has to be processed to extract both the graphical information 

taken from a patient (the image itself) and a compendium of data associated to the 

acquired image (using a FormatMapper service). The image storage workflow 

follows with the insertion of all this data in a secure database (external), via a 

SecureStorage service. Apart from this, it is necessary to update the information 

related to the clinical trial or study to which the image belongs (using the 

LocalStorage service). In that case, this information is stored internally but 

keeping a reference to the images included in that clinical trial. Due to this 

differentiation in the storage of the information, several services must participate 

in the task of storing the medical images sent by the researchers. To complete this 

task a special service (StudyManager acting as orchestrator) is in charge of 

executing the workflow defined previously. A simplified overview of the model 

for this scenario can be seen in Figure 5-9. 

«SOp» getImageDICOM()

«SOp» getMetaInfoDICOM()

«SOp» createDICOM()

«SOp» getImageAnalyze()

«SOp» getMetaInfoAnalyze()

«SOp» createAnalyze()

variant = Processing

«ServiceType»

FormatMapper

«IP» getImageDICOM = Query_Response

«IP» getMetaInfo = Query_Response

«ServiceContract»

StudyMng2Mapper

«ASOp» createStudy()

«SOp» getStudyInfo()

«SOp» uploadImageSet()

«ASOp» createTrial()

«SOp» getTrialInfo()

«ASOp» setProcessingResults()

SERVID = 0005

variant = Orchestrator

«service»

StudyManager

«IP» storeImage = Dialogue

«ServiceContract»

StudyMng2SecStorage

«ASOp» storeImage()

«SOp» retrieveImage()

«SOp» getImageID()

variant = Information

«ServiceType»

SecureStorage

«ASOp» createEntity()

«SOp» getEntity()

«ASOp» setEntity()

«ASOp» deleteEntity()

variant = Information

«ServiceType»

LocalStorage
«IP» setStudyInfo = OneWay

«IP» setTrialInfo = OneWay

«ServiceContract»

SM2LocalStorage

 

Figure 5-9. Service Composition Modelling in GESiMED: Orchestration. 

 



 VALIDATION   185 

 

5.1.2.5 Modelling Architectural Style Superimposition 

This subsection aims to provide an illustrative example on how the 

ArchiMeDeS framework and its associated toolkit can be used to superimpose 

architectural style information over PIM architectural models by means of service 

roles. To do so, a partial model of the GESiMED architecture will be used as 

example for the superimposition of two different architectural styles. In particular, 

the Pipe & Filter and the Layered architectural styles have been selected to be 

superimposed, using the module created for the ArchiMeDeS toolkit, over the 

GESiMED PIM architectural model. 

The process for architectural style superimposition starts with the definition 

of the model of the architectural styles to be used. Figure 5-10 shows both 

Pipe&Filter and Layered style models. It is important to note here that the support 

for modelling the restrictions associated to the styles have been left for future 

work. As it can be seen in the Figure, models used define these restrictions in 

natural language. Accordingly, the only elements that will be used in the 

superimposition process and subsequent model transformation will be those 

defining the vocabulary of the architectural style. As it was explained previously, 

the weaving process described only aims at obtaining an enriched PIM 

architectural model in which the services modelled are annotated with service 

roles according to the architectural style selected. 

 

Sample Architectural Style Models

Pipe&Filters
Arch. Style Model

Layered
Arch. Style Model

 

Figure 5-10. Sample architectural style models. 

Next step is the creation of the weaving model, in which services and 

service types in the PIM architectural model are linked with the desired element 

described by the architectural style model of choice. To illustrate this, Figure 5-11 

shows the weaving model created for the superimposition of the Pipe & Filters 

style over the GESiMED PIM architectural model. 



186   MARCOS LÓPEZ SANZ 

 

GESiMED PIM 
Architectural Model

Pipe&Filters
Architectural Style 

Model
AMW Weaving Model

 

Figure 5-11. Definition of the AMW annotation model. 

For the sake of clarity, model shown in Figure 5-11 focuses exclusively on 

the annotation of the services related to the activity of processing a set of digital 

medical images (via any of the instances of the ProcessingService service) and the 

subsequent storage of the results in the local storage system (via the LocalStorage 

service). Each of these services will be identified as filters performing some kind 

of computational functionality. In order to communicate them and exchange the 

information they need to process, it is necessary to define which element will act 

as pipe. In the case of the selected scenario, the service in charge of this task will 

be the ResearhManager service. For that reason, this service will be annotated as a 

pipe. 

Once this model has been created, the next step is to automatically process 

the three models previously mentioned (the GESiMED PIM architectural model, 

the Pipe & Filters architectural style model and the AMW annotation model) to 

obtain the ‗Enriched PIM Architectural Model‘ for the GESiMED system 

annotated with service roles and according to the style chosen. To do so, it is 

necessary to execute the ATL transformations allowing to perform this process 

automatically (depicted in Section 4.2.3.2).  

Depending on the input models the result obviously varies. To illustrate 

this issue, Figure 5-12 shows the resulting models after superimposing both the 

Pipe & Filter and Layered architectural styles over the GESiMED PIM 

architectural model. To apply the layered style, the design decision taken has been 



 VALIDATION   187 

 

to define two different layers, one for the ResearchManager service and other for 

the processing and storage Services. The assignment of values to the properties 

related to each role (layer numbering and positioning for example) requires a 

subsequent refinement of the models which is not possible to fulfil automatically. 

However, it is noteworthy to observe how the information from the input 

PIM architectural model has not been altered in any way, thus preserving the 

original architectural configuration. This resulting architectural model allows for 

additional reasoning on the behaviour the system may perform, according to the 

specific roles given but independently from the inner configuration of the services 

comprising the architecture.  

GESiMED Enriched PIM Arch. Model: 
Pipe&Filters

GESiMED Enriched PIM Arch. Model: 
Layered

 

Figure 5-12. Differences between resulting „Enriched‟ models. 

Figure 5-13 shows a graphical comparison between a set of elements from 

the original ‗PIM architectural model‘ and the elements automatically obtained 

after the execution of the ATL transformations. As it can be deduced from that 

figure, the set of operations assigned to either the service roles or the service 

instances are the same that the original service type or service element had. In 

order to consider coherent the architectural configuration, a later processing of this 

model deleting or including the necessary operations would be required. 



188   MARCOS LÓPEZ SANZ 

 

Original
PIM Architectural Model

Automatically obtained
‘Enriched’ PIM Architectural Model

 

Figure 5-13. Sample transformation of an original PIM architectural model into 

an enriched PIM architectural model. 

5.1.3  GESiMED PSM Architecture 

The PSM level of the architecture will depend on the target platform 

chosen to implement the system under development. However, for the PSM 

modelling of the GESiMED system using the ArchiMeDeS framework it is highly 

recommended to model, first, the PDM model. This model will comprise all the 

commonalities that the GESiMED system will have independently of the service-

oriented platform finally chosen to deploy the system. Afterwards, this model will 

be available to be refined with the particularities coming from the target platform 

of choice, thus creating the corresponding TDM models for Web Services, Grid 

Services or REST services. 

At this point it is important to remark that the development of GESiMED 

includes the creation of several other models as indicated by the SOD-M method 

[49] and the MIDAS framework [35]. Due to space limitations, the concrete 

models have been left out of the article. The reader might refer to the bibliography 

to check how the hypertext of the system [48], the concrete behaviour [45] and the 

storage [227] at either PIM or PSM level should be modelled. 



 VALIDATION   189 

 

5.1.3.1 GESiMED PDM Architecture 

Figure 5-14 shows the model corresponding to the PDM level of the 

GESiMED architecture. In that figure, it is possible to see how services have been 

transformed depending on the value assigned to the variant property in the PIM 

model. For example, the LocalStorage Service has been transformed into a pair 

Service-Resource. In that case, the objective is to reflect in the architectural model 

that there will be a unique service granting the access to a persistent resource, 

either a database or a different storage capability. The decision on what kind of 

resource or the inner structure of the data stored has not been included as part of 

the architectural model. The reason behind this is the separation of concerns 

fostered by the methodological framework in which ArchiMeDeS is framed, where 

a specific model gathers all the storage issues. The same happens with resources 

and services obtained from interaction services. This Thesis encourages the 

necessity of creating explicit interface models for that kind of resources. 

Regarding orchestrations, the transformation from the PIM model ends up in 

creating a set of services related to each other depending on the service contracts 

established at that conceptual level. 

A first version of the architectural model at this level can be obtained by 

executing the implemented PIM-to-PDM ATL transformations. However, it is 

necessary to refine that initial model in order to consider the PDM model 

complete and include features and architectural decisions that may depend on 

either the architect‘s decision or the information gathered in other models of the 

model architecture. For example, service types that were identified at PIM level 

could become a number of concrete service instances depending on the definition 

of the concrete activities that need to be performed to implement a specific 

behaviour.  

 



190   MARCOS LÓPEZ SANZ 

 

 

Figure 5-14. PDM modelling of the GESiMED system. 

 

 

 

 



 VALIDATION   191 

 

The relevance of creating a PDM model separately from the 

implementation technology can be clearly illustrated by having a closer look at the 

Processing service. This service is one of the most important ones within the 

scope in which the GESiMED system is being used. From the point of view of the 

implementation technology, this service may be deployed as a simple Web service 

in charge of image normalization and segmentation or it may take advantage of 

the distributed computing capabilities that a Grid Computing environment may 

provide. 

The migration to either Web Services or Grid Services will only require the 

modification of the TDM models without affecting to neither the PIM 

architectural model nor the PDM, as well as its transformation to the concrete 

code. Other interesting service is the bankService one, since it allows us to work in 

aspects related with non-functional aspects such as security or policy protocols 

although these aspects are not the subject of this Thesis. 

The contracts that were specified in PIM level architectural model have 

been seamlessly transformed into service contracts among the different services 

identified at the PDM. This is due to the fact that the way in which the 

communication among two elements is implemented will depend on the 

technology selected, and on the type of contract established among them. In most 

of the cases, the communication control will simply be embedded in the 

implementation of the elements connected (a Web Service invocation from the 

Web interface will be coded within the code of the server Web page). This 

element will implement the message exchange pattern and control the 

communication as the involved services shift turns. 

Finally, as services usually are the only way to access a resource, the 

specification of the concrete features of that resource will be modelled outside the 

architecture model. The database, for instance, will have its own Schema Model 

(see [228] for more details). 

Although it is possible to set different service interfaces depending on the 

context in which the GESiMED services are used. For the case of the 

implementation done, the service interfaces created will comprise all the 

operations that a service may perform. For subsequent refinements, or in case of 

taking advantage of the potential service roles identified at PIM level due to 

architectural style restrictions, this PDM model allows for the inclusion of new 

interfaces without affecting the nature of the services themselves. This issue 

provides evidence on the relevance of using the SOC paradigm for modelling 

software architecture as it was pointed out previously. 



192   MARCOS LÓPEZ SANZ 

 

It is important to remark here that the elements that are shown in Figure 5-

14 contain more information than the one modelled at PIM level. As it was 

mentioned in Section 4.3.3, the architectural model that is obtained from executing 

the PIM-to-PDM transformations is far from being complete and needs for the 

inclusion of data collected in other concerns modelled as part of a system 

development process (for example, from behavioural models). In addition, 

properties like location or description will have to be assigned by hand by the 

architect since they are attributes that will depend greatly on implementation and 

deployment decisions. 

5.1.3.2 GESiMED TDM Architecture: Web Services 

In order to get the TDM model of the GESiMED system architecture, it is 

possible to follow two different approaches: on the one hand it is possible to start 

from the PDM model of the architecture and apply or modify those services that 

will be implemented by means of the Web Service technologies and standards; or, 

on the other hand, it is possible to execute the ATL model transformations defined 

to step from the PIM modelling of the architecture directly into the Web Service 

model at TDM level. 

The TDM architectural model for GESiMED using Web Service 

technologies and standards resembles significantly to the PDM model with some 

minor changes. Figure 5-15, for example, shows the modelling of the FrontEnd 

service and the resource it allows accessing it. In addition, it shows the service 

agent in charge of its execution. From that information it is possible to derive the 

necessity of having a Web page resource allowing to access a Web Service that 

performs certain functionality. Note that this is the only information that can be 

extracted from the architectural model, a skeleton of the system source code or, 

more properly, a protoarchitecture of the system [45]. In order to implement 

either the Web page or the Web Service itself, additional information is needed. In 

the case of the Web page, for instance, the modelling of the interface concern is 

encouraged. At the moment of writing the present dissertation, code generation 

must be done manually.  

 

Figure 5-15. TDM modelling of GESiMED: Web Services, Resources and Service 

Agents. 



 VALIDATION   193 

 

Another example of the architectural modelling of the GESiMED system 

can be found in Figure 5-16. In it, a Web service contract is depicted showing the 

information gathered according to the DSL described in ArchiMeDeS for Web 

Service technologies. It is remarkable, for example, how the interaction patterns 

that were defined at PDM have been transformed into concrete values of the 

WSDL 2.0 standard language. As it was noted previously, from this partial model 

it could be possible to generate a skeleton of the interface offered by the 

ResearchManager Service, resulting in a partially complete .wsdl document. The 

rest of the missing information in that document should be filled with data from 

other modelling concerns (e.g. storage for message datatypes) 

 

  

Figure 5-16. TDM modelling of GESiMED: Web Service contracts and interfaces. 

5.1.3.3 GESiMED TDM Architecture: Grid Services 

As it happened with the Web Service TDM model, the Grid service 

architectural counterpart can be also obtained mainly from the PDM model.  The 

part of the GESiMED that benefits from the capabilities offered by the use of a 

Grid Computing platform is centred in the ProcessingService and the related 

resource needed to compute tasks related to image processing using specialized 

algorithms. Figure 5-17 shows a partial model of the GESiMED architecture 

centred in the modelling of the ProcessingService using the TDM DSL for Grid 

Services defined as part of the ArchiMeDeS proposal. 

 

 

Figure 5-17. TDM modelling of GESiMED: Grid Service and Grid Resource. 

Although the partial model shown above can be considered as very simple, 

it contains enough information to populate the attributes and variables needed to 

describe both the Grid Service (associated .wsdl file) and the Grid Resource 



194   MARCOS LÓPEZ SANZ 

 

needed to be able to perform, for example, the generation of a 3D image from a set 

of individual 2D images. In order to achieve that behaviour it is mandatory that 

the Grid Service maintain the state between invocations (since the images are 

retrieved one by one by the service). This is the main objective of modelling the 

Grid Resource that will store the persistent information between invocations. The 

information modelled for that aim conforms to the WSRF specification and, as it 

happened with Web Services, following and adequate transformation process it 

could be possible to generate all the files needed to build and deploy a Grid 

Service over a Grid Computing platform such as the Globus Toolkit 4 (that was 

the one used in this case).  

5.1.3.4 GESiMED TDM Architecture: REST Services 

To illustrate the impact of using REST services on the system architecture, 

this section will provide with a partial modelling of the GESiMED architecture 

using the stereotypes defined for the DSL for REST services at the TDM 

abstraction level. In particular, the focus will be put on the LocalStorage service 

that allows the management of entities within the scope of the GESiMED system. 

In that context, entities refer to studies, trials, individuals (subjects from which the 

digital images are obtained), groups of individuals kinds, etc.  

As it can be seen in Figure 5-18, the model is very similar to that of the 

Web Service DSL. The main reason for that correspondence can be found in the 

fact that REST services are currently considered as a particular extension to the 

Web Service technology. In fact, the support for REST service description is, at 

the moment of writing, part of the WSDL 2.0 standard language for services 

[235].  

«RESTAgent»

CronosAppServer

URL = http://cronos.escet.urjc.es/RESTgesimed/

URN = ClinicalTrial

description = 'DB Table'

«RESTResource»

EntityResource_Trial

«ServOp» getEntity()

«ServOp» createEntity()

«ServOp» deleteEntity()

«ServOp» setEntity()

URL = http://cronos.escet.urjc.es/RESTgesimed/

URN = ClinicalTrialManager.class

description = 'Java Class'

«RESTService»

LoicalStorage_EntityManager

«controls»

 

Figure 5-18. TDM modelling of GESiMED: REST Service, Agent and Resource. 



 VALIDATION   195 

 

It is important to highlight the fact that the LocalStorage_EntityManager 

service conforms to the REST principles, by offering a standard set of operations 

available to access a concrete entity (in that case, a clinical trial): getEntity (GET 

operation), setEntity (POST), createEntity (PUT) and deleteEntity (DELETE). 

5.2 Using ArchiMeDeS for Architecting a Basketball Game 

Setting 

As it has been shown in previous sections, at the architectural level, one of 

the distinguishable aspects of the use of the Service-oriented paradigm in this 

context is the way architectural elements are composed. When dealing with 

composition and services the key aspects relies in the ability to represent both 

orchestrations and choreographies as they are the way service compositions are 

accomplished. In order to verify that the ArchiMeDeS is suitable to represent 

different service composition strategies at PIM, the GESiMED case study served 

to illustrate how service orchestration may be modelled at PIM level. However, as 

it was pointed out, that case study did not resemble any possible choreography. To 

overcome that insufficiency this section describes how the proposed framework is 

applied over a partial case study as proof of concept for modelling service 

choreographies. To do so, the example selected is based on a sport metaphor in 

which a scenario is specially created to represent it using a service-oriented 

approach. In that sense, the description of tactical systems in team sports is 

considered as valid analogy.  

With that aim, the description of existing tactical models for basketball as a 

metaphor is used to develop service-oriented architectures in which coordination 

is required. Sport analogy is appropriate in this case since this environment 

provides independent entities (players represented by services) that communicate 

with each other to obtain a common objective [194]. Thus, the problem of 

coordinating services is reduced to service choreography modelling, allowing to 

focus on checking the feasibility of the approach. 

To check both the viability of the modelling approach to define service 

choreographies and the development method used, here it is used a concrete 

tactical basketball play as coordination strategy to be modelled: pick and roll 

(P&R) [167] during the course of a basketball game. First of all a series of several 

factors, needed to understand this basketball offensive action, are defined. 

 



196   MARCOS LÓPEZ SANZ 

 

5.2.1 Background on the simulated Basketball Game Setting 

In a two-versus-two players game setting (2vs2) using P&R is one of the 

different attack options included in an offensive system. P&R involves four 

players (two attackers and their defenders), where the attackers interact to free 

each of their defenders using a legal obstruction movement. Roles derived from 

this tactical situation are four: Playmaker (attacker with ball, AB), Team mate 

(attacker without ball, AWB), Defender (ball player defender, DB) and Assistant 

(player without ball defender, DWB). Each of these roles has associated a series 

of specific actions [194]. Table 5.1 shows some of these actions. 

Table 5.1. Actions associated to each player in Pick and Roll. 

Tactical offensive actions Tactical defensive actions 

PLAYMAKER BLOCKER DEFENDER ASSISTANT 

Stop & Shot Block Deny Screen Soft Flash 

Drive Roll Over Screen Switch 

Clear Pop Below Screen Hard Flash 

Rolling Pass Repick 2vs1 2vs1 

 

The application of P&R during an attack phase is not the result of the direct 

intervention of one of the participants acting as main coordinator (for example: a 

coach giving instructions to be carried out by players). On the contrary, the 

emerging behaviour comes out from the relation of the different participants 

involved. Each player rarely performs the same action in different plays; their 

actions are determined by the conducts, decisions or movements of the rest of the 

team members. For example, in the same play, playmaker may choose: to pass the 

ball to his team mate if is clearly unmarked after blocking, shoot if his defender 

has been perfectly blocked, etc. [194].  

5.2.2 Modelling Service Composition: Choreographies 

In order to be able to model this situation from an architectural point of 

view and using services, the modelling of choreographies is encouraged. Figure 5-

19 shows the PIM model that correspond to a P&R situation using the DSL 

defined within the ArchiMeDeS proposal. 



 VALIDATION   197 

 

«SOp» Stop&Shot()

«SOp» Drive()

«SOp» Block()

«SOp» Roll()

«SOp» DenyScreen()

«SOp» 2vs1()

«SOp» SoftFlash()

«SOp» Switch()

«ASOp» ThrowFreeShot()

«ServiceType»

Player
«IP» Stop&Shot = Choreography

«IP» Drive = Choreography

«IP» Block = Choreography

«IP» Roll = Choreography

«IP» DenyScreen = Choreography

«IP» 2vs1 = Choreography

«IP» SoftFlash = Choreography

«IP» Switch = Choreography

«ServiceContract»

GameSetting

SERVID = P1_TB

«service»

Player1_TeamB

SERVID = P2_TB

«service»

Player2_TeamB

SERVID = P2_TA

«service»

Player2_TeamA

SERVID = P1_TA

«service»

Player1_TeamA
«SOp» Stop&Shot()

«SOp» Drive()

«ServiceRole»

Playmaker

«SOp» Block()

«SOp» Roll()

«ServiceRole»

Blocker

«SOp» DenyScreen()

«SOp» 2vs1()

«ServiceRole»

Defender

«SOp» SoftFlash()

«SOp» Switch()

«SOp» 2vs1()

«ServiceRole»

Assistant

«instance» «instance»

«instance» «instance»

 

Figure 5-19. PIM composition example: choreography. 

In that model it is possible to see how choreographies are modelled based 

on the interaction of four basket players. These players are represented via service 

instances having the same Service Type (‗player‘) but being able to act following 

different roles (blocker, playmaker, assistant, defender). That is, all services can 

perform a certain set of operations, but they are only able to execute some of them 

according to the assigned role in a certain moment. This role identification leads to 

different operations available for each participant in the choreography. The 

decision of which roles are playing each service should be defined at run-time. 

 

On modelling service choreographies at run-time 

It is important to remark the fact that the defined service model only 

represents static information and no reference to how the system architecture 

evolves has been included. Although this issue has been left for future works, 

when a service participates in a choreography it acts according to a certain role. 

To show a representation of role assignment in a concrete run-time configuration, 

UML2 can be used. In UML2 roles are represented as connectable elements [175]. 

At this point, it is worth to note how the service definition (service type instances 

representing each player) is separated from the roles played in a concrete game 

setting. As a result, choreographies were defined as the message exchange 

produced as a result of the interaction among the roles played by each service 

instance. These messages come from the invocation of the operations defined on 

each role and the actions they perform as a consequence. 



198   MARCOS LÓPEZ SANZ 

 

In UML2 relations between each connectable element are defined with 

collaborations, represented through collaboration diagrams. Following the sport 

metaphor, each of these collaboration diagrams represents a concrete tactical 

situation in which each player has assigned a certain role (see Figure 5-20). The 

collection of all the collaboration diagrams is considered as a complete tactical 

system. Each tactical situation has associated a set of variants for the game 

evolution. Those variants are represented with sequence diagrams including each 

participating role together with the operation invocations. These two independent 

descriptions are related as explained on the UML2 specification, i.e., through 

dependencies defined on a CollaborationUse element.  

Pick & Roll with 4 players

ASB

AB

DSB

DB

pressWithoutBall

pressWithBall

defensiveAction attackAction

 

Figure 5-20. Roles modelled as collaboration in a Pick&Roll setting. 

The number of possible tactical combinations for the same play is quite 

high, so represent all of them using low-level languages is far from being trivial or 

simple. By using the sport metaphor it is possible to detect how model-driven 

development may help to develop software solutions in which the implementation 

of coordination strategies based on choreographies is needed.  

5.3 Using ArchiMeDeS for Architecting a SMPP Gateway  

This subsection introduces another case study based on the architecting of a 

SMPP gateway for massively sending SMS texts. This example will be developed 

in two parts: first, the architecture of this case study will be modelled using the 

ArchiMeDeS framework. This modelling task will be done at PIM level. Later, 

using this PIM description as a template, the whole SMPP gateway architecture 

will be represented using the π-ADL architectural description language. 

By doing so, it is possible to check that the initial PIM description 

(modelled using the corresponding ArchiMeDeS DSL) is comparable to a standard 

architectural description using a formal ADL. This is made with the purpose to 



 VALIDATION   199 

 

show that the presented DSL is defined at the right abstraction level as required 

for an adequate architectural description language. 

Note that this does not intend to be a formalization of the whole DSL. 

Obviously, by translating every element in the case study, this section essentially 

provides the template for the translation for every element in the PIM metamodel. 

However, to provide a full formalization was never included as an objective of the 

Doctoral Work. The only purpose of this section is to check the abstraction level 

of the PIM DSL, and to be able to assert that it is comparable to that of any other 

ADL. 

5.3.1 Background on the SMPP gateway system 

The case study selected has as main objective the emulation of the 

functionality of a SMPP (Short Message Peer-to-peer Protocol, [211]) gateway 

system by means of services. SMPP is a telecommunications industry protocol for 

exchanging SMS messages between SMS peer entities known as Short Message 

Service Centres. Through a service interface (Web Service, REST compliant or 

RPC-like) a user is able to send SMS text messages to multiple addressees. Figure 

5-21 shows the PIM modelling using the ArchiMeDeS proposal. Although the 

system is made up by many other elements, here the focus is set only on the 

following building blocks and functionalities: 

 Reception Subsystem: its main purpose is to receive delivery requests 

directly from the user. It contains a single service (ReceptionService) 

offering several operations such as ‗sendSMS‘, which allows the user to 

submit a SMS send request to a set of previously stored recipients. 

 Storage Subsystem: this provider stores information related to clients 

and SMS messages. It acts as a repository and source of information for 

the other two subsystems. It comprises two services:  

o SecureDataService: performs operations requiring a secure 

connection or the encryption of data. The operations supported 

include ‗authenticate‟ (to verify a client‘s credentials) and 

‗updateCredit‟ (to update the client‘s financial information 

depending on the action performed over the gateway). 

o SMSManagerService: in charge of managing all the 

information related to SMS messages (such as status, SMS text) 

and creating listings and reports associated with a specific client. 

 



200   MARCOS LÓPEZ SANZ 

 

«
A

S
O

p
»

 s
e

n
d

S
M

S
()

v
a

ri
a

n
t 
=

 O
rc

h
e

s
tr

a
ti
o

n

«
S

e
rv

ic
e

T
y
p

e
»

R
e

c
e

p
ti

o
n

 S
e

rv
ic

e

«
A

S
O

p
»

 s
to

re
S

M
S

()

«
A

S
O

p
»

 g
e

tP
e

n
d

in
g

S
M

S
()

«
S

O
p

»
 u

p
d

a
te

S
ta

tu
s
()

v
a

ri
a

n
t 
=

 I
n

fo
rm

a
ti
o

n

«
S

e
rv

ic
e

T
y
p

e
»

S
M

S
 M

a
n

a
g

e
r 

S
e

rv
ic

e

«
A

S
O

p
»

 u
p

d
a

te
S

M
S

S
ta

tu
s
()

v
a

ri
a

n
t 
=

 I
n

te
ra

c
ti
o

n

«
S

e
rv

ic
e

T
y
p

e
»

S
M

S
 S

e
n

d
e

r 
S

e
rv

ic
e

«
A

S
O

p
»

 u
p

d
a

te
C

re
d

it
()

«
S

O
p

»
 a

u
th

e
n

ti
c
a

te
()

v
a

ri
a

n
t 
=

 I
n

fo
rm

a
ti
o

n

«
S

e
rv

ic
e

T
y
p

e
»

S
e

c
u

re
 D

a
ta

 S
e

rv
ic

e

«
A

S
O

p
»

 d
e

liv
e

rS
M

S
()

v
a

ri
a

n
t 

=
 p

ro
c
e

s
s
in

g

«
S

e
rv

ic
e

T
y
p

e
»

S
M

S
 C

e
n

te
r

«
S

O
p

»
 l
o

c
a

te
S

e
rv

ic
e
()

v
a

ri
a

n
t 
=

 P
ro

c
e

s
s
in

g

S
E

R
V

ID
 =

 0
0

0
1

«
s
e

rv
ic

e
»

D
ir

e
c

to
ry

 S
e

rv
ic

e

«
IP

»
 u

p
d

a
te

C
re

d
it
 =

 O
n

e
W

a
y

«
IP

»
 a

u
th

e
n

ti
c
a

te
 =

 Q
u

e
ry

_
R

e
s
p

o
n

s
e

«
S

e
rv

ic
e

C
o

n
tr

a
c
t»

S
e

c
u

re
C

o
n

tr
a

c
t

«
IP

»
 s

to
re

S
M

S
 =

 O
n

e
W

a
y

«
IP

»
 g

e
tP

e
n

d
in

g
S

M
S

 =
 D

ia
lo

g
u

e

«
IP

»
 u

p
d

a
te

S
ta

tu
s
 =

 O
n

e
W

a
y

«
S

e
rv

ic
e

C
o

n
tr

a
c
t»

R
S

2
S

M
S

M
n

g
S

e
rv«
IP

»
 l
o

c
a

te
S

e
rv

ic
e

 =
 Q

u
e

ry
_

R
e

s
p

o
n

s
e

«
S

e
rv

ic
e

C
o

n
tr

a
c
t»

S
e

rv
L

o
c

a
ti

o
n

«
IP

»
 l
o

c
a

te
S

e
rv

ic
e

 =
 Q

u
e

ry
_

R
e

s
p

o
n

s
e

«
S

e
rv

ic
e

C
o

n
tr

a
c
t»

M
n

g
2

S
e

n
d

e
r

«
IP

»
 d

e
liv

e
rS

M
S

 =
 D

ia
lo

g
u

e

«
S

e
rv

ic
e

C
o

n
tr

a
c
t»

S
e

n
d

e
r2

C
e

n
te

r

«
IP

»
 u

p
d

a
te

S
M

S
S

ta
tu

s
 =

 O
n

e
W

a
y

«
S

e
rv

ic
e

C
o

n
tr

a
c
t»

C
e

n
te

r2
S

e
n

d
e

r

«
IP

»
 u

p
d

a
te

S
ta

tu
s
 =

 O
n

e
W

a
y

«
IP

»
 g

e
tP

e
n

d
in

g
S

M
S

 =
 Q

u
e

ry
_

R
e

s
p

o
n

s
e

«
S

e
rv

ic
e

C
o

n
tr

a
c
t»

S
e

n
d

e
r2

M
n

g

 

Figure 5-21. PIM architectural model of the SMPP case study. 



 VALIDATION   201 

 

 SMS Processing Subsystem: this subsystem is in charge of retrieving, 

processing and sending the SMS texts and related information to the 

specialized SMS server. It is made up of two different services: 

o SMSSenderService: Retrieves SMS texts from the Storage 

Subsystem and sends them to Short Message Service Centres.  

o DirectoryService: The main task performed by this service is to 

return the service identifier of the SMSCenterService which has 

to be used in order to send a SMS to a specific recipient. 

 SMSC (Short Message Service Centre): this provider represents 

specialized SMS servers capable to send the same SMS text to a 

predetermined number of recipients. Its functionality is enacted by one 

service instance which receives the SMS message and the list of 

recipients (SMSCenterService). 

Once the SMPP case study has been modelled according to the 

ArchiMeDeS proposal, the next step is to represent the architectural model 

specification emphasizing the aspects of π-ADL that provide an adequate solution 

for our system as well as explaining how the structures and principles of π-ADL 

are adapted to our vision of PIM-level service architecture: 

5.3.2 Representation of Services and Service Operations in π-ADL 

Services represent computing entities performing a specific behaviour 

within the system architecture and thus they are specified by means of π-ADL 

abstractions (see Figure 5-22 for the specification of the ReceptionService).  

 

value ReceptionService is abstraction () { 

    outConn:Connection[view [operation: String, data: any]]; 

    output:view [operation: String, data: any]; 

    inConn:Connection[view [operation: String, data: any]]; 

    input:view [operation: String, data: any];   

    if (input::operation == "sendSMS") do { 

  via SendSMS send input::data  

            where {resultConn renames resultConn}; 

  via resultConn receive result; 

  compose { 

       via outConn send result; 

    and 

       done;  

    }}} 

Figure 5-22. Specification of a Service with π-ADL. 

Every service abstraction defines its own communication channels through 

input and output connections. The data acquired and sent by these connections 

comprises a description of the operation and the data associated to that message. 



202   MARCOS LÓPEZ SANZ 

 

Depending on the operation requested, the service abstraction will transfer the 

control of the execution to the corresponding operation. The only behaviour 

associated with the service abstraction is, therefore, that of redirecting the 

functionality request to the corresponding operation and sending back returning 

values if any. 

Operations, in turn, are also specified by means of abstractions as they 

encapsulate part of the functionality offered by services. Like any other 

abstraction used in the description of the service architecture, operation 

abstractions will receive the information tokens through connections, sending back 

an answer when applicable.  

In π-ADL communication through the connections is performed 

synchronously. This means that communication with operations is synchronous. 

Therefore, the semantics associated with the asynchronous operations are lost 

since the abstraction will be blocked in a send operation until any other abstraction 

in the architecture perform a receive operation over that channel. In order to model 

asynchronous operations, the specification can be placed in one of the sub-blocks 

of a compose block, with the second sub-block returning immediately with the 

done keyword. 

5.3.3 Representation of Service Contracts in π-ADL 

As stated previously, services relate and communicate through contracts. 

Within the architecture these contracts are active connectors in charge of enabling 

the message exchange between services according to a specific pattern, 

represented by means of the programmatic specification of a state machine. 

Similarly, connectors in π-ADL are represented by means of abstractions. 

In a static service environment, in which contracts between services are 

established at design time, all the information needed by a contract to correctly 

fulfil its behaviour (message exchange pattern and contractors) is defined and 

initialized internally within the contract abstraction when the system starts. In 

dynamic environments however, this is normally accomplished by transferring all 

the information through the channel opened simultaneously when the abstraction 

is executed. In both cases, the contract is able to perform the behaviour needed to 

transfer data requests and results from one service to another from that 

information. 

Figure 5-23 depicts part of the analysis of a state of the message pattern 

execution. In it, it is shown how, in order to send anything to one of the services 

connected through the Shipping contract, a compose structure should be used: 



 VALIDATION   203 

 

first to send the data through the connection and second to execute the abstraction 

and unify the connections. 

 

... 

// Message Exchange Pattern: Query/Response 

MessagePattern(0)::state_id = 0; 

MessagePattern(0)::via_SERVID = "C"; 

MessagePattern(0)::op = "receive"; 

MessagePattern(0)::numNextStates = 1; 

MessagePattern(0)::next(0)::criteria = "sendSMS"; 

MessagePattern(0)::next(0)::newState = 1; 

... 

currentState = 0; 

while (currentState > -1) do {  

 countState = 0; 

 while (countState < maxcountState) do {  

   state = MessagePattern(countState); 

   countState = countState + 1; 

   if (currentState == state::state_id) do { 

if (state::op == "receive") do { 

 if (state::via_SERVID == "S") do  

  {via inConnectionS receive inData;} 

 else do {via inConnectionC receive inData;} 

 } else do { 

  if (state::via_SERVID == "S") do{ 

   compose { via outConnectionS send inData; 

 and via dynamic(S) send Void where  

      {outConnectionS renames inConn,  

       inConnectionS renames outConn};  } 

}else do{ via outConnectionC send inData;}} 

countNewState = 0; 

maxCountNewState = state::numNextStates; 

while (countNewState < maxCountNewState) do { 

 nextState = state::next(countNewState); 

 countNewState = countNewState + 1; 

 if (nextState::criteria == inData::operation) do 

 { via out send nextState::newState; 

   currentState = nextState::newState; 

 }}}}} 

Figure 5-23. Partial specification of a Service Contract with π-ADL. 

When executing the specification of a service architecture with π-ADL any 

behaviour defined is carried out as an independent thread of execution. However, 

in order to be able to perform a coordinated and joint execution, the different 

abstractions must be linked. Because of the dynamic nature of the service 

architectures, contract abstractions can be reused as the instances of the services 



204   MARCOS LÓPEZ SANZ 

 

they communicate can vary during the lifecycle of the system. In order to achieve 

this behaviour, contracts (or more appropriately abstractions performing the 

contract role) must be able to dynamically instantiate the channel that they have to 

use to send or receive the data transferred in each moment. To deal with this issue 

π-ADL defines the dynamic(<connection_name>) operator. This operator 

represents one of the main advantages for dynamic architecture specification since 

π-ADL allows the transference of connections through connections (see Figure 5-

24 for an illustrative example). 

 

... 

if (state::via_SERVID == "S") do{ 

 compose { 

   via outConnectionS send inData; 

 and 

   via dynamic(input::ServConnGroup(0)::SERVID)  

send Void  

where {outConnectionS renames inConn, 

inConnectionS renames outConn}; 

 } 

}else do{   via outConnectionC send inData; 

} 

... 

Figure 5-24. Example of a dynamic connector with π-ADL. 

5.3.4 Representation of Service Composition in π-ADL 

Coordination among services can be achieved by defining choreographies 

or orchestrations. Choreographies can be formalized with π-ADL by means of 

shared connections. Orchestrations, in turn, depend mostly on the code specified 

inside a unique abstraction belonging to a service playing the role of coordinator 

of the composition.  

In our case study a service taking the orchestrator role is the 

ReceptionService Service which coordinates the access to the services managed by 

the Storage Subsystem. The ReceptionService consumes functionalities provided 

by the SecureDataService service for the authentication of the SMPP gateway and 

the storage of the incoming SMS text by means of invoking the 

SMSManagerService (storeSMS operation) to send the SMS texts. In π-ADL this 

orchestration is accomplished by taking advantage of the abstractions that 

represents the service contracts connecting every service involved 

(SecureContract and RS2SMSMngServ). In that sense, and from the point of view 

of the architectural representation of the case study with π-ADL, there is no 

special construction in the language for implementing element composition. 



 VALIDATION   205 

 

Figure 5-25 shows an piece of the code of the ReceptionService abstraction in 

which the consecutive invocations is reflected. 

... 

compose { 

  via SecureConnTo send dataTokenSecure; 

and 

  via SecureContract send Void  

where {SecureConnTo renames inConnectionC,  

       SecureConnFrom renames outConnectionC}; 

  via SecureConnFrom receive dataTokenResult; 

  select dataTokenResult::data { 

case Boolean do resultVal = dataTokenResult::data;  } 

  if (resultVal == false) do { 

result = "Invalid credentials"; 

compose { via resultConn send result; and done; }  } 

  if (statusVal == true) do { 

  compose { 

     select input::data { 

 case view[phoneNumber : String,  

           recipients : String,  

           SMSText : String] do 

 via RS2SSMSMngServ send input::data  

      where {storeConn renames SMSConn}; } done;}  

... 

Figure 5-25. Sample service composition with π-ADL. 

5.4 Concluding Remarks  

Previous subsections have shown different ways of using the ArchiMeDeS 

framework so it is possible to check its suitability for the specification of software 

architectures using the concept of service as base for the architecture.  

To perform the verification of the syntax and semantic associated to the 

DSL created at both the PIM and PSM levels of the MDA proposal several case 

studies have been used. These case studies have been either implemented 

completely (GESiMED as complete example of use with two target platforms) or 

used as proof of concept to check the feasibility of the DSL and designs proposed 

(SMPP to check the consistency of the PIM DSL and a sport metaphor to test if it 

is possible to represent choreographies with ArchiMeDeS).  

 

 





 

 

 

6. CHAPTER 6: Conclusions and Future Works 

Chapter 6: 

Conclusions  

and Future Works 





 CONCLUSIONS AND FUTURE WORKS   209 

 

 Once the features of the proposal have been presented (Chapter 3) together 

with the associated toolkit (Chapter 4) and shown its use over real case studies 

(Chapter 5), it is the time to draw some conclusions, make an analysis of the work 

accomplished and to outline the works that may be the subject of forthcoming 

research work. To do so, this Chapter presents: first, an analysis of achievements 

reached according to the objectives set out at the beginning of the dissertation; 

next, the main contributions of the Doctoral Thesis are explained together with the 

publication of the scientific results; and, finally, several open research lines are 

depicted as future works at the end of the Chapter. 

6.1 Analysis of Achievements 

At the beginning of this dissertation, Section 1.2 stated that the main 

objective of this Thesis was the specification of a framework for modelling 

software architectures in which the specification of the architecture is obtained 

following a model-driven process (based on the MDA proposal) and where the 

concepts of the service-oriented paradigm act as foundation for the elements 

present in the architecture. To tackle this goal a set of partial objectives were 

established. In the following, the level of completion of these sub-objectives is 

analyzed in brief. 

 

Obj.1. - Analysis and evaluation of previous research works and initiatives 

related to the topic of the Thesis 

To fulfil this objective, Chapter 2 provided a study of current proposals for 

the development of service-oriented software solutions, putting a special interest 

in understanding their strategy for dealing with the architectural viewpoint. Along 

with this study, current proposals in the scope of the application of MDD 

techniques to the development of service-oriented solutions were also identified. 

The features of relevant proposals were gathered in order to position the 

current Doctoral Thesis within its research scope. The main result of this study 

exposed the need for the specification of a framework different from those found 

in the bibliography. That novel framework (ArchiMeDeS) would cope with the 

development of software architectures combining some of the techniques and 

principles that nowadays dominate the Software Engineering research field. The 

model-driven approach appeared to be a solution widely used among development 

proposals dealing with service-orientation. Structurally speaking, when trying to 

define architectures that use the service-oriented paradigm as base, some aspects 

were recurrent within the literature reviewed: the idea of service composition, the 

definition of service contracts, the awareness of having a rich interface for 



210   MARCOS LÓPEZ SANZ 

 

services, etc. These elements were included in the moment of deciding the inner 

characteristics that the ArchiMeDeS framework should include. 

On the architectural side, the analysis of the literature detected some 

deficiencies when giving a proper support for the specification of Software 

Architectures with services (such as the incorporation of technological issues into 

theoretically conceptual architecture solutions). In addition, the study of model-

driven techniques for the specification of Software Architectures showed that 

there was an increasing need for creating integrated development solutions in 

which the structure of the architecture could be clearly and easily specified. In that 

sense, previous works also confirmed that counting with modelling and meta-

modelling toolkits to aid in automating that process is highly desirable. 

 

Obj.2 - Definition of a DSL for the specification of Service Architectures at PIM 

level 

To give support for the definition of software architectures based on 

services and using a model-driven approach, the strategy was founded on the 

definition of DSLs for service architectures at each abstraction level of the MDA 

proposal. Accordingly, Section 3.2.1 gave a complete description of the DSL 

defined for the PIM abstraction level, describing both its abstract syntax (i.e. 

semantics defined in the form of a metamodel) and its concrete syntax (by 

defining a UML profile with the corresponding stereotypes for creating UML 

models). 

As an additional and important outcome for the modelling at this 

abstraction level, the architectural modelling was enriched with the possibility of 

defining architectural style models. The use of architectural styles during the 

development of the Architecture grants a sort of flexibility by providing a way to 

include design decisions within architectural models. These models were defined 

in such a way that it is possible to merge the information of the architectural 

model of the system with that of the architectural style. As a direct consequence of 

the use of service-orientation as underlying architectural paradigm, the support for 

service design strategies is naturally included. 

 

Obj.3 - Definition of DSLs for the specification of Service Architectures at PSM 

level 

The aforementioned PIM DSL allows for the modelling of software 

architectures at a conceptual level using services. However, in order to take into 

account implementation or technological issues as part of the architectural 



 CONCLUSIONS AND FUTURE WORKS   211 

 

configuration of a software system, the PSM DSL counterpart is needed. This was 

the main concern of Section 3.2.3. 

Analogously to the work accomplished at PIM level, at PSM level models 

of the architecture were specified using a hybrid approach (a DSL with UML 

notation). In order to precise a complete version of an architectural DSL at PSM, 

this task started selecting the potential target execution platforms. This aspect 

constituted one of the most important milestones during the research effort given 

that the technology of choice plays a prominent role when trying to model the 

system architecture at this level. Since the number of execution platforms and 

running environments differ greatly, this Thesis centred its attention in giving 

support to Service-Oriented platforms.  

Having solved that problem, and knowing the existing service standards 

and constitutive elements of SOA implementations (thanks to the analysis 

accomplished in Section 2.2.2 of the state of the art), the development of a DSL at 

this level should be enough general to allow a possible platform migration but, in 

turn, enough detailed to comprise the technological particularities of concrete 

service technologies. For that aim, the initial consideration was that it would be 

comprised of a sole PSM DSL. However, after working with the technologies and 

platforms chosen, the definition of the PSM level of ArchiMeDeS ended up in 

considering the separation of that level in two different levels: PDM and TDM. 

Because of that, section 3.2.2 was dedicated to present two complementary levels 

of a DSL proposal for the PSM level: on the one hand, a PDM metamodel with all 

the common elements that any service-oriented execution platform may share (at 

least the three platforms chosen); and, on the other hand, concrete TDM 

metamodels for three well-known service-based platforms: Web services, Grid 

Services and REST services. Similar to the case of the PIM DSL, every DSL at 

PSM level was given a concrete syntax based on UML by providing the 

description of several UML profiles. 

 

Obj.4 - Specification of model transformation rules 

The DSLs defined for the representation of software architectures at any 

level of the MDA approach did not offer any groundbreaking advantage for the 

either architecture specification or software development process different from 

other modelling initiatives. However, one of the main assets of the ArchiMeDeS 

framework relied on the possibility to (semi-)automatically obtain one model from 

the information of the other one. Accordingly, in conjunction with the definition 

of the DSLs, a set of rules was defined to overcome this issue (fully explained in 



212   MARCOS LÓPEZ SANZ 

 

section 3.2.3), either PIM-to-PIM (inclusion of architectural style features) or 

PIM-to-PSM (both PIM-to-PDM and PIM-to-TDM).  

 Transformation rules defined for that aim allowed performing two 

different kinds of transformations: model merge and abstraction level change. The 

former one corresponds to a merging process between the information gathered in 

an architectural style model with that of the PIM metamodel. To do so, a weaving 

process based on the use of the service role concept was depicted in Section 

3.2.3.1. The latter, in turn, refers to a set of correspondences between the concepts 

of the PIM metamodel and the PDM/TDM models of the architecture. All these 

transformations were, firstly, defined in natural language indicating a set of 

correspondences; and, secondly, implemented using the ATL language, largely 

considered as one of the best options for model transformations due to its 

completeness and tool support as could be derived from the study of works in this 

subject (Section 2.2.1). 

 

Obj.5 - Creation of a toolkit supporting architectural modelling 

To reach that goal, the tools derived from the EMP (EMF, GMF, AMW, 

etc) where chosen to build a toolkit for modelling the DSLs defined within 

ArchiMeDeS. Relying on the Eclipse platform, the first step was the definition of 

the metamodels in EMF. As a result, editors supporting the definition of the 

models conforming each DSL where obtained. This way it was possible to count 

with an initial tree-like editor for model edition. The next step was to provide with 

a graphical support in order to provide with a UML support to the toolkit. In that 

case, the GMF extension for Eclipse was used.  

Support for model transformation was also implemented within this toolkit. 

To do so, the transformation rules were implemented in ATL. Moreover, the 

weaving process for the superimposition of architectural style features in PIM 

models was implemented using the AMW plug-in for Eclipse. The building 

process of this toolkit was fully explained in Chapter 4. 

The developed toolkit was thought not only as requirement to be fulfilled in 

order to consider the architectural framework complete but also as instrument for 

the automatic model syntax verification according to the metamodels specified. In 

addition, the tool aids in the automation of software architecture specification 

since it supports the execution of model transformations.  

 

 

 



 CONCLUSIONS AND FUTURE WORKS   213 

 

Obj.6 - Validation of the architectural framework by means of its application to 

several case studies 

As stated previously, the definition and implementation of a modelling 

environment was used with the purpose of checking the correctness of the 

proposed DSLs and the accuracy and appropriateness of model transformations 

defined within the ArchiMeDeS framework. However, in order to check the 

relevance and feasibility of the proposal, some case studies were developed.  

To check the correctness of the DSLs, the validation efforts were divided 

according to abstraction levels. On the one hand, for the PIM DSLs, the strategy 

followed was the representation of a concrete case study (based on the 

architectural representation of a SMPP system) using a specific formal ADL (π-

ADL) and making a comparison between the representation of the case study 

using the formal structures of π-ADL and the corresponding PIM model 

represented using ArchiMeDeS. On the other hand, at PSM level, the proposed 

DSLs were validated by comparing them with their counterpart representation 

using the standard languages of the technological platform of choice. Accordingly, 

the resulting PSM models were used as a proto-architecture for the creation of the 

source code regarding both a Web Service platform (via W3C standards) and a 

Grid Service platform (using Globus Toolkit) as target implementation 

technologies.  

The case study used to check the ArchiMeDeS framework as a whole is 

based on the architecting of a system for the management of medical digital 

images named GESiMED. The architecture of this system was modelled at both 

PIM and PSM levels. The final TDM models were used to manually create the 

source code corresponding to the implementation of GESiMED as it was reflected 

in Chapter 5. In order to cover the validation of other aspects not considered when 

using the GESiMED system, the architectural modelling of other case studies were 

used as partial examples. For instance, a sport metaphor (Pick and Roll situation in 

a basketball game) was used to prove the suitability of the proposal for the 

specification of service choreographies; and, as it has been mentioned before, an 

emulation of a gateway for sending SMS messages was used to provide with a 

comparable representation of the architectural models with π-ADL. 

6.2 Main Contributions 

This Thesis has resulted in a number of contributions, regarding not only 

the main asset of this research (the ArchiMeDeS framework) but also related with 

other secondary aspects. Some of them were objectives fixed before addressing 



214   MARCOS LÓPEZ SANZ 

 

this work while others have emerged during its development. They are 

summarized in the following. 

 

Specification of a framework for model-driven development of Software 

Architectures 

The main contribution of this Thesis has been the specification of 

ArchiMeDeS, a full-fledged framework that allows the specification of software 

architectures and with a distinguishable feature: the use of the SOC paradigm to 

build up the Architecture. Few of the proposals analyzed in this dissertation take 

advantage of the benefits that the use of services may offer to the specification of 

software architectures. An MDA-based model architecture for architectural 

specification has been defined to improve the software architecture design by 

focusing on its capabilities to bridge the gap between high-level conceptions of 

modern business organizations and their potential implementations. 

The features of ArchiMeDeS contribute to establish a novel form of 

tackling the definition of system architectures as well as its relationship with other 

aspects of system development. The use of models for that purpose also empowers 

the understanding of the system-to-be and the steps and elements that may be 

defined as part of that development process. This is accomplished through the 

specification of a concrete grammar for architectures in the form of DSLs at 

different abstraction levels. 

As it has been largely stated during this dissertation, the use of MDA as 

foundational approach for architectural specification, with its PIM/PSM 

separation, brings the opportunity to diversify the implementation target and 

allows easing possible future migrations of the system, or even a change in the 

supporting platform or implementation technology of choice. The inverse 

procedure (to obtain a PIM representation from different PSM models), although 

not considered as part of this Thesis, would also be possible. 

Besides, the framework includes the possibility to define architectural 

decisions and constraints in the form of architectural styles. The novelty from 

other proposals is that, having into account that the architecture is built upon 

services, it is possible not only to give support to traditional architectural styles 

but also to design patterns that have arisen with the use of services within the 

enterprise scope, leading to some well-known architectural strategies based on 

services. In addition, as it was pointed out in the moment of dealing with 

architectural model transformations (Section 3.2.3), ArchiMeDeS represents a 

framework, general enough, for the support of other kinds of architectural 



 CONCLUSIONS AND FUTURE WORKS   215 

 

transformations, such as element merge or decomposition, into more complex 

service-based processes. 

 

Support for semi-automatic generation of platform specific service 

architectures using a graphical environment 

Initially conceived as a way to check model conformance, the creation of a 

graphical toolkit for the definition of models and metamodels required to represent 

software architecture configurations, surpassed its expectations and ended up in a 

powerful toolkit that supports not only the drawing of the models (either using a 

tree-like or an UML-based interface) but also a way to test the correctness of the 

models, the syntactic coherence of the metamodels and, eventually, the validation 

of the models obtained as a result of executing model-to-model transformations. 

The platform used as basis for the toolkit, Eclipse, proved to be an 

adequate choice to reach the objectives marked for this Thesis. It demonstrated to 

be a valuable option for both modelling and meta-modelling (using Eclipse 

extensions such as EMF, GMF, etc) but, and maybe more importantly, it allowed 

to incorporate the definition of model transformation rules (expressed in ATL 

language) inside the same framework, so it was possible to semi-automate the 

desired transformation processes. This was possible thanks to its capability to be 

easily extended with new functionalities throughout the inclusion of specialized 

independent modules. 

Model transformation has been accomplished through transformation 

processes that ranged from a simple model-to-model transformation (in the case of 

the obtaining of the PSM model of the architecture from its corresponding PIM 

model) to the allowance of defining a full superimposition process to enrich PIM 

models with information gathered in models representing architectural styles. 

 

Definition of a state-of-the-art evaluation in the scope of three engineering 

disciplines of increasing importance and demonstrated synergy  

The task of bringing together the features of the three main topics 

considered in the dissertation has required focusing on several distinct premises: 

on the one hand, the selected criteria needed to have enough relevance in the 

context of software specification; for example, by referring to the role given to the 

Architecture within a development process (in the scope of Model-Driven 

Engineering) or the base paradigm of the Architecture (in the context of Service-

Orientation). On the other hand, the criteria used needed to be significant enough 

to detect the different approaches that research initiatives propose; for instance, 

the abstraction level at which the software architecture specification is considered 



216   MARCOS LÓPEZ SANZ 

 

or the modelling approach followed by model-driven initiatives. To help in this 

criteria selection, the research accomplished during the making of this Thesis 

inherits the questions and solutions derived from the research scope in which the 

Thesis is framed. Previous research works resulted in the identification of issues 

that needed to be solved regarding MDE, SOA or architectural specification. The 

previous experience in these topics also conditioned the selection of one factor or 

another. 

The result is, first, a short but representative criteria set that allows for the 

identification of the different approaches that are somehow related to the 

abovementioned topics; and, second, the performance of an initial outline of what 

features include the most relevant initiatives in that field.  

All in all, the accomplishment of the state of the art represented one of the 

first steps to define what should be the features of the ArchiMeDeS framework. 

This state of the art allowed focusing on the need for incorporating together novel 

engineering approaches (such as MDA), key software concerns as guiding 

development artefacts (such as architectural specification) and increasingly spread 

computing paradigms (such as SOC) towards a new way of achieving success in 

Software Engineering. 

 

Implementation of a fully functional case study derived from the research in 

neuromedicine  

The last remarkable contribution refers to the main case study used to 

validate the proposal. The GESiMED system represents a real example in which 

the foundational aspects of this dissertation can be used. This way, the 

ArchiMeDeS framework is used to provide with a technological answer to the 

business needs detected in a concrete domain such as that of research with 

neuroimages, as some publications confirmed ([96]).  

Using a model-driven approach to specify the architecture of GESiMED 

provides a way of easing the platform migration of this system. This issue can be 

achieved thanks to the possibility of defining the system architecture at a 

conceptual level (PIM) and then selecting a concrete target platform (TDM). In 

addition, the capabilities provided by ArchiMeDeS for the superimposition of 

architectural styles on architectural models facilitates the adaptation of the system 

to specific business constraints found in the context of the research in 

neuroscience, for example, due to processing load requirements.  



 CONCLUSIONS AND FUTURE WORKS   217 

 

6.3 Scientific Results 

Some of the results of this Thesis have been published in different forums, 

both national and international. In the following, those publications are grouped 

according to the type of publication. 

 Articles in International Journals 

o M. López-Sanz, J. M. Vara, E. Marcos, C. E. Cuesta. A Model-Driven 

Approach to Weave Architectural Styles into Service-Oriented 

Architectures. International Journal of Cooperative Information Systems. 

To be published in June 2011. Impact Factor JCR: 0.528 (ISI JCR 

2009) 

o M. López-Sanz, C. E. Cuesta, E. Marcos, J. Domínguez. Developing 

Coordination Strategies using a Service-Oriented Model-Driven 

Approach. International Journal of Web Services Practices. Vol.:3 (3-4), 

pp: 115-121. Ed.: Web Services Research Foundation.  Eds.: Sang Yong 

Han. ISSN: 1738-6535. Seoul (South Korea). November, 2008. 

o M. López-Sanz, C. Acuña, C. E. Cuesta, E. Marcos. Modelling of 

Service-Oriented Architectures with UML. Electronic Notes in 

Theoretical Computer Science (ENTCS). Vol.: 194 (4), pp 23-37. Ed.: 

Elsevier. ISSN: 1571-0661 DOI: 10.1016/j.entcs.2008.03.097. 

Amsterdam (The Netherlands). April, 2008 

o J.A. Hernández, C. Acuña, V. de Castro, E. Marcos, M. López-Sanz, N. 

Malpica. WEB-PACS for Multicenter Clinical Trials. IEEE Transactions 

on Information Technology in Biomedicine. Vol.: 11, Nº 1. pp: 87-93. 

Ed.: IEEE Computer Society, IEEE Engineering in Medicine and 

Biology Society. ISSN: 1089-7771. New York (USA). April, 2008. 

Impact Factor JCR: 1.436 (ISI JCR 2007) 

o V. De Castro, E. Marcos, M. López-Sanz. A Model Driven Method for 

Service Composition Modelling: A Case Study. International Journal on 

Web Engineering and Technology. Vol.: 2 (4), pp: 335-353. Ed.: 

Inderscience Enterprise Ltd. ISSN: 1476-1289. Switzerland. July, 2006.  

 Articles in Iberoamerican Journals 

o C. J. Acuña, E. Marcos, V. de Castro, J. A. Hernández, M. López-Sanz. 

Gestión de imágenes médicas a través de la Web.  Revista colombiana de 

computación (RCC). Vol.: 8 (1). pp. 1-11. ISSN: 1657- 2831. Eds.: E. 

Carrillo Zambrano, A. Fedossova. Bucaramanga (Colombia). June, 2007  

 



218   MARCOS LÓPEZ SANZ 

 

 Articles in International Conferences 

o M. López-Sanz, C. E. Cuesta, E. Marcos. Formalizing High-Level 

Service-Oriented Architectural Models Using a Dynamic ADL. 

Proceedings of the Workshop on Adaptation in serVice EcosYsTerms and 

ArchiTectures. On the Move to Meaningful Internet Systems: OTM 2010 

Workshops (AVYTAT‟10), LNCS 6428-067, pp. 57-66. Eds.: R. 

Meersman, P. Herrero, T. Dillon. ISBN: 978-3-642-16960-1. Ed.: 

Springer-Verlag, Berlin, Heidelberg (Germany), 2010. 

o M. López Sanz, C. J. Acuña, V. de Castro, E. Marcos, C. E. Cuesta: 

Using an Architecture-Centric Model-Driven Approach for Developing 

Service-Oriented Solutions: A Case Study. Proceedings of the 

International Workshop on System/Software Architectures (IWSSA‟09). 

On the Move to Meaningful Internet Systems: OTM 2009 Workshops, 

LNCS 5872, pp. 350-359. Eds.: R. Meersman, P. Herrero, T. Dillon. 

ISBN 978-3-642-05289-7. Ed.: Springer-Verlag, Heidelberg (Germany), 

2009. (Acceptance ratio: 41%) 

o M. López-Sanz, J. M. Vara, E. Marcos, C. E. Cuesta. A Model-Driven 

Approach to Weave Architectural Styles into Service-Oriented 

Architectures. Proceedings of the First International Workshop on 

Model-Driven Service Engineering and Data Quality and Security 

(MOSE+DQS‟09), Hong Kong, China. Eds. D. Cheung, Il-Yeong Song, 

W. Chu, X. Hu, J. Lin, J.Li and Z. Peng. ISBN: 978-1-60558-816-2. 

(Acceptance ratio: 60%) 

o M. López-Sanz, C. E. Cuesta, E. Marcos, J. Dominguez. Developing 

Coordination Strategies using a Service-Oriented Model-Driven 

Approach. Proceedings of the Fourth International Conference on Next 

Generation Web Services Practices (NWESP‟08). pp. 198-203. Editorial: 

IEEE Computer Society. Eds.: A. Abraham, S. Yong Han. ISBN: 978-

07695-3455-8. 

o M. López-Sanz, Z. Qayyum, C. E. Cuesta, E. Marcos, F. Oquendo. 

Representing Service-Oriented Architectural Models using π-ADL. 

Emerging Research Paper. Proceedings of the 2nd European Conference 

on Software Architecture (ECSA’08), LNCS 5292, pp.273-280. Eds. R. 

Morrison, D. Balasubramaniam, K. Falkner, 2008. ISBN: 978-3-540-

88029-5. ISSN: 0302-9743. (Emerging research papers acceptance ratio: 

14.5%).  



 CONCLUSIONS AND FUTURE WORKS   219 

 

o M. López-Sanz, C. J. Acuña, C. E. Cuesta, E. Marcos. Defining Service-

Oriented Software Architecture Models for a MDA-based Development 

Process at the PIM level. Working Session Paper. Proceedings of the 7th 

IEEE/IFIP Working Conference on Software Architecture (WICSA’08), 

pp. 309-312. Editorial: IEEE Computer Society. Eds. P. Kruchten, D. 

Garlan, E. Woods, 2008. Lugar de publicación: New York (USA). ISBN: 

0-7695-3092-3. (CORE A Conference, acceptance ratio: 28.75%).  

o M. López-Sanz, C. J. Acuña, C. E. Cuesta, E. Marcos. UML Profile for 

the Platform Independent Modelling of Service-Oriented Architectures. 

Poster. Proceedings of the 1st European Conference on Software 

Architecture (ECSA’07), LNCS 4758, pp. 304-307. Eds. F. Oquendo, 

2007. ISBN: 978-3-540-75131-1. ISSN: 0302-9743. (Acceptance ratio: 

25.78%) 

o M. López-Sanz, C. J. Acuña, C. E. Cuesta, E. Marcos. Modelling of 

Service-Oriented Architectures with UML. Proceedings of the 6th 

International Workshop on the Foundations of Coordination Languages 

and Software Architectures (FOCLASA‟07). Pp.: 21-36. Eds. C. Canal, P. 

Poizat, M. Virola. 

o M. López Sanz, V. de Castro, E. Marcos, J. L. Bosque. A Comparative 

Study between Web Service and Grid Service Developments in a MDA 

Framework. Proceedings of the 9th International Conference on 

Enterprise Information Systems (ICEIS‟07). Vol. ISAS. Eds. J. Cardoso, 

J. Cordeiro, J. Felipe, 2007, pp. 114-121. ISBN: 978-972-8865-90-0. 

(Acceptance ratio: 12%) 

o V. de Castro, M. López-Sanz, E. Marcos. Business Process Development 

based on Web Services: A Web Information System for Medical Images 

Management and Processing. Proceedings of IEEE International 

Conference on Web Services (ICWS‟06). IEEE Computer Society. Ed.: 

F. Leymann, L.J. Zhang, 2006, pp. 807-814. ISBN: 0-7695-2669-1 

(CORE A Conference, Acceptance ratio: 33%) 

o M. López-Sanz, E. Marcos, J. L. Bosque. A Proposal of Grid Middleware 

Architecture for Medical Image Management. Proceedings of the IADIS 

International Conference–Applied Computing 2006. IADIS Press. Eds. 

N. Guimarães, P. Isaias, A. Goikoetxea. ISBN: 972-8924-09-7. 

(Acceptance ratio: 23%) 

 

 



220   MARCOS LÓPEZ SANZ 

 

 Articles in Iberoamerican Conferences 

o M. López-Sanz, C. J. Acuña, C. E. Cuesta, E. Marcos. MDA para 

Arquitecturas Orientadas a Servicios: Un perfil UML a nivel PIM. 8th 

Argentinean Symposium on Software Engineering (ASSE‟07). Art. nº 10, 

págs. 1-13. Eds. Roberto Giordano Lerena, Isabel Passoni, Pablo 

Montini. ISSN: 1850-2792 (ASSE),  1850-2776 (JAIIO) 

o V. de Castro, E. Marcos, M. López-Sanz. Service Composition 

Modeling: A Case Study. Proceedings of 7th Mexican International 

Conference on Computer Sciences (ICCS‟06). IEEE Computer Society. 

Ed.: Sergio Rajsbaum, 2006, pp. 101-108. ISBN: 0-7695-2666-7. ISSN: 

1550-4069. (Acceptance ratio: 26%) 

o V. de Castro, M. López-Sanz, E. Marcos. Modelado de Procesos de 

Negocios Basados en Servicios Web. Poster. Actas del 9º Workshop 

Iberoamericano de Ingeniería de Requisitos y Ambientes Software 

(IDEAS‟06). Eds.: Jaelson Castro, Luca Cernuzzi, Silvia Gordillo. ISBN: 

950-34-0360-X. 

 Articles in National Conferences 

o M. López-Sanz, C. E. Cuesta, E. Marcos. Modelos Arquitectónicos 

Orientados a Servicios: Definición y Desarrollo Formal sobre un Caso de 

Estudio. Proceedings of the Third International Workshop on Autonomic 

and Self-Adaptive Systems (WASELF‟10), pp. 11-20. Eds: J. Cámara, C. 

E. Cuesta, M. A. Pérez-Toledano. Ed.: SISTEDES 2010. ISSN: 1988-345 

o M. López-Sanz, C. E. Cuesta, E. Marcos. Modelado de Coreografías de 

Servicios con UML 2.1. Actas de las IV Jornadas Científico-Técnicas en 

Servicios Web y SOA (JSWEB‟08), pp. 1-14. Eds.: J. M. López Cono, A. 

Vallecillo y A. Ruiz-Cortés. ISBN-13: 978-84-691-6710-6 

o M. López-Sanz, C. E. Cuesta, E. Marcos, J. Domínguez. Modelado 

Arquitectónico Orientado a Servicios de Estrategias de Coordinación 

Inspiradas en Tácticas Deportivas. Actas del Taller de Trabajo 

Integración de Aplicaciones Web (ZOCO‟08). Editores: J. L. Álvarez, J. 

L. Arjona, R. Corchuelo, D. Ruiz. 

o M. López Sanz, V. de Castro, J. L. Bosque, E. Marcos. Estudio 

comparativo del desarrollo con Servicios Web y Servicios Grid en un 

marco basado en MDA: aplicación a un caso de estudio. Actas de las II 

Jornadas Científico-Técnicas en Servicios Web (JSWEB 2006). Eds.: M. 

Lama, F. Curbera, J. C. del Arco, E. Sánchez, 2006, pp. 23-29. ISBN: 84-

690-2398-5. 



 CONCLUSIONS AND FUTURE WORKS   221 

 

o G. López, M. López-Sanz, V. de Castro, E. Marcos. Diseño de Procesos 

de Negocios que requieren la intervención del Usuario: Un estudio sobre 

las alternativas de implementación. Actas del Taller Desarrollo y 

Mantenimiento Ágil de Aplicaciones basadas en Servicios Web 

(ZOCO‟06). Eds.: Rafael Corchuelo, David Ruiz y José Luís Arjona, 

2006, pp. 39-49. ISBN: 978-84-690-5792-6 

o V. de Castro, M. López-Sanz. Modelado de Composición de Servicios: 

Un Caso de Estudio. I Jornadas Científicos-Técnicas en Servicios Web – 

(JSWEB‟05). Eds.: E. Marcos, J. M. Alonso, V. de Castro, J. C. del Arco. 

ISBN: 84-9732-455-2. (Acceptance ratio 49%) 

6.4 Future Works and Open Research Lines  

Despite the contributions made on this Thesis, as the research tasks 

progressed, several directions to further work were detected. Some of them were 

just not considered as objectives of this Thesis (support for non-functional 

requirements for example) while others have emerged during the development of 

this work (extending the PSM DSLs to support other target executing platforms). 

Next subsections summarize some of them. 

 

Definition of a complete model-driven development process in which 

ArchiMeDeS architectural models play a guiding role  

The ArchiMeDeS framework allows the specification of software 

architectures at different abstraction levels. However, considered within the 

methodological context in which the Thesis is framed (MIDAS) the integration 

with the model-driven development of other concerns in MIDAS should be 

completed. This way, and although some of the issues needed were mentioned in 

Section 3.3.2, one of the future works that is currently under development is the 

integration of ArchiMeDeS and SOD-M [49] a service-oriented method for the 

development of information systems centred in the behavioural concern. In 

addition, and also within MIDAS, the definition of the interface concern through 

an architecture-centric model-driven process is also a subject of intense research 

efforts and the main focus of a Thesis already in progress.  

In summary, it is quite clear that the information modelled in the 

architecture can be seen as the driving aspect of wider model-driven 

methodological frameworks, and for MIDAS in particular. In that sense, the 

complete definition of MIDAS as architecture-centric model-driven development 

methodology is highly encouraged. Moreover, since model-driven processes 

defined as part of MIDAS are also being supported by tools (and meta-tools) 



222   MARCOS LÓPEZ SANZ 

 

implemented over the Eclipse platform, another line of research being currently 

considered is the integration of all the ArchiMeDeS toolkit modules with the tools 

supporting the other MIDAS‘ development concerns. 

 

Support of additional platforms, either service-based or not 

The most used and widespread technologies for the implementation of 

service architectures are those related to Web Services (either REST-compliant or 

not) and Grid Services. An architectural support for these platforms has been 

clearly defined as part of the current Thesis. However, many standards have 

proliferated to cope with adjacent issues to the use of these technologies. The 

proposed DSLs cannot be considered fully complete without accepting a lack of 

support for some of the existing standards and languages. This dissertation has 

centred its attention in technologies that have a direct influence on the 

specification of any feature related to the structural view of a system, that is, 

within its architectural view (interface definition, resource specification, contract 

establishment, message exchange, and so on). 

The rest of the aspects that may have influence over the architectural 

configuration (such as policies, monitoring or discovery issues) and its related 

standardization initiatives open a field of research that may end in obtaining a full 

view of the architecture with additional information. However, and bearing in 

mind that the MIDAS methodological framework fosters a multiple concern view 

of the development process, to support all the additional aspects it would be highly 

recommended to create a separated model set for that aim. 

On the support of additional platforms different to those based on service 

technologies, investigation in this line would probably require a modification of 

the DSL created at the PDM level, and probably the TDM, so it is possible to 

create an extension for the support of concrete features of other platforms and 

technologies. Upcoming technologies, on which novel computing paradigms are 

based (such as Cloud Computing), could be selected as target platforms of interest. 

 

Formal representation of the DSLs syntax 

Though the use of models for the specification of Architectures represents 

a step forward in the ease of the development of Software solutions, having a 

formal representation of architectural elements and relationships between them 

presents several supplementary benefits. Counting with an executable version of 

the architectural configuration at a conceptual level, the possibility of applying a 

mathematical base for verifying and validating the correctness of the architecture 



 CONCLUSIONS AND FUTURE WORKS   223 

 

or the capability of incorporating a formal way of supporting dynamism in models 

are among those benefits. 

All these research lines step inevitably on the selection of a target ADL to 

which port the concepts gathered in the DSLs created to define Software 

Architectures with Services. This aspect was initiated with the use of π-ADL to 

check the reliability and correctness of the modelling proposal for the PIM level of 

abstraction (see Section 5.3). However, and with the aim of consolidating a 

model-driven approach for the whole framework, the transition from the presented 

DSLs to a concrete ADL should be done by defining model transformations and 

mappings between the grammars of both languages. Once the relation is 

established (bidirectionally) it would be possible to seamlessly automate the 

transition from one approach to another. Afterwards, it could be possible to 

operate the formal representation of the architecture to, for instance, reason about 

the architectural model to check certain properties about the system configuration 

or support model updating through architectural reconfiguration [43]. 

 

Full support for architectural rationale modelling 

 Apart from the identification and inclusion of architectural styles as a 

way of personalizing the architecture according to specific designs or constraints, 

there are other several aspects that have an important influence over the system 

architecture. On the one hand, the architectural decisions themselves that lead to 

opt for one or another architectural design; and, on the other hand, the existence of 

low-level design patterns highly dependent on the technology of choice may 

require to modify or change the architectural configuration of a system.  

 Efforts in this line would need to address the creation of models and 

metamodels allowing the representation of the architectural rationale at any 

abstraction level. In addition, model transformation processes should be defined in 

order to integrate those new models as part of the ArchiMeDeS framework. Due to 

the availability of a toolkit for ArchiMeDeS, the support for architectural rationale 

design could be easily supported by creating the corresponding modules for the 

toolkit presented in Chapter 4. 

 

Support for dynamic architectures 

 As it has been largely discussed in the introduction and other chapters of 

this dissertation, the specification of software architectures may be taken from 

different points of view and with different degrees of detail. This Thesis, for 

example, only gives support for the modelling of static representation of software 

architectures based on services. However, it is a reality that any system may suffer 



224   MARCOS LÓPEZ SANZ 

 

changes and evolve during its lifetime. This changeability has a direct impact on 

the structure of a system and thus it must be reflected in its architecture. 

 When adopting services as building brick for the architecture, the 

proposed architectural modelling should support some kind of variability in the 

architectural representation to one of the different types of dynamisms [44]. In its 

current state of development, the ArchiMeDeS proposal only gives support to a 

dynamism of data, that is, the models of the architecture created allow the 

representation of systems (based on services or not) that may change the (type of) 

information exchanged. The environment does not need to change its component 

elements to give support to this kind of dynamism. 

 A second type of dynamism may be a scenery in which the elements 

present at run-time may vary, that is, that new instances of the elements defined in 

the architecture appear within the scope of the system but playing a role and with 

a behaviour already known and defined in the scope of the system. This type of 

dynamisms requires that new connections between the already existent elements 

appear and be formed correctly. 

 The third type of dynamism is that in which new types of elements 

appear to play a role within the environment and execute a previously unknown 

behaviour that must maintain the coherence and stability of the system as a whole. 

To do so, it is important that the system know both the current architectural state 

of its components and the upcoming situation in which new elements may take 

part in order to achieve a concrete goal. 



 

 

APPENDIX A. RESUMEN EN CASTELLANO 

Appendix A: 

Resumen en Castellano 





 RESUMEN EN CASTELLANO   227 

 

Este capítulo ofrece un resumen extendido en castellano de la Tesis 

Doctoral que se presenta en esta memoria.  

En primer lugar se ofrece una perspectiva general de las razones que han 

llevado a la realización de esta Tesis con el fin de justificar e identificar 

claramente los problemas de partida que se pretendían abordar en el momento de 

su realización. A continuación se especifican los objetivos concretos en los que se 

centra la investigación asociada a la Tesis junto con la metodología de trabajo en 

la que se ha materializado el trabajo de Tesis Doctoral. Por último, se presentan 

las conclusiones obtenidas de dicho trabajo. 

A.1 Antecedentes 

Es un hecho ampliamente reconocido que durante las últimas décadas, las 

tecnologías de la información (TI) se han posicionado en el centro de los procesos 

de negocio. La consecuencia directa ha sido la aparición de una fuerte 

dependencia de las empresas hacia los sistemas de información. Esta dependencia 

no sólo se refiere a la utilización de recursos y dispositivos hardware sino que 

también, e incluso más significativamente, se amplía al uso de sistemas software. 

El ejemplo más claro puede encontrarse en la red Internet, entendida como fuente 

y destino de conocimiento, recursos y negocios. Por un lado, ha propiciado la 

aparición de una nueva oleada de empresas y compañías basadas íntegramente en 

la Web. Por otra parte, ha supuesto una serie de retos tecnológicos (mejora del 

rendimiento, alta disponibilidad, escalabilidad óptima, necesidades de 

estandarización, entornos de integración, etc.) que los profesionales en este ámbito 

deben resolver eficientemente.  

Este cambio de atención hacia el universo online implica, desde el punto de 

vista de la investigación en software, la necesidad de diseñar no sólo nuevas 

soluciones software, sino también la especificación de nuevas metodologías de 

desarrollo, plataformas de ejecución, herramientas de soporte y estrategias de 

diseño y gestión que, en principio, difieren de las conocidas hasta la fecha. 

Internet establece unas condiciones de desarrollo que hacen que las técnicas de 

ingeniería actuales no sean apropiadas en este contexto o, al menos, no sean 

suficientes para abordar las nuevas necesidades impuestas. Además, en una era de 

reajuste económico, es importante que las aproximaciones de investigación 

definidas para este contexto puedan ser aplicadas a otros contextos (no solamente 

centrados en la Web) de tal forma que se centren en aquellos aspectos cruciales de 

las TI (por ejemplo el desarrollo de la arquitectura software) facilitando el 

desarrollo de soluciones altamente flexibles. 



228   MARCOS LÓPEZ SANZ 

 

El desarrollo dirigido por modelos como forma de abordar la Ingeniería del 

Software actual 

Observando la evolución de la Ingeniería del Software, es posible ver cómo 

la existencia de estrategias, procesos y metodologías concretas para el desarrollo 

de soluciones software conlleva una mejora de aspectos tales como la calidad, el 

mantenimiento, la robustez o la escalabilidad de los sistemas desarrollados [193]. 

Tradicionalmente, las técnicas de Ingeniería del Software se han basado en la 

conceptualización de las características del sistema bajo desarrollo, abstrayéndose 

tanto del contexto de la solución como de su entorno. Partiendo de esta premisa, 

parece bastante obvio pensar que la estrategia a seguir a la hora de ofrecer una 

solución adecuada a los retos que supone la tendencia actual de los negocios debe 

ir por esta línea. En este sentido, el uso de razonamientos basados en 

diagramas, es decir, mediante el uso de modelos, para todo el ciclo de vida del 

software parece ser el camino correcto a seguir para asentar los principios de 

la Ingeniería del Software moderna. 

Como consecuencia, durante los últimos años, la Ingeniería Dirigida por 

Modelos (MDD por sus siglas en inglés) [94] ha crecido en importancia hasta 

convertirse en una de las estrategias más exitosas a la hora de desarrollar sistemas 

de información de nueva generación. Aunque la posibilidad de representar las 

características de un sistema mediante modelos y diagramas es conocida desde los 

principios de la Ingeniería del Software, el establecimiento de diferentes niveles 

de modelos, desde diferentes puntos de vista y, más específicamente, teniendo la 

habilidad de definir reglas de transformación aplicadas a modelos, son 

características que se encuentran entre las principales razones de su éxito. 

Además, los conceptos detrás de la definición de Lenguajes Específicos de 

Dominio (DSLs) asociados a dichos modelos hacen que también las 

aproximaciones MDD se conviertan en unas alternativas altamente útiles para 

dirigir las estrategias de Ingeniería del Software hoy en día. 

Entre las múltiples propuestas existentes que se basan en los principios de 

MDD es especialmente interesante la iniciativa MDA (Arquitectura Dirigida por 

Modelos) publicada por el consorcio OMG en 2001 [171]. MDA ha atraído la 

atención tanto de los departamentos de I+D de la empresa como del ámbito 

académico. Este hecho es fácilmente comprobable atendiendo a la gran cantidad 

de iniciativas que han aparecido en los últimos años siguiendo esta aproximación 

[62][62]. MDA, además de considerar el modelo como el artefacto primordial 

para la definición de software, sugiere la separación de diferentes tipos de 

modelos agrupados por niveles de abstracción. Estos niveles abarcan desde el 

modelado de los aspectos del sistema relacionados con el negocio (CIM) a 



 RESUMEN EN CASTELLANO   229 

 

aquellos modelos que reflejan todos los aspectos tecnológicos de la 

implementación del sistema en desarrollo (PSM). Sin embargo, la mayor 

contribución de MDA al desarrollo de sistemas no se queda en esta separación en 

niveles de abstracción, sino en el hecho de apostar por la posibilidad de definir 

transformaciones entre los conceptos especificados en metamodelos. Estos 

metamodelos son modelos que describen los conceptos utilizados en los modelos 

que son conformes a ellos [200]. Las reglas de transformación facilitan, en este 

sentido, una progresión mucho más sencilla del desarrollo del sistema. 

Eventualmente, los modelos que están más próximos al nivel de implementación 

deben servir como origen del código fuente del sistema, que, siguiendo este 

mismo razonamiento, debería ser obtenido de forma automática (o al menos semi-

automática). 

A pesar de los beneficios conocidos de MDA, se han detectado en los 

últimos tiempos algunas deficiencias en esta propuesta. Trabajos actuales 

[136][150] argumentan que una de las principales desventajas de MDA es la 

falta de una definición precisa del rol que la Arquitectura debe tener en el 

contexto de una arquitectura de modelos. En su especificación original, no hay 

ninguna mención explícita a la Arquitectura como parte de la estructura de 

modelos asociada a un proceso de desarrollo basado en MDA. Muchos de los 

métodos y metodologías actuales que siguen la aproximación MDA evitan 

modelar explícitamente el aspecto arquitectónico del sistema. Estas propuestas 

suelen mezclar el diseño topológico del sistema (estructura del mismo a partir de 

componentes, conectores, y relaciones entre ellos) con la definición de sus 

funcionalidades (comportamiento dado a cada uno de los elementos con un rol 

determinado durante la ejecución del sistema)[16][95]. Además, merece la pena 

resaltar que la falta de una especificación precisa de la arquitectura, como modelo 

independiente dentro de la arquitectura de modelos, restringe la flexibilidad del 

proceso de desarrollo en si. Un ejemplo ilustrativo puede encontrarse cuando se 

quieren aplicar diferentes estilos arquitectónicos como forma de abordar entornos 

en los que los cambios derivados de las necesidades de negocio suceden con 

frecuencia. Conociendo los beneficios que aporta la aplicación de estilos 

arquitectónicos durante el diseño y desarrollo del software [208], no incluir los 

modelos arquitectónicos como artefactos independientes dentro del proceso de 

desarrollo obliga a fijar, por defecto, un estilo arquitectónico concreto 

 

 

 



230   MARCOS LÓPEZ SANZ 

 

El paradigma orientado a servicios como base conceptual para la definición de 

nuevos procesos de ingeniería 

Por otro lado, la necesidad de desarrollar sistemas que se adapten (o, 

idealmente, se auto-adapten) a cambios en los requerimientos es más evidente al 

observar la dirección que la Economía global está tomando en los últimos años. La 

externalización y fragmentación de los procesos industriales ha favorecido la 

adopción de modelos de negocio basados en Servicios, entendidos como entidades 

económicas independientes con un valor de negocio y un rédito funcional tanto 

para la empresa como para el cliente final [114]. Como consecuencia, se ha 

demostrado la necesidad de describir procesos de negocio que soporten el ciclo de 

vida completo del software teniendo en cuenta este transfondo económico, en el 

que es crucial entender que el software desarrollado debe tener una estructura y 

comportamientos que pueden ser susceptibles de cambiar. En este contexto, las 

aproximaciones MDD han demostrado ofrecer una forma de crear procesos 

adecuados basados en estos requisitos, basados en el alineamiento del modelado 

de negocios altamente cambiantes con las plataformas y tecnologías de 

implementación actuales. Sin embargo, con el fin de abordar estos nuevos tipos 

de procesos de desarrollo se debería utilizar un paradigma de computación 

subyacente adecuado. Desde una perspectiva tecnológica, estos nuevos modelos 

de negocio han recibido su respuesta en la forma del paradigma Orientado a 

Servicios (SOC)[4][182] junto con una serie de estándares y lenguajes asociados. 

Mediante la utilización de SOC es posible crear sistemas dinámicos poco 

acoplados que se adaptan perfectamente a posibles necesidades futuras de los 

negocios. 

Sin embargo, la correspondencia entre los servicios de alto nivel (como 

partes de un procedimiento económico/financiero) y su implementación mediante 

las tecnologías de servicios actuales no es sencilla y requiere un proceso de 

transformación que está lejos de considerarse trivial. Actualmente, el paradigma 

SOC representa un cambio en la forma en la que el software es analizado (por 

ejemplo debido a la necesidad de incluir nuevas dependencias, restricciones o 

políticas de negocio), diseñado (la cantidad de estándares al respecto implica, por 

ejemplo, la selección del más adecuado a cada caso), construido (por ejemplo, las 

restricciones establecidas por las plataformas de ejecución condicionan el soporte 

tecnológico), distribuido (debido a la necesidad inherente de sincronismo en 

entornos distribuidos) y usado (los conceptos SOC deben coexistir con otros 

paradigmas de computación). Todo esto ha llevado a que investigadores y 

desarrolladores deban pensar de nuevo las técnicas que han de utilizarse para 

construir software con este paradigma. En este sentido, las propuestas dirigidas 



 RESUMEN EN CASTELLANO   231 

 

por modelos (y la propuesta MDA en particular), de nuevo, ayudan a llenar el 

salto existente entre las especificaciones de servicios de negocio y el desarrollo de 

sistemas de información orientados a servicios. 

El uso de aproximaciones de desarrollo basadas en modelos (MDD) en 

conjunción con el paradigma SOC ha demostrado ser de gran ayuda en los últimos 

años. El gran número de proyectos europeos dedicados a estos temas [62][62], en 

los que muchas de las grandes empresas a nivel mundial están involucrados, apoya 

este razonamiento. La definición de diferentes modelos agrupados en niveles de 

abstracción y la especificación de reglas de transformación de modelos convierten 

a MDA en una de las mejores alternativas a la hora de decidir la forma en la que 

las soluciones software orientadas a servicios deben ser desarrolladas. En efecto, 

debido a la existencia de una especificación jerárquica de modelos, el uso de 

MDA facilita la transición desde servicios de alto nivel hacia sus 

correspondientes servicios tecnológicos, además de facilitar la migración de 

plataforma y mejorar la adaptabilidad del sistema. 

Debido a su naturaleza débilmente acoplada, la aplicación del paradigma 

SOC al desarrollo de software tiene un impacto directo sobre el aspecto 

arquitectónico. No sólo es necesario definir la estructura topológica del sistema y 

sus elementos constitutivos, sus estructuras de composición y las relaciones 

existentes entre ellos sino que también es necesario decir cómo estos elementos 

van a evolucionar durante todo su ciclo de vida. La forma de organizar las 

infraestructuras y aplicaciones en un conjunto de servicios interactivos es lo que 

habitualmente se conoce con el nombre de Arquitectura Orientada a Servicios 

(SOA)[59]. 

 

El papel de la Arquitectura Software en el desarrollo de software dirigido por 

modelos y orientado a servicios 

Los párrafos anteriores destacaban la importancia de considerar el aspecto 

arquitectónico como elemento crucial tanto del paradigma SOC como de la 

aproximación MDA. Desde el punto de vista de SOA, la arquitectura se concibe 

como una forma de estructurar, organizar y mostrar el comportamiento y 

evolución de un sistema orientado a servicios. En el caso de MDA, por el 

contrario, se entiende como un artefacto contenedor y descriptor de los elementos 

centrales de un sistema y, por lo tanto, de los elementos que aparecen en los 

modelos definidos durante el proceso de desarrollo. La Arquitectura Software, 

entendida como la organización fundamental de un sistema a partir de sus 

componentes, las relaciones entre ellos y su entorno y los principios que gobiernan 

su diseño y evolución [208] representa, por consiguiente, el nexo de unión entre 



232   MARCOS LÓPEZ SANZ 

 

las tendencias actuales dirigidas por modelos y las aproximaciones 

tecnológicas que conforman la base de los sistemas de información actuales. 

Los conceptos detrás de la especificación de Arquitecturas Software se 

alinean perfectamente con el uso de SOA y MDA para el desarrollo de sistemas. 

Por un lado, la especificación de arquitecturas de servicios en un entorno basado 

en MDA permite la separación de la estructura de un sistema de otros aspectos del 

mismo (tales como estrategias de almacenamiento, definición de interfaces o 

modelado de la funcionalidad concreta del sistema mediante modelos de 

comportamiento). Al usar MDA, la especificación de la arquitectura puede ser 

diseñada sin verse afectada por las restricciones impuestas por las 

plataformas, estándares o tecnologías utilizadas para implementar dicha 

arquitectura. La separación en niveles de abstracción también favorece la 

aplicación de diferentes estrategias de diseño de servicios o estilos arquitectónicos 

separadamente, además de facilitar la migración del sistema a una plataforma 

destino diferente (no orientada a servicios, por ejemplo) cuando se necesite. 

Tradicionalmente, en Ingeniería del Software, se le ha otorgado a la 

arquitectura un papel central en los procesos de desarrollo software. El Proceso 

Unificado de Desarrollo [99], por ejemplo, basa su ciclo de desarrollo en la 

definición de diversas fases en las que el sistema se construye a través de la 

definición iterativa de la arquitectura, por lo que se considera que juega un papel 

central. En un entorno metodológico basado en MDA, el papel otorgado a los 

modelos arquitectónicos representa también un aspecto esencial. En este caso, ya 

que la especificación de la arquitectura no representa una parte aislada del sistema, 

la influencia de la arquitectura debe propagarse al resto de modelos. Los 

elementos especificados en el modelo arquitectónico deciden qué otros modelos 

deben crearse y qué elementos dentro de esos modelos deben ser incluidos. El 

contenido de los modelos arquitectónicos, por consiguiente, guía los pasos que 

deben darse a la hora de construir el sistema. Los procesos y metodologías de 

desarrollo que siguen esta aproximación se conocen con el nombre de 

architecture-centric.  

Conocida la sinergia que puede establecerse entre el paradigma orientado a 

servicios (SOC/SOA), el desarrollo dirigido por modelos (MDD/MDA) y el papel 

que juega la arquitectura en el desarrollo de software, esta Tesis Doctoral se 

presenta el desarrollo de un marco de trabajo para la especificación de 

arquitecturas software siguiendo un proceso dirigido por modelos (centrado 

en la propuesta de MDA) y utilizando los principios definidos por el 

paradigma SOC.  



 RESUMEN EN CASTELLANO   233 

 

Como partes constituyentes de este marco de modelado, denominado 

ArchiMeDeS, se especifican un conjunto de lenguajes específicos de dominio para 

los niveles PIM y PSM de la arquitectura MDA. La notación utilizada para los 

mismos se basa en la definición de perfiles UML que contienen un conjunto de 

estereotipos propios para cada lenguaje. Además, se establecen las reglas de 

transformación necesarias para, por un lado, obtener los modelos arquitectónicos 

de nivel PSM a partir de los modelos PIM y, por otro lado, para incorporar 

información referente a estilos arquitectónicos dentro de los modelos de nivel 

PIM. Con el fin de dotar al marco de trabajo de un soporte tecnológico, se 

construye una herramienta de modelado que soporta tanto la edición y validación 

de los modelos y metamodelos referidos a los DSL especificados como la 

especificación y ejecución de las transformaciones de modelos definidas. La 

validación del marco de trabajo descrito se realiza mediante su aplicación a 

diferentes casos de estudio. 

A.2 Objetivos 

En esta sección se describen la hipótesis de partida de esta Tesis Doctoral 

junto con los objetivos que se derivan de ésta. 

La hipótesis formulada en esta Tesis es que es posible especificar 

arquitecturas software orientadas a servicios utilizando una aproximación 

dirigida por modelos en la que la noción de servicio actúe como concepto 

principal tanto de la arquitectura especificada como del proceso de desarrollo en 

sí mismo. 

El principal objetivo de la Tesis, derivado directamente de la hipótesis 

previa, es especificar un marco para el modelado de arquitecturas software en el 

que la especificación de la arquitectura se obtiene mediante un proceso dirigido 

por modelos (basado en la propuesta MDA) y en el que los conceptos del 

paradigma orientado a servicios son considerados como la base para los 

elementos contenidos en la arquitectura.  

Este objetivo ha sido desglosado en los siguientes subobjetivos: 

Obj. 1.- Análisis y evaluación de trabajos e iniciativas previas relacionadas 

con los temas en los que se centra el trabajo de Tesis Doctoral. Teniendo en 

cuenta que la Tesis se apoya en tres áreas de conocimiento claramente 

diferenciadas en el contexto del desarrollo de software, este objetivo se puede 

subdividir en los siguientes:  

Obj. 1.1. Estudio detallado de las propuestas actuales sobre desarrollo 

de Arquitecturas orientadas a servicios, poniendo especial interés en la 

forma en que abordan la perspectiva arquitectónica. 



234   MARCOS LÓPEZ SANZ 

 

Obj. 1.2. Estudio detallado de de las iniciativas actuales en el ámbito 

del desarrollo dirigido por modelos centrándose en aquellas propuestas 

para la especificación de Arquitecturas Software y en aquellas 

soluciones para el desarrollo orientado a servicios. 

Obj. 1.3. Análisis de las características definitorias del paradigma 

orientado a servicios, incluyendo: composición y coordinación de 

servicios, estándares relacionados con servicios, restricciones, 

contratos e interfaces, etc. 

Obj. 2.- Especificación de una vista conceptual de arquitecturas software 

utilizando servicios. Para ello, se tendrá que proporcionar una definición a 

nivel PIM del correspondiente DSL para Arquitecturas de Servicios. Para 

alcanzar este objetivo, diversos subobjetivos deben cumplirse: 

Obj. 2.1. Definición de un metamodelo de nivel PIM cuyos elementos 

básicos se refieran a todos los conceptos significativos del paradigma 

orientado a servicios recogiendo adecuadamente la semántica del DSL 

a este nivel. 

Obj. 2.2. Definición de un metamodelo que permita la especificación 

de estilos arquitectónicos y/o cualquier otro patrón de diseño habitual 

basado en servicios. 

Obj. 2.3. Definición de la notación sintáctica de los DSLs anteriores en 

UML (mediante un perfil UML) con el fin de completar el DSL a este 

nivel.  

Obj. 3.- Especificación de los elementos de modelado necesarios para 

representar las particularidades de las plataformas de ejecución a través de 

modelos arquitectónicos, esto es, la definición de los DSLs necesarios mara la 

especificación de arquitecturas de servicios en función de la plataforma 

escogida. Para ello, los siguientes subobjetivos se han descrito. 

Obj. 3.1. Definición de un metamodelo de nivel PSM conteniendo los 

elementos necesarios para describir una solución software de acuerdo a 

la plataforma de ejecución destino y la tecnología empleada para su 

implementación. Este metamodelo servirá como base para la definición 

de un DSL para arquitecturas software a este nivel 

Obj. 3.2. El metamodelo de nivel PSM debe permitir la representación 

de arquitecturas software referidas, por lo menos, a las siguientes 

plataformas de implementación: Servicios Web (basados en los 

estándares del W3C [236][238]) y Servicios Grid (basados en la 

plataforma Globus Toolkit y la arquitectura OGSA [72]). 



 RESUMEN EN CASTELLANO   235 

 

Obj. 3.3. Definición de la notación sintáctica para los metamodelos 

previos en UML (mediante un perfil UML) con el fin de completar el 

DSL para este nivel de abstracción. 

Obj. 4.- Especificación de reglas de transformación de modelos. 

Obj. 4.1. Definición de reglas de transformación desde modelos PIM a 

modelos concretos de nivel PSM.  

Obj. 4.2. Definición de reglas de transformación que permitan la 

inclusión de características de estilos arquitectónicos en los modelos de 

nivel PIM.  

Obj. 5.- Construcción de un conjunto de herramientas de modelado que 

pemita soportar el proceso de modelado de la arquitectura. 

Obj. 5.1. Definición de una herramienta que permita la edición de 

modelos y su posterior verificación conforme a los DSLs definidos. 

Obj. 5.2. Inclusión de soporte gráfico para el modelado de los DSLs 

definidos de acuerdo a la sintaxis concreta definida con anterioridad.  

Obj. 5.3. Implementación de una herramienta que permita la ejecución 

y validación de las reglas de transformación definidas, ya sean PIM-a-

PIM o PIM-a-PSM. 

Obj. 6.- Validación del marco de especificación de arquitecturas mediante su 

aplicación a diferentes casos de estudio e implementación de pruebas de 

concepto sobre casos parciales: 

Obj. 6.1. Implementación de pruebas de concepto centradas en la 

validación del editor gráfico de modelado, los metamodelos 

especificados y las transformaciones de modelos definidas utilizando el 

conjunto de herramientas con el fin de comprobar aspectos concretos 

del marco desarrollado. 

Obj. 6.2. Evaluación de los resultados obtenidos mediante la 

implementación de diferentes casos de studio con el fin de comprobar 

la validez del marco desarrollado como un todo, la consistencia de los 

conceptos recogidos en los modelos, las arquitecturas orientadas a 

servicios especificadas con dichos modelos (según las tecnologías de 

Servicios Web y Servicios Grid) y las herramientas de modelado 

creadas.  

A.3 Metodología 

El método de investigación utilizado en esta Tesis está adaptado del 

propuesto por Marcos & Marcos [137] para la investigación en el ámbito de la 

Ingeniería del Software. Este método se basa en el método hipotético-deductivo de 



236   MARCOS LÓPEZ SANZ 

 

Bunge [32], que se compone de varios pasos, suficientemente generales, para ser 

aplicados a cualquier tipo de actividad investigadora. Las principales fases del 

proceso de investigación seguido para completar la Tesis Doctoral actual se 

muestran en la Figura A.1. 

Determinación del Problema

Hipótesis

Definición del Método de Trabajo

Resolución

Validación

Análisis de Resultados y Conclusiones

Redacción del Informe Final

D
o

cu
m

en
ta

ci
ó

n

Cuerpo de 
Conocimiento

Problemas

Nuevo Cuerpo
de Conocimiento

Nuevos Problemas

 

Figure A-1.Esquema  del método de investigación. 

El ‗Cuerpo de Conocimiento‘ en el que se enmarca la tesis, recoge las 

cuestiones establecidas en la sección de Antecedentes de este capítulo. Este 

elemento actúa de preámbulo para el proceso de investigación y cubre todos los 

términos que conlleva el manejo de los tres pilares temáticos nombrados 

anteriormente. Desde este contexto, la identificación de características 

compartidas que deben resolverse a partir de los principios de MDE, de la 

Orientación a Servicios y el papel que juega la Arquitectura software conforman la 

línea de actuación que se debe seguir a la hora de definir con precisión el 

problema a resolver (fase de ‗Determinación del problema‘) a partir del cual se 

formula una ‗Hipótesis‘ como punto de partida del trabajo de investigación. 

Como puede verse en la Figura A-1, la definición del método de trabajo en 

si mismo se considera como otro paso dentro del método de investigación. Se trata 

de una fase necesaria debido a la capacidad del método para adaptarse a diferentes 



 RESUMEN EN CASTELLANO   237 

 

contextos. Cada proyecto de investigación tiene sus propias características 

intrínsecas y por lo tanto no hay un método universal que pueda aplicarse a 

cualquier tipo de investigación. En el contexto de la Tesis actual, la fase 

correspondiente a la ‗Resolución y Validación‘ es de especial interés ya que es la 

que representa el núcleo del trabajo de investigación realizado. Más adelante se 

explicará esta fase con más detalle. 

Una vez que se ha llegado a plantear una propuesta a partir de las fases 

anteriores, es el momento de analizar los resultados obtenidos como consecuencia 

de la aplicación de dicha propuesta a escenarios concretos (fase de ‗Análisis de 

resultados y conclusiones‘). Estas tareas de análisis sirven de base para la 

extracción de ciertas conclusiones acerca del trabajo realizado. El siguiente paso 

es recopilar toda la experiencia de investigación adquirida en un informe final. 

A pesar de que el paso final del proceso de investigación se puede 

enmarcar en la tarea de escritura del informe final de Tesis, cualquier actividad de 

investigación genera un nuevo cuerpo de conocimiento que se crea a través de la 

incorporación de todos los artefactos de investigación como parte del mismo. De 

esta nueva situación se derivan nuevos problemas que pueden ser objeto de tareas 

e iniciativas de investigación futuras. 

 

Fase de ‘Resolución y Validación’ 

El método escogido en esta Tesis Doctoral para la fase de ‗Resolución y 

Validación‘ es conforme a un modelo de proceso iterativo e incremental. Esta fase 

de investigación itera e incrementa la propuesta a través de la realización de las 

tareas mostradas y retroalimentándose entre una tarea y otra. Una visión genérica 

de este proceso se muestra en la Figura A-2. 

Como puede verse, esta fase se subdivide en varias fases o pasos 

distribuidos en varias iteraciones consecutivas. La primera iteración centra su 

atención en la definición de la parte del marco propuesto dedicado al modelado de 

la vista conceptual de una Arquitectura de Software, esto es, al nivel PIM de la 

propuesta MDA. La segunda iteración, por el contrario se dedica a proveer una 

vista más cercana al nivel de implementación (PSM) de los modelos 

arquitectónicos. La tercera iteración de estas tareas se dedica a la definición de las 

reglas de transformación entre modelos (Transformaciones M2M en la Figura A-

2). Aunque estas tres iteraciones se describen aquí como secuenciales, en muchos 

momentos de la investigación realizada las tareas asociadas se han realizado de 

forma entrelazada. Además, algunos otros aspectos que son necesarios para 

completar el marco propuesto en esta Tesis se han realizado durante el proceso de 



238   MARCOS LÓPEZ SANZ 

 

investigación, como por ejemplo la implementación de la herramienta de 

modelado asociada al marco de especificación de arquitecturas descrito.  

Resolución

Validación

Diseño

Especificación

Implementación

Prueba

Diseño

Especificación

Implementación

Prueba

Diseño

Especificación

Implementación

Prueba

DSL de 
nivel PIM

DSLs
de nivel PSM

Transform. 
M2M

Diseño 
Técnico

Diseño 
Técnico

Diseño
Técnico

Caso de Estudio Caso de Estudio Caso de Estudio

 

Figure A-2.Vista general de la fase de „Resolución y Validación‟. 

Profundizando en cada una de las iteraciones, la tarea de ‗Especificación‘ 

se centra en la definición de los aspectos y características centrales necesarias para 

la construcción de los diferentes DSLs para arquitecturas de servicios propuestos y 

aquellos aspectos teóricos que permiten soportar el marco propuesto mediante 

servicios y a diferente nivel de abstracción. 

Después de una primera especificación de los metamodelos que permiten la 

especificación de las arquitecturas software, es necesario refiner dichos lenguajes 

y modelos así como progresar en la validación de los mismos. Esta validación se 

consigue siguiendo dos líneas de actuación diferentes. Por un lado, se require que 

el marco descrito esté soportado por una herramienta de modelado gráfico que 

facilite la definición de modelos arquitectónicos. Esta herramienta sirve tanto 

como entorno gráfico de modelado como de plataforma de validación los modelos 

y los metamodelos con los que se supone que son conformes y su eventual 

transformación a otros modelos. El proceso de diseño y su consiguiente 

implementación se consideran asimismo como pasos intermedios en cada 

iteración.  

La herramienta en sí misma puede considerarse como una prueba de 

concepto para los DSL creados ya que permite establecer, ejecutar y comprobar 

las reglas y restricciones que se han definido para cada lenguaje. Por otra parte, la 

viabilidad del marco propuesto y su aplicabilidad real se comprueba mediante su 

utilización en escenarios de casos de estudio del mundo real. 



 RESUMEN EN CASTELLANO   239 

 

Para concluir, los tres pasos mencionados anteriormente (especificación de 

los DSLs, diseño de la herramienta y comprobación mediante casos de estudio) no 

representan un proceso sencillo y directo sino que se realiza de forma iterativa 

permitiendo que la información fluya entre las tareas que lo componen con el fin 

de mejorar cada uno de los pasos de investigación. 

A.4 Conclusiones 

Esta tesis proporciona una serie de contribuciones, no sólo en el ámbito de 

la investigación planteada como punto de partida (la especificación de 

ArchiMeDeS como marco de modelado de arquitecturas software), sino también 

en relación con otros aspectos complementarios. Estas contribuciones se resumen 

a continuación: 

 

Especificación de un marco de trabajo para el desarrollo dirigido por 

modelos de Arquitecturas Software 

La principal contribución de esta Tesis ha sido el desarrollo de 

ArchiMeDeS, un marco de trabajo completo que permite la especificación de 

arquitecturas cuya principal característica se encuentra en el uso del paradigma 

SOC como base conceptual de la arquitectura. De las propuestas analizadas en 

este trabajo doctoral, pocas de ellas aprovechan los beneficios que el uso de 

servicios puede ofrecer a la hora de especificar arquitecturas software. En esta 

Tesis se ha definido una arquitectura de modelos para la especificación de 

arquitecturas software con el fin de reducir el salto existente entre las 

concepciones de alto nivel de las organizaciones de negocio y sus potenciales 

implementaciones desde el punto de vista arquitectónico. 

Las características de ArchiMeDeS contribuyen al establecimiento de una 

forma diferente de abordar la definición de arquitecturas software así como en el 

momento de establecer la relación entre el aspecto arquitectónico y otras 

consideraciones del desarrollo de sistemas software. El uso de modelos para este 

fin también facilita el entendimiento del nuevo sistema y los pasos y elementos 

que deben ser definidos como parte de dicho proceso de desarrollo. Esto se 

consigue a través de la definición de una gramática para arquitecturas concreta en 

la forma de distintos DSLs a diferentes niveles de abstracción. 

Tal y como se ha descrito en esta memoria de Tesis, el uso de MDA como 

aproximación fundamental a la especificación arquitectónica, con su propuesta de 

separación en niveles PIM/PSM, ofrece la oportunidad de diversificar la forma de 

implementar una solución software y permite facilitar potenciales migraciones del 

sistema o incluso cambiar la plataforma o tecnología de implementación escogida. 



240   MARCOS LÓPEZ SANZ 

 

El procedimiento inverso (obtener una representación PIM a partir de diferentes 

modelos PSM), aunque no ha sido considerada como parte de esta Tesis, también 

sería posible.  

Además, el marco desarrollado incluye la posibilidad de definir decisiones 

y restricciones arquitectónicas mediante estilos arquitectónicos. La novedad frente 

a otras propuestas radica en que, teniendo en cuenta que la arquitectura es 

construida con servicios, es posible dar soporte no sólo a estilos arquitectónicos 

tradicionales sino también a patrones de diseño que han surgido a partir de la 

utilización de servicios en el ámbito empresarial y que han conllevado la aparición 

de estrategias de diseño de entornos de servicios ampliamente documentadas [59]. 

Asimismo, tal y como se describe en la sección dedicada a las transformaciones de 

modelos arquitectónicos (Sección 3.2.3), ArchiMeDeS es un marco de trabajo lo 

suficientemente general como para soportar otros tipos de transformaciones 

arquitectónicas como pueden ser la fusión de elementos o la descomposición de 

los mismos atendiendo a otros criterios o con el fin de representar procesos de 

coordinación de servicios más complejos.  

 

Soporte para la generación semi-automática de arquitecturas dependientes de 

la plataforma mediante la utilización de un entorno gráfico de modelado 

La creación de un conjunto de herramientas de modelado para la definición 

de modelos y metamodelos se necesita con el fin de poder representar 

configuraciones arquitectónicas. Concebido inicialmente como una forma de 

comprobar que los modelos son conformes a los metamodelos de los que se 

pueden derivar, el desarrollo de estas herramientas sobrepasó las expectativas 

iniciales y se convirtió al final en una potente herramienta que no sólo soporta la 

edición gráfica de los modelos (utilizando un esquema en árbol o basado en UML) 

sino que también es una herramienta que permite comprobar la corrección de los 

modelos, la coherencia sintáctica de los metamodelos y, eventualmente, la 

validación de los modelos obtenidos como resultado de la ejecución de 

transformaciones entre modelos. 

La plataforma sobre la que se asienta la herramienta, Eclipse, demostró ser 

una elección adecuada para alcanzar los objetivos marcados en esta Tesis. Eclipse 

ha demostrado su utilidad a la hora de abordar tareas de modelado y 

metamodelado (mediante el uso de extensiones para Eclipse tales como EMF o 

GMF) pero también, y quizá sea un detalle más importante, ha permitido 

incorporar la definición de reglas de transformación (expresadas con ATL) dentro 

del propio entorno de modelado, de tal forma que se han podido (semi-

)automatizar los procesos de transformación definidos. Esta circunstancia fue 



 RESUMEN EN CASTELLANO   241 

 

posible gracias a la capacidad de la plataforma de ser fácilmente extendida con 

nuevas funcionalidades añadiendo, simplemente, una serie de módulos o plug-ins 

a la plataforma base de Eclipse. 

La transformación de modelos ha sido posible mediante la definición de 

procesos de transformación que abarcan desde simples transformaciones modelo-

a-modelo (en el caso de obtener el modelo PSM de la arquitectura de su 

correspondiente modelo PIM) hasta la posibilidad de definir un proceso de fusión 

completo que permita anotar los modelos PIM con información proveniente de 

modelos de estilos arquitectónicos. 

 

Definición de un estudio del estado del arte en el ámbito de tres disciplinas de 

ingeniería con una importancia creciente en la actualidad 

La tarea de aunar las características de los tres pilares en los que se asienta 

la Tesis presentada ha requerido partir de diferentes premisas: por un lado, los 

criterios seleccionados necesitaban ser lo representativos en el contexto de la 

especificación de arquitecturas; por ejemplo, en referencia al rol otorgado a la 

Arquitectura en un proceso de desarrollo (en el contexto de MDD) o el paradigma 

base utilizado para describir la arquitectura (en el contexto de SOC). Por otro lado, 

los criterios utilizados debían ser lo suficientemente significativos para poder 

clasificar las diferentes aproximaciones que las iniciativas de investigación. Tal es 

el caso, por ejemplo, de la identificación del nivel de abstracción al cual se 

considera la especificación de la arquitectura o la aproximación de modelado 

seguida por iniciativas dirigidas por modelos. Además, es importante remarcar que 

la investigación llevada a cabo durante la realización de esta Tesis hereda las 

cuestiones y soluciones derivadas del marco metodológico en el que se enmarca 

ArchiMeDeS. Los trabajos previos de investigación resultaron en la identificación 

de aspectos que necesitaban ser resueltos mediante MDE, SOA o especificaciones 

arquitectónicas. La experiencia previa en estos ámbitos también condicionó la 

selección de los criterios realizada. 

El resultado ha sido, por un lado, la definición de un conjunto 

representativo de criterios que permite la identificación de las diferentes 

propuestas que están relacionadas, de alguna forma, con los temas contenidos en 

la Tesis; y, por otro lado, la realización de un análisis del estado del arte al 

respecto incluyendo aquellas iniciativas más relevantes en este contexto.  

En  resumen, la realización del estado del arte no sólo representa uno de los 

primeros intentos de identificar las características deseables de la propuesta 

condensada en ArchiMeDeS. Además, este estudio ha permitido reconocer la 

necesidad de incorporar, conjuntamente, las aproximaciones de modelado actuales 



242   MARCOS LÓPEZ SANZ 

 

(como MDA), los aspectos claves del software como forma de guiar los procesos 

de desarrollo (como la especificación de la Arquitectura) y los paradigmas de 

computación que más se están extendiendo en la actualidad (como es el caso de 

SOC) con el fin de obtener éxito en el ámbito de la Ingeniería del Software. 

 

Implementación de un caso de estudio real y plenamente funcional derivado 

de la investigación en neuromedicina 

Finalmente, la última contribución se refiere al principal caso de estudio 

que se ha utilizado para validar la propuesta de la Tesis. El sistema GESiMED 

representa un ejemplo real en el que los aspectos primordiales descritos en la Tesis 

pueden utilizarse obteniendo resultados altamente positivos. De esta forma, 

ArchiMeDeS se utiliza como forma de ofrecer una respuesta tecnológica a las 

necesidades de negocio detectadas en un ámbito concreto como es el de la 

investigación con neuroimágenes, tal y como lo demuestran algunas publicaciones 

al respecto ([96]). 

Mediante la utilización de una aproximación dirigida por modelos para la 

especificación de la arquitectura de GESiMED se facilita la posible migración de 

dicho sistema de una plataforma a otra. Esta circunstancia es viable debido a la 

posibilidad de definir la arquitectura del sistema a con un nivel de abstracción 

suficiente (PIM) de tal forma que puede ser adaptado a diferentes plataformas de 

implementación (TDM). Además, las capacidades provistas por ArchiMeDeS para 

la inclusión de estilos arquitectónicos en el modelo arquitectónico, facilita la 

adaptación del sistema a las restricciones de negocio concretas que suelen darse en 

el contexto de la investigación en neurociencias, por ejemplo, debido a requisitos 

de carga del sistema. 

 



 

 

 

APPENDIX B. BIBLIOGRAPHY AND ONLINE 

RESOURCES 

Appendix B: 

Bibliography 

and Online Resources 





 BIBLIOGRAPHY AND ONLINE RESOURCES   245 

 

Bibliography 

[1] Abeti, L., Ciancarini, P. & Moretti, R. (2006). A Service Oriented Approach to 

Model a Grid System for the Civil Protection. In Proceedings of the International 

Workshop on complex Network and Infrastructure Protection. Rome (Italy). 

[2] Acuña, C. J. (2007). PISA – Arquitectura de integración de portales Web: un 

enfoque dirigido por modelos y basado en servicios Web semánticos. PhD Thesis. 

Rey Juan Carlos University. 

[3] Acuña, C., Marcos, E., de Castro, V., & Hernández, J.A. (2004). A Web 

Information System for Medical Image Management. In Barreiro, JM, Martín-

Sánchez, F., Maojo, V., Sanz, F. (eds.), International Symposium on Biological 

and Medical Data Analysis (pp.49-59). LNCS 3337. Springer-Verlag. 

[4] Aiello, M. & Dustdar, S. (2006). Service Oriented Computing: Service 

Foundations. In Proceedings of the Dagstuhl Seminar 2006. Service Oriented 

Computing, vol. 05462. Germany. 

[5] Akerman, A., Tyree, J., & Coglianese, L. (2004). An Architecture Process for 

System Evolution. Enterprise Architect Magazine. vol. 2 (1). www.ftponline.com 

/ea/magazine/spring/features/aakerman  

[6] Allen, R. (1997). A Formal Approach to Software Architecture. Ph.D. Thesis. 

Carnegie Mellon University. CMU Technical Report CMU-CS-97-144.  

[7] Allilaire, F., Idrissi, T. (2004). ADT: Eclipse Development Tools for ATL. 

EWMDA-2. Kent. Retrieved from: http://www.cs.kent.ac.uk/projects/kmf/ 

mdaworkshop/   

[8] Alti, A., Khammaci, T., Smeda, A., Bennouar, D. (2007). Integrating Software 

Architecture Concepts into the MDA Platform. In Proceedings of ICSOFT‟07 

(SE) (pp. 144-149). 

[9] Amir, R. and Zeid, A. (2004). An UML Profile for Service Oriented 

Architectures. Companion to the 19th Annual ACM SIGPLAN Conference on 

Object-Oriented Programming, Systems, Languages, and Applications, 

OOPSLA‟04 (pp. 192–193) 

[10] Andrews, T., Curbera, F., Dholakia, H., Goland, Y., Klein, J., Leymann, F., Liu, 

K., Roller, D., Smith, D., Thatte, S., Trickovic, I., Weerawarana, S. (2003). 

Business Process Execution Language for Web Services (BPEL), Version 1.1 

Specification. BEA Systems, IBM Corp., Microsoft Corp., SAP AG, Siebel 

Systems. 

[11] Arsanjani A. (2008). Toward a pattern language for Service-Oriented 

Architecture and Integration. IBM DeveloperWorks site. Retrieved from 

www.ibm.com/developerworks/webservices/library/ws-soa-soi/.  

[12] Arsanjani, A., Ghosh, S., Allam, A., Abdollah, T., Ganapathy, S. and Holley, K. 

(2008). SOMA: A method for developing service-oriented solutions. Published 

online August 6, 2008. IBM Systems Journal. Vol. 47 (3). 

http://www.ibm.com/developerworks/webservices/library/ws-soa-soi/


246   MARCOS LÓPEZ SANZ 

 

[13] ATOS (2007). SeCSE methodology, Version 3, IST European Integrated Project 

SeCSE, 6th Framework Programme, Deliverable A5.D4.2, available online at 

http://secse.eng.it/wp-content/uploads/2007/08/a5-d4-2-secse-ethodologyversion-

3.pdf 

[14] Autili, M., Cortellessa, V., Di Marco, M. and Inverardi, P. (2006). A Conceptual 

Model for Adaptable Context-aware Services. In Proceedings of Web Services 

Modeling and Testing (WS-MaTe 2006), Palermo, Sicily, Italy. 

[15] Avison, D., Lan, F., Myers, M. y Nielsen, A. (1999). Action Research. 

Communications of the ACM, 42(1), pp. 94-97. 

[16] Baresi, L., Heckel, R., Thone, S., and Varro, D. (2003). Modeling and validation 

of service-oriented architectures: Application vs. style. In Proc. ESEC/FSE 2003, 

Helsinki, Finland.. 

[17] Barros, A., Decker, G., Dumas, M. (2006). Multi-staged and Multi-viewpoint 

Service Choreography Modelling. Technical Report 4668, Queensland Univ. of 

Technology. 

[18] Bass, L., Clements, P., and Kazman, R. (2003). Software Architecture in 

Practice. Addison-Wesley, 2nd edition. 

[19] Berners-Lee, T., Fielding, R., Masinter, L. (1998). Uniform Resource Identifiers 

(URI): Generic Syntax, IETF RFC 2396. http://www.ietf.org/rfc/rfc2396.txt 

[20] Bernstein, P A. (2003). Applying Model Management to Classical Meta Data 

Problems. In proc. of 1st Biennial Conference on Innovative Data Systems 

Research, CA, USA.  

[21] Bézivin, J. (2004). In search of a Basic Principle for Model Driven Engineering. 

Novatica/Upgrade, Vol. 2, pp. 21-24. 

[22] Bezivin,, J. and Jouault, F. (2005). Using ATL for Checking Models. In Proc. of 

GraMoT 2005. LNCS Vol. 152, pp. 69-81. 

[23] Bézivin, J., Bouzitouna, S., Del Fabro, M., Gervais, M. P., Jouault, F., Kolovos, 

D., et al. (2006). A Canonical Scheme for Model Composition. Paper presented 

at the European Conference on Model Driven Architecture - Foundations and 

Applications (ECMDA-FA'06), Bilbao, Spain. 

[24] Bézivin, J., Büttner, F., Gogolla, M., Jouault, F., Kurtev, I., & Lindow, A. (2006). 

Model Transformations? Transformation Models! In Proc. of the 9th 

International Conference on Model Driven Engineering Languages and Systems, 

MoDELS 2006, Genève, Italy. 

[25] Blanc, X., Gervais, M.-P., & Sriplakich, P. (2005). Model Bus: Towards the 

Interoperability of Modelling Tools. Paper presented at the European MDA 

Workshop: Foundations and Applications, MDAFA 2004, Linköping, Sweden 

[26] Bollati V. A. (2011). MeTAGeM: un Entorno de Desarrollo de Transformaciones 

de Modelos Dirigido por Modelos. PhD Thesis. Rey Juan Carlos University, 

February 2011. 

[27] Bravetti, M., Zavattaro, G. Service Discovery based on Behavioural Contracts. In 

International School on Formal Methods for the Design of Computer, 



 BIBLIOGRAPHY AND ONLINE RESOURCES   247 

 

Communication and Software Systems: Web Services, SFM-09:WS. Revised 

Lectures, Bertinoro, Italy, June 1-6, 2009. 

[28] Broy, M. (2004). Model Driven, Architecture-Centric Modeling in Software 

Development. In Proceedings of 9th Intl. Conf. in Engineering Complex 

Computer Systems (ICECCS‟04), pp. 3-12, IEEE Computer Society. 

[29] Budinsky, F. et al. (2008). Eclipse Modeling Framework. 2nd Edition. Addison-

Wesley Professional. 

[30] Burge, J.E., Carroll, J.M., McCall R., Mistrík I. (2008). Rationale-Based 

Software Engineering. Springer-Verlag, Heidelberg. 

[31] Buttner, F., & Gogolla, M. (2004). Realizing UML Metamodel Transformations 

with AGG, In Proceedings of the Workshop on Graph Transformation and Visual 

Modelling Techniques (GT-VMT 2004), Barcelona, Spain 

[32] Bunge, M. (1979). La Investigación Científica. Barcelona: Ariel. 

[33] Cabrera, F., Copeland, G., Freund, T., Klein, J., Langworhty, D., Orchard, D., 

Shewchuk, J., Storey, T. (2002). Web Services Coordination (WS-Coordination). 

BEA Systems, International Business Machines Corporation, Microsoft 

Corporation. http://www-106.ibm.com/developerworks/library/ws-coor/ 

[34] Cabrera F., Copeland G., Freund T., Klein J., Langworhty D., Orchard D., 

Shewchuk J., Storey T. (2004). Web Services Transaction (WS-Transaction). 

IBM, BEA Systems, Microsoft, Arjuna, Hitachi, IONA. Retrieved from: 

www.ibm.com/developerworks/library/specification/ws-tx/ 

[35] Cáceres P., Marcos E. and Vela B. (2007). A MDA-Based Approach for Web 

Information System Development. Workshop in Software Model Engineering. 

http://www.metamodel.com/wisme-2003/ 

[36] Cáceres, P., de Castro, V., Vara, J.M., Marcos, E. (2006). Model Transformations 

for Hypertext Modeling on Web Information Systems. In Proceedings of the 21st 

Annual ACM Symposium on Applied Computing (SAC 2006) - Track on Model 

Transformation, Ed.: The Association for Computing Machinery, Inc. pp. 1232-

1239. 

[37] Carnegie-Mellon University, Software Engineering Institute. The Capability 

Maturity Model: Guidelines for Improving the Software Process, SEI Series in 

Software Engineering, Addison Wesley, 1995 

[38] Cicchetti, A., Ruscio, D. D., Eramo, R., & Pierantonio, A. (2008). Automating 

Co-evolution in Model-Driven Engineering. Paper presented at the 12th 

International IEEE Enterprise Distributed Object Computing Conference - 

EDOC 2008, München, Germany. 

[39] Clements P. (1996). A Survey of Architecture Description Languages, in 

Proceedings of the 8th International Workshop on Software Specification and 

Design, pp. 16-25. Germany, Mar. 1996. Schloss Velen, Germany, 22-23. 

[40] Clements P., F. Bachmann, L. Bass, D. Garlan, J. Ivers, R. Little, R. Nord and J. 

Stafford. (2002). Documenting Software Architectures, Views and Beyond. 

Pearson Education, Inc., Addison-Wesley, Bosto. 

http://www.metamodel.com/wisme-2003/


248   MARCOS LÓPEZ SANZ 

 

[41] Colombo, M., Di Nitto, E., Di Penta, M., Distante, D. and Zuccalà, M. (2005). 

Speaking a Common Language: A Conceptual Model for Describing Service-

Oriented Systems. In 3rd International Conference on Service Oriented 

Computing (ICSOC‟05), Amsterdam, the Netherlands. 

[42] Cox, W., Cabrera, F., Copeland, G., Freund, T., Klein, J., Storey, T., Thatte, S. 

(2002). Web Services Transaction (WS-Transaction). BEA Systems, International 

Business Machines Corporation, Microsoft Corporation. Available from: 

http://dev 2dev.bea.com/pub/a/2004/01/ws-transaction.html. 

[43] Cuesta, C. E., de la Fuente, P., Barrio-Solórzano, M., Beato, M. E. (2002). 

Introducing Reflection in Architecture Description Languages. In Proc. of WICSA 

2002, pp. 143-156. 

[44] Cuesta C. E., Romay M. P., de la Fuente P., Barrio-Solórzano M., Younessi H.: 

Coordination in Architectural Connection. Reflective and Aspectual Introduction. 

L'OBJET 12(1): 127-151 (2006) 

[45] Dardenne, A., van Lamsweerde, A., Fickas, S. (2003). Goal-directed 

Requirements Acquisition. Science of Computer Programming 20(1-2), pp. 3–50. 

[46] De Castro, V. (2007). Aproximación MDA para el desarrollo orientado a 

servicios de sistemas de información web: del modelo de negocio al modelo de 

composición de servicios web. PhD. Thesis, Rey Juan Carlos University, 2007. 

[47] De Castro, V., López-Sanz, M., Marcos, E. (2006). Business Process 

Development based on Web Services: A Web Information System for Medical 

Images Management and Processing. Proceedings of IEEE International 

Conference on Web Services. IEEE Computer Society. Ed.: F. Leymann, L.J. 

Zhang, pp. 807-814. 

[48] De Castro, V., Marcos, E., & Cáceres, P. (2004). A User Service Oriented 

Method to Model Web Information Systems. In Proc. of WISE‟04, Vol. 3306, pp. 

41-52. Springer-Verlag. 

[49] De Castro, V., Marcos, E. and Wieringa, R. (2009). Towards a Service-oriented 

MDA-Based Approach to the Alignment of Business Processes with it Systems: 

From the Business Model to a WS Composition Model. Int. Journal on 

Cooperative Information Systems. 18(2): 225-260. 

[50] De Castro, V., Vara, J. M., Herrmann, E. & Marcos, E. (2008). A Model Driven 

Approach for the Alignment of Business and Information Systems Models. Paper 

presented at the Proceedings of the 2008 Mexican International Conference on 

Computer Science, ENC'08. Mexicali, Baja California, Mexico 

[51] De Roure, D. et al (2003). The Semantic Grid: A Future e-Science Infrastructure, 

International Journal of Concurrency and Computation: Practice and 

Experience. Vol. 5. 

[52] Di Ruscio, D., Malavolta, I., Muccini, H., Pelliccione, P., and Pierantonio, A. 

(2010). Developing next generation ADLs through MDE techniques. In 

Proceedings of the 32nd ACM/IEEE International Conference on Software 

Engineering (ICSE 2010). Vol. 1. pp 85-94. Cape Town, South Africa.  



 BIBLIOGRAPHY AND ONLINE RESOURCES   249 

 

[53] Di Ruscio, D., Muccini, H., Pelliccione, P., Pierantonio, A. (2006). Towards 

Weaving Software Architecture Models. In Proc. MBD/MOMPES Workhops 

within the IEEE ECBS 2006, pp. 103-112 

[54] Didonet, M., Bézivin, J. and Valduriez, P. (2006) Weaving Models with the 

Eclipse AMW plug-in. Eclipse Modeling Symposium, Eclipse Summit Europe, 

Germany. 

[55] Didonet, M. (2007). Metadata management using model weaving and model 

transformation. Ph.D. Thesis. University of Nantes. 

[56] Dijkman, R. M. and Dumas, M. (2004). Service-Oriented Design: A Multi-

Viewpoint Approach. Int. J. Cooperative Inf. Syst. 13(4): 337-368. 

[57] Elleuch, N., Khalfallah, A., Ben Ahmed, S. (2007). ArchMDE: Approach for the 

Development of Embedded Real Time Systems. In Proc of Ada-Europe 2007, pp 

142-154. 

[58] Emmerich, W., Butchart, B., Chen, L., Wasserman, B., and Price, S. L. (2005) 

Grid-Service Orchestration Using Business Process Execution Language 

(BPEL), University College, London, CS Research Note RN/05/07. 

[59] Erl, T. (2005). Service-Oriented Architecture: Concepts, Technology, and 

Design. Upper Saddle River: Prentice Hall PTR. 

[60] Erl, T. (2008). SOA Principles of Service Design. Prentice Hall. ISBN 0-13-

234482-3 

[61] Erl, T. (2009). SOA Design Patterns. Prentice Hall. ISBN 0-13-613516-1 

[62] European Commission – Research. The Sixth Framework Programme (2002-

2006). Available at: http://ec.europa.eu/research/fp6/index_en.cfm. 

[63] European Commission – Research. The Seventh Framework Programme (2007-

2013). Available at: http://ec.europa.eu/research/fp7/index_en.cfm.  

[64] Farenhorst, R., Lago, P., and van Vliet, H. (2007). EAGLE: Effective Tool 

Support for Sharing Architectural Knowledge. International Journal of 

Cooperative Information Systems (IJCIS), 16(3/4):413--437 

[65] Favre, J. (2004). Towards a Basic Theory to Model Model Driven Engineering. 

Paper presented at the Workshop on Software Model Engineering, WISME 2004, 

joint event with UML2004, Lisbon, Portugal. 

[66] Feiler, P. H.,   Lewis, B. A. and Vestal, S. (2006). The SAE Architecture Analysis 

& Design Language (AADL) a standard for engineering performance critical 

systems. In 2006 IEEE Conference on Computer Aided Control System Design, 

2006 IEEE International Conference on Control Applications, 2006 IEEE 

International Symposium on Intelligent Control, pp. 1206-1211 

[67] Fiadeiro, J.L., Lopes, A., Bocchi, L. (2008). An Abstract Model of Service 

Discovery and Binding. 

[68] Fiadeiro, J.L., Lopes, A., Bocchi, L. (2006). The SENSORIA Reference Modelling 

Language: Primitives for Service Description. Available at www.sensoria-ist.edu.  

[69] Fielding, R. T. (2000). Architectural Styles and the Design of Network-based 

Software Architectures. PhD Thesis. University of California-Irvine. 

http://ec.europa.eu/research/fp6/index_en.cfm
http://ec.europa.eu/research/fp7/index_en.cfm
http://www.sensoria-ist.edu/


250   MARCOS LÓPEZ SANZ 

 

[70] Fielding, R., Gettys, J., Mogul, J., Frystyk, H., Masinter, L., Leach, P., Berners-

Lee, T. (1999). Hypertext Transfer Protocol -- HTTP/1.1; RFC 2616. 

[71] Foster, H., Uchitel, S., Magee, J., Kramer, J. (2006). WS-Engineer: A Tool for 

Model-Based Verification of Web Service Compositions and Choreography, 

IEEE International Conference on Software Engineering (ICSE 2006), Shanghai, 

China. 

[72] Foster. I. Globus Toolkit Version 4: Software for Service-Oriented Systems 

(2003). IFIP International Conference on Network and Parallel Computing, 

Springer-Verlag LNCS 3779, pp 2-13. 

[73] Foster, I. and Kesselman, C. (1999). The Grid: Blueprint for a New Computing 

Infrastructure. Morgan Kaufmann. ISBN 1558604758 

[74] Foster, I., Frey, J., Graham, S., et al., (2004). Modeling Stateful Resource with 

Web Services. 

[75] Foster, I., Kesselman, C. and Tuecke, S. (2001). The Anatomy of the Grid: 

Enabling Scalable Virtual Organizations. International J. Supercomputer 

Applications, 15(3). 

[76] Foster, I., Kesselman, C., Nick, J. and Tuecke, S. (2002). The Physiology of the 

Grid: An Open Grid Services Architecture for Distributed Systems Integration. 

Open Grid Service Infrastructure WG, Global Grid Forum. 

[77] Fowler, M. (2005). Language Workbenches and Model-Driven Architecture. 

Retrieved from http://martinfowler.com/articles/mdaLanguageWorkbench.html 

[78] Frankel, D. et al. (2003) The Zachman Framework and the OMG's Model Driven 

Architecture White paper. Business Process Trends. 

[79] Frankel, D. (2002). Model Driven Architecture: Applying MDA to Enterprise 

Computing. John Wiley & Sons, New York, USA. 

[80] French, W.L. and Bell, C.H. Jr. (1996). Desarrollo organizacional (quinta 

edición). Prentice-Hall, Naucalpán de Juárez, México. 

[81] Fujitsu-Arjuna. (2003). WS-CF: WS-Coordination Framework, Oracle IONA, 

Sun. 

[82] Gannon, P. and Bratt, S. Memorandum of Understanding between OASIS and 

W3C. Document available at http://www.w3.org/Submission/2006/01/w3c-oasis-

cgm-final-051215.pdf. Dec 2005. 

[83] Garlan, D., Monroe, R., and Wile, D. (1997). ACME: An Architecture 

Description Interchange Language. In Proc. Conf. Centre for Advanced Studies 

on Collaborative Research, CASCON'97. pp 169–183. Toronto, Ontario, Canada. 

[84] Gerber, A., Lawley, M., Raymond, K., Steel, J., Wood, A. (2002). 

Transformation: The Missing Link of MDA. In proc of Intl. Conf. on Graph 

Transformation 2002. pp 90-105. 

[85] The Global Grid Forum: http://www.gridforum.org/  

[86] Gordijn, J. and Akkermans, J. M. (2003). Value based requirements engineering: 

exploring innovative e-commerce idea. Requirements Engineering Journal 8(2), 

pp. 114 -134. Springer-Verlag.  

http://www.w3.org/Submission/2006/01/w3c-oasis-cgm-final-051215.pdf
http://www.w3.org/Submission/2006/01/w3c-oasis-cgm-final-051215.pdf


 BIBLIOGRAPHY AND ONLINE RESOURCES   251 

 

[87] Gomaa, H. (2005). Architecture-Centric Evolution in Software Product Lines. In 

Proc. of ECOOP‟2005 Workshop on Architecture-Centric Evolution (ACE‟2005), 

Glasgow. 

[88] Gómez, J., & Cachero, C. (2003). OO-H Method: extending UML to model web 

interfaces. In Information Modeling for Internet Applications (pp. 144-173): IGI 

Publishing. 

[89] Gönczy, L, Kovács, M, Varró, D. (2007). Modeling and Verification of Reliable 

Messaging by Graph Transformation Systems. Electr. Notes Theor. Comput. Sci. 

175(4): 37-50. 

[90] Gordijn, J., Akkermans, H. (2003). Value based requirements engineering: 

exploring innovative e-commerce idea. Requirements Engineering Journal Vol. 8 

(2), pp. 114–134. 

[91] Graham, S., Karmarkar, A., Mischkinsky, J., Robinson, I., Sedukhin, I. (2005). 

Web Services Resource Framework 1.2. OASIS WSRF-TC. 

[92] Greenfield, J., Short, K., Cook, S., Kent, S. (2004). Software Factories: 

Assembling Applications with Patterns, Models, Frameworks, and Tools. John 

Wiley & Sons. 

[93] Gronback, R. C. (2009). Eclipse Modeling Project: A Domain-Specific Language 

(DSL) Toolkit. Addison-Wesley Professional. 

[94] Hailpern, B., & Tarr, P. (2006). Model-driven development: The good, the bad, 

and the ugly. IBM Systems Journal, 45(3), 451-461 

[95] Heckel, R., Lohmann, M., Thöne, S. (2003). Towards a UML Profile for Service-

Oriented Architectures. In Proc. of Workshop on Model Driven Architecture: 

Foundations and Applications (MDAFA ‟03), University of Twente, Enschede. 

[96] Hernández, J.A., Acuña, C., de Castro, V., Marcos, E., López, M., Malpica, N. A. 

(2006). WEB-PACS for Multi-center Clinical Trials. IEEE Transactions on 

Information Technology in Biomedicine. Vol. 11 (1). pp. 87-93. 

[97] IEEE AWG. (2000). IEEE RP-1471-2000: Recommended Practice for 

Architectural Description for Software-Intensive Systems. IEEE Computer 

Society Press. 

[98] Inverardi, P., Muccini, H. and Pelliccione, P. (2005). DUALLY: Putting in 

Synergy UML 2.0 and ADLs. In 5th IEEE/IFIP Working Conference on Software 

Architecture (WICSA 2005). Pittsburgh, PA, 6-9. 

[99] ISO (International Standards Organization for Standardization) & IEC 

(International Electrotechnical Commission) (2003). ISO/IEC 9075:2003 

Information technology – Database languages – SQL:2003. 

[100] Ivers, J., Clements, P., Garlan, D., Nord, R., Schmerl, B. & Oviedo, J. (2004). 

Documenting Component and Connector Views with UML 2.0. Technical Report 

CMU/SEI-2004-TR-008, Sofware Engineering Institute, Carnegie Mellon 

University. Available: http://www.sei.cmu.edu/pub/documents/ 04tr008.pdf. 

[101] Jacobson, I., Booch, G., Rumbaugh, J. (1999). The Unified Software 

Development Process, Addison-Wesley, Reading, Mass. ISBN: 0-201-57169-2 



252   MARCOS LÓPEZ SANZ 

 

[102] Jia, X., Ying, S., Cao, H. and Xie, D. (2007). A New Architecture Description 

Language for Service-Oriented Architecture. In proc of GCC 2007, pp. 96-103  

[103] Johnston, S. (2005). UML profile for software services. IBM DeveloperWorks 

Site, http://www- 128.ibm.com/developerworks/rational/ library/05/419_soa/   

[104] Jouault, F. and Kurtev, I. (2005). Transforming Models with ATL. Model 

Transformations in Practice. Workshop at MoDELS Conference, Montego Bay. 

[105] Katz, S. (1993). A Superimposition Control Construct for Distributed Systems. 

ACM Trans. Program. Lang. Syst. 15(2): 337-356. 

[106] Kelly, S. (2005). XMI, MOF and MetaEdit+. Retrieved from: 

http://www.metacase.com/blogs/stevek/ 

[107] Kiczales, G.; Lamping, J., Mendhekar, A., Maeda, C., Lopes, C., Loingtier, J-M. 

and Irwin J. (1997). Aspect-Oriented Programming. Proceedings of the European 

Conference on Object-Oriented Programming, vol.1241. pp. 220–242. 

[108] Kleppe, A., Warmer, J., & Bast, W. (2003). MDA Explained: The Model Driven 

Architecture: Practice and Promise. Addison-Wesley. 

[109] Kloppmann M. et al. (2004). WS-BPEL Extension for People – BPEL4People, 

International Business Machines Corporation, SAP AG. Available from: 

ftp://www6.software.ibm.com/software/developer/library/ws-bpel4people.pdf. 

[110] Knapp, A., Koch, N., Moser, F., and Zhang, G. (2003). ArgoUWE: A CASE Tool 

for Web Applications. In Proc. 1st Int. Wsh. Engineering Methods to Support 

Information Systems Evolution (EMSISE‟03), Geneve, 14 pages. 

[111] Koch, N. (2001). Software Engineering for Adaptative Hypermedia Applications. 

PhD Thesis, FAST Reihe Softwaretechnik Vol(12), Uni-Druck Publishing 

Company, Munich. Germany. 

[112] Koch, N., Mayer, P., Heckel, R., Gönczy, L., Montangero, C. (2007). UML for 

Service-Oriented Systems. SENSORIA D1.4a. Available at www.pst.ifi.lmu.de 

/projekte/Sensoria/del_24/D1.4.a.pdf. 

[113] Kozlenkov, A., Fasoulas, V., Sanchez-Cid, F., Spanoudakis, G., Zisman, A. 

(2006). A Framework for Architecture-driven Service Discovery.  The 2006 

International Workshop on Service Oriented Software Engineering (IW-SOSE' 

06).  Shanghai (China). 

[114] Krafzig, D.; Banke K., Slama D. Enterprise SOA Service Oriented Architecture 

Best Practices. Upper Saddle River: Prentice Hall PTR. 2004 

[115] Kristensen, B. B. (1996). Object-Oriented Modeling with Roles. In Proc. of 

Object-Oriented Information Systems (OOIS‟95),  pp. 57-71. Springer-Verlag. 

[116] Krüger, I. H., Mathew, R. (2004). Systematic Development and Exploration of 

Service-Oriented Software Architectures. In Proc. of the 4th Working IEEE/IFIP 

Conference on Software Architecture (WICSA-04), pp. 177-187. Oslo, Norway. 

IEEE/IFIP.  

[117] Kulkarni, V. & Reddy, S. (2003). Separation of Concerns in Model-Driven 

Development. IEEE Software, 20(5), 64-69. 

[118] Kurtev, I. (2005). Adaptability of model transformations. PhD. Thesis. University 

of Twente, Enschede. Retrieved from http://purl.org/utwente/50761. 

ftp://www6.software.ibm.com/software/developer/library/ws-bpel4people.pdf


 BIBLIOGRAPHY AND ONLINE RESOURCES   253 

 

[119] LaLonde, W. and Pugh, J. (1991). Subclassing neq Subtyping neq Is-a. Journal of 

Object-Oriented Programming, 3(5):57–62. 

[120] Lohmann, M., Mariani, L., Heckel, R. A Model-Driven Approach to Discovery, 

Testing and Monitoring of Web Services. In Proc. of Test and Analysis of Web 

Services 2007, pp. 173-204. 

[121] López, M., Bosque, JL, de Castro. V., Marcos, E. (2007). A Comparative Study 

between Web Service and Grid Service Developments in a MDA Framework. In 

Proc. of ICEIS 2007, pp. 114-121. 

[122] López-Sanz, M., Acuña, C. J., Cuesta, C. E. and Marcos, E. (2007). Modelling of 

Service-Oriented Architectures with UML. Proceedings of the 6th International 

Workshop on the Foundations of Coordination Languages and Software 

Architectures (FOCLASA'07), 18th International Conference on Concurrency 

Theory (CONCUR 2007), pp. 21-36. 

[123] López-Sanz, M., Acuña, C. J., Cuesta, C. E. and Marcos, E. (2007). UML Profile 

for the Platform Independent Modelling of Service-Oriented Architectures. 

Proceedings of the 1st European Conference on Software Architecture (ECSA 

2007), LNCS 4758, Eds. F. Oquendo, pp. 304-307. ISBN: 978-3-540-75131-1.  

[124] López-Sanz, M., Qayyum, Z., Cuesta, C. E., Marcos, E., Oquendo, F (2008). 

Representing Service-Oriented Architectural Models using π-ADL. Emerging 

Research Paper. Proceedings of the 2nd European Conference on Software 

Architecture (ECSA‟08), LNCS 5292, pp.273-280. Eds. R. Morrison, D. 

Balasubramaniam, K. Falkner. ISBN: 978-3-540-88029-5. ISSN: 0302-9743. 

[125] López-Sanz, M., Acuña, C. J., Cuesta, C. E. and Marcos, E. (2008). Defining 

Service-Oriented Software Architecture Models for a MDA-based Development 

Process at the PIM-level. In Proc. of the Seventh Working IEEE/IFIP Conference 

on Software Architecture (WICSA 2008). Vancouver, BC, Canada. 

[126] López-Sanz, M., Vara J. M., Marcos E., Cuesta C. E. (2009). A Model-Driven 

Approach to Weave Architectural Styles into Service-Oriented Architectures. 

Proceedings of the First International Workshop on Model-Driven Service 

Engineering and Data Quality and Security (MOSE+DQS‟09), Hong Kong, 

China. D. Cheung, Il-Yeong Song, W. Chu, X. Hu, J. Lin, J.Li and Z. Peng. 

ISBN: 978-1-60558-816-2. 

[127] Lublinsky, B. (2007). Defining SOA as an architectural style: Align your 

business model with technology. IBM DeveloperWorks site. http://www-

128.ibm.com/developerworks/webservices/library/ar-soastyle/index.html. 

[128] Luckham, D. C., Kenney, J. J., Augustin, L. M., et al. (1995). Specification and 

Analysis of System Architecture Using Rapide. IEEE Trans. Software Eng. 

21(6): 576. 

[129] Magee, J. and Kramer, J. (1996). Dynamic Structure in Software Architectures. In 

Proc. of ACM/SIGSOFT FSE. San Francisco, SEN, Vol. 21(6), pp. 3-14. 

[130] Malavolta, I, Muccini, H, Pelliccione P. (2008). DUALLY: A framework for 

Architectural Languages and Tools Interoperability. In Proceedings of ASE 2008. 

pp. 483-484. 



254   MARCOS LÓPEZ SANZ 

 

[131] Mandel, L. (2009). Describe REST Web services with WSDL 2.0: A how-to 

guide. IBM DeveloperWorks. http://www.ibm.com/developerworks/webservices/ 

library/ws-restwsdl/ 

[132] Manset, D., Verjus, H., McClatchey, R., Oquendo, F. (2006). A Formal 

Architecture-Centric Model-Driven Approach For The Automatic Generation Of 

Grid Applications. In Proceedings of the 8th International Conference on 

Enterprise Information Systems, Paphos (Cyprus), 23 - 27. 

[133] Manset, D., Verjus, H., McClatchey, R., Oquendo, F. (2005). A Model-Driven 

Approach for Grid Services Engineering, 18th Int. Conf. of Software & System, 

Vol. 1, pp. 135-142. Paris, France. 

[134] Mansurov, N. and Campara D (2003). Extracting High-Level Architecture From 

Existing Code with Summary Models. In Proc. IASTED Conf. On Applied 

Informatics. Innsbruck, Austria. 

[135] Mansurov, N and Campara, D. (2004). Managed Architecture of Existing Code as 

a Practical Transition Towards MDA. UML Satellite Activities 2004: 219-233. 

[136] Marcos, E., Acuña, C. J., Cuesta, C. E. (2006). Integrating Software Architecture 

into a MDA Framework. In proc. of EWSA 2006, pp: 127-143. Nantes, France. 

[137] Marcos, E. and Marcos, A. (1998). An Aristotelian Approach to the 

Methodological Research: a Method for Data Models Construction. In: 

Information Systems- The Next Generation. Ed. L. Brooks y C. Kimble. Mc 

Graw-Hill, pp. 532-543. 

[138] Marjan, M., Jan, H. & Anthony, M. S. (2005). When and how to develop domain-

specific languages. ACM Computer Surveys, 37(4), 316-344. 

[139] Matinlassi, M. and Kalaoja, J. (2002). Requirements for Service Architecture 

Modeling, in Workshop of Software Modeling Engineering of UML 2002. 

Dresden, Germany. 

[140] Mattsson, A., Lundell, B., Lings, B., and Fitzgerald, B. (2009). Linking model-

driven development and software architecture: A case study. IEEE Transactions 

on Software Engineering, vol. 35 (1), pp. 83-93. Available from: 

http://dx.doi.org/10.1109/TSE.2008.87 

[141] Mayer, P, Baumeister, H. (2007). SENSORIA Project. Deliverable D7.4b: Report 

on the Sensoria CASE Tool. Description and Evaluation.  

[142] Mayer, P., Schroeder, A., Koch, N. (2008). UML4SOA: Model-Driven Service 

Orchestration. In proc. of. 12th Int. Enterprise Computing Conf. IEEE, Los 

Alamitos. 

[143] Mazón, J.-N., & Trujillo, J. (2008). An MDA approach for the development of 

data warehouses. Decission Support Systems, 45(1), 41-58. 

[144] McTaggart, R. (1991). Principles of Participatory Action Research. Adult 

Education Quarterly, 41(3). 

[145] Medvidovic, N., Rosenblum, D., Redmiles, D. and Robbins, J. (2002). Modelling 

Software Architectures in the Unified Modeling Language, ACM Transactions on 

Software Engineering and Methodology, vol. 11(1), pp. 2-57. 

http://dx.doi.org/10.1109/TSE.2008.87


 BIBLIOGRAPHY AND ONLINE RESOURCES   255 

 

[146] Medvidovic, N., Taylor, R. N. (2000). A classification and comparison 

framework for software architecture description languages. IEEE Transactions on 

Software Engineering, 26(1):70–93. 

[147] Medvidovic, N, Taylor, R. N. and Whitehead E. J., Jr. (1996). Formal Modeling 

of Software Architectures at Multiple Levels of Abstraction. In Proceedings of 

California Symposium 1996, pp. 28-40. 

[148] Mens, T. and Van Gorp P. (2006). A taxonomy of model transformation. Electr. 

Notes Theor. Comput. Sci., 152:125–142. 

[149] Michlmayr, A. Rosenberg, F., Platzer, C., Treiber, M., Dustdar, S. (2007). 

Towards Recovering the Broken SOA Triangle - A Software Engineering 

Perspective, In Proceedings of the 2nd International Workshop on Service-

oriented Software Engineering (IW-SOSWE'07), Dubrovnik, Croatia, ACM Press. 

[150] Mikkonen, T., Pitkänen, R., and Pussinen, M. (2004). On the Role of 

Architectural Style in Model Driven Development. In proc of EWSA‟04, pp. 74-

87, LNCS, 3047. 

[151] Miller, J., Mukerji, J. (2001). MDA Guide Version 1.0, OMG Document - 

omg/2003-05-01. 

[152] Milner, R. (1993). The Polyadic π-Calculus: A Tutorial. Logic and Algebra of 

Specification, Springer-Verlag,  

[153] Mitra, S., Kumar, R. and Basu, S. (2007) Automated Choreographer Synthesis for 

Web Services Composition Using I/O Automata. In Proc. of ICWS‟07. 

[154] Mizuta, S. and Huang, R. (2005), Automation of Grid Service Code Generation 

with AndroMDA for GT3. In IEEE CS Proceeding of the 1st International 

Workshop on Information Networking and Application (INA'05), pp. 417-420, 

Taiwan. 

[155] Molina-Espinosa, J. M., Fanchon, J., Drira, K. (2003). A Logical Model for 

Coordination Rule Classes in Collaborative Sessions. In Proc. of WETICE 2003. 

pp. 65-70. 

[156] Montero, F, Navarro, E. (2009). ATRIUM: Software Architecture Driven by 

Requirement. In Proc. of 14th IEEE International Conference on Engineering of 

Complex Computer Systems, pp.230-239. 

[157] Moore, B., Dean, D., Gerber, A., Wagenknecht, G., & Vanderheyden, P. (2004). 

Eclipse Development using the Graphical Editing Framework and the Eclipse 

Modeling Framework. IBM. 

[158] Moran, T.P. and Carroll, J.M. (1996). Design Rationale: Concepts, Methods and 

Techniques. Hillsdale, NJ: Erlbaum. 

[159] Navarro, E. (2007). Architecture Traced from Requirements applying a Unified 

Methodology, PhD Thesis, Computing Systems Department. 

[160] Navarro, E., Cuesta C. E. (2008). Automating the Trace of Architectural Design 

Decisions and Rationales Using a MDD Approach. In Proc. 2nd European 

Conference Software Architecture, LNCS 5292, Springer-Verlag, pp. 114-130. 



256   MARCOS LÓPEZ SANZ 

 

[161] Navarro, E., Cuesta, C. E., Perry, D. E. (2009). Weaving a network of 

architectural knowledge. In Proc. of WICSA/ECSA '09. Joint Working IEEE/IFIP 

Conf. on Soft. Arch., & European Conf. on Soft. Arch., pp. 241-244. 

[162] NEMA Foundation. (2003). DICOM 3.0: Digital Imaging and Communications 

in Medicine, http://medical.nema.org/dicom/2003.html/ 

[163] NEXOF Project. http://www.nexof-ra.eu/  

[164] NEXOF-RA Project Team. (2009). NEXOF-RA Model V2.0; Public Project 

Deliverable 6.2_v2.0. Available from: http://www.nexof-ra.eu/?q=rep/term/140 

[165] OASIS. (2007). Reference Model for Service Oriented Architecture. Committee 

draft 1.0. Available from: http://www.oasis-open.org/committees/download.php/ 

16587/wd-soa-rm-cd1ED.pdf  

[166] OASIS: Organization for the Advancement of Structured Information Standards. 

http://www.oasis-open.org/ 

[167] Ociepka, B. (2004). Defending the pick and roll. FIBA assist magazine, pp.31-34. 

[168] Ogrinz, M. Mashup Patterns: Designs and Examples for the Modern Enterprise. 

Ed. Addison-Wesley Professional. ISBN: 032157947 

[169] OMG, OASIS, The Open Group. (2009). Navigating the SOA Open Standards 

Landscape Around Architecture. Document-ad/09-08-21. Available at 

http://www.omg.org/cgi-bin/doc?ad/2009-08-21.  

[170] OMG. (2001). MDA Guide Version 1.0.1. Document number omg/2003-06-01. 

Available at: http://www.omg.org/docs/omg/03-06-01.pdf  

[171] OMG. (2001). Model Driven Architecture (MDA). Document No. ormsc/2001-

07-01. Available at: http://www.omg.com/mda. 

[172] OMG. (2001). The Meta Object Facility (MOF) Core Specification, Version 2.0. 

OMG Document - formal/06-01-01 

[173] OMG. (2003). Query/View/Transformation (QVT), Version 1.0. OMG Document 

- formal/08-04-03 

[174] OMG. (2001). Object Constraint Language Specification (OCL), Version 2.0. 

OMG Document - formal/2006-05-01 

[175] OMG. (2007). Unified Modelling Language (UML): Superstructure, Version 

2.1.1. OMG document - formal/2007-02-05. 

[176] OMG. (2007). XML Metadata Interchange (XMI) specification V2.1.1. OMG 

Document - formal/2007-12-01. 

[177] Open Grid Service Infrastructure v1.0 (OGSI). Obtained from http://www-

unix.globus.org/toolkit/draft-ggf-ogsi-gridservice-33_2003-06-27.pdf  

[178] Open Grid Services Architecture – OGSA. Obtained from 

http://forge.gridforum.org/projects/ogsa-wg/document/draft-ggf-ogsa-spec/en/23 

[179] Open Service Oriented Architecture Collaboration. Service Component 

Architecture Project. http://www.osoa.org/  

[180] Oquendo, F. (2004). π-ADL: An Architecture Description Language based on the 

Higher Order Typed π-Calculus for Specifying Dynamic and Mobile Software 

Architectures. ACM Software Engineering Notes, No. 3, May 2004. 

http://www.oasis-open.org/committees/download.php/%2016587/wd-soa-rm-cd1ED.pdf
http://www.oasis-open.org/committees/download.php/%2016587/wd-soa-rm-cd1ED.pdf
http://www.omg.org/docs/omg/03-06-01.pdf


 BIBLIOGRAPHY AND ONLINE RESOURCES   257 

 

[181] Paolucci, M., Srinivasan, N., Sycara, K., and Nishimura, T. (2003). Toward a 

Semantic Choreography of Web Services: From WSDL to DAML-S. In Proc. of 

ICWS'03. 

[182] Papazoglou, M. P. (2003). Service-Oriented Computing: Concepts, 

Characteristics and Directions. In Proc. of the Fourth International Conference 

on Web Information Systems Engineering (WISE'03), pp. 3-12. Roma, Italy. 

[183] Parnas, D. L. (1972). On the Criteria To Be Used in Decomposing Systems into 

Modules. Communications of the ACM, 15(12), 1053-1058. 

[184] Pastor, O., Molina, J.C. (2007). Model-Driven Architecture in Practice: A 

Software Production Environment Based on Conceptual Modeling. Springer-

Verlag. 

[185] Pautasso, C., Zimmermann, O., Leymann, F. (2008). RESTful Web Services vs. 

Big Web Services: Making the Right Architectural Decision. In Proc. of the 17th 

International World Wide Web Conference (WWW2008). Bejing, China. 

[186] Pérez J. (2006). PRISMA: Aspect-Oriented Software Architectures. PhD Thesis, 

Department of Information Systems and Computation, Polytechnic University of 

Valencia. 

[187] Perovich D., Bastarrica M. C., Rojas C. (2009). Model-Driven Approach to 

Software Architecture Design. In proceedings of the 4th International Workshop 

on Sharing and Reusing Architectural Knowledge, SHARK 2009, IEEE Computer 

Society, pages 1 – 8, Vancouver, Canada. 

[188] Perry, D. E. and Wolf, A. L. (1992). Foundations for the study of software 

architecture. ACM SIGSOFT Software Engineering Notes, 17(4), pp. 40-52. 

[189] Perry, D. E. (1998). Generic Architecture Descriptions for Product Lines. ARES 

II: Software Architectures for Product Families. Gran Canaria, Spain. 

[190] Pilato, C., Collins-Sunsman, B., & Fitzpatrick, B. (2008). Version Control with 

Subversion. O'Reilly Media. 

[191] PLASTIC Project. (2006). D1.2: Formal description of the PLASTIC conceptual 

model and of its relationship with the PLASTIC platform toolset. http://www-

c.inria.fr/plastic 

[192] Plaszczak, P. and Wellner, R. (2005). Grid Computing. Elsevier/Morgan 

Kaufmann, San Francisco. 

[193] Pressman, R. S. (2005). Software Engineering: A Practitioner's Approach: 6th 

Edition. Ed. McGraw Hill. 

[194] Remmert, H. (2003). Analysis of group-tactical offensive behavior in elite 

basketball on the basis of a process orientated model. EJSS, Vol. 3 (3), pp. 1-12. 

[195] Ren, X., Ong, M., Allan, G., Kadirkamanathan, V., Thompson, H.A. and 

Fleming, P.J. (2004). Service oriented architecture on the Grid for FDI 

integration. In Proc. of the 3rd UK e-Science All Hands Meeting (AHM 2004). 

Nottingham, UK. 

[196] Rennie M. W., Misic V. B. (2004). Towards a Service-Based Architecture 

Description Language. TR 04/08, Technical Report, University of Manitoba, 

Canada. 

http://www-c.inria.fr/plastic
http://www-c.inria.fr/plastic


258   MARCOS LÓPEZ SANZ 

 

[197] Royce W. W. (1970). Managing the Development of Large Software Systems: 

Concepts and Techniques. In Technical Papers of Western Electronic Show and 

Convention (WesCon). Los Angeles, USA. 

[198] Rozanski N. and Woods E. (2005). Software Systems Architecture: Working With 

Stakeholders Using Viewpoints and Perspectives. Addison-Wesley Professional. 

[199] Rumbaugh, J., Blaha, M., Premerlani, W., Eddy, F., Lorensen, W. (1991). Object-

Oriented Modeling and Design. Prentice Hall. ISBN 0-13-629841-9. 

[200] Sanchez, D.M., Cavero, J.M., Marcos, E. (2009). The Concepts of Model in 

Information Systems: a Proposal for an Ontology of Models. The Knowledge 

Engineering Review (KER). Vol. 24(1):5-21. Ed. Cambridge University Press. 

United Kingdom. ISSN: 0269-8889. 

[201] Sánchez Cuadrado, J. & García Molina, J. (2008). Approaches for Model 

Transformation Reuse: Factorization and Composition. Paper presented at the 1st 

International conference on Theory and Practice of Model Transformations 

(ICMT 2008). Zurich, Switzerland. 

[202] Schmidt, D.C. (2006). Guest Editor's Introduction: Model-Driven Engineering. 

Computer, vol. 39(2), pp. 25-31. 

[203] Seidewitz, E. (2003). What models mean. IEEE Software, 20(5):26–32. 

[204] Selic, B. (2003). The pragmatics of Model-Driven development. IEEE Software. 

Vol. 20(5), pp. 19-25. 

[205] Selic, B. (2008). Personal reflections on automation, programming culture, and 

model-based software engineering. Automated Software Engineering, 15(3), 379-

391 

[206] Sendall, S., & Kozaczynski, W. (2010). Model Transformation–the Heart and 

Soul of Model-Driven Software Development. IEEE Software, 20(5), 42-45 

[207] Service Centric Systems Engineering (SeCSE) Project. http://www.secse-

project.eu/  

[208] Shaw, M. and Garlan, D. (1996). Software Architecture: Perspectives on an 

Emerging Discipline. Prentice Hall. 

[209] Shaw, M. (1996). Procedure Calls Are the Assembly Language of Software 

Interconnection Connectors Deserve First-Class Status. In proc of Studies of 

Software Design, LNCS 1078, Springer-Verlag. 

[210] Smith M., Friese T., Freisleben B. (2006). Model Driven Development of 

Service-Oriented Grid Applications. In Proc. of the International Conference on 

Internet and Web Applications and Services, Guadeloupe, pp., IEEE Press. 

[211] SMPP Forum. SMPP v5.0 Specification. Available from 

http://www.smsforum.net/ 

[212] SOA Manifesto (2009). Accessible from: http://www.soa-manifesto.org/ 

[213] Software Engineering for Service-Oriented Overlay Computers (SENSORIA) 

Project. http://www.sensoria-ist.eu/  

[214] Spanoudakis, G, Zisman, A, Kozlenkov, A (2005). A Service Discovery 

Framework for Service Centric Systems. In Proc. of IEEE SCC 2005, pp. 251-

259. 

http://www.sensoria-ist.eu/


 BIBLIOGRAPHY AND ONLINE RESOURCES   259 

 

[215] Stahl, T., Volter, M., & Czarnecki, K. (2006). Model-Driven Software 

Development: Technology, Engineering, Management. John Wiley & Sons. 

[216] Szyperski, C., Gruntz, D. and Murer, S. (2002). Component Software: Beyond 

Object-Oriented Programming. Second Edition. Addison-Wesley / ACM Press, 

Boston. ISBN 0-201-74572-0  

[217] Tang, A., Babar, M.A., Gorton, I. and Han, J. (2006). A Survey of Architecture 

Design Rationale. Journal of Systems and Software, 79(12):1792-1804. 

[218] Taylor, R. N. Medvidovic, N., Anderson, K. M., Whitehead Jr. et al. (1996). A 

Component- and Message-based Architectural Style for GUI Software. IEEE 

Trans. Soft. Eng. Vol. 22 (6), pp. 390–406. 

[219] The Internet Engineering Task Force (IETF). http://www.ietf.org/ 

[220] The Open Group. (2003). The Open Group Architecture Framework (TOGAF) 

8.1 Enterprise Edition, Doc Number: G051.  

[221] Tikhomirov, A., & Shatali, A. (2008). Introduction to the Graphical Modeling 

Framework. Tutorial at the EclipseCON 2008. Santa Clara, California. 

[222] Tratt, L. (2005). Model transformations and tool integration. Software and 

Systems Modeling, Vol. 4 (2), pp. 112 - 122. 

[223] Uhl, A. (2008). Model-Driven Development in the Enterprise. IEEE Software. 

Vol. 25(1). 

[224] Valverde, F., P. Valderas, et al. (2007). OOWS Suite: Un Entorno de desarrollo 

para Aplicaciones Web basado en MDA. In Proc. of IDEAS‟07. Venezuela. 

[225] Vanhooff, B., Ayed, D., & Berbers, Y. (2006). A Framework for Transformation 

Chain Design Processes. Paper presented at the First European Workshop on 

Composition of Model Transformations - CMT 2006; European Conference on 

Model Driven Architecture (ECMDA-FA 2006), Bilbao, Spain. 

[226] Vara, J. M., Didonet Del Fabro, M., Jouault, F., & Bézivin, J. (2008). Model 

Weaving Support for Migrating Software Artefacts from AUTOSAR 2.0 to 

AUTOSAR 2.X. In proc. of ERTS 2008. Toulouse, France. 

[227] Vara, J. M. (2009). M2DAT: a technical solution for Model-Driven development 

of Web Information Systems. PhD Thesis, Rey Juan Carlos University, Madrid. 

[228] Vela B. (2003). MIDAS/BD: Una Metodología basada en Modelos para el 

Desarrollo de la Dimensión Estructural de Sistemas de Información Web. PhD 

Thesis, Rey Juan Carlos University, Madrid. 

[229] Völter, M. (2008). MD* Best Practices. Retrieved February 20, 2008, from 

http://www.voelter.de. 

[230] Vom Brocke, J. & Rosemann, M. (2010), Handbook on Business Process 

Management: Strategic Alignment, Governance, People and Culture 

(International Handbooks on Information Systems). Vol. 1. Springer-Verlag. 

[231] W3C. (2000). Resource Description Framework (RDF) Schema Specification 1.0. 

Brickley D., Guha, R.V. (Eds.). http://www.w3.org/TR/2000/CR-rdf-schema-

20000327/. 

[232] W3C. (2005). Web Services Addressing (WS-Addressing) Specification. 

http://www.w3.org/Submission/ws-addressing/ 

http://www.ietf.org/
http://www.voelter.de/


260   MARCOS LÓPEZ SANZ 

 

[233] W3C. (2004). Web Services Architecture (WSA). http://www.w3.org/TR/ws-

arch/ 

[234] W3C. (2005). Web Services Choreography Description Language (WS-CDL) 

Version 1.0. http://www.w3.org/TR/2005/CR-ws-cdl-10-20051109/  

[235] W3C. (2007). Web Services Description Language (WSDL) Version 2.0 Part 1: 

Core Language. R. Chinnici, J-J. Moreau, A. Ryman, S. Weerawarana (Eds.). 

Available at http://www.w3.org/TR/2007/REC-wsdl20-20070626. 

[236] W3C. (2002). Web Service Standards. http://www.w3.org/2002/ws/  

[237] Wada, H., Suzuki, J. and Oba, K. (2006). Modeling Non-Functional Aspects in 

Service Oriented Architecture. In Proc. of the 2006 IEEE International 

Conference on Service Computing. Chicago, IL. 

[238] WebRatio Site. WebRatio Development Studio: http://www.webratio.com 

[239] Weerawarana S., Curbera F., Leymann F., Storey T., and Ferguson D. F. (2005). 

Web Services Platform Architecture: SOAP, WSDL, WS-Policy, WS-Addressing, 

WS-BPEL, WS-Reliable Messaging, and More. Prentice Hall PTR. 

[240] Xiangyang, J., Shi, Y., Cao H., Xie, D. (2007). A New Architecture Description 

Language for Service-Oriented Architecture. In proc of GCC 2007, pp. 96-103. 

[241] Yin R. K. Case Study Research: Design and Methods. Fourth Edition. SAGE 

Publications. California, 2009. ISBN 978-1-4129-6099-1. 

[242] Zdun, U. and Dustdar, S. (2007). Model-Driven Integration of Process-Driven 

SOA Models. Intl. J. of Business Process Integration and Management. Vol. 

2(2): 109-119. 

[243] Zhang, T., Ying, S., Cao, S., Jia, X. (2006). A Modeling Framework for Service-

Oriented Architecture. Proceedings of the Sixth International Conference on 

Quality Software (QSIC 2006), pp. 219-226. 

[244] Zimmermann, O., Gschwind, T., Kuester, J., Leymann, F., Schuster, N. (2007). 

Reusable architectural decision models for enterprise application development. In 

Overhage, S., Szyperski, C., eds.: Quality of Software Architecture (QoSA) 2007. 

LNCS, Boston, USA, Springer-Verlag Berlin Heidelberg. 

 

http://www.w3.org/TR/ws-arch/
http://www.w3.org/TR/ws-arch/
http://www.w3.org/TR/2005/CR-ws-cdl-10-20051109/


 

 

 

APPENDIX C. ACRONYMS 

Appendix C: 

Acronyms 





 ACRONYMS   263 

 

Table of Acronyms  

ACRONYM DESCRIPTION 

AMW ATLAS Model Weaver 

ATL ATLAS Transformation Language 

CASE Computer Aided Software Engineering 

CBSE Component-Based Software Engineering 

CIM Computation Independent Model 

DSL Domain Specific Language 

EMF Eclipse Modelling Framework 

EMP Eclipse Modelling Project 

GMF Generic Modelling Framework 

GPL General Purpose Language 

IDE Integrated Development Environment 

M2M Model to Model 

MBSE Model-Based Software Engineering 

MDA Model-Driven Architecture 

MDD Model-Driven Development 

MDE Model-Driven Engineering 

MDSD Model-Driven Software Development 

MOF Meta-Object Facility 

OCL Object Constraint Language 

OGSA Open Grid Service Architecture 

OMG Object Management Group 

PDM Platform Dependent Model 

PIM Platform Independent Model 

PSM Platform Specific Model 



264   MARCOS LÓPEZ SANZ 

 

QoS Quality of Service 

QVT Query/View/Transformation 

RDF Resource Description Framework 

RDFS Resource Description Framework Schema 

REST REpresentational State Transfer 

SCA Service Component Architecture 

SLA Service Level Agreement 

SOA Service Oriented Architecture 

SOAP Simple Object Access Protocol 

SOC Service Oriented Computing 

SQL Structured Query Language 

TDM Technology Dependent Model 

URI Universal Resource Identifier 

UML Unified Modelling Language 

W3C World Wide Web Consortium 

WIS Web Information System 

WSA Web Services Architecture 

WSDL Web Services Description Language 

WSRF Web Service Resource Framework 

XML eXtensible Markup Language 

 


	RESUMEN
	ABSTRACT
	ACKNOWLEDGEMENTS
	TABLE OF CONTENTS
	LIST OF FIGURES
	LIST OF TABLES
	1. CHAPTER 1: introduction
	1.1 Motivation
	1.1.1 Model-Driven Development to tackle new Software Engineering needs
	1.1.2 The Service-Oriented Paradigm as Computational Foundation of Novel Engineering Processes
	1.1.3 The Role of Software Architecture in Service-Oriented Model-Driven Development

	1.2 Hypothesis and Research Objectives
	1.3 Research Context
	1.3.1 Methodological Research Scope
	1.3.2 Related Research Projects
	1.3.3 External Research Stay

	1.4 Research Method
	1.4.1 The Resolution and Validation stage

	1.5 Structure of the Dissertation

	2. CHAPTER 2: State of the Art
	2.1 Evaluation Criteria
	2.1.1 Issues related to Model-Driven Engineering
	2.1.2 Issues related to Service-Orientation
	2.1.3 Issues related to Software Architecture
	2.1.4 Summary of the evaluation criteria

	2.2 Related Works and Research Initiatives
	2.2.1 Using a Service-Oriented Approach for Software Architecture
	2.2.1.1 SOA-Reference Model and SOA-Reference Architecture of OASIS
	2.2.1.2 NEXOF-RA: the SOA Reference Architecture of NESSI
	2.2.1.3 The Web Service Architecture of the W3C
	2.2.1.4 The case of REST Web Services
	2.2.1.5 SOA from the perspective of the Community of Grid Computing
	2.2.1.6 The Service Component Architecture from the Open SOA Collaboration
	2.2.1.7 The Reference Architecture of The Open Group
	2.2.1.8 Summary

	2.2.2 Using a Model-Driven Approach for Software Architecture
	2.2.2.1 ATRIUM / PRISMA
	2.2.2.2 Mattsson et al.
	2.2.2.3 Mikkonen et al.
	2.2.2.4 Perovich et al.
	2.2.2.5 COSA
	2.2.2.6 DUALLY
	2.2.2.7 Mansurov et al.
	2.2.2.8 ArchMDE
	2.2.2.9 Summary

	2.2.3 Using both a Model-Driven Approach and Service-Orientation for Software Architecture
	2.2.3.1 SeCSE Project
	2.2.3.2 PLASTIC Project
	2.2.3.3 Project SENSORIA
	2.2.3.4 SOMA-ME: the proposal of IBM
	2.2.3.5 Other relevant works
	2.2.3.6 Summary


	2.3 Concluding Remarks

	3. CHAPTER 3: The ArchiMeDeS Framework
	3.1 General Approach and Framework Development Strategy
	3.1.1 Using Service Orientation as a Foundation for Software Architectures
	3.1.2 Using the MDA Approach for Software Architecture Development
	3.1.3 Selecting the approach for Software Architecture Modelling
	3.1.3.1 Representing Software Architectures using UML profiles
	3.1.3.2 Creating DSLs for Modelling Software Architectures
	3.1.3.3 Discussion: The Hybrid Approach

	3.1.4 Selecting a Tool Support and Modelling Environment
	3.1.5 Selecting the Target Platform for Service Architecture Modelling

	3.2 Modelling Architectures with ArchiMeDeS
	3.2.1 PIM Architectural Specification
	3.2.1.1 Abstract Syntax
	3.2.1.1.1 Service Providers
	3.2.1.1.2 Service Description: Identity, Operations and Roles.
	3.2.1.1.3 Service Interaction: Contracts and Interaction Patterns.
	3.2.1.1.4 Service Composition: Orchestrations and Choreographies.
	3.2.1.1.5 Service Taxonomy: Information, Interaction, Processing and Orchestration variants.
	3.2.1.1.6 Domain restrictions
	3.2.1.1.7 Additional considerations

	3.2.1.2 Concrete Syntax
	3.2.1.3 PIM DSL Summary

	3.2.2 PSM Architectural Specification
	3.2.2.1 PDM Abstract Syntax
	3.2.2.1.1 Service Agents: supporting infrastructure for services and resources.
	3.2.2.1.2 Resources: identifiable architectural entities.
	3.2.2.1.3 Services: active architectural elements.
	3.2.2.1.4 Service contracts: defining architectural interaction.
	3.2.2.1.5 On service types and its architectural relevance.
	3.2.2.1.6 On service composition.

	3.2.2.2 TDM Abstract Syntax: Web Services
	3.2.2.2.1 Resource (WSResource)
	3.2.2.2.2 Web Service (WSService)
	3.2.2.2.3 Service Interface (WSInterface)
	3.2.2.2.4 Service Contract
	3.2.2.2.5 Service role (WSRole)

	3.2.2.3 TDM Abstract Syntax: Grid Services
	3.2.2.3.1 Grid Services
	3.2.2.3.2 Grid Resources

	3.2.2.4 TDM Abstract Syntax: REST Services
	3.2.2.4.1 RESTAgents.
	3.2.2.4.2 REST Services
	3.2.2.4.3 REST Resources
	3.2.2.4.4 REST contracts

	3.2.2.5 Concrete Syntax
	3.2.2.6 PSM DSLs Summary

	3.2.3 Modelling DSL Transformations
	3.2.3.1 A Taxonomy of Model Transformations
	3.2.3.2 PIM-to-PSM Transformations
	3.2.3.2.1 Mapping Rules from PIM to PDM
	3.2.3.2.2 Mapping Rules from PIM to TDM: Web Services
	3.2.3.2.3 Mapping Rules from PIM to TDM: Grid Services
	3.2.3.2.4 Mapping Rules from PIM to TDM: REST Services

	3.2.3.3 PIM-to-PIM Transformations
	3.2.3.3.1 Development Strategy
	3.2.3.3.2 Traditional Architectural Style Modelling in ArchiMeDeS
	3.2.3.3.3 Definition of Architectural Styles within Service-Oriented Architectures
	3.2.3.3.4 Process for Weaving Architectural Styles into Service-Oriented Architectural Models



	3.3 ArchiMeDeS as part of an Architecture-Centric Model-Driven methodological framework
	3.3.1 Information Sources for Architectural Modelling
	3.3.1.1 Sources for PIM Architectural Modelling
	3.3.1.2 Sources for PSM Architectural Modelling

	3.3.2 Influence of Architectural Modelling over Other Development Concerns

	3.4 Concluding Remarks

	4. CHAPTER 4: The ArchiMeDeS Toolkit
	4.1 Toolkit Design Strategy and Architecture
	4.1.1 Conceptual Design
	4.1.2 Technical Design

	4.2 Module Implementation
	4.2.1 Modules for the Definition of the Abstract Syntax
	4.2.1.1 Metamodel Implementation with EMF

	4.2.2 Modules for the Definition of the Concrete Syntax
	4.2.2.1 Graphical Support with GMF

	4.2.3 Modules for Model Transformation
	4.2.3.1 Implementation of PIM-to-PSM transformations with ATL
	4.2.3.1.1 Implementation of ATL rules using the MeTAGeM framework

	4.2.3.2 Implementation of PIM-to-PIM transformations in AMW


	4.3 Concluding Remarks

	5. CHAPTER 5: Validation
	5.1 Using ArchiMeDeS for Architecting the GESiMED System
	5.1.1 Background of the GESiMED system
	5.1.2 GESiMED PIM Architecture
	5.1.2.1 Modelling Service Providers
	5.1.2.2 Modelling Services and Service properties
	5.1.2.3 Modelling Service Contracts
	5.1.2.4 Modelling Service Composition: Orchestration
	5.1.2.5 Modelling Architectural Style Superimposition

	5.1.3  GESiMED PSM Architecture
	5.1.3.1 GESiMED PDM Architecture
	5.1.3.2 GESiMED TDM Architecture: Web Services
	5.1.3.3 GESiMED TDM Architecture: Grid Services
	5.1.3.4 GESiMED TDM Architecture: REST Services


	5.2 Using ArchiMeDeS for Architecting a Basketball Game Setting
	5.2.1 Background on the simulated Basketball Game Setting
	5.2.2 Modelling Service Composition: Choreographies

	5.3 Using ArchiMeDeS for Architecting a SMPP Gateway
	5.3.1 Background on the SMPP gateway system
	5.3.2 Representation of Services and Service Operations in π-ADL
	5.3.3 Representation of Service Contracts in π-ADL
	5.3.4 Representation of Service Composition in π-ADL

	5.4 Concluding Remarks

	6. CHAPTER 6: Conclusions and Future Works
	6.1 Analysis of Achievements
	6.2 Main Contributions
	6.3 Scientific Results
	6.4 Future Works and Open Research Lines

	Appendix A. RESUMEN EN CASTELLANO
	A.1 Antecedentes
	A.2 Objetivos
	A.3 Metodología
	A.4 Conclusiones

	Appendix B. BIBLIOGRAPHY AND ONLINE RESOURCES
	Bibliography

	Appendix C. ACRONYMS
	Table of Acronyms


