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Abstract

There is a growing interest in promoting participation of lay stakeholders in
public decision making processes, possibly with the aid of Internet based systems.
This implies supporting non-sophisticated users and, consequently, developing user-
friendly, yet rigorous, participatory decision support methods. We outline a frame-
work to develop such methods based on interactive Pareto frontier visualization
combined with expression of preferences in terms of feasible goals and using feasi-
ble goal-based arbitration.
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1 Introduction

Possibly because of the almost ubiquitous presence of Internet, people are gradually
asking for further involvement in public policy decision making. The last few years have
brought numerous attempts to formalize and implement different approaches to facilitate
this process. As an example of active penetration of public opinion in political decision
making, we should mention participatory budgets, see e.g. Ŕıos et al. (2007). They
constitute an attempt to allow the general public to have a word and aid in deciding
and approving how public budgets, mainly in municipalities, are spent. However, no
formal negotiation or participatory decision support tools are usually employed, there
being little methodology available in this field. This problem is becoming more acute
as more complicated issues are being faced by the general public. As an example, the
concept of public participation is transforming policies, as may be seen, e.g., in the
European environmental directives which embody and promote public participation as
an integral element, see e.g. the Water Framework Directive (European Commission
Directive/2000/60/EC).

Information Technologies (IT) provide new potential to support dispersed stakehold-
ers, both geographically and socially. Indeed, many authors have dwelt on how Internet is
changing the way people interact with governments, see e.g. Browning (2002). However,
so far, most ideas relating Internet and politics have been directed towards facilitating
traditional political methods through IT as with electronic voting instead of voting with a
piece of paper. The most challenging goal, however, is to transform, rather than facilitate,
public decision-making processes, through the use of IT.

1Corresponding author. Tel.: +34 91 488 8132; fax: +34 91 488 7626 E-mail address: ro-
man.efremov@urjc.es
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There are already several examples of systems used or about to be used for public
decision-making support, see, for example, Ŕıos and Ŕıos Insua (2007), Castelletti and
Soncini-Sessa (2006) and Dietrich et al. (2006). Also, there are attempts of standardiza-
tion of the wide diversity of tools available, their inventory and their assembly under a
common basis, see French et al. (2007).

A participatory decision making process could be divided into two stages, once the
problem has been formulated. In the first stage, stakeholders express their preferences
in some form. In the second stage, such preference information is used to construct the
participatory decision. It is clear that the information should be provided to and extracted
from the stakeholders in a meaningful way at the first stage of participatory decision
processes. Therefore, emphasis should be placed on simplicity and user-friendliness. This
does not entail, however, neglecting rigorousness of the implemented methods.

It is important to remark that a description of the stakeholders’ interests will be
usually based on several performance indicators, an important feature of public decision-
making problems. As an example, we could demand that a municipal budget should
satisfy various needs of the local population like providing more safety, mitigate environ-
ment impact or increase employability. Knowing these needs facilitates the development
of several decision criteria that must be considered in the decision making problem.
Some key references in multicriteria optimization theory and methods include Keeney
and Raiffa (1976), Steuer (1986) or Miettinen (1999).

Given the above prerequisites, we describe a framework for participatory decision sup-
port. Our aim is to develop a user-friendly procedure potentially implementable on the
web that can collect information about the stakeholders’ preferences and transform this
information into a decision in a fair and transparent manner. The procedure must be
simple enough for lay stakeholders who, in general, will not be quantitatively sophisti-
cated. In particular, the preference information must be obtained from stakeholders in
an understandable way. On the other hand, such information must be sufficient to be
used in a rigorous arbitration scheme.

We propose here to restrict the preference information provided by the stakeholders
to their goals. Thanks to their simplicity, goal methods have found broad applications,
see e.g. Charnes and Cooper (1961), Ignizio (1985) or Romero (1991). However, goal
based methods have a disadvantage: if the feasibility information is unknown, the goals
may turn out to be too ambitious or too pessimistic. In the case of experts, this problem
may be not too important, since experts usually understand feasibility frontiers and are
able to locate their goals reasonably. However, it is virtually impossible to hope that lay
stakeholders will have such capacity.

To solve the problem, we suggest informing the stakeholders about the feasibility
frontier, which, in the framework of multicriteria optimization problems is the same as the
Pareto (non-dominated) frontier. This information should aid stakeholders in applying
goal-based methods comprehensively. Multicriteria optimization theory has provided
several ideas on how to inform decision makers about the Pareto frontier, see e.g. Cohon
(1978), Steuer (1986) or Miettinen (1999). Most of them are based on the presentation
of a list of feasible points in the criterion space, which approximate the Pareto frontier.
However, studying such large lists is usually cumbersome, even for experts, see Larichev
(1992). Clearly, it would be too complicated for lay stakeholders.

We simplify the process of informing the stakeholders about the Pareto frontier
through its visualization. When there are more than two criteria, visualization of the
Pareto frontier may be carried out through the Interactive Decision Maps (IDM) tech-
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nique, see Lotov et al. (2004a). The point of the Pareto frontier preferred by the decision
maker is often denoted as the feasible goal. Its identification, which is supported through
Pareto frontier visualization and leads to the associated decision, is known as the Fea-
sible Goals Method (FGM). The combination of FGM with IDM has been implemented
in several software systems which are simple graphical tools for decision support that in-
form users about the Pareto frontier on multicriteria decision problems and lead them to
the preferred decisions through goal identification. Some applications of the FGM/IDM
technique to support lay stakeholders on Internet are discussed in Lotov (2003).2

In our framework, we use the IDM technique to support stakeholders in identifying
their feasible goals. Since stakeholders supported by visualizing the Pareto frontier are
able to identify their feasible goals, we associate these with the maxima of the value
functions of stakeholders over the Pareto frontier. This interpretation of goals will be
used at the second stage of our procedure to construct a decision rule, through several
goal-based arbitration methods.

The outline of the paper is as follows. In Section 2, we describe general features
of our approach. Section 3 describes the IDM technique and its application to goal
identification. In Section 4, we describe arbitration schemes that can be applied with the
identified feasible goals. Section 5 describes some experimental results. We end up with
some discussion.

2 Description of the approach

In this section, we describe the key features of our approach. Remember that we divide
the decision process in two stages. First, the stakeholders express their preferences; then
arbitration is used.

Let us introduce some notation. Let X be the feasible decision set and f : X → Rd

be a mapping from X to the criterion space Rd: the performance of each feasible decision
x ∈ X is described by the criterion vector y = f(x), with d criteria yi. Y := f(X) is
called the feasible criterion set. We shall assume that X is compact and f : X → Rd is
continuous.

Without loss of generality, we shall assume that the criteria must be maximized. We
shall say that y dominates y′ (in a Pareto sense) if, and only if, y ≥ y′ and y 6= y′. The
Pareto frontier of Y is defined as

P (Y ) := {y ∈ Y : {y′ ∈ Y : y′ ≥ y, y′ 6= y} = ∅} .

Let Rd
−

be the non-positive orthant in Rd. The set H(Y ) = Y + Rd
−

is known as the
Edgeworth-Pareto Hull of Y . H(Y ) is the maximal set satisfying P (H(Y )) = P (Y ). Let
us denote the criterion point B(Y ), defined by Bj(Y ) := maxy∈Y yj, j = 1, . . . , d, as the
bliss point. Since Y is compact, the bliss point exists.

We shall assume that the k-th stakeholder preferences over criterion vectors y can
be described by a value function vk(y), where k = 1, . . . , K. However, we shall not
assume that we explicitly know the stakeholders’ value functions. Though constructing
the value function can be used to support negotiations over the web, see e.g. Kersten
et al. (2004), such methods may be too complicated for lay stakeholders, because of the

2The interested reader can find information about the FGM/IDM technique and download demo
software from www.ccas.ru/mmes/mmeda/soft. There is also a web implementation of the IDM technique
for finite choice, available at www.ccas.ru/mmes/mmeda/rgdb/index.htm.
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large volume of preference information that must be provided. For this reason we propose
an alternative method for eliciting preference information: stakeholders have to identify
their feasible goals, that is, their preferred feasible criterion points yk ∈ Y, k = 1, .., K. If
the assumption of the existence of the value function holds, the individual preferences of
the k-th stakeholder will lead to the individually preferred decision xk ∈ X that solves
the optimization problem

max vk(f(x)) s.t. x ∈ X, (1)

so that yk = f(xk). If the stakeholder’s value function vk(y) is increasing with respect
to Pareto dominance, that is, vk(y) > vk(y

′) if y ≥ y′, y 6= y′, the solutions of the
corresponding optimization problem (1) will be non-dominated, that is, yk ∈ P (Y ), k =
1, .., K, see Podinovski and Nogin (1982).

In our case, since the value functions vk(y) are not known, we cannot help the stake-
holders by solving their optimization problems (1). For this reason, the k-th stakeholder
will have to identify his preferred non-dominated point yk ∈ P (Y ) by himself. However,
in this process, the stakeholder is supported by the IDM technique, which informs him
about the Pareto frontier as described in the next section. Identification of the feasible
goals

{

yk
}

k=1,...,K
, as described above, forms the first stage of the procedure.

At the second stage, an arbitration method could be applied to select the participatory
decision on the basis of the feasible goals

{

yk
}

k=1,...,K
. A review of bargaining theory,

which provides the mathematical basis for arbitration methods is, for example, presented
in Thomson (1994). Bargaining theory focuses on outlining desirable properties of the
bargaining outcome and on how such outcome may be computed. Although various
solutions suggested in the theory can provide a model for arbitration processes, sometimes
it is difficult to apply them in practice, since this application usually assumes that value
functions of participants are provided. As argued above, this may be complicated in
the case of lay stakeholders. Instead, we adapt arbitration methods to deal with smaller
volumes of preference information.

We provide now a description of the IDM technique and, then, discuss several possible
arbitration schemes.

3 The IDM technique

3.1 Introduction to IDM

The IDM technique, see Lotov et al. (2004a) for details, develops an idea introduced by
Gass and Saaty (1955) for bi-criteria linear problems, showing that the visualization of
the Pareto frontier is possible and practical at least in that type of problems. The IDM
technique displays the Pareto frontier, for more than two criteria, through interactive
display of bi-criterion slices of the set H(Y ).

A bi-criterion slice is defined as follows. Let (y1, y2) designate two criteria, the so-
called ”axis” criteria, and z denote the remaining criteria, which we shall fix at z∗. A
bi-criterion slice of H(Y ), parallel to the criterion plane (y1, y2) and related to z∗ is defined
as

G(H(Y ), z∗) = {(y1, y2) : (y1, y2, z
∗) ∈ H(Y )}.

Note that a slice of H(Y ) contains all feasible combinations of values for the specified
criteria when the values of the remaining criteria are not worse than z∗.
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Bi-criterion slices of H(Y ) are used in the IDM technique to display decision maps. To
define a particular decision map, the user has to specify a ”third”, or colour-associated,
criterion. Then, a decision map is a collection of superimposed slices, for which the values
of the colour-associated criterion change, while the values of the remaining criteria are
fixed. If one compares the slices of H(Y ) for two different values of the colour-associated
criterion, the slice for the worst value of this criterion encloses the slice for its better
value. For this reason, frontiers of slices (trade-off curves) provided at a decision map do
not intersect. An example of a decision map for a convex H(Y ) is provided in Figure 3.1
coming from an agricultural planning problem, see Lotov et al. (2004a). A lake is used

Figure 1: A decision map (gray scale variant).

for irrigation purposes. It is also a recreational zone for nearby residents. The conflict
is described by three criteria: agricultural production, lake level, and lake pollution. In
Figure 3.1, the trade-off curves, production (y1) versus lake level (y2), are depicted for
several pollution (z) values. The constraints imposed on pollution are specified by the
gray scale located under the decision map. Any trade-off curve defines the limits of what
can be achieved. The internal trade-off curve, marked by points C and D, is related to
minimal, i.e. zero, pollution. The trade-off curve shows how the lake level is exchanged
for production, while pollution level remains at zero. Note that it is necessary to exchange
a substantial drop in the level (about 30% starting at point D) for a small increase in
production needed to achieve its maximal feasible value.

Note that as the pollution level increases, the production level increases as well. Nev-
ertheless, if the lake level is reasonably high, the trade-off curves are close to each other,
which means that, for these lake levels, even a substantial increment in pollution does
not result in economic advantages.

Let us discuss how the user may choose his goal on a Pareto frontier with the help of
IDM. It is known that a person is reasonably capable of identifying the goal at a trade-off
curve, e.g. at the curve CD in Figure 3.1, see Roy (1972). The user can choose a trade-off
curve by fixing the value of the (third) criterion represented with a coloured scale. He
would mentally change trade-off curves improving the value of the third criterion until he
finds that the values of both axis criteria become unjustifiably bad and, vice versa, would
improve values of the two axis criteria until the value of the third criterion is unjustifiably
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worsened. Once having found the appropriate trade-off curve, the user would proceed by
finding a compromise between the values of both criteria on the axis.

If there are more than three criteria, the user may specify the values of a fourth,
fifth and more criteria by applying scroll-bars, see Figure 3.1, that help to specify these
values manually. By moving scroll-bar sliders, the user can study how variations of these
values influence a decision map. The animation of decision maps, which is a display of
decision maps related to the automated changing value of, say, the fourth criterion, is
also possible. The rates of expansion, or contraction, of coloured slices on a decision map
inform the user about how the values and tradeoffs between the three criteria displayed
by the decision map change while a fourth criterion changes. As the fourth criterion is
represented with a scroll-bar, its deviation from its best value is also easily perceived.
Once having found the compromise between decision maps and values of the fourth and
fifth criteria, the user goes on with the analysis of a decision map.

In our study we restrict attention to convex H(Y ). Though decision maps for non-
convex H(Y ) have been developed, they look too complicated for lay stakeholders, see
Lotov et al. (2004a), who describes a possible way out by considering the convex hull of
a non-convex H(Y ), and then analyse this set.

3.2 Intelligibility of the IDM technique for lay stakeholders

As it has been mentioned, a key issue in tools supporting participatory decision making
is the way in which information is provided to stakeholders. To make information in-
telligible, user-friendliness and representation simplicity are required. Hence, the most
important question related with the application of the IDM technique is whether it is
effective, i.e. whether people are able to understand decision maps.

Information visualization is usually a very efficient approach to convey information
to stakeholders. McQuaid et al. (1999) suggest three key requirements to be met in
information visualization: simplicity, meaning easily understandable visualization; per-
sistence, meaning propensity to linger in the mind of the beholder; and, completeness,
meaning depiction of all relevant information in data.

In the case of IDM, these requirements seem to hold true due to the parallelism be-
tween decision and topographic maps: as trade-off curves do not intersect in decision
maps, they look like contour lines in a topographic map. Indeed, a value of the colour-
associated criterion, which is related to a tradeoff curve, plays the role of ground elevation
related with a contour line in a topographic map. One can recognize the combinations
of the ”axis” criteria that are feasible for a given restriction imposed on the value of the
colour-associated criterion (as ”places higher than...” or ”places lower than...”). More-
over, one can easily understand which values of the colour-associated criterion are feasible
for a given combination of the ”axis” criteria (as ”elevation of this place is between...”).
If the distance between trade-off curves is small, this means that a small move of the
trade-off curve requires a substantial change of the value of the colour-associated crite-
rion.

Based on experiments with university students, see Lotov et al. (1998), as well as on
our experiments outlined in Section 5, we conclude that the IDM technique is, indeed,
simple enough, at least for people with university background.
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3.3 Implementation aspects of the IDM technique

In the framework of IDM, H(Y ) is approximated in advance. Effective stable methods
for approximating a convex H(Y ) were proposed in Bushenkov and Lotov (1982), and
implemented in the IDM software, see Lotov et al. (2004a) for details.

Note that the approximation of H(Y ), which requires up to 99% of the computing
efforts, can be separated from the human-computer exploration of decision maps and
can be performed automatically. Moreover, slices of an approximation of H(Y ) can be
computed instantaneously. This feature of the IDM technique facilitates implementation
on computer networks and decision maps to be depicted and animated on-line. The tech-
nique is applied on the Internet through a web client-server architecture: approximating
the set H(Y ) is accomplished on a server, while exploration of the Pareto frontier is
carried out by means of Java applets on the user’s computer, as explained in Lotov et
al. (2004a, b). A scheme of an implementation of the IDM technique in the web is pro-
vided in Figure 2. A Java applet that can display decision maps in an interactive mode
is transmitted to the user’s computer. The applet can be used to identify the feasible
goal, too. After fixing the goal, it is transmitted to the web-server. If FGM is used, the
web-server computes the related decision alternative and provides it to the user, which
receives the goal-related decision almost immediately.

Lotov et al. (1999, 2001, 2004a) and Lotov (2003) provide applications of the IDM

Figure 2: Scheme of the Internet resource.

technique in public decision making problems. Dietrich et al. (2006) describe a real-life
application of the IDM technique on the web.

4 Arbitration methods based on feasible goals

4.1 Approaches to arbitration

The IDM technique can be used also for negotiation support, as proposed in Lotov et
al. (1998, 1999). These schemes implement the concept of Principled Negotiations, see
Raiffa (1982), that is, negotiations that focus on interests, rather than on particular
positions. To find a compromise solution in such negotiations, negotiators must develop
some concessions that may not directly appear in the model.

We propose here another way of using the IDM technique for participatory deci-
sion support. Unlike to the previous endeavours, we concentrate on finding a satisfactory
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arbitration scheme that automatically computes the decision, once the stakeholders’ pref-
erences are specified. We shall describe two possible types of arbitration schemes. The
first type is based on heuristics. In the second type, the feasible goal of the k-th partici-
pant is used to construct his surrogate value function, as we exemplify in Appendices 1
and 2.

4.2 Heuristic arbitration methods

Various heuristic arbitration schemes can be proposed based on the notion of feasible
goals. In this section we consider one class of heuristic rules that is sufficiently simple to
be understood by lay stakeholders, but has relevant properties. It is based on calculating
the gravity centre of the feasible goals and on subsequently maximizing a scalar objective
function.

The class of arbitration rules looks as follows. First, the gravity centre of the feasible
goals

{

yk
}

k=1,...,K
is calculated, i.e.

yg =
1

K

K
∑

k=1

yk. (2)

Since H(Y ) is convex, yg ∈ H(Y ). However, it will not usually be Pareto-optimal. Thus,
we have to refine the point yg to obtain a Pareto optimal point. To do it, we can use
various scalar objective functions ϕ(y, yg), which evaluate the gains by refining the gravity
centre yg. The arbitration decision xa can be found by solving the following optimization
problem

max
x∈X

ϕ(f(x), yg). (3)

The arbitration point in the criterion space is given by ya = f(xa).
The simplest scalar objective function is the linear one:

ϕl(y, yg) :=
d
∑

i=1

wi(yi − y
g
i ).

where w = (w1, w2, . . . , wd) is a vector of positive weights. The linear scalar objective
function is very sensitive to the shape of H(Y ) and to the weights, which must be given
in advance. Thus, the application of the linear scalar objective function may result in
an arbitration point ya, which has totally different proportions of the criteria values as
compared with the proportions of the gravity centre, see Appendix.

Another function that improves upon the gravity point is the scalar objective function
proposed by Germeier (1970):

ϕg(y, yg) := min
i=1,...,d

λi(yi − y
g
i ),

where λ = (λ1, . . . , λd) is a vector of positive weights, say, λi = 1 for all i = 1, . . . , d.
This function refines the gravity point in the sense of weak Pareto dominance, see Figure
3 where the Pareto frontier is given by the bold line and level contours of Germeier
function are given by ordinary lines, whereas the feasible goals of two stakeholders y1 and
y2, the gravity centre yg and the arbitration point ya are displayed by circles. Thus, the
proportions of the criterion values in the arbitration point cannot differ too much from
these proportions in the gravity centre.
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Figure 3: Improving the gravity centre with Germeier function (left) and Chebyshev
function (right)

Evidently, the arbitration point dominates the gravity centre. A minor disadvantage of
Germeier’s function is that the solution of the corresponding problem (3) is a weak Pareto
optimal decision. However, this disadvantage can be easily removed by adding a linear
expression ε

∑d
i=1(yi − y

g
i ) with a small positive parameter ε. The modified Germeier

function results in a Pareto optimal decision.
Another possible scalarizing function, which improves upon the gravity point, is the

Chebyshev distance from the bliss point, discussed in detail in Steuer (1986)

ϕCh(y,B(Y ), λ) := max
i=1,...,d

{λi(Bi(Y ) − yi)} . (4)

This function evaluates the deviation of y ≤ B(Y ) from the bliss point B(Y ). To refine
the gravity center yg, one simply needs to minimize the Chebyshev distance from the
bliss point for the weights, which are inverse to the coordinate-wise differences between
the bliss point and the gravity centre, i.e.

λi =
1

Bi(Y ) − y
g
i

,

where y
g
i is not equal to Bi(Y ) for i = 1, . . . , d. The level lines of this function are given

in Figure 3. One can see that improving the value of the Chebyshev function with such
parameter values results in refining the gravity centre in the sense of Pareto dominance.
Thus, the proportions of the criterion values in the arbitration point and in the gravity
centre cannot differ too much from each other, as in the case of Germeier’s function.

Another class of functions, which can improve the gravity point for constructing an
arbitration solution, is provided by Wierzbicki’s achievement scalarizing functions, see
Wierzbicki, (1982). Its simplest form is close to Germeier’s function:

ϕW (y, yg) := min
i=1,...,d

wi(yi − y
g
i ) + ρ

d
∑

i=1

wi(yi − y
g
i ),

where ρ is a positive value. If ρ is small, it coincides with the modified Germeier function.
Otherwise, Wierzbicki’s function acquires some properties that help to describe possible
substitution between criterion values.

Let us consider now some of the properties of the arbitration decision xa and ar-
bitration criterion point ya obtained resolving (3). As we have already said, for any
reasonable scalar function ϕ(y, yg) which is increasing with respect to Pareto dominance,
that is, y ≥ y′, y 6= y′ results in ϕ(y, yg) > ϕ(y′, yg), the solution of (3) is Pareto opti-
mal, see Podinovski and Nogin (1982). It is clear that the solution has the symmetry
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and anonymity properties (Thomson, 1994) because the gravity centre possesses such
properties.

In addition, the following important property holds: the solution is independent of
irrelevant alternatives. Namely, if X ′ ⊂ X such as xk ∈ X ′ for k = 1, . . . , K xa ∈ X ′

and B(f(X)) = B(f(X ′)), then xa is the solution of the arbitration procedure for the
problem, in which the feasible decision set X ′ is used instead of the set X. To prove it,
it is sufficient to note that the solution xa of (3) does not change if the set X ′ is used
instead of the set X.

4.3 Arbitration rules based on surrogate value functions

Another approach to construct arbitration schemes can be based on using the feasible
goals to approximate value functions. Such approach provides an opportunity to apply
the results from bargaining theory, see Thomson (1994).

Let us first describe the key concepts. We shall use the feasible goal yk provided
by the k-th stakeholder to identify the surrogate value function ṽk(y) used to model his
preferences. The surrogate value function of the k-th stakeholder ṽk(y) must be selected
from a class of parametric value functions ṽ(y, α) where α is a parameter vector that
belongs to some set. We use the word ”surrogate” to stress that the information about a
goal is not sufficient to identify the actual value function. Thus, we require that the class
of parametric value functions ṽ(y, α) is such that one can identify the parameter values
by using a single Pareto-optimal criterion point, namely, the feasible goal yk provided by
the stakeholders.

After identifying the surrogate value functions of all stakeholders, one can apply a
wide class of arbitration schemes, see e.g. Thomson (1994). Note, that this freedom for
selecting the surrogate value functions and arbitration schemes may, sometimes, result
in some undesirable properties of the arbitration points. We provide an example in
Appendix.

4.3.1 Constructing the surrogate value functions

In this section, we have to restrict ourselves to convex H(Y ) such that for any y ∈
P (H(Y )) the normal vector of P (H(Y )) at y is positive. This is satisfied, e.g., by poly-
hedral sets. Note that in the framework of IDM, H(Y ) is approximated as a polyhedral
set given by a system of linear inequalities.

Let us consider several examples of parameter identification for the surrogate value
functions based on feasible goals. The simplest example of a class of surrogate value
functions is given by the linear functions

ṽ(y, w) :=
d
∑

i=1

wiyi,

where w = (w1, . . . , wd) is a vector of positive weights which plays the role of parameters
for the linear value function. Since H(Y ) is linear and we use linear surrogate value
functions, the feasible goal of the k-th stakeholder yk must be a solution of the linear
programming problem

max
y∈H(Y )

ṽk(y, w). (5)

According to the Karush-Kuhn-Tucker (KKT) optimality condition, which is necessary
and sufficient in the linear case, w must belong to the cone of normal vectors of the
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supporting hyperplane for H(Y ) at the solution of (5). In the simplest case of a single
supporting hyperplane at yk (a single active linear constraint of H(Y ) in yk), it is sufficient
to select its normal vector ck for w to obtain yk ∈ P (Y ) as one of the solutions of
(5). When there are several active constraints (a cone of normal vectors to supporting
hyperplanes of H(Y ) exists at yk), one can use one of these vectors, say, the average of
the wedges of the cone.

Now, let us consider the surrogate value functions in the class of concave continuously
differentiable value functions. Again, we will identify parameters of such surrogate value
functions with the aid of the KKT condition: the gradient of the value function at the
optimal point yk must belong to the cone of normal vectors to supporting hyperplanes.
Let us assume, for simplicity, that H(Y ) has a single supporting hyperplane at yk. Let ck

be its normal vector. Then, the KKT optimality condition says that the vector ck must
be collinear with the gradient of the value function ṽk(y) of the k-th stakeholder at the
point yk ∈ P (Y ), i.e.

ck = bk

(

∂ṽk

∂y1

, . . . ,
∂ṽk

∂yd

)

, (6)

with bk a positive constant. ck is a positive vector since yk ∈ P (Y ) and H(Y ) is polyhe-
dral. Often this condition is sufficient to identify the parameters of the value function.

As an example, let us consider the value function ṽ(y, α) defined for yi > 0, i = 1, . . . , d
by

ṽ(y, α) :=
d
∏

i=1

yαi

i , 0 < αi < 1. (7)

The gradient of (7) at yk is

(

αiṽ(yk, α)

yk
i

, i = 1, . . . , d

)

.

Thus, the vector ck and the gradient of the value function are collinear if ck
i = bk αi

yk

i

, i =

1, . . . , d. Thus, one can take αi = ck
i y

k
i , i = 1, . . . , d. If there exists a cone of vectors of

supporting hyperplanes at the feasible goal yk, one can use the average vector of the cone
to identify the parameters of the function.

Specification of parameters for the Chebyshev function ϕCh(y,B(Y ), λ) introduced in
(4) is described in the next subsection, where an example of an arbitration rule based on
a surrogate value function is considered.

4.3.2 Arbitration based on averaging parameters of Chebyshev regret func-

tions

The goal-based arbitration rule applies the weighted Chebyshev function (distance) (4).
The individual goals of participants are considered as feasible criteria points, which pro-
vide the minima of individual Chebyshev distances from the bliss point. These distances
are interpreted as the regrets of participants related to the evidence that they cannot
obtain maximal values of all criteria simultaneously.

For a given parameter vector λ, the feasible point s(B(Y ), λ) closest to B(Y ) in the
sense of the Chebyshev function ϕCh(y,B(Y ), λ), can be found by solving

min
y∈H(Y )

ϕCh(y,B(Y ), λ). (8)
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Since Y is compact, the solution s(Y, λ) of (8) exists for any λ ∈ Rd
+. It is easy to see

that the Chebyshev function is non-decreasing with respect to Pareto dominance, that
is,

ϕCh(y,B(Y ), λ) ≥ ϕCh(y
′, B(Y ), λ) if y ≥ y′, y 6= y′.

Since H(Y ) is convex, one can prove that s(Y, λ) is unique and s(Y, λ) ∈ P (Y ).
Let us consider now the inverse problem: how to find parameters λk on the basis

of the given feasible goal point yk, k ∈ {1, . . . , K}. To do it, one needs to assure that
yk < B(Y ). As usual, see Steuer (1986), we guarantee this by considering a modification
of the bliss point

B∗

i (Y ) := Bi(Y ) + ǫi, i = 1, . . . , d,

where ǫi are small positive numbers. Let

λ0k
i :=

1

B∗

i (Y ) − yk
i

(9)

for i = 1, . . . , d. Note that λ0k
i ≤ 1

ǫi

. On the other hand, λ0k
i ≥ δi > 0, where

δi = min
y∈P (Y )

1

B∗

i (Y ) − yi

.

Let λk
max = maxi=1,...,d{λ

0k
i }. Then, we normalize the vector λ0k:

λk
i =

λ0k
i

λk
max

. (10)

Now we have 0 < δ ≤ λk
i ≤ 1, where δ = mini,j {δiǫj}, for all k ∈ {1, . . . , K}. Thus, in

this case the surrogate value function looks as follows

ṽ(y,B∗(Y ), yk) := − max
i=1,...,d

{

λk
i (B

∗

i (Y ) − yi)
}

.

Since yk ∈ P (Y ), it is the solution of (8), where instead of B(Y ), the point B∗(Y ) is
used. Moreover, the following equalities hold:

λk
i

(

B∗

i (Y ) − yk
i

)

= λk
j

(

B∗

j (Y ) − yk
j

)

(11)

for all pairs i, j = 1, . . . , d. Since the value of the Chebyshev function is interpreted as
the participant’s regret, the equalities (11) mean that the parameters λi, i = 1, . . . , d,
can be interpreted as the regret coefficients. They balance the regrets associated with
losses related to deviations from the bliss point for different criteria. Note that the only
normalized vector λk results in yk ∈ P (Y ).

We then propose the following arbitration rule. For each goal point yk, k = 1, . . . , K,
we consider the vector λk given by (9), (10). We, then, perform the following operations
to find the arbitration point:

1. Find the average vector of parameters (vector of average regret coefficients):

λa :=
1

K

K
∑

k=1

λk. (12)
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2. Find the arbitration decision xa by solving the problem

min
x∈X

max
i=1,...,d

{λa
i (B

∗

i (Y ) − fi(x))}

In the case of several optimal solutions of the problem, an additional procedure
may be needed to find a unique xa. Let ya = f(xa).

As for the case of heuristic arbitration schemes, the solution xa is Pareto optimal, sym-
metric and anonymous and is independent of irrelevant alternatives in the aforementioned
sense.

An illustration of the arbitration rule is given in Appendix.

5 Experiments

There are, basically, two critical issues concerning the application of the approach de-
scribed in this paper: one is related to the ability of lay stakeholders to understand the
IDM technique and identify their feasible goals. Another issue is the ability of stakehold-
ers to accept an arbitrated decision, however fair it could be. For the experimental study
of these issues, the technique was implemented as a web experiment, which was run with
different groups in Spain and Russia. We used arbitration based on Chebyshev regret
function.

There were three rounds of experiments. At a first round, the technique was tested
on a three-criterion problem of a university department budget elaboration problem, see
Efremov and Ŕıos Insua (2007). The participants in the experiment were the department
staff. All participants reported that they had managed the task. The average time from
entering the experiment until selecting a goal was about a quarter of an hour. Some
participants privately communicated their a priori preferences on the problem to the
experimenter. For example, one of the participants had a position that could be formu-
lated as follows: ”favour investigators and give students what remains”. Nevertheless,
they could see that their strong wish to follow their principled position, that is, a single
criterion optimisation, would bring them to an unreasonable solution, and they changed
their preferences when selecting the final goal. This evidence supports the inference that
the technique is intelligible in this particular decision-making problem.

Two other rounds of experiments were run on the basis of a five-criterion problem of
choosing a hostel in London by a group of friends for a joint trip3. We have prepared a
paper, see Efremov et al.(2008), with details of the experiments and related issues; here
we only sketch the issues relevant to the problem of intelligibility of the multicriteria tech-
nique and its role in the decision-making process. In the second round, experiments with
non-sophisticated users without mathematical or technical university education (sports-
men, first year students, musicians, etc.) were carried out. In the course of the experi-
ments the participants were proposed to understand the IDM technique without external
help. All first year students and musicians managed to understand the IDM technique
by themselves, though one third of the students reported difficulties in mastering the
technique. However, all sportsmen required support of the instructor. More than one
half of the participants (18 participants) assured that they would use the technique in fu-
ture. It is interesting that all sportsmen and musicians as well as 40% of students (about
2/3 of participants) used simplified strategies to select their goals, managing only two

3One can have a look at the web site of the experiment at http://refrenof.escet.urjc.es:8080/rgmas en/
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criteria (price and distance from the city centre) instead of the five given. Nevertheless,
the rest of participants seemed to consider all five criteria, thus taking fully into account
the multicriteria nature of the problem. In addition, it was found that the participants
experienced lack of user-friendliness working with the software.

The third round of experiments was run with senior applied mathematics students.
Starting from the assumption that these students can easily master the IDM technique,
the third round was devoted mainly to the study of the post-arbitration decision-making
procedures. Note that we do not consider the arbitration point we find to be some
kind of established truth. We assume that the solution(s) found at the arbitration stage
might help to support discussion or voting. The important issue here is that even if some
standard mechanism as voting is used to solve a particular participatory decision problem
after the procedure we have described in the paper, the participants would vote with a
deeper knowledge of the problem. Three different groups participated. The results of the
formal arbitration turned out to be very close to the alternative chosen by direct voting
by fifth year students who indeed planned to travel to London. The results of arbitration
for other (younger) groups were not so close to their final decision since their preferences
were changing in time. Note that even though the results of applying formal arbitration to
participant’s preferences were different from group to group, the final alternative, chosen
in an informal deliberation process, was the same in all cases. Thus, one could say, that
differences between the groups, which represent the same social environment, are smaller
than differences in arbitration results, which are very sensitive to the goals expressed
by the participants. This evidence stresses the importance of a thorough deliberation
process after applying any formal rule in order to obtain a robust result.

6 Conclusion

We have proposed a framework to support participatory decision making through web
that does not require too much sophistication from the participants. This is a scenario
that will be more and more usual as e-democracy tools are developed. Consequently,
techniques for supporting non-sophisticated decision makers are becoming increasingly
relevant. The framework goes through two stages: first, the stakeholders apply a simple
visual tool, the Interactive Decision Maps technique, which helps them to identify their
feasible goals; second, we use an arbitration rule to form the decision. The main original
feature of our approach consists of using preference information in the form of feasible
goals instead of full description of value functions. In this paper we showed that such
limited information can, however, be used in various heuristic and value function-based
arbitration schemes. Most classic arbitration rules can be applied if we use the goals to
construct surrogate value functions of stakeholders.

There are several issues that we are currently developing. Namely, we are running a
systematic experiment on the prototype web-based implementation of our framework. In
the experiments with non-sophisticated participants, we have found that most of them
are able to master the technique, though they may prefer to use simple self-developed
heuristics instead. However, about 20% of the people without mathematical or technical
background failed to understand the technique without being supported by an instructor.
This encourages us to refine the methods and software and run additional experiments.
We are also developing axiomatic foundations of the arbitration rules we apply.
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Appendix. Illustrative examples

Let us first consider an arbitration procedure based on the application of linear surrogate
value functions described in Subsection 4.3.1, i.e.

ṽ(y, w) :=
d
∑

i=1

wiyi,

where w = (w1, . . . , wd) is a vector of positive weights. We assume that H(Y ) is polyhe-
dral. The weights can be found by using the idea described in Subsection 4.3.1. Namely,
wk = ck, where ck is the vector defining the unique supporting hyperplane of H(Y ) at yk,
where k = 1, . . . , K. Let us assume that the vectors ck are normalized for all k = 1, . . . , K.
Since H(Y ) is polyhedral and yk ∈ P (Y ), we can assume that ck > 0 for all k = 1, . . . , K.

Let us assume that we use the utilitarian solution, see e.g. Thompson (1994), to
construct the arbitration scheme, i.e. we want to maximize

V (y) :=
K
∑

k=1

ṽk(y, wk).

Then, by using the KKT optimality condition, the vector

(

∂V

∂y1

, . . . ,
∂V

∂yd

)

=

(

∂
∑K

k=1 ṽk

∂y1

, . . . ,
∂
∑K

k=1 ṽk

∂yd

)

=
K
∑

k=1

ck

must belong to the cone of the vectors defining the supporting hyperplanes at the arbi-
tration point ya that maximizes the sum of the individual value functions. Let us denote
this vector by ca and consider the linear optimization problem (5) with wa = ca. The set
of its solutions contains the arbitration point ya.

This discussion suggests that the arbitration procedure based on the utilitarian solu-
tion could look as follows:

1. Find the support vectors ck for all goal points yk and normalize them.

2. Sum up the support vectors ck: ca :=
∑K

k=1 ck.
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3. Find the arbitration decision xa by solving the following optimization problem
maxx∈X ṽ(f(x), ca), where ṽ(f(x), ca) =

∑d
i=1 ca

i fi(x).

Should the solution of such optimization problem be not unique, an additional procedure
would be needed to define a unique decision xa.
Let us consider an example that shows that such arbitration rule has undesirable prop-

Figure 4: Illustration of the example with linear weights

erties. Consider first the case of two stakeholders and two criteria, see Figure 4. It is
assumed that the first stakeholder has identified the feasible goal y1, whereas the second
one has identified the goal y2. Let the goal y1 be located close to the kink point. It is
easy to realize that, due to the form of the Pareto frontier, the arbitration point ya is
given by the kink point ykink.
Let us increase now the number of stakeholders. Assume that all of them, except the first

one, have identified y2 as their feasible goal. However, this will not change the arbitration
point ya, even if the number of stakeholders tends to infinity. Thus, the participatory
decision is defined by the preferences of only one stakeholder.

This example shows that the combination of goal-based surrogate value functions
jointly with some arbitration principles may result in an unfair arbitration. Thus, a
detailed study of the properties of the arbitration schemes, which use surrogate value
function, is needed.

We provide now an illustrative application of the arbitration rule based on the Cheby-
shev function, by using the same example problem. In Figure 5 one can see the same
criterion points y1 and y2 as in Figure 4. However, the arbitration point for two stake-
holders, ya, does not coincide with the kink point. One can see now that the arbitration
point reflects the stakeholders’ preferences: it is located approximately between the in-
dividual goals. Let us consider the case of ten stakeholders. Assume, as in the case of
the linear surrogate function, that stakeholders with numbers 2 to 10 have identified y2.
Then, the arbitration point is given by point y10, which reflects the preferences of the
stakeholders: y10 is close to the goal identified by the majority of the stakeholders. Thus,
in this particular example, the arbitration rule based on the Chebyshev function is able
to somehow take votes into account and provide reasonable arbitration points.
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Figure 5: Illustration of the example with Chebyshev weights
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