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Abstract

We provide a Bayesian analysis for a class of models used to eval-
uate and forecast the reliability of complex hardware/software systems,
described through Reliability Block Diagrams. Blocks referring to hard-
ware components are modelled through Continuous Time Markov Chain
models, whereas blocks referring to software components are modelled
through a mixture of Software Reliability Growth models. Inference and
forecasting tasks with such models are described and illustrated with an
example.

Keywords: Reliability Block Diagram, Software Reliability Growth, Model
Selection, Continuous Time Markov Chains, Multinomial - Dirichlet model,
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1 Introduction

There is a growing interest in reliability analysis of systems composed of several
hardware and software (HW/SW) subsystems. This is specially important in
safety critical systems which, more and more frequently, appear in organiza-
tions, see Dale and Anderson (2009), Dunn (2003) or Cukic and Chakravarthy



(2000). As an example, consider a university resource planning system which fa-
cilitates access through Internet to users (students, lecturers, administrators,...)
to undertake various administrative processes (registering for a course, checking
a research project status, assessing the human resources policy,...). This system
would typically include an Internet server and a machine hosting the planner,
which will be a program built on top of a database system. Our aim is to
describe a class of models relevant in analyzing such complex systems.

Stemming from work by Goel and Soenjoto (1981), there has been interest in
HW/SW systems reliability. Many papers have used general Continuous Time
Markov Chains (CTMCs) models for such purpose, including Welke et al. (1995),
who incorporate a Nonhomogenous Poisson Process (NHPP) software reliability
model into a CTMC hardware reliability model. Pukite and Pukite (1998) and
Xie et al. (2004) describe simpler models for HW/SW reliability. Recently, more
sophisticated models have been developed, which take into account dependencies
or dynamic or functional aspects, through stochastic Petri nets, see e.g. Lollini
et al. (2009); Dynamic Reliability Block Diagrams (DRBDs), see e.g. Distefano
and Puliafito (2009); or modified Reliability Block Diagrams (RBDs), see e.g.
Levitin (2007).

The approach we adopt here combines several conventional models in a novel
way, see Trivedi (2001) or Trivedi et al. (2006) for related proposals. Specifically,
we assume that the HW/SW system may be described in terms of an RBD,
see e.g. Birolini (2007). Pending from each block, one may have standard
models, like those based on the exponential, or more sophisticated ones, based on
mixtures of Software Reliability Growth Models (SRGM), see e.g. Singpurwalla
and Wilson (1999), if it is a software component, or on a CTMC, see e.g. Ross
(2007), if it is a hardware component. Sharing of parameters allows us to model
some block dependencies. We provide Bayesian analysis for such models, thus
taking advantage of all information available.

In Section 2, we describe a general procedure to perform reliability fore-
casting with RBDs, taking into account uncertainty in block parameters, and
computational strategies to deal with complex systems. Section 3 describes is-
sues referring to software blocks with the aid of a novel mixture-based SRGM
selection strategy. As an illustration, we have included Power Law, Delayed
S-Shaped and Schneidewind models within our mixture model. In Section 4, we
show how to analyze hardware components, through CTMCs, with the aid of
phase-type distributions. Section 5 provides a realistic example which sketches
our university resource planning system. We end up with some discussion.

2 Reliability Forecasting with Reliability Block
Diagrams
We shall assume that we may model a complex HW/SW system through an

RBD, see Birolini (2007) for a full description: the system may be described
with ¢ blocks, some of them referring to HW components, the rest to SW com-



ponents. Let Ry, Ro, ..., R. be the corresponding block reliabilities. The under-
lying reliability model for block ¢ will depend on parameters 6;, so that we shall
actually have reliabilities conditional on parameters 6;, R;|0;, i = 1,2,...,¢. To
simplify the notation, we shall use @ = (61,65, ...,60.) when convenient. Some
of the 0; parameters might be shared between several blocks.

We assume we have a computational procedure f that allows us to compute
the system reliability R|@, conditional on 6, from the component reliabilities,
that is,

R|0 = f (R1|01, R2|02, ..., Rc|0.) . (1)

General results to approximate the system reliability from block reliabilities may
be seen in Ball (1995), including state-based and path and cut-based methods.
For simpler systems with only parallel and series connections, see Monga and
Zuo (2001).

Example. The following diagram, shown in Figure 1, provides a sketch of the
Rey Juan Carlos University resource planning system, composed of an Internet
server, connected in series with an Enterprise Resource Planner (ERP), which
comprises the ERP infrastructure (typically a load balancer together with sev-
eral servers), and the ERP software (typically with several modules) which is
built on top of a database system.

Internet Server — ERP Infrastructure — ERP Software —{ Database

Figure 1: RBD example

In this case, dropping parameter dependence, we have that:
R= f (Ri87 Rer;m st; Rdb) =R - Re'r‘p “ Ry - Rdb;

where R;s, Rerp, Rsw, Rap are, respectively, the reliabilities of the Internet server,
the ERP infrastructure, the ERP software module and the database system. A

The standard approach of estimating reliability parameters, typically through
MLES, plugging the estimates into the model and using it for reliability predic-
tion, will usually underestimate uncertainty in predictions, since the uncertainty
in model parameters is not taken into account, see Glynn (1986), Draper (1995)
or Berger and Rios Insua (1998).

Alternatively, once we have computed the posterior distribution = (6|data)
of the RBD parameters, we could compute the predictive system reliability
through

R|data = /R|07T(0|data)d0

- /f (R1|01, R, . .., Rc|0.) 7 (0|data) 6. (2)



To do the required computations, we may appeal to several procedures, de-
pending on the precision of the involved posteriors and the complexity of the
system:

1. When there is little (posterior) uncertainty about the parameters, we
just need to obtain estimates é, say their posterior modes, and plug
them into (1) to approximate the predictive system reliability through
R= f(R1|é1, e Rc|éc). Note, however, that we need to check how the
uncertainty propagates over the system reliability. One possible approach
would consider the extremes of Highest Posterior Density (HPD) regions
for @, would compute the corresponding reliabilities at such extremes and,
if little differences are appreciated, use R as an estimate of the predictive
system reliability.

2. When there is big uncertainty about 8, as reflected in the previous proce-
dure, in general, given the difficulties in computing (2), we shall need to
use Monte Carlo simulation to approximate it through

N
1
Rldata ~ — ; f(Ry|67, Ro|62, ..., R|67),

where {07 = (67,61,...,67) };\;1 is a sample from 7 (0|data). We would

complete the study with standard Monte Carlo based uncertainty assess-
ments about our estimates, see e.g. Schmeiser (1990).

3. Note, though, that the evaluation of the integrand in (2) may be too ex-
pensive computationally, specially as the number of blocks and the com-
plexity of the system increases. In this case, we may opt for using a
Reduced Order Model (ROM), see Grigoriu (2009) for details. To do so,
we approximate the posterior 7(6|data) by an appropriate simple distri-
bution {6%,¢*}%_,. The size k of the ROM is essentially defined by the
computational budget available which bounds the maximum number of
evaluations of the integrand in (2). We proceed as follows:

(a) Obtain a sample {0’7}7]7\;1 from 7(0|data).

(b) Cluster {0"}:21 in K clusters and spread the centroids to obtain the
k K
ROM range {0 }k=1'
(¢) Compute optimal ROM probabilities by solving the system

min e(q, ..., q%)
atq

K
s.t. qu =1,
k=1

¢ >0, k=1,...,k,



where e is a distance between the ROM and the posterior distribution,
typically trying to approximate their moments and their distribution
functions.

(d) Approximate the posterior predictive probability through
> " f(RaI0F, ..., Re|OF).
k=1

This describes our general computational strategy. Some of the blocks could
have pending standard reliability models, such as those based on the exponential
or Weibull distributions, see e.g. Zacks (1992). In complex HW/SW systems, it
is likely that we shall need to employ more sophisticated models, as we describe
below.

3 Dealing with software blocks

As we have mentioned, some of our blocks will be associated with software
components. There is a very abundant literature on software reliability, see
Singpurwalla and Wilson (1999) or Kuo (2005) for reviews. In particular, there is
a plethora of SRGMs, which are specially relevant in our context, as we deal with
not necessarily mature software. An important and inherent issue in software
reliability modelling is how to choose among the many SRGM available. Kuo
(2005) describes several approaches, based e.g. on the standardized deviation,
the prequential conditional predictive ordinate or the predictive likelihood for
the partial block.

We rely here on an alternative model selection strategy for SRGM, different
to that used in Kuo (2005) based on superposition of SRGMs. Ours uses a
mixture approach. In it, mostly as an illustration, we include three models that
we have found relevant in the cases we have analyzed: Power Law (PL), Delayed
S-Shaped (DSS) and Schneidewind (1975) (SCH).

Here, we outline computations with Schneidewind’s model. Bayesian analy-
ses of the other models may be seen in Guida et al. (1989), Ruggeri (2006), Kuo
et al. (1997) and Kuo (2005), among others. We then describe model selection
computations.

3.1 Description of models

All the models used here assume that software failures follow a NHPP, with
mean function m(t) and failure rate A(t) = m/(t), see Ruggeri (2006) for further
details. The three models included have the following description and inter-
pretation, summarized in Table 1, where R(t|a,b) = 1 — Pr{T < t|a,b} is the
reliability for time ¢, i.e., the probability that the system will remain ON for
a time longer than ¢, provided it is ON at time 0, and 7T represents the time
passed until system failure, i.e., until a new software error is detected, assuming
the parameter values are a, b.



Table 1: Description of models

PL DSS SCH
m(t) at® all—(1+0bt)e "] 2 (1—e")
A(t) abt®~! ab’te= 0 ae
a Exp. failures at t =1 Exp. failures Failure rate at t =0
b Growth/decay rate (b< 1) Error detection rate Relative failure rate
R (t|a,b) o—at’ efa[lf(lert)e*bt] 67%(176*’”)

With our choice, we provide great versatility to our analysis, as we have
chosen models belonging to different categories of SRGM: DSS and SCH belong
to the NHPP-I type, whereas PL belongs to the NHPP-II type, see Kuo (2005).
They do not overlap in their features and they can reflect different software
maturity degrees. For instance, NHPP-II models consider the possibility of
introducing new faults during debugging (in this case, we have m (t) — 400 as
t — o0), whereas NHPP-I ones do not do so (and, in consequence, m (t) < +00
as t — o0). This also has, as further consequence, that the reliability of NHPP-
I models does not tend to zero as ¢t — oo. Note that the Power Law model
includes the case in which the failure rate is constant (b = 1), typical of mature
software.

3.2 Computing the posteriors

We describe now how to compute the posterior distribution for the SCH model.
Assume we test until we observe n failures and we observe {ti,ta,..., t,} as
times between failures: the first failure occurs at time s; = ¢1; the second one
occurs at time so = t1 + t9; and so on, denoting s,, =t1 +to + ...+ 5.

If we assume gamma prior distributions for a and b

a~ G(ag,B1), b~ G(az, B2),
we get, after several computations,
7 (a, bldata) oc a1t~ Le=Fra poa—le=b(Bet iy si) o o= (1e7" )
Observe now that:

7 (alb, data) aertn—le=alfiti(1-e7"")]
which we identify as a gamma distribution with parameters a; +n and §1 +

% (1 — e*bs"). Similarly,

7 (bla, data) o b2 Lo MBSy 00) o~ (17

?



which cannot be identified as a standard distribution. To sample from this
conditional posterior, we may use a Metropolis step as follows,

loop
Sample begng ~ N (b(i), 02).
Make bV <~ beyna with probability

beand (a2—1) i n
p = min 17( ngn ) e (beana=b") (Bot iy oi) o

—b,. El —bis 3
% e* bcaand (175 cand n)+ﬁ(176 7') }

Otherwise, set b0+ « p(@),

0?2 is chosen as a suitable value of the standard deviation, meaning that the

acceptance rate of the Metropolis step is between 20% and 50%, see Gamerman
and Lopes (2006) for details. A hybrid MCMC algorithm may then be defined,
with Gibbs steps when sampling from 7(a|b, data) and Metropolis steps when
sampling from 7(b|a, data), with convergence following arguments in French and
Rios Insua (2000).

Similar algorithms may be defined for PL and DSS models, respectively, and
may be seen in Kuo et al. (1997) and Kuo (2005).

3.3 Model selection

As we have mentioned, there are many SRGMs in the literature. Because of
the inherent model selection problem when dealing with SRGMs, we shall use a
Bayesian model selection strategy within a mixture model to deal with reliability
of software blocks. Specifically, we shall assume that with probability ~;, the
interfailure data come from a PL model; with probability s, they come from a
DSS model; finally, with probability 3, they come from an SCH model. We will
then compute the posterior probability of each model as well as the posterior
predictive reliability.

To do so, let M = 1,2,3 designate, respectively, the PL, DSS and SCH
models. Then, the posterior probability of the i-th model is

~vim(data| M = i)
S, sy(datal M = j)

APt = Pr{M = i|data} =

which can be used for model selection or averaging: one selects the model with
the largest posterior probability, or performs forecasting by averaging across
models based on their posterior probabilities. We have that

m(data|M = 1) = //w(data|ai,bi,M =1) X w(a;, b;) da; db;.



If we assume gamma priors for the parameters in the i-th model, that is,
m(a;, b;) = G(ad, B1)G(ak, BE) we may see that, for example, for the SCH model,
denOting (avb) = (a3;b3)a (alaﬂl) = (a?vﬂ?) and (O‘2752) = (O‘%aﬂg)v and after
integrating out a,

ﬂ2 + Zz 1 )
052)
bt ) g,

m(data|M =3) = K/

h
where _(nten)

h(b) = [B1+ (1 —e™")/b]

and

K — BT (n+ aq) ( B )azl

(o) Bo+ >0 si

This can be approximated by Monte Carlo simulation through
#t(data|M = 3) Z h(b

where {bn}7]7V=1 is a sample from a G(ag, B2+ Y., s;) distribution. In a similar
way, we may compute the marginal likelihood for the PL and DSS models.

Note now that, for fixed parameters =, a,b, we may compute the reliability
of the software block as

t|’77a' b ZPYZ t|a2) )

with R; (t|a;,b;) as in Table 1. Then, its unconditional posterior reliability
would be

R (t|data) = // R (t|y,a,b) x 7 (7, a,bldata) dvy da db,

typically computed through simulation

3
R (t|data) ~ Z Z POSLR:(tall, b, (3)

for posterior samples {a]}]_; and {b]}]_,, i =1,2,3.

4 Dealing with hardware blocks

We are concerned now with hardware components, which we assume can be
modelled with CTMCs, with m possible states, the first [ corresponding to ON
states, the remaining corresponding to OFF configurations. We denote by X}



the state the system is in at time t. The behavior of the CTMC is characterized
by the permanence rates v = (v1,...,Vy), where 1/v; are the means of the
exponential random variables representing the time spent by the system at state
i before leaving it, and the m xm transition probability matrix, P = (p;;), where
pi; is the probability that, given that there is a transition out of state i at time
t, it leads to state j, with Zj pij = 1, Vi, and p;; = 0, see Ross (2007) for a full
description. Clearly, for physical or logical reasons, some additional p;; matrix
entries could be zero.

4.1 Inference for the CTMC parameters

Unless based on a specific parametric model, we proceed as follows. For the
permanence rates, v;, ¢ = 1,---,m, we assume that the time until state 7 is
left follows an exponential distribution, T; ~ E(v;). We also assume a gamma
prior v; ~ G (a;,B;). Then, provided we have collected data about transition
counts, n;;, 4,57 = 1,...,m, j # i, from state i to state j, and sojourn times,
ti1, ti2, ..., tin,, in state 7, the posterior is

n;
1/i|data ~ g<0¢1 —+ Nng, ﬂz —+ Ztij>,
Jj=1

with n; = Zj n,j, see, e.g., French and Rios Insua (2000).
Regarding the transition probabilities, we assume that the entries in the
i—th row of P follow a Dirichlet distribution

(pu, s Pii—15Piib1y e apim) ~
~D (01, -30ii—1,0i 541+ 0im)

where §;; will be zero in case the corresponding p;; is known to be zero. Then,
the posteriors are:

(Pits-- - Piji—1s Pijit1s-- -, Dim)|data ~
~D(8i1 + Nty vy Giim1 FNiim1, Oiit1 + Mgty -y Oim + Mim),

see French and Rios Insua (2000) for details. More sophisticated models which
take into account possible row dependence may be seen in, e.g., Diaconis and
Rolles (2006).



4.2 Computing the posterior equilibrium distribution and
estimating the intensity matrix

For fixed values of the p;;’s and v;’s, the equilibrium distribution 7 = (mq, ...
Tm) 18 obtained, if existing, through the solution of the system

Vjﬂ'j:z:’l“ijﬂ'i; VjE{l,...,m},
i#]

(4)
Z?Tj =1; m; >0,
J

where the 7;; = v;p;; are designated jumping intensities from state i to state j,
see Ross (2007) for details. We define the intensity matrix, A = (r;;), which we
shall need later on, with r;; = — Zj# rij = —v;, 1 =1,...,m. The m;’s may
be interpreted as long-term time fractions that the system spends at various
states.

Following the same reasoning as in Section 2, we consider three scenarios,
depending on the precision of the involved posteriors and the number m of chain
states.

1. When the posterior distributions of v;, p;; are, respectively, very peaked
around certain values, say their posterior modes, we could substitute the
parameters by their corresponding estimates,

B+t Y Y (i da) —m A 1
Tij = ViDij,
for ¢ # j. When ¢ = j, we set 7y; = —0;, i = 1,...,m. Then, we solve
system (4), to obtain the appropriate solution {frz}zl

2. When there is big uncertainty about the process parameters or about
the predictive equilibrium distribution (as could be asserted by following
a similar exploratory analysis to that of Section 2 for the HPD regions

of (v, P)), we may proceed through sampling. Based on samples from
the posteriors {V”, P”}i}vzl,

through the repeated solution of (4), and summarize it appropriately, if
needed, through, e.g., its posterior mean

. N
we, consequently, obtain a sample {ﬂ'”}nzl

N

ﬁ—lg il i=1 m

Z_N 70 — 9o ey .
n=1

At no extra cost, we use the relationship r;; = v;p;; to obtain samples
from the posterior {7"17] 7]7V=1, 1 # 7. For i = j, we use the posterior sample
{r} = —V?}évzl, 1 = 1,...,m. If needed, we could also summarize all
samples appropriately, through, e.g., their means. The procedure above

10



entails solving N linear systems with the structure of (4), something which
can be computationally expensive as the number of states grows. Several
algorithmic procedures have been proposed to solve that issue, being the
GTH Grassmann et al. (1985) algorithm one of the most efficient and easy
to implement, see Stewart (2007) or Grassmann (1990) for details. The
GTH algorithm is a direct method and actually computes an LU factor-
ization of A, whose computational cost is bounded above by O(m?) flops.
Given that A is rather sparse in most real systems, this bound is usually
significantly reduced. Therefore, for m small or medium, this is perfectly
affordable. However, for large values of m, iterative methods are known to
perform better than direct ones, see Stewart (2007). Within these meth-
ods, the coeflicients matrix is used only in terms of matrix-vector products
and, therefore, are especially useful for large sparse systems. Such meth-
ods start with an initial guess and compute a sequence of approximations
which converges to the solution of the linear system at hand, see Golub
and Van Loan (1996). We may take further advantage of the theoretical
properties of iterative methods. Given that system (4) has to be solved
N times for similar coefficients matrices, the solution obtained at a given
replica may be used as seed for the solution of the next replica.

3. Solving repeatedly the above system may be still too costly computation-
ally, and we may opt for using a ROM, following the same scheme as in
Section 2, to obtain an estimate of the predictive distribution defined by

K
k_k .
= g ¢'m,1=1,...,m.
k=1

4.3 Reliability forecasting with CTMCs

We describe now how to estimate reliabilities in the HW block, distinguishing
the case in which we know the initial ON state, and that in which we only know
that the system is initially ON.

For each ON state ¢ € {1,2,...,1}, assume we may compute the reliability
R;(tlv, P) = Pr{T > t|v, P, Xy = i}, conditional on parameters v, P, where T'
is the random variable which represents time passed until system failure. The
unconditional posterior reliability is

R (t]data) = / / Ri (tjv, P) = (v, P|data) dv dP, (5)

which will typically be approximated through simulation
1N
. ~ . n_pn
R; (t|data) ~ N ng_lRl (tlp", P, (6)

for a sample {V”,P”}f;[:l from the posteriors computed in 4.1. Should the
computational cost of evaluating the integrand in (5) be too high, we could opt
for a ROM, as explained in Section 2.

11



Suppose now that we do not know which ON state we are currently in. We
could undertake the following approach. Let m; be the unconditional posterior
equilibrium probability for the i-th ON state, ¢ = 1,...,l. Then, we could do

3
"3

N 1
R (t|data) = ! Z > ﬁ—ln R; (tjp", P,
77:1 i=1
where 7 = Zé 7}, and {ﬂ"}n 1 is a sample from the posterior calculated in
Section 4.2, associated with {v", P7}] .
The key issue is then how to compute the reliabilities R; (t|v, P),i=1,...,1.
To do so, we adopt the strategy of subsuming all OFF states into an absorbing
state which we designate a, conveniently redefining the transition probabilities,
see Figure 2.

Figure 2: Subsuming the OFF states in state a

The transition probability matrix of the modified chain is

II; | p
P = ,

where II; = (pi;), pi = Z?:l-}-lpik? and 7,5 = 1,...,l. The intensity matrix of
such chain will be designated
Ql w
Al = OT 0 ;
with Ql = (T’ij), W; = — Z;=1 Tig, and ’L,] = ]., .. .,l.

12



Note now that the time until failure coincides with the time until absorption
(by state a) of our modified Markov chain, 7, which is known to have a phase-
type distribution, given v, P, see e.g. Bladt (2005):

Tlv, P ~ PH(x©® O |v, P),

ON ?

where ﬂé?\? is an initial state probability [-vector over ON states, see Cano et al.
(2010) for details. The system reliability is then

R(t|lv, P) = (ﬂé%))T exp(Qit|v, P)e,

where e = (1,...,1)7 is the l-vector of 1’s. The computation of R;(tv) is
straightforward, simply setting ﬂé%) as the vector of 0’s with its i-th entry equal
to 1.

5 Case study

We provide now an analysis of our university resource planning system. The
system is composed by four blocks, connected in series. The Internet server and
the database are blocks dealt with standard models. The ERP infrastructure
is a HW block which will be modelled through a 9-state CTMC, whereas the
software ERP modules are nonmature pieces of software which will be dealt
with the SRGM mixture-based selection strategy in Section 3.3.

We have collected data of the system from March 2009 to June 2009, includ-
ing some peak periods, e.g. issuing the employees’ Withholding Tax Certifi-
cates in March, examinations periods for the students in May/June, or dismiss-
ing/hiring staff in June, among others. For each subsystem, we shall consider
operation until the last failure is registered. This will simplify analysis by ne-
glecting data censoring. Time units will be hours and the operation of the
system will be daily, in the sense that the whole system is used offline for a cou-
ple of hours everyday for backup purposes, while the rest of the time is online.
In all cases, we shall use relatively vague proper priors. We first consider each
block and, then, the whole system.

5.1 The Internet server

The Internet server is a fairly stable system which may be analyzed through a
standard exponential model of parameter \;s. We used a weak gamma prior
reflecting also that we expect about one failure every week, that is one failure
every 154 hours. We model this with a G(1/(154 - 1540), 1/1540), whose mean
and variance are 1/154 failures/hour and 10 (failures/hour)?, respectively.

Over the operation time we registered n;s = 30 failures, with interfailure
time sum equal to 2879.17 hours. Interfailure times are available in Figure (3a).
The sample coefficient of variation was 1.0178. The MLE was 0.0104. The
posterior is

1 1
154 - 1540 +30, 1540

Ais|data ~ G ( + 2879.17) )

13



Histogram of failure times for the Internet server
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Figure 3: Time histogram and reliability for the internet server

The posterior mode is 0.0101. Figure (3b) represents the reliability e ~*¢! based
on the MLE, based on the MAP, and the posterior predictive reliability

QistMnis
ﬂiS + Zj tjis
/Bis + Z] tjms +t 7

where (s, 8is) are the gamma prior parameters of \;s, and .95 predictive prob-
ability bands, showing the relevance of assessing uncertainty, since the bands
are not concentrated around the posterior predictive reliability.

5.2 The ERP infrastructure

We consider now the multiserver system functioning to support our university
ERP. We shall briefly outline the basic details, referring to Cano et al. (2010)
for a full description. The general architecture of our ERP is shown in Figure
4. A user makes a petition to the system. The petition passes through an ac-
tive/active web-cache (WC) cluster balancer which distributes the load between
four application (AP) servers. The balancer works if at least one of its two WC
servers is up. The four AP servers work on a 2-out-of-4 basis, accessing the
database and completing the service to the user.

The transition diagram of our system is shown in Figure 5, along with jump-
ing intensities r;; = v;p;;. Each ON state in the Markov chain is defined by two

14
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Active/active 2-out-of-4
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Figure 4: Architecture of our university ERP infrastructure

values, indicating the number of nonfunctioning WC and AP servers, respec-
tively. For example, state 2 indicates that 1 WC and 0 AP servers are down,
but the whole system is ON. On the other hand, OFF states (in grey) mean
that all WC servers are down (State 7; Failure type I); that there are more than
two AP servers down (State 8; Failure type II); or that an error in the balancer
detection process has occurred (State 9; Failure type III); respectively.

The N’s and the p’s are, respectively, the failure and repair rates of the
different components. Specifically, A, and p,, are the failure and repair rates
of the WC servers; )\ip, 1 = 2,3,4 is the (constant) failure rate when there

are ¢ AP servers up, satisfying )\ZP < )\gp < )\gp; lt,p is the repair rate of
the AP servers. Only one server (WC or AP) can be repaired at a time. The
WC cluster balancer also detects and disconnects failed AP servers, but such
detection process has a probability a of success. When the system falls into
an OFF state, due to too many WC or AP servers down, or to an imperfect
detection process, the repair rate to recover the system from such breakdowns is
p. The permanence rates and transition probabilities are easily recovered from
the jumping intensities.

A summary of the data is displayed in Table 2, where we have displayed the
transition counts n;; and, in parentheses, the total sojourn time (in hours) that
the system spent at state i before jumping into state j. For example, the second
entry on the first row, 4(265.38), means that four transitions have occurred from
State 1 into State 2, and that the system spent a total time of 265.38 hours in
State 1 before jumping into State 2, over the four transitions.

We assign diffuse gamma priors to the failure and repair rates. Based on
the data in Table 2, we get the corresponding posteriors. This information is
summarized in Table 3. For convenience, we have expressed all rates in terms
of failures/repairs per fortnight.

To compute the posterior of, e.g., Awc, the only transitions we have to take
into account are (1,2), (2,7), (3,4), (4,7), (5,7), and (6,5), see Figure 5. Once
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Figure 5: Transition diagram for university ERP infrastructure with jumping
intensities

with the posteriors for the failure and repair rates, we can obtain samples from
the posteriors for the v’s and the p;;’s, using their relationships in terms of the
failure and repair rates. Then, to obtain a sample from the posterior equilibrium
distribution, we iteratively solve system (4), for various posterior samples of v
and P.

Now, by adopting the analysis outlined in Section 4.3, we provide the relia-
bility analysis in Figure 6, which plots Ry (t|&, P), plugging in the MLEs (dashed
line) and the posterior modes (solid line) as estimates of (v, P), along with .95
predictive bands (dotted lines) around the expected reliabilities (dotted-dashed
line), as computed from (6). Note that there is a lot of uncertainty which is
ignored through the standard approach based on plugging in parameter esti-
mates. As we can observe, the predictive bands are quite separated from the
posterior mean reliability, with relative errors close to 100% for time values
around 250 hours (~10 days). The values of the reliability conditional on the
posterior modes of (v, P) are, in practice, the same than those of the posterior
mean reliability. On the other hand, the reliability conditional on the MLEs
of (v, P) provides considerably lower values, showing the poor quality of the
MLEs when little data are available, as it is the case.
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Table 2: Transition counts and sojourn times

Final state

1 2 3 4 5 6 7 8 9

o 1 - 4 (265.38) 3 (2390.23) - - - - — 1(24.32)
S 2 3(35.47) - - - - — 1(15.84) - -
% 3 1(18.03) - - 1 (13.35) - 1 (4.09) - - -
3 4 - - 1 (1.57) - - - - - -
£ 5 - - - - - - - 1 (0.02) -
E 6 - - - - 1 (8.86) - - - -
7 1(13.59) - - - - - - - -
8 1 (2.21) - - - - - - -
9  1(11.18) — — — — — — —

Table 3: Prior and posterior parameters of the failure and repair rates

Priors Posteriors
a 6 apost Bpost
Awe 0.1 0.1 7.1 0.84
AP 0.092  0.096 4.092  6.71
MP 016 013 1.16  0.14
AP 0225 0.15 1.225 0.15
pwe 13 0.11 17 0.21
pap 28 0.17 29 0.22
p 4.5 0.067 7.5 0.142

5.3 The database

The database system used is a well-known software, tested over many years,
developed by a large company with a large number of installations and appro-
priate revision release controls. In fact, over the peak period there were only
eight failures in relation with that software, with interfailure times 385, 236,
446, 288, 452, 155, 285 and 955 hours, respectively. We, therefore, go for a
mature software exponential model with a diffuse G(2-10~¢,10~3) prior, which
has mean 0.002 failures/hour, and variance 2 (failures/hour)?. In consequence,
the posterior is

Aav|data ~ G(2-1075 +8,1072 + 3203).

The posterior predictive reliability is shown in Figure 7, along with .95 predictive
bands. Once again, the convenience of assessing uncertainty becomes evident.

5.4 The planner

The planner is a piece of software built on top of a database system. It consists
of several modules, which accomplish different tasks. For example, two relevant
modules are the Human Resource module, which manages academic and admin-
istrative tasks, and the Financial Resources module, which deals with financial
and accounting aspects.
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Block Reliability and .95 Predictive Bands for the ERP infrastructure
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Figure 6: Reliability for the ERP infrastructure

The planner is a relatively new piece of software, designed by a relatively
small company, having a relatively small number of installations. New versions
are frequent as bugs are patched. We, therefore, doubt that they are mature
software, as proved by frequent updates, and, therefore, shall use the model
selection strategy in Section 3.3.

We have recorded 99 interfailure times for the planner, as shown in Figure
(8a). We use 71 = 72 = 3 = 1/3. We use priors of model parameters to re-
flect that at peak times, we discover around one failure per day and we do not
expect to discover more than three failures per day. We thus choose the follow-
ing priors (a1,b1) ~ G(10,10)G(7,10); (as2,b2) ~ G(100,1)G(1,10); (as,bs) ~
G(11,10)G(3,10).

Then, with the strategy described in Section 3.3 we obtain the posterior
weights v = 0.66, v5°*" = 0.24, 45°°" = 0.10 and the reliability as calculated
in (3), and reflected in Figure (8b). As with the rest of the blocks, .95 predic-
tive bands around the mean values are also provided, showing in this case less
uncertainty than with previous blocks.

5.5 System reliability

Finally, as parameters are not shared, the system reliability, given subsystem
reliabilities, is computed through

Rgys|data = Ris|data x Reppldata x Rgp|data x Ry |data.
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Block Reliability and .95 Predictive Bands for the database
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Figure 7: Reliability for the database

We plot in Figure 9 the system reliability for different times, obtained through
simulation. The plot includes the posterior reliability mean together with .95
predictive reliability bounds. The picture clearly depicts the necessity of taking
into account the uncertainty reflected in standard reliability analysis. As an
example, suppose that we want to estimate the probability that the system will
still be ON after two working days. The graphic predicts an expected reliability
of 0.14, but with a .95 predictive band around it of (0.11,0.18), which amounts
to relative errors of around 30%, clearly inadmissible if we are dealing with
safety critical systems.

As the system has a series structure, therefore, its reliability will be in-
fluenced by the least reliable component. In that sense, a suitable sensitivity
measure of the reliability of a given system with respect to its components is the
partial derivative of the system reliability with respect to the component relia-
bilities. This informs us about which components are more critical in terms of
reliability for the system. In our example, all the derivatives are straightforward

and they lead to:
aRsys
Tilsys R,
o, ~ 1L %
J#i
ijE€Q
where Q = {is, erp, sm,db}. We plot the sensitivities in Figure 10.

As we can observe upon comparison of Figures 9 and 10c, our sensitivity
analysis reveals that the least reliable component is the planner. Its removal
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Histogram of failure times for the planner
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Figure 8: Time histogram and reliability for the planner

from the system configuration yields a remarkable increase in system reliability,
specially relevant for larger times. Again, as an illustration, we consider system
reliability after two days. If no component is removed, the expected system
reliability is approximately 0.14, jumping up to 0.40 if the planner is removed.
After 4 days, the situation is even more drastic, in terms of relative improvement:
the expected value of system reliability leaps from 0.02 up to 0.16 when dropping
the planner.

The other three blocks have similar sensitivities, as can be seen in Figures
10a, 10b and 10d. This type of information should be relevant when defining
maintenance plans and service level agreements.

6 Conclusions and extensions

HW/SW systems are present in many fields of human activity. Estimating
their reliability is therefore becoming increasingly important, specially for safety
critical systems in areas such as finance, aerospace and energy, among others.
Although there are several software packages available to support reasonably
complex reliability analyses, they have several limitations, being possibly the
most important, the fact that they provide little support to Bayesian analysis.
With this drawback in mind, we have focused, in this paper, on Bayesian analysis
of such systems.

We have developed a complete method to assess the reliability of complex
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System Reliability and .95 Predictive Bands
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Figure 9: System reliability

HW/SW systems, devoting our attention to three key items: description of
complex systems in terms of series and parallel RBDs with pending blocks, and
forecasting their reliabilities; software block reliability modeling, through mix-
ture based SRGM selection; and hardware block reliability modeling, through
CTMCs.

We are currently developing a computational environment to fully support
the tasks we have to deal with in this analysis. We have illustrated the basic
features of our design, with an example, consisting of the analysis of a schematic
version of our university resource planner, paying attention to the computation
of the reliability of each system component, and the reliability of the whole
system.

A related aspect of interest is to analyze the dependence of system reliability
with respect to the parameters which model each block, for both software and
hardware components. As a further step in this direction, one would investi-
gate the influence of prior distributions of the block parameters in the system
predicted reliability, as typical in robust Bayesian analysis, see Rios Insua and
Ruggeri (2000).

Note also that RBDs essentially assume independent blocks. In this type
of application, this condition might not be acceptable (e.g. because the HW
components share location) and models taking into account such possible de-
pendence should be developed.
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Figure 10: Sensitivity analysis
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