Bernstein-Bézier Galerkin-Characteristics Finite Element Method for Convection-Diffusion Problems
Abstract
A class of Bernstein-Bézier basis based high-order finite element methods is developed for the Galerkin-characteristics solution of convection-diffusion problems. The Galerkincharacteristics formulation is derived using a semi-Lagrangian discretization of the total derivative in the considered problems. The spatial discretization is performed using the finite element method on unstructured meshes. The Lagrangian interpretation in this approach greatly reduces the time truncation errors in the Eulerian methods. To achieve high-order accuracy in the Galerkin-characteristics solver, the semi-Lagrangian method requires highorder interpolating procedures. In the present work, this step is carried out using the BernsteinBézier basis functions to evaluate the solution at the departure points. Triangular BernsteinBézier patches are constructed in a simple and inherent manner over finite elements along the characteristics. An efficient preconditioned conjugate gradient solver is used for the linear systems of algebraic equations. Several numerical examples including advection-diffusion equations with known analytical solutions and the viscous Burgers problem are considered to illustrate the accuracy, robustness and performance of the proposed approach. The computed results support our expectations for a stable and highly accurate Bernstein-Bézier Galerkincharacteristics finite element method for convection-diffusion problems.
Description
Acknowledgements Financial support provided by the project of Consejo Superior de Investigaciones Científicas (CSIC) under the contract M MTM2017-89423-P is gratefully acknowledged. Funding Open Access funding provided thanks to the CRUE-CSIC agreement with Springer Nature.
Collections
- Artículos de Revista [4552]