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Abstract: The massive deployment of smart meters in most Western countries in recent decades
has allowed the creation and development of a significant variety of applications, mainly related
to efficient energy management. The information provided about energy consumption has also
been dedicated to the areas of social work and health. In this context, smart meters are considered
single-point non-intrusive sensors that might be used to monitor the behaviour and activity patterns
of people living in a household. This work describes the design of a short-term behavioural alarm
generator based on the processing of energy consumption data coming from a commercial smart
meter. The device captured data from a household for a period of six months, thus providing the
consumption disaggregated per appliance at an interval of one hour. These data were used to train
different intelligent systems, capable of estimating the predicted consumption for the next one-
hour interval. Four different approaches have been considered and compared when designing the
prediction system: a recurrent neural network, a convolutional neural network, a random forest, and
a decision tree. By statistically analysing these predictions and the actual final energy consumption
measurements, anomalies can be detected in the undertaking of three different daily activities:
sleeping, breakfast, and lunch. The recurrent neural network achieves an F1-score of 0.8 in the
detection of these anomalies for the household under analysis, outperforming other approaches. The
proposal might be applied to the generation of a short-term alarm, which can be involved in future
deployments and developments in the field of ambient assisted living.

Keywords: non-intrusive load monitoring (NILM); anomaly detection; predictive models; smart meters

1. Introduction

In recent years, the aging of population has become a key aspect of the definition of
future policies and sustainable healthcare systems in Europe, a continent where people aged
over 50 years old are actually 37% of the population. Moreover, EC (European Commission)
population estimates predict that the number of people over 60 will increase by about
two million -per year over the coming decades, and by 2060, this group is expected to
represent around 30% of the total population [1]. The impact of this aging population on
public finances and on future public health services is assumed to be huge. In this context,
cognitive disorders and impairments already have high care demands, and are becoming
a significant health challenge [2]. These disorders will provoke increased demand for
long-term care, wherein a crucial issue is the sustainability of coming healthcare systems as
well as their cost in terms of gross domestic product.

On the other hand, the deployment of smart meters in most Western countries has
boosted the proposal and development of multiple services and applications, many related
to the customers’ efficient energy management or energy demand response [3,4]. These
applications have spread worldwide, partly due to the current climate emergency and
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energy shortages. Non-intrusive load-monitoring (NILM) techniques are focused on the
energy disaggregation for each electrical load [5,6]. These disaggregated consumption data
can be used not only for energy management issues [7], but also for other applications [8].
One of the most significant methods deals with the social and health aspects of aging society,
wherein disaggregated load consumption might be used to infer behaviour patterns [9]
or to detect anomalies for alarm generation [10,11]. In some cases, smart plugs and/or
smart meters may be involved in the measurement deployment, since they provide the
disaggregated data per device [12]. Nevertheless, NILM techniques offer high scalability
and low intrusiveness without including any additional equipment.

In general terms, NILM techniques are often based on the detection of any change
in current or power signals [13], where features are extracted [14,15] to identify loads by
applying different classification methods [7,16,17]. From that point, human activity can
be inferred based on the usage pattern of some appliances, as they are strongly related
to certain daily activities [18–20]. Health aspects may also be studied from electrical
consumption data, such as possible inactivity, sleep disorders, or low-activity routines [21].
These systems have been proven a suitable tool for the detection of unusual activity patterns,
as well as for launching alerts to caregivers or relatives [22].

One of the first works dealing with behaviour monitoring based on electrical con-
sumption was [23], where a unique electrical signature was identified for each person’s
activity, which may provide information about their health status. A Markov model was
applied in [17] to identify the activity chain based on low-sampling-energy measurements.
In [18], the Dempster–Shafer theory is applied to provide a daily score about the normality
of a day, when comparing it with a regular behaviour or pattern. The same approach,
based on the Dempster–Shafer theory, is proposed in [24] to recognize activities such as
preparing breakfast, relaxing, preparing dinner, or showering. On the other hand, in [25],
a classifier based on a support vector machine (SVM) and random forest allows energy to
be disaggregated in three houses, which are dedicated to training a model. The resulting
trained model is then used to monitor two patients with dementia, deriving information
about behavioural patterns and modifications in routines. In [26], a regression approach
(based on support vector regression and linear regression) is proposed to estimate the
expected energy consumption, and then, by comparing with the real one, it detects possible
anomalies and launches alarms. A similar application can be found in [27], where the detec-
tion of absence from the home is performed in a straightforward manner by monitoring the
use of electrical appliances instead of deploying more intrusive sensors in the household.
Different machine learning techniques were compared for that purpose, such as decision
tables, random forests, naïve Bayes, and neural networks. Finally, in [11], four different
models (Seq2Seq, Seq2Point, temporal pooling, and the UNET-NILM model) were applied
to the monitoring and evaluation of daily activities, focusing the study on patterns of kettle
usage, since it is a suitable representative of hand-operated appliances.

Another interesting approach related to behaviour monitoring and possible anomaly
detection is the forecasting of the energy consumption in the household. Many previous
works can be found in the literature [28], often depending on the time scale of the pre-
diction. In [29], an LSTM (long short-term memory) network is proposed and tuned for
consumption forecasting in a household, as a basis for an intelligent energy management
system. The same type of neural network is combined with empirical wavelet transform
for the same purpose in [30]. In [31], the use of singular spectral analysis is proposed to
mitigate the effect of the variability of energy consumption on the forecasting performance
of parallel LSTM networks. Finally, a comparison between an LSTM, a multi-layer GRU,
and a Drop-GRU network is carried out in [32], in the context of energy consumption
forecasting, wherein the LSTM approach achieved better performance.

A last significant domain of application for energy prediction in general is the opti-
mization of energy management and household efficiency by allowing scheduling and
flexibility not only in the usage of electrical appliances by end users, but also in the energy
generation decisions of companies. In [33], a process is proposed for detecting the occu-
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pancy of residential buildings from their smart meter data. In the same context, short-term
load forecasting is developed in [34], based on several approaches, whereas machine learn-
ing methods are the most commonly used techniques [35]. Similarly, in [36], a temporal
fusion transformer is proposed to forecast the energy consumption demand in a household,
improving the performance given by LSTM and temporal convolutional networks.

This work proposes the detection of anomalies in the behaviour of tenants in a house-
hold based on electrical measurements coming from a smart meter installed at its entrance.
The energy disaggregated per appliance is used in the proposal to assess the performance
of the household’s tenants in some daily activities in the short term, such as sleeping, break-
fast, or lunch. For that purpose, four machine learning algorithms have been defined for the
regression of the expected energy consumption, according to the training data from a previ-
ous period. Two approaches based on neural networks have been considered at this point:
one based on convolutional networks and another on recurrent networks. For comparison’s
sake, a decision tree and a random forest have also been implemented. Furthermore, a
short-term alarm generator has been developed, based on statistical considerations of the
aforementioned activities throughout the period under study. The performance metrics
for these alarms have achieved an accuracy over 99% and an F1-score of 80%. These
contributions can then be summarized as follows:

• The study of different machine learning algorithms capable of predicting the energy
consumption of a household after a training period. Four algorithms are considered
hereinafter: a convolutional neural network (CNN), a long short-term memory (LSTM)
network, a decision tree (DT), and a random forest (RF).

• The definition of short-term alarm, which is able to launch warnings when there is
a divergence in the house between the predicted energy consumption and the real
measured one, during the test period after training. In particular, three alarms have been
implemented related to the following daily activities: sleeping, breakfast and lunch.

• The proposal has been successfully validated with experimental data coming from a real
household with four tenants. A commercial on-the-shelf smart meter has been used to
acquire electrical samples during a period of six months, which proves the feasibility and
readiness for implementation of the algorithms and methods described here.

The rest of the manuscript is organized as follows: Section 2 describes the proposed
global architecture; Section 3 presents the energy prediction model, as well as the corre-
sponding experimental results from a real living scenario; Section 4 details the method
proposed for short-term alarm generation in daily activities; Section 5 deals with the limita-
tions, the open challenges and the future works of the proposal; and, finally, conclusions
are discussed in Section 6.

2. Global Architecture Overview

The proposed system is based on a smart meter, devices widely deployed in buildings
and households in developed countries, which is in charge of acquiring voltage and current
signals from the mains. These signals have already been analysed in the literature for NILM
applications, where different alternatives have been proposed for their feature extraction.
The detection of events (switching on/off of appliances connected to the mains) is likely
the most common technique used to avoid continuous processing of incoming signals.
Since the events are detected, only an interval of the acquired signals around the event
is processed afterwards to identify the load (or appliance). The load identification can be
implemented by means of different approaches, such as a Bayesian approach, principal
component analysis (PCA) [10], clustering, SVM [23], or deep neural networks [15,16,37],
which have become more relevant recently.

Apart from identifying loads, it is possible to deal with the detection of anomalies
in usage patterns in a minimally intrusive way, in order to launch short-term alarms that
may imply that the a member of the household is not following their ordinary routine in a
certain daily activity, and thus might be considered to be in a risky situation to be tackled.
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For that purpose, this work is based on a commercial smart meter that already provides
the disaggregated energy per appliance, by accessing their company’s cloud services.
It is the Wibeee Box Mono [38] that gives the appliances’ consumption per hour. As
mentioned before, it has been installed in a household with four tenants (two adults and
two teenagers). The energy consumption data are uploaded to the cloud by the Wibeee
Box Mono; afterwards, a monitor obtains the energy consumption samples from the last
days every hour, in order to forecast the actual consumption values and compare it with
the real measured ones. The energy samples are not preprocessed in any way, and feature
selection is not implemented before the prediction model. This one directly deals with the
raw samples coming from the smart meter every hour.

This proposal is intended to detect non-ordinary situations wherein the household’s
consumption is not following the typical daily routine in a significant way, so a short-term
alarm might be generated to warn about the anomalous behaviour. This short-term alarm
is implemented according to the block diagram shown in Figure 1. The proposal is based
on an intelligent system, where four different approaches have been considered: a CNN,
an LSTM network, a DT, and an RF. The intelligent system has been trained with the data
from the Wibeee smart box installed in the house. The energy disaggregated per appliance
is sampled every hour, for a period from November 2020 until May 2021. It is worth
noting that these machine learning techniques were chosen due to their relatively reduced
complexity and straightforward procedure, thanks to which they may be implemented on
the edge (using general-purpose processors or FPGA devices), compared with other recent
topologies, such as auto encoders [39]. This is a key aspect, since a last objective is indeed
to integrate the whole proposal in a low-complexity smart meter [40,41].
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Figure 1. Global architecture of the proposed system.

3. Energy Consumption Prediction Model

Figure 2 shows the input data coming from the Wibeee device, where the energy
is plotted every hour. It is worth mentioning that the samples provided by the meter
correspond to the energy consumed during that hour internal (units in W·h). These energy
samples per hour are equal numerically to the average power, in Watts, during that hour.
The objective is to train the intelligent system to predict the global consumption in the next
hour interval (a regression approach), according to an input window with a length that can
vary from one week to three weeks. The energy prediction and the real measurement will be
then compared, and, if the real measurement significantly differs from the predicted one, an
alarm may be issued to let users know about the unusual situation. For the available period,
from November 2020 to May 2021 (roughly seven months), data were organized in the
following way hereinafter: from the beginning until 3 March 2021, samples were dedicated
to training (60%); from that date until 16 April 2021, to validation (20%); and, finally, from
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that date until nearly the end of May 2021, for testing (20%). All the models considered
hereinafter have been developed in Python 3.7 using Keras 2.2.4 and Tensorflow 1.13.1.
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Figure 2. Available input data (energy consumed each hour) from the Wibeee device installed in a
test house with four tenants: (a) the whole period under analysis; (b) the first week under analysis.

Firstly, the influence of the length in the input data was analysed for an LSTM network,
since this defines the historic data used to predict the next consumption value. Three
different lengths have been studied: one, two and three weeks before the next value. The
network has a structure shown in Figure 3, that in the first iteration consists of an LSTM
layer + LSTM layer + dense layer + dense layer, both with rectified linear units (ReLU).
In all cases, we have not only provided the global consumption data of the house during
the final considered days; we have also provided information about the current day of the
week and the hour have been directly inserted at the input of the first dense layer after the
LSTM layers. These are intended to provide the network with any additional information
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that may define the typical routines for each day of the week. Table 1 shows the results for
the different lengths of the training window, for a learning rate of 10−4, a decay of 10−6,
and a maximum number of epochs at 300, with early stopping and patience of 15 epochs.
The optimization algorithm is Adam, and the validation loss function is the mean squared
error. These training parameters have been chosen empirically, and are fixed throughout
this work for the different tests presented hereinafter. Regarding the learning rate and the
decay factor, remarkable improvement was not observed when varying them over several
decades, both when making them smaller and larger. Concerning the number of epochs,
the training sessions are either stopped prematurely with the early stopping mechanism, or
they consume all epochs. In both cases, we have empirically chosen the number of epochs
to be large enough to guarantee convergence.
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Figure 3. General scheme of the different LSTM topologies studied.

Table 1. Influence of the length of the training window on the energy prediction based on an LSTM
network.

No. of Weeks 1 2 3

No. of inputs 170 338 506

Structure: LSTM + LSTM +
dense + dense

168/168/672/1 336/336/1344/1 504/504/2016/1

Trainable parameters 19,309,925 153,096,389 515,158,565

Batch size 70 68 65

MAE 0.0598 0.0587 0.0590

MSE 0.0105 0.0107 0.0102

It is possible to observe that the longer the training window is (three weeks), the lower
the maximum absolute error (MAE) and the maximum squared error (MSE) are in the
energy prediction. Nevertheless, at this point, there is a trade-off to be considered with
regard to the complexity of the resulting neural network. Since the last goal is to integrate
the prediction model in the smart meter itself, likely by means of an FPGA [40,41], in order
to avoid a non-affordable increase in the complexity of the network, the training window
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of the consumption samples is fixed at two weeks hereinafter, since the resulting errors in
the prediction are also suitable, while keeping a low computational complexity.

A second aspect to study is the internal structure of the LSTM network. For that
purpose, three options have been considered, by changing the number of LSTM layers
from one to three, as is shown in Figure 3. In this case, Table 2 shows the prediction results,
assuming a training window of two weeks, wherein MAE and MSE still stand for the
maximum absolute error and the mean squared error, respectively. It is possible to observe
that these small variations in the network’s structure do not actually have a relevant impact
on the final performance at the expense of increasing the computational load, where the
best balanced figures between error and complexity are obtained for the solution based on
a single LSTM layer.

Table 2. Analysis of the LSTM structure for a training input window of two weeks.

LSTM Structure Structure Size
Trainable

Parameters
MAE MSE

LSTM + dense + dense 336/1344/1 152,191,877 0.0601 0.0106

LSTM + dense + dense 336/512/1 58,259,077 0.0589 0.0106

LSTM + LSTM + dense + dense 336/336/1344/1 153,096,389 0.0587 0.0107

LSTM + LSTM + dense + dense 336/168/512/1 29,697,061 0.0616 0.0107

LSTM + LSTM + LSTM + dense + dense 336/168/84/512/1 15,331,381 0.0611 0.0108

A CNN structure has also been considered. As before, the input data are the energy
samples for the last fourteen days every hour, together with the day of the week and the
time. The energy samples are organized as an input image, with the size of 336 × 10,
where 336 is the temporary depth (14 days × 24 h), and there are samples for ten different
appliances. The internal CNN structure has been varied from one layer to three layers,
increasing the filter from 16 to 32 and 64, and assuming a 3 × 3 kernel and a ReLU activation
function. Figure 4 shows the general scheme of the CNN architecture. Table 3 shows the
results for the different CNN topologies. On the other hand, assuming a structure with
only one CNN layer (16 filters) and the same input, Table 4 shows the influence of kernel
size on performance.

Table 3. Analysis of the CNN structure for a training input window of two weeks.

CNN Structure Structure Size
Trainable

Parameters
MAE MSE

CNN + dense + dense 16/200/1 9,620,165 0.0645 0.0116

CNN + CNN + dense + dense 16/64/200/1 14,879,205 0.0728 0.1340

CNN + CNN + CNN + dense + dense 16/64/64/200/1 21,144,101 0.0716 0.0129

Table 4. Influence of kernel size on the CNN layer.

Kernel Size Trainable Parameters MAE MSE

3 × 3 9,620,165 0.0645 0.0116

5 × 5 7,438,021 0.0664 0.0117

7 × 7 5,281,605 0.0627 0.0130

9 × 9 3,150,917 0.0657 0.0113

11 × 11 1,045,957 0.0597 0.0107
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For comparison’s sake, similar tests have been carried out for a random forest (RF)
approach, depending on the number of estimators involved in the topology. In this case, the
input size still corresponds to a period of fourteen days, with a sample every hour, together
with the day of the week and the time, meaning a total of 14 × 24 + 2 = 338 input samples.
The performance is shown in Table 5. Similarly, with the same input, a solution based on
a decision tree (DT) has been tested by varying the number of leaf nodes, as described in
Table 6.

Table 5. Performance in the global energy prediction using a random forest.

Number of Estimators MAE MSE

400 0.0598 0.0098

200 0.0588 0.0097

100 0.0586 0.0097

50 0.0589 0.0099

Table 6. Performance in the global energy prediction using a decision tree.

Number of Leaf Nodes MAE MSE

50,000 0.0777 0.0211

10,000 0.0777 0.0211

5000 0.0777 0.0211

500 0.0759 0.0211

50 0.0640 0.0143
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Taking into account all this information, Table 7 lists the best configuration for the four
approaches studied in the test dataset: LSTM, CNN, RF, and DT. It is possible to observe
that LSTM performs similarly to CNN, but with a higher computational load, whereas
the random forest also achieves comparable results in terms of errors when predicting
the global energy consumption. Furthermore, Figure 5 plots an example of the energy
consumption predicted by the corresponding approach, as well as the real energy measured
in the household for a single example day (the 1st of May). Note that energy samples
have been normalized hereinafter at 4.5 kWh, since this is the maximum energy limitation
existing in the household under analysis (actually, it is a common limitation in most houses
in Spain). This normalization allows us to better fit the input and output data into the
neural networks.

Table 7. Comparison of the four approaches considered (LSTM, CNN, RF, and DT) using the test
dataset.

Topology Features MAE MSE

LSTM LSTM (336) + dense (512) + dense (1) 0.0589 0.0106

CNN CNN (16, 11 × 11) + dense (200) + dense (1) 0.0705 0.0128

RF 200 estimators 0.0588 0.0097

DT 50 node leafs 0.0640 0.0143

Despite the fact that the dataset involved is relatively small, the experimental tests
presented hereinafter prove that the considered deep learning models do not suffer from
severe overfitting. Specifically, the performance metrics in the test data are not significantly
affected when increasing the number of training parameters in both the LSTM and CNN
models. Tables 1–4 illustrate that models with significant variation in the number of
parameters do exhibit similar performance. Additionally, the results in Table 7 show that
deep learning models are comparable in terms of MAE and RMSE to some classic machine
learning models, such as RF, that are less prone to suffering from overfitting in this case.

tt

(a) 

E
ne

rg
y 

(p
.u

.)

Figure 5. Cont.
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Figure 5. Real and estimated energy consumption on an hourly sampling basis (one sample per hour)
for the four considered solutions: (a) LSTM; (b) CNN; (c) RF; and (d) DT. Note that the values have
been normalized over a maximum of 4.5 kWh.
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4. Short-Term Alarm Generation

Based on the predicted and real energy consumptions, an alarm generator has been
proposed for three different daily activities: breakfast, lunch, and sleeping. These activities
were selected because they can be directly linked to the usage pattern of certain appliances,
although the methods described hereinafter can be easily extended to other daily activities.
This alarm generator is based on the following algorithm:

• The breakfast alarm Ab is activated when the averaged predicted energy pe provided
by the model between 8 a.m. and 11 a.m. is higher than the averaged measured value
or real one pm for the same interval plus three times the standard deviation σe[n] of the
error between the predicted and the measured energies in that same interval (1). The
limit of three times the standard deviation implies that the current difference between
the predicted and the measured energies is significantly apart from the usual error
from a Gaussian point of view. This means that breakfast activity did not take place
as usual.

Ab =

{

1 i f pe > pm + 3·σe

0 i f pe ≤ pm + 3·σe
(1)

• The lunch alarm Al is activated in the range from 1 p.m. to 4 p.m. if the averaged
predicted energy pe by the forecasting model in that interval is greater than the
averaged real one pm plus three times the standard deviation of the prediction error
for that interval, similar to (1), assuming then that the lunch was different from usual.

• The sleeping alarm As is generated in the range from 12 p.m. to 6 a.m. when the
averaged measured energy pm is higher than the averaged energy consumption pe

predicted by the model plus the error standard deviation for that interval (2), indicating
unusual activity during nighttime hours.

As =

{

1 i f pm > pe + σe

0 i f pm ≤ pe + σe
(2)

As was mentioned before, the proposals were trained with data from November
2020 to April 2021, and they were validated with available data from 16 April to 23 May.
The alarm generator was tested for the three aforementioned daily activities, where the
corresponding results are plotted in Figure 6. The breakfast alarm Ab is denoted by a red
circle, the lunch alarm Al by a magenta cross, and the sleeping alarm As by a green asterisk.
Furthermore, the plotted alarms can only be binary (1 for active and 0 for inactive). It is
worth mentioning that the ground truth is provided in Figure 6a (it is the same for the
other topologies); this ground truth was roughly and manually annotated by the dwellers
in the household. For clarity’s sake, Figure 7 compiles the alarms generated by the four
methods considered (LSTM, CNN, RF and DT), together with the corresponding ground
truth, so they can be easily compared. It is possible to observe how two successive alarms
for breakfast and lunch are generated on 16 May, corresponding to a weekend when the
house remained empty.
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Figure 6. Activities’ alarm generation for the four considered solutions: (a) LSTM; (b) CNN; (c) RF;
and (d) DT. The breakfast alarm Ab is denoted by a red circle, the lunch alarm Al by a magenta cross,
and the sleeping alarm As by a green asterisk. Note that the ground truth is only included for the
LSTM (a) because it is the same for the other topologies. The energy values are normalized over a
maximum of 4.5 kWh.
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Figure 7. Summary of activities’ alarm generation for the four considered solutions: LSTM, CNN, RF
and DT. The breakfast alarm Ab is still denoted by a red circle, the lunch alarm Al by a magenta cross,
and the sleeping alarm As by a green asterisk. The energy values are normalized over a maximum of
4.5 kWh.

Performance metrics have been obtained for the ADL alarm generation, according to
the existing ground truth in Figure 6a. Table 8 provides these metrics, with which a limited
analysis can be carried out due to the reduced number of alarm cases for the period under
study (12 positive cases). Note that the accuracy, the precision, the recall, and the F1-score
are calculated according to (3) and (4):

Accuracy =
TP + TN

TP + FP + TN + FN
Precision =

TP

TP + FP
(3)

Recall =
TP

TP + FN
F1 − score = 2·

precision·recall

precision + recall
(4)

where TP is the number of true positives; TN is the number of true negatives; FP is the number
of false positives; and FN is the number of false negatives. Assuming that false negatives (FN)
are the worst situation from a conservative point of view in this type of application, LSTM
seems to provide the best performance, with the highest recall and F1-score.

Table 8. Performance metrics in the proposed ADL alarm generation.

LSTM CNN RF DT

Negative cases (NC) 895 895 895 895

Positive cases (PN) 12 12 12 12

True positive (tp) 10 3 4 7

True negative (tn) 892 892 893 892

False positive (fp) 2 3 2 3

False negative (fn) 3 9 8 5

Accuracy 0.99 0.99 0.99 0.99

Precision 0.77 0.75 0.67 0.70

Recall 0.83 0.25 0.33 0.58

F1-score 0.80 0.38 0.44 0.63
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5. Discussion

Monitoring the behaviour and routine patterns of persons living in a household in
a non-intrusive way is a relevant field of research; it can provide interesting insights and
information for different types of applications. The intelligent management of the energy
demand is not only significant for companies, but also for end users that might benefit of
better fees with the scheduled usage of certain electrical appliances. On the other hand,
energy monitoring and forecasting are also an interesting tool in the domain of ambient
intelligence for independent living. Particularly in Western countries, the ageing population
is placing strain upon social and health services, and the search for novel remote health
assistance systems and procedures is an open challenge. The possibility of installing sensors
with a low level of intrusiveness in households to monitor and track the daily activities
of tenants is a very attractive approach for specialists. In this context, smart meters may
become a key device that may allow monitoring with almost negligible intrusiveness.

Data coming from smart meters can be processed and interpreted in many different
ways. One option is that presented in this work, wherein a prediction model is developed
to forecast future energy consumption based on the samples acquired in recent days or
even weeks. Furthermore, the approach proposed here uses this prediction to launch a
short-term alarm whenever the real energy consumption significantly diverges from the
predicted series, since this implies variation in the usage pattern of electrical appliances. In
this way, it is worth noting that the coarse-grain tracking of the daily activities in a house is
feasible, and can be implemented using only a single-point sensor such as a smart meter.

Nevertheless, there are still some aspects and issues that are worth researching in
the coming years. The first is the definition of intelligent systems that may be capable of
monitoring activities in the long term, thus allowing the detection of possible variations
in the behaviour of tenants. These variations are sometimes key for health specialists
as an indication of a change in the health status of the patient. In this context, the type
of activities and routines that can be inferred by smart meters are constrained to only
those tasks involving the use of an electrical appliance, and many times only the most
energy consuming appliances are clearly identified by NILM techniques. Recent studies
have proven that higher sampling frequencies (in the range of kHz) and advanced signal
processing, together with machine learning, may be able to identify loads with lower energy
consumption, such as laptops, chargers, and so on. The identification of these devices
would imply the recognition of more daily activities, thus enhancing behaviour monitoring.

Similarly, in more advanced scenarios, it is interesting to foresee how smart meters
can be integrated in a more complex IoT (Internet of Things) sensor network, where
other sensors, such as positioning, temperature, or smart devices (typically smartphones
or smartwatches), can complement each other to obtain overall monitoring of the daily
activity of a person. The main challenge here is how we may merge the different information
coming from sensors in an efficient way, while keeping a low level of intrusiveness in the
house under analysis.

Another important aspect that we have not fully explored here and that deserves
further investigation is the interpretability and explainability of AI backbones. Indeed,
the LSTM network, which obtains the best results in alarm detection in our datasets,
is a very complex black-box model whose interaction with the input signals cannot be
easily seen or explained by a human. Classic machine learning methods, such as DT
or RF, are highly interpretable and explainable, allowing us to rank the most important
features that contribute to predictions and to evaluate biases in our datasets. However,
their generalization and regression power is limited. On the contrary, the considered
deep learning models are powerful, but not easily interpretable; thus, specific methods
are required for analysing deep learning models and model agnostic approaches. This is
an active topic of research that should be studied in future works, since explainable AI
techniques might improve the training of models, by refining the importance of the features
in the input signal.
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6. Conclusions

This work presents the generation of activity alarms based on electrical consumption
data from a commercial smart meter. These data are used to train an intelligent system
capable of predicting the energy consumption of a household in the next one-hour interval.
By comparing this prediction with the actual consumed energy, it is possible to identify the
unusual completion of a certain daily activity, and, consequently, to launch a corresponding
alarm, while maintaining negligible intrusiveness; this is because cameras, microphones
and extra sensors are not required. Four different approaches have been studied for the
design of the intelligent system: a recurrent network, a convolutional network, a random
forest, and a decision tree. For experimental validation, a smart meter was installed in a
household with four tenants, wherein data have been acquired and stored for a period of
seven months. The resulting metrics indicate better performance in the case of the recurrent
network, mainly due to the fact that it is more precise when detecting positive cases, thus
reducing the number of false negatives and achieving a higher recall. In particular, the
LSTM network proposed here has achieved a recall of 0.83 and an F1-score of 0.80, whereas
the other models provide humbler figures below 0.58 and 0.63, respectively.
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