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Support Vector Analysis of Color-Doppler Images:
A New Approach for Estimating Indices of
Left Ventricular Function

J. L. Rojo-Alvarez, Member, IEEE, J. Bermejo*, V. M. Judrez-Caballero, R. Yotti, C. Cortina,
M. A. Garcia-Fernandez, and J. C. Antoranz

Abstract—Reliable noninvasive estimators of global left ventric-
ular (LV) chamber function remain unavailable. We have previ-
ously demonstrated a potential relationship between color-Doppler
M-mode (CDMM) images and two basic indices of LV function:
peak-systolic elastance (FEy,.x) and the time-constant of LV
relaxation (7). Thus, we hypothesized that these two indices could
be estimated noninvasively by adequate postprocessing of CDMM
recordings. A semiparametric regression (SR) version of support
vector machine (SVM) is here proposed for building a blind
model, capable of analyzing CDMM images automatically, as well
as complementary clinical information. Simultaneous invasive and
Doppler tracings were obtained in nine mini-pigs in a high-fidelity
experimental setup. The model was developed using a test and
validation leave-one-out design. Reasonably acceptable prediction
accuracy was obtained for both FE,, ., (intraclass correlation
coefficient R;. = 0.81) and 7 (R;. = 0.61). For the first time,
a quantitative, noninvasive estimation of cardiovascular indices
is addressed by processing Doppler-echocardiography recordings
using a learning-from-samples method.

Index Terms—Doppler-echocardiography, elastance, left ven-
tricular function, noninvasive, semiparametric regression, support
vector machine, time-constant of relaxation.

1. INTRODUCTION

FULL noninvasive characterization of left ventricular (LV)

function in the clinical setting is still a pending issue. At
a chamber integration level, vast theoretical and experimental
research has established the time-constant of relaxation () and
the peak systolic elastance (Fy,ax) as the best available indi-
cators of LV relaxation, and global systolic chamber function,
respectively (see [1]-[3] for recent reviews). However, a direct
measurement of these indices is not possible for standard patient

Manuscript received October 11, 2005; revised March 22, 2006. This work
was supported in part by the Fondo de Investigacion Sanitaria under Research
Grant PI031220 of the Instituto Carlos III, Madrid, Spain, and in part by a re-
search grant from the Sociedad Espafiola de Cardiologia, 2003. The work of
R. Yotti was supported by the Instituto Carlos III under Grant BEFI BF03-
00031. Asterisk indicates corresponding author.

J. L. Rojo-Alvarez and V. M. Judrez-Caballero are with the Department of
Signal Theory and Communications, Universidad Carlos III de Madrid, 28911
Madrid, Spain .

*J. Bermejo is with the Department of Cardiology, Hospital General Univer-
sitario Gregorio Marafién, 28007 Madrid, Spain (e-mail: javbermejo@jet.es).

R. Yotti, C. Cortina, and M. A. Garcia-Ferndndez are with the Department of
Cardiology, Hospital General Universitario Gregorio Maraiién, 28007 Madrid,
Spain.

J. C. Antoranz is with Department of Mathematical Physics and Fluids, Uni-
versidad Nacional de Educacion a Distancia, 28040 Madrid, Spain.

Digital Object Identifier 10.1109/TM1.2006.875437

management because they require sophisticated, expensive, and
potentially hazardous, catheterization procedures.

Because it is fully noninvasive, portable, and inexpensive,
Doppler-echocardiography is the most generalized technique
to assess cardiovascular function in patients. However, most
aspects of LV physiology are approximated indirectly using
this technique. Estimating the status of LV diastolic function
from the analysis of pulsed-wave Doppler spectrograms is
a typical example of such approach [2], [4]. Although this
Doppler-echocardiography assessment of diastolic function
allows investigators to separate different disease groups, its
accuracy is limited to establish diagnosis and guide therapy in
a particular patient [5], [6].

Research in the field of noninvasive characterization of LV
function has usually followed a typical pattern of development.
First, a theoretical model is proposed based on the physical
laws of fluid-dynamics that relate invasive and noninvasive
measurements. Then, this prespecified relationship is calibrated
and tested using animal or clinical experiments, most frequently
using simple univariant regression. The accuracy and reliability
of the method is then assessed in a different population by the
same or other investigators. Finally, the definitive application of
the method in clinical practice generally requires incorporating
complementary clinical information to obtain the highest effi-
ciency for medical decision making. An example of this typical
pattern of research in the field of diastolic function can be
followed in [7] (relationship definition and preliminary testing),
[8], [9] (assessment of reliability), and [10] (incorporation of
clinical information).

The present study proposes a different approach. A physi-
cally-determined relationship is also assumed to exist between
fundamental hemodynamic variables (flow-rate, pressure, and
volume) and the physiological properties of the heart. However,
we do not prespecify the basis of such a relationship; instead,
we propose a learning from samples algorithm applied to a
large data set. For this purpose, an accurate measurement of
the distribution of at least one low-level hemodynamic variable
is required, assuming that the other variables can be obtained
by a nonlinear (yet unknown) transformation of the chosen
magnitude.

Although constrained to one spatial dimension, color-
Doppler M-mode (CDMM) echocardiography provides a very
accurate spatiotemporal distribution of flow velocity within the
heart. Furthermore, by means of Euler’s momentum equation,
we have already demonstrated that there is a physiological
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basis that relates ejection velocities to 7 and Fp,.x [11]-[13].
Attempting to estimate a diastolic index as 7 from purely
systolic velocity data may seem adventurous. However, pre-
vious wave intensity analysis experiments have demonstrated
a physiological relationship between 7 and end-ejection flow
events [14]. Thus, we hypothesized that 7 and F .5 could be
predicted from CDMM-images of LV ejection flow.

A learning from examples procedure can be suitable for
assessing this relationship at a reasonable computational cost.
Neural networks have been used previously in clinical echocar-
diography for automated image feature extraction, and for
automatic diagnosis of heart disease [15]-[19]. However, all
these methods have focused on a classification framework,
which represents a softer problem than estimating a continuous
index. Furthermore, some kind of image feature extraction
algorithm always needs to be performed before classification,
as full image consideration is precluded due to its high dimen-
sionality. To our knowledge, learning from samples techniques
have never been used for estimating directly a quantitative
index of cardiovascular function from a medical image. In this
paper, we propose the use support vector machines (SVM) for
this purpose.

The outline of the paper is as follows. First, the SVM
semiparametric regression is justified, described, and ex-
pressed in terms of our problem. Then, the type of images and
hemodynamic measurements performed are introduced. After
method description, experiments with CDMM images in an
animal model explore the feasibility of the noninvasive learning
from images method for estimating the two proposed cardiac
indices. Conclusions are finally drawn.

II. FORMULATION

SVM have emerged recently in the field of learning from
samples applications due to a number of well-proven proper-
ties [20]. SVM work well for high-dimensional input spaces (as
those given by images or gene expression); they have a single
minimum; large scale algorithms are continuously being de-
veloped; and they exhibit excellent generalization performance.
We propose to use a semiparametric regression (SR) version of
SVM (SVM-SR) [21], which will allow us both to efficiently
combine nonlinearity (Gaussian kernel for image analysis) with
parametric inclusion of information (linear kernel for clinical
variables). Due to our incomplete knowledge about the under-
lying noise distribution, the e-Huber cost is considered here, as
described in [22], for a robust estimation approach.

We propose [21] to explore the possibility of modeling the
functional relationship between the spatiotemporal velocity
field, as recorded noninvasively in the CDMM image, and the
value of a simultaneously invasively measured hemodynamical
index y. The use of SVM allows us to include, if necessary,
additional noninvasive clinical variables in the model. Let x"
denote a V-dimensional vector containing a CDMM image,
and x° a C-dimensional vector with clinical measurements.
Assume that there exists a possibly nonlinear transformation
of the velocity vector (clinical features vector) into a higher
dimensionality space, p(x*) : RV — F,(4(x°) : R — F.),
where §,(5.) is known as feature space. A linear regression
operator can be found in each feature space for each set of
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input variables, given by w € §,(v € §.). Assume that a set
of measured observations {y;,x?, xS}, withi = 1,..., N, is
available. Under these assumptions, the combined regression
model is

yi = (W, (X)) + (v, ¢ (x7)) + b + i (D

where b,. is the intercept, and e; represent the model errors or
residuals.

The SVM methodology [20] allows us to use different cost
functions of the residuals. A suitable robust cost function, that
has been proposed for time series and regression-like problems,
is the e-Huber cost, given by

07 |6L| S €

= (lesl —2)?, e<lel <ec
C(leil - €) = 19C2, el > ec
where e. = € + yC'. This cost function has been shown to be
useful in the presence of non-Gaussian perturbations, and can
be adapted to different kinds of noise [22], [23]. The algorithm,
described in [21], consists of minimizing the e-Huber cost when

itis regularized with the L, norm of both regression vectors, this
1S, we minimize

LF(e) = )
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constrained to

yi — (W, o (X])) = (v, (x)) =br <e+ & (4
—yi + (W, 0 (x})) + (v, 0 (x))) +br <e+ & (5

and to §;,&F > 0, where &; and £ (in the following, denoted
jointly as fi(*)) are the slack variables that account for the ex-
cess of the residuals over insensitivity €, and I (I2) is the set of
samples for which e < Ef*) < ec(fg*) > ec). By following the
usual SVM formulation methodology, Lagrangian functional
Lpp can be written [20], [22], and by making zero its gradient
with respect to the primal variables, we obtain

N
VwLpDzoéw:Z(ai—af)go(x}f) (6)
i;l
VoLpp =0=v=> (a;—a})(x) ©)
1=1
VewLpp =0=0<al” <C ®)
V};TLPD zoﬁi(ai—af):0 )
i=1

where oy;, o) denote the Lagrange multipliers that correspond to
(4), (5), respectively. Matrix notation is introduced as follows:

y =y, yn]" (10)
a® = [ag*>,...,ag;>]T (11
V(i j) = (o (x}), 0 (x})) (12)
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C(i,j) = (¢ (x) . ¢ (x5)) (13)
and then, the dual problem consists of maximizing
1
Lp(a,a) = —5(a—a”)"(V + C +1T)(a—a’)
+a—a)y —e(a+a")T1 (14)

with respect to oz,g*), and constrained to (8) and (9). After this
quadratic programming (QP) problem is solved, and according
to (1), (6), and (7), the estimated output 3 for a new observation
x can be easily shown to be given by

y= Zm (o (%), 0(x")) + {6 (x) , #(x°))) + b (15)

where 7; = (a; — o). This solution has a sparse expression for
an adequate choice of ¢ > 0, as it only depends of the observa-
tions with 7; # 0. These observations with non-null coefficient
are called support vectors, and they contain all the information
that is necessary for the model.

Additionally, the SVM methodology takes profit of Mercer’s
kernels to avoid the calculation of dot products in feature spaces
in (15). A Mercer’s kernel is a bivariate function K () that is
equivalent to calculating a dot product in a possibly infinite di-
mensional feature space [24], this is, a Mercer’s kernel fulfills
K(x,y) = (p(x), ¢(y)). Hence, if we use valid Mercer’s ker-
nels, we do not need even to explicitly consider the nonlinear
transformation. Examples of valid and widely used Mercer’s
kernels are the following.

* The linear kernel, given by K,(x,y) = (x,y). In this

case, the regression function has a linear form that can be
calculated explicitly as

N
B=7 mxi. (16)
i=1
* The Gaussian kernel, given by
Ix — ylP?
K,p(x,y) = exp <—T‘2 (17)

where o is the width parameter. From a computational
point of view, (14) is a well-defined QP problem (it has a
single minimum) for any nondegenerate value of this free
parameter.
Therefore, we can use in our model a composite Mercer’s
kernel, obtained as the sum of a (scaled) linear kernel that ac-
counts for the parametric component

(0 (x).0 () = Ky (xi.x5) = 8 (xi.x5) - (1®)

plus a nonlinear kernel that generates the nonparametric
component

19)
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Constant § > 0 can be chosen for giving an adequate balance be-
tween the parametric and the nonparametric components. Thus,
the final solution in (15) can be readily expressed as

N
5= miKu(x},x") + 8(8,x) +b,. (20)
=1

Taking (16) and (20) into account, we see that coefficients 7; de-
termine completely both the parametric and the nonparametric
components of the model.

In general, two kinds of free parameters must be chosen: cost
function free parameters {v, C, e}, and kernel free parameters
{0, 6}. A possible method for setting them is a sequential search
of the appropriate value for each, based on bootstrap bias-cor-
rected training error, as proposed in [25], and this is the approach
followed in this paper.

III. EXPERIMENTS AND RESULTS

A. Data Acquisition

FEiax and 7 were chosen as the indices to be predicted
because they are currently accepted as the best available stan-
dards of two crucial properties of the LV. 7 accounts for the
time-constant of LV pressure decay, and measures the rate of
LV relaxation during the isovolumic phase. F\,,x accounts for
peak end-systolic LV elastance, and it is the best index to assess
global LV systolic chamber function. The methodological
details of the animal experiments used for the present study
have been reported elsewhere [12]. Briefly, using an open-chest
animal setup, simultaneous EKG, high-fidelity pressure
(solid-state micromanometers), volume (conductance catheter),
and CDMM recordings were obtained in nine mini-pigs under
variable hemodynamic conditions induced by pharmacolog-
ical interventions and acute ischemic cardiomyopathy. After
recording baseline values, acquisition of invasive pressure and
volume data was continued during preload reduction by occlu-
sion of the inferior vena cava. Invasive signals were digitized
at 1000 Hz and CDMM images were stored in DICOM III
format for offline processing. Analysis of the same beat of
CDMM and invasive recordings was ensured by retrospective
cross-correlation matching of a synchronicity signal [11], [12].
7 was calculated from the high-fidelity pressure signal using the
zero-asymptote assumption [26] by nonlinear regression fitting.
The iterative linear regression method was used to calculate
Frax [27]. Consequently, for each CDMM recording matched
values of T (same beat) and F,,,« (immediately following beats
during cava occlusion) were obtained.

CDMM images were obtained using a phase-array broadband
2.0-4.0-MHz transducer on a Sequoia C-256 system (Siemens
AG), from an epicardial approach [12]. These CDMM trac-
ings display the 1-dimensional spatiotemporal map of ejection
flow velocity along the long axis of the LV. Velocity values
were obtained from the color values of each pixel using a pre-
viously validated decoding and de-aliasing algorithm [28]. Spa-
tial and temporal calibration was obtained automatically from
the DICOM metadata; velocity calibration was obtained by au-
tomatic reading of the images scale limits. The beginning and
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TABLE I
NUMBER OF TRAINING AND TEST OBSERVATIONS FOR
EACH REGRESSION MODEL

[Rez [ #1[ 72 ] %5 [ #1 #5 | #6 | #7 [ #5 [ |
Train 247 | 253 | 276 | 255 | 251 234 | 243 236 | 253
Test 34 28 5 26 30 47 38 45 28

end of ejection, as well as the positions of the LV apex and
outflow tract, were visually identified in each image. CDMM
recordings were then aligned and cropped slightly beyond these
limits, interpolated using a bivariate tensor product spline, and
then downsampled to a grid of 2¢ x 2¢ pixels, where d is a
free parameter of the preprocessing that will be called detail in
the successive. For the £, estimations, downsampled CDMM
images were the input to the SVM, and no parametric compo-
nent was considered (§ = 0). Based on previous studies from
our group [12], we assumed that it should be possible to predict
E\.x with reasonable accuracy using only the CDMM as the
input space of the SVM. For the 7 estimations, we also explored
the advantage of incorporating the following variables into the
parametric component of the model: heart-rate (HR), peak LV
pressure (LVP), LV ejection fraction (EF, obtained automati-
cally from the conductance signal), and their squared values.
Importantly, in clinical practice these additional variables can
be readily obtained noninvasively by sphygmomanometry and
B-mode cross-sectional echocardiography.

B. Data Analysis

Given that intra-subject measurements are expected to be
strongly dependent, we considered the following development
strategy. All the available measurements in all but one animal
were considered for training, and the measurements for the
left-out animal were used as the independent test set; this pro-
cedure was repeated for the nine available pigs. Table I shows
the resulting number of observations in each train and test set
for each of the nine leave-one-animal-out regression model.

For the image-based components of the input spaces, not only
the RBF kernel, but also the linear kernel, were explored. For
each regression model, the required free parameters were ad-
justed in the training set. Searched free parameters were 1) cost
function parameters {, C, £}, in all the cases and 2) kernel pa-
rameters {o, 6} as required by each input feature space. Free
parameters were adjusted for providing the minimum bootstrap
mean squared error, by following a procedure similar to that pro-
posed in [25], and using B = 10 bootstrap resamples. In order to
assess the agreement between measured and predicted measure-
ments of F,,., and 7, the intraclass correlation coefficient (R;..)
was used as merit figure for each regression model calculated.

For the first set of experiments, a value of d = 4 was fixed, so
that the downsampled images were 16 x 16 pixels. This value
of d was an initial tradeoff between a moderate computational
burden and a minimally acceptable representation of the ve-
locity field in the image.

C. Prediction Accuracy

Table II shows the R;. values when estimating F,,,x for each
regression model, as well as for the whole set of the independent
outputs. The highest performance (R;. = 0.81) was achieved
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TABLE II
VALUES OF R;. FOR EACH SVR ESTIMATING E,.x, FROM VELOCITY (V),
WITH d = 4 (LINEAR AND GAUSSIAN KERNEL)

I [[ VIin [ V Gauss ||

#1 037 0.67
#2 0.58 041
#3 0.54 0.16
#4 0.61 0.36
#5 033 0.72
#6 030 0.53
#7 0.75 0.45
#3 0.55 034
#9 0.76 032

[ Total [[ 081 [ 067 |

by the linear kernel, and surprisingly, the RBF kernel was not
able to improve this approximation performance. Fig. 1(a) and
(b) depicts the predicted E,,,x for each observation, as pro-
vided by its own independently trained machine. Though the
accuracy in the prediction was limited, a good trend to follow
the actual output value was observed. The Bland—Altman plot
demonstrates a nonuniform distribution of error and greatest im-
precision is observed for the highest values of E,,x obtained
during inotropic stimulation. Fortunately, accuracy in this range
is less relevant than at the low contractility level, and a certain
amount of uncertainty at supraphysiological values is unlikely
to have any impact on clinical decision making.

Table III shows the R;. values when estimating 7. In this
case, the highest performance was given by the combined input
space using a linear kernel (R;. = 0.61), though there was
no significant difference with respect to the velocity-only input
space. Fig. 1(c) and (d) shows predicted 7 following the invasive
gold-standard value, but with a relative uncertainty greater than
for Eax prediction case. Again, the use of RBF kernel for the
image input space did not improve the estimation, but, instead,
showed lower values of total R;. (not shown).

The advantages of including clinical features in the input
space for predicting 7 is shown in Table III, and the value and
95% confidence intervals of the parametric components (for
d = 4) are shown in Table IV. Although a number of these
coefficients were significant, the increase in model accuracy
was small in most experiments. In all cases, parameter ¢ in (20)
was optimized, to compensate for possible differences in the
relative relevance of the CDMM image and the clinical features
input variables.

To assess the relative weight of each region in the CDMM
image to predict 7 and F,,.x, the coefficients resulting from the
regressions were analyzed. For this purpose, standardized re-
gression coefficients corresponding to image pixels in the input
space for each of the nine experiments were calculated, as well
as their spatial average (Fig. 2). Notice that most relevant in-
formation in the CDMM image for estimating F\,.x was found
during the onset of the ejection flow velocity field, at approx-
imately 10% of ejection time, and that higher velocities were
related to higher values of Fy,x (positive mean standardized
coefficients). This observation is in close accordance with our
previous finding relating E,,,x to the peak-ejection intraven-
tricular pressure gradient caused by early systolic local flow
acceleration [12]. Similarly, most relevant information in the
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Fig. 1. Predicted values of E,, .. with d = 4 and linear kernel. (a) Noninvasive prediction for each observation (continuous) and catheter measurement (dashed),
vertical lines separate observations from different animals. (b) Bland—Altman plot of errors (dotted line represents two standard deviations). Predicted values of T
with d = 4, velocity and clinical features input space, and linear kernel. (c) Noninvasive prediction for each observation (continuous) and catheter measurement

(dashed). (d) Bland—Altman plot of errors.

TABLE III
VALUES OF R;. FOR EACH SVR ESTIMATING 7, FROM VELOCITY (V) PLUS
FEATURES (FV), WITH d = 4 (LINEAR KERNEL)

I [[ Vin [ FVin |
#1 0.66 0.70
#2 0.78 0.79
23 095 | 096
#4 0.74 0.84
#5 0.75 0.77
#6 0.80 0.80
#7 0.45 0.46
#8 -0.16 -0.16
#9 0.21 0.22

[[ Total [ 058 ] 0.61 |

CDMM image for estimating 7 was found at the very end of
the ejection flow velocity field, and the mean standardized re-
gression coefficient was negative at this time instant. Again,
this finding in accordance of our previous observations inversely
correlating 7 to the time and extent of the reverse pressure gra-
dient caused by end-systolic flow deceleration [29].

TABLE IV
MEAN AND 95% CONFIDENCE INTERVALS FOR THE COEFFICIENTS OF CLINICAL
VARIABLES IN 7 REGRESSION MODEL (d = 4)

| I T |
HR 22.2 (20.3,24.2)
(HR)? 0.4 (-1.8,2.8)
LVP 34.6 (28.0,41.2)
(LVP)Z || -11.6 (-16.0,-7.3)
EF -17.1 (21.3,-13.0)
(EF)? -14.1 (-17.0,-11.1)

D. Additional Technical Improvement

As far as the linear kernel exhibited a higher acceptable pre-
diction accuracy, we explored the least squares (LS) solution for
comparison purposes, but extremely poor performance was ob-
tained for d = 4. Hence, for E\,,x and 7 estimations using the
least squares solution, we obtained R;. = 0.16 and 0.14, respec-
tively. Two possible reasons for the linear SVM outperforming
the LS method can be the following. First, the SVM implicitly
follows the structural risk minimization principle [20], which
leads to better regularization properties than LS in high-dimen-
sional input spaces. And second, from a maximum likelihood
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Fig. 2. Linear SVM coefficients representation. (a) Example of centered and normalized Doppler M-mode image. (b) and (c) Map of standardized average coef-
ficients for E,,., and T regression models, respectively. (d) Space-averaged standardized coefficients.

point of view, the LS is appropriate for Gaussian perturbations
(which seems not to be the case here), whereas the e-Huber cost
function of the residuals is tuned in the SVM for dealing with
different kinds of noise.

In order to determine if an increase in the detail of the CDMM
image entered in the input space could improve performance, we
repeated the experiments increasing the level of detail. Resolu-
tions corresponding to details d = 5 and d = 6 were explored,
with no significant improvement either in F,,,x (0.80 ford = 5
and 0.79 for d = 6) orin 7 (0.62 for d = 5 and 0.61 for d = 6).

IV. CONCLUSION

An innovative approach has been presented for noninvasively
and quantitatively characterizing left ventricular function. In-
stead of a theoretically-based a priori rationale, the possibility
of approximating the implicit physical description between a
medical image modality and a clinically relevant cardiac index
has been proposed with a learning from examples approach. In
particular, the use of SVM is illustrated as a potential method
to manage full-image input spaces. Furthermore, its SR version
has shown to be suitable for extending the input space to decide
the convenience of including complementary clinical measure-
ments, thus potentially simplifying medical decision making.
Using this methodology, the estimation of two relevant cardiac
function indices such as F,,,x and 7 represents a first step in
this direction.

Although acceptable for a first approach, the accuracy ob-
tained in the estimation of F ., and particularly of 7, needs to
be improved before the method is introduced into clinical prac-
tice. A number of SVM processing and data acquisition issues
may account for this suboptimal agreement. Regarding the first,
the sequential search of the four/five free parameters sometimes
became suboptimal, probably explaining why the RBF kernel
did not improve the linear kernel. As an exhaustive search is
not currently feasible for medium and large scale problems, a
better search strategy for free parameters will surely improve the
method. Additionally, curse of dimensionality could be present
for schemes with increased resolution, an issue that might ex-
plain the absence of a significant effect of further image detail
on predictive accuracy. Thus, alternative Mercer’s kernels, ca-
pable of dealing more efficiently with increased detail in the
input space, deserve to be explored.

A number of technical aspects of image acquisition may
also account for the less than optimal accuracy observed in
the present study. Obtaining the true velocity distribution
within the LV requires that the Doppler scanline goes through
the center of the LV outflow tract as well as the apex. Thus,
occasionally anatomical and operator limitations may preclude
a fully coaxial interrogation of the ejection flow, which, in turn,
translates into underestimated ejection velocities. Although we
have demonstrated that significant misalignment is needed to
cause a clinically relevant modification in Doppler parameters
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[12], this may sometimes limit the applicability of the method
in the clinical setting.

We believe this novel approach has potential clinical im-
plications. As previously discussed, we found a number of
concordant results of the present study with previous [12],
[29], analyses from our group. This suggests that learning from
samples methods can be useful when attempting to extract
clinical features from novel diagnostic techniques and image
modalities. Careful post-hoc analysis of the results of these
blind methods may help to find the physiological rationality be-
yond the searched clinical relationships. Furthermore, learning
from samples methods eventually may become a realistic
method to extract clinically relevant information directly from
medical image modalities. We believe this methodology defi-
nitely deserves further exploration in the field of noninvasive
cardiovascular diagnosis.
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