
Support Vector Robust Algorithms for
Non-parametric Spectral Analysis
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Abstract. A new approach to the non-parametric spectral estimation
on the basis of the Support Vector (SV) framework is presented. Two
algorithms are derived for both uniform and non-uniform sampling. The
relationship between the SV free parameters and the underlying pro-
cess statistics is discussed. The application in two real data examples,
the sunspot numbers and the Heart Rate Variability, shows the higher
resolution and robustness in SV spectral analysis algorithms.

1 Introduction

Non-parametric spectral analysis of time series is a widely scrutinized framework.
The most relevant of the classical spectral estimators, the Welch periodogram
and the Blackman-Tukey correlogram, are based on Fourier-Transform represen-
tations, either for the observed time series or for its estimated autocorrelation
function [1], so their main advantages are the low computational burden required
and their simplicity. On the other hand, their spectral resolution is limited due
to the effect of windowing. The spectral analysis of non-uniform sampled series
has also been suggested by means of the Lomb periodogram [2,3]. In both cases,
the Periodogram exhibits a high sensitivity to outliers.
An alternative approach to the classical non-parametric spectral analysis can

be drawn from the Support Vector (SV) framework, which was first suggested to
obtain maximum margin separating hyperplanes in classification problems [4,5,
6]. In this work, we propose to modify the standard SV regression algorithm and
the cost function to provide an adequate approach to non-parametric spectral
analysis problems.
SV algorithms for the Welch periodogram and the Lomb periodogram are

first derived. Two application examples, the sunspot numbers for the SV-Welch
and the Heart Rate Variability (HRV) for the SV-Lomb algorithms are shown,
to support the potential of this new approach.
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Fig. 1. Robust SV cost function.

2 SV-Welch Periodogram

The model for the harmonic decomposition of a sequence {yn} can be expressed
in terms of the discrete-time harmonic Fourier series. The spectral analysis of
the observed signal can be denoted as follows,

yn =
Nω∑

i=1

Ai cos(ωin+ φi) (1)

where the unknown parameters are amplitudes Ai, phases φi and frequencies
ωi for a number Nω of sinusoidal components. This is a non-linear relationship,
except in the case where frequencies are known, say ωi = 2πi/N . In this case,
Eq. (1) can be linearly expressed by switching to Cartesian coordinates ci =
Ai cos(φi) and di = Ai sin(φi), and the model can be written down as

yn =
Nω∑

i=1

[ci cos(ωin) + di sin(ωin)] . (2)

Several robust cost functions have been used in SV regression, as the Vapnik’s
loss function [4], Huber’s robust cost [7], or the ridge regression approach [8].
We propose here a more general cost function, which has the above mentioned
ones as particular cases, we force the minimization of

1
2

(‖c̄‖2 + ‖d̄‖2)+ 1
2γ

∑

k∈I1

(
ξ2
k + ξ∗2

k

)
+ C

∑

k∈I2

(ξk + ξ∗
k) (3)

constrained to

yk −
Nω∑

i=1

ci cos(ωik)−
Nω∑

i=1

di sin(ωik) ≤ ε+ ξk (4)

− yk +
Nω∑

i=1

ci cos(ωik) +
Nω∑

i=1

di sin(ωik) ≤ ε+ ξ∗
k (5)

ξk, ξ
∗
k ≥ 0 (6)
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for k = 1, . . . , N , where ξ
(∗)
k are the losses, and I1, I2 are the sets of samples for

which losses are required to have quadratic or linear cost, respectively. Figure 1
depicts the relationship between the approximation error en and its correspond-
ing loss. Note that for γ small enough this represents the regularized Vapnik’s
ε-insensitive cost, whereas for ε = 0 it represents Huber’s robust cost.
The derivation of the dual problem shows the Cartesian components can be

expressed as

cW
l =

N∑

k=1

(αk − α∗
k) cos(ωlk); dW

l =
N∑

k=1

(αk − α∗
k) sin(ωlk) (7)

where α(∗)
k are the Lagrange multipliers for the constraints in (4) and (5). There-

fore, the lth coefficients are the cross-correlation of the Lagrange multipliers and
the sinusoid with frequency ωl. These conditions are introduced into the La-
grange functional in order to remove the primal variables, and it is easy to show
that if we write down

RW
cos(m, k) =

Nω∑

i=1

cos(ωim) cos(ωik); RW
sin(m, k) =

Nω∑

i=1

sin(ωim) sin(ωik) (8)

then the regularized LD dual problem, to be maximized with respect to the dual
variables only, can be solved by maximizing

LD = −1
2
(ᾱ − ᾱ∗)T

[
RW

cos +RW
sin

]
(ᾱ − ᾱ∗) + (ᾱ − ᾱ∗)T ȳ −

− ε1̄T (ᾱ+ ᾱ∗)− γ

2
(
ᾱT Iᾱ+ ᾱ∗T Iᾱ∗)

(9)

constrained to 0 ≤ α, α∗ ≤ C.
It can be easily shown that the SV approach leads to the non-orthogonal, reg-

ularized representation of the observation data upon the signal subspace which
is generated by the Cartesian representation of the sinusoidal components in the
model. The implications of this interpretation are currently being studied.

3 SV-Lomb Periodogram

For series of data samples {ytn} which have been non-uniformly sampled in the
corresponding time instants {t1, · · · , tN}, the model is

ytn =
Nω∑

k=1

Ai cos(ωitn + φi) =
Nω∑

k=1

[ci cos(ωitn) + di sin(ωitn)] (10)

and in this case the solution coefficients are given by

cL
l =

N∑

k=1

(αk − α∗
k) cos(ωltk); dL

l =
N∑

k=1

(αk − α∗
k) sin(ωltk). (11)
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Fig. 2. Sunspot numbers. Left: Averaged and decimated sunspot number series.
Right: Normalized Welch and SV spectral estimators (natural units).

Taking into account

RL
cos(m, k) =

Nw∑

i=1

cos(witm) cos(witk); RL
sin(m, k) =

Nw∑

i=1

sin(witm) sin(witk)

(12)

the problem is now equivalent to maximize the dual functional

LD = −1
2
(ᾱ − ᾱ∗)T

[
RW

cos +RW
sin

]
(ᾱ − ᾱ∗) + (ᾱ − ᾱ∗)T ȳ −

− ε1̄T (ᾱ+ ᾱ∗)− γ

2
(
ᾱT Iᾱ+ ᾱ∗T Iᾱ∗)

(13)

constrained to 0 ≤ α, α∗ ≤ C.

4 Application Examples

Periodogram and sunspot numbers. A classical application of the classical
spectral estimation is the search of periodicity in sunspot numbers. This exper-
iment has been taken from [1, pp. 161-4], where preprocessing is detailed. The
updated series of 3036 monthly sunspot numbers for the years from 1750 to 2001
were analyzed, aiming to study the details in the band between 0 and 2 cycles per
year. The averaged Welch and SV-Welch periodograms were calculated. The free
parameters in SV were ε = 0, C = 100 and γ = 0.01 as this set was previously
shown to give an enhanced harmonic spectral structure.
Figure 2 shows the normalized periodograms. The Welch estimator points

the 10.5 year dominant component, one sub-harmonic and one harmonic. For
the same frequency resolution, the SV estimator marks 4 components, which
is coherent with the analysis performed in [1], where different non-parametric
methods highlighted different components (0.95, 0.188, 0.25 and 0.45 cycles per
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year). The peak frequencies were very similar in both the SV estimator and the
several classical analysis, but the first one was able to mark all the peaks in a
single spectral representation.

Robust HRV analysis. The natural oscillations of the time between consecu-
tive heart beats are known as HRV, and it is related with the modulation of the
sympathetic and the vagal nervous system on the heart rhythm [9]. In healthy
conditions, the power of the oscillations observed in the LF band (from 0.04
to 0.15 Hz) is balanced with the power in the HF band (from 0.15 to 0.4 Hz).
The association of the time between two consecutive beats to the time where
the first couple beat happens leads to an non-uniform sampled series. Besides,
ectopic beats frequently appear, but they are not related with the modulation
of the autonomic system and they should be excluded from the analysis.
The Lomb periodogram has allowed to overcome the non-uniform sampling

problem. Nevertheless, the detection of ectopic beats has to be manually vali-
dated by a medical expert, and this is a much time-consuming task. This fact
has been a main limitation for the application of the HRV into the habitual
clinical practice, and it suggests the introduction of a robust, ectopic-insensitive
spectral analysis.
The SV-Lomb can be adapted by tuning its free parameters ac-

cording to the nature of the HRV signal. The impact of the ectopic
beats can be limited by constraining the amplitude of the Lagrange
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Fig. 3. Heart Rate Variability. Up:
time signal (dotted) and SV-Lomb
aproximation (continuous). Down:
Lomb periodogram (dotted) and
SV-Lomb (continuous) normalized
spectral estimators.

multipliers (γC) to a low enough level.
Additionally, the SV-Lomb method has
been observed to model the high-
frequency noise from the high-frequency
sinusoidal components which are non-
uniform sampled, hence overestimating
the HF power. This effect can be limited
by choosing an insensitivity level ε and a
moderate frequency resolution.
Figure 3 shows an application example

to a HRV series. The free parameters were
chosen as C = 4, γ = 1, ε = 3 and the
frequency resolution ∆f = 0.001Hz. Note
the SV-Lomb estimators are less affected
by the inclusion of ectopic beats in the
window than Lomb periodogram is. In the
first case, the spectral estimator holds the
power in the LF and HF bands, whereas
the Lomb periodogram spectrum is flatter

due to the influence of the wide-band spectral contamination of the ectopics.
The overestimation of the frequency components near to 0.4 Hz in the SV-Lomb
estimator can be observed. Further and deeper study is to be done in order to
explore the possibilities of this method in HRV series analysis.
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5 Conclusion

The application of the SV framework to classical, non-parametric spectral anal-
ysis is a promising framework. For uniform sampling applications, the spectral
resolution of SV is higher than the corresponding classical methods. For non-
uniform sampling, a more enhanced harmonic spectral structure can be captured
by the SV method when compared to the Lomb periodogram. The SV spectral
analysis seems to be a good approach for the robust measurement of the HRV
in a clinical environment. Further work is to be done in several directions. First,
the theoretical and statistical analysis of the SV spectral algorithms have to
be completed. Second, the robust approach to the HRV problem has to be de-
limited and performed. Third, other application fields should be proposed and
explored, where the advantages of the SV framework can be of interest, such
as voice processing or astronomy data analysis. Finally, other spectral SV algo-
rithms, such as signal-and-noise subspace decomposition, ARMA modeling and
deconvolution, will be developed.
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